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Departamento de Sistemas Informáticos & SIMD - i3A
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Summary. Triangulation of a Bayesian network (BN) is somehow a necessary step
in order to perform inference in a more efficient way, either if we use a secondary
structure as the join tree (JT) or implicitly when we try to use other direct techniques
on the network. If we focus on the first procedure, the goodness of the triangulation
will affect on the simplicity of the join tree and therefore on a quicker and easier
inference process.

The task of obtaining an optimal triangulation (in terms of producing the min-
imum number of triangulation links a.k.a. fill-ins) has been proved as an NP-hard
problem. That is why many methods of distinct nature have been used with the pur-
pose of getting as good as possible triangulations for any given network, especially
important for big structures, that is, with a large number of variables and links.

In this chapter, we attempt to introduce the problem of triangulation, locat-
ing it in the compilation process and showing first its relevance for inference, and
consequently for working with Bayesian networks. After this introduction, the most
popular and used strategies to cope with the triangulation problem are reviewed,
grouped into two main categories: heuristics and stochastic algorithms. Finally, an-
other family of techniques could be understood as those based in decomposing the
problem.

1 Introduction: the Compilation Process

If we consider that an expert system is composed of two main elements: Knowl-
egde Base (KB) + Inference Engine (IE), then a probabilistic expert system
could be interpreted as a Bayesian network that models the particular prob-
lem (KB) and a secondary structure where inference is performed, normally
an associated join tree1 (IE).

1 Also known as junction tree.
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A Bayesian network[38] is made up of two elements:

• The directed graph G = (V, E), where V are the variables/nodes in the
graph and E the set of edges present in the graph from which dependencies
and independencies between domain variables can be extracted.

• The probability distribution, which is usually stored in the form of tables,
including for every variable Xi its probability P (Xi|pa(Xi)) or just the
prior probability P (Xi) if the node has no parents2. This is because of the
factorisation rule that states:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|pa(Xi)) (1)

When inference is performed for Bayesian networks we normally want to
obtain the posterior probability for the problem variables given some facts
or evidence e that we have previously observed. Then, we wish to obtain the
value of P (Xi|e) either for all variables or for a subset of them. Computing this
marginal and posterior probability is not always a simple task. The structure
of the JT is a representation of the network, and being free of cycles, it allows
certain algorithms to propagate probabilities that result in general quite more
efficient. JT is also used for other inference tasks as the search of explanations
or abductive inference [19; 37].

There exist efficient algorithms to propagate evidence in acyclic networks
(polytrees) [38], but unfortunately this is not common to have networks under
this constraint. What has been broadly used in order to propagate in an
exact manner for any kind of network is some form of the so-called clustering
method, which basically entails grouping in a single node (cluster) variables
that are strongly related together. Then, these groups/clusters are organised
as a tree and sophisticated adaptations to the evidence propagation algorithm
can also be done such as Lauritzen & Spiegelhalter method [32], Shenoy &
Shafer propagation [43] or Hugin architecture [26]. A more recent technique
is Lazy propagation [34].

We can find many other methods based on the previous ones that seek a
more efficient evidence propagation and whose main feature is the possibility
of an approximate inference to improve even more the speed-up, for instance
Penniless propagation [9]. There is even a combination of two different tech-
niques as Lazy Propagation with Penniless [10].

As a means to obtain this tree of clusters the BN has to be compiled. Com-
pilation is the process of transforming a Bayesian network into a secondary
structure called junction tree and it is a step to preprocess the network in
order to make inference in a more efficient way on the whole. However, the
resulting join tree from the compilation process is not unique for a given BN.
Thus, a quite interesting feature is to have the ability of choosing the best

2 pa(Xi) is the set of parent nodes for variable Xi, i.e. the nodes which have a link
pointing to Xi.
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Fig. 1. Moralising graph for Asia network. Double lines indicate moral links.

tree among all possible ones for a particular BN. When using the join tree for
inference, it is clear that the better this tree is the better our inference engine
will work. Inference leads to a considerable number of operations, being our
target to find a valid tree for our network, but also as simple as possible.
We should note that a JT captures (in)dependence relations between vari-
ables. Nevertheless the groups of dependent variables might be bigger than
necessary. Comparing two valid join trees, JT1 and JT2 related to the same
network, the more complex the tree is, the more unnecessary dependencies it
is actually including.

Let us indicate the four basic steps included in the compilation process[32]:

1. Obtain the moral graph from the original DAG that represented the BN .
2. Triangulate this moral graph.
3. Identify all the cliques.
4. Connect these cliques in order to form a valid join tree JT .

1.- Moralise the graph
The first step about moralisation takes the initial DAG G that forms

the graphical part of the network and makes it undirected following these
two rules: join those nodes with common parents by introducing a moral
link3, and drop directions of the directed edges. We show the graph for the
classical network Asia or chest-clinic [32], originally directed (figure 1.(a)) and
afterwards moralised (Figure 1.(b)).

3 The origin of the term moral comes from marrying nodes with common children.
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2.- Triangulate the moral graph
Second phase for compilation is the most problematic step: triangulation,

since finding an optimal triangulation is an NP-hard problem [49]. To triangu-
late a graph it is needed to introduce a chord in those cycles of length greater
than 3.

