
Eugene 6. Freuder
Department of Computer Science

University of New Hampshire
Durham, NH 03824

ecf@cs.unh.edu

Abstract
Constraint satisfaction problems (CSPs) involve finding
values for variables subject to constraints on which
combinations of values are permitted. This paper
develops a concept of intndrangcability of CSP values.
Fully interchangeable values can be substituted for one
another in solutions to the problem. Removing all but
one of a set of fully interchangeable values can simplify
the search space for the problem without effectively
losing solutions. Refinements of the interchangeability
concept extend its applicability. Basic properties of
interchangeablity and complexity parameters are
established. A hierarchy of local interchangeability is
defined that permits recognition of some
interchangeable values with polynomial time local
computation. Computing local interchangeability at any
level in this hierarchy to remove values before backtrack
search is guaranteed to be cost effective for some CSPs.
Several forms of weak interchangeability are defined that
permit eliminating values without losing all solutions.
Interchangeability can be introduced by grouping values
or variables, and can be recalculated dynamically during
search. The idea of interchangeability can be abstracted
to encompass any means of recovering the solutions
involving one value from the solutions involving
another.

Introduction

A solution to a constraint satisfaction problem (CSP)
finds values for variables subject to constraints on what
combinations of values are permissible. This paper
develops a concept of interchangeability of CSP values.
Interchangeable values will be in a sense redundant. Their
removal will simplify the problem space.

Definition: A value b for a CSP variable V is fully
interchangeable with a value c for V iff

l.every solution to the CSP which contains b remains
a solution when c is substituted for b, and

2.every solution to the CSP which contains c remains a
solution when b is substituted for c.

In other words the only difference in the sets of
solutions involving b and c are b and c themselves. We
can replace a set of fully interchangeable values with a
single representative of the set without effectively losing
any solutions. It is not necessary to retain all the fully
interchangeable values during the search process, for
solutions involving one can easily be recovered from
solutions involving another. I extend this basic insight in

a number of directions to make it more useful in practice.
Figure 1 shows a simple graph coloring problem: color

the vertices so that no two vertices which are joined by an
edge have the same color. The available colors at each
vertex are shown. The colors green, maroon, purple, white
and yellow, for vertex Y are fully interchangeable. For
example, substituting maroon for green in the solution
redlX (red for X), greenly, blue12 yields another sofution
redlX, maroonlY, bluelZ.

Figure 1. Full interchangeability.

My intuition is that real-world problems may well
contain values which are, more or less, interchangeable. In
configuration tasks, for example, we may find that, for a
particular piece of a particular assembly, several stock
parts can serve equally well. In a conventional CSP
algorithm needless search effort might be expended on
these interchangeable parts. Forms of interchangeability
have been used by Van Hentenryck to reduce the search
space for car-sequencing and graph-coloring problems (V,an
Hentenryck 1988, 1989). Other related work can be found
in (Yang 1990) and (Mackworth, Mulder, & Havens
1985).

(It may well be that puzzles, like the %queens prddem,
often used to illustrate CSP algorithms, will not benefit
greatly from basic interchangeability techniques, that they
are puzzles in part because they are unusually particular
about which pieces of the puzzle will fit together.
However, advanced forms of interchangeability may be
still be of use; see the section on functional
interchangeability below.)

Interchangeability techniques complement the usual
CSP inconsistency methods, which attempt to remove
values that will not participate in any solution
(Mackworth 1977; Freuder 1978). These techniques can
lead to removal of values that may well participate in
solutions. It is just that these values succeed (or possibly

FREUDER 227

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

fail) “equally well”. Tnconsistency can also be viewed as a
special case of interchangeability: inconsistent values all
participate in the same set of solutions: the empty set.
Removing interchangeable values complements work on
removing redundant constraints from CSPs (Dechter &
Dechter 1987). Interchangeability emphasizes what P call
the microstructure of a CSP. The microstructure involves
the pattern of consistency connections between values as
opposed to variables.

