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Chapter 20

Distributed Constraint Programming

Boi Faltings

Constraint satisfaction and optimization problems often involve multiple participants. For
example, producing an automobile involves a supply chain of many companies. Schedul-
ing production, delivery and assembly of the different parts would best be solved as a
constraint optimization problem ([35]). A more familiar task for most of us is meeting

scheduling: arrange a set of meetings with varying participants such that no two meet-
ings involving the same person are scheduled at the same time, while respecting order
and deadline constraints ([18, 22]). Another application that has been studied in detail is
coordinating a network of distributed sensors ([2]).

Such problems can of course be solved by gathering all constraints and optimization
criteria into a single large CSP, and then solving this problem using a centralized algorithm.
In practice there are many cases where this is not feasible, because it is impossible to bound
the problem to a manageable set of variables.

For example, in meeting scheduling, once two people are planning a common meeting,
this meeting is potentially in conflict with many other meetings either of them are planning
and whose times are decided in parallel. A centralized solver does not know beforehand
which of these potential conflicts will become important, and thus will have to gather
information about all of them. Since any two people in the world are connected through
on average six degrees, this constraint problem is likely to involve a substantial part of the
world’s population! In contrast, in a distributed solution, changes need to propagate only
when there are conflicts between meetings. As such conflicts can usually be resolved by
local adjustments, propagation will be limited and the problem can usually be solved with
a reasonable amount of effort. This is a typical application where distributed algorithms
for constraint satisfaction are attractive.

As an another example, consider a configuration system for vacations that composes
information obtained from the internet. Even though there are only a finite number of
elements to be composed, the number of information sources that could be considered is
unboundedly large. Thus, even with a small number of variables it may be impossible for a
constraint solver to know the entire space of admissible values and tuples for variables and
constraints. Fortunately, the semantics of CSP allows to prove the validity of a solution
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even without knowing the entire problem. The open constraint satisfaction formulation
addresses this form of distributed CSP.

There are also other reasons why distributed constraint satisfaction may be necessary:

• cost of formalization: when problem solving is centralized, each participant will
have to formulate its constraints on all imaginable options beforehand. This may be
excessively complex: a part supplier, for example, might have to give all feasible
delivery dates and quantities beforehand, requiring it to explicitly plan and evaluate
a huge number of different scenarios.

In contrast, when using open constraint satisfaction, agents are asked to evaluate
only a minimal number of constraints. Furthermore, if solving is distributed they
can use whatever software they have for this purpose.

• privacy: in a meeting scheduling scenario, the fact that person A is also meeting
with person B may be private information that A wants to keep from another per-
son C. When problem solution is centralized, the solver will see all meetings and
constraints, and thus gains valuable private information that can easily be leaked or
stolen.

In contrast, a distributed solution can be constructed in such a way that agents only
reveal information piecemeal when evaluating constraints, and other agents only see
information they are required to see for the solving process.

• dynamicity: the problem may change dynamically in that new agents appear while
others disappear. When a centralized solver is used, these changes would have to be
managed by the central server, which may not be feasible.

• brittleness: a centralized solver creates a central point of failure that leads to brittle-
ness of the entire system. In contract, when solving is distributed among different
agents, it allows load balancing and redundant and thus fault-tolerant computation
among different agents, leading to more reliable systems. Also, parallel execution
might make the entire process more efficient.

A distributed algorithm involves a considerable amount of message exchange, which
means that the overall solution may well be slower than a centralized process. In general,
distributed techniques work well only when the problem is sparse and loose, i.e. each
variable has constraints with only few other variables, and for each constraint there are
many value combinations that satisfy it. When problems are dense and tight, usually the
distributed solution requires so much information exchange among the agents that it would
be much more efficient to communicate the problem to a central solver.

The topic has been studied for quite some time; Sycara et al. ([35]) has considered
heuristics for distributed constrained search, and Dechter ([5]) has considered the feasi-
bility of distributed constraint satisfaction in a network of identical agents. Since then, a
considerable range of techniques has been developed.

This chapter gives an overview of the main techniques that have been developed for
constraint satisfaction and optimization in distributed settings. It first covers methods for
synchronous and asynchronous distributed solving by backtracking, local search and dy-
namic programming. It then describes methods for open constraint programming and op-
timization, and finally considers the issues of self-interest and privacy. In the interest of a
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coherent description, I unified different algorithms, and thus occasionally present concepts
with different names and simplifications. I believe that the algorithms illustrate the main
techniques of the field in a concise and coherent manner.

20.1 Definitions

In this section, we formally define two variations to the standard formulation of constraint
satisfaction problems. The first, which we call distributed constraint satisfaction, formal-
izes the fact that constraint solving happens under the control of different independent
agents. The second, called open constraint satisfaction, formalizes the fact that informa-
tion about the CSP is distributed among different agents.

A distributed constraint satisfaction problem is commonly defined as follows:

Definition 20.1. A distributed constraint satisfaction problem (DisCSP) is a tuple < X ,

D, C, A > where:

• X = {x1, .., xn} is a set of n variables.

• D = {d1, .., dn} is a set of n domains.

• C = {c1, .., cm} is a set of m constraints.

• A = {a1, .., an} is a set of n agents, not necessarily all different.

The main difference to a classical CSP, as defined in Chapter 1, is that every variable
xi is controlled by a corresponding agent ai, meaning that this agent sets the variable’s
value. When an agent controls more than one variable, this would be modelled by a single
variable whose values are combinations of values of the original variable. It is further
assumed that agent ai knows xi’s domain di and all constraints involving xi, and that
it can reliably communicate with all other agents. The values of n and m need not be
known to any agent, thus allowing for problems of unbounded size as mentioned in the
introduction. The main challenge is to develop distributed algorithms that solve the CSP
by exchanging messages among the agents in A.

As in Chapter 1, each constraint cj is a pair < rsj
, sj > where sj is a tuple of variables

and rsj
is a cost function sj ⇒ {0, 1} that maps every value combination of sj into 0 if it

is consistent, and 1 if it is not. A solution to the DisCSP is an assignment of values to all
variables that is consistent for all relations.

A distributed constraint satisfaction problem can be extended to a distributed constraint
optimization problem by letting the functions rsj

map to ℜ+, representing a cost. A so-
lution to the optimization problem is an assignment of values to all variables such that
the sum of the costs of all constraints is minimized. Hard constraints can be incorporated
by mapping consistent value combinations to cost 0, and inconsistent ones to cost∞ (in
practice, some very large number). It is possible to extend this formulation to general soft
constraints (see Chapter 9) but little work has been done on that.

Note that the assumption that each agent controls a variable and knows all the con-
straints involving that variable may not be applicable to all situations. For example, in
meeting scheduling agents usually do not have unilateral power to fix the time of a meet-
ing, and do not know the constraints of the other participants. Silaghi et al. ([28]) have
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proposed an alternative formulation where each agent applies its constraints find an agree-
ment on the value of variables. Their asynchronous aggregation search (AAS) algorithm
shows how the asynchronous backtracking techniques for distributed search can be modi-
fied to accommodate this formulation which can be more appropriate for applications.

The definition of open constraint satisfaction problems is somewhat more complex,
since we need to take into account the fact that the problem itself varies. The definition
thus follows that given for dynamic constraint satisfaction (Chapter 21), except that here
its is the variable domains rather than the set of constraints that vary, and that the domains
are monotonically increasing:

Definition 20.2. An open constraint satisfaction problem (OCSP) is a possibly unbounded,

partially ordered set {CSP (0), CSP (1), ...} of constraint satisfaction problems, where

CSP(i) is defined by a tuple < X, D(i), C > where

• X = {x1, x2, ..., xn} is a set of n variables,

• D(i) = {d1(i), d2(i), ..., dn(i)} is the set of domains for CSP(i), with dk(0) = {}
for all k, and

• C = {(xi, xj), (xk, xl), ...} is a set of m binary constraints, given by the pairs of

variables they involve and intensional relations between them.

The set is ordered by the relation ≺ where CSP (i) ≺ CSP (j) if and only if (∀k ∈
[1..n])dk(i) ⊆ dk(j) and (∃k ∈ [1..n])dk(i) ⊂ dk(j).

