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Constraint Propagation with
Interval Labels

Ernest Davis

Courant Institute of the Mathematical Sciences, New York,
NY 10012, U.5.A.

Rccommended by Johan de Kleer and Ken Forbus

ABSTRACT

Constraint propagation is often used in Al systems to perform inference about quantities. This paper
studies one particular kind of constraint propagation, where quantities are labelled with signs or with
intervals, and these labels are propagated through recorded constraints. We review the uses of such
inference schemes in Al systems of various kinds, and evaluate their strengths and weaknesses. In
particular, we determine the completeness and running time of constraint propagation for various
kinds of labels and constraints.

1. Quantity Knowledge Bases

Much of the knowledge in many Al rcasoning systems can be expressed as
mathematical relations on rcal-valued quantitics. For example, temporal
rcasoning involves relations on times and durations; spatial reasoning involves
rclations on lengths and angles; physical reasoning involves relations on
masses, temperatures, encrgics, ctc. Frequently, the maintenance of thesc
refationships and the performing of inferences on them can be separated into a
distinct module called a quantity knowledge base. A quantity knowledge base
intcracts with the rest of the system’s inference mechanism in two ways. The
system provides the quantity knowledge base with mathematical relations,
cither perceived or derived from nonmathematical inferences; and the quantity
knowledge basc uses these to infer new relations which it can report to the rest
of the system.

The problems of combinatorial cxplosion and search, which plaguc inference
engines generally, take particularly fierce form in quantitative domains. Start-
ing with any quantitative constraint, it is possible to deduce innumerablec
others. For instance, starting with the constraint 0 < a < b, we can infer further
constraints  such  as  a<Vab<j(a+b)<b; e"<c’; [fe ¥ dx<
fo e ¥ dx.... Morcover, it is known that extremely complex and convoluted
paths of infcrence are sometimes nceded to draw desired conclusions from
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input constraints, cven if both the conclusions and constraints have simple
forms. Thus, an effective quantity knowledge basc must exert strong control to
prevent the inference process from scarching a large or infinite space, and, in
so doing, it must generally give up some degree of completeness. The designer
of the knowledge base must manage this tradcoff so that the knowledge basc
produces uscful information in reasonable time.

Onc approach to this problem has been to implement the knowledge basc as
a constraint network which performs inference by propagating interval labels.
‘T'his architecture has been used, with varying degrees of success, in physical
reasoning, temporal reasoning, and spatial reasoning. This paper discusscs how
constraint networks are used in these domains; how the cfficicncy and effec-
tiveness of constraint propagation varics with the types of constraints and
labels involved; and how the basic architecture of constraint nctworks may be
cxtended to achieve greater power.

2. Constraint Networks

A constraint network is a declarative structure which expresses relations among
oarameters. It consists of a number of nodes connccted by constraints. A node
scpresents an individual parameter, which has some particular value, known or
auknown. A constraint represents a relation among the values of the nodes it
connccts. Typically, cach constraint is connected to only a fcw nodes. For
cxample, in Waltz’s program for interpreting line drawings, cach node is an
unage clement; its values arc the various possible interpretations; and con-
siraints are rules establishing coherence of interpretation [1]. In MOLGEN [2],
nodes are elements of an genetic experiment, such as bacteria, chromosomal
clements, or antibiotics, whose value must be specificd in designing the
cxperiment, and constraints are limitations on the ways these can be chosen,
piven the objective of the experiment. In an electronics program, nodes arc
voltages and currents, and the constraints arc physical laws that relate them
[3]. Constraints which are universally applicable across all nodes of a given
type or structure within a given domain, such as Kirchhoff’s current and
voltage laws in an electronic system, may sometimes be left implicit, imbedded
in code rather than explicitly represented by a data structure.

Forward inference on constraint networks, called assimilation, is gencrally
done using constraint propagation, shown in Algorithm 2.1. In constraint
propagation, information is deduced from a local group of constraints and
nodes, and is recorded as a change in the network. Further deductions will
make use of these changes to make further changes. Thus, the consequences of
cach datum gradually spread throughout thc network.

Algorithm 2.1. Constraint propagation:

repeat
- take some small group of constraints and nodes in some connected
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scction of the network,
— update the information in this scction of the network, given the
information in the constraints and the nodes;
until no more updating occurs (the nctwork is quiescent) or some
other termination condition is rcached.

Constraint networks may also support query answering, where the user may
ask for the value of a term, or the truth-value of a proposition, bascd on the
state of the network. Generally, constraint networks are designed so that most
of the inferencing is done in assimilation, and queries can be answered quickly
from the final statc of the nctwork. Query answering generally does not modify
the state of the nctwork.

All constraint propagation systems sharc a number of valuable properties:

(1) Constraint propagation consists of a simple control structure applicdtoa
simple updating module. Hence it is easy to code, to analyze, and to extend. It
is casy to understand its actions, to explain them to a user, and to monitor
them by some external intelligent module.

(2) 1t degrades well under time limitations; interrupting the process in the
middle gives uscful information alrcady deduced.

(3) It is casily implemented in parallel, since updating can be performed all
over the network simultancously. Except in constraint inference systems, it is
possible to implement cach constraint as a single processor, which updates its
arguments whenever they are changed, or at regular intervals.

(4) It is well suited to incremental systems. A constraint may be added
incrementally by incorporating it in the network, updating its arguments, and
propagating the effects.

(5) The concept of a constraint network as consisting of a collection of local
connections works well with similar locality assumptions made in Al systems.
For examplc, physical reasoning programs assume that physical cffects prop-
agate across connections between components. Hence, constraints on physical
valucs will relate only the parameters of a few closcly connected components

(4.

We may distinguish six different categorics of constraint propagation based
on the type of information which is updated.

—In constraint inference, new constraints are inferred and added to the
constraint network. Kuipers’ ENV [5], Simmons’ Quantity Lattice {6], and
Brooks’ cMs [7] are all constraint infcrence systems (see also [8-10]).

—In label inference, each node is labelled with a set of possible values. In
assimilation, the constraints are used to restrict these sets. Label infercnce is
the subject of this paper.

—In value inference, nodes are labelled with constant values, and the
constraints are used to find values of unlabelled nodes from labelled nodes.
SKETCHPAD [11] and THINGLAB [12] use value infercnce.
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— Expression inference is a gencralization of value inference, in which nodes
may be labelled with a valuc expressed as terms over the values of other nodes.
When a node is given two different labels, these are equated, and the resultant
cquation solved. Expression inference is used in CONSTRAINTS {13].

— In relaxation, all nodes are given exact values, which may not be consistent
with the constraints. The assimilation process “pushes” these values around, so
as to satisfy each constraint. Relaxation has been used extensively outside Al
to solve problems such as partial differential equations [14].

~ In relaxation labelling, nodcs arc assigned with assignments of probabilitics
to various values. Updating involves changing probabilitics by combining the
previous probability on the node with the probabilities indicated by the other
nodes [15].

Constraint propagation systems may be applied in a wholesale or incremental
fashion. In a wholesale system, all input constraints arc available at the
beginning of processing, and are fixed thereafter. In an incremental system,
accepting new constraints alternates with answering queries. (In algorithm
theory, thesc are called “off-line” and “‘on-line” systems, respectively.)

There are two important differences between quantitative and nonquantita-
tive constraint propagation. Firstly, the range of a nonquantity variable is
usually a fairly small finite set. Therefore, when constraint inference provides
no further pruning, one can always resort to exhaustive scarch using gencrate-
and-test: pick a possible value at random, and dcterminc the consequences of
your choice. Quantitics have an infinite range of possible values. Thus,
exhaustive search is generally infeasible, and the power of generate-and-test
much diminished.' Secondly, the ranges of nonquantity variables are often scts
with little or no internal structure; scts of possible labels arec gencrally
designated by enumeration of elements. In contrast the real line has a lot of
internal structure, and all kinds of unary predicates are available for our use.

Each of the six categorics of constraint propagation has particular weakness-
cs and limitations. Relaxation and relaxation labelling are not sound deductive
techniques; the labels derived are not logically related to the previous labels.
Therefore, they are difficult to analyze, and difficult to interface with gencral
inference systems. Value inference and expression inference can only be used if
the constraints are equations; they cannot be used with incqualitics. Constraint
inference and label inference are hard to control; it may be difficult to prevent
them from going into infinite loops. In constraint inference, it may be difficult
to insure that new constraints derived will be useful in query answering. The
appeal of label inference is that it is deductively sound, it can be used with

! Generate-and-test is used in a number of quantitative applications: cither in the context of
Monte Carlo search, as in spaM [16] and MERCATOR [17]; or where the rcal line is broken into a
finite number of subintervals as in ENVISION [3]; or where the constraints involved have a
disjunctive form, and one disjunct must be chosen for exploration, as in CONSTRAINTS [13].

CONSTRAINT PROPAGATION 285

constraints of arbitrary form, and that it is much casicr to control than general
constraint inference.

