
Dispensable Instantiations in Constraint
Satisfaction Problems

Eugene C. Freuder, Diarmuid Grimes, and Richard J. Wallace

Insight Centre for Data Analytics
Western Gateway Building, University College Cork, Cork, Ireland

{e.freuder,d.grimes,r.wallace}@4c.ucc.ie

Abstract. ‘Simplifying’ problems, by removing values or combinations
of values, has been a primary approach to combinatorial complexity in
constraint satisfaction problems. This paper provides a unifying frame-
work for much of this previous work, and in the process presents new
opportunities. It extends a framework for CSP properties provided by
Bordeaux, Cadoli, and Mancini. New forms of substitutability and sub-
problem extraction are introduced. An algorithm for one form of substi-
tutability, neighbourhood replaceability, is presented along with prelim-
inary experimental results.

1 Introduction

‘Simplifying’ problems, by using inference to remove values or combinations of
values, has been a primary approach to combinatorial complexity in constraint
satisfaction problems. The removal of inconsistencies, which will not eliminate
any solutions, has been most thoroughly studied. However, often a single solution
suffices, and methods such as interchangeability have been introduced, which
remove some, but not all, solutions. This paper provides a unifying framework
for much of this previous work, and in the process presents new opportunities.
It extends the framework for CSP properties provided by Bordeaux, Cadoli, and
Mancini in [1].

This simplification or “filtering” has often been viewed as part of the so-
lution process, but it can also be viewed as a process of successive refinement
or reformulation. Achieving arc consistency before search, for example, can be
viewed as preprocessing the problem to produce a more efficient model for the
subsequent search, while an algorithm like MAC, which interleaves arc consis-
tency processing with search, can be viewed as employing a form of “dynamic
reformulation”.

The fundamental property introduced in this paper is “dispensability”. Its
simplest form is value dispensability. A value for a variable is dispensable for a
problem P if removing the value will not remove all solutions of P; otherwise it is

Proceedings of the 21st RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2014).
Vienna, Austria, July 17–18, 2014.

indispensable. While we will focus on solvable problems, these definitions apply
to unsolvable problems viewed as an ‘extreme case’: for unsolvable problems all
values or instantiations are dispensable because removing them cannot remove
all solutions; there are not any solutions to remove.

At first sight it might seem like dispensability is a vacuous concept: in many
problems every value will be dispensable, removing any one of them individually
will not remove all solutions. At best we only need retain a single value for every
variable to ensure a single solution. However if we knew such a set of single values
we would have solved the problem. In practice, it can be very useful to remove
values that we can identify as dispensable in some tractable manner, either in
preprocessing before search, or dynamically during search. This is, for example,
what the basic process of ensuring arc consistency does. (In that case, removing
an inconsistent value will not remove all solutions for the simple reason that the
value will not participate in any solution.)

The very general concept of dispensability supports a context for viewing
many forms of constraint processing. This provides opportunities for identifying
new concepts to ‘fill in holes’ or applying established methods by analogy. We will
see several examples. Section 2 defines various forms of dispensability, extending
Bordeaux et al., in particular beyond values to instantiations and subproblems.
Section 3 finds new applications of methods for tractably computing local forms
of dispensability. Section 4 presents an algorithm for one form of substitutability
and some experiments on discarding dispensable values based on this form of
substitutability. Section 5 gives conclusions.

2 Dispensability

A constraint satisfaction problem (CSP) involves choosing values for a set of
variables, V, which satisfy a set of constraints, C, which specifies permissible
combinations of values for subsets of the variables. A choice of values for a
subset, S, of the variables is an instantiation of S; an instantiation of all the
variables, V, which satisfies all the constraints is a solution.

Definition 1. An instantiation is dispensable if removing it will not remove all
solutions to the problem. A set of instantiations is dispensable if removing them
all will still not remove all solutions to the problem.

To simplify matters, we will assume that constraints are represented explic-
itly as sets of instantiations, representing allowed combinations of values, and
removing an instantiation of S can be accomplished by deleting it from the con-
straint on S. If we view the domain of values for a variable as a unary constraint,
a dispensable value may be viewed as a dispensable instantiation, where S con-
tains a single variable. Note that as we remove dispensable instantiations, we
effectively generate a sequence of problems, each of which has a solution set
that is a subset of the previous problem. Dispensability is defined relative to a
specific problem; an instantiation that is dispensable in the initial problem may
become indispensable at some subsequent point in the sequence. Note also that

2

if a problem is inconsistent, any instantiation is dispensable, because there are
no solutions to remove.