An assignment to an OCSP is a combination of value assignments from the correspond-

ing domains to all variables. An assignment is consistent in instance CSP (i) if and only

if all intensional constraints are satisfied. A solution of an OCSP is an assignment that is

consistent for some instance CSP (i) and any instance CSP (j) ≻ CSP (i).

Open CSP can be extended to open constraint optimization problems (OCOP) by adding
a set of cost functions:

• W (i) = {w1(i), w2(i), ..., wn(i)} is a set of cost (weight) functions on the domains
in D, where wi : di → ℜ+ gives the cost associated with each value in the domain
di.

Note that in order to not require all costs to be known, they are associated with variable
domains rather than constraints. Note also that the two variants can be combined, i.e. it is
possible to have an open CSP where control of the variables is distributed among different
agents.

In this chapter, we consider only unary and binary constraints. Most algorithms for
DisCSP can be generalized to n-ary constraints.

20.2 Distributed Search

20.2.1 Synchronous Backtracking

The simplest algorithm for solving constraint satisfaction problems is backtrack search.
In backtrack search, a partial assignment of values to a subset of variables {x1, .., xk} is
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iteratively extended by adding an assignment to another variable xk+1 such that all con-
straints with already assigned variables are satisfied. When no such extension is possible,
the algorithm backtracks and changes one or more of the earlier assignments.

The backtrack search algorithm can be readily extended to a distributed algorithm by
passing the partial assignments from agent to agent. Thus, agent ak passes the partial
assignment {x1 = v1, .., xk = vk} to ak+1 who adds a consistent assignment for xk+1,
if possible, or otherwise returns a message to ak signalling the need to backtrack. This is
basically a centralized backtrack algorithm where the thread of control passes to different
agents during the execution. Such an algorithm is described for example in [40].

Most of the well-known search techniques for centralized backtracking also apply to
synchronous distributed backtracking:

• forward checking and higher degrees of consistency can be implemented by letting
each agent ai maintain a label that contains the admissible values for its variable
xi. Constraint propagation between different variables is implemented by sending
messages between the corresponding agents.

• the variable ordering can be chosen statically or dynamically according to various
heuristics, again by exchanging messages among agents.

• backjumping can be implemented by passing the backtrack not to the last involved
agent, but to the one that is responsible for the variable to be backtracked to.

Considerable efficiency gains can be obtained by exploiting the parallelism inherent
in the agents. Synchronous search can be extended with asynchronous forward check-

ing ([17]). Here, forward checking is executed in parallel by sending messages to all agents
that are responsible for unassigned variables, rather than treating them sequentially. This
parallelism can also be extended to subsequent propagation that achieves higher degrees of
consistency.

In dynamic distributed backjumping ([20]), instantiation continues in parallel with for-
ward checking, and agents are informed of domain wipeouts by nogood messages. An
additional heuristic identifies potential conflicts with variable assignments and orders val-
ues to avoid these conflicts. These two modifications bring improvements of about 1-2
orders of magnitude in cycles, constraint checks and number of messages.

However, synchronous backtracking has essentially the same restrictions as centralized
solutions, except that there may be a small advantage in privacy in that constraints do
not have to be communicated to any other parties. Furthermore, they do not exploit the
potential for parallel execution among the different agents, as essentially only one agent is
active at any one time.

20.2.2 Asynchronous Backtracking

Most of the research effort in distributed constraint satisfaction has focussed on asyn-
chronous distributed search algorithms. These are characterized by the fact that all agents
are active in parallel and only coordinate as needed to ensure consistency of the constraints
their variables are involved in.

The first category of asynchronous search algorithms are asynchronous backtracking

algorithms that perform a systematic exploration of the entire search space. The first of
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Algorithm 20.1: ABT-opt: Asynchronous backtracking adapted for optimization.

1: Procedure receive-add-link(xj)
2: add xj.agent to self.lower-agents
3: call(receive-ok(xj.agent,self.x))

1: Procedure receive-ok(var)
2: for ng ∈ nogoods do
3: if ∃vc ∈ conds(ng) vc.agent=var.agent ∧ vc.v ̸= var.v then
4: eliminate ng from nogoods
5: replace v ∈ self.agentview s.th. v.agent = var.agent by var
6: adjust-value

1: Procedure receive-nogood(new-ng)
2: for var ∈ new-ng.cond do
3: if (cv← x ∈ self.agentview s.th. x.agent = var.agent) = NIL then
4: add var to self.agentview
5: call(var.agent,receive-add-link(self.x))
6: else
7: if cv.v ̸= var.v then
8: return
9: for ng ∈ self.nogoods s.th. ng.v = new-ng.v ∧ new-ng.tag ∩ ng.tag = ng.tag do

10: eliminate ng from self.nogoods
11: self.nogoods← self.nogoods ∪{new-ng}
12: adjust-value

1: Procedure adjust-value
2: old-value← self.x.v ; self.cost←∞
3: for v ∈ self.domain do
4: δ← r(v) ; LB← 0 ; tag← { self } ; exact← true
5: for xj ∈ self.agentview do
6: δ← δ + r(xj,v)
7: for ng ∈ self.nogoods s.th. ng.v = v do
8: LB← LB + ng.cost
9: tag← tag ∪ ng.tag

10: exact← exact ∧ ng.exact
11: exact← exact ∧ (tag ∩ self.lower-agents = self.lower-agents)
12: if δ + LB ≤ self.cost then
13: self.x.v← v ; self.cost← δ + LB; self.tag← tag; self.exact← exact
14: if (self.cost ̸= 0) ∨ self.exact then
15: if (self.agentview = φ) ∧ self.exact terminate(self.cost)
16: xj← lowest priority variable in self.agentview
17: call(xj.agent,receive-nogood(nogood(xj.v,

agentview\xj,self.tag,self.cost,self.exact))
18: if self.x.v ̸= old-value then
19: for a ∈ self.lower-agents do
20: call(a,receive-ok(self.x))
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self:

x own variable
domain (constant) domain of the own variable
r (constant) r(xj,vi) gives the cost r{xj,self.x}(xj.v, vi) (associated with

the constraint with xj) and r(vi) gives the cost r{self.x}(vi)
if there is unary constraint on the own variable, and 0 otherwise

agentview set of variables
lower-agents set of pointers to agents
nogoods set of nogoods
cost estimate of the cost of self and lower priority variables
tag set of agents, used to keep track of received nogoods
exact true if cost is exact and false if only a lower bound

variable:

v value
agent pointer to responsible agent

nogood:

v variable value that nogood refers to
cond set of variable
tag set of pointers to agents
cost cost of the nogood
exact true/false depending on whether cost is exact or only a lower bound.

1: Procedure ABT-opt
2: self.x.v← NIL; self.lower-agents← {lower priority agents sharing a constraint}
3: self.agentview← {higher priority variables sharing a constraint}
4: adjust-value

Figure 20.1: Data structures and main procedure for ABT-opt.

these algorithms, Asynchronous Backtracking(ABT), was published by Yokoo et al. ([37],
and it has become a reference in the field on which many other algorithms are built. It
was formulated for binary constraints and here we will also assume that all constraints are
binary.

Figure 20.1 shows the data structures used for the ABT algorithm. Each agent has a
data structure self that contains its own variable, constants that represent the domain of
its variable as well as the constraints it has with other variables, and several fields that are
used to store the current state of the search. The other data structures are variables and
nogoods that will be explained in more detail below.

