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It is hoped that they will find application in any
searching problem characterized by a static set of keys
with a highly skewed distribution of frequencies of oc-
currence. One such application, dictionary lookup for
English, has been discussed in detail and shown to be
well suited to this technique. This success provides en-
couragement for the investigation of other applications
of this type.
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A constraint network representation is presented for
a combinatorial search problem: finding values for a set
of variables subject to a set of constraints. A theory of .
consistency levels in such networks is formulated, which
is related to problems of backtrack tree search
efficiency. An algorithm is developed that can achieve
any level of consistency desired, in order to preprocess
the problem for subsequent backtrack search, or to
function as an alternative to backtrack search by
explicitly determining all solutions.
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1. Satisfying Simultaneous Constraints;
Problem and Applications

We are given a set of variables X;, .., X, and
constraints on subsets of these variables limiting the
values they can take on. These constraints taken together
constitute a global constraint which specifies which sets
of values a, ..., @, for Xi, ..., X, can simultaneously
satisfy all the given constraints. In other words, the
constraints define an n-ary relation. Our problem is to
synthesize this relation, i.e. to determine those sets of
values which simultaneously satisfy the set of constraints.
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The simultaneous satisfaction of several con-
straints—call them properties, relationships, predicates,
features, or attributes—is a very general problem, with
more applications than I can fully survey here. The
essential technique I apply, iterated reduction of possi-
bilities through constraint propagation, has analogs in
many areas of computer science and mathematics. Many
of these applications and analogs are described in [10,
14, 24). Applications range from database retrieval (find
all x, y, and z such that x is a part and y is a part, and z
is a supplier, x must be installed before y, and z supplies
both x and y) [7, 10, 11] to scene analysis (segment the
scene into regions such that sky regions are blue, grass
regions are green, and cars are not totally surrounded by
either grass or sky) [18]. Of particular note is the work of
J.R. Ullman, who has used constraint propagation meth-
ods in a variety of contexts, ranging from pattern rec-
ognition [19] to graph isomorphism [21].

Often we are only given, or choose to use, “local”
constraints, i.e. constraints on small subsets of the vari-
ables, from which we must synthesize the global con-
straint. (For fundamental results on the complementary
problem, analysis of a global constraint into local ones,
see [13].)

2. Previous Results: Partial Consistency

Constraints represented in network form may be
propagated through (potentially) parallel algorithms
which cut down the solution search space by ruling out
inconsistent combinations of values.

The obvious brute force approach of testing every
possible combination of values faces an equally obvious
combinatorial explosion. Backtrack search techniques
cut down the search space but often exhibit costly
“thrashing” behavior [2, 16]. Mackworth [10] has inter-
preted previous work by Fikes [5], Waltz [23], and Mon-
tanari [14] as cutting down the search space and avoiding
classes of thrashing behavior by eliminating combina-
tions of values which could not appear together in any
set satisfying the global constraint. These combinations
are eliminated by algorithms which can be viewed as
removing inconsistencies in a constraint network repre-
sentation of the problem. Mackworth distinguishes three
levels of inconsistency in constraint networks.

This section introduces these levels of inconsistency,
and a network representation of the constraint satisfac-
tion problem. The representation and the concept of
inconsistency will be generalized in subsequent sections.
The classical graph coloring problem will be used for
illustration: the problem of coloring the vertices of a
graph using a given set of colors, such that if two vertices
are connected by an edge they do not have the same
color. (The famous “four color problem” can be repre-
sented in these terms.)

Montanari and Mackworth represent variables and
constraints in the form of a network, where each variable
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is represented by a node and each constraint by a link or
arc. (Constraints are restricted to unary and binary con-
straints, i.e. predicates on one or two variables.)

For example, consider the problem of coloring a two-
vertex complete graph using one color, say red. A com-
plete graph is one in which all possible edges between
pairs of vertices are present. The two-vertex complete
graph contains two vertices, Vi and v;, and an edge
between them. The coloring problem can be represented
as a constraint satisfaction problem where variables X
and X; represent the colors of vy and v,. There is a binary
constraint, specifying that X, and X, are not the same
color, and a unary constraint on both X; and Xz, requir-
ing them to be red. Let us suppose we have two colors
available in general, red and green; these form the initial
domain of possible values for X; and X;.

