FYOC. OI The 19Y] IEEE
Int. Conf. on Tools for Al
San Jose, CA-Nov. 1991

Selective Relaxation For Constraint Satisfaction Problems

E. C. Freuder

R. J. Wallace

Computer Science Department
University of New Hampshire
Durham, NH 03824

Abstract

Two ways that arc consistency techniques are used to
enhance efficiency of constraint satisfaction algorithms
are: (i) as a preprocessing step that produces consistency
between pairs of variables prior to global search, (ii) as
part of a hybrid algorithm, to produce consistency ahead of
the search process. A basic problem is to optimize the
tradeoff between effort required to establish local
consistency and that required for search. This report
describes an approach to this problem termed selective
relaxation. The idea is to perform consistency checking at
places where it is likely to be effective, basing this
judgement on local criteria. To this end, we introduce two
forms of bounded relaxation, one in which consistency
testing propagates for a limited distance from a point of
change, and one in which it stops when the amount of
change, or response, falls below threshold. Experiments
show that these procedures can outperform well-known
preprocessing or hybrid algorithms on many problems.

1 Introduction.

In the past decade, the study of constraint satisfaction
problems has come to occupy an increasingly important
place in the field of artificial intelligence. An enduring
problem in this area is the difficulty of finding solutions
to such problems. The classical backtracking algorithm,
while much superior to ordinary depth-first search, is still
exponential in the worst case. More importantly, it is
common to find that an appalling amount of time is
required to solve even small problems [Knuth 75]. To
ameliorate this condition, methods have been developed
that establish local consistency among subsets of
variables in the problem, either prior to or during the
search for a general solution. The best-known and
possibly the most useful local consistency algorithms
establish arc consistency, i.e., consistency between
variable pairs that are subject to mutual constraints.
Algorithms that do this are also called relaxation or

0-8186-2300-4/91 $01.00 © 1991 IEEE

constraint propagation algorithms, in that they relax the
problem to a more 'stable’ state by deleting inconsistent
values from domains of successive constrained variables.

In some situations it may be more efficient to establish
a limited degree of arc consistency than to carry out
complete relaxation. This assumption underlies the use of
directed rather than full arc consistency for preprocessing
[Dechter and Meiri 89]. It is also reflected in hybrid
algorithms that interleave limited forms of relaxation with
search [Nadel 89]. The most notable of these is forward
checking, in which consistency checking is limited to
variables immediately constrained by the one last selected
during search [Golumb and Baumert 65; Haralick and
Elliott 80].

These examples show that the issue of tradeoffs in
amount of local consistency checking versus checking
during search is fundamental to considerations of overall
efficiency. They also suggest that it would be useful to
consider other ways to restrict relaxation, in the hope of
finding more efficient methods.

In this report we describe a class of partial relaxation
methods, termed selective relaxation, which suggests a
new way of looking at this problem. In selective
relaxation, consistency checking is carried out on
variables that are likely to be affected by relaxation at each
step of the procedure. Unlike forms of partial relaxation
that follow a fixed order of processing, selective relaxation
has the potential to be adapted to a given problem or a
class of similar problems. Thus, if a problem is not
amenable to relaxation at a given stage, a proper degree of
selectivity may avoid useless tests. Successful relaxation,
on the other hand, can entail further propagation. In either
situation, it may be possible to adjust the selectivity of
the process to reflect the conditions of the basic tradeoff
more adequately.

The effectiveness of this approach depends on the criteria
used to select variables for relaxation. A general strategy
is to set bounds on the relaxation process. Two examples
are described here: (i) constraint propagation is confined
to a fixed distance (in terms of the constraint network)
from the variable at which it began (distance-bounded

relaxation), (ii) propagation along a path of the network
stops when the amount of pruning from the domain of a
variable falls below a certain threshold (response-
bounded relaxation). ([Nadel 89] has also proposed a
relaxation algorithm which is selective in that it only
propagates from nodes with a single remaining value.)

Both forms of bounded relaxation have been tested with
random problems either: (i) as part of the preprocessing
step prior to backtrack search or forward checking, (ii) as
an elaboration of the relaxation process in forward
checking. Comparisons with the arc consistency
algorithm, AC-3, in case (i) and with forward checking in
case (ii) showed that selective relaxation can outperform
these well-known algorithms in a variety of situations.