Algorithm 20.1 shows the main procedures of the ABT algorithm. Its presentation is
slightly adapted so that it can also be used for optimization, following ([31]) and ([34]).
It uses the construct call to indicate that the agent sends a message to another agent, thus
invoking the receiving agent’s procedure for receiving this message. These invocations are
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x1:
{a,b}

x2:
{a,b}

=

==

=

=

x3:
{a,b}

x4:
{a,b,c}

x5:
{a,b}

Figure 20.2: Example of a distributed constraint satisfaction problem. Circles represent
different agents, directed arrows represent constraints between variables. Here, all con-
straints are inequality constraints. The dashed arrow indicates a link that might have to be
added during the execution and is not part of the problem.

made asynchronously, i.e. they do not return any values and the invoking process does not
wait for them to finish. However, it is assumed that no invocations are lost, all invocations
by the same agent are handled in the order in which they were made, and no agents crash1

ABT explores a backtrack search tree with a fixed variable ordering that we assume to
be x1, x2, .., xn, without loss of generality. The ordering is assumed to be known to all
agents, and establishes priorities in that a variable xi has priority over another variable xj

whenever i < j. Note that this does not imply that any agent has knowledge of the entire
problem: the order could be established for example by assigning each agent a unique
number (e.g. serial number of the processor and the process id of the agent) and letting the
ordering be identical to this numbering.

The variable ordering is used to decide a direction for each constraint: the agent con-
trolling the first variable in the ordering is called the value-sending agent, and the other is
called the constraint-evaluating agent.

As an example, consider the problem shown in Figure 20.2, where variables are as-
sumed to be ordered according to their index. The constraints are thus directed as indicated
by the arrows.

The algorithm is initially called by invoking each agent with the procedure ABT-opt,
shown at the bottom of Figure 20.1. This initializes the own value, identifies the initial set
of lower priority agents, and initializes the agentview to the higher priority variables,
which are initialized with values that could be randomly chosen. The agent then picks an
own value by calling adjust-value, which also causes it to be sent in OK messages to
the lower priority agents. Once all these messages have been received, every agent has a
correct agentview. During the search, agents continue to set their value asynchronously
whenever they receive new information.

When an agent receives an OKmessage, it is invoked through the procedure receive-
ok. The agent keeps a record of nogoods that identify assignment combinations that have

1When agents do crash, the algorithm still terminates, but the constraints enforced by crashed agents are not
necessarily satisfied in the final result.
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xi:
{v,w,..}

ADD−LINK

NOGOOD(...)

OK(...)

NOGOOD(...)

OK(...)xj xk

j,l < i < kxl

Figure 20.3: Messages used in asynchronous backtracking. The agent responsible for xi

receives OK messages from higher priority agents aj (j < i) and nogood message from
lower priority agents ak (k > i) when their variables have common constraints with xi. It
may send add-link messages to request the value of other higher priority variables xl.

been found to lead to inconsistencies or costs as explained further below. In order to
avoid a combinatorial explosion in its memory requirements, the agent first eliminates any
nogoods that are no longer valid given the new assignment. It then integrates the received
value into its agentview. This is a data structure that keeps track of all values of higher
priority agents that are relevant for its search.

Next, it adjusts its own value to optimally satisfy the constraints. This is done in the
procedure adjust-value. It first evaluates the constraints with earlier variables to de-
termine which values in its domain cause the least amount of inconsistency. For each
value v in the domain, the variable δ is used to compute a lower bound on the cost that
this value would imply. We assume here that the constant r returns a value of 0 if the
combination given as an argument is allowed by the constraint, and 1 otherwise, so that
the cost measures the number of constraint violations. The agent first sums the number
of constraint violations with higher priority variables given in agentview(Steps 5-6). In
LB, it adds any nogoods that may exist on the value, indicating violations in lower priority
variables(Steps 7-10). The tag and exact variables are used for termination detection
and are explained later (see 20.2.4).

The agent computes the number of violations in cost as δ + LB, and chooses the value
with the smallest cost(Steps 12-13). Ideally, this cost is 0, in which case it has found a
consistent value. If no consistent value can be found, the minimum cost is > 0, and the
agent sends a nogood to the lowest higher-priority agent in its agent view(Steps 14-17).
Finally, if this leads to choosing a different value, it is sent to the lower priority agents via
OK messages(Steps 18-20).

In the example, assume that all variables are initially set to a. We consider one possible
execution where all messages take about the same time, so that it can be understood as a
sequence of parallel rounds. However, such synchrony is not required to obtain the correct
results. In the first round, agents receive the following messages and make the following
changes:
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message(s) action
a2 OK(x1=a) x2 ← b

a3 OK(x2=a) x3 ← b

a4 OK(x1=a) x4 ← b

a5 OK(x3=a) x5 ← b

OK(x4=a)

which leads to a second round:

message(s) action
a3 OK(x2=b) x3 ← a

a5 OK(x3=b) x5 ← a

OK(x4=b)

and a third round:

message(s) action
a5 OK(x3=a) inconsistent!

If no value consistent with the agent view can be found, as is the case for a5, the agent
can conclude that the current agent view is responsible for this failure. It constitutes a
nogood: a combination of assignments that makes it impossible to assign a value to the
variable, and thus cannot be part of any solution of the CSP. The nogood is constructed as
a resolvent of all constraints and existing nogoods. It is sent in a nogood message to the
agent responsible for the lowest priority variable in the nogood.

Nogoods are generated whenever an agent ai does not find a consistent value for its
variable xi. In this case, each value in di entails at least one constraint violation, i.e. the
minimum cost for all values is > 0. In this case, the agent concludes that its current agent
view does not allow any solution, and passes this up as a nogood to the lowest priority
agent in its agentview.

Here, d5 has possible values a and b. where:

x3 = a ⇒ x5 ̸= a

x4 = b ⇒ x5 ̸= b

Thus, the minimum cost is equal to 1, so that the current agent view, (x3 = a, x4 = b) is
passed up as a nogood with v = b, cond = (x3 = a), tag = x5 and cost = 1 to a4,
the lowest priority agent in the agent view.

For each of the values v ∈ di, agent ai stores one or more nogoods whose cost field
gives a lower bound on the cost that will be incurred by variables in the field nogood.tag:

(xj = vj ∧ xk = vk ∧ ... ∧ xi = v)⇒ cost(nogood.tag) ≥ nogood.cost

which, assuming that xi is the lowest-priority variable, is written in explanatory form as:

nogood.cond ⊆ self.agentview ∧ nogood.v = self.x.v ⇒
cost-sum(nogood.tag) ≥ nogood.cost

and stored with agent ai. In the version of ABT shown here, agents ensure that all nogoods
for the same value refer to disjoint tags and that they are all applicable in the current agent
view.
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An agent receives a nogood by being invoked through the receive-nogood mes-
sage. Note that an agent may receive a nogood that contains variables that it previously had
no constraint with, and thus are not part of its agent view. In order to decide whether the
nogood is applicable, it thus has to add a link with this variable so that it will be informed
whenever it changes. This is done using an add-link message(Steps 2-5).

An agent applies its nogoods when checking for consistency of its current value assign-
ment. It has to only apply those nogoods that are consistent with the current agent view.
In fact, any nogoods that are no longer consistent with the agent view can be discarded
as they will in any case be rediscovered should the agent view again become compatible
with it. This means that the amount of storage required at each agent grows at most lin-
early with the size of the domain and the number of variables. As a consequence, when an
agent receives a nogood which is no longer applicable to the current agentview, it discards
it(Steps 7-8).

Next, it eliminates all existing nogoods that already cover part or all of the variables
covered by the nogood just received, as indicated by the tags. These may exist because
the agent may have already received nogoods resulting from partial propagation among
the lower-priority agents. Finally, it adds the nogood to the nogood list, and adjusts its
current value. This may result in further nogood messages being passed to higher priority
agents(Steps 9-10).

In this example, a4 has now received a nogood that involves x3, and it can no longer
evaluate its applicability. Thus, it sends an add-link message to a3 and is informed that
the current value of x3 is a, so that the nogood is indeed applicable and its own value is no
longer consistent. Thus, a4 now searches for a new value for x4 and finds value c, which
now makes the entire problem consistent, and no further messages result.

Bessière et al. [3] show that adding links can be skipped if after sending a nogood of
nonzero value, all nogoods involving a variable that is not linked with the current one are
immediately discarded. If they are indeed required, they will eventually be rediscovered,
but the algorithm will repeat a portion of the search and thus become less efficient.