The problem can be represented as a constraint net-
work as in Figure 1.

Fig. L.

; - —col
red C {red green} not-same-color {red green}ZD red

The nodes {red green} and {red green} . contain the
possible values for Xi and X.. The loop at each node
corresponds to the unary constraints, and the link be-
tween the nodes corresponds to the binary constraint.

The first and most obvious level of inconsistency in
constraint networks is node inconsistency. In this exam-
ple, the potential domain of values for X; and X; is given
as red and green, but the unary constraints specify red.
We can immediately eliminate green from both nodes as
in Figure 2.

Fig. 2.

c{red q/uu}l {red greew}z P

The next level of inconsistency is arc inconsistency.
The arc from X; to X is inconsistent because for a value
in X;, namely “red,” there does not exist any value a; in
X, such that red and a; together satisfy the relation “red
is not the same color as a;.” To remedy this inconsistency,
remove red from X; and similarly from X,. This cuts
down the search space all right: unfortunately, in this
case it reflects the fact that the problem is impossible.
There is no global solution, i.e. the network is what I call
“unsatisfiable.”

It is entirely possible for a network to have no arc
inconsistencies, and still be unsatisfiable. Consider the
problem of coloring a complete three-vertex graph with
two colors, represented in Figure 3.

Fig. 3.
{red green}2
ed green red green
{red green}’ {red green},
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Assume the set of possible values for each variable is
{red green} and the binary predicate between each pair
again specifies “is not the same color as.”

This network is arc consistent, e.g. given a value
“red” for X, we can choose “green” for X: red is not
the same color as green. Yet obviously there is no way of
choosing single values ai, az, as, for X1, X», and X3, such
that all three binary constraints are satisfied simultane-
ously. If we choose red, for Xi, for example, we are
forced to choose green for X; to satisfy the constraint
between X, and X,. This forces a choice of red for Xj,
which forces a choice of green for X, already picked to
be red.

Nevertheless, it may be helpful to remove arc incon-
sistencies from a network. This involves comparing
nodes with their neighbors as we did above. Each node
must be so compared; however, comparisons can cause
changes (deletions) in the network and so the compari-
sons must be iterated until a stable network is reached.
These iterations can propagate constraints some distance
through the network. The comparisons at each node can
theoretically be performed in parallel and this parallel
pass iterated.

Thus removing arc inconsistencies involves several
distinct ideas: local constraints are globally propagated
through iteration of parallel local operations. It remains
to be seen which aspects of this process are most signif-
icant to its application. The parallel possibilities may
prove to be particularly important; however, at the mo-
ment serial implementations are used in practice.

Waltz’s “filtering” algorithm for scene labeling [23]
is the paradigm example of an arc consistency algorithm.
Waltz wishes to attach labels to the lines in a line drawing
indicating their semantic interpretations as convex, con-
cave or occluding three-dimensional edges. The line
drawing itself functions as the constraint network. Ver-
tices function as network nodes. An individual vertex
value consists of a label for each of the lines incident to
the vertex; the set of possible values is initially con-
strained according to realizable three-dimensional inter-
pretations for the various types of vertices. The lines are
the arcs of the network and each represents the relation
“the labelings of the adjacent vertices must agree along
this line.”

Waltz’s filtering algorithm (especially when further
constrained by specifying initial labels for edges on the
background) generally results in an amazing combina-
torial reduction: thousands of possibilities are often re-
duced to a state where all nodes have a single value
remaining, thus totally solving the problem of obtaining
the global solution. Of course the algorithm does not
always terminate with a unique value at each node.
Generally, in this case, most nodes will still have a
unique value, while a few nodes will have a small set of
values remaining. Normally this final state indicates that
several ambiguous interpretations are possible; alterna-
tive sets of values that simultaneously satisfy all con-
straints can be quickly found with tree search.

