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Abstract

A solution to a constraint satisfaction problem
specifies values for a set of variables that satisfy
constraints on which combinations of values are
permitted. Completability properties specify
conditions under which partial solutions, for
subsets of variables, will be extensible to full
solutions. Different representations for a
constraint satisfaction problem can make explicit
different sets of constraints. In certain
circumstances representations with desirable
completability properties can be obtained in
polynomial time.

1 INTRODUCTION

1.1 OVERVIEW

Constraints on a set of variables are relations that specify
which combinations of values are permitted for those
variables. A constraint satisfaction problem (CSP)
involves finding an instantiation for each variable such
that all the constraints are simultaneously satisfied. Many
forms of reasoning can be viewed in CSP terms, e.g.
temporal reasoning [Dechter, Meiri and Pearl 89],
qualitative reasoning [Kuipers and Berleant 88], truth
maintenance [de Kleer 89], diagnostic reasoning [Dechter
and Pearl 88b] and image interpretation [Reiter and
Mackworth 88].

An instantiation of a subset of variables will be called a
solution if it satisfies all constraints in which any of the
variables appear. A solution for all the variables will be
called a complete solution. If a solution for a subset can
be extended to a complete solution I will call it
completable. For example if a for X, b for Y and ¢ for Z
is a complete solution, then a for X and ¢ for Z is a
completable solution for the X,Z subset.

Different representations of a CSP can make explicit
different sets of constraints, while remaining equivalent
in the sense that the set of complete solutions remains the
same. These representations can have different
completability properties based on the extent to which

subset solutions are completable. Completability
properties can be desirable, especially when these -
representations are viewed as knowledge bases subject to
multiple queries.

I establish here methods for obtaining CSP
representations with various completability properties.
For appropriate classes of CSPs these methods will
operate in polynomial time. As an example of the kind of
result this work supports: Suppose we are given a
scheduling problem involving a sequence of n event
variables, each with 7 value choices, in which each event
can only constrain the succeeding 5 events. We can obtain

in O(n3 ) time a representation in which a solution for
any subset of more than 5 consecutive events is part of a
complete solution.

The notion of completability, and the methods for
establishing it, derive from Montanari's concept of
minimality [Montanari 74]. A CSP is often represented
as a constraint network, where vertices correspond to
variables and edges to constraints. A network of binary
constraints is minimal if each pair of values which
satisfies the binary constraint on a pair of variables is
completable. Montanari viewed the problem of finding a
minimal network equivalent to a given network as the
central problem for networks of constraints. More
recently a concept of minimality has played a role in
temporal reasoning [van Beek 89]. Completability also
serves to generalize global consistency [Dechter 90] and
(i,n-i)-consistency [Freuder 85].

Though achieving minimality is in general an NP-
complete problem, Montanari established certain
conditions under which it can be achieved efficiently. He
considered "syntactic” restrictions based on the topology
or connectivity structure of the constraints in the networks
and "semantic” restrictions on the nature or internal
structure of the constraints. Dechter has recently shown
how semantic restrictions on the number of potential
variable values (or the size of the unary constraints) can be
related to a generalization of minimality that she terms
global consistency [Dechter 90].

In this paper I consider syntactic restrictions. I begin with
CSPs whose constraint networks have the structure of an
important class of graphs known as "k-trees" [Freuder 90].
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_ K-trees generalize tree structures (trees are l-trees).
Completability provides appropriate generalizations of
minimality in the context of k-trees and I prove
completability results for k-tree-structured CSPs. This
leads to a complexity bound on obtaining a completable
representation for any CSP, expressed as a function of
the "k-tree embedability” of its constraint network.

K-tree completability may prove especially useful in
situations where expressivity can be traded for efficiency.
Expressivity/efficiency tradeoffs have been studied in the
temporal reasoning domain [Vilain, Kautz and van Beek
89]. Tambe and Rosenbloom have utilized results
conceming tree-structured CSPs to trade expressivity for
efficiency in a production system pattern matcher [Tambe
and Rosenbloom 90].

For simplicity I assume that the original CSP problems
we are given are binary CSPs (non-binary CSPs can be
expressed as binary ones [Rossi, Dhar and Petri 89]).
Higher order, non-binary constraints will in fact be
introduced in transforming to completable representations.

