
An Integrated Modelling, Debugging, and Visualisation
Environment for G12

Andreas Bauer1,2, Viorica Botea1, Mark Brown1, Matt Gray1,2,
Daniel Harabor1,2, and John Slaney1,2

1 National ICT Australia (NICTA)�
2 The Australian National University

Abstract. We present G12IDE, a front-end for the G12 platform aimed at help-
ing users create and work with constraint models in a manner independent from
any underlying solver. G12IDE contains tools for writing and evaluating models
using Zinc and provides a feature rich debugger for monitoring a running search
process. Debugging a search, as opposed to debugging sequential code, requires
concepts such as breakpoints and queries to be applied at a higher level than in
standard debuggers. Our solution is to let users define special events which, once
reached in a search, cause the debugger to halt and give back, possibly in a vi-
sual manner, useful information on the current state of the search. G12IDE also
includes a number of visualisation tools for drawing graphs and trees, and ad-
ditionally allows users to create arbitrary domain-specific visualisations, such as
the drawing of a sequential plan when the constraint problem is in fact a planning
problem. The inclusion of such powerful and flexible visualisation toolkit and
its tight integration with the available debugging facilities is, to the best of our
knowledge, completely novel.

1 Introduction

G12 [15] is a software platform for solving combinatorial optimisation problems. It
supports linear and mixed integer programming, constraint propagation and inference
and a variety of other search and inference-based approaches for solving complex prob-
lems. Like several other modern modelling languages [5,6], it separates the “concep-
tual” or constraint model from the constraint program. In G12, the constraint model is
written in Zinc, a purely declarative language that can be mapped to a range of lower-
level models, and ultimately to constraint programs, which may solve the problem in
quite different ways. The clear separation of modelling from solving requires a shift
from thinking about problem solving in terms of programs and execution to thinking in
terms of models and search. This change in paradigm calls for new tools that directly
support working at such a high level.

In this paper we present G12IDE, a novel integrated modelling, debugging and visu-
alisation environment which has been developed largely in parallel to the rest of G12.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 522–536, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Integrated Modelling, Debugging, and Visualisation Environment for G12 523

Built on top of the Eclipse platform,1 G12IDE has a similar look-and-feel to a classical
programming environment. It offers support for the modelling of constraint problems
via an integrated Zinc editor, performs automatic builds and allows step-wise debugging
of an active search process.

Our debugging system is built around an explicitly defined (and solver agnostic)
schema which specifies a wide range of “interesting” search events that a user may
“subscribe” to. For example, it is possible to pause the search when a variable has
become grounded, when the search has reached a fixpoint or when a solution has been
found. Furthermore, existing search events can be combined together to create new
custom search events. This allows for a high degree of control over the search process
at varying levels of granularity.

Our environment also allows constraint problems to be visualised. Users can choose
between pre-defined visualisations, such as a constraint graph and search tree, or alter-
natively may define their own. The latter is facilitated by drawing objects in a simple
graphics editor and animating them using a dedicated scripting language. In this way,
not only are generic views (trees, graphs) available, but it is also possible to visualise
problems in a more domain-specific manner. For example, a planning problem can be
visualised by drawing the execution of the plan so far as well as the possible choices in
the current search node. The inclusion of such a powerful and flexible visualisation tool
in the IDE, and its tight integration with the available debugging facilities, is to the best
of our knowledge, completely novel.

Outline. The rest of this paper is organised as follows. In the next section, we provide
more conceptual details on debugging a running search, outlining the differences from
classical debugging and the specific challenges of our domain. In Sec. 3, we give a brief
architectural overview on the G12IDE, and explain its main components, or layers. The
modelling layer is explained in greater detail in Sec. 4, and the visualisation layer in
Sec. 5. The technical realisation of our debugging layer, or rather its relation to the
underlying constraint solver, is explained in Sec. 6. Finally, Sec. 7 contains references
to related work, while a brief summary and conclusions of our paper are to be found in
Sec. 8.

2 Debugging Search

Bugs—errors or infelicities—may exist anywhere in the software system. They may af-
flict the model, the data, the mapping down to solvers or the underlying programs. Bugs
in the code of solvers are not our present concern: we assume the constraint program
and its associated constraint solvers work perfectly unless forced to conclude otherwise.
Instead, we focus on bugs that may arise during the development of a constraint model.

