
Neighborhood Inverse Consistency PreprocessingEugene C. Freuder and Charles D. ElfeDepartment of Computer ScienceUniversity of New HampshireDurham, New Hampshire 03824, USAecf,cde@cs.unh.eduAbstractConstraint satisfaction consistency preprocessingmethods are used to reduce search e�ort. Time andespecially space costs limit the amount of preprocess-ing that will be cost e�ective. A new form of con-sistency preprocessing, neighborhood inverse consis-tency, can achieve more problem pruning than theusual arc consistency preprocessing in a cost e�ectivemanner. There are two basic ideas: 1) Common formsof consistency enforcement basically operate by iden-tifying and remembering solutions to subproblems forwhich a consistent value cannot be found for some ad-ditional problem variable. The space required for thismemory can quickly become prohibitive. Inverse con-sistency basically operates by removing values for vari-ables that are not consistent with any solution to somesubproblem involving additional variables. The spacerequirement is at worst linear. 2) Typically consis-tency preprocessing achieves some level of consistencyuniformly throughout the problem. A subproblem so-lution will be tested against each additional variablethat constrains any subproblem variable. Neighbor-hood consistency focuses attention on the subproblemformed by the variables that are all constrained by thevalue in question. By targeting highly relevant sub-problems we hope to \skim the cream", obtaining ahigh payo� for a limited cost.IntroductionKey IdeasMany problems in arti�cial intelligence can be repre-sented as constraint satisfaction problems. Preprocess-ing the problem representation to achieve limited con-sistency is often used to reduce problem solving e�ort.The most common preprocessing achieves only verylocal consistency. Higher order consistency techniquescan further reduce subsequent e�ort, but the prepro-cessing e�ort may not be cost e�ective. The prepro-cessing time may exceed the subsequent savings, or thecost of storing the results of the preprocessing may beexcessive. The space problem in particular has beenlittle studied, but can be crucial for large scale realis-tic problems.Neighborhood inverse consistency is a new formof consistency that achieves higher order consistency

while addressing these cost concerns, especially thespace issue. There are two basic ideas:Inverse Consistency: Common forms of consistencyenforcement basically operate by identifying and re-membering solutions to subproblems for which a con-sistent value cannot be found for some additional prob-lem variable. The space required for this memory canquickly become prohibitive. Inverse consistency basi-cally operates by removing values for variables that arenot consistent with any solution to some subprobleminvolving additional variables. The space requirementis at worst linear; if the potential variable values arealready represented explicitly, even high order inverseconsistency processing can actually save space.Neighborhood Consistency: Typically consistencypreprocessing achieves some level of consistency uni-formly throughout the problem. A subproblem so-lution will be tested against each additional variablethat constrains any subproblem variable. Neighbor-hood consistency focuses attention on the subproblemformed by the variables that are all constrained by thevalue in question. By targeting highly relevant sub-problems we hope to \skim the cream", obtaining ahigh payo� for a limited cost.Combining these two ideas give us neighborhood in-verse consistency. We present experimental evidencethat suggests that for an interesting class of problemsneighborhood inverse consistency preprocessing can besuperior to conventional preprocessing methods.In Section 2 we will present the basic idea of in-verse consistency, including neighborhood inverse con-sistency as a special case. In Section 3 we presentpreprocessing algorithms that we tested. In Section 4we describe experimental results with these algorithms.Section 5 presents conclusions and directions for fur-ther work.Related WorkFreuder introduced, but did not implement, inverseconsistency, as (1; k�1)-consistency in (Freuder 1985).In (Prosser 1993b) there is a form of \directed con-sistency" learning that might be viewed as acquir-ing some partial inverse consistency during the search

