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Abstract 
Constraint satisfaction problems (CSPs) involve finding 
values for variables subject to constraints on which 
combinations of values are permitted. This paper 
develops a concept of intndrangcability of CSP values. 
Fully interchangeable values can be substituted for one 
another in solutions to the problem. Removing all but 
one of a set of fully interchangeable values can simplify 
the search space for the problem without effectively 
losing solutions. Refinements of the interchangeability 
concept extend its applicability. Basic properties of 
interchangeablity and complexity parameters are 
established. A hierarchy of local interchangeability is 
defined that permits recognition of some 
interchangeable values with polynomial time local 
computation. Computing local interchangeability at any 
level in this hierarchy to remove values before backtrack 
search is guaranteed to be cost effective for some CSPs. 
Several forms of weak interchangeability are defined that 
permit eliminating values without losing all solutions. 
Interchangeability can be introduced by grouping values 
or variables, and can be recalculated dynamically during 
search. The idea of interchangeability can be abstracted 
to encompass any means of recovering the solutions 
involving one value from the solutions involving 
another. 

Introduction 

A solution to a constraint satisfaction problem (CSP) 
finds values for variables subject to constraints on what 
combinations of values are permissible. This paper 
develops a concept of interchangeability of CSP values. 
Interchangeable values will be in a sense redundant. Their 
removal will simplify the problem space. 

Definition: A value b for a CSP variable V is fully 
interchangeable with a value c for V iff 

l.every solution to the CSP which contains b remains 
a solution when c is substituted for b, and 

2.every solution to the CSP which contains c remains a 
solution when b is substituted for c. 

In other words the only difference in the sets of 
solutions involving b and c are b and c themselves. We 
can replace a set of fully interchangeable values with a 
single representative of the set without effectively losing 
any solutions. It is not necessary to retain all the fully 
interchangeable values during the search process, for 
solutions involving one can easily be recovered from 
solutions involving another. I extend this basic insight in 

a number of directions to make it more useful in practice. 
Figure 1 shows a simple graph coloring problem: color 

the vertices so that no two vertices which are joined by an 
edge have the same color. The available colors at each 
vertex are shown. The colors green, maroon, purple, white 
and yellow, for vertex Y are fully interchangeable. For 
example, substituting maroon for green in the solution 
redlX (red for X), greenly, blue12 yields another sofution 
redlX, maroonlY, bluelZ. 

Figure 1. Full interchangeability. 

My intuition is that real-world problems may well 
contain values which are, more or less, interchangeable. In 
configuration tasks, for example, we may find that, for a 
particular piece of a particular assembly, several stock 
parts can serve equally well. In a conventional CSP 
algorithm needless search effort might be expended on 
these interchangeable parts. Forms of interchangeability 
have been used by Van Hentenryck to reduce the search 
space for car-sequencing and graph-coloring problems (V,an 
Hentenryck 1988, 1989). Other related work can be found 
in (Yang 1990) and (Mackworth, Mulder, & Havens 
1985). 

(It may well be that puzzles, like the %queens prddem, 
often used to illustrate CSP algorithms, will not benefit 
greatly from basic interchangeability techniques, that they 
are puzzles in part because they are unusually particular 
about which pieces of the puzzle will fit together. 
However, advanced forms of interchangeability may be 
still be of use; see the section on functional 
interchangeability below.) 

Interchangeability techniques complement the usual 
CSP inconsistency methods, which attempt to remove 
values that will not participate in any solution 
(Mackworth 1977; Freuder 1978). These techniques can 
lead to removal of values that may well participate in 
solutions. It is just that these values succeed (or possibly 
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fail) “equally well”. Tnconsistency can also be viewed as a 
special case of interchangeability: inconsistent values all 
participate in the same set of solutions: the empty set. 
Removing interchangeable values complements work on 
removing redundant constraints from CSPs (Dechter & 
Dechter 1987). Interchangeability emphasizes what P call 
the microstructure of a CSP. The microstructure involves 
the pattern of consistency connections between values as 
opposed to variables. 