Errors in the model may call for correctness debugging, if they affect semantics by
allowing unintended solutions or by excluding intended ones. It is also common for
models to contain logically correct but poorly expressed constraints. Such situations
can frequently limit the effects of propagation and so performance debugging of the
model may also be required. We thus require debugging tools which detect either static

1 http://www.eclipse.org/

524 A. Bauer et al.

features of constraint models or dynamic features of the search process, and report them
to us in a form appropriate to the high level at which we wish to think about constraint
problems.

In a sense, this is a radical departure, but in another sense it is little different from
the concept of debugging at other levels. Consider a debugger for C programs, for in-
stance. It works with an ontology appropriate to programming at that level. It allows
breakpoints to be set on lines of the C code or on C functions, not on assembly-level in-
structions, and when stepping to the next instruction, it breaks on the next C line rather
than on the next machine instruction or the next clock cycle. When it reports the values
of variables, these are variables declared in C, not the contents of registers and accumu-
lators. Moving up from the level of program and execution to that of model and search
is more of the same. Breakpoints and steps for our purposes should make sense in terms
of search: “step to the next node of the search tree” and “break whenever propagation
reaches a fixpoint” belong at this level, whereas “step over the next function call in the
SAT solver” does not. Similarly, when we ask for the values of variables, we want to
know the domains of decision variables declared in the Zinc model, not the details of
whatever data structures these have turned into after mapping to solvers.

The task of our debugger is to monitor the search process, which requires it to place
breakpoints in low-level code in order to collect information with which it can maintain
models of the current search state, and then to pass just the right information, on de-
mand, to the front-end tools which display it. Managing this in a systematic way seems
to be new in constraint programming, so we have had to design an architecture for the
search debugger at the same time as experimenting with modes of visual presentation
in order to present abstractions of the search states which are likely to be useful. Details
of our design decisions and the resulting tools are presented in the next sections.

3 Architectural Overview

Our environment can be described in terms of a three-tier architecture comprising a
Modelling Layer, a Solving Layer and a Visualisation Layer. Fig. 1 illustrates this idea.

The Modelling Layer is where most of the interaction with the user takes place. It
comprises two components: The first is a dedicated code editor for Zinc which offers
features such as syntax checking, syntax highlighting, and standard Eclipse function-
ality such as project-based code separation. The second component is a Visualisation
Editor which includes a simple canvas for drawing objects and an associated text editor
for writing animation scripts. The idea is to create a custom visualisation by drawing
objects on the canvas and then writing a script to define their behaviour in response to
specified search events (e.g. changing the colour or position of an object in response
to a variable becoming grounded). Sec. 4 describes the components of the Modelling
Layer in more detail.

The Solving Layer comprises the main interface to the rest of the G12 platform (i.e.,
the different solvers) and our environment. Given a Zinc model, the Solving Layer is
responsible for invoking the solvers, maintaining communication between the solver
monitor and the debugging interface and is responsible for sending any updates regard-
ing the state of the running search process to the appropriate visualisers. Sec. 6 contains
a detailed discussion of the different components in the Solving Layer.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 525

Fig. 1. The G12IDE architecture. Most features can be categorised into one of three distinct lay-
ers: modelling, solving or visualisation.

The Visualisation Layer is comprised of three dedicated visualisers: a Constraint
Graph Viewer (CGV), a Search Tree Viewer (STV) and a Custom Visualisation Viewer
(CVV). The first two are highly specialised, offering a range of features specific to the
display of graphs and trees. The CVV on the other hand is extremely generic; while
intended principally for 2-dimensional diagrams, it can display arbitrary graphics. Its
applicability is thus limited only by the constraint programmer’s imagination. Each
visualiser requires certain input files to function. In the case of CGV and STV the
model itself suffices. The CVV also requires a visualisation script. For details on these
viewers as well as the scripting language, see Sec. 5.

4 The Modelling Layer

Two components make up the Modelling Layer: a Zinc Editor and a Visualisation Edi-
tor. To better illustrate these tools and their use, we shall refer to the meet-pass problem
as a running example. This is a standard (if not very difficult) benchmark problem in AI
planning, described as follows:

The Meet-Pass Problem

Five sectors of railway track, S1, . . . S5, are linearly connected. There is a sid-
ing accessible from S3 big enough to hold one train. Initially, there are trains
in sectors S1, S2 and S4. The safety rules are that no two trains may be in the
same sector at the same time, and no train may enter a sector occupied by an-
other train, even if that other train is about to move on. Trains may only move
to adjacent sectors, of course. Find the shortest plan that moves the train on S1

to S5 and returns the other two trains to their starting positions.

