
ABSTRACT

A method for finding bugs in code is presented. For given

small numbers j and k, the code of a procedure is translated

into a relational formula whose models represent all execu-

tion traces that involve at most j heap cells and k loop itera-

tions. This formula is conjoined with the negation of the pro-

cedure’s specification. The models of the resulting formula,

obtained using a constraint solver, are counterexamples: exe-

cutions of the code that violate the specification.

The method can analyze millions of executions in sec-

onds, and thus rapidly expose quite subtle flaws. It can

accommodate calls to procedures for which specifications

but no code is available. A range of standard properties (such

as absence of null pointer dereferences) can also be easily

checked, using predefined specifications.

KEYWORDS

Detecting bugs; relational formulas; Alloy language; con-

straint solvers; testing; static analysis; model checking.

1 INTRODUCTION

This paper describes a method for finding bugs in code. It

requires no user input beyond a specification, is completely

automatic, and, when a bug is detected, provides a counterex-

ample trace through the code. It uses semantic technology in

the style of model checking, and typically considers huge

numbers of possible executions. It can thus discover quite

subtle bugs.

The specification language is Alloy [22], an object model-

ing language that has been used primarily for describing high

level specifications and designs. Alloy is a small and succinct

language, and since it subsumes first order logic with transi-

tive closure, can express a wide range of properties.

The general problem of determining whether a program

meets its specification is undecidable, so automation can only

be obtained in return for some compromise. In our case, we

want to detect as many errors as possible without generating

spurious error reports, so we have compromised complete-

ness. Errors may be missed, but reported errors correspond

to real traces.

Traditional shape analyses are directed at compiler opti-

mization, and therefore make a different compromise. If the

analysis infers a property of the code, it must hold, for other-

wise an unsound optimization may be performed. When a

property is not inferred, however, it may still hold. Put anoth-

er way, in checking a property of the code, traditional analy-

ses answers ‘yes’ or ‘maybe’; our analysis answers ‘no’ or

‘maybe’.

Whether an entire class of results – bugs reported or

checks passed – can be trusted is not the only issue. Accuracy

matters too: namely how often an answer, or an inference

drawn from its omission, is correct. A bug detection scheme

that guarantees answers that never arise in practice is less

useful than one that offers no guarantees, but which never-

theless finds most bugs and gives few spurious reports.

For the properties our analysis addresses, we believe that

conservative schemes are likely to be less accurate. Although

extremely effective for simple properties (such as type check-

ing), conservative analyses degrade as properties become

more complex. In the context of checking abstract designs

involving – like the code we consider here – unbounded data

structures, we have found that an analysis based on consider-

ing finite instances exposes many errors [19], while generic

abstractions that would allow ‘proof ’ of properties are hard to

find.

In the following sections, we show some sample results

from our analysis (Section 2), describe its workings (Section

3) and report on its application to a benchmark suite of small

Finding Bugs with a Constraint Solver

Daniel Jackson & Mandana Vaziri

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, Massachusetts 02139

{dnj, vaziri}@lcs.mit.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.

list processing procedures (Section 4). Throughout, our focus

is on the extraction of a relational formula from the code and

specification; our method for solving the formula is

explained elsewhere [24].

2 ILLUSTRATION

Figure 1 shows the code of an (incorrect) procedure for delet-

ing an element from a singly linked list. Below the procedure,

we give a variety of partial specifications, to illustrate the

expressive power of our specification language, and the kinds

of specification our method accommodates. In practice, one

would probably give only specification (3).

The fields of the List class are treated as binary relations, as

if they had been declared as

next : List ® List

val : List ®Val

Primed names represent the value of a relation after execu-

tion; unprimed names represent the value before. The plus

and star symbols denote transitive and reflexive transitive

closure, so l.*next’, for example, represents the set of list cells

reachable from the argument l after execution. The specifica-

tions say that (1) the set of cells reachable after is a subset of

those reachable before – ie, that no cells are added by the pro-

cedure; (2) that no cell reachable after has a value field equal

to v after; (3) that the set of cells reachable after is equal to the

set reachable before, minus the set of cells with the value v

before; (4) that no heap cell suffers a change in value; and (5)

that if the list is acyclic before (that is, no cell c reachable from

l in zero or more steps reaches itself in one or more steps),

then it is acyclic after.

Specifications (1), (4) and (5) hold; (2) and (3) do not.

The result of running our analysis for specification (2) is

shown in Figure 2. This is the output produced by our con-

straint analyzer, and is thus not tailored to the analysis of

code. It could obviously be improved; the path, for example,

might be shown as a list of program statements.

The initial values of the arguments (l and v) and the fields

(next and val) are given: l points to a list with a single cell, and

a non-null value field. The variables of the form Eij give the

edges of the control flow graph (Figure 5) that are traversed:

E01, for example, represents the edge from node 0 to node 1

(and the execution of the statement prev = NULL).

Intermediate values are given of both the program variables

(prev1, for example, denoting the value of prev after the first

assignment), and the fields (next1, for example, denoting the

value of next after the field-setting statement). The final val-

ues of the fields, next’ and val’, are in this case identical to the

initial values. The skolem constant c is the witness to the vio-

lation of the quantifier in the specification: it shows that L0 is

the cell that should have been removed.

This counterexample exposes a bug: that the first list cell

cannot be deleted. To investigate further, we might add as a

precondition that v not occur in the first cell:

l.val != v

Running the analysis again, we obtain a new counterexample:

a list with three cells, in which the last two cells share a value

equal to v. This exposes a second bug: that the procedure only

removes the first cell with a matching value. We might now

record as a representation invariant that the list be free of

duplicates:

all x| sole cell: l.*next | cell.val = x

(namely, that for every value x there is at most one cell reach-

able from l with that value). Repeating the analysis now finds

no counterexamples.