Eliminating interchangeable values can prune a great 
deal of effort from a backtrack search tree. The example of 
Figure 1 demonstrates this on a very small scale: with 
variables and values chosen in lexicographic order during 
search, eliminating redundant interchangeable values 
results in a backtrack search tree with half as many 
branches. If we are seeking all solutions, 
interchangeability allows us to find a family of similar 
solutions without what might otherwise involve a 
complete duplication of effort, for each member of the 
family. The processing necessary to automate the removal 
of interchangeable values may prove particularly useful in 
contexts where constraint networks are used as knowledge 
bases subject to multiple queries, over which such 
preprocessing can be amortized. 

For simplicity I will assume binary CSPs, which 
involve only constraints between two variables. However, 
interchangeability clearly applies to non-binary CSPs (and 
non-binary CSPs can be transformed into binary ones 
(Rossi, Dhar, & Petrie 1989)). 

Section 2 discusses local forms of interchangeability. 
Section 3 provides means of taking advantage of 
interchangeability even when such opportunities are not 
strictly or immediately available. Along the way I 
introduce a new, concrete methodology for evaluating 
CSP search enhancements with best and worst case 
constructions, and suggest that interchangeability can 
motivate concept formation and problem decomposition. 

Local Interchangeability 

Completely identifying fully interchangeable values would 
seem, in general, to require solving for aU solutions. This 
section identifies various forms of local interchangeability 
that are more tractable computationally. 

This section defines a basic form of local 
interchangeability, neighborhood interchangeability. 
Neighborhood interchangeability is a sufficient, but not 
necessary, condition for full interchangeability. All 
redundancy induced by neighborhood interchangeability 
can be removed from a CSP in quadratic time. 

Consider the coloring problem in Figure 2. Colors red 
and white for vertex W are interchangeable from the point 
of view of the immediate neighbors, X and Y. Red and 
white are both consistent with any choice for X and Y. 
The blue value for W is different, it obviously is not 
consistent with a choice of blue for either X or Y. 

Figure 2. Neighborhood interchangeability. 

We will say that red and white are neighborhood 
interchangeable values for W. The term “neighborhood” is 
not being used simply because it is motivated by the 
coloring problem. CSPs are commonly represented by 
constraint graphs, where vertices correspond to variables 
and edges-to-constraints. (Constraint graphs for graph 
coloring problems conveniently, or confusingly, have the - _ 
same graph structure as the -graph to be colored.) In 
general we have the following: 

Definition: Two values, a and b, for a CSP variable V, 
are neighborhood interchangeable iff for every constraint 
c on v: 

{ i I (a,i) satisfies C} = { i I (b,i) satisfies C). 

Notice that the blue value for W is in fact fully 
interchangeable with red and white, even though it is not 
neighborhood interchangeable with them. The reason for 
this is that blue must be chosen for Z, thus cannot be 
chosen for X or Y. Thus blue for W will fit into any 
complete solution that red or white will. The 
incompatibility of blue for W with blue for X and Y does 
not matter in the end. On the other hand, since red and 
white are neighborhood interchangeable, there is no way 
they could fail to be interchangeable in any complete 
solution: there is no constraint that one could satisfy and 
not the other. 

More generally we have the following simple theorem: 
Theorem I: Neighborhood interchangeability is a 

sufficient, but not a necessary condition for full 
interchangeability. 

To identify neighbotiood interchangeable values we can 
construct discrimination trees. The leaves of the trees will 
be the equivalence classes of neighborhood interchangeable 
values. The process relys on a canonical ordering for 
variable and value names; without loss of generality we 
will assume lexicographic ordering. 

geenIX -- yellowlX -- greenly -- yellnwlY 

lb1 

‘bluelx -- geenIX -- yellowlX -- bluely -- greedY -- yehwlY 

lr. WI 

Figure 3. Discrimination tree. 

Figure 3 shows the discrimination tree for variable W. 
For the blue value we build a branch containing first the 
consistent values for X, then the consistent values for Y. 
We do the same for the red value. As we start at the root 
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to build the branch for the white value, we see that the 
first consistent value, blue for X, is already present as one 
of the children, so we move down to it. We keep 
following preexisting branches as long as we can; in this 
case, we follow one all the way to the end, and red and 
white are found to be equivalent. 