Eliminating interchangeable values can prune a great
deal of effort from a backtrack search tree. The example of
Figure 1 demonstrates this on a very small scale: with
variables and values chosen in lexicographic order during
search, eliminating redundant interchangeable values
results in a backtrack search tree with half as many
branches. If we are seeking all solutions,
interchangeability allows us to find a family of similar
solutions without what might otherwise involve a
complete duplication of effort, for each member of the
family. The processing necessary to automate the removal
of interchangeable values may prove particularly useful in
contexts where constraint networks are used as knowledge
bases subject to multiple queries, over which such
preprocessing can be amortized.

For simplicity I will assume binary CSPs, which
involve only constraints between two variables. However,
interchangeability clearly applies to non-binary CSPs (and
non-binary CSPs can be transformed into binary ones
(Rossi, Dhar, & Petrie 1989)).

Section 2 discusses local forms of interchangeability.
Section 3 provides means of taking advantage of
interchangeability even when such opportunities are not
strictly or immediately available. Along the way I
introduce a new, concrete methodology for evaluating
CSP search enhancements with best and worst case
constructions, and suggest that interchangeability can
motivate concept formation and problem decomposition.

Local Interchangeability

Completely identifying fully interchangeable values would
seem, in general, to require solving for aU solutions. This
section identifies various forms of local interchangeability
that are more tractable computationally.

This section defines a basic form of local
interchangeability, neighborhood interchangeability.
Neighborhood interchangeability is a sufficient, but not
necessary, condition for full interchangeability. All
redundancy induced by neighborhood interchangeability
can be removed from a CSP in quadratic time.

Consider the coloring problem in Figure 2. Colors red
and white for vertex W are interchangeable from the point
of view of the immediate neighbors, X and Y. Red and
white are both consistent with any choice for X and Y.
The blue value for W is different, it obviously is not
consistent with a choice of blue for either X or Y.

Figure 2. Neighborhood interchangeability.

We will say that red and white are neighborhood
interchangeable values for W. The term “neighborhood” is
not being used simply because it is motivated by the
coloring problem. CSPs are commonly represented by
constraint graphs, where vertices correspond to variables
and edges-to-constraints. (Constraint graphs for graph
coloring problems conveniently, or confusingly, have the - _
same graph structure as the -graph to be colored.) In
general we have the following:

Definition: Two values, a and b, for a CSP variable V,
are neighborhood interchangeable iff for every constraint
c on v:

{ i I (a,i) satisfies C} = { i I (b,i) satisfies C).

Notice that the blue value for W is in fact fully
interchangeable with red and white, even though it is not
neighborhood interchangeable with them. The reason for
this is that blue must be chosen for Z, thus cannot be
chosen for X or Y. Thus blue for W will fit into any
complete solution that red or white will. The
incompatibility of blue for W with blue for X and Y does
not matter in the end. On the other hand, since red and
white are neighborhood interchangeable, there is no way
they could fail to be interchangeable in any complete
solution: there is no constraint that one could satisfy and
not the other.

More generally we have the following simple theorem:
Theorem I: Neighborhood interchangeability is a

sufficient, but not a necessary condition for full
interchangeability.

To identify neighbotiood interchangeable values we can
construct discrimination trees. The leaves of the trees will
be the equivalence classes of neighborhood interchangeable
values. The process relys on a canonical ordering for
variable and value names; without loss of generality we
will assume lexicographic ordering.

geenIX -- yellowlX -- greenly -- yellnwlY

lb1

‘bluelx -- geenIX -- yellowlX -- bluely -- greedY -- yehwlY

lr. WI

Figure 3. Discrimination tree.

Figure 3 shows the discrimination tree for variable W.
For the blue value we build a branch containing first the
consistent values for X, then the consistent values for Y.
We do the same for the red value. As we start at the root

228 CONSTRAINT-BASED REASONING

to build the branch for the white value, we see that the
first consistent value, blue for X, is already present as one
of the children, so we move down to it. We keep
following preexisting branches as long as we can; in this
case, we follow one all the way to the end, and red and
white are found to be equivalent.