process. Directed and adaptive consistency (Dechter& Pearl 1987) might be viewed as limited forms ofpartial neighborhood consistency preprocessing, em-ploying standard, not inverse consistency. (Dechter &Meiri 1994) compares a variety of preprocessing meth-ods experimentally.Inverse ConsistencyConstraint satisfaction problems (CSPs) involve �nd-ing values for problem variables subject to restrictions(constraints) on what combinations of values are al-lowed. A solution is an assignment of a value toeach variable such that all the constraints are satis-�ed. Often, as here, we restrict our attention to binaryconstraints that involve two variables at a time. Bi-nary CSPs can be represented by constraint graphs,where variables correspond to vertices, potential val-ues are vertex labels, and constraints correspond toedges. Figure 1 is a sample CSP where the constraintsare all the inequality constraint.Most forms of consistency can be viewed as specialcases of (i; j)-consistency (Freuder 1985). Basically,a problem is (i; j)-consistent if any solution to a sub-problem of i variables can be extended to a solutionincluding any j additional variables. When i is k � 1and j is 1 we have k-consistency (Freuder 1978). If k is2 we have arc consistency (AC) (Mackworth 1977); if kis 3 we have path consistency (PC) (Montanari 1974).
c

a

c

a

c

W

X

YFigure 1. Path inverse consistency.When i is 1 and j is k� 1 we have k inverse consis-tency. When k is 3 we have path inverse consistency(PIC). (Arc inverse consistency is no di�erent from arcconsistency.) In Figure 1, there is no solution for vari-ables X and Y that is consistent with the choice of afor W . This implies that we can eliminate a as a po-tential value for W ; we will say that we delete a fromthe domain of W .The variables joined by an edge to a variable ina constraint graph are called its neighborhood. Ba-sically, neighborhood inverse consistency (NIC) en-forces, for each variable V , k inverse consistency forthe k variables in the neighborhood of V .The subproblem induced by a set of variables, S,corresponds to S and all the edges between two vari-ables in S. A value v for variable V is consistent witha value u for variable U if those values satisfy, i.e. are

allowed by, the constraint between V and U . A valuev is consistent with a solution to a subproblem, if it isindividually consistent with each of the values in thesolution; in this case we also can say that the solutionis consistent with v.A constraint graph is neighborhood inverse consis-tent if, given any value v for any variable V , we can�nd a solution to the subproblem induced by the neigh-borhood of V that is consistent with v.
a

c

a

c
b

a

c

a

b

Z

X

W YFigure 2. Neighborhood inverse consistency.For example, In Figure 2, there is no solution for theneighborhood of variableW that is consistent with thechoice of a for W . This implies that we can eliminatea as a potential value for W .All these forms of consistency are de�ned locally, butenforcing this local consistency can propagate. Delet-ing a value because it is locally inconsistent can makesome other value inconsistent that depended on thedeleted value; that value in turn can be deleted. Sinceexperience has shown that sometimes less consistencypruning is more cost e�ective, we also test a limitedneighborhood inverse consistency algorithm that onlyprocesses each variable once for neighborhood consis-tency, and thus does not necessarily take into accountall such propagation to fully achieve neighborhood in-verse consistency. We call this ONIC, for one passneighborhood inverse consistency.The time complexity of k inverse consistency is com-parable to that of k-consistency. In terms of spacecomplexity, however, inverse consistency has a consid-erable advantage. In general, achieving k-consistencyrequires creating and storing constraints involving k�1variables, which can require O(dk�1) space, assumingd potential values for each variable. Achieving inverseconsistency only requires specifying that values cannotbe permitted for variables. At worst this requires linearspace. If the potential values are already listed explic-itly, inverse consistency can reduce space requirementsby deleting some of these values.The time complexity of k-consistency is polynomialwith the exponent dependent on k. The time complex-ity of neighborhood inverse consistency is polynomialwith the polynomial dependent on the maximum de-