The key observation underlying our method is that even

though neither the flaws nor these specifications are trivial,

counterexamples requires few objects: one list cell for the first

bug and three for the second. Our conjecture is that it is fea-

sible to analyze exhaustively all possible executions that

involve no more than some small number of objects and a

couple of loop iterations, and that such an analysis is likely to

find many errors in practice.

Our constraint analyzer allows the user to set a scope that

bounds the number of atoms of each type. The cost of analy-

sis grows super-exponentially with scope, but we have found

class List {List next; Val val;}

class Procedures {
…
void static delete (List l, Val v) {

List prev = null;
while (l != NULL)

if (l.val == v) {
prev.next = l.next ;
return; }

else {
prev = l ;
l = l.next ;

}
…

// 1: no cells added
l.*next’ in l.*next

// 2: no cell with value v after
no c: l.*next’ | c.val’ = v

// 3: cells with value v removed
l.*next’ = l.*next – {c | c.val = v}

// 4: no cells mutated
all c | c.val = c.val’

// 5: no cycles introduced
no c: l.*next | c in c.+next -> no c: l.*next’ | c in c.+next’

Figure 1: Sample procedure and specifications

that, for most of the formulas we have analyzed (until now

mostly drawn from abstract designs rather than code) small

scopes often suffice.

Within a small scope, there are still many cases to consid-

er. In a scope of 5, the delete procedure has about 2 billion

possible inputs (without any constraints on the heap struc-

ture, and ignoring symmetry). Nevertheless, in this scope,

and for 5 loop unrollings, our analysis finds the counterex-

amples in 4 seconds. With the additional preconditions

added, so that no counterexamples are found, the resulting

search of the entire space takes just over 2 minutes.

3 METHOD

3.1 Overview

Consider a path through the code of a procedure, consisting

of a sequence of statements.At each point in the path – name-

ly at the start, the end, and between each statement – we rep-

resent the execution state with a collection of set and relation

variables. We then encode each statement as a constraint that

relates the states before and after execution of the statement.

The conjunction of these constraints characterizes, implicit-

ly, the sequences of states that may hold along that path.

Adding constraints that represent the negation of a specifica-

tion now gives us a formula whose satisfying assignments are

executions that violate the specification.

If we consider only at most some fixed number of loop

iterations, any procedure has a finite number of paths, and we

can create, by disjunction, a formula that represents all such

paths. A naïve enumeration of paths, however, fails to exploit

the large degree of sharing amongst paths, and suffers an

exponential blowup in the number of branches. Our method

therefore uses the control flow graph to construct the formu-

la, and indeed most of our paper is concerned with this con-

struction.

Since the formula language is undecidable, we bound the

number of heap cells considered. This allows the formula in

terms of sets and relations to be translated into a boolean for-

mula that can be solved efficiently by an off-the-shelf SAT

solver [24]. In effect, we are modelling the value of the heap

as a collection of bit matrices, one for each field of a class.

Suppose a class A has a field f of class B. Then the matrix for

f has a 1 in the (i,j) position when the f field of the ith object

of class A points to the jth object of class B.

We now explain the steps of the method in detail: how

program state is modeled relationally; how the formula is

constructed; and how it is solved. First, however, we give a

brief outline of our specification language.

3.2 Specification Language

Alloy [22] is a language for writing formulas about sets and

relations. Unlike other formal specification languages, Alloy

is strictly first order, making automatic analysis possible [23,

24]. Alloy’s syntax uses only ASCII characters, so it can be

used conveniently for annotating code.

A syntax for the subset of Alloy we shall need here is given

in Figure 3. (We have actually taken a few liberties to simpli-

fy the presentation. Alloy does not currently have boolean

variables, nor the empty set constant; these deficiencies are

worked around in our current implementation of the method

by using a slightly less natural encoding.)

An Alloy formula is accompanied by declarations of free

variables: sets, relations and booleans. Those sets that are not

declared as subsets of other sets are called ‘domains’, and are

uninterpreted. We will use one domain for each Java class:

List, for example, will model the set of objects of class List.

The set declaration

s : t m

makes s a set of elements drawn from the set t, where t is

either a domain or a set previously declared, and m is an

optional multiplicity symbol. The multiplicity symbols

(taken from regular expression syntax) are * (zero or more),

+ (one or more), ? (zero or one) and ! (exactly one). Omission

is equivalent to *. So

p : List ?

Domains:
List = {L0}
Val = {V0}

Sets:
E01 = traversed
E12 = (null)
E13 = traversed
E34 = traversed
E45 = traversed
E52 = traversed
E36 = (null)
E67 = (null)
E78 = (null)
E82 = (null)
l = L0
l1 = L0
prev = L0
prev1 = (null)
prev2 = (null)
prev’ = (null)
v = V0

Relations:
next = {}
next1 = {}
val = {L0 -> V0}
next’ = {}
next1’ = {}
val’ = {L0 -> V0}

Skolem constants:
c = L0

Figure 2: Counterexample to specification (2)

declares p to be a set of lists containing zero or one element—

that is, an ‘option’, which we will use to represent a possibly

null list variable. The relation declaration

r : s m ® t n

makes r a relation consisting of pairs whose first and second

elements are drawn from the sets s and t respectively. The

multiplicity symbols m and n are interpreted as in object

model diagrams: there are n elements of t associated with

each element of s, and m elements of s map to each element of

t. So

next : List ® List ?

declares next to be a partial function from lists to lists; it

will be used to model a possibly null field next of a list whose

value is a list.The syntax for formulas is largely conventional.

In addition to the standard universal (all) and existential

(some) quantifiers, there are quantifiers to indicate that there

are no values satisfying the formula (no), exactly one value (-

one), and at most one value (sole).

The elementary formula

e1 in e2

is true when the expression e1 denotes a subset of the set

denoted by the expression e2. When e1 is a singleton set, it

can be viewed as a scalar and the formula as a membership

test. The advantages of this scheme (making navigation

expressions uniform and side-stepping the partial function

problem) are explained in detail in [22].