Normally, this process is done as the search of a deletion (or elimination)
sequence σ which represents an ordering for all nodes in V. Then, σ can also
be seen as a function which relates every node vi ∈ V with a unique number
between 1 and |V|. Therefore every node will have a position in the deletion
sequence. Using this deletion sequence σ the necessary links to add (called
fill-ins) will be obtained. If adj(Xi) denotes the set of nodes adjacent to Xi

in the undirected graph, then by deleting Xi we refer to the process of adding
the necessary fill-ins in order to make Xi ∪ adj(Xi) a complete subgraph,
and subsequently remove it and all its incident edges from the graph. The
triangular graph GT will be the result of adding to the moral graph the set
(F) of fill-ins added during the deletion process. That is, if GM = (V, EM ) is
the moral graph, then GT = (V, EM ∪ F). Let us show one example for the
moral graph of Asia network (Figure 2).

In Figures 2.(a)-(e) we proceed to use the deletion sequence σ showing
the different steps for this ordering. So, as explained above, triangulation
can be viewed as finding the deletion sequence. The method described in the
previous paragraph is not complex, but the determination of a good dele-
tion sequence is the most important step. For example, a sequence σ2 as
{D,S,L,B,E, T,A,X} would produce the resulting triangulated graph shown
in Figure 3.

As we can see in Figure 3 the graph is correctly triangulated, since there are
no cycles of length 4 or greater without a chord. However, we have introduced
4 fill-ins instead of the only one needed with σ sequence. That introduces more
unnecessary relations among nodes that will make a more dense triangulated
graph, and will construct bigger clusters. The size of a cluster is crucial for
the efficiency of join tree-based algorithms. Notice that the triangulation could
still introduce many more fill-ins, for example if variable E is the first to be
removed, 8 fill-ins in only one step will be introduced!!. And Asia network is a
very simple one, since it presents only 8 nodes. It is obvious that the number
of possible sequences is equal to all the possible permutations (|V|!), that is,
it increases more than exponentially in the number of nodes.

3.- Identify the cliques
Once the graph is triangulated it is time to determine which are the cliques

(clusters) in this triangulated graph. Now we can give a proper definition:

Definition 1. (Clique) Let G be an undirected graph, then all the maximal
complete subgraphs in G are called cliques.

In our particular case we will be interested in identifying the cliques corre-
sponding to the triangulated graph, GT . As we have already explained, these
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Fig. 2. Obtaining one possible triangulated graph for Asia. The used deletion se-
quence is σ = {A, T, X, D, S, B, L, E}.

cliques will be the nodes of the join tree. Since they are extracted from the
triangulated graph they will also be dependent on the triangulation carried
out, that is, on the introduced fill-ins.

Apart from determining the cliques we have to place them in a tree-shaped
structure. And that leads us directly to the next step.
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T B

X D

A S

L

E

Fig. 3. Resulting triangulated graph when using deletion sequence σ2 =
{D, S, L, B, E, T, A, X}.

4.- Build the tree
It implies the establishment of the connections between cliques. From a

triangulated graph there can be different possible join trees depending on the
clique chosen as root, and sometimes a clique could be connected to different
parents.

In order to guarantee that the running intersection property holds (see
def. 2), we could use for example the maximum cardinality search [45] (MCS)
with the aim of identifying the cliques and then connecting them in a tree.

Definition 2. Running Intersection Property: For every pair of clusters
C1 and C2 whose intersection is not empty, that is, V = C1 ∩ C2 �= ∅, it is
verified that V is contained in all nodes included in the path between C1 and
C2.

Apart from MCS there are other alternative methods of ordering the
cliques if no deletion sequence is available. And, on the other hand, it is
possible to construct the tree from a deletion sequence if we know the cliques
formed when deleting vi and taking the reverse order of these. Figure 4 shows
this second procedure for the Asia example with the previous deletion se-
quence σ. In any case, all these methods use he same idea: when identifying
the cliques we need to have them ordered in a certain way that will assure
the running intersection property. So that, this order will lead to an iterative
way of constructing the tree.
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i vi Cliquei

1 A {A, T}
2 T {T, L, E}
3 X {E, X}
4 D {E, B, D}
5 S {S, L, B}
6 B {L, B, E}
7 L
8 E

(a) σ order

i: vi Cliquei Sepi parents
8: E -
7: L -
6: B {L, B, E} ∅ -
5: S {S, L, B} [L, B] 6
4: D {B, E, D} [B, E] 6
3: X {E, X} [E] 6,4
2: T {T, L, E} [L, E] 6
1: A {A, T} [T ] 2

(b) Inverse order
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(c) Resulting join tree

Fig. 4. Ordering of the cliques from the triangulation σ = {A, T, X, D, S, B, L, E}
in Figure 2, identification of cliques and tree construction. Boldface when several
options are possible indicates the randomly chosen one.

2 The Problem of Triangulation

As previously reviewed, the usual technique to triangulate a graph is selecting
a deletion/ elimination/ removing/ triangulation sequence containing all the
nodes in the graph. The method consists of an elimination process, following
the sequence order, which will remove all the nodes. As pointed out before,
finding an optimal deletion sequence is known to be an NP -hard problem
and coping with it involves a search over the space defined by all possible
permutations of |V|. Several approaches [40; 45; 28; 29; 8; 30; 24; 2; 1; 7;
20], most of them based on heuristics, have been proposed to search optimal
solutions for this triangulation problem. Hence, these algorithms attempt to
solve the problem of obtaining a good join tree from a BN, as next sections
will show.