Neighborhood Interchangeability Algorithm: 
Finds neighborhood interchangeable values in a CSP. 
Repeat for each variable: 

Build a discrimination tree by: 
Repeat for each value, v: 

Repeat for each neighboring variable W: 
Repeat for each value w consistent with v: 

Move to if present, construct if not, a node of 
the discrimination tree corresponding to wlW 

A complexity bound for this algorithm can be found by 
assigning a worst case bound to each repeat loop. Given n 
variables, at most d values for a variable, we have the 
bound (the factors correspond to the repeat loops in top- 
down order): 

Q(n * d * (n-l) * d) = O(n2d2) 
While this algorithm will find all neighborhood 

interchangeable values exhaustively, a practitioner might 
observe some interchangeabilities informally. Semantic 
groupings can help suggest where to look. For example, 
in Figure 4, we see a variation on the coloring problem, 
where the allowable color combinations, e.g. red for X and 
orange for Y, are indicated by links. (Note that this is 
unlike the usual constraint graph convention where 
constraint graph edges represent entire constraints. We are 
representing the microstructure of the problem here: each 
link joins an allowable pair of values.) Red and orange are 
interchangeable, for both X and Y, as are blue and green. 
Semantic knowledge of the “warm” and “cool” color 
concepts might suggest looking for such 
interchangeability. 

X 

Y 

Figure 4. Semantic interchangeability. 

On the other hand it might be interesting to view the 
grouping by an interchangeability algorithm into 
equivalence classes of red and orange, blue and green, as a 
concept formation process. The “functional” semantics 
inherent in the underlying problem (perhaps a problem in 
decoration or design) motivates creation of classes of 
colors, corresponding to the conventional concepts of 
warm and cool. 

K-interchangeability 

This section introduces levels of local interchangeability 

through a concept called k-interchangeability. K- 
interchangeability involves CSP subproblems. For our 
purposes a subproblem of a CSP will consist of a subset 
S of the CSP variables along with all the constraints 
among them, call this the subproblem induced by S. 

Definition: Two values, a and b, for a CSP variable V, 
are k-interchangeable iff a and b are fully interchangeable 
in any subproblem of the CSP induced by V and k-l other 
variables. 

Observe that 2-interchangeability is equivalent to 
neighborhood interchangeability. (Values will be trivially 
interchangeable in a subproblem if there are in fact no 
constraints in the subproblem.) For a problem with n 
variables, n-interchangeability is equivalent to full 
interchangeability. (A set is, of course, a subset of itself.) 
The term local interchangeability will be used to refer to 
k-interchangeability for ken. 

The theorem of the previous section generalizes: 
Theorem 2. For icj, i-interchangeability is a sufficient, 

but not necessary condition for j-interchangeability. In 
particular, any level of local interchangeability is 
sufficient to ensure full interchangeability. 

Proof. As the level of interchangeability increases we 
can only increase the size of the interchangeability 
equivalence classes. 

A solution to a subproblem may fail to be part of a 
solution to a larger subproblem, removing an impediment 
to interchangeability as k increases. Thus the condition is 
not a necessary one. 

It is sufficient, however. Suppose a and b, values for V, 
are i-interchangeable. I claim they are j-interchangeable. 
Suppose not. Then there is a j-tuple subproblem solution 
where substituting a for b (or vice versa) fails to produce 
another solution. The failure involves at least one 
constraint, between V and another variable, say U. Throw 
away j-i elements of the j-tuple solution, but make sure 
you keep the values for V and U. You now have a 
solution to an i-tuple of variables where substituting a for 
b (or vice versa) fails to produce another solution. This 
contradicts the assumed i-interchangeability. QED. 

The algorithm for finding neighborhood interchangeable 
values generalizes to an algorithm for finding k- 
interchangeability. The assumed ordering of the variables 
and values induces a canonical ordering of variable and 
value tuples. Each entry in the discrimination net is now a 
(k-l)-tuple of values. 