All expressions denote sets: e1 + e2 denotes the union of

e1 and e2, e1 - e2 the difference, e1 & e2 the intersection. The

symbol {} denotes the empty set. The navigation expression

e.r denotes the image of the set e under the relation r. The

relation r in this expression may more generally be a qualifi-

er, with ~q denoting the transpose of the relation denoted by

q, +q the transitive closure, and *q the reflexive-transitive clo-

sure.

3.3 Modelling State

For the purposes of exposition, we will use as our program-

ming language the subset of Java shown in Figure 4. Note that

there are no vectors or hash tables, although our method can

handle them easily. It would also be straightforward to repre-

sent the heap model of C (without pointer arithmetic).

Handling arrays will be possible so long as indices are not

computed using complex arithmetic expressions.

Constructors are easy to handle and omitted for lack of

space; inheritance, however, is a problem we have not yet

addressed.

The heap is modeled as a domain C for each class C, and a

partial function for each field in a class. So, for example, if a

class A has a field f of class B, we declare

f : A ® B ?

so that for an object a of class A, f either maps a to some

object b of class B, or does not map a at all (to model the case

in which the f field of the object a is null). The environment is

modelled by a collection of variables, one for each local vari-

able or procedure argument. So, for example, for a variable v

of type C, we declare

v : C ?

indicating that the value of v is a set of objects of class C, con-

taining one or zero elements, admitting the possibility that v

is null. The declarations for the delete procedure of Figure 1

will therefore include:

l : List ?

v : Val ?

next : List ® List ?

val : List ®Val ?

This scheme is just one way to model program state.

Variables might instead be represented as atoms in their own

right, and the stack as a function from variables to values.

program ::= classdecl* procdecl*

classdecl ::= class class { class field , }

procdecl ::= class static proc (class var ,) { stmt }

stmt ::= var = expr | expr . field = expr
| return expr
| while pred { stmt }
| if pred stmt stmt
| stmt ; stmt

expr ::= null | var | expr . field

pred ::= (expr == expr) | ! pred | pred && pred

Figure 4: Syntax for a subset of Java

problem ::= decl* formula

decl ::= set-decl | rel-decl | bool-decl

set-decl ::= set-var : set-var mult

rel-decl ::= rel-var : set-var mult ®®®® set-var mult

bool-decl ::= bool-var : bool

mult ::= + | ? | !

formula ::= elem-formula | quant var [: expr] ‘|’ formula
| formula bool-op formula | ØØØØ formula | bool-var

bool-op ::= ÙÙÙÙ | ÚÚÚÚ | ÞÞÞÞ

quant ::= all | some | no | one | sole

elem-formula ::= expr in expr | expr = expr | expr != expr

expr ::= set-var| set-var set-op set-var | expr . qualifier | {}

set-op ::= + | - | &

qualifier ::= rel-var | ‘*’ qualifier | + qualifier | ~ qualifier

Figure 3: Syntax for a subset of Alloy

Null might be represented as a special value. The choice

affects the cost of the analysis, and the ease with which it may

be instrumented (Section 3.10).

At each point in the execution of the procedure, there is a

value for each variable and heap relation. We therefore gener-

ate constraint variables v[i] and f [i] for a program variable v

and field f at each point i, although, as we shall see, it is often

possible in the absence of modifications to share variables

across program points.

3.4 Constructing the Computation Graph

Procedures are translated to formulas in two stages. First, an

annotated control flow graph called a computation graph is

constructed from the code. Second, the relational formula is

extracted from the graph.

A computation graph is essentially a unrolled control flow

graph. A node represents a program point, and an edge rep-

resents either a predicate test or an elementary program

statement. There is a single entry node and a single exit node,

every node sits on a path between entry and exit, and there

are no cycles. Return statements and exceptional termina-

tions are modelled by edges to the exit node.

A path through the graph from entry to exit will represent

an execution of the procedure. Each node in the path repre-

sents control passing through a given textual point in the

code; each predicate edge traversed represents an execution

of that predicate in which it evaluates to true; and each state-

ment edge traversed represents an execution of that state-

ment. Not all paths through the graph are feasible, since the

nodes themselves represent only the control portion of the

state.

For a procedure without loops, the graph is the control

flow graph of the program. If there is a loop, it is unrolled in

the obvious manner. One unrolling, for example, applied to

a ; while (p) s ; b

results in the graph that would be obtained from the program

a ; if (p) s ; assert !p ; b

whose executions are required to have p be false at the assert.

The computation graph for one unrolling of the delete

procedure of Figure 1 is shown in Figure 5.

3.5 Generating Variable Names

For each state component, we construct a labelling of the

computation graph. The label of a node will be used to gen-

erate, at each node, a variable that represents the value of the

state component there. (This scheme is similar to single stat-

ic assignment [5], although we use disjunction to represent

branches instead of phi functions, and introduce explicit

frame conditions.)

The simplest approach is to generate a variable for each

state component at each node. In this case, the labelling is the

same for all components. Whenever a state component is

unchanged between two adjacent nodes, we add an explicit

equality between the variables at the two nodes. This results

in far more variables than necessary, however.

We improve on this in two ways. First, we allow ourselves

to assign the same label to nodes connected by a non-modifi-

cation edge – an edge representing a predicate or statement

that never changes the value of the state component. Second,

we reuse labels across paths. Since no execution involves

more than one path, we can use the same label twice so long

as there is no path that passes through the two nodes.

For each state component, we assign labels to satisfy the

following rules:

(a) on a given path, labels are distinct, although two nodes

may have the same label if the subpath connecting them

consists only of non-modification edges;

(b) for the graph as a whole, as few as possible labels are used.

A simple algorithm suffices: we label each node with an

integer representing the length of the longest path to it from

the entry node, treating non-modification edges as having

length 0 and other edges as having length 1.