We should remark that these procedures to generate elimination sequences
do not guarantee that we get an optimal triangulation either in terms of
amount of added edges or in terms of the state space size when nodes are
chosen randomly. Moreover, on average these measures in random sequences
would normally be much larger than those corresponding to a minimum tri-
angulation.

The question here is: what we understand by an optimal triangulation? If
we refer to early work in graph triangulation what is understood by optimal
triangulation is a minimal triangulation:

Definition 3. (Minimal Triangulation)
If we have a triangulation F for an undirected graph G, GT = (V,E ∪F), de-
noting the set of fill-ins adding during triangulation, F is said to be minimal
if ∃/ F ′ so that F ′ ⊂ F and F ′ is a valid triangulation for G.

That is, a triangulation F is minimal if for each fill-in f ∈ F , the graph,
(V, E ∪ F − {f}) is not any more triangulated. Strongly related with this
concept are those deletion sequences that constitute perfect orderings:

Definition 4. (Perfect ordering)
Given an undirected graph G = (V,E) and a sequence σ for V, σ it is said to
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be a perfect ordering if its use as deletion sequence to triangulate G does not
produce any fill-in.

In fact, perfect orderings exist only for triangulated graphs and this is a
way of checking if a given graph G is already triangulated.

In literature we can find many methods and studies for getting a mini-
mal triangulation. The most known and first one is lexicographical search,
LEX-M[40], providing a way of obtaining directly a minimal triangulation.
The method consists of a particularly designed Breadth First Search (BFS),
but labelling vertices (nodes) in a lexicographical way, LEX-BFS. LEX-M ap-
plies this labelling procedure along paths. More recent studies and (sometimes
more efficient) methods have been designed [3; 6; 23; 39]. Among them, there
is a recent successful technique [4] called MCS-M. This is a simplification of
LEX-M where cardinality labels are used instead of lexicographical ones. In an
analogical way, it applies the cardinality labelling of (neighbour) nodes along
the path. MCS-M, as LEX-M, produces a minimal elimination ordering4. Even
if both techniques could give different orderings it has been proved [47] that
they create the same set of triangulations. LB-triang [5] is another recent algo-
rithm that computes minimal triangulations with a computation complexity
equal to the most efficient methods, and presenting certain properties that
could make it especially interesting, such as it can also be implemented as an
elimination scheme.

A different approach of obtaining a minimal triangulation is to follow
an indirect path, that is, the method starts with a valid but non necessary
minimal triangulation and then, it identifies the redundant fill-ins, so that
eliminating them a minimal triangulation is obtained. If F is a set of fill-ins
that make a graph G triangulated, G = (V, E ∪ F), these methods identify
a set of links Rmin ⊂ F , so that Gmin = (V, E ∪ (F \ Rmin)) is minimally
triangulated. The resulting minimal triangulation is therefore Fmin = F \
Rmin. Among them, we find the method called recursive thinning designed
by Kjærulf [28] and the algorithm proposed in [6].

The previous paragraphs discuss the problem of searching for minimal
triangulations in the field of graph theory, however, when we move to the field
of BNs triangulation things change. Now, the number of states of the variables
plays a crucial role in the concept of optimal deletion sequences. Thus, in BNs
triangulation a deletion sequence is optimal if it produces a triangulated graph
whose associated join tree has minimal state space size. From this point of
view a minimal triangulation does not need to be an optimal triangulation.
As an example let us consider the Asia network previously introduced, where
it is clear that triangulations F1 = {(L,B)} and F2 = {(S,E)} are minimal.
If all the variables have two states (as it is the case) both triangulations are
also optimal in the sense of state space size, but if we add an extra state
to any of these variables, the two triangulations continue being minimal, but

4 A deletion sequence that provides a minimal triangulation.
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only one of them will be optimal with respect to the state space size criteria.
In fact, Kjærulff [28] pointed out that most classical algorithms to look for
a minimal triangulation are found to be highly ineffective when state space
size is used as optimality criteria, being clearly surpassed by simple greedy
heuristics (discussed in Section 3).

Although there is no general technique to perform always an optimal trian-
gulation for any graph, there exist attempts to go as closer as possible as the
algorithm QuickTree in [44], stated by the authors as the first algorithm that
can optimally triangulate graphs with a hundred nodes in a reasonable time
frame. In [21] we find a more modern branch and bound method, QuickBB
with similar purposes. In [12] graph triangulation is interestingly stated and
solved as a constraint satisfaction problem. Another an more recent example
is found in the commercial tool Hugin5 where one technique for optimal trian-
gulation has been implemented. This particular method, as indicated in [25]
is a combined exact/heuristic method capable of producing an optimal tri-
angulation, but only if sufficient computational resources (primarily storage)
are available.

Finally, as a remark, several research works have shown that all existing
methods for local computation will imply (maybe in a hidden way) a trian-
gulation task. Besides, those methods not using a secondary structure like
the junction tree either are less efficient or present another problem of NP-
hardness [27].

3 Heuristic Greedy Methods

This group of techniques is characterised by establishing an ordering criterion
based on the search rule “the next node to be deleted is that one minimising
f()” where f() is in function of one or several measures over the set of nodes
within the graph G = (V, E). The most used measures [28] are based on:

1. Nodes i ∈ V:
• Size.- the number of variables: s(i) = 1.
• Weight.- logarithm of the natural size: w(i) = log2c(i), where natural

size, c(i) = |ΩXi
|, i.e. the number of states of variable Xi. Depending

on the author Weight is seen directly as c(i)6.
• Incident.- number of incident links in node/variable i within the moral

graph: |adj(Xi)|.
2. Groups or clusters Ci ∈ P(V ):

• Size of the group: V (Ci) = Σ
j∈Ci

s(j) = |Ci|. Then it refers to the number

of variables in the group (or clique).