Algorithm 20.1 terminates when the highest priority agent derives a nogood that is ei-
ther exact or has non-zero cost. In the first case, the algorithm has found an assignment
without constraint violation and thus a solution to the CSP. In the second case, the prob-
lem has no solution. The termination is initiated by a procedure terminate that should
also inform the other agents that the process is now terminated. For more detail see Sec-
tion 20.2.4.

When agents operate asynchronously, it can happen that some agents change value
faster than others. This can lead to an agent receiving several OK messages for the same
variable before processing them. In this case, only the last message has to be kept. Times-
tamps can be used to identify this when message delivery times are not predictable.

20.2.3 Asynchronous Distributed Constraint Optimization

Constraint optimization most commonly uses the branch-and-bound algorithm. This al-
gorithm is difficult to adapt to an asynchronous, distributed setting because it requires
agreement among all agents on a global upper bound on the solution cost. However, opti-
mization can be carried out purely on the basis of lower bound propagation.

As has been observed in [31], the asynchronous backtracking algorithm (Algorithm
20.1) can also be used for constraint optimization by assuming that constraints no longer
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x1

x2

x3

x4

x5

Figure 20.4: DFS tree ordering.

just return values of 0 (consistent) and 1 (inconsistent), but a more general cost measure in
ℜ+. The algorithm works exactly as in the constraint satisfaction problem. However, while
in the case of constraint satisfaction, most of the time a variable’s nogood ends up having
a value of 0 and is thus not transmitted, in this case most nogoods will have a positive cost
and thus travel up the hierarchy.

To show the correctness of the optimization, consider in more detail the computation
of local costs. An agent responsible for variable xi the local cost δ(v) of value v of its own
variable as

δ(v) = r{xi}(v) +
∑

xj∈agentview

r{xi,xj}(v, vj)

i.e. the cost of this value at the variable itself plus the sum of all costs for the constraints
with higher priority variables. It uses this value to compute for each value v the lower

bound

LB(xi = v) = δ(v) +
∑

ng∈compatible−nogoods(xi=v)

ng.cost

as the sum of the local value and all nogoods for this value that are compatible with the
current agent view. It always chooses its own value as the value v that minimizes the lower
bound. If this is different from the current value, it sends OK message to lower priority
agents.

The nogoods that agents receive express lower bounds on the total cost of constraints
evaluated by lower priority agents. They supersede any earlier nogoods that refer to the
same or a subset of the variables. Thus, Algorithm 20.1 checks for this in lines 9 and 10 of
procedure receive-nogood and discards any obsolete nogoods.

However, it would still be possible for several nogoods to refer to the same variable and
thus for the corresponding costs to be summed up multiple times. When we only consider
constraint satisfaction, this is not a problem because it is not necessary to compute the
exact number of violations, but only to detect that some violation is present. However, in
optimization such overlaps lead to inaccurate results.
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We now show that if agents are ordered in a DFS tree order, such overlaps can never
occur. A DFS tree is a rooted and directed spanning tree of the constraint graph such that
any edge not in the tree, called a back edge, can only exist between an ancestor and a
descendant in the tree, but never to a sibling or descendant of a sibling. Figure 20.4 shows
an example of a DFS tree consisting of 5 nodes. Tree-edges are shown as solid lines, and
back-edges as dashed lines. Any graph can be ordered as a DFS tree, for example using
depth-first search traversal to find the tree-edges and order. This process can also be carried
out as a distributed algorithm.

In a DFS tree, backedges from a node xi can only lead to nodes xj that are on the path
from the root to xi. Since agents always send nogoods to their lowest-priority ancestor,
no nogood can ever be sent between agents connected by a back-edge, but only along tree
edges. Thus, there is always a unique path from any agent to any other agent, and so a given
variable xk can participate in only one chain of nogoods. This means that the nogoods sent
by the children always give an exact bound on the actual cost of the lower priority agents.

Thus, ordering the agents as a DFS tree simplifies the algorithm and guarantees non-
overlapping nogoods. A similar observation underlies the AND/OR search trees discovered
recently ([15]).

This algorithm is essentially the ADOPT algorithm described in [19]. However, ADOPT
also includes a mechanism of backtrack thresholds to avoid excessive recomputation of
nogoods. It addresses the problem that the algorithm frequently recomputes earlier partial
solutions as the bounds change.

Consider a variable xi and three states s1, s2 and s3 such that all higher-priority vari-
ables have identical values, but xi changes first from a to b, then back to a since the no-
good for b turns out to be bigger than that of a. When xi changes state, all lower-priority
variables discard their nogoods. Thus, when xi changes back to a, they will again have to
search to re-establish the solution they had already reached earlier. However, xi’s ancestor
still has a nogood for value a, and can indicate this as the cost of the best solution that
the lower-priority agents must find. The lower-priority agents can use this information to
speed up their search that reconstructs the optimal solution for value a. Backtrack thresh-
olds involve some further bookkeeping issues that are addressed in detail in the ADOPT
algorithm ([19]).

20.2.4 Termination Detection

In the context of the ABT algorithm as we have described it here, termination detection can
be achieved by also propagating upper bounds on the quality of the solution. This has been
first proposed in the ADOPT algorithm ([19]). Note first that in ABT-opt, when all agents
below xk have received all nogood messages, the lower bound computation returns the
exact cost of the subproblem below the sending agent. Thus, we include in the nogood an
extra field that indicates if the nogood is exact or not. This is then used by higher priority
agents to see if their costs are exact: only if they have received exact nogoods covering all
lower priority agents will their costs become exact as well. Note that exact nogoods are
passed on even when their cost is zero so that the receiving agents can tell whether their
cost is exact.

Finally, when the highest-priority agent derives an exact nogood, the algorithm ter-
minates. In a constraint satisfaction problem, if the cost is non-zero, the problem has no
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consistent solution. Otherwise, the current assignment to all variables is a consistent or
optimal solution.

20.2.5 Soundness, Termination and Completeness of ABT

Soundness and termination of the ABT algorithm can be proven inductively as follows.
Consider variable xk and assume as inductive hypothesis that as long as variables x1..xk−1

do not change value, variables xk..xn will converge in finite time on an assignment whose
cost is minimal given the values of x1..xk−1, and that this cost is transmitted to xk as a
nogood with the exact field set to true.

Clearly, the inductive hypothesis holds for xn since there are no lower priority vari-
ables, it chooses its optimal value instantly and transmits its exact cost to its parent.

Now consider variable xk. It will change value only when the nogood for its current
value increases so that its cost becomes greater than that of another value. As the nogoods
form lower bounds on the optimal costs, they cannot increase beyond this optimal cost.
Since each nogood is the sum of costs taken from a finite set, this implies a bounded
number of increases. Thus, xk must eventually reach quiescence, and by the inductive
hypothesis, it will receive exact nogoods with the costs of the optimal assignments for
xk+1..xn. Since the algorithm chooses the value of xk to minimize the cost of xk..xn

given the value of x1..xk−1, xk can only stabilize on the optimal value and then sends an
exact nogood with the optimal cost of xk..xn given the values of its ancestors. Thus, it also
satisfies the inductive hypothesis. By induction, the hypothesis also holds for x1, which
proves soundness and termination of the algorithm.

For the constraint satisfaction case, completeness follows from termination and the
fact that the algorithm finds an optimal solution. If there is an assignment that satisfies all
constraints, it has cost 0 and so the algorithm will terminate with an assignment that has
cost 0 and violates no constraints.

20.2.6 Performance Evaluation

The complexity of constraint satisfaction algorithms is commonly measured by counting
the number of constraint checks. In asynchronous search algorithms, a more accurate
measure of the expected execution time is to count the number of concurrent constraint

checks, given as the smallest number of cycles required when each agent can execute a con-
straint check in parallel, thus considering the interdependency of their execution. Meisels
et al. ([16]) presents an algorithm called CCA for computing the number of concurrent
constraint checks during a simulation run of an algorithm.

In a distributed execution, sending a message often takes much longer than a constraint
check. For example, sending a message through e-mail can take minutes, amounting to
millions of constraint checks. Thus, many researchers measure message complexity as
the main measure of expected execution time. Here again, one can simply count the total
number of messages, or obtain a measure of concurrent messages that more accurately
reflects the interdependencies among them.