3. Label Inference

In label inference systems, each nodc is labelled with the set of its possible
values. In quantitative applications, this sct is generally an interval on the real
line. In query answering, the term to be cvaluated is expressed as a function of
some of the nodes, and the system must calculate the range of value of the
term given the label sets of the component nodes. In assimilation, node values
are updated through label refinement, in which the label set of onc node is
restricted, based on a constraint and on the labels of all the other nodcs in the
constraint. For example, if we have the constraint “X + Y = Z,” and we have
the label scts “X =3, Y =1,” then we can deduce that Z =4, and add this to
the description of the label sct of Z. The general form of refinement can be
expressed in the following definition:

Definition 3.1. Let C be a constraint on nodes X, ..., X,. Let S, be the label
set for X,. Then

REFINE(C, X)) = {4, E S, |3(a, €S, i=1,...,k, i#])
Cla,,...,a;,...,4)}.

That is, REFINE(C, X)) is the sct of values for X, which is consistent with the
constraint C and with all the labels S;. A valuc g; is in REFINE(C, X)) if g, is in
S; and it is part of some k-tuplc a,, ..., 4, which satisfies C and all the §,.
Note that refincment is sound deductively; if a tuple satisfies the constraint and
the starting labels, then it satisfies the refined label.

Applying the updating function REFINE within the constraint propagation
control structure (Algorithm 2.1) gives the Waltz algorithm, first presented in
[1]. The Waltz algorithm entails using rcfinement on each constraint and cach
node over and over until refinement produces no more changes. When this
stage is rcached, the network is said to have reached quiescence. Since
refinement is sound deductively, so is the Waltz algorithm, which simply
iterates refinement. That is, if a given assignment of values to the quantitics
satisfies all the constraints and all the starting labels, then it will satisfy the
labels calculated by the Waltz algorithm. If the algorithm halts with assigning
some parameter the null set, then the input state was inconsistent. Algorithm
3.2 is an efficient implementation of the Waltz algorithm. Example 3.3 shows
the Waltz algorithm in action.

Algorithm 3.2.
/* The set S, is the current label set of quantity X;. */
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/* REVISE refines all the parameters X, ..., X, of a given constraint C, and
returns the set of all parameters whose set was changed. */

procedure REVISE(C(X, ..., X,))
begin CHANGED «§
for each argument X, do
begin § « REFINE(C, X)
if S =40 then halt /* the original constraints were inconsis-

tent */
else if S # S; then
begin S, < S;
add X, to CHANGED
end
end
return CHANGED

end

procedure WALTZ
begin Q <—a quecuc of all constraints
while Q #0 do
begin remove constraints C from Q;
CHANGED <« REVISE(C)
for each X, in CHANGED do
for each constraint C’ # C which has X, in its domain do
add C' to Q
end
end

#xample 3.3 (Exccuting the Waltz algorithm). Supposc we start with the
Hlowing bounds

x€]1,10], y€13,8], z€[2,7]
and relations
x+y=2z, ysx.

‘This would be implemented in a data structure like the one shown in Fig. 1.
The algorithm would proceed as follows: The constraint qucue would begin
with both constraints (CON1, CON2) on it.

CONI1 (x + y = z) is popped from the queue.

~Since x=1 and y =3, CONI gives z =4, so resct the bounds of z to [4,7].
- Since z<7 and y =3, CON1 gives x <4, so resct the bounds of x to [1, 4].
Since x and z have been changed, add CON2 to the queuc.
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CON2 (y < x) is popped from the qucue.

— Since x <4, CON2 gives y <4, so reset the bounds of y to [3,4].

- Since y =3, CON2 gives x =3, so resct the bounds of x to be {3, 4}.
Since x and y have changed, ddd CONI to the qucue.

CON1 (x + y = 2) is popped from the qucue.

—Since x =3, y =3, CONI gives z =06, so resct the bounds of z to (6,71
Since only z has been changed and z has no other constraints besides CONI1,
nothing is added to the qucue.

Since the queue is empty, quit.

Algorithm 3.2 may be modificd to handle the addition of a single constraint
by changing the first linc of procedure WALTZ to rcad, “Q <—a qucue contain-
ing the new constraint.”

The running time of the Waltz algorithm has been extensively analyzed in
the case where the range of the paramecter is a finite sct [18-20]. In particular,
Mackworth and Freuder have shown that the algorithm halts after O(ae) calls
to REVISE where a is the number of possible values per parameter, and e is the
number of constraints. However, this halting result does not apply when the set
of possible labels is infinitc, as is often the case with quantitative labels. In such
cases, the analysis depends critically on the nature of the constraints involved.

The restriction that all information pass from the constraints to the queries
via the label scts makes it almost certain that some information will be lost. For
cxample, if we start with two nodes A and B labelled “A € {1,2,3}” and
“Be€{2,3,4)” and the constraint “A = B,” then the Waltz algorithm will
deduce the new labels “A € {2,3},” “B € {2,3},” and stop. If we now pose
the qucry “What is the valuc of the vector (A, B),” the system will answer
that there arc four possibilities: (2,2), (2,3), (3,2), and (3, 3), since these
are all consistent with the labels, though not with the constraint. Similarly, if
we query the system “Is A cqual to B,” the best answer we can get is “Possibly
yes, or possibly not.”

Onc may view this information in the following geometrical terms. The sct of
tuples of values which are consistent with the constraints and the starting labels
define some volume in k-space (k is the number of parameters). Label
inference finds the projection of this volume onto cach separatc quantity axis.

Constraints:

LON1X+Y z CONZ: Y = X

SN N

Nodes: | Z € (2,7] | Y ¢ [3.8] X € [1,10]

FiG. 1. Constraint nctwork.
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Any query operation which uses just the labels is considering the cntirc
cross-product of all these projections. Thus, the effect of making the labels
intermcdiarics between assimilation and query answering is to replace the
constraints by a “box” in k-space which circumscribes them. The difference
between the volume defined by the constraints and the circumscribing box
corresponds to information lost.

It is sometimes possible to avoid this information loss by using nodes
corresponding to complex terms. For instance, the above problem can be fixed
by adding a node A — B labelled 0. If the query answercr now consults this new
labelling, it can answer both of the above questions accurately. In the
geometrical view of the previous paragraph, introducing these terms corres-
ponds to transforming the axes, so that boxes in thc new axcs fit the
constraints. However, this approach increases the complexity of both assimila-
tion and query answering (sec Scction 10).

An alternative approach, pursued in an carly version of SPAM [21] is to use
labels such that all selections of values from the labels satisfy the constraints.
(McDermott calls these “conscrvative” labels.) That is, the cross-product of
the labels is a subset of the solution set of the constraints, rather than being a
superset, as in systems which use refinement: an inscribed box, rather than a
circumscribed box. In the above example, we would use cither the set of labcels
A€ {2}, BE {2}, or the sct of labels A € {3}, B € {3}. If we had the starting
labels A € {1,2,3}, BE{2,3,4}, and thc constraint A # B then there would
be four possibilities for reasonable conservative labellings: Ae{l}, Be
(2,3,4); A€{1,2), BE(3,4); A€{1,3}, BE{2,4}; and AE{1,2,3},
B € {4}. Boggess [22] uses an extreme form of this approach in which each
quantity is given a single value such that the quantitics satisfy thc constraints.
Thus, in the sccond cxample, she might use the labellings A=1, B =4 or
A=3, B=2, ctc.

This approach, however, is problematic. It is not deductively sound; that is,
it permits inferences which are not warranted by the constraints and which
consequently could be mistaken. It is not unique; there arc many different sets
of conservative labels. Finally, it is much harder to implecment than a refinc-
ment algorithm, since there is no analogue of the “REFINE™ operator which
allows one variable to be sct at a time. Rather, all variables must be considered
together.

For instance, if, as above, we start with the labels A€ {1,2,3}, B€
{2, 3,4}, and we add the constraint A #* B, then we must choose between one
of the four conservative labellings mentioned above. Finding these conserva-
tive labelling involves assigning A and B simultancously; thcy cannot be
considered separately. None of these labellings is a logically necessary con-
scquence of the constraint; any of them could turn out later to be wrong. For
example, if we choose A € (1,2}, B € {3,4}, then we arbitrarily rule out the
consistent possibility A =3, B =2. The next constraint added may contradict
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our labels, cven if it is consistent with the first constraint; in our cxample, the
constraint A =3 would violatc the labelling we have choscn. If this happens,
the system must backtrack, and choosc some other sct of conservative values.
Typically, contradictions of this kind will be frequent, and will involve many
previous choices; hence backtracking will be extensive and cxpensive.

Label inference techniques can rarely be complete, because of the “‘narrow
bandwidth” of labels as an interface between the constraints and the querics. A
more modest requirement is that assimilation and query answering arc cach
separately complete. Assimilation is complete if the label assigned to a node
represents accurately the range of values it can attain given the constraints.
That is, if assimilation is complcte, then we can consistently assign to any node
any value within its label, and then can pick values for all the other nodes so
that all constraints arc satisficd. If the actual range of values is a set which is
not described by any label in the label language, then we can say that
assimilation is complcte up to the label language if the labels assigned arc the
best labels possible. By definition, the refincment operation is always complcte
for a singlc constraint; however, as we shall see, this docs not imply that the
Waltz algorithm is complete for a sct of constraints.