5 http://www.hugin.com
6 And that will be the approach when minWeight is referred in this chapter.
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• Weight: W (Ci) = Σ
j∈Ci

w(j).

As it happened with the nodes, sometimes this name is used for de-

noting the natural size: S(Ci) = Π
j∈Ci

c(j).

• (Fill-ins).- number of introduced edges while the triangulation process:
F (Ci). That is, the number of edges necessary to make the group
complete except those links already belonging to the moral graph.

We should indicate that other authors use the term size also for the weight
measure. In this work we will try to write clearly which criterion we are
referring to.

From these enumerated measures a set of criteria appear that give rise
(among other) to the following heuristics7:

• Minimum size.- This criterion is based on selecting as the next node
to be deleted that one which minimises the function f(Ci) = V (Ci). That is,
at each step, it chooses the next variable, among those not yet deleted, which
produces a clique of minimum size.

As Rose[42] noted minimum size heuristics is fast8, but it presents some
drawbacks:

- It does not produce, in general, a perfect ordering (see def. 4) if the graph
is already triangulated.

- It does not generally produce minimal triangulations.
- There exist examples for which the produced triangulation is arbitrarily

greater than the triangulation obtained by minimum fill (see below).

• Minimum weight.- This criterion is based on selecting as the next
node to be deleted that one which minimises the function f(Ci) = S(Ci).
This heuristics presents exactly the same advantages and disadvantages as
minimum size. Note that when all nodes have the same weight both heuristics
are identical.

This heuristics gives good results on the whole. It tries to minimise the
total sum of the cliques sizes by minimising, at each step, the size of every
clique which is being created. This does not guarantee that the total tree space
state size (or weight) is optimal, since choosing one variable that produces a
minimal clique could force us to produce bigger cliques when other variables
are deleted later. However, in general, this method provides trees which are
relatively manageable.

In [8] another particular heuristics based on the same idea arise, but at-
tempting to avoid its weak points. The main underlying idea of these heuristics
is that in the moment of deleting a variable it should be sought to minimise

7 we will assume that Ci = {Xi} ∪ adj(Xi)
8 It can be implemented in a computation time of order O(|V| + E′), where E′ =

E + |F|, being E the initial links and F those links added during triangulation.
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the corresponding9 S(Ci). However, at the same time, the variable and all its
corresponding links are deleted, which simplifies the resultant graph. There-
fore, what they pursue is that this simplification for the resultant graph could
also be taken into account.

Among the several heuristics that Cano and Moral [8] propose in their
work, we find this approach called H2. This is very similar to minimum weight,
at each case it chooses the variable Xi, among all the possible variables to be
deleted, which minimises S(i)/|Ω(Xi)|. With this feature when there are ties
in (natural) size we remove first those variables of larger number of states,
which leads to less complex cliques in the future formation of the tree.
• Minimum fill.- This criterion is based on selecting as the next node to

be deleted that one which minimises the function f(Ci) = F (Ci). In each case,
it chooses the variable, among those not yet deleted, for which its elimination
introduces a smaller number of fill-ins. This method presents the advantage
of producing a perfect ordering when the graph is triangulated, but provokes
the following drawbacks:

- It is slightly slower than the minimum weight heuristics, that is because
the adjacency set for every node has to be explored regarding edges.

- In general it does not produce minimal triangulations.
There exist other heuristic techniques which attempt to tackle the problem

of graph triangulation. In [24] they are classified in several groups:

1. Heuristics based on the relation between measures for nodes and clusters.
They try to establish algebraic relationships between these two types of
measures.

2. Heuristics based on measures for clusters and environments of nodes. They
define the k-neighbourhood of a node by a distance k, which is determined
as the minimum number of edges to go from one node to the other.

3. Compound heuristics. This sort of heuristics can be conceived as a hybridi-
sation where the criterion to be used will vary on the different temporal
stages of the triangulation process.

4. Iterative heuristics. Instead of using a single heuristic criterion to elimi-
nate a node, they can make several iterations (each one with a different
measure) in order to decide. They could be of k-iterations, where k could
go from 1 (classical approach) until n (n = |V|)). 2-iterations methods are
studied in [24].

Since the complexity of finding a minimal triangulation grows as n!, it is
not possible to carry out an exhaustive search directly, except when n is very
small. Nevertheless, to construct an elimination order successively and to stop
the execution when the total sum of the weights for the cliques (produced until
this moment) exceeds the current smallest weight of a complete ordering could
be of use to make an exhaustive search even for moderate-size graphs. Being

9 Each deleted variable produces a group of variables, and when this is maximal it
will therefore produce a clique.
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triangulation an NP-complete problem, we can not generally expect that a
branch-and-bound algorithm could find an optimal ordering within certain
time limits. That is, the algorithm should finish either when the number of
vertices exceeds a certain limit or when the number of the permutations left as
discarded increases too slowly. Of course, the initial ordering will have a huge
impact on the algorithm success. Thus, a branch-and-bound algorithm should
be preferably used combining it with another quite faster algorithm (the first
would be the last to apply) able of setting a “good” initial ordering for it with
the goal of avoiding examining too many useless orderings and also with the
goal of minimising the distance to some minimum ordering (we assume that
low cost orderings are closer to a minimum one than a high cost ordering).