It is perhaps not as well appreciated that this final
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state may also be reached for a figure which in fact
admits no consistent labeling [6]. This is to be suspected,
however, given that the filtering algorithm only achieves
arc consistency. Motivated in part by Waltz’s success,
there has been a recent groundswell of constraint analysis
applications in scene analysis, e.g. [1, 8, 12, 15, 18, 24].

Montanari [14] has developed a more powerful no-
tion of inconsistency which Mackworth calls path incon-
sistency. A network is path inconsistent if there are two
nodes X; and X; such that a satisfies X), b satisfies X, a
and b together satisfy the binary constraint between
them, yet there is some other path through the network
from X, to Xz, such that there is no set of values, one for
each node along the path, which includes a and b, and
can simultaneously satisfy all constraints along the path.
For example, the network in Figure 3 is path inconsistent:
red satisfies X, green Xj, red is not the same color as
green: however, there is no value for X; which will satisfy
the constraints between X; and Xz, and between X; and
X;, while X is red, X3 is green.

Montanari gives an algorithm that essentially re-
moves path inconsistencies from a network. However,
path consistency does not necessarily insure satisfiability
either, as powerful as it sounds. Consider the problem of
coloring the complete four-vertex graph with three colors
(Figure 4). Each node contains red, green, and blue, and
each arc again represents the constraint “is not the same
color as.” In particular, path consistency does not fully
determine the set of values satisfying the global con-
straint, which in this inconsistent case is the empty set.

Fig. 4.

{rav},
{«!N
{"“’}./ ~ 2\

(=4

{roels

In summary, arc and path consistency algorithms
may reduce the search space, but do not in general fully
synthesize the global constraint. When there are multiple
solutions, additional search will be required to specify
the several acceptable combinations of values. Even a
unique solution may require further search to determine,
and the consistency algorithms may even fail to reveal
that no solutions at all exist.

3. An Extended Theory

As the coloring problem suggests, the general prob-
lem of synthesizing the global constraint is NP-complete
[4], and thus unlikely to have an efficient (polynomial
time) solution. On the other hand the experimental
results of Waltz, and the theoretical studies of Montanari,
suggest that in specific applications it may be possible to
greatly facilitate the search for solutions. I will present
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an algorithm for synthesizing the n-ary constraint de-
fined by a set of constraints on subsets of 7 variables. It
may be of substantial benefit in applications where prun-
ing of arc and path inconsistencies still leaves many
possibilities to be searched.

There are two key observations that motivated the
algorithm.

1. Node, arc, and path consistency in a constraint
network for n variables can be generalized to a concept
of k-consistency for any k < n.

2. The given constraints can be represented by nodes,
as opposed to links, in a constraint network; we can add
nodes representing k-ary constraints to a constraint net-
work for all k < n (whether or not a corresponding k-ary
constraint is given); and we can then propagate these
constraints in this augmented net to obtain higher levels
of consistency.

By successively adding higher level nodes to the
network and propagating constraints in the augmented
net, we can achieve k-ary consistency for all k. We do
not need to restrict the given constraints to binary rela-
tions. Ruling out lower order inconsistencies in stages
progressively reins in the combinatorial explosion. The
final result is a network where the n-ary node specifies
explicitly the n-ary constraint we seek to synthesize. No
further search is required. The rest of this paper will
present the algorithm, along with a sufficient theoretical
base to justify its operation.

4. A Preliminary Example of the Synthesis Algorithm

I will give a crude example of the synthesis algorithm
in operation, by way of motivation for the formal de-
scription which follows. The presentation in this section
is intentionally sketchy.

Suppose we are given the following constraints on
variables X;, Xz, Xs: The unary constraint C, specifies
that X, must be either a or b, i.e. Ci = {a b}. Similarly
C: = {ef} and Cs = {c d g}. The binary constraint on
X, and X; specifies that either X; is b and Xz is e, or X;
is b and X; is f C12 = {be bf}. Likewise Ci3 = {bc bd
bg)} and Cus = {ed fg}.