Neighborhood Interchangeability Algorithm:
Finds neighborhood interchangeable values in a CSP.
Repeat for each variable:

Build a discrimination tree by:
Repeat for each value, v:

Repeat for each neighboring variable W:
Repeat for each value w consistent with v:

Move to if present, construct if not, a node of
the discrimination tree corresponding to wlW

A complexity bound for this algorithm can be found by
assigning a worst case bound to each repeat loop. Given n
variables, at most d values for a variable, we have the
bound (the factors correspond to the repeat loops in top-
down order):

Q(n * d * (n-l) * d) = O(n2d2)
While this algorithm will find all neighborhood

interchangeable values exhaustively, a practitioner might
observe some interchangeabilities informally. Semantic
groupings can help suggest where to look. For example,
in Figure 4, we see a variation on the coloring problem,
where the allowable color combinations, e.g. red for X and
orange for Y, are indicated by links. (Note that this is
unlike the usual constraint graph convention where
constraint graph edges represent entire constraints. We are
representing the microstructure of the problem here: each
link joins an allowable pair of values.) Red and orange are
interchangeable, for both X and Y, as are blue and green.
Semantic knowledge of the “warm” and “cool” color
concepts might suggest looking for such
interchangeability.

X

Y

Figure 4. Semantic interchangeability.

On the other hand it might be interesting to view the
grouping by an interchangeability algorithm into
equivalence classes of red and orange, blue and green, as a
concept formation process. The “functional” semantics
inherent in the underlying problem (perhaps a problem in
decoration or design) motivates creation of classes of
colors, corresponding to the conventional concepts of
warm and cool.

K-interchangeability

This section introduces levels of local interchangeability

through a concept called k-interchangeability. K-
interchangeability involves CSP subproblems. For our
purposes a subproblem of a CSP will consist of a subset
S of the CSP variables along with all the constraints
among them, call this the subproblem induced by S.

Definition: Two values, a and b, for a CSP variable V,
are k-interchangeable iff a and b are fully interchangeable
in any subproblem of the CSP induced by V and k-l other
variables.

Observe that 2-interchangeability is equivalent to
neighborhood interchangeability. (Values will be trivially
interchangeable in a subproblem if there are in fact no
constraints in the subproblem.) For a problem with n
variables, n-interchangeability is equivalent to full
interchangeability. (A set is, of course, a subset of itself.)
The term local interchangeability will be used to refer to
k-interchangeability for ken.

The theorem of the previous section generalizes:
Theorem 2. For icj, i-interchangeability is a sufficient,

but not necessary condition for j-interchangeability. In
particular, any level of local interchangeability is
sufficient to ensure full interchangeability.

Proof. As the level of interchangeability increases we
can only increase the size of the interchangeability
equivalence classes.

A solution to a subproblem may fail to be part of a
solution to a larger subproblem, removing an impediment
to interchangeability as k increases. Thus the condition is
not a necessary one.

It is sufficient, however. Suppose a and b, values for V,
are i-interchangeable. I claim they are j-interchangeable.
Suppose not. Then there is a j-tuple subproblem solution
where substituting a for b (or vice versa) fails to produce
another solution. The failure involves at least one
constraint, between V and another variable, say U. Throw
away j-i elements of the j-tuple solution, but make sure
you keep the values for V and U. You now have a
solution to an i-tuple of variables where substituting a for
b (or vice versa) fails to produce another solution. This
contradicts the assumed i-interchangeability. QED.

The algorithm for finding neighborhood interchangeable
values generalizes to an algorithm for finding k-
interchangeability. The assumed ordering of the variables
and values induces a canonical ordering of variable and
value tuples. Each entry in the discrimination net is now a
(k-l)-tuple of values.

K-l~ztercltangeabilit?! Algorithm:
Finds k-interchangeable values in a CSP.
Repeat for each variable:

Build a discrimination tree by:
Repeat for each value, v:

Repeat for each (k-1)-tuple of variables
Repeat for each (k-1)-tuple of values w, which
together with v constitute a solution to the
subproblem induced by W:

NIove to if present, construct if not, a node of
the discrimination tree corresponding to wlW

FREUDER 229

Complexity Analysis
This section is concerned with local interchangeability
complexity issues. A complexity bound for the k-

interchangeability algorithm is obtained, O(nkdk), where d
is the maximum number of values (the size of the
domain) for any variable. There is reason to believe that
this is an optimal upper bound. I prove that for any level
of local interchangeability there are cases in which
preprocessing to remove redundant k-interchangeable
values before backtracking, k-interchangeability
preprocedng, will be cost effective.