An issue here is also the size of messages, as some algorithms may be able to package
information into fewer but larger messages. This applies particularly to techniques based
on dynamic programming, described later in this chapter.
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It has been customary in distributed systems research to show a graph of complexity vs.
the ratio between the time required to send a message and the time required for a constraint
check. This measure has been used in the original paper on ABT ([37]) and in several other
algorithm evaluations, and is the most comprehensive performance measure since it also
makes apparent parallelism between message delivery and computation.

20.3 Improvements and Variants

20.3.1 Agents Controlling Constraints Instead of Variables

In ABT, it was assumed that each variable is under the control of an agent, and that this
agent knows all constraints relevant to that variable. In many applications, variables are
public knowledge and it is necessary to generate a consensus among agents as to their
value. On the other hand, agents are free to set constraints as they wish.

Silaghi et al. ([28]) have shown how ABT can be adapted to this situation. It involves
treating a dual problem where agents exchange constraints or parts of constraints rather
than variable assignments. To represent them efficiently, their asynchronous aggregation

search(AAS) algorithm uses aggregations of values that are described next.

20.3.2 Value Aggregation to Reduce Message Traffic

When variables in a DisCSP have large domains, it is often the case that several values
behave the same with respect to constraints. It is then more useful to aggregate them into
a single value that can be treated in a single message.

This idea is developed in the AAS algorithm ([28, 33]). AAS is similar to ABT, but
uses the dual of the original problem so that agents are now responsible for constraints, and
variables are shared between agents that have constraints on them. Each agent decomposes
the space of value combinations of a constraint into equivalent groups such that all value
combinations within them have the same cost. These can be considered the values of the
dual variables, and the algorithm then performs the ABT algorithm on this dual problem.
Some complications occur since the decompositions may have to be refined during search.
On randomly generated problems, aggregation brings improvements of several orders of
magnitude in search efficiency ([33]).

20.3.3 Distributed Consistency Maintenance

One of the most successful techniques in (centralized) CSP is consistency, in particular arc
consistency. They can be adapted to asynchronous settings as well, but labels now have to
refer to the context of higher priority variables that has been used to generate them so that
they can be reset whenever this context is no longer valid.

The MHDC algorithm ([33]) maintains arc consistency during distributed search in
AAS by adding a separate type of message called a propagate message. It again results in
very significant performance gains on randomly generated problems.
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20.3.4 Asynchronous Weak-Commitment Search

An important weakness of ABT is that it uses a static variable order, which is known to
lead to inefficient search in CSP. In asynchronous weak-commitment search (AWC) [38]),
agent priorities are dynamically adjusted so that whenever a backtrack occurs, the agent
initiating the backtrack becomes the highest priority agent. This focusses the search on the
most difficult parts of the problem space, and AWC is reported to be significantly (at least
1 order of magnitude) more efficient than ABT. However, a major drawback is that AWC
is complete only when all nogoods are stored, leading to exponential storage requirements.

20.3.5 Asynchronous Reordering

Reordering is one of the most powerful techniques for speeding up search algorithms for
constraint satisfaction and optimization. In asynchronous search, reordering is significantly
more complex as there is no central view of the problem.

A first algorithm that uses reordering is AWC, described above. AWC needs to store
an exponential number of nogoods to be complete and is thus not considered practical.

However, it is possible to allow a more limited form of reordering if agents are only
allowed to change the orders of lower priority agents. Such reorderings do not affect the
validity of the nogoods that have been received from these agents, and thus termination in a
finite number of steps after the last reordering is still guaranteed. This has been proposed by
Silaghi et al. ([29]) in the ABTR algorithm and more recently by Zivan and Meisels ([42])
in the ABT DO algorithm.

In these algorithms, each agent can impose a new ordering of the agents below itself,
and inform these lower-priority agents of the new order. When an agent receives a message
informing it of a new order, it adjusts its agent-view to add all agents that now have a
higher priority, and discards all nogoods that mention agents that now have a lower priority.

When several agents propose reorderings, their priority is decided using a signature
scheme. It consists of a set of counters, one for each position in the ordering: (c1..cn).
When the k-th agent in the current ordering proposes a new order, the signature of this new
order is derived from the old one by keeping all ci,i < k the same, increasing ck by 1, and
setting all cj ,j > k to 0. Priority between orderings can now be decided by comparing
their signatures lexicographically, i.e. letting l be the first position where two signatures
differ, the signature with a higher cl has higher priority.

Note that given the restrictions on allowable orders, the highest priority agent can never
leave its position. Silaghi et al. ([30]) show a protocol based on proxy agents that allows
general reorderings, but at the expense of a more complex algorithm where roles are ex-
changed between agents.

Both Silaghi et al. [29] and Zivan and Meisels ([42]) report gains in efficiency for
certain reordering heuristics; however, these gains are not nearly as significant as what can
be observed in centralized algorithms.

20.3.6 Storing Nogoods

One of the main problems with asynchronous search is that in order to limit the amount of
storage required, nogoods are erased as soon as they become inapplicable due to changes
in the agent view. This means that the algorithms derive the same information over and
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over again. Much efficiency can be gained by systematically storing all nogoods that are
discovered during search. This is particularly interesting when variables are ordered as a
DFS tree so that nogoods form tight bounds on the cost of possible solutions. It has been
shown experimentally ([33]) that such storage can tremendously increase the efficiency of
asynchronous backtracking algorithms.

The amount of memory required for systematically storing all nogoods can be bounded
using the following consideration. The maximum number of nogoods that need to be stored
at an agent is equal to the size of its own domain times the number of possible contexts,
i.e. assignment combinations to higher-priority variables that are the target of edges or
back-edges from lower-priority variables. It can be shown ([24]) that for any variable, the
number of variables in this context can never exceed the induced width of the DFS tree
ordering. Thus, the maximum amount of space required at any agent is exponential in the
induced width of this ordering.

In many practical distributed problems, this width is actually not very large. For ex-
ample, in meeting scheduling, most meetings are between people in similar groups. It
has been shown ([22]) that this leads to graphs with relative low induced width. Other
examples, such as sensor networks, also typically have low induced width.

20.3.7 Cooperative Mediation

Another way to deal with the complexity of distributed optimization problems is to detect
particularly difficult parts and solves those in a centralized fashion. The optimal asyn-

chronous partial overlay (OptAPO) algorithm ([14]) dynamically calls upon certain agents
to mediate by determining the optimal solution for itself and its neighbours using a central-
ized branch-and-bound algorithm. When message delivery is slow, as is usually the case,
this can bring significant performance increases over algorithms based on asynchronous
backtracking such as ADOPT.

20.3.8 Distributed Dynamic Programming

A fundamental problem with distributed backtracking algorithms is that they explore the
search space sequentially by changing variable assignments. As variables are distributed,
each change in assignment requires message exchange between agents. Since the search
space has exponential size in the number of variables, the algorithms inevitably require an
exponentially growing number of messages. Messages are costly and slow to send, so this
is usually unacceptable.

Dynamic programming techniques such as bucket elimination ([7]) are interesting as
they allow exploring all assignments in parallel. Thus, instead of sequentially exploring all
assignments of a variable xi and passing this on to a lower-priority variable xj , variable xj

sends a single message to xi that gives the optimal cost for each of the possible values of xi.
In the DPOP algorithm ([24]), agents are arranged in a DFS tree, as described above, and
each agent communicates with its direct parent/children in the tree. Children send UTIL
messages to their parents, while parents send VALUE messages to their children. Each
UTIL message specifies, for each possible value combination of the parent and possibly
a number of ancestors the optimal cost for the sending variable and all its descendants in
the pseudotree. Value messages are similar to OK messages in that they specify the value
assigned to the parent variable.
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Figure 20.5: Example of a distributed optimization problem and its solution using DPOP.

Agents use the following rules:

1. an agent that has received UTIL messages from all its children and VALUE messages
from all its parents decides on its optimal value and sends VALUE messages to all
its children.