The rest of the paper is organized as follows: Section 1.2
provides some CSP background material and presents a
simple, informal example of the kind of result we are
seeking, and the types of representation transformation
that will be used. Section 2 presents the different
representations we use and the transformations employed
to go from one to another. It includes further motivation
for our interest in k-tree structures. Section 3 introduces
the concept of i multi-clique completability and proves the
central theorem of the paper, which shows how to obtain
an i multi-clique completable representation of a k-tree in
polynomial time (for fixed k). Section 4 examines special
cases of multi-clique completability. It provides a bound
for full completability, where a solution for any subset of
variables is comipletable. Section 5 goes beyond k-trees. It
discusses "partial k-trees” and uses them to derive results
applicable to any CSP. It discusses series-parallel graphs
and bandwidth-k graphs, which may be of special interest
in CSP applications, e.g. in temporal reasoning. Section
6 contains a final example and a brief summary.

1.2 BACKGROUND AND EXAMPLE

This section presents a simple example to introduce
illustrate the idea of completability and the nature of the
results we will obtain. A "variable completable”
representation of a simple CSP is found. At the same
time some basic CSP concepts are reviewed.

Consider the graph coloring problem in Figure 1. The
problem is to color the vertices of the graph such that no
two vertices that are joined by an edge have the same
color. At each vertex we can select from the colors
indicated. Blue is indicated by "b", red by "r" and green by
"g". The vertices of the graph correspond to CSP
variables, the edges to CSP constraints.
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Figure 1: A Graph Coloring Example

It happens that for graph coloring CSPs the constraint
network has the same structure as the graph to be colored.
This is convenient for devising sample problems with a
desired structure.

We will call the constraint network constructed directly
from the specification of a CSP the direct constraint
network. This is to distinguish it from contraint
networks we might construct that in some fashion
represent the same set of solutions, but with vertices and
edges that correspond to a different set of variables and/or
constraints. For example, we can modify the direct
constraint network by making explicit constraints which
are only implicit in the original problem specification, or
by removing constraints which are redundant in the
original problem specification. (I am trying to avoid in
this paper introducing a lot of formal notation and
technical detail to specify a CSP and its alternative
representations. )

It would be nice to know that any value we pick for any
variable that satisfies the constraints directly involving
that variable is part of some solution to the problem. We
will say that a CSP representation is variable
completable iff any solution for the singleton subset
containing any one variable is completable. This is clearly
a nice basic property for a constraint data base to have.
However, this is not the case at present. For example,
value blue for variable W does not participate in any
solution.

To fix this we add further constraints. These are pictured
in Figure 2. First, we add ternary (three variable)
constraints on the triples of variables WXY, XYZ, XZV.
These are the triples of variables that have the property
that each variable is constrained by each other variable.
The ternary constraints correspond to solutions of three
CSP subproblems: each subproblem consists of one of
these triples of variables, along with the associated binary
constraints between pairs of variables. For example, the
ternary constraint on WXY specifies that the triple (red
blue green) is a consistent solution to that subproblem.
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Figure 2: Metaproblem

Next we add a constraint between the subproblems WXY
and XYZ, and another between XYZ and XVZ. These new
constraints are effectively 4-ary constraints, between 4
variables of the original CSP, as each pair of subproblems
involve four distinct variables. However, for the moment
we shall view these new constraints as binary constraints
in a "metaproblem”. The variables of this metaproblem
will correspond to the subproblems identified earlier. The
values will be the solutions to the subproblems. The
constraints will specify that the solutions to the
subproblems must agree on common variables. For
example, the triple (red blue green) for WXY is consistent
with the triple (blue green red) for XYZ, but (blue red
green) for WXY is not consistent with any solution for
XYZ: it agrees with one on X and the other on Y, but
with neither on both X and Y at once.

In Figure 3 we see the result of achieving arc consistency
[Mackworth 77], or 2-consistency [Freuder 78], on the
metaproblem: any value for a metavariable not consistent
with any value at some neighboring metavariable is
eliminated. Notice that initially (red blue green) for XVZ
is consistent with (red blue green) for XYZ. However,
after the constraint between WXY and XYZ eliminates
(red blue green) for XYZ, there is nothing left for the (red
blue green) solution of XVZ to go with, and it too is
eliminated.
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Figure 3: Arc Consistency

I claim that it is now impossible to pick a value for one
of the original CSP variables that satisfies the constraints
embodied in Figure 3, but fails to be part of a complete
solution. Blue for W, for example, is not in any solution
for WXY, i.e does not satisfy the WXY temary constraint.
We could "project” the constraints downward onto the
individual variables, e.g. removing blue from W. We can
imagine a final representation which contains the original
variables, with values removed as called for by the new
constraints, along with the new ternary and 4-ary
constraints.