The complexity analysis of the k-interchangeability
algorithm is similar to that for neighborhood

interchangeability, allowing for a worst case O(nk-‘) (k-

I)-tuples of variables and dk’l (k-1)-tuples of values, we
get a bound:

O(n * d * nksl * dk-‘) = O(nkdk).
The algorithm includes a brute force search for all the

solutions of each subproblem. Performance might be
improved by carrying out these searchs more efficiently in

advance. On the other hand O(nkdk) seems likely to be an
optimal worst case bound for finding all the subproblem
solutions. Since it is hard to imagine how all k-
interchangeable values could be identified without

completely solving all these subproblems, O(nkdk) seems
likely to be a tight worst case bound for this
identification. Once the equivalence classes of k-
interchangeable values are identified one representative of
each class can be retained and the rest of the class declared
redundant and removed (within the same time bound
obviously).

Despite this potentially costly worst case behavior, I
claim that removing redundant interchangeable values can
yield great savings in some cases. Furthermore this is true
even for large k. For any ken there are problems for
which preprocessing to remove redundant k-
interchangeable values before backtracking will be cost
effective. In fact for any ken, k-interchangeability
preprocessing is arbitrarily effective in the sense that
whatever savings you specify, I can find a CSP for which
k-interchangeability preprocessing saves that amount of
effort.

,

The basic observation is that eliminating an
interchangeable value prunes the subtree below that value
in the backtrack search tree. If all values of a single
variable are found to be interchangeable, we have
effectively eliminated a level of the backtrack tree; we are

left with a maximum of d”-l search tree branches, rather

than d”. If all values of i variables are interchangeable the

search tree has at most dnwi branches. If all values of all
variables are found to be interchangeable, we are
effectively done (anything is a solution). If all values of
one variable are interchangeable and they all participate in
no solutions, we are effectively done (there is no
solution).

Theorem 3. For any number of variables ~2, any
ken, and any computation cost C, there exist CSPs for
which the cost of solving by backtrack search exceeds by
more than C the cost of solving by k-interchangeability
preprocessing followed by backtrack search. This is true
regardless of whether we take “solving” to mean finding a
single solution, finding all solutions or finding that there
is no solution.

Proof. For each interpretation of “solving” I
demonstrate that I can construct CSPs with the desired
property. I show that the best results we can hope for on
those CSPs without preprocessing is worse, by at least C,
than the worst behavior we can expect with preprocessing.
For simplicity assume that a constructed CSP will have
the same number of values, d, for each variable. Assume
that backtrack search instantiates variables and chooses
values according to their lexicographic ordering.

Consider first the case where there is no solution:
We construct a CSP where failure occurs during

backtrack search only when instantiating the last variable,
V, and conducting the last consistency check, against
variable U. IBacktrack search will thus need to examine the

complete search space tree. There will be d” branches in
the search tree. Since between most pairs of variables
there is really no constraint, I will only count one
constraint check per branch. The effort for backtrack search

is then c ldn+c2, for appropriate constants cl and c2.

Substituting n- 1 into the k-interchangeability bound,
we obtain a worst case effort for interchangeability

preprocessing of c3n n-1dn-1+c4, for appropriate constants

c3 and ~4. The algorithm which identifies (n- l)-

interchangeability will discover, and can be trivially
altered to report, that all the values of V fail to participate
in any solutions to subproblems involving U. This is
sufficient to determine that the CSP has no solution,
without any subsequent backtrack search.

Now the question is can it be true that:

cld”+cz > c3n n-1dn-1+c4 + C ?

Simple algebra tells us that this will be true if:

d > Cal-+ + c6

for appropriate constants cs and c6. In other words, we

only need construct a problem where the number of values
is sufficiently large in comparison with the number of
variables.

(The nature of “sufficiently large” may be offputting,
but bear in mind this is a worst case scenario for
interchangeability involving (n- I)-interchangeability. Also
observe that there are simple cases with 2 variables and 3
values that demonstrate the desirability of even (n-l)-
interchangeability preprocessing.)