Query answering is complete if the range of values returned for the queried
term is exactly the range permitted by the label sets. That is, if we query the
system for the valuc of term T, and it rcturns “T is in set S,” then, for any
valuec V in S, we may assign values V,, ...V, to the nodes so that all implicit
constraints arc satisfied, and so that, if the nodes have these valucs, then T will
have valuc V. For cxample, suppose we have nodes A, B, and A — B, with
labels {2, 3}, {2,3} and {0}, respectively, as above, and we query the system
whether A = B. A query system that looks only at the first two labels will
answer “Possibly true; possibly false;” a system which looks at the third labcl
will say “Dcfinitely true.” The first systcm is incomplete, while the second is
complctc.

The basic characteristics of a label infcrence system arc the constraint
language, the query language, the query answering language, the kinds of
terms used as nodes, and the kinds of predicates used as labels. Once thesc are
fixed, programming and cvaluating the assimilator involves the following
considerations:

— How is an input constraint expressed as a constraint on node terms?

— How is rcfinement performed on explicit constraints?

~ What implicit constraints arc uscd? How is refinement performed on them?

— Under what circumstances docs the Waltz algorithm reach quicscence? If it
does not, how is it halted?

—In what order docs the Waltz algorithm choose constraints and nodes to
refine?

— Under what circumstances arc nodes introduced and removed from the
system?
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- 1s the assimilator complete?
tacsigning the query answerer involves the following problems:
- How is a query expressed as a function of the terms?

How is a query term cvaluated?

Is the query answerer complete?

4. Applications of Labels Inference

i this section, we discuss the use of label inference in three particular
;- ograms: de Klcer and Brown’s ENVISION [3], Decan’s T™MM [23], and McDecr-
siott’s SPAM [16). We will not, by any means, try to summarize these programs

i their totality; our presentation is limited to their application of label
i ference.

.1, ENVISION

{.3VISION [3] performs qualitative reasoning about the bchavior of physical
=, ~tems over time. Given the description of a physical system in physical terms,
.- VISION first creates a mathematical model of the system, by ideatifying a
g unber of physical quantitics as determining the state of the system, and by
wientifying constraints which relate these quantitics and their time derivatives.
i+ then uses these constraints to predict the behavior of the system over time.
L i«VISION uses constraint propagation and label inference to enforce the
pysical constraints at any given instant of time. To predict the behavior of the
«ystem over extended time, it solves qualitative differential equations, which arc
veyond the scope of this paper.
~ ENVISION is largely concerned with the response of systems to small changes
in onc system parameter. It characterizes these changes, and the resultant
glm'ngcs in other system quantitics, purely in terms of their sign without any
iudication of magnitude. Therefore, nodes represent quantity changes, and
they are labelled with one of four signs: POS = (0, ®), NEG = (—, 0), ZERO =
[1. 0], and IND = (—o0, o),

Consider, for example, the simple electronic circuit shown in Fig. 2. The

- iy

L
= @2 .
T

C

Fi6. 2. Electronic circuit.
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resistances of the resistors arc assumed to be positive, but otherwisc un-
specified.

ENVISION begins by identifying seven statc variables: V,, the voltage drop
from A to C; V., the voltage drop from B to C; V, . the voltage drop from A
to B; i,, the current through Ry; iy, the current through R,; iy, the current
through R,; and i,, the current through the battery. These quantitics are
related by Kirchhoff's voltage law (the sum of the voltage drops around a cycle
is zero), Kirchhoff’s current law (the total current flowing into any node is
zero), and Ohm’s law (the current through a resistor is proportional to the
voltage across it). Symbolically, we can cxpress these laws as follows:

Kirchhoff’s voltage law:
~Vact Vag + Vpc=0.

Kirchhoff’s currcnt law:
i, —i—i;=0, iy+iy—i,=0, i,=1i,.

Ohm’s law:
Vg =Ry, Vpc = Ryiy s Ve = Rsis

Since ENVISION is primarily interested in changes to these quantities, rather
than the quantities themsclves, we differentiate these rules. For any quantity
0, let 8(Q) represent an infinitesimal change to Q. Then, differentiating the
above rules, we get:

Kirchhoff’s voltage law:
(—Vae) +8(Vap) + 3(Vpc) =0.

Kirchhoff’s current law: .
3(i,) — 8(i,) —d(i,) =0, 8(i2)+6(13)—8(i4)=0, 8(i,) = 8(iy) .

Ohm’s law:
¥(Vap) = R3(i,) , 3(Vpe) = R,8(i,) , 3(Vie) = R,3(i5) -

Finally, since ENVISION only uscs the signs of these changes, the above
cquations are discretized to be relations on signs. Following de Kleer, we will
denote the sign of a quantity Q as [Q], and the sign of the change of Q as Q;
thus 0Q =[8(Q)]. The last four equations above all have the form &(P) =
ad(Q), where a is positive. Thus (P) and 3(Q) have the same sign, and
8P =9Q. The first three equations all have the form 3(P)+8(R) +3(Q)=0.
This implics that either all these derivatives are zero, or at least one is positive,
and at lcast onc is negative. Thus, the sum of the corresponding intervals must
cither be [0,0] or (—»,®). We may write this 3P+ 3R+ aQ DZERO.” The
resultant constraints are as follows:

2De Kleer [3] and others use the notation, “3P +oQ + aR=0."
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—dV, e+ 3V, + 3V, D0 (C1)
i, — di, —3i, 0. (C2)
di, + di, — 9i, D0. (C3)
i, =i, . (C4)
AV, p =i, . (C5)
Ve =i, . (Co)
Ve =di,. (C7)

in practice, ENVISION does not go through the steps of diffcrentiating and
. «retizing equations. Rather, physical laws are stated in discretized differen-
.1 form, so that ENVISION goes directly from a physical description to a final

sm. The original form of the equations is therefore irrclevant; ali that matters

ihe discretized form. Thus, ENVISION can handle nonlincar and lincar

{cms with equal ease.

(iiven a change in one or more systcm parameters, ENVISION can usc label
. npagation around these constraints to infer changes in others. Suppose that
.. current through R, increases; that is, di, = POS. From (C6), we can deduce
..t @V, = POS; that is, Vj is incrcasing. From (C7), we can deduce that

., =Pos; that is, i, is increasing. From (C2), we can now deduce that
., = pos. From either (C3) or (C4), we can deduce that di, = POS. From (C5),
.= can deduce that 3V, , = Pos. From (C1), we can deducc that 8V, = POS.
iius, we can determine that, if i, increases, so do all the other system
,-rameters.

Sometimes constraint propagation by itself is not adequate to make these
j-redictions. For example, supposc we specify that 9V, = POS, the voltage
+-10ss the battery is increasing. The only constraint associated with V. is
i 1), and (C1) is not sufficiently powerful to allow us to propagate any labels.
it implics that either 3V, or 3V, ; must be positive, but there is no way to tcll
which. In this case, ENVISION uses a “‘generate-and-test’ strategy. It gucsscs a
particular value for aV,¢. First, try 8V, = NEG. From (C1) we can deduce
aV ,, = POs. From (CS), we can deduce di; = POS. From (C6), we can deduce
i, =NEG. From (C7), we can deduce 9iy = NEG. But these contradict con-
straint (C2): 9i;, —di,, —di, arc all positive. Thus, the gucss that V. = NEG
must have been wrong. A similar contradiction is rcached if we try oV, =
71:RO. The only possibility is that V. = POs. Making this assumption allows us
to propagate labels quickly to deduce that all quantitics increase.

4.2, TMM

T™MM [23] maintains a time map, a knowledge structurc which records changes

CONSTRAINT PROPAGATION 293

to the world over time. The input to the program consists of a number of time
tokens, denoting particular instants of interest; assertions that a particular
cvent takes place, or a particular fact is true, at some particular time token, or
between two particular time tokens; rules that describe necessary relations
among cvents and facts; and constraints, which relate the times at which the
various time tokens take place. The main concern of TMM is to keep track of
how facts become truc and false over time; however, we focus entircly on its
usc of temporal constraints.

Temporal constraints in TMM are all interval bounds on the time difference
between two tokens. For example, if the token “light(gas)” and “boiled(eggs)”
represent the time when the gas is lit under a pot of cggs, and the time when
the cggs are hard boiled, respectively, then the fact, “The eggs will take from
10 to 15 minutes to boil,” would be expressed, “boiled(eggs) — light(gas) €
[10, 15].” (The units involved—minutes in this casc—arc constant throughout
the program.) TMM maintains a constant nctwork where all pairs of differences
are maintaincd as nodes, with interval labels.? The constraints on these nodes
arc all implicit, determined by the form of the node quantities. If N, is a node
representing a — b, N, is a node representing b—c, and N; is a node
representing a — ¢, where a, b, and ¢ arc tokens, then N,, N,, and N, arc
rclated by the implicit constraint “N; + N, = N;.”” TMM performs inference on
an input constraint by sctting the label for the node involved, and then
propagating the effects of this new label through thesc implicit constraints.
TMM also allows constraints to be delcted, and their consequences to be
withdrawn (see Section 11).