The result of this phase (shown for delete in Figure 6) is a

mapping at each node from state components to constraint

variables. For a state component c at node i, c[i] is a constraint

variable obtained by appending c’s label at i to c’s name.

The ovals in the Figure 6 show these variable names at

each node. There are 3 variables for prev, corresponding to

0

1

2

3

4 6

5 7

8

prev = NULL

l != NULLl == NULL

l.val == v l.val != v

prev = l

l = l.next

prev.next = l.next

return

l == NULL

Figure 5: Computation graph for one unrolling of delete

the initial value and the values following the two assignments

to it, but only 2 variables for next, because it is modified by

only a single statement. The components val and v are never

changed, so only one variable is generated for each.

In order to allow the specification to refer to the state

before and after execution without knowledge of the compu-

tation graph structure, a field component f is given the name

f ’ on exit from the procedure. An extra variable is generated,

along with a frame condition equating it to the variable name

for f in the exit node. For a component that models a program

variable, no primed constraint variable is created, since

(under call-by-value) the value of a procedure argument is

unmodified.

To avoid frame conditions, it helps to minimize the num-

ber of non-modification edges that connect nodes with dis-

tinct labels. The variable prev2, for example, is in fact not

required, since prev’ could take its place in nodes 2, 7 and 8.

One could propagate labels across non-modification edges to

do this, but our current implementation does not do so.

3.6 Encoding Control Flow

The structure of the computation graph is encoded as a

boolean formula. Each edge e is given a boolean variable

trav[e]; this variable will be true for executions in which the

edge is traversed. For each node n with incoming edges in(n)

and outgoing edges out(n), we generate the formula

�{ trav[e] | e � in(n)} � �{ trav[e] | e � out(n)}

which says that if an incoming edge is traversed, then some

outgoing edge is traversed also.

Encoding the graph of Figure 5 produces:

E01 � E12 � E13

E13 � E34 � E36

E34 � E45

E45 � E52

E36 � E67

E67 � E78

E78 � E82

where trav[e] is E with the labels of e’s endnodes appended.

3.7 Encoding Data Flow

A formula is obtained from each edge of the computation

graph that encodes its dataflow. The encoding is specified

with three translation functions (Figure 7) that act on the

label of the edge, and are parameterized by its start and end

nodes. For a statement edge, the function S is applied; for a

branching edge labelled with a predicate, the function P is

applied; E is an auxiliary function used to translate expres-

sions in both predicates and statements.

0

1

2

3

4 6

5 7

8

prev = NULL

l != NULLl == NULL

l.val == v l.val != v

prev = l

l = l.next

prev.next = l.next

return

l == NULL

{l,v,next,val,prev}

{l,v,next,val,prev1}

{l,v,next,val,prev1}

{l,v,next,val,prev1}

{l,v,next,val,prev2}

{l1,v,next,val,prev2}

{l1,v,next1,val,prev2}

{l,v,next,val,prev1}

{l,v,next1,val,prev1}

Figure 6: Generated variables for one unrolling of delete

S : JavaStatement, Node, Node ® AlloyFormula
P : JavaPredicate, Node, Node ® AlloyFormula
E : JavaExpr, Node ® AlloyExpr

S “ v = e ‘ ij = v[j] = E “e ‘ i
S “ e. f = t ‘ ij =

(E “ e ‘ i) .f [j] = E “ t ‘ i
� (all o: Obj – (E “ e ‘ i)| o.f [i] = o.f [j])

S “ return e ‘ ij = result = E “ e ‘ i

P “ e1 == e2 ‘ ij = E “ e1 ‘ i = E “ e2 ‘ i
P “ !p ‘ ij = Ø P “ p ‘ ij
P “ p && q ‘ ij = P“ p ‘ ij � P “ q ‘ ij

E “ v ‘ i = v[i]
E “ NULL ‘ i = {}
E “ e.f ‘ i = (E “ e ‘ i) . f [i]

Figure 7: Translation functions

The first rule for S, for example, says that an edge labelled

with the statement v = e for Java variable v and expression e,

and which connects node i to node j, is translated into a for-

mula that equates the Alloy variable that represents v at j with

the Alloy expression that denotes the value of the expression

e at node i. The second rule, for the field-setter e.f = t, equates

the value of the expression t in i with the value of the field f in

j of the object denoted by e in i. It also adds a frame condition

saying that the f field of no other object changes.

The formula obtained from an edge label is only relevant

if that edge is executed. So for an edge e whose label is trans-

lated to formula F, the final formula is

trav[e] � F

which says that the dataflow encoded in F applies when the

edge is traversed.

For example, the statement

l = l.next

on the edge between nodes 7 and 8 gives

E78 � l1 = l.next

3.8 Frame Conditions

When an edge connects nodes that assign a different label to

a state component, but that component is not modified by the

statement associated with the edge, a frame condition is gen-

erated. If the component is a Java variable v, and the edge

connects node i to node j, the condition is

v[i] = v[j]

If the component is a field f, the condition is

all o | o.f [i] = o.f [j]

The set of components not modified by a statement is easily

obtained: for v = e, it includes all components bar v; for e.f =

t, it includes all components bar f.

For example, nodes 8 and 2 are connected by a non-mod-

ification edge for next, so we would generate the frame con-

dition

E82 � all o | o.next = o.next1

3.9 Formula Extraction and Analysis

Putting things together, the code formula representing the

entire graph is obtained by conjoining the control flow con-

straints, the dataflow constraints and the frame conditions.

The result for one unrolling of delete is shown in Figure 8.

Given a specification with a precondition Pre and a postcon-

dition Post (which may mention both pre- and post-states),

the specification formula is

Pre � Post

whose negation is conjoined to the code formula C, giving

Pre � Code � ØPost

Models of this formula represent executions of the code in

which the precondition holds but the postcondition does not:

in other words, cases for which the code is supposed to

behave correctly, but fails to.