Dispensable instantiations are of particular interest because their removal can
reduce the search effort required to find a solution. (However, the savings has to
be balanced against the effort required to identify the dispensable instantiations,
and indeed removal may perversely make matters worse [8]). Work has also been
done on removing entire “redundant” constraints [2], but this is equivalent to
adding all the missing instantiations to a constraint, and will be beyond the
scope of this paper.

2.1 Substitutability

Many specific forms of dispensability can be viewed as variations on the theme
of substitutability [3]. A value u is substitutable for a value v if for any solution
in which v appears, we can substitute u and still have a solution. In this case, v
is clearly dispensable, and we will say that v is substitutable.

Interchangeability [3] is a stronger form of substitutability; two values are
interchangeable if each is substitutable for the other. Given two interchangeable
values, we can dispense with either one. Interchangeability will remove fewer
values, but the advantage is that we can more easily recover the discarded values
than with substitutability. Interchangeability and substitutability have primarily
been studied for values but have been extended to instantiations in the context
of conditional interchangeability and substitutability [16]. Jeavons, Cohen and
Cooper applied a form of substitutability to instantiations (labelings) earlier in
[10].

[1] defines a value v as removable if for any solution involving v, there is
some other value that can be substituted for v and still have a solution. Clearly
this definition can be extended to instantiations. Removability can be regarded
as a weaker form of substitutability, where the substitution does not always
have to be the same. [1] regards removability as “fundamental” and seems to
view it as equivalent to disposability: “Another central role is played by the
removability property, that characterises precisely the case when a value can be
safely removed from the domain of a variable, while preserving satisfiability”.
However, clearly a value can be dispensable without being removable. Consider,
for example, a problem with two solutions, which have no values in common.
Any value is dispensable, none are removable. This rather makes “removable”
something of a misnomer; “replaceable” might be preferable. Moreover we can
define a further weakening of substitutability that lies between removability and
dispensability:

Definition 2. An instantiation v is minimally substitutable iff if v is in any
solutions there is some other instantiation we can substitute in at least one of
them and still have a solution.

We now have a hierarchy, as we proceed to the right, we can remove more
instantiations, but it becomes harder to recover the lost solutions:

3

interchangeability→ substitutability→ replaceability→ minimal substitutabil-
ity → dispensability.

The most studied form of dispensability is inconsistency [12]. An instanti-
ation is inconsistent if it does not appear in any solution. For example, path
inconsistency removes instantiations from binary constraints. Inconsistency can
actually be viewed as an extreme form of substitutability. “Any solution in which
v occurs” just refers in this case to the empty set. If there are no solutions, any
value is substitutable for any other. Inconsistency implies interchangeability in
the sense that two inconsistent values for a variable are interchangeable. How-
ever, a value can be inconsistent without being interchangeable if it is the only
inconsistent value for that variable.

Dispensability itself can also be viewed as an extreme form of substitutabil-
ity at the other end of the spectrum. Minimal substitutability of course implies
dispensability. We will now characterize dispensability as a specific form of sub-
stitutability.

Partial interchangeability for two values of variable X with respect to a subset
S of variables is defined in [3] as any solution involving one implies a solution
involving the other with possibly different values for S.
Definition 3. An instantiation v for a set of variables T is minimally partially
substitutable with respect to a set of variables S iff if v is in any solution, there
is at least one solution involving some other instantiation for T, and possibly
other values for variables in S.

Proposition 1. Given an instantiation v for a set of variables T, and the set R
of all variables other than T, v is minimally partially substitutable with respect
to R iff v is dispensable.

While we have now shown that everything on the spectrum from inconsis-
tency to dispensability can be viewed as a form of substitutability, the two
extremes represent almost perverse interpretations, where an actual substitu-
tion is essentially irrelevant. The concept of dispensability itself seems to better
capture the essential spirit of our endeavor here – to simplify by removal – and
thus may be better able to motivate new concepts like minimal substitutability.

2.2 Sufficiency

We now define a concept of sufficiency, which will help us identify sets of indis-
pensable instantiations.
Definition 4. An instantiation is sufficient iff if the problem has a solution it
has a solution containing that instantiation.

Proposition 2. If an instantiation for a subset of variables, S, is sufficient, the
set of all other instantiations for S is dispensable.