gree of the constraint graph. However, for the prob-lems we consider experimentally below, neighborhoodinverse consistency preprocessing is considerably fasterthan even path consistency preprocessing.Neighborhood inverse consistency processing willdelete a value, v, from a variable V that is not con-sistent with any value for an individual neighboringvariable U . (If this is the case, clearly v is not con-sistent with any solution for the neighboring subprob-lem.) This deletion can propagate. Thus neighbor-hood consistency preprocessing leaves the problem arcconsistent. Arc consistency is also achieved by path in-verse consistency preprocessing since all nodes sharingedges with V are examined, and the deletions are al-lowed to propagate. Thus we have the following simpleproposition:Proposition: Neighborhood and path inverse consis-tency both imply arc consistency.In particular, this means that NIC preprocessing is\stronger" than AC preprocessing. It deletes at leastas many values. AlgorithmsWe tested various old and new preprocessing schemes.In each case the search algorithm used after prepro-cessing was FC-CBJ-DMD, which is a combination offorward checking with conict-directed backjumpingand dynamic minimum domain size ordering. This isa good modern search algorithm. The code for FC-CBJ (Prosser 1993a) is from Peter van Beek's codelibrary (available on the Internet via anonymous ftpat ftp.cs.ualberta.ca); the dynamic ordering was addedfor this paper. The preprocessing algorithms arc con-sistency and path consistency are also from van Beek'slibrary. They are implementations of AC-3 and PC-2 algorithms, respectively, similar to those describedby Tsang in (Tsang 1993), but make use of a stack tomaintain the edges and paths, respectively, that needto be reexamined.Path inverse consistency (PIC), neighborhood in-verse consistency (NIC), and one pass neighborhoodinverse consistency (ONIC) were all coded for this pa-per. All algorithms are coded in C.Shown in Figure 3 is an algorithm for achievingneighborhood inverse consistency(NIC). An agenda isused to keep track of those variables that still need tobe examined, and so initially, all variables are placedon the agenda. The algorithm proceeds by examin-ing each value a in the domain of a variable v to seewhether or not there is a solution among the variable'sneighbors. If when a is assigned to v, no solution canbe found for the variable's neighbors, i.e. the inducedsubproblem consisting of v and all neighbors of v, thena is removed from the domain of v. In our implemen-tation, line 7 is performed by creating the subprobleminduced by v (with the single value a) and N (v), andthen running FC-CBJ-DMD on the subproblem to seeif there is a solution.

When a value is deleted from a domain of a variable,v, the deletion may a�ect all of the variables that sharea constraint with v. As a result, all adjacent variables,which are precisely the neighbors, are inserted into theagenda. In this fashion, domain value deletions areallowed to propagate.Algorithm NIC1. insert each variable v into agenda A, a queuewithout duplicates2. while the agenda A is not empty3. extract a variable v from front of agenda A4. let the neighborhood N (v) be the set of allnodes which share an edge with v5. set the ag deleted to false6. for each value a in domain of v7. if there is no solution for N (v) when ais assigned to v8. remove value a from the domain of v9. change deleted to true10. if the domain of v is empty11. return wipeout12. if deleted is true13. insert all x 2 N (v) into agenda A, whichare not already in A14. return consistentFigure 3: Algorithm for performing neighborhoodinverse consistency.The algorithm for ONIC is identical to that for NIC,except that each variable is examined only once; no fur-ther propagation is performed. In our implementation,the variables are examined in lexical order. Removalof lines 5, 9, 11, and 12 from Figure 3 results in analgorithm for ONIC, since it is these lines which areresponsible for allowing propagation beyond one passto take place.PIC is similar to NIC, with the exception of line7. Instead of selecting all neighbors of v and tryingto �nd a solution among them, for each of the valuesin the domain of v, PIC generates all combinations ofthree distinct nodes which include v and veri�es foreach 3-tuple that a solution exists with a for v.As a result of a few observations, it follows that notall 3-tuples need to be generated. For example, someare duplicates, like (x; y; z) and (x; z; y), which containthe same set of variables. Yet other 3-tuples, like thosewith no constraints are unable to force a domain valueto be deleted.In our implementation of PIC, only those sets ofthree nodes, where at least one node shares an edgewith v are generated. If v is connected to neither ofthe two other nodes x and y, and they do not share anedge, no preclusion would have taken place, since thereare no constraints. If v is connected to neither x nor y,but they do share an edge, then if any value for v could