The next section, 2, reviews basic concepts and
describes the AC-3 and forward checking algorithms.
Section 3 describes the bounded relaxation procedures in
some detail. Section 4 shows that bounded relaxation can
overcome a basic limitation of forward checking that we
call its "horizon". Section 5 describes the methods used
to generate random constraint satisfaction problems and
to test the algorithms, and Section'6 gives the results of
testing bounded relaxation with these problems. Section
7 presents conclusions based on these studies.

2 Background: Constraint Satisfaction and Its
Algorithms.

A constraint satisfaction problem (CSP) inivolves a set
of n variables, v;, each with a domain of values, d;
that it can assume. In addition, the problem is subject to
some number of binary constraints, Cyj, éach of which
is a subset of the Cartesian product of two domains, d;
X dj. A binary constraint specifies which pairs of
values can be simultaneously assumed by the pair of
variables. (Only binary constraints are considered here;
higher-order CSPs can also be represented by binary
CSPs [Rossi, Dhar and Petrie 89].) A CSP is associated
with a constraint graph, whose nodes represent variables
and arcs represent constraints. '

A solution to a CSP is a combination of domain
values, one from each variable, that are mutually
consistent. There are two general classes of algorithms
used to solve CSPs: backtracking and relaxation, or
consistency, algorithms. Backtracking is a search
procedure that examines the problem space in an efficient
but exhaustive fashion to find one or all solutions. Most
relaxation algorithms by themselves do not guarantee a
solution. Instead, they achieve specific types of
consistency among the problem variables. The most
commonly studied form of consistency is called arc

333

consistency; this is consistency between pairs of
variables subject to binary constraints, so that the values
in their domains are consistent with the constraint
between them [Mackworth 77].

In the standard backtracking algorithm, variables are
chosen in some order and each is instantiated with a value
from its domain. After a variable has been instantiated,
its value is checked against those of previously
instantiated variables to see whether the new value is
consistent with those already chosen. If an inconsistency
is discovered, the new value is replaced by another and
the latter is tested in the same manner; if there are no
further values to test, the algorithm 'backs up' and tests
another value in the domain of the last variable
instantiated.

Initialize U to {v;}, S to {}.
While U is not empty
Select and remove v; from U.
Repeat until relaxation succeeds (no wipeout) or d; = {}

Set no wipeout
Select and remove a value from di to instantiate

v; to v;'.
For each v; such that v; and v; share a constraint
relax v; against v;'
if dj = {}, set wipeout and break from for loop.
If no wipeout add v to S
else
if i = 1, report no solution and exit
else
put v; in U with d; = d; before
instantiation and put v}, the last variable
instantiated, in U with dj = dj - the last
instantiation.

Figure 1. The Forward Checking algorithm (for one
solution).

Forward checking also instantiates the variables in
some order, but uses a different strategy for testing:
rather than 'looking back', it 'looks ahead' after each
instantiation, to the set of variables, v;, that share
constraints with v;, the variable just given a value
(Figure 1). The variables, vj, are relaxed against the
instantiation, to remove any values not supported by the
value chosen for v;. Since a variable that is instantiated
has already been tested against prior instantiations, there
is no need to look back, but this algorithm must still
back up if there is no instantiation of v; that supports at

least one value in each Vje Forward checking is an
example of a hybrid algorithm, one that combines
backtracking and relaxation in its procedure.

Relaxation can be used to preprocess a CSP, ie., to
establish a level of consistency among some or all
variables prior to search. This is done through a
sequence of tests between pairs of constrained variables,
v; and Vi we say that v; is relaxed against vj.
Specifically, values in v; are checked against the
constraint between v; and v; to see if they are
supported, i.e. are consistent with at least one value in
the domain of vj; unsupported values are deleted. An
algorithm often used for preprocessing, which produces
complete arc consistency, is AC-3 [Mackworth 77;.see
Figure 2.] In this procedure, ordered pairs of constrained
variables are first put in a list (L). Each pair, (v;, vj),
is removed and v; is relaxed against vj. When values
are deleted, pairs may have to be added to L to determine
if these deletions lead to further deletions. (Although the
arc consistency algorithm AC-4 [Mohr and Henderson
86] is better in the worst case, there is reason to believe
that AC-3 is generally more efficient in practice.)