We could observe that the mentioned heuristics are only one-step looka-
head, i.e., they just take into account that node which minimises a certain
criterion if this node was deleted in the next step. We could then think of
other heuristics able to look further than the next step. Unlike the heuristics
above explained, about those looking beyond the next step, there is not much
literature. This makes us think that, although they must produce better trian-
gulations than the former, this improvement is not very significant in contrast
to the complexity increase.

4 Methods Based on Stochastic Heuristics

The methods reviewed in section 3 present a good trade-off between the qual-
ity of the obtained deletion sequence (i.e. its associated join tree size) and
the amount of computational resources (CPU time) required. Therefore, this
kind of methods are suitable for on-line triangulation, that is, when there is a
direct interaction between the user (knowledge engineer) and the compilation
process and so a quick response is required. However, there are some occasions
in which compilation can be carried out off-line and the time requirement can
accordingly be relaxed. This is the case of compiling the final product (join
tree or inference engine) to be given to the final user. At this stage, our goal
should be to produce a junction tree as good as possible, because hundreds
or thousands of propagations will be carried out over it. Thus, at this stage
we can spend more time in the compilation process in order to achieve a bet-
ter junction tree, and as a result algorithms requiring more CPU time are
suitable.

When CPU time is not a strong constraint a family of algorithms arise
as a good choice: stochastic heuristic algorithms. These algorithms are (in
general) instances of metaheuristics that include stochastic behaviour so as to
try to escape from local optima. Below we review some different approaches to
the triangulation problem by using three outstanding representatives of this
family of algorithms.
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4.1 Simulated Annealing

Simulated annealing was (to our knowledge) the first stochastic heuristic used
to solve the problem of Bayesian networks triangulation [29; 48].

Simulated annealing (SA) [50] is a stochastic optimisation algorithm used
to look for global optima of NP-complete combinatorial problems having many
local optima. SA is similar to a hill climbing algorithm, but sometimes it ac-
cepts to move to a worst solution in order to avoid to be trapped at local
optima. The probability of accepting bad moves is controlled by a parameter
t called temperature. Initially, during the exploration phase the temperature
should be high in order to easily accept bad moves (exploration phase), but
in successive iterations the temperature is decreased according to a cooling
procedure and the probability of accepting cost-increases also decreases (ex-
ploitation phase).

When designing a SA algorithm for a given problem, different components
have to be specified. Here we describe the algorithm proposed in [29].

• The search space is defined as all the possible elimination orderings for V
(i.e., |V|! permutations).

• The neighbourhood of a deletion sequence σ is defined as all the deletion
sequences {σ′} obtained from σ by interchanging two of its nodes (posi-
tions).

• The cost/fitness of a deletion sequence is measured as the state space size
of its associated join tree.

These three design decisions together with an appropriate cooling schedule
are enough to have a SA algorithm that solves the triangulation problem,
however Kjærulff [29] adds the following improvements in order to enhance
the performance of the algorithm:

• Local computation of neighbour configurations (sequences). An efficient
method is proposed that evaluates a new deletion sequence by only con-
sidering the cliques obtained when deleting the variables between the two
interchanged positions.

• An additional parameter is introduced: the radius. The idea is to define
a window w (length), such that, only positions inside this window can
be interchanged. Initially a large window is set, so that free motion in
the search space can be done (exploration). However, when the search
process advances the window is reduced and so uniquely close neighbours
are explored (exploitation). Because of the local evaluation proposed, this
parameter is strongly related with the CPU time efficiency of the algo-
rithm, since the smaller the window is the more efficiently the neighbours
are evaluated.

The experiments carried out in [29] show that depending on the graph,
on the average the state-space size of the join trees obtained by minWeight
heuristics are 3 or 5.5 times larger than those obtained by SA.



140 M. Julia Flores and José A. Gámez

4.2 Genetic Algorithms

SA carried out a local search that tries to escape from local optima by using
a Monte Carlo method. On the contrary, Genetic Algorithms [22; 35] (GAs)
do a global search by using a population of candidate solutions instead of
a single one. In a GA we start with an initial population having solutions
distributed over all the search space, then all the solutions are evaluated and
a new population is obtained by: (1) selecting some of the individuals of the
previous population (usually, higher fitness implies higher probability of being
selected); (2) recombining some of the individuals of the previous population,
that is, two individuals (parents) are selected and two off-spring are obtained
by applying a crossover operator that mixes the representation of the parents;
and (3) mutating some of the selected individuals (with low probability a
small change is carried out over the individuals).

In the case of Bayesian networks triangulation the first contributions based
on GAs are [24; 30]. The main features of the GA developed in [30] (that
obtains similar results to the SA algorithm described in [29]) are:

• Individuals are represented by permutations (deletion sequences).
• The initial population is randomly generated in order to have initial points

distributed uniformly through the search space.
• The selection mechanism is based on the rank of the individuals according

to their fitness.
• A steady state GA is used. That is, in each generation instead of replac-

ing the whole population, only a pair of off-spring are generated (selec-
tion+crossover+mutation) and (only if they are better) they replace the
two worst individuals of the current population.

• Among the different specific operators for the case of permutations, Larra-
ñaga et al. [30] found the combination of CX as crossover and ISM for
mutation to be the best ones.