Now consider the case where we search for a single
solution:

The construction is similar. This time the last variable
in the search tree, V, will be such that k-

230 CONSTRAINT-BASED REASONING

interchangeability preprocessing reduces the domain of V
to a single value. This value will only be consistent with
the last value, in the ordering of values, for each other
variable. Thus there will be a single solution, which will
appear as the “rightmost” branch of the search tree. Again
all pairs of values between variables other than V are

consistent. We have at most d”-’ branches in the search
tree. (Actually interchangeability redundancy removal
should prune the search tree further.) For each branch there
are n-l non-trivial constraints to check, those between V
and the other n-l variables. Thus the backtrack search
effort, after preprocessing reduces the number of variables
for V to one, is at most:

cl(n-l)dn1+c2.

Adding the effort for (n-I)-interchangeability
preprocessing we have a total effort of:

(cl(n-l)dn-‘+c2) + (c3n n-1dn-1+c4).

Without preprocessing the search tree will have d”-(d-l)
branches. Search will repeatedly try all d values for V,
until success is achieved with the last value for every
other variable. Thus search effort will be:

c5(n-l)(d”-(d-l))%6

We want:

(c,(n-l)dn1+c2)+(c3n n-1dn-1+c4)

c Cs(n- l)(d”-(d- 1))+C@C.

Simplifying, it is sufficient that:

d>c7nn-‘+c 8
for appropriate constants c7 and cg.

Finally, consider the case where we are looking for all
solutions:

This time construct a CSP where k-interchangeability
reduces a variable V to a single value and that variable is
the first variable to be instantiated in the backtrack search
order. Consider the final variable, W. Arrange that only
the final value for W is consistent with anything, and it is
only consistent with the final value for each of the other
variables (with the exception of V; it is consistent with
all values of V). Other pairs of values are all consistent.

Thus backtrack search will check out dn-1 branches before
finding the first solution. Backtrack search after
interchangeability preprocessing will require if anything
less effort to reach the first solution (interchangeability
can reduce the number of values for other variables). Once
the first solution has been found interchangeability
preprocessing will permit simply substituting to obtain
the other d-l solutions, while backtrack search requires

searching another size d n-l search tree for each additional
solution. Clearly, for sufficiently large d, the savings here
can be as large as we like. Q.E.D.

Observe that the constructions in the proof work for any
level of k-interchangeability, including the lowest. If 2-
consistency, for example, is sufficient to create a situation

like those constructed above. the savings can be dramatic,
even without an inflated value for d, and not just for
finding multiple solutions. It may be that the potential
payoff fro relatively inexpensive %nterch,angeabihty
preproces or the potential cost of doing without it--
will motivate routine preprocessing for 2-
interchangeability.

Theorem 4: For any n>2 and any d, there exist CSPs
with n variables and d values for each, for which the
savings achieved by preprocessing for 2-interchangeability

is O(n2dn) .
Proof. Construct a CSP with no solution where none of

the values for one variable, V, are consistent with any
value for one of the others, U, while all other value pairs
are permitted. 2-interchangeability will discover that there

is no solution with O(d2n2) effort. Assume a search order
where U is the first variable to be instantiated and V the
last. This will require a full backtrack tree search with

O(n2dn) effort . e difference is O(n2dn) Q E D . *. .
Observe further that the cost ‘of (n- 1)-interch,angeability

preprocessing is such that the arguments in Theorem 3
focused not on how easily we could proceed with the
search after removing redundant values, but on ensuring
that backtrack search without preprocessing would require
a sufficiently large effort. The calculations did not take
into account that interchangeability can affect more than a
single variable. Even 2-interchangeability can
significantly reduce the number of values for many of the
variables (in the extreme down to a single value for each
variable) resulting in a major savings in the effort required
to find one, or all, solutions.

Note that very similar arguments to those in this
section should produce similar results regarding the
efficacy of k-consistency preprocessing. Indeed
constructions in this section are reminiscent of the basic
“thrashing” arguments that long ago pointed out problems
with conventional backtrack search, motivating
consistency “relaxation” preprocessing techniques among
other refinements (Bobrow & Raphael 1974). However, I
do not believe that this kind of concrete analysis has been
carried out previously for thrashing type behavior.

This section provides means of taking advantage of
interchangeability even when such opportunities are not
strictly or immediately available.