We can establish sufficiency by examining the “inverse” of properties dis-
cussed in the previous subsection. A consistent instantiation appears in at least
one solution. Fixable and implied (equivalent to indispensable) are defined for
values in [1]; we extend the definitions here to instantiations.

4

Definition 5. An instantiation is indispensable iff it appears in all solutions. An
instantiation is fixable iff it is substitutable in all solutions.

Proposition 3. If an instantiation for a subset of variables, S, is consistent,
indispensable, or fixable it is sufficient.

2.3 Subdomain Subproblems

Subproblems present another opportunity for removing a whole set of dispens-
able instantiations at once.
Definition 6. A problem Q is a subdomain subproblem of P iff P and Q have
the same variables, with the domains of values in Q subsets of the domains of
values in P, and the constraints of Q restricted to instantiations involving the
domain values of Q.

Definition 7. A subdomain subproblem of P is dispensable with respect to P iff
the Cartesian product of its domains, viewed as a set of instantiations for P, is
dispensable with respect to P.

[7] provide a general method for extracting subdomain subproblems by trans-
forming a problem into a disjunction of subproblems, none of which contain the
dispensable instantiations. They explored two specific types of dispensable sub-
problems: inconsistent subproblems [7], which do not contain any solutions, and
consistent subproblems [6], where the domains are restricted to all but one value,
v, for a variable X, and all the values consistent with v for every other variable.
The latter are dispensable because it can be shown that they do not contain all
the solutions.

We have emphasized here that dispensability, including substitutability, is
not just for values, but can be generalized to instantiations. However, while dis-
pensable instantiations could be removed from the constraint on the entire set
of variables involved in the instantiations, this may require replacing an implicit
‘anything allowed’ constraint with an explicit constraint that is too big to store
and too costly to check. Viewing the set of instantiations as a subdomain sub-
problem allows us to use extraction to remove the instantiations without creating
such constraints. This can be particularly relevant to restart algorithms, allowing
lessons learned about dispensability in one solving attempt to be implemented
in the next [13]. Extraction could also prove especially practical in a distributed
environment in which we can repeatedly extract while distributing the resulting
disjunctions of subproblems to different processors.

We consider now two specific new ways in which the dispensability framework
suggests additional uses for subdomain subproblem dispensability.

Iterative Broadening. [9] introduced an iterative broadening approach to con-
straint satisfaction, where we start by only considering two values from the do-
main of each variable, if we fail we retry allowing three values, and repeat until
successful (or failure on the full problem). Iterative broadening can, in particu-
lar, allow us to search using only the k best values for each variable, according to

5

a heuristic criterion, before considering any inferior values. Ginsberg and Har-
vey demonstrated that iterative broadening somewhat counter intuitively can
be remarkably successful even though it can clearly involve repeatedly redoing
a great deal of work. Extracting subdomain subproblems as we iterate allows
us to utilize iterative broadening while avoiding that redundant search effort.
In moving from failure on the problem with domain size restricted to k to an
attempt on the problem with domain size k + 1 we can extract the subdomain
subproblem corresponding to the former from the latter. (We are assuming a
fixed, heuristic value ordering.) If we assume all domains have the same size, we
can reduce the search space at each iteration from (k + 1)n to ((k + 1)n − kn).

Solution-preserving Mapping. Consider the classic 4-Queens problem. The shaded
areas in the two boards below represent two subdomain subproblems. If we map
one onto the other by flipping around the vertical axis of symmetry, any solution
to the full problem in one will be a solution in the other. Thus we can extract
those instantiations that are not common to both. We can remove 34 − 24 or
65 of the 256 possible choices. We keep the instantiations in the ‘intersection’ of
the two subproblems in case the only solutions are in the intersection. (However,
in this particular example, it is easy to see that there are no solutions in the
intersection, and we could, in fact, remove all 34 or 81 instantiations of one of
the subproblems.)

Proposition 4. If f is a solution-preserving mapping from one subdomain sub-
problem of P, SP1 onto another, SP2, then either subproblem can be extracted
from P, if we add to the resulting disjunction of subproblems another disjunct
consisting of the subdomain subproblem where the domain of each variable is
the intersection of the domains of that variable in SP1 and SP2.