Initialize L to {(v;, vj) | there is a constraint between
v; and vJ}
While L is not empty
Select and remove (v;, vj) from L.
Relax v; against v j
If this relaxation removes any values from v;, add
to L any pairs (vg, v;), k= j, such that there
is a constraint between v and v;, and (vg, v;)
is not already present in L.

Figure 2. The AC-3 algorithm.

3 Description of The New Algorithms.

When used in preprocessing, bounded relaxation is a
refinement of the AC-3 algorithm. This entails testing
each pair that is a candidate for inclusion in the list, to
see if the variable to be relaxed falls within the stipulated
bound: only then is the pair added. For distance-bounded
relaxation, the bound associated with a single variable
pair must be retained and updated. For this purpose, each
pair of variables on the list is tagged with an integer
representing the distance of the node to be relaxed from
the "initiating node” (i.e., an original member of the list
that was relaxed). Each pair added to the list is tagged

334

with the value of the node just relaxed incremented by
one. If a node is adjacent to one just relaxed but is already
on the list, it is taged with the smaller distance. The
resulting elaboration of AC-3 is shown in Figure 3.

Set distance bound, d.
Initialize L to {(0,v;, vj) | there is a constraint
between v; and v;}.
While L is not empty
Select and remove (d,'j, i, vj) from L.
Relax v; against v je
If this relaxation removes any values from v;,
Set dy gy to djj + 1.
For each v, such that there is a constraint
between v, and v; and k = j,
If (dg;j, vg, vy) is not in L
If d) ;. 5, is less than or equal to d,
Add (dypyp Vi Vi) tOL
else
Setd,,; to the minimum of d,,, and
dy; and replace(dy;, vg, v;) with
@next Ve i)

Figure 3. AC-3 with distance bound.

In response-bounded relaxation, if the degree of
relaxation of v; is greater than or equal to response
bound, r, then pairs (vg, v;) are added to the list of
pairs provided they meet the other restrictions described
in Figure 2. The only elaborations of pseudocode required
in Figure 2 are, therefore,

"Set response bound, r."
at the begihning and
"and the proportion of values deleted is at least "
at the end.

Note that in the limiting cases, when the distance
bound is zero or the response bound is 100 (percent), no
pairs are added to the list.

Both types of bound can also be used to enhance
relaxation in the forward checking procedure. In the
present implementations, any relaxation that is within
the bound is followed by relaxation of adjacent nodes
within the set of future nodes, i.e., those not yet
instantiated. After each instance of domain restriction,
further propagation is preceded by a test, either of the
present distance (number of steps) from the instantiated
node or of the amount of restriction. If the bound has
been reached, in the case of a distance bound, or if the
bound has not been met, in the case of a response bound,

there is no further propagation from that point. In this
case the limiting bound is 1 for distance bounds and 100
for response bounds, both of which give ordinary forward
checking. In terms of the pseudocode of Figure 1, the
statement under "For . . ." becomes:

"if dj = {}, set wipeout and break from for loop
else if relaxation of vj is within the bound
Set UB to the singleton { Vj}.
While Ug is not empty
Select v from Ug.
Select {v;}, the variables adjacent to vy and
for each v;, if relaxation is within the bound,
add vy to Ug."

4 Forward Checking and 'Horizons'.

As described in Section 2, the relaxation step in
forward checking involves testing the domains of the
variables adjacent to the last one instantiated. This is a
very conservative relaxation strategy, which may fail to
detect values in the domains of uninstantiated variables
that must later be deleted. We can say that forward
checking operates with a very limited ‘horizon' in terms
of inconsistencies among the remaining variables in the
constraint network [cf. Berliner 73]. Of course, there are
cases in which a greater amount of relaxation is not
worth doing. This was shown by [Haralick and Elliott
80], who found that more extensive consistency checking
diminished the efficiency of the hybrid process for the
problems they studied. But, if one were able to carry out
extra checking selectively, the potential benefits of more
extensive checking might become available. This is
precisely what selective relaxation is designed to do.