After these initial proposals different authors have used GAs to look for op-
timal deletion sequences. Concretely, Gámez and Puerta [20] slightly modified
the algorithm proposed in [30] (where simplicial nodes are previously removed
and informed initialisation of the population is used) obtaining better results
(in terms of CPU time and join tree size).

4.3 Ant Colony Algorithms

The third stochastic heuristics we are going to review is Ant Colony Optimi-
sation (ACO) [14].

Combinatorial optimisation based on ant colony systems is a recent meta-
heuristics that takes its basis on one aspect of ant behaviour, the ability to
find shortest paths. Thus, in ACO a set of artificial ants (or agents) is used to
look for the shortest paths in the same way as a real ant will do it: following the
pheromone track. Concretely, when an artificial ant is located in a branch and



A Review on Triangulation of Bayesian Networks 141

has to take a decision, it makes a probabilistic decision biased by the amount
of pheromone deposited on the different branches. Due to the fact that the
shortest paths are more frequently visited, they receive a higher amount of
pheromone and thereby become more attractive for the subsequent ants. In
this way the amount of pheromone plays the role of memoristic information,
but in ACO the decisions are based as well on heuristic information. Thus, in
the initial Ant System when an ant k is located at node i, it chooses node j
as the following node to be visited with a probability proportional to:

pk(i, j) =

{
[τij ]

α·[νij ]
β

∑
u∈Jk(i)[τiu]α·[νiu]β

if j ∈ Jk(i)

0 otherwise
(2)

where τij is the amount of pheromone in edge (i, j); νij represents heuristic
information (knowledge) about the problem; Jk(i) is the set of nodes for which
there is a direct path from node i and not yet visited by ant k; and α and
β are two parameters used to control the relative importance of pheromone
with respect to heuristic information.

Although this is not a complete description of ACO-based algorithms (see
e.g. [14]), one of the main differences in regard to previous discussed meta-
heuristics is already evident: in ACO algorithms is very easy to integrate
problem domain knowledge. The use of heuristic knowledge in ACO algo-
rithms helps to focus upon the search process (and speed it up), and this
is just the point studied in [20] where ACO algorithms are applied to the
Bayesian networks triangulation problem. Below, we describe the main points
of the approach presented in [20]:

• Representation. The first thing we need is a graph over which ants will
walk. In [20] the complete graph defined over the network variables is
used in such a way that it is always possible to reach a node i from a
node j for every pair of nodes (i,j). In consequence, there is a graph-form
representation equivalent to the one used for the TSP (Travelling Salesman
Problem [13]), but in the asymmetrical case, on account of the fact that it
is not generally the same deleting Xi before deleting Xj as in the reverse
order.

• Reduction. In this work simplicial nodes are removed before starting the
combinatorial optimisation problem. In this way the search space is (in
general) drastically reduced and the search results faster.

• Heuristic knowledge. In ACO algorithms the heuristic knowledge is usually
static, that is, it can be calculated before any ant is launched. This is not
the case in the triangulation problem, because the knowledge associated
to edge (i, j) does not only depend on itself, but on the nodes previously
visited (deleted). In [20] each ant implements a greedy heuristics (minSize,
minWeight, ...), that is, each ant carries out a triangulation over its own
copy of the graph. In this way, the matrix of pheromone will be a global
structure, while the heuristic knowledge will be local to each ant.
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• Origin nodes. As solutions are permutations any node will be valid as
the starting point. However in triangulation it has no sense to consider
(equally) all the nodes as possible origins. Thus, in [20] the probability of
a node to be chosen as origin is calculated as a function of its heuristic
value (minFill, minSize, ...).

• Transition rule. A variant of the rule described in eq. 2 is used in [20]:

j =
{

arg maxu∈Jk(i)

{
[τiu] · [νiu]β

}
if q ≤ q0

J if q > q0
(3)

where q is a random number uniformly distributed in [0,1], and J ∈ Jk(i) is
a node selected according to Eq. (2) with α = 1. This is the rule proposed
in Ant Colony Systems algorithms and it explicitly allows tuning (q0) the
amount of effort devoted to exploration/ exploitation.

Different experiments over a set of real and artificially generated net-
works are carried out in [20]. The obtained results turned out to be quite
successful, regarding both accuracy and efficiency. Thus, ACO algorithms al-
ways obtain (on average) deletion sequences better that GAs, and due to the
heuristic knowledge they use, the number of evaluated permutations (deletion
sequences) is considerably smaller, making this approach faster than the one
based on GAs. Furthermore, it presents also the advantage of having an ant-
autonomy feature that could make them fit perfectly in a parallel environment
with the aim of gaining efficiency.

5 Methods Based on Decomposition Techniques

Apart from the two previous approaches which are probably the most widely
used, other triangulation techniques can be found in the literature, such as
divide and conquer techniques based on the concept of treewidth10 [1; 2]. The
idea here is to use a different algorithm to triangulate in which the minimum
vertex cut method is needed [15]. At each iteration it finds a minimum set of
vertices X which being removed from graph G splits it into two disconnected
components A and B such that A ∪ B ∪ X = V . This set X is then called
the minimum vertex cut. This general algorithm proceeds in the two smaller
problems G[A ∪X] and G[B ∪X], that is, those subgraphs obtained by pro-
jecting G on A∪X and B∪X respectively. And it goes on in this way so that
each subgraph is triangulated such that X becomes a clique in it. As we will
see MPSD is somehow based on this principle as well.