At this point you can verify that the representation in
Figure 3, is in fact variable completable. However, the
process of acquiring this representation remains black
magic. Why did I choose those particular subproblems?
Why did I link them in that way? How did 1 know to
perform arc consistency processing? These questions will
be answered in the rest of the paper. The structure in
Figure 3 is an example of what we will define below as a
2-closure of a clique tree representation of the original
problem. The original problem has a 2-tree structure. It
may help to keep this example in mind as we extend the
above process and formulate it in a considerably more
general manner to achieve "multi-clique completability”.

2 REPRESENTATIONS AND
TRANSFORMATIONS

This section defines k-trees, clique trees and i-closures and
the representation transformations that take a k-tree into a
cligue tree and a clique tree into an i-closure of a clique
tree. I argue that these transformations do not change the
set of solutions. Most of the completability results will
concem closures of clique trees of k-trees. I will use a
simple example for illustration.
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21 K-TREES

* This section defines k-trees and discusses their importance.
] argue that interesting CSPs can have k-tree structure and
{hat to some degree k-tree results apply to any CSP.

Call a graph in which any two vertices are joined by an
edge a clique. A k-tree is formed by starting with a &-
clique, a clique of k vertices. Vertices are added by
linking them to all the vertices of an already present k-
cligue. Figure 4 illustrates the construction of a 2-tree.
The numbering of the vertices reflects the order in which
the 2-tree was built.
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Figure 4: Building a 2-Tree

A graph is a k-tree iff:
1.1t is a k-clique
or
2.There is a vertex v such that:
a. v is connected to a k-clique
b. removing v and its associated edges leaves a k-tree.

A partial k-tree is a subgraph of a k-tree. A CSP will be
called a k-tree CSP if the direct constraint network is a k-
tree.

Why should we care about k-tree CSPs?

1. 1-trees are the usual tree structures, which can represent
hierarchically structured CSPs.

2.2-trees are series-parallel networks, which might
represent e.g. design problems for series-parallel circuits.

3.K-tree CSPs are solvable in time polynomial in k
[Freuder 90).

4. Any constraint network can be embedded in a k-tree for
large enough k, by adding appropriate trivial constraints
(trivial constraints allow all value pairs and are not
normally represented by constraint network edges; in this
case we make an exception).

5.Any constraint network can be reduced to a partial k-tree
for any k by removing enough constraints, settling for a
partial solution [Freuder 891.

6.Several techniques have been developed to take
advantage of tree substructures in general CSPs; these
may be profitably extensible to k-trees [Freuder 90]. In
particular k-trees provide target structures for decomposing
CSPs into subproblems.

7.K-trees structures offer a hierarchy of choices in trading
representational power for computational efficiency; tree
structures have already been used for this purpose. In some
circumstances we may be in a position to guarantee that
problems will be k-tree-structured, in return for limiting
the class of problems which we can handle.

8.K-trees, not only trees, have a natural "semantics", that
makes it likely such structures will arise in practice. For
example, if we have a scheduling, planning or temporal
reasoning problem involving a sequence of events, with
the plausible restriction that one event cannot affect
another more than k events distant, we have a partial k-
tree. We can make this a k-tree by simply adding trivial
constraints as necessary so that each event is linked to all
k events on either side.

2.2 CLIQUE TREES

Given a k-tree we can form a cligue tree representation.
The vertices of the clique tree correspond to the maximal
cliques (k+1-cliques) in the k-tree. They are linked in a
manner which reflects the construction of the k-tree.
Adjacent cliques have a k-clique in common. Figure 5
contains a clique tree for the 2-tree in Figure 4. The 1,2,4
node is a child of the 1,2,3 node reflecting the fact that in
building the 2-tree we joined the 4 vertex to vertices 1 and
2. (The 2-tree could have been constructed in a different
order and has alternative clique tree representations.) A
clique tree can be obtained in O(n) time, for an n vertex k-
tree; Wimer [Wimer 87] gives a clique tree construction
algorithm. The leaves are those vertices with a single
adjacent edge.
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Figure 5: A Clique Tree

This representation is related to acyclic databases and
acyclic CSPs [Dechter and Pearl 89], and to tree
decompositions [Robertson and Seymour 86]. Its roots go
back at least to Beineke and Pippert’s early work on k-
trees [Beineke and Pippert 71].