While this is a toy example, the problem class from which it comes is real enough:
meet-pass planning is a constant issue in scheduling train movements. Fig. 2 shows a

526 A. Bauer et al.

Fig. 2. Meet-pass planning problem in MiniZinc

MiniZinc encoding of the problem given that the optimal plan length is known to be 12
moves (13 timesteps). The four constraints are quite simple: the first is a safety condition
which could be written using the all different global if we wished; the second is
trivial; the third says that trains can’t jump and the fourth encodes the remaining safety
condition.

4.1 The Zinc Editor

The Zinc Editor (shown in Fig. 3(a)) allows users to write constraint models in the main
input languages of the G12 platform: Zinc and MiniZinc [12]. It has a range of features
which are typical for code editors in other integrated development environments. For
example, automatic syntax checking and highlighting, in-line error reporting, and an
outline window to assist with code navigation are standard. Another largely standard
feature offered by the Zinc Editor is project-based code management, which simplifies
the task of keeping models, data files and related visualisation scripts together. Since
the Zinc Editor directly extends the standard Eclipse code editor it is easy to augment
its functionality via third party libraries or “plugins”. For example, it is trivial to add
support for other programming languages (such as java) or add features to help with
revision control.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 527

(a) The Zinc Editor includes features com-
mon to many programming environments:
syntax highlighting (1), outline views (2)
and project-based code management (3) are
all standard.

(b) The Visualisation Editor drawing tool.
Shown are some domain-specific shapes
(trains, tracks) that we have drawn for the
Meet-pass problem.

Fig. 3. The two main built-in editors of the G12 IDE

4.2 The Visualisation Editor

The Visualisation Editor is a vector-oriented drawing tool and an associated script editor
which together are used to define arbitrary visualisations of the model as it is being
solved.

A new visualisation is created by first drawing a small set of shapes (in the drawing
tool) where each shape represents an object or concept specific to the domain of the
constraint problem. In the case of Meet-pass for example we might draw a train and
some different types of tracks (as shown in Fig. 3(b)). Next, a visualisation script is
created which animates the drawn objects – usually in response to some search data
received from the solving process. Our visualisation scripts are written in the Lua lan-
guage and thus both flexible and powerful. We chose Lua because it is portable and
lightweight but as we will discuss in Sec. 5, G12IDE can be extended to support any
arbitrary programming language.

The basic operation of a visualisation script is straightforward: Each shape defined
via the drawing tool is available as a template that can be instanced by the script. Once
an instance is created the shape can be programmatically positioned to anywhere on
the canvas. Other attributes of the templated shapes (such as their size, colour, orien-
tation and opacity) can be likewise modified at any point. Further details related to
the integration of the scripting language into G12IDE and the operation of the Custom
Visualisation Viewer are given in Sec. 5.

5 The Visualisation Layer

G12IDE offers three distinct visualisers: a Constraint Graph Viewer (CGV), a Search
Tree Viewer (STV) and a Custom Visualisation Viewer (CVV). The first two are pre-
defined and highly optimised visualisations specific to constraint problems and search.

528 A. Bauer et al.

(a) A typical constraint graph. Nodes repre-
sent variables and edges, constraints.

(b) A typical search tree. Each node is a do-
main split. The deltas are collapsed subtrees.

Fig. 4. The search tree and constraint graph visualisers

The third is more general; it can display any arbitrary visualisation which has been
developed with the Visualisation Editor (see Sec. 4). We discuss each in turn.

5.1 Pre-defined Visualisations

The STV visualises a constraint solver exploring the search space. It expands and draws
a search tree in a step-wise manner that shows decision points, backtracking operations,
domains of variables and other information which is useful when inspecting a search
tree. Fig. 4(b) shows a typical result. A range of controls is available to speed up, slow
down, pause and resume the solving process. It is also possible to collapse and expand
entire branches of the tree to speed up drawing time. Additionally, as tree search al-
gorithms can take a long time to complete, we have implemented the “recursive tree
estimator” of Kilby et al [10] to provide the user with some indication of how long the
solving process is likely to take.