be precluded, it is clearly because there is no solutionto the subproblem induced by x and y, regardless ofthe value of v. In this case there will be no solution tothe problem as a whole. In our implementation, thissituation is recognized at the point that PIC examineseither x or y. ExperimentsTest problems were created using a random problemgenerator requiring four inputs: the number of vari-ables, the number of values for each variable, the tight-ness, and the density. We chose 100 variables and 6values to supply us with reasonably di�cult problems.Roughly speaking the tightness is a measure of howconstraining the constraints are, and the density is ameasure of how full of edges the constraint graph is.We ensure that our constraint graphs are connected.Recent work on \really hard problems", e.g.(Cheeseman, Kanefsky, & Taylor 1991), suggests thatmost hard problems exist at the point where a phasetransition from problems with solutions to those with-out occurs, and that for given size problem (variablesand values) and a given tightness, we can �nd this tran-sition area, or complexity peak, by varying the density.We tested problems at a midrange tightness of :5.In other words, there is a 50% probability that an in-dividual pair of values will be allowed by a constraint.Problems were generated and run around the transi-tional area. We took another \cut" through the \com-plexity ridge" at a lower tightness of :4. (At .6 theproblems were very easy.)
102030405060708090
100110
0.0325 0.035 0.0375 0.04 0.0425density

Consistency Preprocessing Results"arc" 33 3 3 3 3"onic" ++ + + + +"nic" 22 2 2 2 2Figure 4. Running time in seconds for problems attightness = 0:4.We tested search alone (FC-CBJ-DMD). We alsotested search preceded by each one of the preprocess-ing methods: AC, PC, PIC, NIC, ONIC. In Figures 4and 5 we plot the results for the 3 best options: searchpreceeded by AC, NIC and ONIC. Figure 4 shows theaverage e�ort to solve sets of 25 problems at several dif-

ferent density values around the peak region for tight-ness of .4. Figure 5 does the same for tightness of .5.Along the density axis each :01 of added density cor-responds to roughly 50 more constraints. At 0 den-sity we would still have roughly 100 constraints, form-ing a minimally connected, tree-structured constraintgraph. At :02 density the average degree of a node inthe constraint graph is roughly 4; i.e. each variable isinvolved in an average of roughly 4 constraints. Thismay seem sparsely constrained, but there is reason tobelieve that many practical problems are large and rel-atively sparse.
0246810
12
0.015 0.0175 0.02 0.0225 0.025density

Consistency Preprocessing Results"arc" 33 3 3 3 3"onic" ++ + + + +"nic" 22 2 2 2 2Figure 5. Running time in seconds for problems attightness = 0:5.Our new algorithms do well in general, doing bet-ter for the hardest problems at .5 than at .4. Notethe y-axes are di�erent in the two �gures; the denserproblems at .4 are considerably harder in general thanthe sparser ones at .5. Table 1 details the performanceon the problems at tightness .5, density .02, where wesee a peak in Figure 5. The time for preprocessingand the total time for preprocessing plus subsequentsearch are given for all the preprocessing methods (e.g.AC denoting AC preprocessing, and AC+S denotingAC preprocessing plus search), and we see the timefor search without any preprocessing (S denoting FC-CBJ-DMD). Underlining indicates that preprocessingdeleted all values from a variable domain, so no furthersearch was required. Boldface identi�es the minimumtimes. We indicate whether or not there is a solution.Notice that our new proprocessing can excel in eithercase.Notice that the maximum e�ort for NIC preprocess-ing plus search is only about 22 seconds, while themaximum e�ort for AC preprocessing plus search isover 3 minutes. For the problem that requires over 3minutes of AC plus search, NIC plus search �nishes inabout a tenth of a second. NIC is the outright \win-ner" on relatively few problems. However, the wins aremore signi�cant than the losses.