We wish to determine what choices for Xi, Xz, X;, if
any, can simultaneously satisfy all these constraints. We
begin building the constraint network with three nodes
representing the unary constraints on the three variables,
as shown in Figure 5.

Fig. §.

{e f}2
{° b}l {C d 9}3

Next we add nodes representing the binary constraints,
and link them to the unary constraints as shown in
Figure 6 (e.g. {be bf}12 represents Cu).
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Fig. 6.

{e f}z

S
foe o1} {ed 1o},

{o b}|/——{bc bd bg}|3—{c d 9}3

After we add and link node Ci; we look at node C;
and find that element a does not occur in any member
of Ci2. We delete a from C,. Similarly, we delete ¢ from
C; after adding Czs. The constraint network now appears
as in Figure 7.

Fig. 7.

2
{be bf}|2 {ed fg}23
{a 0} —f{bc bd b}, 3> {ead,

Now from C; we look at Cy3 and find that there is an
element bc in Cys which requires ¢ as a value for X,
while ¢ is no longer in Cs. We remove bc from Ci3, as in
Figure 8.

Fig. 8.

{e '}2
{ed ta},4

S
be bf
prody - oo

{b}l/-——{u bd bg}l3——{d o}y

So far we have merely achieved a sort of “arc consist-
ency” (though we indicate the restriction of the pair bc,
as well as the elements @ and ¢).

Next, we add a node for the ternary constraint. No
order-three constraint was given originally, so we could
assume initially the “nonconstraint,” all possible triples.
However, we will take advantage of the restrictions
available from the binary and unary predicates to con-
struct a more limited set of possibilities. Ci and Cqs to-
gether allow only the following set of triples: {bed bfg}.
We use this as the ternary node and link it to the binary
nodes as shown in Figure 9. (Choosing C: and Cis or Cs
and C,; would yield a larger ternary node.)

Fig.' 9.

{e f}z

{oe o}, ;7—{bed btg}, p—led 1955

Y VW — PR

We look at the new node from its neighbors and vice
versa, as we did earlier, to insure consistency of the sort
we obtained earlier between neighboring nodes. Cis is
consistent with the new node: bd is part of bed, bg part
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of bfg. Similarly C; and Cps are consistent with the
ternary node. If necessary, we could propagate deletions
around until local consistency is achieved on this aug-
mented network. However, in this case, the network is
already stable; no further changes are required.

The ternary node represents the synthesis of the given
constraints. There are two ways to simultaneously satisfy
the given constraints: X, = b, Xo =¢, Xs=dor X, = b,
Xz = f, X3 = g

5. Basic Definitions

This section presents several definitions needed to
state the problem and its solution precisely.

We are given a set of variables X, ..., X, which may
take on values from a set of universes Ui, ..., U,
respectively. We will assume the U, to be discrete, finite
domains. Let I = {12 ... n}. Many of our definitions will
be made for any subset J C I. We denote by X, the
indexed set of variables {X;},c,. A value a; in U; will be
called an instantiation of X.. An instantiation of a set of
variables X, denoted by a, is an indexed set of values
{a}}ses.

A constraint on X, denoted Cy, is a set of instantia-
tions of X;. The “indexed set” notation implies that there
is a function, @, from J onto the instantiation a,;, which
serves to indicate which member of a instantiates which
variable: the value of a at j, denoted a;, is the instantiation
of X;. We could also represent a, as an ordered set or m-
tuple, where m is the number of elements in the set J
(called the cardinality of J and denoted |J1): a; = (a;,,
v @) a,in U, ji<jrfori<k,i,k=1,.., m Thus
C, may be thought of as an m-ary relation. I have found
it useful, however, to use set notation rather than refer to
cross products or predicates in the presentation which
follows. Given a,, “a; € a;” will denote the instantiation
of X; contained in a,.