The CGV visualises the solving process using a constraint graph—a useful represen-
tation of the structure of a problem. In its simplest form a constraint graph is composed
of a set of nodes representing decision variables and a set of edges which represent con-
straints between them. An alternative representation draws each constraint as a node
and adds an edge only if two constraints share a decision variable. CGV supports both
types. Updating CGV during the solving process usually amounts to either highlighting
or graying out or even hiding instantiated variables and satisfied constraints, and then
recovering them on backtracking. This allows the user to see the search progressing
through the constraint graph or maybe jumping from one part of it to another. Adding
and deleting constraints during the search is less common, but occurs for example when
SAT solvers learn nogoods. As the number of constraints and variables in a typical model
can be quite large a natural problem which arises is how best to draw the graph. We solve
this issue by adopting various force-directed layout algorithms [13,7]. Fig. 4(a) shows a
typical result for a scheduling problem. For small graphs, the user may prefer to position
nodes by hand: CGV also provides a drag-and-drop facility to support this. The same set
of controls used by the STV over the solving process also apply to CGV. In fact, both
CGV and STV can be displayed at the same time.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 529

5.2 Custom Visualisations

Both CGV and STV are problem-independent and always available. However, it is often
the case that a constraint problem lends itself to a domain-specific visualisation which is
more informative. This might show a partial plan for a planning problem, an unfinished
Gantt Chart for a scheduling problem or, in the case of one well known CSP problem,
queens on a chess board.

Accordingly, we have developed a Custom Visualisation Viewer (CVV) which al-
lows users to create their own domain-specific visualisations in two steps: first, users
draw some domain specific objects in the Visual Editor’s drawing tool; e.g., a train, a
queen, and so forth. Second, users write a short script which controls how these shapes
should be drawn on the canvas. To facilitate the creation of such scripts G12IDE offers a
very simple API that allows for arbitrary scripting languages to be integrated and used.
As a proof of concept we currently provide support for the Lua [8] language.

Any arbitrary visualisation script will, as a minimum, need to implement a step()
method which will be invoked every time the debugger is paused as a result of reaching
some break condition (see Sec. 6 for more details about break conditions). In the course
of the step() function the script will usually need to call one or both of the following
methods (possibly multiple times):

– g12GetFromData(var). This method fetches the current contents of the decision
variable var and makes its value available to the script.

– g12Draw(obj, props). This method sets a list of properties, props, for object obj,
where props may contain items such as the object’s positions on the canvas, colour,
opacity, scaling factor, etc.

5.3 Support for Other Scripting Languages

The choice to use Lua as the default language of the CVV was a simple one: it is
portable, lightweight and often used in similar contexts (for example by the video games
industry). Lua also offers an intuitive syntax, straightforward control and data structures
as well as a simple type system that can be picked up with minimal effort by anyone fa-
miliar with an existing programming language. However, we could as well have chosen
Python, Lisp, or any other language which supports Java integration. If besides Lua, we
wished to offer, say, Python as a scripting language, we would basically have to imple-
ment the above g12-* calls in a Python program that in turn invokes the corresponding
methods of our IDE. There are only two files specific to the integration of Lua, whose
length is less than 1000 loc: the first file is a Lua script which contains the API calls
to the IDE, and the second a Java class handling the invocation of the Lua interpreter.
How this interaction between the script, the underlying interpreter and the main IDE is
technically realised is schematically depicted in Fig. 5. The aforementioned two files
are depicted as “Lua Plugin”, written entirely in Java, and “Lua API”, written in Lua.
Strictly speaking, the latter is part of the Lua Plugin itself and provided by it. The user
who writes a Lua script, merely has to include this file to be able to issue the relevant
g12-* calls from inside the Lua script.

530 A. Bauer et al.

Fig. 5. Schematic overview of visualisation of user-defined scripts. Note that the Lua Plugin pro-
vides a bridge between the Custom Visualisation Viewer (not shown) and the Lua Interpreter.