The clique tree of a constraint network can be regarded as
the constraint network of a metaproblem in which the
cliques correspond to metavariables whose values are the
solutions of the clique subproblems. The constraints of
the metaproblem require that consistent values for two
adjacent metavariables have identical values for identical
variables from the original problem. The clique tree can
also be regarded as an expanded version of the original
problem, a constraint network in which certain implicit
higher level constraints are made explicit; the clique tree
vettices correspond to k+1-ary constraints, the clique tree
edges to k+2-ary constraints.

2.3 CLOSURES

The i-closure of a constraint network results from adding
the additional constraints induced by a strong i-consistency
algorithm [Freuder 78; Freuder 82; Cooper 89]. If a
constraint network is strongly i-consistent then given any
consistent values for a subset of fewer than i variables,
and then any additional variable V, we can find a value for
V consistent with the previous values.

The completability results generally involve obtaining the
i-closure, for an appropriate i, of the clique tree
representation of the direct k-tree constraint network for a
CSP. If we wish we can go a step further, adding the
original variables back in, reducing their domains of
values as required by the constraints (e.g. through
consistency propagation as in [Freuder, 78]). We thus
finish with a (non-binary) constraint network on the
original variables, with the desired complietability
property.

This final network can be visualized in two ways. All
constraints (including the variables viewed as unary
constraints) can be represented by vertices. Constraints
which share variables are linked by edges at least to the

extent needed to ensure that a variable cannot be assigned
two different values at the same time to satisfy twq
constraints. This representation is descended from the
constraint network representation I presented in [Freuder
78], and which I view here as a form of metaproblem
representation. Alternatively higher order constraints can
be viewed as hyperedges in a hypergraph representation
[Dechter and Pearl, 89].

‘We need to know that all this transforming never changes
the set of solutions for the original problem variables;
however, this is fairly obvious. Similar transformations
have been used before in the literature. The clique tree
representation incorporates the original constraints, so no
new solutions can creep in. The new constraints only state
explicitly subproblems of the original problem, and
ensure that two subproblem solutions do not assign
different values to the same variable; thus no old solutions
are ruled out. K-consistency can be used as a preprocessing
step in solving CSPs. It only removes inconsistent
values. Adding the original variables back only allows
established constraints to reflect explicitly restrictions on
permissible values that they already express implicitly.

3 MULTI-CLIQUE COMPLETABILITY

This section contains the main result of the paper. A set
of variables for a CSP will be called a clique if the
vertices corresponding to the set of variables, together
with the constraints between pairs of these variables,
constitute a clique in its direct constraint network
representation. A j-clique of variables is a clique
containing j variables. A CSP representation is i multi-
cliqgue completable iff any solution for a subset of
variables belonging to any i (or fewer) cliques is
completable.

The definition allows us to pull, for example, two values
from one clique, five from another, all the values from a
third. Any cliques will do, though of course they will all
be contained in some maximal clique, which in the case of
k-tree structure means some k+1-clique. Note that i multi-
clique completability implies in particular that a solution
for any i variables is completable.

The basic idea is to add explicit constraints to the original
representation of the CSP sufficient to rule out partial
solutions which cannot be completed. This can always be
done simply by finding all the complete solutions. The
trick is to see if we can get by with less complete
processing of the problem. K-tree structures permit that.