The potential importance of the horizon effect in
limiting the efficiency of forward checking is shown here
by constructed examples. These CSPs have five variables
(, 1, ..., 4), each with a domain of four values (0, 1, 2,
3). The constraint graph is a simple cycle. A section of
the domain support structure for one problem, i.e., the
pattern of pairings of values in adjacent domains, is
shown in Figure 4. Overall, this structure is a forest,
with each tree rooted at a value of the variable where
search begins, in this case variable 0. (For this problem,
another tree, associated with value 3 of variable 0, is
similar to the one shown here, but it 'branches out' in
the opposite direction. The two trees associated with
values 1 and 2 are also mirror images.)

The important point to note is that, if search begins
with variable 0, marked asymmetries are encountered in
the pattern of associations for each value of this variable,

335

depending on the direction of search. In particular, the
fact that there are no solutions that involve values 0 or 3

VARIABLES
2 3 4

0 —2———0

e oo
2/
\3_’_2
1 o/o
\2

3 —
2
Figure 4. Domain support structure rooted at value 0 of
variable 0 in a CSP that shows a horizon effect (CSP 1

in Table 1). Arrows indicate duplicate subtrees for values
1 and 2 of variable 2 in the diagram.

of variable 0 is determined more efficiently when
relaxation proceeds in the direction 4, 3, 2, 1 in the first
case and 1, 2, 3, 4 in the other. Forward checking will,
therefore, overlook this feature at first in one of these
cases. Bounded relaxation, on the other hand, can detect
this feature almost immediately in both cases, saving
considerable work for later stages of relaxation. This is
reflected in the results of Table 1. (Since the domains are
the same size to begin with, the response bounds used are
absolute values. Note that here the number of pair checks
is separated into those occurring during forward
checking ["FC"]and those occurring during the extra
bounded relaxation ["BD"].) Obviously, this effect is
monotonic in the number of affected domain values (cf.
CSP 2 in Table 1, for which the asymmetries for values
0 and 3 are in the same direction), and an increasing effect

should also be found, based on the length of the cycle.

Table 1
CSPs Constructed to Show Benefits of Relaxing
Selectively beyond Forward Checking's Horizons

Total Pair Checks for All Solutions

Fwd Chk Distance Bnd Response Bnd
Alone (max) (min)
2 3 4 1 2 3
CSP1 FC 111 50 46 43 44 50 54
BD - 37 63 8 69 42 26
TOT 111 87 109 126 113 92 80
CSP2 FC 152 54 50 46 48 54 58
BD - 44 80 104 76 42 26
TOT 152 98 130 150 124 96 84

The basis for the gain in efficiency shown in Table 1
can be deduced from the traces of Figure 5, where the
current pair check count is printed beside the next domain
value selected. If the counts associated with values of
variable O (far left of each trace) are compared, it is clear
that the main difference in favor of bounded relaxation is
found when this variable is instantianted with value 0,
giving 19 pair checks in one case and 53 in the other.

5 Tests with Random Problems. Methods.

The above results show that there are problems in
which bounded relaxation can lead to greater efficiency.
Data pertinent to the question of the frequency of such
effects was obtained with random CSPs. In the major
problem set each CSP had 12 variables and a maximum
domain size of 12. A limit of 1000 solutions was
chosen to balance the requirements of representativeness
and tractability. The number of binary constraints, the
* specific variable pairs subject to constraint, the size of
each domain, the number of acceptable pairs in each
constraint, and the specific value pairs in that constraint
were chosen in this order using random selection of
values at each step. This procedure allows every value of
each parameter to be chosen with an equal probability. It
also produces problems that are heterogeneous in the
satisfiability, domain size, and degree of node in the
constraint graph. However, owing to the apparent
scarcity of problems with a large number of constraints
that also have solutions, the number of constraints in
these problems was limited to the range of 11 to 29,
inclusive. Twenty such problems were obtained, and the

336

results reported here have been corroborated with
examples from a set of 40 six-variable problems
generated with the same procedure.