A constraint expression of order n is a conjunction of
constraints C = Ayear C, one constraint for each subset
J of I (except the empty subset). This represents the
logical conjunction of the relations expressed by the C,.
Normally we will not be explicitly given constraints for
all J C I, however, we can assume they exist, with no
loss of generality, as the “nonconstraint” for X, can
always be specified: the set of all combinations of ele-
ments from the domains of the variables in X,;.

We say that an instantiation a sarisfies a constraint
C,if a; € C,. The instantiation a, satisfies a constraint
Cu, H C J, if the set {a; € ay}jen, which we call a,
restricted to H, is a member of Cy. An instantiation ay,
where |J| = k, k-satisfies a constraint expression of order
n = k if a, satisfies the constraints Cy for all H C J. If an
instantiation a; n-satisfies the constraint expression of
order n, we say that a satisfies the expression. A con-
straint expression C is k-satisfiable if for all cardinality
k subsets J of I, there exists an a; such that a; k-satisfies
C. If C of order n is n-satisfiable it is said to be satisfiable.
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A constraint expression defines another constraint:
the set of all instantiations a; which satisfy the constraint
expression. Our central problem is to synthesize the order
n constraint, i.e. the n-ary relation, on X; defined by the
constraint expression, i.e. to determine explicitly the set
of instantiations a; which simultaneously satisfy all the
given constraints. An instantiation a; which satisfies C is
called a solution of the constraint expression.

A constraint network of order k in n variables, k < n,
is a set of constraints called nodes, N, for each J C I,
|J| < k, where a link is said to exist between N and Ny
if H C J and |H| = |J| — 1. Linked nodes are called
neighbors. A constraint network of order n in n variables
will be called a full constraint network. A node N, is said
to correspond to a given constraint C; if Ny = C,, ie.
each instantiation of one is a member of the other. A full
constraint network in n variables corresponds to a con-
straint expression of order n if each node Ny in the
network corresponds to the constraint C; in the expres-
sion. The order of a node N, or a constraint C, is the
cardinality of J.

For example, the network in Figure 10 corresponds
to the constraint expression C = Ayezr Cy, where: I = {1
2}, Ci={rg}, Co= {rg}, Ca = {rg gr}. (I avoid set
notation in the subscripts for simplicity.)

Fig. 10.

{' 9}|_{'9 ar |2_{' 9}2

This is obviously a representation of the problem of
coloring a two-node graph with two colors. Note that the
constraint “not the same color” is represented by a
“higher order” node, not a link as in Section 2.

As nodes are constraints we are able to restate all the
above definitions involving satisfiability in terms of
nodes and networks, rather than constraints and con-
straint expressions. In particular, we can speak of an
instantiation a, satisfying a node Ny for H C J. We also
will want to talk about a; satisfying Ny for H O J. We
will say that a, satisfies Ny, H D J, if there exists an ax
in Ny such that {a; € au}es = a4, ie. there is an
instantiation which satisfies Ny whose restriction to J is
aj.

6. Constraint Propagation

We can now define the basic constraint propagation
mechanism. To locally propagate the constraint N, to a
neighboring constraint Ny, remove from Ny all ay which
do not satisfy N,. Global propagation is defined recur-
sively. To globally propagate a constraint N, through a
neighboring constraint Ny: first locally propagate N, to
N, then, if anything was removed from Ny by the local
propagation, globally propagate Ny through all its neigh-
bors except N;. To propagate a constraint N, globally
Communications November 1978
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propagate N, through all its neighbors. The propagation
procedure is similar to an arc consistency algorithm.
Mackworth discusses efficient serial algorithms for arc
consistency [10]. Of course, a parallel implementation is
possible.

A constraint network is said to be relaxed if we can
propagate every constraint N, in the network without
causing any change (deletions from nodes) in the net.
The relaxation of a constraint network is the network
obtained by propagating all nodes of the network. (The
propagation obviously terminates in a relaxed network.)

7. Synthesis Algorithm

We are now ready to state the synthesis algorithm.
The claim, to be proven in Section 10, is that this
algorithm, given a constraint expression, produces a
constraint network whose order n node corresponds to
the order n constraint defined by the constraint expres-
sion.