5.4 Performance Debugging with the Custom Visualisation Viewer

Since all visualisations have in common that they are able to be displayed in real-time,
i.e., synchronised with relevant events in an ongoing search, they are also often useful
for performance debugging. Performance debugging concerns the effectiveness of the
encoding of a given problem. For example, in the meet-pass problem, one of the con-
straints says that a train may not enter a sector if there is already a train there, even if
that train is about to move on. This can be read: “you cannot have a track sector occu-
pied by trains at successive times, except in the degenerate case where it’s one train that
does not move,” and formulated in Zinc as:

constraint
forall(t in 1..ntrains, x in 2..nsteps)(
pos[x,t] == pos[x-1,t] \/
forall(u in 1..ntrains)(pos[x-1,u] != pos[x,t]));

While logically correct, this does not cause all the propagation of constraints to happen
that one would expect. In particular, at the start of the search, one would expect the
solver to have worked out that train 1 (i.e., the left top-most/red train) has to be in
track sector 1 at time 2. However, as can be seen in the visualisation, the propagation
effectively places trains 1 and 2 on sectors 1 and 2 at time 1, but somehow fails to
remove sector 2 from the domain of pos[2,1]. While it may be possible to deduce
this situation merely from looking at the assignments of variables in the debugger’s data
view, it is far easier to spot in the custom visualisation (see Fig. 6).

Noting this, we rephrased the above requirement as “No two different trains can
occupy the same sector at successive times,”:

constraint
forall(t,u in Trains where t != u)(
forall(x in 2..nsteps)(pos[x-1,u] != pos[x,t]));

The expected propagation then happens. In our experiments, we have found that custom
visualisations like this are not only useful to display results, but also to detect perfor-
mance bottle-necks that stem from weak propagations like these.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 531

Fig. 6. The missing train: pictures of meet-pass at the start of a search. Propagation should de-
duce the position of the train at the second timestep (top picture), but in the original formulation
(bottom picture) it failed to do so.

6 The Solving Layer

The Solving Layer is comprised of three components: the solver platform itself, a solver
monitor which collects detailed information about the solving process, and a debugging
interface which is used to control the stopping and starting of the solving process. Fig. 7
provides an overview of our architecture. The solver monitor and the debugging inter-
face run in separate processes; communication between them is achieved by way of
an XML-based messaging system where each message is validated against an exter-
nal XML Schema2. The same schema also defines the set of supported Zinc data types
which the monitor recognises and tracks during search.

Conceptually, the communication between solvers and the IDE is purely event-driven.
Debugger events are defined separately from the solver code. A number of pre-defined
API calls are inserted at the relevant points in the solver to trigger the events if a debug-
ging run has subscribed to them; that is, enabled their sending by the solver when they
occur. Events that are subscribed to may simply update the debugger’s search model or
may also suspend the search until the user decides to continue. At such breakpoints, the
front-end debugging tools query the internal model of the search for the information
they need by following the XML-based communication protocol between the IDE and

2 http://www.w3.org/XML/Schema

532 A. Bauer et al.

Fig. 7. A closer view of the solving layer. The debugger may be invoked once a model is passed
to the constraint program. Note however that the debugger never communicates with the solver
directly; rather all communication is via the solver monitor. In addition to controlling the starting
and stopping of the solving process the debugger is also responsible for forwarding incremental
updates about progress of the solver to the various visualisers.

the solver monitor. The solver adhering to the solver monitor’s API, however, does not
have to implement this protocol, which is already handled by the solver monitor.

Our two-process system is highly flexible; by removing any direct dependencies be-
tween the solver and interface we are able to transparently substitute one solver for
another. A further advantage arising from such a separation is that the solving process
can be executed on a completely different (and possibly faster) machine than the one
which is running G12IDE. It is entirely possible therefore to commoditize the solving
program as an online “service” to which users submit constraint models and from which
they receive solutions that can be later visualised in domain-specific terms.

6.1 The Solver Monitor

Invoking the solving process with a debugging flag enables the solver monitor that is
attached to the solver. The monitor adheres to a “certainty principle”: it observes the
solving process without affecting its course in any way. Before solving commences,
a two-way communication channel is opened between the monitor and the debugging
interface. We use separate sockets for the requests to and responses from the monitor.
This avoids latency problems if a large number of requests need to be sent at one time.

There are three kinds of requests made to the solver monitor: configuration requests
that modify the state of the monitor by setting and resetting print or break conditions,
status requests that ask for information about the state of the solver (when stopped)
and resume requests that cause the solver either to step to the next event or continue
until reaching a break condition. Configuration requests may be specific to a particular
variable or constraint but can equally apply to an entire class of events. For example, it
is possible to pause the search when the solver splits on a particular variable or on any
arbitrary variable. Meanwhile a status request can be used to find out the domain of a
particular variable or to query the solver about some aspect of its search strategy.