This section defines several forms of ~‘4 a k
interchangeability. These may involve sacrificing some
solutions, but this will not matter if we are seeking a
single solution. Locally computable forms of these
concepts are available.

ity. The simplest form of weak
interchangability is substitutability; this captures the idea
that interchangeability can be restricted to a “one-way”

FREUDER 231

concept.
Definition: Given two values, a and b, for a CSP

variable V, a is substitutable for b iff substituting a in
any solution involving b yields another solution.

We can remove b from the problem, knowing that we
have not removed all the solutions. If there was any
solution involving b, there will remain a solution where a
is substituted for b. However we cannot recover solutions
involving b by substituting b in the solutions involving
a, as we do not know which, if any, of those substitutions
produce solutions,

If each of two values can be substituted for the other,
the two values are fully interchangeable. Substitutability
can be computed locally. In particular, we have:

Definition: For two values, a and b, for a CSP variable
V, a is neighborhood substitutab&e for b iff for every
constraint C on V:

{ i I (a,i) satisfies C } r, { i I (b,i) satisfies C } .

In the example of Figure 2, red is neighborhood
substitutable for blue for variable W, even though red and
blue are not neighborhood interchangeable.

Partial Interchangeability. Partial interchangeability
captures the idea that values for variables may “differ”
among themselves, but be fully interchangeable with
respect to the rest of the world.

Definition: Two values zue partially interchangeable,
with respect to a subset S of variables, iff any solution
involving one implies a solution involving the other
with possibly different values for S.

When S is the empty set, the values are fully
interchangeable. Figure 5 presents an example of partial
interchangeability: blue and red for W are partially
interchangeable, with respect to the set (X}. Note: blue
and red for W are interchangeable as far as V is concerned;
blue for W goes with red for X, and red for W with blue
for X; blue and red for X are interchangeable as far as Y
and 2 are concerned. Thus while substituting say red for
blue in a solution for W necessitates a change in the value
for X, it will not require any change in the values for V,
Y or Z.

rohkm Interchangeability. Subproblem
interchangeability captures the idea that values can be
interchangeable within a subproblem of the CSP.
Subproblem interchangeability may motivate and guide a
divide and conquer decomposition of a CSP.

Definition: Two values are subproblem
interchangeable, with respect to a subset of variables S,
iff they are fully interchangeable with regards to the
solutions of the subproblem of the CSP induced by S.

Note the values are required to be fully interchangeable
with regard to the subproblem, not the complete CSP. Of
course, when S is the entire set of variables, the
subproblem is the complete CSP, and the values are fully
interchangeable for the CSP. Subproblem
interchangeability and partial interchangeability are not
quite inverse notions.

Theorem 5: Subproblem interchangeability with
respect to S implies partial interchangeability with respect
to S’, the variables not in S; however, partial
interchangeability with respect to S does not imply
subproblem interchangeability with respect to S’.

Proof: The key observation is that a solution to a
subproblem may fail to appear as a portion of any
solution to the complete problem. On the other hand if we
take from a solution to the complete CSP the values for a
subset of variables, those values will constitute a solution
to the subproblem induced by those variab1es.Q.E.D.

By grouping variables into “metavariables”, or values into
“metavalues”, we can introduce interchangeability into
higher level “metaproblem” representations of the original
CSP. Meta-interchangeability might also be viewed as
providing motivation and guidance for dividing CSP
variables into subproblems and CSP values into concept
hierarchies (Mackworth, Mulder, & Havens 1985).

Figure 6 presents an example of metavalue grouping.
As in Figure 4 we indicate the allowable pairs of values in
the original CSP with links, e.g. yellow for Y is
consistent with light blue and light red for X. In the
original problem yellow and brown for Y are not
interchangeable. However, if we were to combine sky,
light and dark blue into a metavalue “blue”, and similarly
create the metavalue “red”, we would have a problem in
which yellow and brown are fully interchangeable.

X

(yellow brown black)

Figure 5. Partial interchangeability. Y

Figure 6. Meta-interchangeability.

232 CONSTRAINT-BASED REASONING

We can also merge variables into metavarinbles. The
values of a metavariable will be the solutions of the
subproblem induced by the individual variables. Values for
two metavariables will be consistent if the component
values for the original variables are all consistent.
Forming the’ metaproblem may create new
interchangeabilities.