2. otherwise, if it has received UTIL messages from all its children it constructs a UTIL
message to its parent.

Figure 20.5 shows an example of a distributed constraint optimization problem solved
using the DPOP algorithm. Assume that each variable can take values w(hite) and b(lack),
and that we have the following constraints:

c(x0, x3) = x0

x3

w b
w 3 0
b 3 3

c(x0, x1) = x0

x1

w b
w 1 0
b 2 2

c(x1, x2) = x1

x2

w b
w 1 0
b 0 1

c(x1, x3) = x1

x3

w b
w 2 0
b 0 2

Initially, only agents a2 and a3 satisfy the second behavior rule and send the following
messages to their parent a1:

UTIL(x1) =
x1

w b
0 0

UTIL(x0, x1) = x0

x1

w b
w 0 2
b 3 3

They give the lowest costs that can be obtained for these values of x1 and x0 given the
best choices for x2 and x3, and are obtained by combining the constraints on x2 and x3,
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respectively, using the bucket elimination operation ([7]). As soon as these messages have
been received by a1, a1 also satisfies the second behavior rules and generates the following
UTIL message to its parent a0:

UTIL(x0) =
x0

w b
1 3

a0 has no parents and has received UTIL messages from all its children, so it satisfies the
first behavior rule, decides its value to be w and sends this to a1 as a VALUE message.
a1 now has all the required information to decide on its best value, w, and sends VALUE
messages (x0 = w, x1 = w) to x2 and x3 who can finally decide on their own values b.
Propagation then stops since no agent satisfies any of the rules. All agents know that they
have decided on the optimal value so that no further termination detection is necessary.

It is interesting to consider solving the same example as above using asynchronous
backtracking. When nogoods are systematically stored for all combinations of higher-
priority agents, agents exchange exactly the same information as in dynamic program-
ming, but through a sequence of nogoods. The memory required in each agent to store all
nogoods is identical to the size of the largest message in dynamic programming. When
nogoods are not stored systematically, a high price is paid for rediscovering nogoods over
and over again. Thus, in the distributed case we can understand backtracking and dynamic
programming as two related approaches.

In the DPOP algorithm, the number of messages grows only linearly with the size of
the problem. However, messages may become very large. It can be shown ([24]) that
the maximum message size is exponential in the induced width of the pseudotree ordering
used. This growth can be dealt with using a technique similar to that of mini-bucket elim-
ination ([8]). Here, we need to identify higher priority variables that are involved in the
highest-dimensional messages. These variables will then change their values incremen-
tally while informing the lower-priority agents, similar to what is done in asynchronous
backtracking. While this reintroduces the problem of message explosion due to the state
changes of these variables, growth is much more moderate since in a problem with low
width, there are only few such variables.

The dynamic programming formulation also has several other advantages:

• it is possible to limit memory consumption by dropping dimensions of UTIL mes-
sages, and propagate upper and lower bounds ([25]). This allows computing solu-
tions that are optimal within these bounds.

• it is possible to stop propagation of UTIL messages when the differences between
values are insignificant, either because they have no influence on the rest of the prob-
lem or because their influence can be bounded by an approximation tolerance ([25]).

• for settings where the problem undergoes dynamic changes, it is possible to incre-
mentally adapt the solution using a self-stabilization technique ([23]): each agent
that observes a change initiates new UTIL messages that propagate through the
network and initiate changes wherever necessary. All agents know simultaneously
when the new optimal value has been reached and can change to this value without
any further synchronization mechanism, thus achieving super-stabilization. Such a
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Figure 20.6: Distributed local search.

property is interesting for using distributed optimization as a method for controlling
a distributed system.

It can be argued that for problems with high width constraint graphs, the distributed
CSP approach does not offer significant advantages and would be solved better by central-
izing the problem. As the search is likely to explore a large portion of the possible states,
agents need to reveal information about their constraints to many other agents and so there
is little privacy advantage. Furthermore, due to the high cost of message exchange, it is
unlikely that the parallelism inherent in the distributed algorithm will bring any practical
advantage.

20.4 Distributed Local Search

Recall that local search (see Chapter 5) works by starting with an initial configuration
where values are assigned to all variables, and then makes incremental modifications to
reduce the number of inconsistencies or minimize the cost of the configuration. Each
modification is applied to individual variables or small sets of variables. Because of this
local nature, they can be carried out by a single agent. This makes local search extremely
well suited to distributed implementation.

Researchers have considered distributed local search algorithms where moves are re-
stricted to modifications of single variables, and each variable is controlled by a single
agent. Figure 20.6 shows an example of such a problem. We assume that initially, all
variables are set to the value a, and thus all inequality constraints are violated.

The basic algorithm is hill-climbing: make local changes to the variables such that the
number of constraint violations is reduced as much as possible. However, changes must be
coordinated so that neighbouring agents in the constraint graph never change value at the
same time. Otherwise, in the example each agent would change its local value to b, but not
reduce constraint violations at all.

Algorithm 20.2 implements distributed hill-climbing with coordination. It requires
synchronous execution with two rounds of message exchange with the set of neighbours
N(x) in each cycle: first, to exchange the actual values, and later to exchange the best
improvements. Note that each agent only has to know N(x), but nothing about the rest of
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the problem, so that in spite of synchronous execution this algorithm can still be applied to
unbounded problems.

Algorithm 20.2: Distributed local search algorithm.

1: v(x)← initial-value; tc1(x)← 0; tc2(x)← 0
2: repeat
3: send current value v(x) to all neighbours in N(x)
4: receive current values v(xj) from all xj ∈ N(x)
5: currentCost←

∑

xj∈n(x) c(x,xj=v(xj))
6: if currentCost ̸= 0 then tc1(x)← 0 else tc1(x)← tc1(x)+1
7: dmax← 0; vmin← NIL
8: for v ∈ d do
9: δ ← currentCost −

∑

xj∈n(x) c(x=v,xj=v(xj))
10: if δ > dmax then
11: dmax← δ; vmin← v
12: if dmax ̸= 0 then tc2(x)← 0 else tc2(x)← tc2(x)+1
13: send improvement dmax and termination counts tc1(x), tc2(x) to all xj ∈ N(x)
14: receive improvements dm(xj) and tc1(xj), tc2(xj) from all xj ∈ N(x)
15: for xj ∈ N(x) do
16: if dm(xj) > dmax ∨ (dm(xj)=dmax ∧ xj ≻ self) then
17: vmin← NIL
18: tc1(x)← min(tc1(x),tc1(xj)+1); tc2(x)← min(tc2(x),tc2(xj)+1)
19: if vmin ̸= NIL then
20: v(x)← vmin
21: until tc2(x) > max-dist
22: if tc1(x) > max-dist then success else failure

Thus, if an agent finds a neighbour that obtains a bigger improvement than itself, it
will not change its value. The effect of this simple coordination is that no neighbours ever
change value simultaneously. For the example, a consistent solution is achieved in the first
round of execution:

var current-cost vmin dmax change
x1 1 b 1 -
x2 3 b 3 b
x3 2 b 2 -
x4 2 b 2 -
x5 2 b 2 b

Note that only x2 and x5 change values: x2 wins over its neighbours because it has the
best improvement, and x5 because it has the highest index. Since they are not neighbours,
they can change in the same cycle.

To detect termination, Algorithm 20.2 uses two termination counters tc1 and tc2.
tc1 measures the minimum distance of any variable that could be involved in a constraint
violation. tc2 measures the minimum distance of any variable that could be unable to
make further improvement. Agents extend their knowledge by exchanging counters in the
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second message exchange (Steps 13-14), and update their distances by taking the minimum
of their values in (Step 18).

The algorithm must terminate when no agent can find any improvement. This is the
case when the distance of any such agent is larger than the maximum distance of any
agent in the constraint graph, given by the constant max-dist. This constant must be global
knowledge of the problem, but can be an overestimation without affecting the correctness
of the algorithm. If at termination the minimum distance of an agent with a violation,
tc1(x), also exceed this distance, then a consistent solution has been found (Step 22).