3 Tractability

Removing dispensable instantiations, either in preprocessing or dynamically dur-
ing search, can reduce search effort. This has been amply demonstrated in prac-
tice. In general, however, determining dispensability can be as intractable as
solving the problem can be. One way to address this is to consider restricted
classes of problems, where the computation of forms of dispensability is tractable
[1]. We focus here instead on situations in which dispensability with respect to
a subproblem implies dispensability for the full problem, and thus the complex-
ity is tractable in the sense of being limited by the size of the subproblems we
consider.

6

3.1 Hierarchical Subproblems

Definition 8. The subproblem of P induced by a subset, S, of the variables of
P, is comprised of S and the constraints that only involve variables in S.

Proposition 5. If an instantiation is inconsistent for an induced subproblem of
P it is inconsistent for P.

K-consistency [4] and inverse k-consistency [5] provide induced subproblem
hierarchies that successively identify more inconsistencies at successively higher
cost. Both look at induced subproblems with k variables. K-consistency asks
if instantiations for k-1 variables are consistent in the subproblem; inverse k-
consistency asks if instantiations for 1 variable are consistent in the subproblem.

Inverse k-interchangeability is defined (for binary CSPs) in [3], where it is
shown that it implies interchangeability for the full problem. Unfortunately it
is termed k-interchangeability there. We provide here appropriate definitions for
both k-interchangeability and inverse k-interchangeability.
Definition 9. A value v, for variable V, is inverse k-interchangeable with another
u iff it is interchangeable with u in any subproblem induced by V and k-1 other
variables.

Definition 10. An instantiation s, for a set S of k-1 variables, is k-interchangeable
with another instantiation t iff it is interchangeable with t in any subproblem
induced by S and 1 other variable.

Proposition 6. k-interchangeability implies interchangeability.
Proof. Given k-interchangeable instantiations i1 and i2 of a set X of k-1 vari-
ables. Consider any solution, s, of the entire problem that contains i1. Pick a
value, v, in s, for any variable V not in X. This value v will be consistent with all
the values in i1; thus i1 plus v will be a solution to the subproblem induced by
X plus V. Since i1 and i2 are k-interchangeable, i2 plus v will also be a solution
to this subproblem and thus i2 is consistent with v. Therefore i2 can replace i1
in s and we will still have a solution. Similarly i2 can be exchanged for i1 in any
solution. 2

Values v and u for variable V are neighbourhood interchangeable if they are
consistent with the same values in every variable that shares a constraint with
V. Both k-interchangeability and inverse k-interchangeability are equivalent to
neighbourhood interchangeability when k=2. Neighbourhood interchangeabilty
is defined for binary CSPs in [3], where it is shown that all neighbourhood
interchangeable values can be identified in quadratic time, and demonstrated
analytically that removing these values can achieve exponential savings, and is
arbitrarily effective in the sense that whatever savings is specified, there is a
CSP for which it saves that amount of effort.

3.2 Closure Subproblems

[1] claims that removability, what we call here replaceability, cannot be “detected
efficiently, but incompletely, through local reasoning”; this, they say, justifies the

7

extensive use of properties like inconsistency and substitutability, which can.
The paper raises “an interesting open issue: do there exist new (i.e., other than
substitutability and inconsistency) properties for which local reasoning is sound
and which imply removability”.

However, [1] uses a narrow definition of “local reasoning”. We show now
that removability or replaceability can itself be computed locally in a manner
analogous to the local computation of neighbourhood inverse consistency [5].
Definition 11. Let S be a subset of the variables of problem P, and PS be the
subproblem induced by those variables. The closure of PS, CPS, is the subprob-
lem induced by S and all the variables that share a constraint with a variable in
S. Call the variables of S the core variables, and the others in CPS the frontier
variables.

Definition 12. An instantiation of variables S is closure-replaceable if it is re-
placeable with respect to the closure of the subproblem induced by S.