Distance-Bounded Relaxation
0 pc=0
1 pe=19
2 pe=35
1 pc=37
0 pc=42
0 pc=43
3 pc=43
2 pc=49
2 pc=65
1 pc=67
0 pc=72
0 pc=73
3 pc=73
3 pc=79

Forward Checking
0 pc=0
0 pc=8
0 pc=12
2 pc=16
2 pe=17
2 pc=21
3 pc=22
1 pc=23
1 pc=27
0 pc=31
2 pc=32
2 pe=36
3 pc=37
2 pc=38
1 pc=42
0 pc=46
3 pc=47
1 pe=51
3 pc=52
1 pc=53
2 pc=61
1 pc=65
0 pc=69
0 pc=70
3 pc=70
1 pC=74
3 pc=T5
2 pe=76
2 pc=84
1 pc=88
0 pc=92
0 pc=93
3 pc=93
1 pe=97
3 pc=98
3 pe=99
3 pc=107

Figure 5. Full traces of forward checking and distance-
bounded relaxation for CSP 1 of Table 1, with a
distance bound of 2.

In each case the response bound values (i.e., the
smallest fraction of domain restriction that led to further
relaxation) were 0, .25, .50, .67, .75 and 1.00, the latter
yielding either no additions in preprocessing or ordinary

forward checking in the hybrid context. For
preprocessing, the distance bounds varied between 0 (no
additions) and 4; for the hybrid case the bounds varied
between 1 (equal to forward checking) and 5.

Care was taken to incorporate the effects of variable
ordering, either of the node-pair list in AC-3 or the search
order in forward checking. In the former case, (i) the list
was treated as a queue, with pairs added and removed in
FIFO order, or, (ii) the list was ordered by increasing size
of the domain to be relaxed against. Previous studies
have shown that order (ii) is a particularly good heuristic
for enhancing the efficiency of AC-3 [Wallace and
Freuder 91]. For forward checking, several fixed search
orders, in addition to an ordering based on the lexical
order of the variable names, were examined on the basis
of earlier findings of enhanced efficiency [Haralick and
Elliott 80; Dechter and Meiri 89]:- increasing domain
size, decreasing degree of nodes in the constraint graph,
and reversed minimum width. (A minimum width
ordering is obtained by removing a node of minimum
degree, together with its adjacent arcs, placing it at the
head of the list, and repeating the process until all nodes
have been removed [Freuder 82].)

The measure of efficiency of performance was the total
number of value pairs checked for consistency.
Differences in this measure related to variable ordering or
to bound value were evaluated statistically. The existence
of differences due to either factor was tested with the
analysis of variance (ANOVA). If the ANOVA showed a
statistically significant effect of bound value, and if the
mean performance favored bounded relaxation over
forward checking or AC-3, paired comparison ¢ tests
were used to compare the best bound values with the
reference algorithm. Up to three tests were performed in
any test series (i.e., for any combination of solutions
sought (one or all), bound type (distance or response) and
ordering), using the three best bound values overall
(0.50, 0.67 and 0.75 for response bounds and 1, 2 and 3
for distance bounds).

6 Tests with Random Problems. Results.

Results for forward checking with additional response
or distance bounded relaxation are shown in Figures 6-8.
Figures 6 and 8 show results for the all-solutions
problem, Figure 7 for the one-solution with response
bounds. Results for the one-solution problem with
distance bound were similar to the all-solution case with
this bound.

For all forward checking series, the ANOVAs showed a
statistically significant effect of bound value. For random
lists, mean performance was markedly improved by

337

selective relaxation beyond forward checking's horizon.
This was most obvious for response-bounded relaxation,
with differences in favor of this procedure observed for all
bound values. (These differences were statistically
significant for all three comparisons for the all-solutions
problem, with probability, p, less than 0.05, but not for
the one-solution case, evidently owing to interproblem
variability.) For distance-bounded relaxation, a
statistically significant difference was found for the bound
value 2 in the all-solutions case (p < 0.05).

9000
8000 |
7000

5000~

§ 5000

S 4000]

S 3000
2000
1000 _

0

6 25 S50 67 75 100
response bound values (pct)
Figure 6. Mean Performance for the all-solutions
problem with random CSPs as a function of response
bound. A bound value of 100 gives forward checking.