sol S AC AC+S PC PC+S PIC PIC+S ONIC ONIC+S NIC NIC+S1 yes 1.48 0.05 1.57 142.01 142.03 15.81 17.16 0.05 0.30 0.13 1.472 no 11.46 0.07 1.31 114.67 114.67 19.01 19.92 0.06 0.78 0.15 1.183 no 17.87 0.05 1.68 86.12 86.12 15.45 15.88 0.05 0.49 0.11 0.544 no 0.78 0.07 0.16 52.68 52.68 21.31 21.32 0.06 0.18 0.21 0.225 yes 5.03 0.05 0.12 214.27 217.16 16.87 17.27 0.06 0.89 0.12 0.516 yes 0.70 0.06 0.09 133.70 133.72 16.84 16.87 0.05 0.09 0.11 0.147 yes 0.06 0.06 1.78 107.67 107.69 15.51 17.25 0.06 0.11 0.11 1.828 no 3.25 0.15 0.15 62.52 62.52 30.75 30.75 0.06 0.23 0.27 0.279 no 86.77 0.05 29.78 271.35 271.35 15.65 37.00 0.07 21.55 0.11 21.4510 no 45.21 0.06 4.82 97.17 97.17 18.09 18.33 0.06 0.41 0.13 0.3711 no 32.95 0.08 0.10 106.45 106.45 32.60 32.61 0.06 1.27 0.26 0.2712 yes 0.09 0.06 6.58 255.04 255.06 16.90 24.02 0.06 7.51 0.13 7.3413 no 14.56 0.06 0.38 79.92 79.92 28.19 28.19 0.06 0.19 0.34 0.3414 yes 0.07 0.05 1.12 291.25 291.27 15.34 16.32 0.06 5.03 0.11 1.0815 no 49.53 0.07 0.99 75.91 75.91 17.61 18.16 0.06 0.88 0.20 0.7316 no 46.54 0.07 0.08 46.24 46.24 14.14 14.14 0.06 0.07 0.18 0.1817 no 15.10 0.07 0.10 47.13 47.13 19.96 20.01 0.05 0.07 0.14 0.2018 yes 0.08 0.05 191.41 131.45 131.48 14.15 14.17 0.05 1.29 0.11 0.1319 yes 57.42 0.06 8.13 250.73 250.75 16.38 21.57 0.06 0.61 0.12 5.3320 no 37.86 0.06 2.15 140.52 140.52 18.95 22.23 0.06 1.69 0.13 3.4121 no 212.15 0.05 1.18 104.57 104.57 19.36 20.35 0.06 1.55 0.14 1.1322 yes 1.55 0.06 3.29 148.57 148.59 22.20 23.07 0.06 1.04 0.15 1.0223 yes 42.11 0.05 2.51 211.61 211.78 17.18 19.64 0.06 1.47 0.11 2.5824 no 2.29 0.08 0.08 39.89 39.89 9.44 9.44 0.06 0.08 0.14 0.1425 no 135.70 0.08 1.31 53.30 53.30 18.13 18.13 0.06 2.07 0.25 0.25avg 40% 32.82 0.06 10.43 130.59 130.72 18.63 20.55 0.06 1.99 0.16 2.08Table 1. Running time in seconds for twenty-�ve random problems with 100 variables, a domainsize of 6, tightness = 0:5, and density = 0:02.Apparently the additional pruning done by NIC cansu�ciently improve performance on hard problems tooutweigh the rather small processing penalty involvedin achieving NIC rather than AC. More e�cient ACpreprocessing, or partial AC preprocessing like di-rected arc consistency, could lower the AC preprocess-ing costs further, but would not address the real issue:the extreme search cost penalty that is sometimes paidfor doing less preprocessing pruning than NIC. Finally,recall that NIC does not incur high space costs.Figures 6 and 7 plots the results for the 10 problemsin each problem set that are most di�cult for AC pre-processing plus search, with the problems aligned onthe horizontal axis in order of di�culty. These plotsdemonstrate how NIC is especially successful at keep-ing down the maximum e�ort required, and outper-forming AC on the hardest problems. Such behaviorwould seem especially useful for real-time problems in-volving human interaction, where it is well known thatlarge uctuations in response time are especially an-noying.
ConclusionWe have demonstrated that inverse consistency can ef-fectively introduce higher order consistency without asigni�cant space penalty. Neighborhood consistencylimits the time commitment by targeting highly rele-vant subproblems. Neighborhood inverse consistencyhas shown some success at outperforming the standardarc consistency preprocessing by doing more pruningat small additional cost. It appears that this can ame-liorate the risk of encountering unusually costly prob-lems.There are several opportunities for further research:� The algorithms have been implemented in ratherstraightforward fashion; there is considerable roomfor improvement. In particular, some redun-dant processing of overlapping subproblems may beavoided.� The information obtained during subproblem solu-tion may be pro�tably retained, at some space cost.� Inverse consistency can be interleaved with search inhybrid algorithms, analogous to forward checking.