Closure-replaceability is related to the concept of local substitutability de-
fined in [10]. The authors there define local substitutability in terms of “substi-
tutable for a constraint”, which is not defined precisely; but, bearing in mind
that the ‘substitutable’ instantiations in this paper are the ones to be elimi-
nated, while in [10] they are the ones to be kept, roughly speaking the situation
seems to be this: Closure-replaceability appears to be a generalization of lo-
cal substitutability. Their “substitutablity” on the other hand appears to be a
generalization of the present “replaceability”.
Proposition 7. Closure-replaceability implies replaceability.
Proof. The basic idea is that it is necessary and sufficient to have ‘support’
in the core for every instantiation of the frontier that can appear in a solution
of the closure. Any solution of the entire problem must contain a solution of
the closure, and the rest of the problem only interacts directly with the closure
through the frontier. Given a problem P, and an instantiation v for variables S
that is closure-replaceable, where CPS is the closure. Suppose sp is a solution of
P that contains v; sp must also contain a solution, scps, to CPS that includes
v. Since v is replaceable with respect to CPS, there is some other instantiation
u of S that can be substituted for v in scps yielding another solution for CPS.
When we substitute u for v in sp we obtain another solution for P, since the
constraints involving S are all in CPS. 2

Of course, in general the closure can be the entire problem, but often that
will not be the case. Consider, for example, binary CSP’s where S consists of
a single variable. The closure will be the subproblem induced by that variable
and all the neighbouring variables in the constraint graph. If the degree of the
constraint graph is bounded by some constant k, or if we restrict our attention to
variables with k or fewer neighbours, then the complexity of the effort required
to look for closure-replaceable values is correspondingly bounded.
Definition 13. An instantiation of a single variable V is neighbourhood replace-
able if it is replaceable with respect to the closure of the subproblem induced by
V and its neighbouring variables.

8

Recently a new form of singleton arc consistency (SAC) was proposed and
examined extensively in [15]. In this form of SAC, arc consistency is established
following reduction of a domain of one variable to one value, but only with
respect to the subgraph formed by that variables and its neighbours. In other
words, here again S is a single variable, Xi, and each of its values is considered
singly. If, for a given value a in the domain of Xi, a domain wipeout occurs,
then this value can be removed. But, of course, being singleton neighbourhood
inconsistent, it is also neighbourhood-replaceable. This gives us the following
proposition.
Proposition 8. Neighbourhood replaceability implies neighbourhood singleton
arc consistency.

4 Effectiveness

As with stronger forms of inconsistency processing, there is the question of how
much substitutability processing is cost-effective in practice. This devolves into
more specific questions, such as:

– How many dispensable values are there corresponding to a given level of
substitutability, in a problem of a given type?

– How much effort is required to find and remove them?
– What is the effect of such removal on subsequent search effort?

These are large questions. Much of the history of constraint programming has
concerned efforts to address these questions for different forms of inconsistency,
including the development of many efficient or specialized methods to remove
inconsistent values. A variety of interchangeability/ substitutability methods
have also been studied analytically and experimentally. Here we will present
some initial analysis with regard to neighbourhood replaceability, focusing on
the first of the three questions above.

A basic algorithm for establishing neighbourhood replaceability is given in
Figure 1. It is called the “consistent neighbourhood replaceability” algorithm
(CNR) because it removes all values that are arc consistent and replaceable
(in addition to removing arc-inconsistent values). In its full form it thereby
incorporates neighbourhood SAC. Here, for analytical purposes we also wish
to examine the effects of removing consistent replaceable values. In the current
implementation, the replaceable procedure uses a MAC-style search to find all
solutions for the subproblem; for each solution it seeks a value from the current
domain that can replace value v.

We argue analytically, and verify experimentally, that CNR is unlikely to
be useful anywhere in the standard random problem search space. At the same
time, we need to bear in mind the limitations of the standard random problem
model. We present evidence suggesting that CNR is more effective in removing
dispensable values for more inhomogeneous problems, which arguably are more
likely to be encountered in the real world.

9

Set Q to list of all variables
While not empty Q

Remove V from Q; set S to neighbours of V
For each value v in domain of V

Set domain of V to {v}
If arc-inconsistent({v}+S) or replaceable(v,S)

Remove v from domain
Put neighbours of V in Q if not there already

Fig. 1. Algorithm for neighbourhood replaceability.

The analytic argument is straightforward. Given a consistent neighbourhood
solution sn with value vf belonging to variable Vf (f is for “focal”), we seek the
probability of a value vf ′ 6= vf such that vf ′ is consistent with the neighbour-
ing assignments of sn. This probability is equal to the number of neighbouring
assignments, C, raised to the power (1− p2), where p2 is as usual the expected
tightness of a constraint, i.e. C(1−p2). (Here, we assume that p2 is the same
for all constraints, and that there is no distinction between values with respect
to expected support. Note also that constraints between neighbouring variables
must be satisfied by the original neighbourhood solution, whose values are the
same for the alternative assignment.) Then, given a domain size d, the expected
number of values that can replace vf is (d− 1)× C(1−p2).