As ‘expected, fixed order heuristics improved
performance in comparison with random ordering. In
these cases, the effect of selective relaxation was reduced.
For response-bounded relaxation it was still present for
all orderings, although it could only be detected for the
all-solutions case. Here, all three comparisons were
statistically significant (p < 0.05) for ordering by
domain size, and one comparison (involving the bound
value 0.67) for ordering by degree. In contrast, mean
performance with distance-bounded relaxation was always
inferior to that of forward checking with these orderings.
However, the variation in performance, as indicated by
the standard deviation, was always greater for forward
checking than for the best response or distance bound
values, regardless of ordering.

In all test series with forward checking, there was a
reduction in the number of dead ends encountered, when
selective relaxation was employed. This effect was
observed for most problems with each type of ordering. It
was tested statistically by comparing the number of dead
ends that forward checking encountered with
corresponding values for the response bound value of .75

and the distance bound value of 2, respectively, since
other bounds yielded even lower numbers of dead ends.
This comparison was statistically significant in all cases,
i.e., for both types of bounds, both the one- and all-
solution problems, and for all orderings.

@ ''25 ' s0 ' 87 ' 75 ' 100

response bound vaiues (pct)

Figure 7. Mean Performance for obtaining one solution
for random CSPs as a function of response bound. A
bound value of 100 gives forward checking.

For the preprocessing series, comparisons with AC-3
also showed improvements over the basic algorithm for
the queue ordering (Figure 9: pair checks).
Unfortunately, the largest amounts of savings for this
measure (for values of 0 and 1 for the distance bound and
.75 and 1.00 for the response bound) were associated
with lessened improvement in the efficiency of forward
checking in comparison to its performance after full arc
consistency had been achieved. (Here, a difference of one
percent in the mean performance of forward checking is
equal to about 100 value pair checks.) The best overall
results were obtained with low response bound values,
in which full relaxation was achieved without putting
every variable pair back on the list; in this case, fewer
checks were made during preprocessing, while
performance during subsequent search was unaffected.

When the more efficient ordering heuristic was used
with AC-3, bounded relaxation usually had a
proportionally smaller effect on performance (about one-
half), although there was only a one percent decline in
improvement in forward checking even with extreme
bound values (i.e., low distance or high response values).
Given the considerable enhancement of relaxation
efficiency effected by good orderings for these problems
[Wallace and Freuder 91], it is not surprising that the
improvement due to bounded relaxation was less
pronounced. It is encouraging, however, that, in terms

338

of the overall tradeoff, there was still a slight advantage.

10000
9000
8000
7000
6000
5000
4000 4
3000
2000
1000 |

pair checks

1 2 3 4 S
distance bound values

Figure 8. Mean Performance for the all-solutions
problem for random CSPs as a function of distance
bound. A bound value of 1 gives forward checking.

7 Conclusions.

These results show that bounded relaxation methods
can improve the efficiency of forward checking on many
problems. Some improvement was also found when
bounded relaxation was used in connection with
preprocessing, for a commonly used list ordering.
However, the marked effect of good ordering on the
performance of AC-3 apparently left little for these
procedures to do, although it is possible that effects
might be seen in this case with larger problems.

Although the features of these random CSPs
distinguish them from the problems used by other
investigafors, e.g. [Haralick and Elliott 80], our
sampling procedure ensured a greater variety of problems
with more variation in the basic features, Methods that
work well on them are, therefore, more likely to be of
practical importance for this reason alone. Clearly,
however, the problem of classifying CSPs in relation to
the effectiveness of these procedures is an important area
for future investigation.

In addition to differences in mean performance, the
finding that bounded relaxation produced a consistent
decrease in the number of dead ends encountered is a
promising result, because the need to backtrack from dead
ends is an important cause of poor performance during
search [Dechter and Meiri 89; Freuder 82; Mackworth and
Freuder 85]. It is also significant that variation in
efficiency across problems was reduced by bounded
relaxation; this suggests that these procedures can avoid

situations that result in very poor performance, where

ordinary forward checking does not.
I @@ Pctimprovemert I I_ pair checks
100 . 600
oo JIN__ LU
80 -S00
- :
g8 70 E
E 400
8 60 3
§ 50 E 300
40
30 F 200
204 F 100
10 s
0] o1
AC-0 1 2 3 4 25 'S0 67 75100
3
Algorithms {Bound Yalues)

Figure 8. Number of pair checks performed during
relaxation and proportional improvement in forward
checking due to arc consistency, for bounded relaxation
procedures in comparison to AC-3.