It is well-known that hillclimbing algorithms can easily get stuck in local minima where
no local improvement is possible, but the best solution has not yet been found. Two types
of solutions to this problem have been given for distributed local search.

The first solution is distributed stochastic search, where with some probability the al-
gorithm also accepts changes that do not result in an improvement in the quality of the con-
figuration. A detailed description and analysis of several such algorithms is given in [44].
The implementation of these techniques is a straightforward modification of the hillclimb-
ing procedure given above. One way to do this is to insert a step following the computation
of δ in Step 9:

9a. if δ ≤ 0 then with probability p, δ ← 1

where the probability might be varied as optimization progresses.
Another solution is to adjust the problem topology using the breakout algorithm [39,

13]. Here, we associate with each constraint a weight that is initially set to 1 and varies
over time. In the hillclimbing procedure, we do not simply sum the costs, but multiply
each constraint by its weight.

Whenever the main loop of the algorithm terminates (Step 21) and the algorithm has
not found a consistent solution (tc1(x)≤ max-dist), the agent increases the weight of
all currently violated constraints by 1. This has the effect of making the current optimum
less attractive and thus driving the search to a different configuration in subsequent moves.
Then, the procedure is restarted from the beginning. This process repeats until either a
consistent solution is found or some timeout limit is reached. Basharu et al. ([1]) report that
resetting weights periodically or in response to observing agent behavior further improves
performance.

While the breakout algorithm often performs quite well at getting search out of local
optima, there are simple situations that it fails to solve, as pointed out in [43]. Figure 20.7
shows an example of such a situation. Here, each node represents a variable that must be
colored either black or white, and each arc is an inequality constraint between neighbouring
nodes. Note that the problem is solvable by coloring the nodes alternatively black and
white. Assume that the breakout algorithm starts in the configuration shown on the top
left. There are conflicts between nodes 2 and 3, and between nodes 6 and 7, that both
cannot be eliminated by a local change. Thus, a breakout step increases the constraint
weights from 1 to 2, as indicated in the next step on the right. Now, the algorithm can
make an improvement in the weighted sum of constraint violations by changing the color
of nodes 2 and 6. However, this generates a similar situation to the initial one, with 2 local
minima. The algorithm again increases the weight, makes changes to variables 1 and 5,
and the cycle continues until finally we reach the same situation as the initial one, except
that all constraint weights have increased by 1. Thus, the breakout algorithm will never
find a solution to this problem, but infinitely cycle and increase the constraint weights.
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Figure 20.7: Problem that is unsolvable for the distributed breakout algorithm.

Note that such a behavior can be detected by the fact that constraint weights are contin-
uously increasing in some subproblem. In fact, if there is a subproblem that the breakout
algorithm is unable to solve - either because it has no solution or because of the algorithm’s
incompleteness - it must be the case that during each breakout cycle, at least one of the con-
straints has its weights increased. If the subproblem is small, it is possible to identify this
subproblem and then solve it using a complete backtrack search algorithm. Such schemes,
as described in [9], can be applied to solve large-scale distributed CSP with hundreds of
variables.

20.5 Open Constraint Programming

In open constraint programming, the set of variables may be bounded and commonly
known, but variable domains and admissible constraint tuples are distributed among a pos-
sibly unboundedly large set of information sources, so that the problem can never be com-
pletely centralized. Using transformations such as hidden-variable encoding (see Chap-
ter 11), constraints can be treated as tuple-valued variables. It is therefore sufficient to
consider distributed variable domains.

As an example of a problem requiring such an approach, consider a configuration sys-
tem for financial portfolios. It can obtain information about available financial products
from a large set of information sources. Furthermore, many of these products are them-
selves configured on demand by their providers. It is thus not possible to place a bound on
the space of possible parts that can be considered in such a configuration.

The challenge in open constraint programming is to solve such a problem without
knowing the complete domains. Algorithms are defined based on a model where variable
domains are discovered incrementally by querying a mediator. We say that an algorithm for
open constraint programming is complete if it always terminates with a solution when there
is one; however, a complete algorithm may never terminate when there are unboundedly
large domains. Note that a more restricted version that requires domains to be finite has
been proposed as interactive constraint satisfaction in [6].
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Figure 20.8: The principle underlying open constraint optimization.

Open constraint satisfaction Open constraint satisfaction is feasible since by the se-
mantics of constraint satisfaction, a solution to a CSP remains a solution even when values
are added to the domains of one or more variables:

Lemma 20.3. Let A be a consistent assignment to an instance CSP (i) of an OCSP. Then

A is also a consistent assignment to all instances CSP (j), CSP (i) ≺ CSP (j) of the

same OCSP.

Proof. As the domains of CSP (i) are contained in those of CSP (j), A is also an assign-
ment in CSP (j). As the constraints remain the same, it remains consistent.

Thus, if we find a consistent assignment to an instance CSP (i), we have found a
solution to the OCSP, and do not need to examine any further values.

Algorithms for open constraint satisfaction incrementally query information sources
for additional domain values until they find either a solution, or detect a subproblem where
all domains have been completely obtained and that has no solution. The key issue is
to query values in a balanced way so that the problem becomes solvable as quickly as
possible, and to detect unsolvable problems even in the presence of unbounded domains
without falling into infinite queries of these values. Centralized algorithms for open CSP
can be found in [12].

Open constraint optimization In open constraint optimization, a solution is not just any
variable assignment that satisfies the constraints, but an assignment that maximizes a utility
(or, equivalently, minimizes a cost). We assume that utilities are given by additional soft
constraints that are formulated on the values of individual, possibly tuple-valued variables.

Open constraint optimization is feasible under the condition that queries to the mediator
always return the most preferred values or value combinations first. It is shown in [12] that
if this condition does not hold, it is not possible to prove that a solution is optimal without
retrieving the entire domains of variables, and thus not possible to have a general algorithm
for solving open constraint optimization problems.

The reason for this fact is illustrated by Figure 20.8. It shows a COP with just two
variables x1 and x2, connected by an inequality constraint. The variables can take different
values with their costs shown in parentheses. The optimal solution is x1 = a, x2 = b with
a total cost of 0 + 3 = 3. To show that this solution is indeed optimal, it is sufficient to
know the first two values of each domain, since:
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• any solution that would use a value of x1 beyond the second value (b) would have
cost of at least 4 for x1 and 0 for x2 (cost of the best possible value), yielding a sum
of 4 which is more than the 3 we get in the proposed solution.

• any solution that would use a value of x2 beyond the second value (b) would have
cost of at least 3 for x2 and 0 for x1, yielding a total of 3 which again is no better
than the proposed solution.

Based on this principle, it is possible to construct algorithms that determine the optimal
solution without querying the entire variable domains. While there can not be any deter-
ministic algorithm that always examines only the minimal number of values necessary to
prove optimality, it is possible to come close to this limit using techniques based on the A∗

algorithm ([12]).

Algorithm 20.3: fo-opt: an incremental algorithm for solving OCOP.

1: Function fo-opt(OCOP)
2: For i ∈ {1..n}, di ← (more(xi))
3: OPEN← {(first(d1),..,first(dn))}
4: loop
5: M← {a ∈ OPEN|cost(a) = minb∈OPEN cost(b)}
6: a← lexicographically smallest element of M
7: remove a from OPEN
8: if consistent(a) then
9: return a

10: else
11: c← c(xk,...,xl) such that max(k,...,l) is the smallest and c is violated in a (first

violated constraint)
12: for j ∈ vars(c) do
13: if a(j) = last(dj) then
14: dj ← append(dj ,more(xj))
15: nxj← succ(a(j),dj)
16: b← (a(1),..,a(j-1),nxj,a(j+1),..,a(n))
17: if b ̸∈ OPEN then
18: OPEN← OPEN ∪{b}

Algorithm 20.3 is an example of such an algorithm. Search nodes are complete (but
possibly inconsistent) assignments to all variables. Initially, the algorithm uses the function
more to query the best value for all variables, and thus becomes the initial search node.

Following the best-first search heuristic, the OPEN list of nodes is kept ordered by
decreasing utility, and the best node is chosen to be expanded next(Steps 5-7). When this
node is a consistent assignment, an optimal solution has been found(Steps 8-9).