For example, supposc we are given the following facts. Dinner preparations
last night consisted of shopping, followed by a break, followed by cooking.
Shopping took betwcen an hour and an hour and a haif; the break took
between half an hour and an hour; cooking took between one and a quarter
and two hours; and thc whole preparation time took between two and three
hours.

TMM would analyze this using four time tokens: B, thc time when prepara-
tions were begun; S, the time when shopping was completed, C, the time when
cooking began, and D, the time when dinner was ready. The input constraints
arc therefore

S—-B€[l.0,1.5], C-S€[05,10], D-C€E[L.2520],
D-B€E[2.0,3.0].

The constraint network has six nodes with labels derived from the input
constraints, and four implicit constraints.

* Strictly spcaking, TMM records all the differences only between the most important tokens,
called the kerncl. Tokens outside the kernel are more weakly bound. See Scction 10.
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Nodes:
N, =5S-B€[1.0,1.5], N,=C—~BE(—»,»),
N,=D-B€[20,30], N,=C-S5€[05,1.0],
Ny=D - §E€(—», ), N,=D-C€[1.25,2.0].

Constraints:
N, +tN,=N,, (C1)
N, +N;=N,, (C2)
N, + Ny=N,, (C3)
N,+ Ny=N;. (C4)

(In general, for n quantitics, there will be (3) nodes and (3) implicit con-

straints.) .
We now propagate these labels through these constraints.

- From (C1), N, €[1.0,1.5], N, €[0.5, 1.0}, deduce N, €[1.5,2.5].

- From (C2), N, €[1.0, 1.5], N, €{2.0,3.0], deduce N, €[0.5,2.0].

—-From (C3), N,€[1.5,2.5], N,€[1.25,2.0], N,€[2.0,3.0], deduce N, €
(2.75,3.0], N, €[1.5,1.75], N, €[1.25,1.5].

~From (C4), N,€[0.5,1.0}, N,€[1.25,1.5], Ns€[0.5,2.0}, deduce N,E
{0.5,0.75], N; €[1.5,2.0].

—From (C1), N, €[1.0,1.5], N,€{0.5,0.75], N, €[1.5,1.75], deduce N, €
[1.0, 1.25].

— No more deductions can be made.

4.3. SPAM

SPAM [16] maintains an incremental knowledge basc for information about the
relative positions of objects. The program modifies the knowledge base in
responsc to user input constraints, and consults the knowledge base to answer
user queries. It handles a broad range of constraints and queries.

SPAM associates a Cartesian reference frame with each object. Each refer-
ence frame has its own unit scale, its own orientation, and its own origin. The
knowledge base of SPAM consists of a constraint network whose nodes denote
four basic binary relationships between frames, A and B: their relative scale,
s(B, A); their relative orientation, o(B, A); and the x- and y-coordinates of the
origin of B in the frame of A, x(B, A) and y(B, A). These nodcs arc labelled
with interval bounds. Nodes are constrained by implicit constraints, dependent
on the geometry of the terms involved, as well as by uscr input constraints.

For example, Fig. 3 shows three frames, A, B, and C. The program might
choose to represent the relations between these frames in terms of the
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A v [

FiG. 3. Three frames of reference.

following nodes and labels:

x(B, A)€[2.0,3.0], y(B, A)€[0.0,1.0],
s(B, A)€]0.5,1.0], o(B, A) €[30°,90°];
x(C, A)€[0.0,6.0], y(C,A)€[4.0,5.0],
s(C, A)E€[2.0,3.0], o(C, A) €[180°,270°] .
When SPAM is asked a query, it first transforms the query to be a function
over the node terms, and then evaluates this function using cither Monte Carlo

or hill-climbing techniques. For example, if the system is queried, “How far is
C from B in terms of the units of B?” this expression is transformed to

[(x(C, A) ~ x(B, A))> + (¥(C, A) — y(B, A))’]'”
s(B, A) ’

It then calculates that, given the bounds on the quantities, the value of this
expression lies somewhere in the range (3.0, 12.8].

When SPAM is given a new constraint to assimilate, it first transforms it to a
constraint over node terms, as above, and then uses a hill-climbing technique
to perform refincment on the nodes involved. For example, supposc that we
start with the constraint network as above, and we input the constraint, “C is
at lcast twelve B units from B.” This is translated into the constraint

((x(C, A) — x(B, A))* + (¥(C, A) — y(B, A))’]'* =125(B, A) .

The program then determines the maximum and minimum values of each of
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the node terms involved, given this constraint and the starting labels. It arrives
at the results

X(B, A)E[2.0,2.6], y(B, A)E[0.0,0.5], s(B, A) €[0.5,0.53],
x(C, A)E[5.4,6.0], y(C, A)E[4.5,5.0].

Note that if the previous query, “How far is B from C in B units?” is raiscd
after this assimilation, the answer will be “In the range [9.2,12.8].” Thus,
information has been lost. The assimilation program cstimates the degree of
loss by determining how frequently tuples chosen at random within the refined
labels satisfy the input constraint. If the information loss is unacceptably high,
the program may choosc to rectify this introducing new nodcs, and, possibly,
new frames (sce Section 10).

sPAM does not usc thc Waltz algorithm. Rather, rcfincment is applied to
cach constrant when it is cntered, and then the constraint is forgotten. This is
due to time limitations; since we are using a hill-climber to perform refinement,
cach refincment takes so long that propagation would be wholly unworkable.

5. Label Languages

We may now proceed to a more general analysis. As stated at the end of
Scction 3, there are five essential determinants of a label inference system: the
types of node terms, the language of labels, the language of constraints, the
language of querics, and the language of answers. Howecver, it turns out that
the languages of labels and constraints arc key for catcgorization. (For the
present, we will assume that all nodes are simple quantitics; we will consider
more complex nodes in Scction 10. The language of querics is almost always
cqual cither to the label language or to the constraint language. The language
of query answers is typically the same as the language of term labels.) We will
therefore begin by separately considering varieties of labcl language and
constraint language, and then describe how they combinc.

There are two main label languages in use: signs and intervals. Sign labelling
uscs the four labels POS, NEG, ZERO, and iND.* This crude catcgorization is
often sufficient for particular applications, particularly, as in ENVISION, in
catcgorizing directions of change.

Interval labelling uses arbitrary intervals as labels.® It is used in spaces where

* Strictly speaking, we should, perhaps, include the labels NONNEG(x) (x = 0), NONPOS(x) (x <0)
and NONZERO(x) (x # 0). This would allow refincments such as NONZERO(xy) implics NONZERO(X),
Nonzero(y). However, the slight increase in completencss does not secem to be worth the
substantial increasc in complexity.

* Throughout this paper we use thc notation T €{a, b]. Note that this may be taken as an
abbreviation for a< T <b. In describing the first-order language of thesc systems, it is not
necessary cither to use set theory or to usc intervals as individuals.
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sign labelling is too coarse a mecasurement, or which have no absolute zero.
Intervals have a number of valuable propertics as a language of labels.
Intervals are flexible enough to represent both an approximate value and a
degree of uncertainty. An interval can be represented by two real numbers and
two booleans (to indicate closedness or openncss at each end.) All connected
sets of rcal numbers arc intcrvals, and vice versa. Hence, the image of an
interval, or a collection of intcrvals, under a continuous function is itself an
interval. Likewise, the intersection of two intervals is an interval. Finally, it is
generally reasonably casy to work out the refinement operator for intervals in
particular cascs.

Three questions arc often raised with respect to intervals. The first is
whether to usc open, closed, or half-open intervals. Clearly, for maximal
flcxibility, onc would want to use all of these. However, this usually compli-
cates the casc analysis for little practical gain, and it is better to stick cither to
closed intervals or to open intervals. As between closed and open intcrvals,
closcd intervals arc probably preferable, for threc reasons. Firstly, given any
bounded set of values, there is a unique minimal closed set which contains it;
hence, a best labelling. Secondly, exact values are a special case of closed
intervals, so cxact valuecs and intcrval values can be handled uniformly.
However, the programmer who wishes to cxploit this fact must be somewhat
carcful. He will find that code which is correct and works perfectly well for
intcrvals of finitc length may bomb on point intervals because of round-off
error. Finally, the image of a closed bounded interval under a continuous
function is a closed bounded interval; this is not truc of open intervals.
However, this advantage may be lost, since most systems also usc intcrvals
which arc infinitc on the right or the left. Closed intervals arc also typically
uscd in intcrval analysis [24].