The formula is solved using our constraint analyzer for

Alloy formulas [23, 24]. The only additional input beyond the

formula and the declarations of the state components is the

choice of scope, bounding the number of elements in each

type – in this case the representing the set of objects in each

class.

If the analysis finds a model, a counterexample trace is

easily reconstructed from it. We examine the values of the

boolean variables trav [e] to extract the path through the

graph; the value of each state component at each node is then

found by examining the variable with the appropriate label.

If the analysis fails to find a model, no error has been

found within the given scope. One can increase the scope, in

the hope of finding an error that requires a larger heap. Soon,

however, the analysis becomes intractable. We have yet to

determine how large a scope is required to find most errors;

for the benchmark procedures, a scope of 1 sufficed to find all

known bugs.

3.10 Null Dereferences

If the procedure being analyzed has executions that derefer-

ence null, the analysis described so far may miss errors (but it

will not generate spurious reports). To handle potential null

E01
E01 Þ prev1 = {}
E01 Þ E12 Ú E13
E12 Þ l = {} Ù prev2 = prev1 Ù l1 = l Ù all e | e.next1 = e.next
E13 Þ l != {}
E13 Þ E34 Ú E36
E34 Þ l.val = v
E36 Þ l.val != v
E34 Þ E45
E45 Þ prev1.next1 = l.next Ù all e: List - prev1 | e.next1 = e.next
E45 Þ E52
E52 Þ prev2 = prev1 Ù l1 = l
E36 Þ E67
E67 Þ prev2 = l
E67 Þ E78
E78 Þ l1 = l.next
E78 Þ E82
E82 Þ l1 = {} Ù all e | e.next1 = e.next
prev’ = prev2
all e | e.next’ = e.next1
all e | e.val’ = e.val

Figure 8: Formula for code of delete, one unrolling

dereferences, we instrument the code with an extra state

component, NullDerefs, whose value at any program point

holds the set of objects with a null field that has been improp-

erly dereferenced.

Let Refs “e‘ be the set of expressions denoting objects

whose fields are dereferenced when e is evaluated. If e is

v.f.g.h, for example, Refs “e‘ would include v, v.f and v.f.g.

Whenever an expression e.f appears in a statement labelling

an edge from i to j, we generate the formula

NullDerefs[j] =

NullDerefs[i] + { o | o = Refs “e‘ Ù E“e ‘ = {}}

which adds to the null dereference set each object o which has

a null field that results in e evaluating to null. To check the

procedure, we generate a specification saying that the final

value of NullDerefs is empty. A counterexample will show not

only at which point in the program the null dereference

occurred, but also which object had the null field. (This

scheme does not catch dereferencing of null-valued variables.

To track variables, one could model them explicitly, and rep-

resent the stack as a function from variables to objects.)

A subtle problem arises when a procedure is faulty. If the

expression e evaluates to null in Java, then in the formula

obtained by translating

e.f = x

the expression corresponding to e will denote the empty set,

and its image under the field relation will likewise be the

empty set. Unless the right-hand expression x also evaluates

to null, the formula as a whole will be false, and the path

involving this case will not be considered!

To prevent this in a clean and systematic fashion, we could

add an edge from the statement to the exit node of the proce-

dure, faithfully modelling a runtime exception when the null

dereference occurs. But this complicates the construction,

and in practice, a simple trick works well. We translate the

right-hand side expression to

x & {o : Obj | e != {}}

The expression {o : Obj | e != {}} denotes the set of all objects

when e is non-empty, and the empty set otherwise.

Intersecting it with x therefore gives x, as before, when e is not

a null dereference, and gives the empty set, making the for-

mula vacuously true, when it is.

Similar instrumentation can be added to account for other

properties that involve abnormal terminations. Memory

leaks, for example, could be handled by tracking which

objects are free; and erroneous typecasts could be caught by

testing membership of objects in the sets representing the

expected classes.

4 EXPERIMENTS

We applied our method to a suite of 8 procedures taken from

[9], which include sample programs taken from [12] and

[25]. These all involve destructive updates of linked lists, and

vary from 7 to 30 lines in length.

The formulas were obtained mechanically from the code

using a prototype translator. Translation time is insignificant.

Because Alloy has no boolean type and is not designed to

handle large numbers of disjunctions, we were forced to rep-

resent the trav variables and their formulas in a rather unnat-

ural (and perhaps less efficient) manner than described

above. This problem is not hard to fix.

All analyses were performed on a 233MHz Pentium 2 with

132MB of memory.

We wrote assertions to check two kinds of property. First,

we analyzed the procedures for the anomalies considered by

[9]: namely null dereferences and creation of cyclic struc-

tures. (Since we translated the sample programs from C to

Java, we did not consider the analysis of memory leaks, even

though it is easily handled by our method).

Second, we specified the obvious user-defined properties

for each procedure. These included simple set inclusion

properties: for example, that reverse and rotate do not change

which cells are in the list; that merge yields a list with the

union of the cells in each input list; and that delete removes

the given cell. We also checked more complex properties: for

example that reverse actually reverses the list and that merge

produces a sorted output list from two sorted input lists.

Our analysis detected all the anomalies previously detect-

ed, as well as an anomaly not mentioned in the previous

papers: that merge creates a cyclic list if its arguments are

aliased. All the anomalies were found in a scope of 1. In a

scope of 3 – that is, 3 list objects and 3 value objects – finding

a counterexample takes no more than a second for any of the

examples.

When there is no counterexample, and for a scope of 3, the

analysis takes less than a second in all cases except for one:

checking that the result of the merge procedure is a list whose

elements include the elements of the argument lists p and q:

result.*next = p.*next + q.*next

The timings for this analysis for a variety of scopes are shown

in Table 1. The column marked #iters gives the number of

loop iterations considered: loops were unrolled to match the

scope, since otherwise the longest possible argument list can-

not be traversed. The column marked #bits gives the number

of boolean variables used to encode the set and relation vari-

ables that represent the values of state components; the

boolean formula presented to the solver typically has many

more variables because of the introduction of variables in the

conversion to conjunctive normal form. The last column

gives the time taken to exhaust the search.