Some intuition as to the basic nature of the processing
can be gained by thinking of the problem as follows:
Given values at a set of cliques in the clique tree we have
to a) fill in consistent values in the area "bounded" by
those cliques and b) fill in values at the cliques in the
subtrees outside this bounded area. The subtrees can be
handled recursively. The bounded area can be filled in
using the strong i+1-consistency of the i+1-closure of the
clique tree.
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A primary use of i+1-consistency here is analogous to the
use of 3-consistency to fill in values along a path between
two constraint network vertices. It has been recognized
that 3-consistency corresponds to "path” consistency; if
given values for two variables we can find a value for a
third variable, we can find values all along a path between
them, such that all the constraints represented by the edges
of the path are satisfied [Montanari 74]. 1 suggest here a
generalized "physical” implication of i-consistency, which
might be termed tree consistency: i-consistency
guarantees that given values for i-1 variables we can find
values for all variables in a tree embedded in the constraint
petwork with these i-1 variables as leaves, such that all
the binary constraints represented by the edges of this tree
will by satisfied.

Theorem 1: Given a k-tree CSP with n variables, each

with at most d values, in O((nd¥*1)i+1y time we can
obtain an i multi-clique completable representation.

Proof. We obtain the i+l-closure of a clique tree
representation of the k-tree direct constraint network of the
given CSP. We want to show that this representation is i
multi-clique completable. We have seen that the original
problem, the clique tree, and the i+I-closure of the clique
tree, all have the same set of solutions. When we are done
we can add back vertices corresponding to the original
variables if we wish, as suggested in Section 2.3.

We ate given a solution for a set of variables chosen from
i chosen cliques. I outline an algorithm for completing the
solution, finding consistent values for the remaining
variables. The algorithm recursively processes the
representation. The emphasis is on demonstrating that
appropriate values must exist; once we know that a value
exists it can always be found, if necessary by exhaustive
search. There are two cases in the terminal or basis step of
the recursion, and two cases in the non-terminal or
recursive step.

Note that in choosing new values we can use the induced
constraints in the i+1-closure of the clique tree to insure
consistency. However, at the same time we can take
advantage of the fact that to form a solution it is sufficient
that a set of values satisfy the constraints in the original
clique tree.

Preprocessing Step:

If there are any cliques for which some variables, but not
all, have been assigned values, assign consistent values to
the remaining variables in those cliques. This can be done
as the original values chosen must have satisfied the
constraint involving all the variables from those cliques
induced by i+1-closure of the clique tree.

Terminal Step:

Case 1: All the variables at all the cliques have been
assigned consistent values.

Case 2: The variables at only one clique have been

assigned consistent values. Make that clique the root of
the clique tree. Now 2-consistency guarantees that we can
find consistent values at the remaining vertices of the tree,
e.g. while traversing the tree in breadth-first order.

Non-terminal Step:

Case 1: At least one of the cliques, C, whose variables
have been assigned consistent values is not a leaf of the
clique tree. Removing C disconnects the tree into two
subtrees, involving two sets of cliques, R and S. The
problem we are currently dealing with can be solved by
independently and recursively solving two subproblems,
involving R plus C and S plus C. We recurse on the
subgraphs of the i+1-closure of the clique tree induced by
the union of R and C and the union of S and C. The only
"communication” in the original clique tree between the
cliques of the two subproblems is through C; if we solve
the subproblems independently and the solutions agree on
C we will have a solution to the full problem.

Case 2: All of the cliques whose variables have been
assigned consistent values are leaves of the clique tree.
Since not all cliques contain variables with chosen values,
there must be a leaf, L, whose one adjacent vertex, P, does
not contain variables with chosen values. We use i+l-
consistency to move inward in the tree from L. Choose a
metavalue for P, i.e. values for all the variables in the
clique P, consistent with all the chosen values at the
leaves. From this point we can ignore L; it's only contact
with the other cliques, in the original clique tree, is
through P. Recurse on the representation obtained by
removing L.

Recursion in either case results in smaller problems;
eventually one of the terminal cases must be reached.

The complexity bound largely follows from the bound on
Cooper's k-consistency algorithm [Cooper 89}, which is

O(nkdk) for a CSP with n variables of d values. Our

metavariables have at most dk+l values, and there will be
n-k k+1-clique metavariables, see [Beineke and Pippert
71]1. QE.D.

It may be more natural to talk directly about completing
solutions for sets of variables rather than in terms of
cliques. Since any variable is in some clique we have the
following corollary (in this and succeeding theorems n
will represent the number of variables, d the maximum
number of values for any variable):

Corollary I: For a k-tree CSP, in 0((ndk+l)i+l) time we
can obtain a representation in which any solution for any i
variables is completable.