K-l~ztercltangeabilit?! Algorithm: 
Finds k-interchangeable values in a CSP. 
Repeat for each variable: 

Build a discrimination tree by: 
Repeat for each value, v: 

Repeat for each (k-1)-tuple of variables 
Repeat for each (k-1)-tuple of values w, which 
together with v constitute a solution to the 
subproblem induced by W: 

NIove to if present, construct if not, a node of 
the discrimination tree corresponding to wlW 
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Complexity Analysis 
This section is concerned with local interchangeability 
complexity issues. A complexity bound for the k- 

interchangeability algorithm is obtained, O(nkdk), where d 
is the maximum number of values (the size of the 
domain) for any variable. There is reason to believe that 
this is an optimal upper bound. I prove that for any level 
of local interchangeability there are cases in which 
preprocessing to remove redundant k-interchangeable 
values before backtracking, k-interchangeability 
preprocedng, will be cost effective. 

The complexity analysis of the k-interchangeability 
algorithm is similar to that for neighborhood 

interchangeability, allowing for a worst case O(nk-‘) (k- 

I)-tuples of variables and dk’l (k-1)-tuples of values, we 
get a bound: 

O(n * d * nksl * dk-‘) = O(nkdk). 
The algorithm includes a brute force search for all the 

solutions of each subproblem. Performance might be 
improved by carrying out these searchs more efficiently in 

advance. On the other hand O(nkdk) seems likely to be an 
optimal worst case bound for finding all the subproblem 
solutions. Since it is hard to imagine how all k- 
interchangeable values could be identified without 

completely solving all these subproblems, O(nkdk) seems 
likely to be a tight worst case bound for this 
identification. Once the equivalence classes of k- 
interchangeable values are identified one representative of 
each class can be retained and the rest of the class declared 
redundant and removed (within the same time bound 
obviously). 

Despite this potentially costly worst case behavior, I 
claim that removing redundant interchangeable values can 
yield great savings in some cases. Furthermore this is true 
even for large k. For any ken there are problems for 
which preprocessing to remove redundant k- 
interchangeable values before backtracking will be cost 
effective. In fact for any ken, k-interchangeability 
preprocessing is arbitrarily effective in the sense that 
whatever savings you specify, I can find a CSP for which 
k-interchangeability preprocessing saves that amount of 
effort. 

, 

The basic observation is that eliminating an 
interchangeable value prunes the subtree below that value 
in the backtrack search tree. If all values of a single 
variable are found to be interchangeable, we have 
effectively eliminated a level of the backtrack tree; we are 

left with a maximum of d”-l search tree branches, rather 

than d”. If all values of i variables are interchangeable the 

search tree has at most dnwi branches. If all values of all 
variables are found to be interchangeable, we are 
effectively done (anything is a solution). If all values of 
one variable are interchangeable and they all participate in 
no solutions, we are effectively done (there is no 
solution). 

Theorem 3. For any number of variables ~2, any 
ken, and any computation cost C, there exist CSPs for 
which the cost of solving by backtrack search exceeds by 
more than C the cost of solving by k-interchangeability 
preprocessing followed by backtrack search. This is true 
regardless of whether we take “solving” to mean finding a 
single solution, finding all solutions or finding that there 
is no solution. 

Proof. For each interpretation of “solving” I 
demonstrate that I can construct CSPs with the desired 
property. I show that the best results we can hope for on 
those CSPs without preprocessing is worse, by at least C, 
than the worst behavior we can expect with preprocessing. 
For simplicity assume that a constructed CSP will have 
the same number of values, d, for each variable. Assume 
that backtrack search instantiates variables and chooses 
values according to their lexicographic ordering. 

Consider first the case where there is no solution: 
We construct a CSP where failure occurs during 

backtrack search only when instantiating the last variable, 
V, and conducting the last consistency check, against 
variable U. IBacktrack search will thus need to examine the 

complete search space tree. There will be d” branches in 
the search tree. Since between most pairs of variables 
there is really no constraint, I will only count one 
constraint check per branch. The effort for backtrack search 

is then c ldn+c2, for appropriate constants cl and c2. 

Substituting n- 1 into the k-interchangeability bound, 
we obtain a worst case effort for interchangeability 

preprocessing of c3n n-1dn-1+c4, for appropriate constants 

c3 and ~4. The algorithm which identifies (n- l)- 

interchangeability will discover, and can be trivially 
altered to report, that all the values of V fail to participate 
in any solutions to subproblems involving U. This is 
sufficient to determine that the CSP has no solution, 
without any subsequent backtrack search. 