5 RELATED WORK

5.1 Testing

Our method might be viewed as a form of testing, but it dif-

fers from testing in several important respects:

· It can be applied to code in which calls are made to proce-

dures for which specifications but no code is available.

This means that programs can be analyzed during con-

struction before they are complete. Also, programs that

make use of an API can be fully analyzed even though the

actual code of the API is unavailable, and libraries that are

implemented at a lower level (eg, as native code) can be

accounted for.

· It generally considers many more cases than are feasible in

conventional testing. For the benchmark examples, our

method can consider millions of possible inputs to a list

processing procedure in only a couple of seconds.

· Our method does not execute the code, but rather propa-

gates values in a goal-directed fashion. For example, if the

specification requires that the result of the procedure be

an acyclic list, our method might effectively start by

assuming a cyclic list as the result, and search backwards

to an appropriate input from there. In fact, as we shall

explain, the search is performed on a boolean formula and

so predicting exactly how it proceeds is hard, since it

depends on the heuristics of the solver and the exact

structure of the formula. Nevertheless, this intuition helps

to explain why our method can often find elaborate coun-

terexamples with relatively little search.

· Any property of the program state that can be expressed

in our specification language can be analyzed. For exam-

ple, our method could be used to detect memory leaks in

C programs, simply by giving distinguishing freed and

unfreed cells, and checking at the end of the procedure

that every unreachable cell has been freed. Although test-

ing can analyze such properties, the instrumentation

needed is often elaborate.

Our method is not intended to replace testing. Our speci-

fication language is designed for object model properties:

namely what objects exist, how they are classified grossly into

sets, and how they are related to one another. It is not

designed for arithmetic properties, so our method is not suit-

able for analyzing numerical algorithms. We do not address

concurrency, although we should be able to analyze proper-

ties that are important in a concurrent setting, such as own-

ership of locks and containment of objects. Moreover, like a

static analysis, our method treats program statements as if

they have their advertised semantics, so unlike testing, will

not detect errors due to faulty compilation or to unexpected

interactions with the operating system, device drivers, etc.

5.2 Shape Analysis

Classic shape analyses (eg, [5,14]) simulate the execution of

the program text over an abstract state. Each instance of the

state represents a (usually infinite) set of concrete states. By

ensuring that the abstraction is conservative—that is, the set

of concrete states always includes the states that might arise in

an actual execution—the analysis can effectively prove prop-

erties for all executions. Our method differs in the following

respects:

· As discussed above, our method answers “no” or “maybe”,

rather than “yes” and “maybe”. Failure to detect a bug does

not mean that the program is correct, but error reports are

not spurious.

· Shape analyses are typically designed to analyze a pro-

gram for a small, fixed repertoire of properties. Our spec-

ification language allows the user to express arbitrary

structural property of the state. Furthermore, shape analy-

ses do not usually relate states at different points; they

indicate what properties the state has at a given point in

the code, but do not, for example, infer properties about

how the initial and final states are related.

· Most shape analyses are based on a form of abstract inter-

pretation in which the shape of the heap at a given point is

obtained by applying a transfer function to the shapes of

the heaps at immediately preceding points. As a conse-

quence, such analyses cannot handle procedure calls by

using their specifications instead, unless the specifications

are given as abstract programs. Moreover, since the analy-

sis cannot be reversed, it is not possible to derive a coun-

terexample trace when a property is found not to hold.

· The abstractions used in shape analyses lose a lot of infor-

mation. In short, the cost of soundness is a large number

of false negatives. In a compiler, these simply result in

missed opportunities for optimization, but in a software

engineering tool, they cause spurious error reports.

Whether an abstraction succeeds is usually highly

dependent not only on the behaviour of the code, but also

how it is written; a tool based on shape analysis is thus

likely to be unpredictable. There are no conservative

analyses, to our knowledge, that can analyze the full range

of properties our specification language can express with-

out often producing spurious reports.

· Shape analyses are tailored to particular properties. If a

new property is to be analyzed, the abstraction must usu-

ally be altered. In our method, the transformations per-

formed on the code itself are independent of the specifica-

Table 1: Performance for hardest problem

scope iters bits time

1 1 103 0s

2 2 133 2s

3 3 163 12s

4 4 193 6m 23s

tion against which it is being checked, and the incorpora-

tion of the specification itself is by a simple logical opera-

tion, with no change to the representation of the state.

Recently, Sagiv, Reps and Wilhelm [29] have developed a

parametric shape analysis (PSA). It does not fundamentally

overcome any of these problems: it cannot incorporate spec-

ifications in the code, for example, or generate concrete coun-

terexamples, and the analysis must be tailored (using ‘instru-

mentation predicates’) to the property being checked.

Nevertheless, the underlying mechanism can accommodate a

wider range of properties than traditional shape analyses—

in principle the same as ours, since their property language is

a first-order logic with transitive closure. Also, unlike other

shape analyses, PSA can sometimes give a sound ‘no’ answer

to a property check.

5.3 Lightweight Static Analyses

A number of analyses based on augmented type systems have

been developed that are less powerful (but more tractable)

than shape analyses, such as refinement types [13] and soft

types [4]. None of these are powerful enough to analyze the

kinds of properties we are concerned with here, since they do

not correlate the values of different variables. Many other

analyses, such as set constraints [16], comments analysis

[17], LCLint [12], Inscape [28], and Aspect [18] are limited

for the same reason.

5.4 Symbolic Execution & Theorem Proving

A decision procedure for pointer-properties of loop-free pro-

grams has been developed by Jensen et al [25]. A Hoare triple

yields a proof obligation that is translated into a second-

order monadic logic, with a potentially non-elementary

blowup. In practice, the worst case blowup is not observed,

and the same procedures we have analyzed here are handled

in times ranging from 25 to 94 seconds. The analysis can

prove properties, and can generate concrete counterexam-

ples. The user supplies loop invariants. It is not clear whether

the method can be extended to heap structures that are not

linear or tree-like.