Within these techniques based on decomposition another related research
line is the socalled recursive hypergraph partitioning (or simply hypergraph
partitioning). They are quite broadly used in the context of VLSI design [41],
but we can find some example of its application to join trees [11].
10 Treewidth = number of variables, minus one, included in the biggest clique in the

join tree



A Review on Triangulation of Bayesian Networks 143

There exists another method capable of simplifying the triangulation task.
In this case, it deals with a process to be performed prior to triangulate with
the chosen method. In bibliography we can find it with different names, being
simplicial (def. 5) the most broadly used. In [24] it is presented as reduction,
and consists in eliminating all those nodes that, together with their neigh-
bours, form a complete subgraph, i.e., no fill-in has to be added. This part
of the network is then already triangulated and deleting them is not going to
add any new fill-in. Another approach uses the application of preprocessing
rules in order to reduce the graph [7]. In this approach the authors have devel-
oped a set of sophisticated safe reduction rules (being the first one removing
simplicial nodes as well) to apply onto the graph before triangulation. The
results are good, since a smaller (sub)graph has to be triangulated, but the
technique requires more computation time than greedy heuristics.

Definition 5. (Simplicial node)
Let G = (V, E) be an undirected graph. A node N ∈ V is said to be simpli-
cial if this node N together with its set of neighbours,{N ∪ adj(N)}, form a
complete node set.

5.1 A Recent Triangulation Approach Based on the Divide &
Conquer Methodology

In this section we are going to describe the method triangulation by re-
triangulation which combines some of the philosophies previously noted.
Firstly, as treewidth-oriented techniques, it uses a method for dividing the
total graph in smaller components. Olesen and Madsen[36] launched the pos-
sibility of applying the Maximal Prime Subgraph (MPS) Decomposition to
the problem of triangulation. So, the idea is to retriangulate separately each
MPS, since it has been proved to be perfectly valid for the final result. And,
secondly, for those portions it will apply some methods of triangulation based
on the procedures to get a elimination sequence reviewed above. Then, the
work in [16] exploited the previous idea by using both greedy heuristic algo-
rithms and stochastic ones (genetic algorithms).

5.2 Maximal Prime Subgraph Decomposition

It is clear that the decomposition of an undirected graph can be used as a
tool for the triangulation procedure. We can consider the problem as a set of
solvable subgraphs, following divide and conquer philosophy (see Fig. 5).

In this particular case the Decomposition using Maximal Prime Subgraphs
(MPSD)11 of an undirected graph constitute an intermediate step in a new
approach for triangulation. This idea [36] consists of working separately on
different parts of the initial graph. The triangulation for each graph will be
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Fig. 5. Trying to reduce the problem of triangulating a network with n nodes to a
set of k smaller subproblems: triangulate each subgraph Sk separately.

done separately and the global solution will then be the sum/combination of
local solutions for smaller and independent graphs.

Let us just formalise the concept of maximal prime subgraph, for that,
we also introduce the definition for decomposition (def. 6) of a graph and the
characteristic for a graph of being decomposable (def. 7). Both of them can be
easily related from previously presented ideas, since for constructing the JT
we have made some kind of decomposition (MPS Tree will be the one which
accomplishes the complete separators condition) whereas triangulated graphs
are guaranteed to be decomposable [31] and that is somehow the justification
for the necessity for a triangulation step. That is the reason why from here,
we will refer to a decomposable graph as a triangulated graph.

Definition 6. (Graph decomposition)
Let G = (V, E) be an undirected graph, and let A and B be two sets of
vertices in G, G can be decomposed in A and B if and only if the following
conditions are satisfied:

- A ∪B = V,
- A \B �= ∅,
- B \A �= ∅,
- Both A \B and B \A are separated by A ∩B and
- And A ∩B is a complete subset (called clique separator).

Definition 7. (Decomposable graph)
If a graph G and its subgraphs can be decomposed recursively until all the
subgraphs are complete, then the graph is decomposable12.

11 Also known as decomposition by clique separators.
12 Note that a graph can be decomposed without being decomposable.
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Fig. 6. A simple example of graph decomposition where {B, E} is the clique sepa-
rator for the BN in Fig. 8.a.

Then, it is said that a graph is reducible if it can be decomposed, that is,
its set of nodes contains a clique separator, otherwise the graph is said to be
irreducible/prime/non-separable. And this leads directly to def. 8:

Definition 8. (Maximal Prime Subgraph)
A subgraph G(A) = (V, E)↓A of a graph G is a Maximal Prime Subgraph of
G if G(A) is irreducible and G(B) is not irreducible ∀B so that A ⊂ B ⊆ V.

Finally, from the previous concepts it just remains to indicate what the
Maximal Prime Subgraph Decomposition is13:

Definition 9. (Maximal Prime Subgraph Decomposition)
Let G = (V, E) be an undirected graph. Its Maximal Prime Subgraph Decom-
position is the set of induced maximal prime subgraphs of G resulting from a
recursive decomposition of G.

G � GM � GTmin � T � TMPD

Fig. 7. Graphical process that indicates how to reach the MPST TMPD from a
Bayesian network BN = (G,P), using as an intermediate step the join tree T .