The sccond question about intervals relates to the treatment of disconnected
scts. One may find that the sct of values consistent with a constraint is
disconnected, becausc the constraint makes onc quantity involved either a
discontinuous or a multi-valued function of the other quantitics. For example,
given the constraint xy = z, and the labels y € [-1, 1], z €[4, 5], the solution
sct for x is x € (—, —4] U [4, ). The problem is that x = zly is a discontinu-
ous function of y at y = 0. For another example, given the constraint x> = z and
the label z €[4,9], the solution set for x is x €[-3, —2]U{2,3]. Here, the
problem is that the function x =Vz is multi-valued.

There would secem to be two possible approaches. The first is to usc sets of
intervals, rather than just single intervals. The sccond is to usc the convex hull
of the solution set; that is, the smallest interval containing the entirc solution
sct. 1 have never heard of any program using the first approach. The simplicity
of using a single interval would apparently outweigh the occasional loss of
information involved. It sccms unlikely that this would ever be the major
source of information loss in a program of this kind.

The final question regarding intervals is that of psychological plausibility. Is
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it reasonable to treat quantitative knowledge as a step function, to say that onc
i surc that the length of a stick is between 5.11 and 6.34 feet, and nothing
aore? Do not one’s belicfs correspond more to a probability distribution with
4 likelihood gradually diminishing on cither side of a central valuc? There is
~omething plausible about thesc arguments; unfortunatcly, the alternatives to
intervals are worse. Probability functions requirc morc arbitrary assumptions
and introducing more fudge numbers than simple intervals; their semantics are
1ess clear; and, if done right, they require much more complex computations.
epresenting uncertain values by (say) a Gaussian probability curve is no less
arbitrary than representing them by fixed bounds; and it is very difficult to
Jefine what the probability mcans and how to combinc different curves. My
iceling is that it is better to pick some sale bounds, to do computations with
them, and then to introduce probability at the end by treating the results with a
crain of salt. If the computation tells you that the length of the stick is between
.11 and 6.34 fect long, this should be read as “About 5.7 = 0.6.” 1f some rule
;-quircs that the stick be at most 6.5 fect long, the system should not consider
‘hat the condition has been met with any great certainty.

6. Constraint Languages

‘here are cight major classes of constraint languages which have cmerged so
tar as important in Al systems. In increasing order of complexity these are:

(a) unary predicates; »

(b) order languages, consisting simply of the order relationship;

(c) systems of equations of the form “x —y>c” or “x—y=c’;

(d) lincar cquations and inequalitics with unit cocfficients (i.c. all cocffici-
ents are —1,.0, or 1);

(¢) lincar equations and inequalitics with arbitrary cocfficients;

(f) boolcan combinations of constraints;

(g) algebraic equations;

(h) transcendental equations.

In this section, we will discuss the Al applications of cach of these.

The simplest kind of constraints arc unary predicates, i.c. labcls. We have
alrcady looked at two possible classes of unary predicates: signs and intervals.
Other predicates which are often used include exact values and fixed ranges.
Exact values are used in systems where quantitics arc known without uncer-
tainty. This was the practice in old style blocks-world programs, such as
SHRDLU [25], which represented the positions of blocks by the exact coordi-
nates of the front lower left-hand corner. Fixed ranges are used in measurc
spaces which are naturally divided into a finite set of cxhaustive, disjoint
intervals. For example, the measurc space “‘water temperature” is naturally
divided into the ranges (—%,32) (icc), [32,32] (melting), (32,212) (liquid),
[212, 212] (boiling), (212, =) (gas). The space of voltages across a transistor is
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divided into the cutoff region, the lincar region, and the saturation region.
Such divisions arc extensively used in naive physics systems (3, 26].

Order relations arisc in systems where comparative magnitudes arc the only
quantitative relations of intcrest. This occurs, for example, in systems which
plan the order of cvents without consideration of their time duration, such as
NOAH [27]. Each level in planning in NOAH specifics a partial ordering on the
actions in that level. Order relations are also a large part of the quantitative
information used in physical reasoning systems [3, 5, 26].

Inequalitics of the form x — y = ¢ are useful in dealing with quantity spaces
in which the relative values of two quantities may be known well though their
absolute quantitics are much morc uncertain. This happens particularly in
trying to place events on a timeline. For example, one might know that
Michaclangclo was an older contemporary of Raphacl, and that the cnd of the
Thirty Years War occurred about thirty years after its beginning, whilc having
only the vaguest notion of either the dates of these events, or the relation of
the first pair to the sccond pair. Such knowledge can be represented in
cquations like the following:

date(birth(Raphael)) — date(birth(Michaelangelo)) € [0, 30} ,
date(end(30_ycars_war)) — date(start(30_ycars_war)) € [25, 35} ,
date(birth(Raphael)) — date(start(30_years_war)) € {—100, 200] ,
date(birth(Michaelangelo)) € [1400, 1600] ,
date(start(30_years_war)) € [1500, 1700] .
Such constraints are also used in TMM [23] and other planning programs [28].
In measure spaces with scalar multiplication, a bound on the quoticnt of two
quantitics is often more uscful than a bound on their difference. For example,
you might know that both your kitchen table and your house were roughly 2 to
1 rectangles without knowing at all precisely the ratio of their sizes. You might
then express your knowledge in the inequalities:
length_of(table)/ width_of(table) € {1.8,2.2],
length_of(housc)/width_of(housc) € [1.5,2.5] ,
length_of(housc)/length_of(table) € [10.0, 50.0] .
A system of bounds on quoticnts of positive quantities is isomorphic to a
system of bounds on differences; the logarithm function is the isomorphism.

* Notc that any constraint on specific quantitics derived from the monotonicity of functions, as in
(5,26], is always a simple order relationship. The actual derivation of these relations is outside the
scope of this paper, since I am not dealing with constraints on functions.
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Allen and Kautz [50] used a constraint nctwork with both quotient bounds and
boolean combinations of order relations for temporal reasoning.

The class of linear relations with unit coefficients is important in common
sensc reasoning, because such relations are adequate to cxpress conservation
laws. Conservation laws assert that the change in a valuc over time is equal to
the sum of its increments minus the sum of its decrements. For instance, the
change in a bank account is the sum of the deposits plus the interest minus the
sum of the withdrawals. The change of the amount of liquid in a cup is the total
amount poured in minus the total spillage and evaporation. If we are only
interested in reasoning about discrete changes, and we can identify all relevant
increments and decrements, then we can write any such rule in the form

Qf—-Qi=§Inck-;Dcck.

Lincar incqualitics with nonunit cocfficicnts may arisc from combining ratio
information with difference information. For example, supposc that 1 know
that painting the table will take somewhat longer than painting the chair, 1
intend to start the table about ten minutes after finishing the chair, and I want
the whole process to take under two hours. Using T, T,, T,, and T, for the
times when I start the chair, end the chair, start the table, and cnd the table,
respectively, I can express these constraints in the lincar incqualitics,

L-% €,3, T,-T,€[8,12], T,~T,<I120.
T,—-T,

General linear incqualitics also arisc in analyzing the differential behavior of
nonlinear systems. For cxample, in studying small perturbations to an idcal
gas, which obeys the law PV=nkT (P =pressurc, V=volume, T=
tcmperature, n and k are constants), wc may use the diffcrential rulc V dP/
dt + P dV/dt = nk dT/d¢t. For small perturbations from a starting state, V and
P may be treated as constants. ENVISION [3] uses such relations. General lincar
incqualities have also been used in analyzing the stability of a tower of
polyhedral blocks [29], and in geomctric reasoning on polygons an'd polyh.cdru
[8]. (Note that, though Malik and Binford [30], talk about arbitrary lincar
incqualities, all of the cxamples given are cither absolute bounds, order
relations, or bounded differences.)

Boolean combinations of constraints have been most cxtensively studied in
physical reasoning [3,26] in electronic circuit design [13], apd in planning.
They take three major forms. Firstly, there arc gated constraints of.thc form
“if P then Q,” where P and Q are constraints. These arisc in elcctr911|c§ and in
physics in considering systems which have several states, cach with dlffcrgnl
rules, such as the state of a transistor, or the phasc of a quantity of material.
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Sccondly, there are reductions of complex constraints. As we have scen in
ENVISION, when a linear equation of the form X + Y + Z =0 is expressed as a
relation over the signs of X, Y and Z, it takes the form “Either X=Y=2Z=0
or at least one of them is positive and at least one is negative.” In fact, if we
start with any relationship on quantitics, and we discretize the quantitics to a
finitc sct of possibilitics, then the relationship reduces to some table of
allowable tuples, and can be expressed as a boolean combination of simple
constraints. Thirdly, in planning, a very common constraint is that the actor
can only do one thing at a time. This can be expressed as the disjunction,
“Either the end of ACT1 comes before the beginning of ACT2 or vice versa.”
Likewise, the relations on time intcrvals used by Allen [31] arc esscntially
boolcan combinations of order relations on their endpoints, as shown by Vilain
and Kautz [32].

Physical rcasoning may involve nonlincar constraints. Some of thesc arisc
from the geometric properties of physical systems; others have their origin in
the basic physics. For example, Williams [33] uses multiplicative cquations in
analyzing MOS transistors.