Algorithm:
Given C = A\yea C;. We define the algorithm inductively:
Step 1. Construct a constraint network with nodes N, corresponding to
constraints C, in the given constraint expression, for all J C I of
cardinality one.
Step k + 1. For all J C I of cardinality k + I:

Add the node N, to the network corresponding to the given

constraint C,. Link N to all Ny such that H is a cardinality & subset
of J.

Locally propagate to N, from each of its neighbors. Propagate N,.

For a constraint expression of order n, the algorithm
is run for n steps. The result is a full constraint network,
where N; corresponds to C.

The next section will present several examples of the
algorithm in operation. First a few general observations.
The network produced by this algorithm is the relaxation
of the network corresponding to C. We could have
obtained it simply by building the corresponding order
n network and propagating each node. By proceeding in
stages we take advantage of the elimination of possibili-
ties that may occur at each stage to mitigate combina-
torial explosion. We take this principle further and prop-
agate each node as it is added, before adding another. A
good heuristic would be to add earlier those nodes which
exert a heavy constraint, e.g. where C, is small. The
propagation of these constraints may eliminate elements
from nodes used in constructing later constraints. If C,
is the nonconstraint we can construct N, initially from
some Ny and N,_y, where H is a cardinality k subset of
J, preferably the one for which |N,| x |Nsn| is a
minimum. (Add to each member of Ny each member of
Ny_u)

Other refinements are clearly possible. Provision
should be made for early termination, €.8. as soon as one
node becomes empty. Propagation can be simplified, eg.
by noting nonconstraints. or using complements of
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nodes. Additional links could permit direct propagation
between a node N, and the nodes for all subsets of J.

It is generally redundant to require all nonconstraint
nodes; basically we only need one “path” up to the n-ary
node for every “real” constraint. Consider a constraint
expression on four variables where only the binary con-
straints are really specified (the others are noncon-
straints). Only the binary constraints can really have any
effect on the global solution. Three ternary nodes are
sufficient for the network constructed by the algorithm.
If the fourth ternary node rules out any element of the
order-four node, it is only reflecting a binary constraint,
which is reflected in one of the other ternary nodes. On
the other hand we may be interested in the effects on
nonconstraints of the propagation process. In general the
pruning process of the algorithm progressively makes
explicit at N, restrictions on instantiations of X, that are
not originally given by Cy, but rather implied by the
other constraints. In the final network produced by the
algorithm every member of every Ny is part of some
solution of the constraint expression. (In particular, we
have derived the “minimal” network, Montanari’s “cen-
tral problem™ [14].)

8. Further Examples

As the synthesis problem is such a general one, the
synthesis algorithm has many potential applications.
Graph problems, of course, lend themselves particularly
to a constraint network formulation. I present in this
section two applications which will serve to illustrate the
algorithm, and are of some independent interest as well.

As we would expect from the discussion in Section 2,
the graph coloring problem can easily be represented as
a constraint network. Given a graph G, and a set of
colors, we construct a constraint network from G as
follows: each vertex of G is replaced by the unary con-
straint node representing the set of colors. If there is an
edge between vertices in G, we replace it by a binary
constraint linked to the unary nodes which represents
“is not the same color as.” If there is no link between
vertices in G, we add the nonconstraint between the
nodes.

Let us consider two examples. First consider the
problem of coloring a complete three-vertex graph with
three colors. Figures 11(a), 11(b), and 11(c) show the
constraint network after steps one, two, and three of the
algorithm, where the nodes N,, N,, N; are all the set {r
g b}, N2, N3, and Ny; all equal {rg rb gr gb br bg} and
Nizs = {rgb rbg brg bgr grb gbr}, the six possible color-
ings. We could construct a network of the sort we used
in Section 2 for this problem. However the network
would be path consistent; arc and path consistency al-
gorithms would not rule out any elements at the nodes.