To obtain the MPSD of an undirected graph [45; 46; 33], the method in
[36] is especially interesting for us, since it is based on the join tree constructed
from a BN. The decomposition of the graph in MPSs is returned in a form
of a tree: the Maximal Prime Subgraph Decomposition Tree (MPST), some-
times denoted as TMPD. Figure 7 shows graphically this process to obtain the
MPST in an schematic way. The MPST will express by itself a decomposition
(every tree node will denote a group of variables belonging to the same MPS).
We could say basically that once the triangulation from which a join tree is
13 It can be proved that this decomposition is unique for an undirected graph, as it

is the moral graph.
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Fig. 8. Example of a Bayesian network (a), its associated moral graph (b) and a
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Fig. 9. Construction of the MPSs tree and the obtained result.

obtained is assured to be minimal, if we aggregate those cliques whose sepa-
rators are not complete in GM , we obtain the corresponding maximal prime
subgraphs. If we have the network, moral graph and triangulated graph from
Figure 8, then Figure 9 will show a corresponding join tree and the associ-
ated MPS tree. Since this is the necessary to guarantee that triangulations
are minimal (def. 3), this can be achieved simply by using recursive thinning.

5.3 Triangulation of Bayesian networks by
re-triangulation

It has been proved that is perfectly valid [18] to triangulate every subgraph
in an independent way from the rest, and make a global triangulation of
the graph by the combination of these partial triangulations. Retriangulating
a graph can be worthy, even when the same triangulation method is used
twice. That is to say, the same triangulation method is applied (first) when
triangulating the moral graph, and (secondly) when triangulating each MPS
separately.

The algorithm of ReTriangulation is as listed here:

1. Obtain moral graph GM from BN .
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First step.
Initial Triangulation to get MPSD

(MPSD is unique)

Quick Heuristic method

minFill
minSize

{minFill,minSize,CanoMoral} = FSCM
Genetic Algorithm

CanoMoral

Second step. Re−Triangulation

Fig. 10. Scheme for the retriangulation experiments: first step provides the de-
composition and second step varies on the method Mi used to retriangulate the
subgraphs Si, giving place to the set of partial triangulations Fi.

2. Using whichever triangulation method obtain the MPS decomposition
D = {S1, S2, . . . Sk}

3. Triangulate each Si from D using a certain triangulation method Mi. Let
Fi be the obtained triangulation for subgraph Si.

4. Return the obtained result F = ∪k
i=1Fi.

An experimental evaluation of this technique using it for real networks [16]
was carried out, following the sketch in Figure 10. The obtained results have
been quite satisfactory and should be regarded from two different points of
view or goals:

1. Join Tree state space size:
• Considering the heuristic techniques the tree size is generally better

(smaller) when using the re-triangulation method, this difference is
even bigger when we use a combined method called FSCM14.

• With respect to GA, the sizes of the obtained trees are quite similar.
2. CPU time:
• Performing re-triangulation for heuristics implies a little more time,

but this is due to the extra task of constructing the MPS Tree. This
difference is only slightly noticeable for the heuristics because they are
normally quicker.

• FSCM is obviously three times slower than the rest (it tries the three
methods), but since heuristic techniques are really quick and selecting
the best one produces much better global results, it is a low price worth
paying.

• And the most important consequence related to time measuring is that
a huge speed up is provided to GA. For example, in the case of Network
Munin4 it can reduce (in this experiment settings) triangulation time
from more than one day to less than 4 hours.

14 It denotes a greedy technique that for every subgraph Sk tries the 3 different
heuristics (minFill,minSize and CanoMoral) and it chooses the one that gives the
best result, i.e., the smallest size. Since there is no an optimal heuristic for all
cases, FSCM selects the best method M∗

i for every subgraph.
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From these experiments and results we can mainly conclude that there
exist some possibilities to optimise these results and to explore new combina-
tions to get even better triangulations.

5.4 MPSD-based Incremental Compilation

In the last explained case, following the idea of divide and conquer, the nat-
ural decomposition of a graph into its prime subgraphs was exploited. In any
manner, this decomposition tool is not reserved for triangulation itself, it
can become even more powerful. The use of MPSD can be extended to the
whole process of compilation. Since triangulation is the most expensive phase
of compilation and this can be correctly and separately distributed among
MPSs, we could sketch other techniques so that compilation could be less
“dependent” on the global triangulation. For that, there exist a proposal to
look more closely into the possibility of retriangulating some portions of the
BN, and to use MPSD in order to perform incremental triangulations. This
idea led directly to work on developing the approach of MPSD-Incremental
Compilation of Bayesian networks [17]).

6 Main Conclusions

From this whole chapter and the analysed issues we can draw some main
conclusions.

First, triangulation is still an unsolved problem, at least for a general case.
There good techniques that might be adjusted depending on the problem, but
not an optimal one (produced in a reasonable amount of time).

But on the other hand, triangulating has also been proved to be an un-
avoidable step in the computation of Bayesian networks. As a consequence, for
solving queries and perform inference we must cope with this problem. This
necessity for triangulating has brought about several endeavours to handle
this problem, and the techniques found in literature are of distinct nature. So,
we have shown most of the known approaches to tackle triangulation classify-
ing them mainly in heuristic, stochastic algorithms and also techniques based
on the division/decomposition of the problem. The last described algorithm
(ReTriangulation) is of interest because it covers and integrates these three
discussed manners of undertaking and solving the triangulation task.

Even though we find strong foundations for triangulation on the theory
of graphs in literature, it is obvious that triangulation is still a quite open
field to optimisation. It is illustrative to point out how this problem is already
being studied in diverse mathematical and computing disciplines apart from
Bayesian networks (probabilistic systems) such as the area of graph theory,
VLSI (Very Large Scale Integration) circuits, data bases, constraint processing
and graph algorithms.
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