Responses from the monitor include: solver events, status updates and messages
indicating when the solver has stopped. Status updates are generated in direct response

An Integrated Modelling, Debugging, and Visualisation Environment for G12 533

to status requests. Solver events meanwhile are generated whenever the monitor detects
that the solving process has reached a point corresponding to a print or break condition.
For example, it is possible to generate a solver event message in response to changes to
variables and constraints, progression through the search (such as the beginning or end
of a propagation phase, or upon reaching a choicepoint or fixpoint) and on the creation
of new variables and constraints.

One significant challenge in designing the solver monitor was to resolve the follow-
ing dilemma: in order to provide maximum flexibility to the visualisation components
we need to be able to report detailed information about fine grained search events; at the
same time we need to limit the communication between the monitor and the debugging
interface as the amount of generated data could easily grow to gigabytes. Our solution is
for the solver monitor to maintain an internal table of print and break conditions. Each
entry in the table determines what data to send when the solver generates a correspond-
ing search event. Initially the table is empty, optimising the monitor for the “do nothing”
case. However, when the solver is paused, configuration requests from the debugging
interface are able to modify the table and add (or remove) print or break conditions as
required. This way, if a custom visualisation only looks at part of the model it need not
incur any overhead associated with processing unrelated events.

6.2 The Debugging Interface

The debugging interface (Fig. 8) provides a variety of mechanisms for controlling
the search process and inspecting the model instance under evaluation. A number of
“stepping” commands, each operating at varying levels of granularity, are available to
progress the search to any given point. Analogues of familiar debugging commands
such as “step into”, “step over” and “step return” are available to direct the solver to the
next event, the (beginning and end of the) next propagation phase and the next solution
respectively.

The familiar Eclipse debugging views, which traditionally show information about
the call stack of the current program and the variables on its heap, have been adapted
to display information about the solving process. Variables and constraints are shown
in an expanding tree, with attributes associated with each such as variable domain or
constraint status (whether it is awake, asleep or killed). After each stepping command
attributes that have changed are highlighted, similarly to the highlighting of changed
data structures in other Eclipse debuggers.

Fig. 8. The debugging controls

534 A. Bauer et al.

Fig. 9. User-defined breakpoints view. The C button advances the solver to the next event speci-
fied by the user.

In addition to the pre-defined debugging commands, the IDE allows for custom de-
bugging commands definition, to include only search events that are of interest for the
user. For instance, the user might be interested only in changes made to the bounds of
decision variables. In such a case, they can create a new breakpoint that contains only
the “min” and “max” events. The bottom left part of Fig. 9 shows an example of such a
breakpoint, called “Variables changed“, whereas the bottom right part shows the search
events that the breakpoint is made of. The tick mark next to the breakpoint name shows
which breakpoint is currently enabled. Pressing the C button sends a request asking for
a break every time one of the events belonging to the selected breakpoint occurs.

7 Related Work

There already exist a number of IDEs to support constraint programming systems, some
of which provide facilities for visualising constraints in various ways. ECLiPSE CLP
[3] for example, allows the modeller to draw a range of charts and graphs of the solver
output, whereas ILOG OPL Studio [2] offers a search tree view similar to the one of-
fered by the G12IDE. Choco [1], on the other hand, is more geared towards Java devel-
opers who will write their own visualisation tools from scratch, and integrate the Choco
Java library as a solver.

There has been work on the use of abstract views of constraints and search to support
debugging of constraint programs. The most systematic account is probably that of the
DiSCiPl project [4] about a decade ago, which produced a sophisticated search tree
viewer and a number of other tools for use with CHIP. OzExplorer [14] was developed
at about the same time.

An Integrated Modelling, Debugging, and Visualisation Environment for G12 535

Declarative debugging [11] for Prolog and other logic programming and functional
programming languages is related to our approach and could be applied to CP search.
It has been studied over many years and many tools were developed. However, it is
focused on correctness debugging, which in our experience is rarely the main concern
in Zinc modelling. Moreover, the existing tools generally operate at a lower level than
those we have developed for G12: we regard debugging a G12 constraint program as a
very different activity from debugging the Zinc model.

Drawing tools producing scriptable SVG images are of course well known, and some
of them are much more highly developed than the rather simple one we provide. The use
of custom views as a way of presenting solutions is also quite standard [9]. However,
coupling such a generic tool, including the Lua script editor, to the rest of the debugging
package is new with G12IDE.