Now the question is can it be true that: 

cld”+cz > c3n n-1dn-1+c4 + C ? 

Simple algebra tells us that this will be true if: 

d > Cal-+ + c6 

for appropriate constants cs and c6. In other words, we 

only need construct a problem where the number of values 
is sufficiently large in comparison with the number of 
variables. 

(The nature of “sufficiently large” may be offputting, 
but bear in mind this is a worst case scenario for 
interchangeability involving (n- I)-interchangeability. Also 
observe that there are simple cases with 2 variables and 3 
values that demonstrate the desirability of even (n-l)- 
interchangeability preprocessing.) 

Now consider the case where we search for a single 
solution: 

The construction is similar. This time the last variable 
in the search tree, V, will be such that k- 
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interchangeability preprocessing reduces the domain of V 
to a single value. This value will only be consistent with 
the last value, in the ordering of values, for each other 
variable. Thus there will be a single solution, which will 
appear as the “rightmost” branch of the search tree. Again 
all pairs of values between variables other than V are 

consistent. We have at most d”-’ branches in the search 
tree. (Actually interchangeability redundancy removal 
should prune the search tree further.) For each branch there 
are n-l non-trivial constraints to check, those between V 
and the other n-l variables. Thus the backtrack search 
effort, after preprocessing reduces the number of variables 
for V to one, is at most: 

cl(n-l)dn1+c2. 

Adding the effort for (n-I)-interchangeability 
preprocessing we have a total effort of: 

(cl(n-l)dn-‘+c2) + (c3n n-1dn-1+c4). 

Without preprocessing the search tree will have d”-(d-l) 
branches. Search will repeatedly try all d values for V, 
until success is achieved with the last value for every 
other variable. Thus search effort will be: 

c5(n-l)(d”-(d-l))%6 

We want: 

(c,(n-l)dn1+c2)+(c3n n-1dn-1+c4) 

c Cs(n- l)(d”-(d- 1 ))+C@C. 

Simplifying, it is sufficient that: 

d>c7nn-‘+c 8 
for appropriate constants c7 and cg. 

Finally, consider the case where we are looking for all 
solutions: 

This time construct a CSP where k-interchangeability 
reduces a variable V to a single value and that variable is 
the first variable to be instantiated in the backtrack search 
order. Consider the final variable, W. Arrange that only 
the final value for W is consistent with anything, and it is 
only consistent with the final value for each of the other 
variables (with the exception of V; it is consistent with 
all values of V). Other pairs of values are all consistent. 

Thus backtrack search will check out dn-1 branches before 
finding the first solution. Backtrack search after 
interchangeability preprocessing will require if anything 
less effort to reach the first solution (interchangeability 
can reduce the number of values for other variables). Once 
the first solution has been found interchangeability 
preprocessing will permit simply substituting to obtain 
the other d-l solutions, while backtrack search requires 

searching another size d n-l search tree for each additional 
solution. Clearly, for sufficiently large d, the savings here 
can be as large as we like. Q.E.D. 

Observe that the constructions in the proof work for any 
level of k-interchangeability, including the lowest. If 2- 
consistency, for example, is sufficient to create a situation 

like those constructed above. the savings can be dramatic, 
even without an inflated value for d, and not just for 
finding multiple solutions. It may be that the potential 
payoff fro relatively inexpensive %nterch,angeabihty 
preproces or the potential cost of doing without it-- 
will motivate routine preprocessing for 2- 
interchangeability. 

Theorem 4: For any n>2 and any d, there exist CSPs 
with n variables and d values for each, for which the 
savings achieved by preprocessing for 2-interchangeability 

is O(n2dn) . 
Proof. Construct a CSP with no solution where none of 

the values for one variable, V, are consistent with any 
value for one of the others, U, while all other value pairs 
are permitted. 2-interchangeability will discover that there 

is no solution with O(d2n2) effort. Assume a search order 
where U is the first variable to be instantiated and V the 
last. This will require a full backtrack tree search with 

O(n2dn) effort . e difference is O(n2dn) Q E D . *. . 
Observe further that the cost ‘of (n- 1 )-interch,angeability 

preprocessing is such that the arguments in Theorem 3 
focused not on how easily we could proceed with the 
search after removing redundant values, but on ensuring 
that backtrack search without preprocessing would require 
a sufficiently large effort. The calculations did not take 
into account that interchangeability can affect more than a 
single variable. Even 2-interchangeability can 
significantly reduce the number of values for many of the 
variables (in the extreme down to a single value for each 
variable) resulting in a major savings in the effort required 
to find one, or all, solutions. 