In choosing to achieve i multi-clique completability for a
particular i there is clearly a tradeoff between
computational effort and level of completability. The level
and form of completability appropriate for an individual
problem will balance the needs of the user against the
computational realities.
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4 EXTREMES

This section focusses on i multi-clique completability
representations of k-tree CSPs for extreme values of i and
k: i=! and n-k (the number of maximal cliques), and k=1
(the usual tree structures). (For n vertices the maximum k
value is n, associated with a complete graph) Improved
completability bounds are obtained for the minimal i and
k values.

4.1 CLIQUE COMPLETABILITY

A CSP representation is clique completable iff any
solution for any subset of variables from any one clique is
completable.

Theorem 2. A clique completable representation of a k-
tree CSP can be obtained in O(ad¥*2) time.

Proof: This is basically Theorem 1 for i=1. However, for
tree-structured CSPs 2-closure can be cbtained in time
linear in the number of variables and quadratic in the
maximum number of values for a variable [Dechter and
Pearl 88a]. The latter factor comes from the need to pair
all the values in one variable with all those in an adjacent
variable. However, we have a special case here. Adjacent
metavariables in the clique tree share k out of k+l1
variables from the original problem. Assuring consistency
between them amounts to establishing a k+2-ary
constraint in the original problem, or solving a CSP with

k+2 variables. This can be done in O(dk"'z) time (for fixed
k). If we do this for pairs of adjacent metavariables
starting at each leaf and moving up to the root, then going
back down from the root to each leaf, we achieve 2-

consistency in O(ndX*2) time. Q.E.D.

It is easy to see, using results from [Freuder 90] and the
k-tree literature, that achieving k+1-consistency for k-trees
would make all clique solutions completable. As we bave
seen a k-tree can be built by starting with a k+1-clique and
adding vertices which each in turn link to all the vertices
in an already present k-clique, forming another k+1-clique.
The initial clique is called a basis, and any k-clique can
serve as a basis for building the k-tree in this way
[Proskurowski 84]. Thus to complete a solution for a
clique, we could, if we had k+l-consistency, first add
values as needed to form the solutions to a k-clique, then
choose values for each variable we added in turn as we
built the k-tree. At each point we would only need to
worry about the consistency of the new value with k
already chosen values, and k+1-consistency would take
care of that. (If we are given all the values for a k+1-clique
to begin with, one of the non-basis values will be
predetermined.)

However, for k+l-consistency we have a complexity
bound Omk*1dk+ly Comparing with the bound from

Theorem 2, essentially we trade a factor of K against a

factor of d. Clearly as a function of the number of
problem variables, n, the bound of Theorem 2 is superior,

Corollary 2: A variable completable representation of 3
k-tree CSP can be obtained in O(nd**2)) time.

Proof. Since every variable is in some clique, this is a
special case of clique completability. Q.E.D.

4.2 FULL COMPLETABILITY AND TOTAL.
CLIQUE COMPLETABILITY

A CSP representation is fully completable iff any
solution for any subset of variables is completable. We
will see that full completability corresponds to n-k multi-
clique completability.

Theorem 3: A fully completable representation of a k-tree

~ CSP can be obtained in O((nd¥*1)0-K+1y time.

Proof: As observed earlier, there are n-k maximal cliques
in a k-tree. Any variable must be in at least one of these.
Thus n-k multi-clique completability implies full

completability; it can be obtained in 0((ndk+1)n-k+l)
time by Theorem 1. Q.E.D.

A potentially better bound can be obtained for a limited
form of n-k multi-clique completability. Define a
representation to be total-clique completable iff any
solution for a subset of variables that constitutes all the
variables from any set of maximal cligues is completable.

Theorem 4: Given a clique tree representation of a k-tree
CSP, with L leaves, we can obtain a total-clique

completable representation in O((ndk"'l)L“"l) time.

Proof. Observe that in the proof of Theorem 1, after the
preprocessing step, we only need more than 2-consistency
to deal with the leaf cliques or some subset of them. If all
the variables in the cliques involved have been assigned
variables to start with we do not need the preprocessing
step. Thus we will never need more than L+1-consistency,
where L is the number of leaves in the clique tree,
regardless of what i is. Q.E.D.