8 Summary and Conclusions

We presented G12IDE, a front-end for the G12 platform aimed at helping users create
and work with constraint models in a manner independent from any underlying solver.
Besides offering users an intuitive interface for the G12 platform, it provides advanced
features such as debugging a running search and the (custom) visualisation of this process.

Debugging search is in several ways fundamentally different from classical debug-
ging of code. We first had to create a mental model of this process, i.e., define what the
relevant concepts and notions are to make this process useful and technically feasible,
before attempting an implementation as part of our IDE. Our model is based on a solver
monitor which notifies the IDE when relevant events, defined by the user, have occurred
in the search to pass control back to the IDE. When this happens, users have the free-
dom to chose between pre-defined visualisations also known from other, similar IDEs,
but also to run their own in this step-wise manner. While supporting this novel model
of debugging, we saw it as important to stick as closely as possible to the interface of a
classical debugger in order to leverage the application of this new idea. It is also worth
noting that there is no opposition between this form of debugging and classical offline
profiling: both are useful and one can use both to get a better understanding of how
a problem gets solved. Tighter integration of profiling and debugging tools is, in fact,
subject to future work and therefore beyond the scope of the present paper.

Custom visualisations, as we have demonstrated using the example of the meet-pass
trains, are a useful tool not only to demonstrate high-level and rather coarse properties
of a constraint problem, such as the size of its domains, but also to highlight internals
of the actual solving process, such as the order of constraint propagation which takes
place. As such, visualisations are a useful tool for debugging.

To the best of our knowledge, these core features together with the extensibility of
the G12IDE are unmatched in similar front-ends to constraint programming systems.
G12IDE is available from the central MiniZinc homepage currently located at the ad-
dress http://www.g12.cs.mu.oz.au/minizinc/.

Acknowledgements. We thank the NICTA G12 team for their valued help and assistance
in the development of this work.

536 A. Bauer et al.

References

1. Choco Constraint Solving Toolkit., http://www.emn.fr/z-info/choco-solver/
2. ILOG OPL Studio, http://www.ilog.com/products/oplstudio/
3. Apt, K., Wallace, M.: Constraint logic programming using ECLiPSe. Cambridge University

Press, Cambridge (2007)
4. Deransart, P., Hermenegildo, M.V., Maluszynski, J. (eds.): DiSCiPl 1999. LNCS, vol. 1870.

Springer, Heidelberg (2000)
5. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for modelling

combinatorial problems. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018, pp.
214–232. Springer, Heidelberg (2004)

6. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with ESSENCE and MINION. In: Proc. 7th Symposium on Abstraction, Reformulation
and Approximation (SARA), pp. 184–199 (2007)

7. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms
Appl. 6(3), 179–202 (2002)

8. Ierusalimschy, R., de Figueiredo, L.H., Filho, W.C.: Lua—an extensible extension language.
Softw. Pract. Exper. 26(6), 635–652 (1996)

9. Jones, C.V.: Visualization and Optimization. Kluwer, Boston (1996)
10. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Estimating search tree size. In: Proc. of the

Twenty-First National Conference on Artificial Intelligence (AAAI). AAAI Press, Menlo
Park (2006)

11. Lee, N.: A declarative debugging scheme. Journal of Functional and Logic Programming,
1997(3) (April 1997)

12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

13. Quigley, A.J., Eades, P.: Fade: Graph drawing, clustering, and visual abstraction. In: Graph
Drawing, pp. 197–210 (2000)

14. Schulte, C.: Oz explorer: A visual constraint programming tool. In: Proc. of the 14th Inter-
national Conference on Logic Programming (ICLP), pp. 286–300. MIT Press, Cambridge
(1997)

15. Wallace, M., The G12 team: G12 - Towards the Separation of Problem Modelling and Prob-
lem Solving. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp.
8–10. Springer, Heidelberg (2009)

http://www.emn.fr/z-info/choco-solver/
http://www.ilog.com/products/oplstudio/

	An Integrated Modelling, Debugging, and Visualisation Environment for G12
	Introduction
	Debugging Search
	Architectural Overview
	The Modelling Layer
	The Zinc Editor
	The Visualisation Editor

	The Visualisation Layer
	Pre-defined Visualisations
	Custom Visualisations
	Support for Other Scripting Languages
	Performance Debugging with the Custom Visualisation Viewer

	The Solving Layer
	The Solver Monitor
	The Debugging Interface

	Related Work
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