On the whole, response-bounded relaxation seems to be
more effective than distance-bounded relaxation. This
suggests that more precise assessment, at each step in
constraint propagation, is necessary to achieve the best
performance. (This is corroborated by subsidiary tests on
these problems with response-bounded relaxation, using
as bounds the absolute numbers of values deleted; this
approach was less efficient than the use of proportional
bounds in the experiments reported here.)

As noted earlier, bounded relaxation is only one class
of selective relaxation strategies. Another form of
selective relaxation, for which we have preliminary
results, is based on calculations of expected domain sizes.
Tuning of bounds can also be done in terms of feedback;
this would give the procedure learning capacities and
might allow it to adjust itself to the characteristics of a
particular problem or problem domain, to insire efficient
performance. These are possibilities that can be explored
in the future, building on the general concept of selective
relaxation, whose usefulness is supported by the results
presented here.

Acknowledgements.

This work was supported by the National Science
Foundation under Grant No. IRI-8913040. The
government has rights in this material. The first author
was a Visiting Scientist at the M.LT. Artificial
Intelligence Laboratory while this work was being

339

completed. The program for generating random CSPs
was written by Karl Gevecker.

References.

[Berliner 73] Berliner, H. J. "Some necessary
conditions for a master chess program Proceedings of
the 3rd International Joint Conference on Artficial
Intelligence, 1973, pp. 77-85.

[Dechter and Meiri 89] Dechter, R. and I. Meiri,
"Experimental evaluation of preprocessing techniques in
constraint satisfaction problems," Proceedings of the
11th International Joint Conference on Artficial
Intelligence, Vol. 1, 1989, pp. 271-277.

[Freuder 82] Freuder, E. C., "A sufficient condition for
backtrack-free search,” Journal of the ACM, Vol. 29,
No. 1, 1982, pp. 24-32.

[Golomb and Baumert 65] Golomb, S. W., and L. D.
Baumert, "Backtrack programming," Journal of the
ACM, Vol. 12, No. 4, 1965, pp 516-524.

[Haralick and Elliott 80] Haralick, R. M. and G. L.
Elliott, "Increasing tree search efficiency for constraint
satisfaction problems," Artificial Intelligence, Vol. 14,
No. 3, 1980, pp. 263-313.

[Knuth 75] Knuth, D. E., "Estimating the efficiency of
backtrack programs," Mathematics of Computation,
Vol. 29, No. 129, 1975, pp. 121-136.

[Mackworth 77] Mackworth, A. K., "Consistency in
networks of relations," Artificial Intelligence, Vol. 8,
No. 1, 1977, pp. 99-118.

[Mackworth and Freuder 85] Mackworth, A. K. and E.
C. Freuder, "The complexity of some polynomial
network consistency algorithms for constraint
satisfaction problems," Artificial Intelligence, Vol. 25,
No. 1, 1985, pp. 65-74.

[Mohr and Henderson 86] Mohr, R. and T. C.
Henderson, "Arc and path consistency revisited,”
Artificial Intelligence, Vol. 28, No. 2, 1986, pp. 225-
233,

[Nadel 89] Nadel, B., "Constraint satisfaction
algorithms,” Computational Intelligence, Vol. 5, No.
4, 1989, pp. 188-224.

[Rossi, Dhar and Petrie 89] Rossi, F., V. Dhar and C.
Petrie, On the Equivalence of Constraint Satisfaction
Problems. MCC Technical Report ACT-AI-222-89,
MCC, Austin, TX.

[Wallace and Freuder 91] Wallace, R. J. and E. C.
Freuder, Heuristics for arc consistency algorithms.
Technical Report No. 91-02, Department of Computer
Science, University of New Hampshire, Durham, NH."