The Extended Static Checker (ESC) [8] uses a powerful,

tailored theorem prover to check code against user-supplied

specifications. It has been applied mainly to showing the

absence of flaws such as out-of-bounds array access, null

pointer dereferencing and unsound use of locks. It has not

been used to check the kind of heap structuring properties

our method addresses. Error reports may be spurious,

although this appears to be rare in practice. More remarkably,

omission of error reports does not imply correctness. The

conventional rules about modifies clauses and beneficent side

effects turn out to be unsound [27]. ESC’s developers found

that correcting them increases the number of spurious

reports unacceptably.

The PREfix tool, developed by Jon Pincus of Microsoft

Research, detects anomalies by a symbolic execution of the

code [26]. Carefully judged heuristics allow it to detect many

errors without generating too many spurious reports; it has

apparently found thousands of anomalies in the code of

Windows 95.

5.4 Model Checking

Currently, there is much interest in applying model checking

technology to code. The Bandera project (at Kansas State,

Hawaii and UMass) is developing a toolkit that extracts finite

state machines from code using program slicing and shape

analysis [6], and then applies off-the-shelf model checkers.

The SLAM project (at Microsoft Research) has developed a

strategy that combines symbolic execution and model check-

ing that allows the extracted model to be refined incremen-

tally. The model checking algorithm itself is novel, and uses

context-free language reachability to handle recursive proce-

dure calls [2]. The FLAVERS project (at UMass, Amherst)

uses dataflow analysis to analyze extracted state machines,

and also supports incremental refinement [10].

All of these have been concerned primarily with the analy-

sis of event sequences rather than data structures. Where

analysis of data structures has been used, its purpose has

been to simplify the state machine to be analyzed, rather than

to provide feedback to the user about the data structures

themselves. The Java Pathfinder project (at NASA Ames) also

focuses on the checking of event properties, but, more in

common with our method, involves data structures in the

model checking analysis [15]. A Java program is essentially

simulated for all possible interleavings of threads, using

dSPIN, a variant of the SPIN model checker that offers

dynamic allocation of heap cells.

Pathfinder is designed for checking concurrency proper-

ties. How well it would work for data structure properties is

unclear. Being simulation-based, Pathfinder is a whole-pro-

gram analysis: it cannot analyze a procedure in isolation, or

use implicit specifications for called procedures.

SAT solvers have been used to find executions of a system

in planning [11], in checking software specifications [20,21],

and more recently in linear temporal logic checking [3]. The

idea of representing a sequence of operations as a single for-

mula is much older, and is present in the Z specification lan-

guage [30] for example. The use of a constraint solver to find

a counterexample trace from a fixed sequence of operations

is illustrated in [19]. Considering a few unwindings of a loop

is an idea familiar from program testing; the idea of bound-

ing execution paths is found in the earliest papers on sym-

bolic execution [26].

6 CONCLUSIONS

We have described a simple but expressive specification nota-

tion in which data structures are treated as relations (or

equivalently graphs), and a fully automatic analysis that can

expose non-trivial errors and give concrete counterexamples.

The method involves two steps: translation of the code

into a relational formula, and an attempt to find models of the

relational formula. The efficiency of the analysis, and its abil-

ity to consider huge numbers of cases, comes from the power

of modern SAT solvers, which lie at the core of our analysis

tool.

The analysis takes two parameters: the number of loop

unrollings, which affects the translation into a relational for-

mula, and the scope (ie, the number of heap cells), which

affects the translation of the relational formula into a boolean

formula.

We have shown that our method is at least able to detect all

the anomalies in a benchmark suite of programs previously

found by shape analyses, but that in addition we are able to

check user-defined properties. Since our analysis treats even

elementary program statements as if they were declarative

specifications, we are hopeful that it will extend to the analy-

sis of code in terms of abstract sets and relations specified in

an API.

The effectiveness of our method lies in the small scope

hypothesis: that even though, for any given scope k, one can

construct a program with a bug whose detection requires a

scope of k+1, in practice, many bugs will be detectable in

small scopes. Indeed, all of the anomalies previously identi-

fied in the benchmark suite can be demonstrated with coun-

terexamples that use a single list cell.

To ensure that small scopes will suffice, we will need to

overcome at least two obstacles. First, there may be resource

boundaries: this is why programs often fail when a structure’s

size grows just beyond a power of 2. We will need to treat any

such bounds as parameters of the analysis, so that resource

overflow can be simulated in small scopes. Second, a larger

scope may be required simply to populate a collection of

irrelevant structures. Some kind of slicing may address this

problem.

It will not be practical when analyzing large programs to

model all datatypes. In practice therefore, there will be infor-

mation in the state that is abstracted away in the analysis, and

a counterexample may be generated for an infeasible path. It

remains to be seen whether this will be a problem in practice.

ACKNOWLEDGMENTS

This work benefited greatly from discussions with Tom Ball,

Nurit Dor, Fritz Henglein, Rustan Leino, Tom Reps, Martin

Rinard and Mooly Sagiv; from David Karger’s help in devel-

oping the labelling algorithm; from the contributions of Ian

Schechter and Ilya Shlyakhter to the Alloy Constraint

Analyzer upon which this work is based; and from the help-

ful comments of Sarfraz Khurshid and the anonymous

reviewers on an earlier draft of the paper. The research was

supported in part by the MIT Center for Innovation in

Product Development, funded under NSF Cooperative

Agreement Number EEC-9529140, and by a grant from the

Nippon Telephone and Telegraph Corporation.

REFERENCES

[1] F.E. Allen. Control Flow Analysis. Proceedings of a

Symposium on Compiler Optimization. SIGPLAN

Notices 5, 7, July 1970, pp. 1–19.