Consider now the problem of coloring a complete
four-vertex graph with three colors, which we used in
Section 2 to illustrate that path consistency is not a
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sufficient condition for satisfiability. After the third step
of the algorithm we would have four ternary nodes, each
equal to the ternary node in the previous example.

At the beginning of the fourth step we use Ny2; and
N to construct an order-four node: Nigs = {rghr rgbg
rgbb rbgr rbgg rbgb brgr brgg brgb bgrr bgrg bgrb grbr
grbg grbb gbrr gbrg gbrb}. Local propagation from the
other ternary nodes quickly reduces the order-four node
to the empty set (and this constraint propagates back
down to remove all elements from all the nodes). No
instantiation of the order-four node will simultaneously
satisfy the four ternary nodes. Unsatisfiability is dem-
onstrated.

These examples are rather perverse cases, of course,
though they do illustrate points with respect to the
discussion in Section 2. Applications in the scene labeling
domain generally involve more propagation than occurs
in these coloring problems. The synthesis algorithm does
function as a test for whether scenes can be labeled in
the manner described in Section 2. It also finds all the
interpretations in an ambiguous scene.

For another example, we take graph isomorphism.
Given two graphs G and H, which we wish to test for
isomorphism, construct a constraint network from G as
follows. (If H has more vertices than G the algorithm
will seek isomorphic mappings of G onto subgraphs of
H.) Replace each vertex of G with a unary constraint
node containing all the vertices of H. (If we allow loops,
edges from a vertex to itself, the unary constraint for a
vertex in G with a loop will be “has a loop ia H,” for a
vertex in G without a loop, “has no loop in H.” We could
also incorporate additional unary constraints such as the
degree of the vertex [22].) Replace each edge between
vertices a and b in G with a binary constrzint node,
linked to the unary nodes for @ and b. This birary node
will represent the constraint “these two (distinct) vertices
share an edge in H.” In other words, the binary constraint
will contain a pair xy if and only if there is an edge
between x and y in H. Between two vertices which do
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not share an edge in G we also place a binary node,
linked to them, but representing the constraint “these
two (distinct) vertices do not share an edge in H.”

For example: given the graphs G and H in Figure 12,

Fig. 12.
] ]
[ oC \ o3
b 2
G H

we produce the constraint network in Figure 13.

Fig. 13.

{12 3}0\

I {1331 23 32},

{i2 21}, ;{

l {3323}

{i2 3}b/

1 23},

Propagating constraints, we obtain the network in
Figure 14.

Fig. 14,
i 23 ‘
P2de

l {373r 23 32,

{i2 21},
l {sar23ng)

{123}
Now adding the ternary node we obtain Figure 15.

Fig. 15.

{1 2

{'} ?3'23}7\{}
L R

This network is relaxed. The ternary node represents the
two possible isomorphisms: ¢ > 1, b — 2, ¢ — 3 and
a— 2, b— 1, ¢c > 3. (The algorithm also finds iso-
morphic subgraphs along the way.)

In the above applications, the desired global state is
defined in terms of local constraints. Often one first faces
an analysis problem: choosing, or learning, a set of local
constraints that specify or approximate the desired global
state [20]. (An important concern will be the choice of a
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“good” constraint expression, i.e. one that can be syn-
thesized efficiently.) As various applications are ex-
plored, it will, of course, be equally important to develop
theoretical methods for analyzing the performance of the
algorithm in a given domain.

9. Compatibility, Completeness, and Consistency

The synthesis algorithm operates by removing higher
and higher level inconsistencies. In this section, I define
this sequence of consistency states, and also define con-
cepts of compatibility and completeness which I will
want to apply to constraint networks.

A node N, of order k is k-compatible with a constraint
expression C if all members of Ny k-satisfy C. A con-
straint network of order k or greater is k-compatible with
C if all nodes of order k are k-compatible with C. If a
full constraint network of order n is n-compatible with a
constraint expression C of order n we say that it is
compatible with C.

A node N of order k is k-complete for C if any
instantiation a; which k-satisfies C is a member of Ny.
A network N is k-complete for C if every node of order
k is k-complete. An n-complete full constraint network
of order n is said to be complete.