Note that this result places a premium on finding a clique
tree with a minimal number of leaves. The same CSP can
have two clique tree representations with very different
numbers of leaves. In general a k-tree can have
approximately k/(k+1) leaves, so the upper bound outlook
is not good: on the other hand, there are “chain" clique
trees of arbitrary size that have only two leaves. If the
clique tree is a chain, a tree with a single branch, we can

obtain total-clique completability in O(ndk"‘l )3 time.

4.3 TREES

When k=1 we have ordinary tree structures. For tree
CSPs, Corollary 2 says that we can obfain a variable

completable representation in O(nd3) time. The
experienced reader may observe here that 2-closure of the
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structored constraint network itself, nor the clique

e fficicnt to guarantee variable completability, and

tree, is Su
can be obtained in O@d?) time. In fact, for k=1, clique
completability is Montanari's minimality, and, as
Montanari noted, 2-closure of a tree structure is sufficient
to achieve minimality [Montanari 74].

Montanari has a further result. He shows that values for
any two variables in the 3-closure of a tree CSP, not
necessarily from the same clique in the tree (i.e. not
necessarily joined by an edge) can be extended to a
solution [Montanari 74]. 3-consistency can be obtained in

O(n3d3) time [Cooper 89]. Furthermore Montanari's
method, which first fills in a path between the variables,
motivating the approach of Theorem 1, appears to also
achieve 2 multi-clique completability (which could extend
the solution of as many as four variables).

Fork = 1 Theorem 1 gives a bound of O(n3d6); avoiding
the clique tree transformation gives a better bound.
Furthermore, we can use the generalization of path
consistency to tree consistency suggested in Section 3 to
handle i variables, or cliques. This approach requires i+1-

consistency, where we have an 0((nd)i+l) bound. This

compares with the O((nd2)I*1) bound given for i multi-
clique consistency for k = 1 by Theorem 1. We have
sketched out a proof of the following theorem,
generalizing Montanari's results:

Theorem 5. The i+1-closure of a tree CSP is i multi-
clique completable. In particular a solution for any i
variables is completable.

The question now arises as to whether these results imply
a more efficient alternative to the methods of Theorem 1
for k > 1. Theorem 1 already is descended from
Montanari's methods. However, it may be possible to
extend those methods more directly than Theorem 1 does,
perhaps by using the concept of a k-path [Beineke and
Pippert 71}, or a tree of k-cliques.

S PARTIAL K-TREES

This section indicates how the previous completability
results extend to partial k-trees via their embedding in a k-
tree. The embedding transformation again does not change
the set of solutions; it involves adding trivial constraints.
Partial k-trees allow us to formulate results for general
CSPs and for classes of special interest, series-parallel and
bandwidth-k CSPs.

Recall that a partial k-tree is a subgraph of a k-tree. As
noted above, by adding trivial constraints any constraint
network can be made into, or imbedded in, a k-tree, for
some k. If necessary we can simply add enough trivial
constraints to form a complete graph (all possible edges);
complete graphs are k-trees. Thus since any constraint
network is a partial k-tree for some k, completability
results can be provided for any CSP. However, if indeed

the embedding is the complete graph, the completability
results will not be very interesting.

Combining these observations with Theorem 1 gives us:
Theorem 6: Given an arbitrary constraint network G and

an embedding of G in a k-tree, in O((ndk+l)i+l) time we
can obtain an i multi-clique completable representation.

It is obviously desirable to obtain an optimal embedding
in the sense of one in which k is as small as possible. An
optimal embedding may be hard to find. There is an

O(nk+2) algorithm to find the embedding [Amborg,
Comeil and Proskurowski 87]. For a given CSP, even the
optimal k may be close to n, resulting in a k exponent in
the complexity bounds that is close to n.

However, if a 2-tree embedding exists it can be found in
linear time [Wald and Colboum 83]. The class of partial
2-trees is the class of series-parallel networks, which are
of special interest in engineering. Thus we have:

Theorem 7: Given a series-parallel constraint network: in

0((nd3 )i“"l) time we can obtain an i multi-clique
completable representation.

For larger optimal k, heuristic methods that settle for
suboptimal embeddings may prove effective. Dechter and
Pearl's work on tree-clustering [Dechter and Pearl 89]
provides a closely related representation that should be
useful in treating arbitrary graphs. In some cases the
embedding may be obvious from the semantics. Consider,
for example, the scheduling problem in Section 1.1. Each
event can constrain up to 5 succeeding events. The
embedding into a 5-tree is not hard to find: add trivial
constraints as needed so that each event does constrain the
5 succeeding ones.