Note that very similar arguments to those in this 
section should produce similar results regarding the 
efficacy of k-consistency preprocessing. Indeed 
constructions in this section are reminiscent of the basic 
“thrashing” arguments that long ago pointed out problems 
with conventional backtrack search, motivating 
consistency “relaxation” preprocessing techniques among 
other refinements (Bobrow & Raphael 1974). However, I 
do not believe that this kind of concrete analysis has been 
carried out previously for thrashing type behavior. 

This section provides means of taking advantage of 
interchangeability even when such opportunities are not 
strictly or immediately available. 

This section defines several forms of ~‘4 a k 
interchangeability. These may involve sacrificing some 
solutions, but this will not matter if we are seeking a 
single solution. Locally computable forms of these 
concepts are available. 

ity. The simplest form of weak 
interchangability is substitutability; this captures the idea 
that interchangeability can be restricted to a “one-way” 
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concept. 
Definition: Given two values, a and b, for a CSP 

variable V, a is substitutable for b iff substituting a in 
any solution involving b yields another solution. 

We can remove b from the problem, knowing that we 
have not removed all the solutions. If there was any 
solution involving b, there will remain a solution where a 
is substituted for b. However we cannot recover solutions 
involving b by substituting b in the solutions involving 
a, as we do not know which, if any, of those substitutions 
produce solutions, 

If each of two values can be substituted for the other, 
the two values are fully interchangeable. Substitutability 
can be computed locally. In particular, we have: 

Definition: For two values, a and b, for a CSP variable 
V, a is neighborhood substitutab&e for b iff for every 
constraint C on V: 

{ i I (a,i) satisfies C } r, { i I (b,i) satisfies C } . 

In the example of Figure 2, red is neighborhood 
substitutable for blue for variable W, even though red and 
blue are not neighborhood interchangeable. 

Partial Interchangeability. Partial interchangeability 
captures the idea that values for variables may “differ” 
among themselves, but be fully interchangeable with 
respect to the rest of the world. 

Definition: Two values zue partially interchangeable, 
with respect to a subset S of variables, iff any solution 
involving one implies a solution involving the other 
with possibly different values for S. 

When S is the empty set, the values are fully 
interchangeable. Figure 5 presents an example of partial 
interchangeability: blue and red for W are partially 
interchangeable, with respect to the set (X}. Note: blue 
and red for W are interchangeable as far as V is concerned; 
blue for W goes with red for X, and red for W with blue 
for X; blue and red for X are interchangeable as far as Y 
and 2 are concerned. Thus while substituting say red for 
blue in a solution for W necessitates a change in the value 
for X, it will not require any change in the values for V, 
Y or Z. 

rohkm Interchangeability. Subproblem 
interchangeability captures the idea that values can be 
interchangeable within a subproblem of the CSP. 
Subproblem interchangeability may motivate and guide a 
divide and conquer decomposition of a CSP. 

Definition: Two values are subproblem 
interchangeable, with respect to a subset of variables S, 
iff they are fully interchangeable with regards to the 
solutions of the subproblem of the CSP induced by S. 

Note the values are required to be fully interchangeable 
with regard to the subproblem, not the complete CSP. Of 
course, when S is the entire set of variables, the 
subproblem is the complete CSP, and the values are fully 
interchangeable for the CSP. Subproblem 
interchangeability and partial interchangeability are not 
quite inverse notions. 

Theorem 5: Subproblem interchangeability with 
respect to S implies partial interchangeability with respect 
to S’, the variables not in S; however, partial 
interchangeability with respect to S does not imply 
subproblem interchangeability with respect to S’. 

Proof: The key observation is that a solution to a 
subproblem may fail to appear as a portion of any 
solution to the complete problem. On the other hand if we 
take from a solution to the complete CSP the values for a 
subset of variables, those values will constitute a solution 
to the subproblem induced by those variab1es.Q.E.D. 