A constraint network of order k or greater, in n
variables, is k-consistent if for any set Xy of kK — 1
variables, any instantiation ay of Xy which (k — 1)-
satisfies Ny, and any choice of a kth variable, X;, there
exists an instantiation of X; which combines with ay to
k-satisfy N, where J is the union of H and {i}.

K-consistency generalizes the notions of consistency
introduced in Section 2, in particular 1-consistency cor-
responds to node consistency, 2-consistency to arc con-
sistency, and 3-consistency to path consistency. K steps
of the synthesis algorithm produce a network that is j-
consistent for all j less than or equal to k. After k steps
of the algorithm, therefore, we can do backtrack tree
search on the remaining values knowing that backup
will not be initiated in the first k levels.

K steps of the algorithm also achieve k-compatibility
and k-completeness (Corollary 3 in the following sec-
tion), so we can choose an order k node and use its
members as the alternative paths through the first k
levels of a search tree, only really doing tree search on
the remaining n — k nodes. Of course, if we have carried
the synthesis algorithm to completion, the members of
the order n node are the solutions and no further search
is required. (The discussion of k-consistency in [6] is
faulty. For another recent approach to constraining
backtrack search see [17].)

10. Synthesis Theorem

We are now ready to state the theorem which justifies
the synthesis algorithm.

965

TuEOREM. The relaxation of the network correspond-
ing to a constraint expression C = Nvezt Cy Is compatible
and complete with respect to C.

The proof will be by induction. Compatibility and
completeness of order one are obvious. Our induction
hypothesis is that the network is k-compatible and k-
complete; we wish to prove k + 1-compatibility and
k + l-completeness.

Consistency. We want to show that all Ny, for J any
cardinality k + 1 subset of I, are k + 1-compatible. Ny,
before relaxation, corresponded to Cy, so included noth-
ing which did not satisfy C,; relaxation does not add any
elements to a node. Suppose there exists an g in Ny such
that a; does not satisfy C, for some proper subset H of
J, i.e. as restricted to H is not a member of Cx. Pick a set
G of cardinality k such that H C G C J. Because of the
local propagation during the relaxation process, we know
that a, satisfies Ng. Thus a, restricted to G, ag, is a
member of Ng. As the network is k-compatible ac re-
stricted to H is a member of Cy. But ag restricted to H
is ay restricted to H: contradiction.

Completeness. Consider any ay not in N, for J any
cardinality k + 1 subset of I. There are two possibilities.
If a; was not in N, before relaxation, then a; does not
satisfy C;. If a; was removed during the relaxation
process, then a does not satisfy Nu for some cardinality
k subset H of J; by the induction hypothesis a, restricted
to H does not k-satisfy C. In either case, a; does not
k + l1-satisfy C.

There are several immediate corollaries.

COROLLARY L. Nicorresponds to the order n constraint
defined by the constraint expression C.

COROLLARY 2. C is satisfiable if and only if Ny is not
the empty set.

COROLLARY 3. The constraint network constructed by
the synthesis algorithm operating on a constraint expres-
sion C is k-compatible with and k-complete for C after step
k. The network constructed by the algorithm is compatible
with and complete for C, and N\ corresponds to C.

Thus the algorithm can be used to find explicitly all
the solutions to a constraint satisfaction problem. Alter-
natively, the algorithm can be run for k steps as a
preprocessor to simplify subsequent backtrack search.
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As an example of cooperation between sequential
processes with very little mutual interference despite
frequent manipulations of a large shared data space, a
technique is developed which allows nearly all of the
activity needed for garbage detection and collection to
be performed by an additional processor operating con-
currently with the processor devoted to the computation
proper. Exclusion and synchronization constraints have
been kept as weak as could be achieved; the severe
complexities engendered by doing so are illustrated.
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grained interleaving, cooperation between sequential
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1. Introduction

In any large-scale computer installation today, a
considerable amount of time of the (general purpose)
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