The direct constraint network of this scheduling problem
is a bandwidth-5 graph. A bandwidth-k graph is one for
which an ordering of the vertices exists with the property
that no vertex shares an edge with another more than k
vertices before or after it in the ordering. This ordering,
call it a bandwidth-k ordering, can be found, if it exists,
in polynomial time for fixed k [Saxe 80]. Bandwidth has
been studied in connection with CSPs [Zabih 90}].
Restricting problem structure to fit a bandwidth-k criterion
would seem to be a natural way of specifying
representational restrictions for classes of CSP problems
in, for example, temporal reasoning.

Theorem 8. Given a bandwidth-k ordering of a direct
constraint network of a CSP, a representation in which a
solution for any set of k+1 or more consecutive variables
in the ordering is completable can be obtained in

0((ndc*13) time.

Proof. Bandwidth-k graphs are easily seen to be partial k-
trees; they can be embedded in k-trees by adding trivial
constraints as needed to ensure that each vertex is linked to
all vertices not more than k vertices away in the ordering.
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Moreover, such a k-tree has a clique tree which is a simple
chain with two leaves. Any set of k+1 or more
consecutive values will constitute all the variables in a set
of adjacent cliques in this chain. Apply Theorem 4.
Q.ED.

This theorem establishes the O(n>) result claimed for the
scheduling problem in Section 1.1.

6 CONCLUSION
6.1 ILLUSTRATION

A final example will illustrate various forms of
completability. Figure 4 can be viewed as representing
another simple graph coloring problem. Suppose that
there are three colors available at each vertex: red, blue and
green. The graph to be colored, and the 2-tree direct

constraint network for this coloring problem, both have -

the structure shown in the figure.

The clique tree for the 2-tree with the structure shown in
Figure 5 is 2-consistent without any further processing.
Thus it is clique completable. If we color 1 red, 3 blue and
5 green, for example, we can go on to find consistent
colors for 2 (green), 4 (red) and 6 (blue).

However, the representation is not 2 multi-clique
completable. Suppose, for example, we choose blue for 3,
red for 5 and red for 6. These values do not violate any of
the constraints embodied explicitly in the clique tree.
However, there is no complete solution to the problem
which includes this assignment of values.

The 3-closure of the clique tree is 2 multi-clique
completable. Obtaining the 3-closure will, in particular,
induce a new constraint, C, between the 2,4,6 vertex and
the 1,3,5 vertex. The values blue for 3 and red for 5 appear
in only one triple at the 1,3,5 vertex: g,b,r. The value red
for 6 appears in two triples at the 2,4,6 vertex: g,b,r and
b,g.r. However, the new constraint C does not allow
either 2,4,6 triple to be paired with the 1,35 triple. Thus
the incompletable combination of blue for 3, red for 5,
and red for 6 is not a solution for the subset of variables
3, 5 and 6 in the 3-closure of the clique-tree.

Since the clique tree has only two leaves, the 3-closure is
total-clique completable. Now for this small sample
problem it might have been easier simply to find all the
complete solutions. However, we could make the coloring
problem cousiderably larger and more complex while still
retaining a simple chain clique tree structure.

6.2 SUMMARY

For k-tree CSPs a representation can be obtained in

0((ndk+l)'+l) time in which a solution for variables
taken from any i cliques of the direct constraint network
can always be extended to a complete solution to the
problem. This is called an i multi-clique completable
representation. The representation obtained is the i-closure

of the clique tree of the direct constraint network of the k
tree CSP. Completable representations for any CSPp cq,
be found by first embedding the CSP constraint network
in a suitable k-tree.

Tighter bounds than those derivable in the obvioyg way
from i multi-clique completability are available for clique
completability, variable completability and for trees (1-
trees). The bounds on full and total-clique completability
are better than one might expect.

Specific results are available for CSPs with series-paralle]
and bandwidth-k structure. There is reason to believe thy
temporal reasoning and scheduling problems, in particular,
may admit computationally tractable completability
results. Constraint knowledge bases might be preprocessed
to provide completability properties.
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