For example, suppose d − 1 = 10 and p2 = 0.369, so (1 − p2) = 0.631, i.e.
the constraints are fairly loose. Then we have the following estimates for the
probability that vf ′ is a viable assignment, along with the expected number of
values that can replace vf (in this case equal to the value in the second column
times 10):

#neighbours C(1−p2) exp. # replacem’s
1 .631 6
2 .398 4
3 .251 2.5
4 .159 2
6 .063 0.6
8 .025 0.2
10 .010 0.1
12 .004 0.04

In this case, there isn’t much chance of finding a fully replaceable value when
the number of neighbours exceeds 3 or 4.

This was verified in an experiment using homogeneous random problems of
50 variables with domain size 15 and densities 0.10, 0.15 and 0.17 (a range of
densities sufficient to demonstrate the effect). All constraints had an expected
tightness of 0.45, but actual values could vary around this expectation. (This
made these problems more commensurate with other classes of problems that

10

are defined below.) Problems were generated so as to be fully connected by first
generating a spanning tree and then adding extra edges. Twenty-five problems of
each type were tested. In these and all later samples, all problems had solutions.
Since the purpose was to determine the number of neighbourhood replaceable
values that were not also arc- or neighbourhood-inconsistent, only values that
also met these criteria for consistency were counted.

Table 1. Values Removed from Problems
of Varying Density

density .10 .15 .17
mean values removed 43.7 3.9 0.6
affected problems 25 14 2
mean degree of affected vars 1.86 2.12 2.00
1st line is mean per problem

Thus, for problems with sparse constraint graphs there are many such val-
ues, but this is because there are many variables with degree ≤ 2. (Occasionally,
a single value was deleted from a variable of degree 3.) Since low-degree vari-
ables are increasingly scarce as density increases, the number of values that are
neighbourhood replaceable falls off rapidly. Moreover, since values that can be
removed will be found in domains of variables of very low degree, their removal
should have a negligible effect on search with any reasonable variable ordering,
since these variables will be selected late in the search order.

However, if we consider other kinds of problems, a different picture emerges.
Recall that the standard random model is extremely homogeneous with respect
to its parameter values. In particular, for each value in each domain the likelihood
of support across each adjoining constraint is identical. But this is not usually
realistic. And, in fact, problems can be generated that are still based on random
selections but where the probability of support varies, for a given constraint
or for all constraints that a value participates in. In the present work this was
done by a two-tier process: given a set of probability values representing the
possible likelihood of support, select one with a certain probability, and then
select supporting values in the adjacent domain according to the probability
selected. Note that in this scheme selection of a probability of support is done
independently for each value and for each constraint. Otherwise, problems had
the same parameters as the 0.17 density problems in the previous experiment.

In addition, problems can be generated in which the constraint graph is
clumpy (so-called “geometric problems” [11]). These problems are generated by
selecting points at random within the unit square and then joining those whose
Euclidean distance is less than some criterion, called the “distance”. In this case,
the distance was 0.275. In addition, if there were ≥ one connected component,
separate components were connected via the closest variables to make a single
connected graph. Problems were generated with the same number of variables,
domain size and expected tightness as the random problems (see table) and were
filtered to select those with a number of constraints close to that for random
problems with density = 0.17, specifically, the expected number ± 5.

11

Results are shown in the next table. Clearly irregularity of both kinds is
associated with more neighbourhood replaceable values. In addition, such values
are no longer necessarily associated with variables of low degree. (Compare these
results with the last column of the previous table.)

Table 2. Values Removed from Random and Geometric
Problems with Values of Varying Tightness

random geometric
problems 2-6/8-4 2-7/8,9-15 geo geo:2-6/8-4
mean values removed 3.7 5.7 6.8 27.6
problems with removals 15 21 17 25
mean degree of affected vars 3.28 3.56 5.74 6.59
Headers show support and proportion with this support. Thus, “2-6/8-4”

means support of 0.8 with prob=0.6 and support of 0.2 with prob=0.4

Although 28 out of 750 values is a small proportion, it is interesting that
under the rigorous conditions of selection (i.e. being replaceable with respect to
all neighbourhood instantiations) one can find a number of such values. In addi-
tion, the cost for finding them is not large; for these problems CNR never took
more than a few seconds to complete its task. Moreover, with better knowledge
of where replaceable values are located, it may be possible to reduce the effort
appreciably by only checking where calculations indicate that the likelihood of
finding such values is high enough to be worthwhile.