Geometric reasoning gencrally involves both algebraic and transcendental
cquations, since distance function is algebraic, and the trigonometric functions
arc transcendental. (For the purposcs of complexity analysis, these transcen-
dental functions can be climinated by replacing constraints on angles with
cquivalent algebraic constraints on their sines and cosines.) The exponential
and logarithmic functions have been unimportant in Al systems.

7. Complexity Results

In evaluating the cffectiveness of label inference for solving a network of
constraints of a particular type, it is important to know how difficult, in
principle, is the solution of such constraints. For each type, therc are three
problems to consider: (i) the problem of evaluating the bounds on a term of a
particular kind, given labels on its arguments; (ii) the problem of performing
refinemient on a constraint of a given kind; and (iii) the problem of solving a
set of such constraints.

((i) and (ii)) Evaluating order relationships, linear sums, or boolean combi-
nations of these, on labels is straightforward. Evaluating an algebraic expres-
sion on a set of labels is NP-hard, even if the expression is no more than
fourth-order. (Yemini [34] shows that solving a set of equations of the form
(x;, ~ )c].)2 +(y;,— y’.)2 = ¢, is NP-hard. This problem can be reduced to the
problem of whether 0 is in the range of I, ; [(xi-—xj)2 +(y,.—yi)2 - c,.,.]z.)
However, the bounds on an algebraic expression can be computed in exponen-
tial space, and hence doubly exponential time [35]. Evaluating a transccndental
function is, in the worst case, uncomputable. (It is uncomputable whether a
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given transcendental expression is identically cqual to zcro [36).) The same
bounds apply to performing refincment, cxcept for boolcan combinations.
Since boolcan combinations include arbitrary conjunctions, solving a single
boolecan combination is cquivalent to solving a system of them (scc below).

(iii) A set of order relationships or bounds on diffcrences may be solved in
time n® (see [32] and Appendix A). A sct of lincar relations can be solved using
Karmakar’s algorithm in time O(n*’°E?), where n is the number of variables
and E is the size of the problem [37]. Solving a set of boolcan combinations of
constraints is in general NP-complete, even if all the constraints have the form
“X=0" or “X=1," unless the boolean combinations have very restricted
form. (This is just the satisfiability problem [38].) It should be noted in
particular that solving a system of constraints of the form [(X]=[Y]+[Z]20is
NP-complete. Thus, discretizing a sct of linear cquations to a constraint on
signs has the effect of changing a computationally tractable problem to an
intractable onc. Similarly, Vilain and Kautz [32] have shown that solving the
interval relations used by Allen [31] is NP-complete. Solving a sct of algebraic
relations is NP-hard, and solving a set of transcendental equations is uncom-
putable, as discussed above.

8. Propagating SignS

Wc may now evaluate the power of a varicty of label inferencc systems,
organizing them by label language and constraint language. We will first
consider the simpler label language of signs and then the language of interval
bounds.

For the purposes of sign computation, any function or constraint can bc
reduced to a finite table or relation over thc sign of its arguments. All
constraint languages thus look pretty much the same to a nctwork with sign
labels. Figure 4 gives the tables for some common functions and relations.

Complex arithmetic expressions can be evaluated by combining evaluation
rules. For instance, if POS(x), POS(y), NEG(z), and NEG(w) then we can
cvaluate the expression xy + wz by first evaluating the products as positive and
then evaluating the sum as positive. They can be refined by cvaluating all other
parts of the relation and applying the refinecment rules hicrarchically. For
example, given the relation xy + wx(s + z)=—6, we can cvaluatc xy as POS
and —6 as NEG, giving wx(f + z) as NEG. We next evaluate wx as NEG, giving
t + z as POs. Finally, we usc sum refincment to deduce that, since z is NEG, t is
POS. :

When sign labels are used, the Waltz algorithm is guaranteed to quiesce
quickly. Since each quantity can change its valuc only once (from IND to a sign)
in the course of execution, it can only once be responsible for putting a
constraint on the constraint queue. The number of times a singlc constraint is
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Order relations
Evaluation: X <Y if [NEG(X) and (ZERO(Y) or POS(Y))] or
[POS(Y) and (ZERO(X) or NEG(X))]
Refinement: X < Y implies:

if (NEG(Y) or ZERO(Y)), then NEG(X)
if (POS(X) or ZERO(X)), then POS(Y)

Arithmetic expressions

+ |NEG ZERO POS IND x |NEG ZERO POS IND
NEG | NEG NEG IND IND NEG |POS ZERO NEG IND
ZERO |[NEG ZERO POS |IND ZERO |ZERO ZERO ZERO ZERO
POS [IND POS POS IND POS |NEG ZERO POS IND
IND [IND IND IND IND IND |IND ZERO IND IND

X |NEG ZERO POS IND X |NEG ZERO POS IND
-X1POS ZERO NEG IND 1/X INEG UND POS IND

Constraint: X - Y=C

C > 0: either POS(X) or NEG(Y)
C =0: either POS(X) or NEG(Y) or (ZERO(X) and ZERO(Y))
C < 0: no constraint on the signs of X or Y.

FiG. 4. Sign tables for simple functions and relations.

put on the queuc is thus L, the number of variables in the constraint. Summing
over all constraints, the total number of times that some constraint is put on
the queuc is E, the size of the constraint sct, the sum of the lengths of the
constraints. The maximal number of calls to REFINE is thus EL.

If, as is often the case, a refinement rule can be applied only when only one
paramcter is unknown, there is a particularly efficicnt implementation. With
f:ach constraint, kecp a count field of the number of unknown variables, which
is updated each time a variable is set, and maintain a data structure which
allows guick access to those constraints with count field 1. Always choose a
constraint with count field 1 to refine; if there are none, then terminate. In this
way, you ncver look at any constraint twice with the idea of refinement. Thus,
quicscence is reached after e calls to REFINE, where e is the number of
constraints. The algorithm runs in time O(E). (This is similar to the use of
count ficlds in [39].)

Propzllgation of sign labels is not complete overall for any interesting class of
constraints. It is complete for assimilation for pure order constraints, but not
for any more complex class of constraints. Nor is this surprising; the language
of signs is simply too crude to capture much of what is going on in constraints
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of this kind. All that is availablc to a reasoner which uscs signs arc the tables of
sign relationships implied by the constraints, as discusscd above. The most we
could expect is that the algorithm might be complete for the sign tables of some
interesting class of constraints. It is, in fact, complete for the tables of bounded
differcnce constraints. That is, given a collection of constraints on signs of the
form in Fig. 4, and a number of starting sign labels, thc Waltz algorithm givcs
the correct range possible to each quantity. For any more complex system of
constraints, the assimilation problem is NP-complete, so a quick algorithm like
the Waltz algorithm has no chance of being complete. As mentioned, ENVISION
[3] gets around this incompleteness using “generate-and-test” techniques, in
which particular signs are assigned to indeterminate quantities, and constraint
propagation is used to check whether these assignments lcad to contradiction.
However, this technique can be cxponentially explosive when applied to large
systems.

9. Propagating Intervals

The propertics of label inference vary widely across different kinds of con-
straints. Throughout the following discussion, n represents thc number of
quantitics, e, the number of constraints, and E, the total size of the constraint
system.

If the constraints are order reclationships, then thc Waltz algorithm is
complete for assimilation. Note that, when the high bound of a variable is
reset, its new value is one of the original high bounds on onc of the other
quantities, and likewise for the lower bound. Thus, each variable can take on
at most 27 different labels over the coursc of propagation. Therefore, by the
thecorem of Mackworth and Freuder [18], the running time of the Waltz
algorithm is O(ne). Cases can be constructed where this worst case is achieved.

Bounds on quantity differences, of the form x —y &€ [a, b], arc casily anal-
yzed, because the problem can be mapped onto the well-known problem of
finding a minimum-cost path in a directed graph. The analysis is carried out in
Appendix A. The major results are as follows: If we use a nctwork with nodes
of the form x — y, then the Waltz algorithm is complete for the whole inference
process (assimilation together with query answering). Morcover, if we perform
refinement in the proper order, then, for consistent scts of constraints, the
system reaches quiescence in time O(n*). If we use a network with nodes for
quantities, rather than their differences, then the Waltz algorithm is complete
for assimilation, though not for inference as a whole. For consistent starting
states, if constraints are chosen in the right order, the Waltz algorithm
terminates in time O(n*). If all the constraints and labels have a positive upper
bound and a negative lower bound, then constraints can be chosen in an order
which gives convergence in time O(n?). In cither case, if the starting state is
inconsistent, then the system will either detect the inconsistency by finding a
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lower bound greater than an upper bound, or go into an infinite loop. Such
infinite loops can be detected by monitoring the system and halting it when it
has performed more than the maximum number of rcfinements needed for a
consistent system. With cither differences as nodes or simple quantitics as
nodes, there are pathological cases in which choosing nodes in a poor order
causes the system to do exponential number of refinements before it quicsces.
It is thercfore important in these systems to choose the order of refinements
carcfully.