Dynamic Interchangea
Interchangeability can be recalculated after choices are
made for variable values during backtrack search. It can be
recalculated after inconsistent values have been filtered out
during the search process in a preprocessing step or by a
“hybrid” algorithm that interleaves backtracking and
relaxation. Interchangeability can also be recalculated to
reflect changes in a dynamic constraint representation.
Interchangeability might be sought dynamically during a
knowledge acquisition or problem deftition process.

The idea of integrating local interchangeability
recalculations with backtrack search is especially
intriguing given the success of local consistency
calculations in enhancing backtrack search performance.

The essential idea of interchangeability is that given the
solutions involving one value, we can recover the
solutions involving another. We have been using simple
substitution to go from one set of solutions to another.
However, substitution is only the simplest function we
could use.

Definition: Let SvIv be the set of solutions inclusing

value v for variable V. CSP values a for V and b for W
are functionally interchangeable iff there exist functions
fa and fb such that fa(SalV) = SblW and fb(SblW) = &IV.
(V and W may be the same variable.)

This is a very general definition that deserves further
study. The definition does not even require that a and b be
values for the same variable. In fact, strictly speaking, any
two values are functionally interchangeable; once we have
all the solutions we can give a “brute force” definition of
the necessary functions. The key obviously is for the
functions to be a priori available or cost effective to
obtain.

One natural refinement of the definition involves a
solution preserving function on variable values:

Definition: Two values, a and 6, for a CSP variable,
are isomorphically interchangeable iff there exists a 1-I
function f such that:

l.b=f(a)
2. for any solution S involving a, { f(v) I v E S } is a

solution

3. for any solution S involving b, { f’(v) I v E S } is a
solution.

Problem symmetry is a likely source of this sort of
transformational interchangeability. Consider the 8-queens
problem, for example, placing 8 queens on a chessboard

such that no two attack one another. where rows
correspond to variables and columns to values. The
reduction of the values in the first row suggested in
(Reingold, Nievergelt, & Deo 1977) can be viewed as an
application of isomorphic interchangeability.

First observe that the column 1 position for the queen
in the first row is isomorphically interchangeable with the
column 8 position, the 2 position with the 7 position,
etc. The interchangeability function f maps position i into
position 9-i, for each row, simulating flipping the board
about its vertical axis of symmetry. This permits
eliminating positions 5 through 8 for the first row. Next
observe that because of symmetry about the diagonal axes
position 1 of row 1 is isomorphically interchangeable
with position 8 of row 8, thus we can eliminate position
1 for the first row.

ents. This material is based upon work
supported by the National Science Foundation under Gr‘ant
No. IRI-8913040. The Government has certain rights in
this material. The author is currently a Visiting Scientist
at the MIT Artificial Intelligence Laboratory.

eferences

(Bobrow & Raphael 1974) New programming
languages for artificial intelligence research. Compu t.
SW-V. 6,3, 153-174.

(Dechter & Dechter 1987) Removing redundancies in
constraint networks. Proc. AAAI-87, 1 OS- 109.

(Freuder 1978) Synthesizing constraint expressions.
Commun. ACM 21,1 I, 958-966.

(Mackworth 1977) Consistency in networks of
relations. Artzf. Intd. 8, 99-l 18.

(Mackworth, Mulder, & Havens 1985) Hierarchical arc
consistency: exploiting structured domains in constraint
satisfaction problems. Comput. Intell. 1, 118- 126.

(Reingold, Nievergelt, & Deo 1977) Corn bina torial
Algorithms. Prentice-Hall.

(Rossi, Dhar, & Petrie 1989) On the equivalence of
constraint satisfaction problems. MCC Technical Report
ACT-m-222-89. MCC, Austin, Texas 78759.

(Van Hentenryck 1988) Solving the car-sequencing
problem in constraint logic programming, Proc. ECAI-
88.

(Van Hentenryck 1989) A logic language for
combinatorial optimization, Annals of Operations
Research 21, 247-274.

(Yang 1990) An algebraic approach to conflict
resolution in planning. Proc. AAAZ-YO, 40-45.

FREUDER 233