As one might expect, search efficiency is not greatly affected by deleting this
small number of values. (And with MAC-3 and using the minimum domain/forward-
degree heuristic, these problems were easy to solve.) Thus, in the following table
only one column shows any difference at all, but interestingly this was due to
one problem that was more difficult to solve.

Table 3. Search Efficiency on Random and Geometric
Problems with and without Removing Consistent

Replaceable Values

random geometric
problems 2-6/8-4 2-7/8,9-15 geo g:2-6/8-4
none 252.7 90.2 516.6 119.1
replaceab 252.7 90.4 497.6 120.8
Same problems as previous table. Mean search nodes per problem.

To follow up on this, we examined larger problems of the same types. Pa-
rameters for random problems were <80,15,0.077,.2-.6/.8-.4>, using the usual
< n, |d|, p1, p2 > notation, where the composite p2 value has the same meaning
as in the tables above. Geometric problems had the same number of variables,
domain size, and composite tightness. However, it was not possible to generate
problems with solutions having the same number of constraints as the random
problems (316). Two sets of problems were generated, using distances of 0.17

12

and 0.18 and targets for number of constraints of 250 and 270, respectively (±
5). In this case, since most problems with solutions were very easy, 300 problems
were generated from which problems with solutions were culled, and then the
25 problems that were hardest for the standard algorithm (MAC-3 with min
domain/forward-degree) to solve.

Finally, we also looked at 120-variable geometric problems with varying sup-
port (geo-varsat problems). These problems had domain size 20, a distance of
0.17, a target of 540 (± 3) for number of constraints, which gives a graph den-
sity of 0.076, and a .2-.7/.8-.3 pattern of support. Three hundred problems were
generated, of which 169 had solutions; results for this subset are reported here.
Following the various types of preprocessing, search was done with MAC us-
ing the minimum domain/forward degree heuristic, with a cutoff of one million
search nodes.

Table 4. Search Efficiency on Larger Problems with Various
Forms of Consistency and Replaceability

problems rand geo:250 geo:270
nodes time rem nodes time rem nodes time rem

none 1725 11.1 – 560 0.9 – 66,184 148.1 –
replaceab 1721 15.7 9 163 6.7 123 25,900 72.9 96
AC 2621 19.1 72 232 0.3 57 52,084 126.4 61
NSAC 2540 18.3 88 90 1.7 370 94 2.0 500
CNR 2540 23.6 98 89 8.7 528 90 9.2 648
NIC 2540 23.2 87.5 90 4.6 374.8 92 5.2 505.6
NIC+CNR 2540 27.9 98.0 88 9.4 532.6 89 9.8 651.0
Problems as described in text above. Means per problem: search nodes,

time (sec), values removed during preprocessing.

These results show that when sufficient numbers of values that are fully
replaceable are discarded before search, this can have a significant effect on
subsequent search effort. In some cases, the effect exceeds that of preprocessing
with arc consistency. There is, of course, a price to be paid, as reflected in total
run-time, but for more difficult problems, this preprocessing cost can lead to a
much larger cost reduction during search.

In one case, there is a perverse effect of AC preprocessing, previously identi-
fied by [14], which also appears with other preprocessing algorithms. That this is
due to the effect of preprocessing on search order heuristics was shown by employ-
ing a static degree heuristic to select the first variable and min domain/forward-
degree thereafter. This reduced the mean number of search nodes to 1456 for the
same problems after AC preprocessing and 1281 after preprocessing with NIC.
(That this was not a generally superior search order was shown by the results
for the other two problem sets; in both cases the size of the search tree increased
by about 50% with this order.)

In evaluating search efficiency, we also looked at effects of preprocessing with
neighbourhood inverse consistency (NIC) (cf. [5]) and with replaceability in ad-
dition to NIC. Here, an important question is whether CNR is able to delete

13

values above and beyond those removed by NIC. In fact, one possibility is that
NIC-preprocessing will result in more values that are fully replaceable.

Table 5. Search Efficiency and Values Removed
on 120-variable Geo-Varsat Problems

nodes time rem >cut
AC 55,896 408 38 8
Replace 42,352 298 59 6
NSAC 30,602 154 189 5
CNR 30,277 214 269 5
NIC 10,211 97 310 1
NIC+CNR 8,788 122 383 1

Problems as described in text above. Entries as

in Table 4, plus # exceeding cutoff. Means for nodes

include cutoff values.