The analysis of unit cocfficicnt constraints is substantially more complicated,
and is carricd out in Appendix B. The results may be summarized as follows.
Likec systems of bounded differences, propagation around unit coefficient
constraints nccessarily quicsces if the starting state is consistent. If we usc
cither a FIFO qucue for constraints in the propagation algorithm, or we choose
constraints to refince i a fixed scquential order, then the Waltz algorithm will
quicsce in time O(nE), where n is the number of variables and E is the size of
the constraint system (the sum of the lengths of all the constraints). On the
other hand, if constraints arc chosen in a poor order, then the Waltz algorithm
may takc cxponential time to quicsce, and if the starting statc is inconsistent,
then it may go into an infinitc loop. Unlike systems of bounded diffcrences,
however, the Waltz algorithm is not complete for assimilation.

Once we get past unit cocfficient incqualitics, to arbitrary linear relations, or
nonlincar relations, the Waltz algorithm starts to break down. Not only is it
incomplete; it tends to go into infinite loops cven for well-bchaved scts of
constraints. Consider, for cxample, the simple pair of cquations {x =y,
x =2y} with the starting ranges {x €[0,100], y €[0, 100]}. The system is
consistent, with the unique solution x =y = 0. However, the Waltz algorithm
gocs into an infinite loop. We begin by deducing from the sccond cquation that
y €0, 50]; then, from the first cquation, that x € [0, 50]; then that y € [0, 25];
then that x €0, 25]; . . . Indced, for practically any system of arbitrary lincar
relations, or nonlincar relations, there are starting labellings which go into
infinite loops in this way.

Therefore, some rule other than quicscence must be chosen to terminate
constraint propagation. The termination critcrion can be a simple time limit, or
a cutoff on the number of times any single constraint is invoked, or a cutoff on
the amount of change that is considered significant. (Ultimately, the machine
will enforce this last cutoff by itself, when the change goes below floating point
number accuracy.)

The analysis of unit coefficient constraints in Appendix B suggests some
heuristics that may be uscful even for nonlinear constraints. There is reason to
belicve that, in general, it is a good heuristic strategy to choose constraints off
the qucuc of Algorithm 2.1 in FIFO order, or in fixed sequential order, rather
than, say, LIFO order or best-first order. The intuitive justification for this rule
is that, in any situation, there will generally be a few best refinements to apply,
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and FIFO or fixed order ensures that these will pc applicd rcasonably s.oon. 'I;]hc
analysis of Appendix B makes this more precise. It also supports a s(;lmcw d:
«tronger heuristic: that if we have been n times through. thc'qucuc and f:(vc:l ni)
:vached a quiescent state, then we should probably quit, since we are likely to
e long or infinite loop. .

. L'll‘}r:cac:,'(zi:'x)xlatior% of complex tcrpms and the refinement of complex constraints
are issues in themselves. It is always possible to w.zvaluatc comp'lcx 'lcrms bly
applying each operator in scquence, but this may give bounds wh;;? are mltl}C,c‘
i0o large. For example, to evaluate the rangc.of the term (X + 1? , given
imbel X €[1, 2], we can apply the operators in order as follows:

L (g -3

.fowever, by simplifying the expression to 1+ 1/X, we can scc.that ihlf t[r}:m
«wunds are [1.5, 2.0]. In constraint refinement, even crude techniques like this
lLC:(‘;:::infgorm formulas exist for all lincar constraints, and for partlculalr}y
~.mple nonlincar constraints (sec Tables 1 and 2). Where clgscd-form formu de
cunnot be obtained, a variety of techniques can be apphcd. The thcoryfo
sterval arithmetic provides a number of formulas which may be uscful‘ o(;
. -vms and constraints of special forms [24]. Complex terms may be cvaluate

(1,2]+1 [2,3]
1. 1,2

i asLE 1. Refinement over linear constraints

Constraint: Z X, — 2 cx, €[p,ql
iENC

1€PC

/+ PC and NC are, respectively the sets of indices with positive and negative coefficients. The ¢; are
sssumed to be positive. */

Uabels: x, Ela;, b))
t'chined labels:

1 ~
lor jEPC, x, € [max(a,, y (p +2 e 2o

1] iENC 1EPC,i#j
1
min(b,-,c— q+ % ch ~ 3 )]

iENC i€EPC i}

).
ca)
b))

S oca-q- 2 « .,) ,

/] (iEPC FENC,ivj

(
win(t, (S es-p - 3 ca))]

; \iepC (ENC.inj
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TaBLE 2. Refinement rule for a quadratic constraint (this rule was used in the
MERCATOR system [17])

Constraint: £’ + yx + z = 0.

Labels: x€(x,x}, y€ly.yl z€ [z, z,].
Refined labels for x:

If y,>0 then let a, = y,, da, =y,

clse if y, <O then let a, = —y,, a,=-y,

clse let @, =0, a, = max(~y,, y,).
/* a, a, arc the lower and upper bounds on abs(y). */

Let D, = max(a} - 4z,,0), D, = a’ - 4z,.

If D, <0 then the system is inconsistent.

/% Dy, D, are bounds on y> —4z. »/

Letv,=3(=y,-VD,),  v,=1(-y,- VD)),

BEECER VD) = -y, + VD).
If x,> v, then x € [max(x,, v,), min(x,, v,)},
elsc if x, <wv, then x € [max(x,, v)), min(x,, v,)],
clse x € [max(x,, v,), min(x,, u,)].

If this result makes the upper bound on x less than the lower bound, then

the system was
inconsistent.

using Monte Carlo techniques. For cach quantity in the term, a value within its
label is picked at random, and the term is evaluated on these particular values.
This gives one possible value of the term. By iterating random choices, a range
of possible values of the term is found, which may be assumed to be close to
the truc range of the term. Alternatively, a hill-climbing technique may be
used, where the maximum and minimum values of the term are sought, within
the range of the quantity labels. Hill-climbing techniques can also be used for
label refincment; the maximum and minimum values of each quantity arc
sought, given the constraint being refined and labels on the other quantities.
Techniques for building such hill-climbers are given in [40].

Neither Monte Carlo scarch nor hill-climbing is a sound inferential tech-
nique. They gencrally return a subset of the true range, and thus arbitrarily
excludc legitimate possibilities. Furthermore, our experience with hill-climbers
in SPAM [16] was discouraging; we found them to be slow and unreliable.

Table 3 summarizes the results of Sections 6, 7, and 8.
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‘TABLE 3. Summary of results (n = number of variables, E = size of constraint
sct (sum of lengths of constraints), L = maximum length of any constraint)

Theorctical bounds®

Sign propagation”

Interval pmpz\gationh

Unary predicates
Order relation
Bounded difference

Unit coefficients

lLiincar programming
Algebraic relations

I'ranscendental relations

Trivial
o)
o(n’)

As hard as
linear programming

O(nJ.SEZ)
Doubly exponential

Unsolvable

Trivial
Complete: O(E)
Complete: O(E)
Incomplete: O(E)

Incomplete: O(EL)
Incomplete: O(EL)
Incomplete: O(EL)

Trivial

Complete: O(n')
Complete: O(a’)
Incomplete: O(Ln)

May not quicsce
May not quicsce

May not quiesce

*Times given for “bounds” are the best known times for a complete solution.
*Times given for sign and interval propagation arc the times to reach quiescence.

10. Complex Nodes

The previous scctions focused on constraint networks in which cach node
corresponds to a simple quantity. However, Al systems frequently use nodcs
which represent a complex term. As we have secn, TMM [23] uscs nodes repres-
enting the difference between two dates, and SPAM [16] uscs nodes represent-
ing the relative scales, orientations, and positions of two reference frames.
Such complex nodes greatly increase the power of label propagation; they also
complicate the problems of inference.

Complex nodes are generally used when information about the relative
values of quantities is much more available than information about their
absolute values. In the world of T™MM, there is very littlc information about
absolute times of events, so a node for the time of a singlc event would need a
very wide label, and would express very little information. Likewisc, in SPAM,
very little is known about the parameters of objects in any absolute scale; what
is known is their positions relative to one another.

To repeat the example of Section 6, supposc that onc’s knowledge of dates
in carly modern history is partially expressed in the following constraints:

date(birth(Raphael)) — date(birth(Michaclangelo)) € [0, 30],
date(end(30_years_war)) — date(start(30_years_war)) € (25, 35],
date(birth(Raphael)) — date(start(30_years_war)) € [~ 100, 200] ,
date(birth(Michaclangelo)) € [1400, 1600] ,
date(start(30_years_war)) € [1500, 1700] .

CONSTRAINT PROPAGATION 309

If we arc limited to usc the dates of the cvents themselves as nodes, then our
labels will be very broad:

date(birth(Michaclangelo)) € [1400, 1600] ,
datc(birth(Raphacl)) € [1400, 1630] ,
date(start(30_ycars_war)) € [1500, 1700] ,
date(end(30_yecars_war)) € {1525, 1735] .