By grouping variables into “metavariables”, or values into 
“metavalues”, we can introduce interchangeability into 
higher level “metaproblem” representations of the original 
CSP. Meta-interchangeability might also be viewed as 
providing motivation and guidance for dividing CSP 
variables into subproblems and CSP values into concept 
hierarchies (Mackworth, Mulder, & Havens 1985). 

Figure 6 presents an example of metavalue grouping. 
As in Figure 4 we indicate the allowable pairs of values in 
the original CSP with links, e.g. yellow for Y is 
consistent with light blue and light red for X. In the 
original problem yellow and brown for Y are not 
interchangeable. However, if we were to combine sky, 
light and dark blue into a metavalue “blue”, and similarly 
create the metavalue “red”, we would have a problem in 
which yellow and brown are fully interchangeable. 

X 

( yellow brown black ) 

Figure 5. Partial interchangeability. Y 

Figure 6. Meta-interchangeability. 
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We can also merge variables into metavarinbles. The 
values of a metavariable will be the solutions of the 
subproblem induced by the individual variables. Values for 
two metavariables will be consistent if the component 
values for the original variables are all consistent. 
Forming the’ metaproblem may create new 
interchangeabilities. 

Dynamic Interchangea 
Interchangeability can be recalculated after choices are 
made for variable values during backtrack search. It can be 
recalculated after inconsistent values have been filtered out 
during the search process in a preprocessing step or by a 
“hybrid” algorithm that interleaves backtracking and 
relaxation. Interchangeability can also be recalculated to 
reflect changes in a dynamic constraint representation. 
Interchangeability might be sought dynamically during a 
knowledge acquisition or problem deftition process. 

The idea of integrating local interchangeability 
recalculations with backtrack search is especially 
intriguing given the success of local consistency 
calculations in enhancing backtrack search performance. 

The essential idea of interchangeability is that given the 
solutions involving one value, we can recover the 
solutions involving another. We have been using simple 
substitution to go from one set of solutions to another. 
However, substitution is only the simplest function we 
could use. 

Definition: Let SvIv be the set of solutions inclusing 

value v for variable V. CSP values a for V and b for W 
are functionally interchangeable iff there exist functions 
fa and fb such that fa(SalV) = SblW and fb(SblW) = &IV. 
(V and W may be the same variable.) 

This is a very general definition that deserves further 
study. The definition does not even require that a and b be 
values for the same variable. In fact, strictly speaking, any 
two values are functionally interchangeable; once we have 
all the solutions we can give a “brute force” definition of 
the necessary functions. The key obviously is for the 
functions to be a priori available or cost effective to 
obtain. 

One natural refinement of the definition involves a 
solution preserving function on variable values: 

Definition: Two values, a and 6, for a CSP variable, 
are isomorphically interchangeable iff there exists a 1-I 
function f such that: 

l.b=f(a) 
2. for any solution S involving a, { f(v) I v E S } is a 

solution 

3. for any solution S involving b, { f’(v) I v E S } is a 
solution. 

Problem symmetry is a likely source of this sort of 
transformational interchangeability. Consider the 8-queens 
problem, for example, placing 8 queens on a chessboard 

such that no two attack one another. where rows 
correspond to variables and columns to values. The 
reduction of the values in the first row suggested in 
(Reingold, Nievergelt, & Deo 1977) can be viewed as an 
application of isomorphic interchangeability. 

First observe that the column 1 position for the queen 
in the first row is isomorphically interchangeable with the 
column 8 position, the 2 position with the 7 position, 
etc. The interchangeability function f maps position i into 
position 9-i, for each row, simulating flipping the board 
about its vertical axis of symmetry. This permits 
eliminating positions 5 through 8 for the first row. Next 
observe that because of symmetry about the diagonal axes 
position 1 of row 1 is isomorphically interchangeable 
with position 8 of row 8, thus we can eliminate position 
1 for the first row. 

ents. This material is based upon work 
supported by the National Science Foundation under Gr‘ant 
No. IRI-8913040. The Government has certain rights in 
this material. The author is currently a Visiting Scientist 
at the MIT Artificial Intelligence Laboratory. 
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