[2] Thomas Ball and Sriram K. Rajamani. Boolean

Programs: A Model and Process for Software Analysis.

MSR Technical Report 2000-14, Microsoft Research,

Redmond WA, February 2000.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.

Symbolic Model Checking without BDDs. Tools and

Algorithms for the Analysis and Construction of

Systems (TACAS’99), LNCS 1579, Springer-Verlag,

1999.

[4] Robert Cartwright and Matthias Felleisen. Program

Verification Through Soft Typing. ACM Computing

Surveys, 28(2), pp. 349-35, 1996.

[5] D.R. Chase, M. Wegman and F. Zadeck. Analysis of

Pointers and Structures. Proc. Conf. on Programming

Language Design and Implementation, pp. 226–228,

ACM Press, 1990.

[6] James C. Corbett. Using Shape Analysis to Reduce

Finite-State Models of Concurrent Java Programs.

ACM Transactions on Software Engineering and

Methodology, 9(1), 2000, pp. 51–93.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark

N. Wegman and F. Kenneth Zadeck. Efficiently

Computing Static Single Assignment Form and the

Control Dependence Graph. ACM Transactions on

Programming Languages and Systems, Vol. 13, October

1991, pp. 451–490.

[8] D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe.

Extended static checking. Technical Report 159,

Compaq Systems Research Center, 1998.

[9] Nurit Dor, Michael Rodeh & Mooly Sagiv. Detecting

Memory Errors via Static Pointer Analysis. Proc. ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering (PASTE ’98) Montreal,

June 1998.

[10] Matthew Dwyer and Lori Clarke. Data Flow Analysis

for Verifying Properties of Concurrent Programs.

Proc. Second ACM SIGSOFT Symposium on

Foundations of Software Engineering, December 1994,

pp. 62–75.

[11] Michael D. Ernst, Todd D. Millstein and Daniel S.

Weld. Automatic SAT-Compilation of Planning

Problems. Proc. 15th International Joint Conference on

Artificial Intelligence (IJCAI-97), Nagoya, Aichi, Japan,

August 1997, pp. 1169–1176.

[12] David Evans. Static Detection of Dynamic Memory

Errors. Proc. ACM SIGPLAN Conf. on Programming

Language Design and Implementation, 1996.

[13] Tim Freeman and Frank Pfenning. Refinement Types

for ML. Proc. ACM Symposium on Principles of

Programming Languages, ACM Press, 1991.

[14] R. Ghiya and L. Hendren. Putting Pointer Analysis to

Work. Proc. ACM Symposium on Principles of

Programming Languages, ACM Press, 1998.

[15] Klaus Havelund and Tom Pressburger. Model

Checking Java Programs Using Java Pathfinder.

International Journal on Software Tools for Technology

Transfer, 2(4), Springer-Verlag, April 2000.

[16] Nevin Heintze. Set Constraints in Program Analysis.

1993. Proc. 10th International Symposium on Logic

Programming, D. Miller (Ed.). MIT Press, 1993.

[17] William E. Howden. Comments Analysis and

Programming Errors. IEEE Transactions on Software

Engineering, SE-16/1, January 1990.

[18] Daniel Jackson. Aspect: Detecting Bugs with Abstract

Dependences. ACM Transactions on Software

Engineering and Methodology, Vol. 4, No. 2, April 1995,

pp. 109-145.

[19] Daniel Jackson and Craig A. Damon. Elements of

Style: Analyzing a Software Design Feature with a

Counterexample Detector. IEEE Transactions on

Software Engineering, Vol. 22, No. 7, July 1996, pp.

484–495.

[20] Daniel Jackson. Boolean Compilation of Relational

Specifications. Technical Report MIT-LCS-TR-735,

MIT Lab for Computer Science, Cambridge, MA,

December 1997.

[21] Daniel Jackson. An Intermediate Design Language

and its Analysis. Proc. ACM SIGSOFT Foundations of

Software Engineering, Orlando, Florida, 1998.

[22] Daniel Jackson. Alloy: A Lightweight Object Modelling

Notation. Technical Report 797, MIT Laboratory for

Computer Science, Cambridge, Mass, February 2000.

Available at:

http://sdg.lcs.mit.edu/~dnj/abstracts.html#alloy.

[23] Daniel Jackson, Ian Schechter and Ilya Shlyakhter.

Alcoa: the Alloy Constraint Analyzer. Proc.

International Conference on Software Engineering,

Limerick, Ireland, June 2000.

[24] Daniel Jackson. Automating First-Order Relational

Logic. To appear, Proc. ACM SIGSOFT Foundations of

Software Engineering, San Diego, CA, November 2000.

[25] Jakob L. Jensen, Michael E. Jorgensen, Nils Klarlund

and Michael I. Schwartzbach. Automatic Verification

of Pointer Programs using Monadic Second-Order

Logic. Proc. SIGPLAN Conf. on Programming

Language Design and Implementation, 1997.

[26] James C. King. Symbolic Execution and Program

Testing. Communications of the ACM, vol. 19, no. 7,

July 1976, pp. 385-394.

[27] K. Rustan M. Leino. A myth in the modular specifica-

tion of programs. KRML 63 –0, Compaq Systems

Research Center, Palo Alto, CA, November 1995.

[28] Dewayne Perry. The Logic of Propagation in the

Inscape Environment. Proc. 3rd ACM Symposium on

Software Testing, Analysis and Verification (TAV3), Key

West, Florida, Dec. 1989.

[29] Mooly Sagiv, Tom Reps and Reinhard Wilhelm.

Parametric Shape Analysis via 3-Valued Logic. Proc.

ACM Symposium on Principles of Programming

Languages, San Antonio, TX, Jan. 20-22, 1999, ACM,

New York, NY, 1999.

[30] J. Michael Spivey. The Z Notation: A Reference Manual.

Second ed, Prentice Hall, 1992.