For the geometric problems, NIC reduced search effort dramatically. For these
problems, when CNR was combined with NIC, the former algorithm removed
even more values than it had without such preprocessing. In these cases, NIC
removed over 4-500 values per problem, but adding neighbourhood replaceability
reliably removed more values than when it was used alone (Table 5 versus 4).
Somewhat surprisingly, when NIC was used the geometric problems became easy
to solve; hence, adding replaceability in this case made little difference in search
effort. Nonetheless, the fact that so many additional values could be removed is a
promising result, which may improve search efficiency with still larger problems.

5 Conclusions

[1] present a powerful framework for viewing basic concepts in constraint process-
ing. This paper extends and improves upon that framework, in the process iden-
tifying some intriguing opportunities for further study. Our experiments demon-
strate that a certain kind of dispensable value can be located in a reasonably
efficient manner in practice and that such values are not uncommon in certain
classes of problems. Moreover, we have been able to demonstrate that removing
such values can lead to significant improvements in search efficiency on some
types of problems.

Acknowledgements. Some of this work was supported by the Science Foun-
dation Ireland under Grant No. 05/IN/I886.

References

1. L. Bordeaux, M. Cadoli, and T. Mancini. A unifying framework for structural prop-
erties of csps: Definitions, complexity, tractability. J. Artif. Intell. Res., 32:607–629,
2008.

14

2. A. Dechter and R. Dechter. Removing redundancies in constraint networks. In
Proc. NUMBER Nat. Conf. on Artif. Intell. – AAAI’87, pages 105–109, 1987.

3. E. E. C. Freuder. Eliminating interchangeable values in constraint satisfaction
problems. In Proc. 9th Nat. Conf. on Artif. Intell. – AAAI’91, pages 227–233,
1991.

4. E. C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21(11):958–966,
1978.

5. E. C. Freuder and C. D. Elfe. Neighborhood inverse consistency preprocessing. In
Proc. 13th Nat. Conf. of the Amer. Assoc. Artif. Intell. – AAAAI’96. Vol. 1, pages
202–208. AAAI/MIT, 1996.

6. E. C. Freuder and P. D. Hubbe. Using inferred disjunctive constraints to decompose
constraint satisfaction problems. In 13th Intl. Jt. Conf. on Artif. Intell. - IJCAI’93,
pages 254–261, 1993.

7. E. C. Freuder and P. D. Hubbe. Extracting constraint satisfaction subproblems.
In 14th Intl. Jt. Conf. on Artif. Intell. - IJCAI’95, pages 548–557, 1995.

8. E. C. Freuder, P. D. Hubbe, and D. Sabin. Inconsistency and redundancy do
not imply irrelevance. In AAAI 1994 Fall Symposium on Relevance, AAAI Tech.
Report FS-94-02, pages 74–78, 1994.

9. M. L. Ginsberg and W. D. Harvey. Iterative broadening. Artif. Intell., 55(2-3):367–
383, 1992.

10. P. Jeavons, D. Cohen, and M. C. Cooper. A substitution operation for con-
straints. In A. Borning, editor, Principles and Pract. of Constraint Programming
- PPCP’94, number 874 in LNCS, pages 161–177. Springer, 1994.

11. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Shevron. Optimization
by simulated annealing: An experimental evaluation. part ii. graph coloring and
number partitioning. Opns. Res., 39:378–406, 1991.

12. A. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99–
118, 1977.

13. D. Mehta, B. O’Sullivan, L. Quesada, and N. Wilson. Search space extraction. In
Principles and Pract. of Constraint Programming - CP 2009, LNCS 5732, pages
608–622. Springer, 2009.

14. D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint sat-
isfaction. In A. Borning, editor, Principles and Pract. of Constraint Programming
- PPCP’94, number 874 in LNCS, pages 10–20. Springer, 1994.

15. R. J. Wallace. Sac and neighbourhood sac. AI Communications, 27:to appear,
2014.

16. Y. Zhang and E. C. Freuder. Conditional interchangeability and substitutabil-
ity. In 4th Intl. Workshop on Symmetry and Constraint Satisfaction Problems -
SymCon’04, pages 95–100, 2004.

15