0100200300400500600700 running times (secs) at density = 0.0325"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
050100150200250300350 running times (secs) at density = 0.0350"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
05001000150020002500 running times (secs) at density = 0.0375"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
050100150200250 running times (secs) at density = 0.0400"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
050100150200250300350400 running times (secs) at density = 0.0425"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +Figure 6. Most di�cult ten problems for arcconsistency ordered by di�culty for arc consistencyat tightness = 0:4 and di�erent densities.

00.511.522.533.54 running times (secs) at density = 0.0150"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
024681012141618 running times (secs) at density = 0.0200"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
020406080100120140160180200 running times (secs) at density = 0.0225"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
05101520253035 running times (secs) at density = 0.0250"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +
051015202530354045 running times (secs) at density = 0.0275"arc" 33 3 3 3 3 3 3 3 3 3"nic" ++ + + + + + + + + +Figure 7. Most di�cult ten problems for arcconsistency ordered by di�culty for arc consistencyat tightness = 0:5 and di�erent densities.

� Neighborhood consistency, as opposed to neighbor-hood inverse consistency, should be considered.� Higher order k inverse consistency should be studied.Inverse consistency can be combined with higher or-der k-consistency.� Other forms of \targeted" consistency, as opposedto neighborhood consistency, based on syntactic orsemantic understanding of individual problems, mayprove useful.AcknowledgementsThis material is based on work supported by theNational Science Foundation under Grant No. IRI-9207633 and Grant No. IRI-9504316. We thankRichard Wallace for his contributions to this work.ReferencesCheeseman, P., Kanefsky, B. and Taylor, W. 1991.Where the really hard problems are. In Proceedingsof the Twelfth International Joint Conference on Ar-ti�cial Intelligence, 331{337.Dechter, R. and Meiri, I. 1994. Experimental evalua-tion of preprocessing techniques in constraint satisfac-tion problems. Arti�cial Intelligence, 68(2), 211{241.Dechter, R. and Pearl, J. 1987. Network-based heuris-tics for constraint satisfaction problems. Arti�cial In-telligence, 34(1), 1{38.Freuder, E. 1978. Synthesizing Constraint Express-sions. Communications of the ACM, 21(11): 958{966.Freuder, E. 1985. A su�cient condition for backtrack-bounded search. Journal of the ACM, 32(4): 755{761.Mackworth, A. 1977. Consistency in Networks ofRelations, Arti�cial Intelligence, 8:99{118.Montanari, U. 1974. Networks of constraints fun-damental properties and applications to picture pro-cessing, Information Sciences, 7:95{132.Prosser, P. 1993a. Hybrid algorithms for the con-straint satisfaction problem. Computational Intelli-gence, 9:268{299.Prosser, P. 1993b. Domain �ltering can degrade in-telligent backtracking search. In Proceedings of theThirteenth International Joint Conference on Arti�-cial Intelligence, 262{267.Tsang, E. 1993. Foundations of Constraint Satisfac-tion. Academic Press, London.