Successors to a search node could be generated by assigning one of the variables the
next best value, thus giving each node n successors. When the domain is not sufficiently
known, it is queried to obtain the new value. However, as shown in [12], it is only neces-
sary to generate successors that include new values for the variables involved in the first
violated constraint, where constraints are ordered according to the highest variable they
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involve, according to some fixed ordering. This leads to a significantly lower memory con-
sumption as well as a much smaller number of value queries, and significantly improves the
performance of the algorithm which now comes close to the minimal number of queries.
Algorithm 20.3 thus picks out the first violated constraint in Step 11 and generates the
successors in Step 15. Note that the function more is used to query the next best domain
value if necessary.

Algorithm 20.3 is guaranteed to produce the optimal solution because search nodes are
explored in the order of non-increasing utility. Thus, when a consistent solution is found,
it will necessarily be the one with the minimum possible cost.

While Algorithm 20.3 is a centralized algorithm, open constraint optimization can also
be carried out by distributed algorithms. In particular, [27] shows how open constraint
optimization can be integrated with the DPOP algorithm (Section 20.3.8) to produce a
distributed constraint optimization algorithm that can deal with unbounded domains and
exchanges significantly less information than the DPOP, ADOPT and ABT algorithms.

20.6 Further Issues

20.6.1 Incentive-Compatibility

Agents may have conflicting interests regarding the solution to a distributed CSP. If they are
allowed to post any hard or soft constraints they like, it is in their best interest to enforce
their preferences by exaggerating their constraints. If all agents adopt this behavior, the
solution computed by the algorithm will no longer be meaningful. Another problem is that
agents can manipulate the outcome by not correctly executing the distributed optimization
algorithm ([21]).

Both problems can be avoided by mechanisms where agents are required to pay a tax
corresponding to the constraints they impose on others. The tax is calculated so that it is in
the best interest of agents to report their constraints truthfully. Such mechanisms are called
truthful or incentive-compatible mechanisms.

Another property that is important in multi-agent settings is that of individual ratio-

nality. It means that each agent is better off by participating in the joint mechanism rather
than remaining on its own. If a tax scheme is used, it means that the amount of tax an agent
may be forced to pay is never greater than the gain it gets out of influencing the choice of
the algorithm.

A well-known mechanism for incentive-compatibility is the Vickrey-Clarke-Groves

tax(VCG) mechanism. It can be shown that it is the only general mechanism that guar-
antees both incentive-compatibility and individual rationality for all agents. Its application
for multi-agent decision making has first been proposed in [10] and its application to dis-
tributed CSP described in [11]. [26] describes in detail how the DPOP algorithm can be
combined with a completely distributed VCG tax mechanism, resulting in a scheme that is
completely resistant to manipulation.

In the VCG mechanism, each agent pays the difference in cost to all other agents be-
tween the optimal solution when it is present and the solution when it is not:

payment(A) =
∑

rk∈R−RA

rk(v∗R)− rk(v∗R−RA
)
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where R is the set of all relations, RA is the set of relations imposed by agent A, and v∗R,
v∗R−RA

are the solutions that minimize the sum of costs in R and R − RA, respectively.
The tax must be paid to an uninterested party (charity).

The following argument shows why this tax makes it optimal for an agent to tell the
truth:

• suppose that agent A overstates the importance of his constraints. Then it will gain
an advantage for those cases where his claimed cost is higher than his real cost.
However, it turns out that in these cases, he will also have to pay a tax which is
higher than the benefit it gets out of having his solution chosen - consequently, this
behavior is not rational for the agent.

• suppose on the other hand that the agent understates its costs. Then it will save the
tax in those cases where it would fall between its stated and its true cost for the value
that is chosen. However, in all these cases the tax would be lower than the loss it
incurs by having this value chosen, so again it is not individually rational for the
agent to act this way.

It has been shown ([21, 26]) that VCG taxes can also eliminate the potential for agents to
manipulate the outcome by unfaithfully executing a distributed search algorithm.

The VCG tax mechanism applies only to constraint optimization with soft constraints.
A hard constraint can cause an unbounded amount of utility loss to the remaining agents,
and thus by the principle of VCG taxes an unbounded amount of tax for the agent that
imposes it. Such a tax may be considered to violate that agent’s individual rationality.
Therefore, in general hard constraints should only be used to model commonly verifiable
knowledge.

20.6.2 Privacy

One of the possible motivations for using distributed constraint satisfaction is to protect
the privacy of agents’ constraints. The ultimate protection is achieved when solving a CSP
using cryptographic techniques. Here, no agent learns anything about other agents’ con-
straints except that a certain combination of assignments - the final solution - is consistent
with all constraints.

Secure distributed constraint satisfaction, as described by Yokoo in [41], is based on
cryptographic techniques that achieve three properties:

1. constraints are encrypted, and consistency of a value assignment is decided without
decrypting the constraints;

2. values are permuted in a random-looking way so that no agent can tell what value
corresponds to what position;

3. algorithms search the entire search space so that no information can be drawn from
the time it takes to find a solution.

Each agent encrypts all its constraints by generating a constraint matrix that includes en-
crypted versions of the elements 1 (consistent) and another number z (inconsistent). Using
randomized encryption techniques, each of these is made to look like a completely random
number so that an observer cannot tell whether two cells contain identical elements.
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When the algorithm checks for the consistency of an assignment, it collects the rele-
vant constraint entries and multiplies them together. Thanks to a second property of the
encryption scheme, that of being homomorphic, the product of the encrypted numbers is
equivalent to the encryption of their product. Thus, the product can subsequently be de-
crypted and checked for whether it contains a 1 - meaning that all constraints were 1, and
thus satisfied - or another number, meaning that at least one constraint was not satisfied.
This decryption must in fact be done by passing the result through all involved agents, and
thus invariably leads to a very large number of messages.

To ensure that no agent can know what values were found consistent or inconsistent,
the scheme furthermore involves a permutation of all domain values. Each agent permutes
all constraint matrices referring to its own values with the same permutation of domain
values, and applies a renewed randomization of the encryption so that the permutation
cannot be discovered by comparing values.

Search can use a centralized or decentralized algorithm, but each constraint check re-
quires a cooperative decryption of the result of multiplying the relevant constraints. When
a consistent solution is found, each agent can apply the permutation of its domain in reverse
and thus finds out what its value was.

In subsequent work it has been noted that since the computation time of the search al-
gorithm reveals information about the constraints, and that even this protocol is not entirely
secure. For an example of a protocol that is also secure against this kind of attack, see [32].

Cryptographic privacy protection is very costly to implement, and so far has not been
used in practical applications of realistic size. In principle, all distributed CSP algorithms
provide some level of privacy protection, since constraints are only revealed to neighbour-
ing agents, and even here only when backtracking is required. An analysis of privacy loss
is found for example in [36]. Researchers have also explored whether constraints could
be shared by participants, allowing them to be enforced even though no agent knows the
entire constraint ([4]).

20.7 Conclusion

Many applications of constraint satisfaction and optimization occur in settings with mul-
tiple agents and may even be unbounded. In that case, it is no longer feasible to solve
them by centralizing all problem information on a single server. Distributed constraint sat-
isfaction techniques address such naturally unbounded problems. The localized nature of
constraint satisfaction is a major advantage in such settings; classical optimization tech-
niques such as linear programming are not easily applied in a distributed and possibly
asynchronous manner.

Unboundedness can occur in two ways. The first is that the set of variables and con-
straints involved in the problem is not bounded. This is the classical distributed constraint
satisfaction problem, and it occurs for example in meeting scheduling. The second is that
the admissible values and value tuples are unbounded. This is the open constraint satis-
faction problem, and it occurs for example in product or supply chain configuration. This
chapter has presented an overview of the main algorithms that have been developed for
these scenarios.

Applications of distributed constraint satisfaction algorithms are just beginning to ap-
pear. Since many of these problems were impossible to solve by computer before, the
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technology is in fact an enabler for future applications that are now beginning to be ex-
plored.
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