The precise information relating the birth of Raphacl to the birth of Michacl-
angelo, and the end of the Thirty Years War to its beginning are irrccoverably
lost. If, however, we may usc nodes like

date(birth(Raphael)) — date(birth(Michaclangelo)) ,
date(end(30_ycars_war)) — date(start(30_years_war)) ,

then the constraints may be expressed exactly as labels on the nodes.

A constraint nctwork with complex nodes must indicate the structure of the
nodcs and their relation to the basic quantitics. Thus, such networks have three
lcvels: the quantitics (unlabelled); the nodes, with interval labels; and the
cxplicit constraints, connected to the nodes (Fig. 5).

The price of this flexibility is increased complexity. Unlike simple quantities,
complex terms cannot be assigned values arbitrarily; their values arc related by
implicit constraints. For example, terms of the form D, = x; —x, obey the
constraint D, + D, = D,, . Label inference should be carried out through these
implicit constraints, as well as through the explicit constraints.

To achieve the greatest possible inferential power, we should use a complete
sct of implicit constraints: that is, a set of implicit constraints such that, if all

__ Explicit Implicit
Constrai Al-B2<10 T
onstraints DAB'SA,B<197W?7 {DAE+DBC+DCA:0 J
Sas=A+B Dap-4A-8 1 (b:c':,}fé Dotc-al
|
Terms S4p€[0,10] Dap€(2,3] | | Pace(~4.4] Dea€[-5.2]

T e e
Quantities ij‘ |:B:’ @

FiG. 5. Three-level constraint network.
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the constraints arc satisficd for a given sct of term values, then that sct of
values is, indeed, possible for the terms. For terms Dy, = x; — x;, the family of
constraints D, + D, =D, is completc; given any numbers a; such that
a; +a, = a;, we can find numbers b, such that a,; = b, — b,. However, finding
a complete sct of implicit constraints for more complex terms may be difficult
or uncomputable.

A second, related problem is that explicit constraints and quericd terms arc
dependent on complex node terms in multiple ways. Therefore, the value
returncd by a query depends critically on which node terms arc used to
compute it; and the refinements of a constraint depend on how it is construcd
as a relation over nodes.” Suppose, for example, our system has nodes for the
quantities X,, for terms of the form D, = X; — X, and for tcrms of the form
S, = X, + X;. We now query the system for the valuc of 7= X} — X3. This can
be evaluated, either as a function of X, and X, as in the above cxpression, or
as the function S,,D,,. Suppose we start with the labels X, €1, 2], X, €[1,2],
D, €[-1,1], S,, E[2,4]. Considering the term as a function over X, and X,
we can calculate that its range is [—3, 3]. Considering it as a function over D,
and S,,, we can calculate its range as [—4, 4]. Here, the X nodcs give better
bounds than the complex nodes. However, if the label on D, were {0, 0], then
using T =S,,D,,, we can calculate T €0, 0], while the calculation using the
labels on X, and X, still gives [~3, 3]. Thus, which expression is better depends
on the starting states of the labellings.

A final problem is that the number of possible complex nodes is much
greater than the number of simple quantitics. 1f our nodes have thc form
D, = x, - x;, thenn quantitics give risc to Ln(n — 1) possible nodes. In general,
if complex nodes are functions of k quantitics, there will be (3) possible nodes.
If all of these must be represented in the system, we will waste a lot of space
and inference time. There is no point in sustaining “‘datc(IJCAI-85) —
date(dcath(Caesar))” as a node term, and in reducing its range by a week when
we get more precise information about the date of the confcrence. To avoid
combinatorial explosion, thercfore, there must be rules that spccify which
nodes to use.

Onc approach to these problems is to insist that the constraint network
always use an independent sct of nodes. A sct of nodes is independent if they
may all be assigned values independently; that is, given any assignment of
values to the nodes, it is possible to assign corresponding values to the
quantitics. For example, if the quantities arc W, X, Y, Z, then the nodes
Dyw=X—-W,Dyy=Y—-X,and Dy =2~ X arc independent. Given any
values for these nodes, we can find corresponding valucs for the quantitics; for

" This problem can arisec computationally with nodes which are simple labels, since it may not be
clear how the algebraic expression can be simplified. (It may not cven be computable.) However,
in principle, the functional dependence of a term on basic quantitics is uniquc; the problem is
merely one of computing this dependence over interval labels.

wrie—"
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cxample, we may choose W=0, X=D,,, Y=D,,+ Dy, and Z=D_  +
Dy,. Likewisc, the nodes S,y =W+ X, Dyy=W—-X, S,,= Y+ Z, and
D,, =Y — Z arc independent; given any valucs for the nodes, we can choose
W= 3(Syx + Dyy), X=3(Swx—Dyx), Y= %(SYZ +Dyy), Z=5(Sy, -
D,,). However, the sct of nodes Dyy=W—X, Dy =X =Y, Dy =Y - W
is not indcpendent, since corresponding values of W, X, Y, and Z can only be
found if D,y + D,y + Dy, =0.

In many cascs, it will be possible to give rules for constructing independent

scts of nodes. For example, if all nodes arc quantity differences of the form
D, =X~ X, then the following rule hold: Consider a graph in which cach
quantity x, is a vertex and each node D, is an arc. A set of nodes D, is
independent just if they form a trec in the graph. To construct indcpcnd’cnt
scts of spatial quantitics. SPAM [16] uscs the following technique: The reference
frames were organized into three trees, called the “size tree,” the “oricntation
tree,” and the “position tree.” The relative scale of two frames was recorded in
a node of the constraint network if the frames were adjacent in the size tree;
the relative orientation was rccorded if the frames were adjacent in the
oric‘n'talion tree; the relative position was recorded if they were adjacent in the
position tree. This constituted a sufficient, though not necessary, set of
conditions that the sct of nodes in the network was independent.
. U'sin'g indcpendent scts of nodes has scveral advantages. Firstly, there are no
intrinsic constraints in such a system. Sccondly, any term or constraint has a
unique functional (relational) dependence on the nodes. Thirdly, the number
of nodes in such a sct is less than or equal to the number of quantitics.

This simplicity, however, costs us some, though not all, of the flexibility
gaincd by using complex nodes. The problem is that it becomes necessary to
establish strict criteria for selecting the particular independent sct of nodes to
be used. For example, suppose we have the quantities W, X, Y, Z, and we are
using the indcpendent sct of nodes Dy, =X—-W, D,,=Y-W, D,, =
Z — W. Now, a constraint of the form Y — X €[/, h] is input. There are two
possible actions. The first is to express Y — X in terms of the existing nodes as
D,y = D,y, and usc the new constraint to refine D, and D,,,. However,
this may lead to substantial loss of information. If we have the labels
D, €[-3,5], Dyw €[-5,3], and we add thc constraint ¥ - X€[-1,1],
then refinement only brings our labels down to D, €[-3,4], Dy, €[4, 3].
If we now ask for the value of ¥ — X from the revised constraint network, we
cvaluatc this term as Dy, — Dy, =[-3, 4] — [—4,3] =[-6, 8]. Clearly most of
the information in the input constraint has been lost.

The altcrnative is to add the term D, =Y ~ X as a node. In order to
maintain the independence of the node sct, we must now take out onc of the
old nodes, cither D, or Dy,. Whichever we do, we will end up sacrificing
somc information, and onc has to judge that the information being added is
worth morc than the information being deleted.
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In the case above, the choice of which nodes to include is struig‘hlforwurd.‘
'resumably, more information is cxpressed by the node D, with houn.ds
. --1, 1] than by the node D, with bounds [-3, 4] or by Fl?c nodg Dy wnfh
Lounds [—4,3]. Thus cither Dy, or D,, may be sacrificed with a clear
conscience. In general, if a node D,, = A — B has the label [L, U}, onc may
~sociate a measure of uncertainty L — U with the node. In order to.rcduce the
<'vgree of uncertainty in the network as a whole, one chogscs to include the
:odes with the smallest uncertainty. (This is implemented in SPAM [41].)

This intuitive critcrion can bc given formal justification as follows. We can
think about the space of all tuples of quantity values. The labels on the nodes
Jefine one subset of that space, the input constraints define another. .Thc scx‘of
«.1lues consistent with the label must contain the set of yalucs consistent with
the input constraints; otherwise, we have excluded possible solutions with no
lusis, and our inference process is unsound. However, we would p.rcfcr that
the label set include as few values outside the constraint sct as poszsnblc; such
.alues correspond to information lost in goir?g f.rom the constraints t(? 'thc
labels. Depending on the nature of the quantitics involved, it may be possible
i0 define a metric on the space of possible sets of values. If this can bC.dOl.IC,
we can define our objective as minimizing the size of the sct of values saﬂsfymg
tiic labels, subject to the rule that it must contain the .sct of valucs consistent
with the constraint. For one particularly simple metric, it can be shown t!]at the
-izc of the sct satisfying the lales is minimized by including nodes with the
-mallest difference between their upper and lower pounds .[41]. In co.mplcx
(juantity spaces, however, natural metrics may not exist, and it may be difficult
{o define precisely what is meant by an optimal sct of nodes. o

The selection of a sct of nodes is further complicated by the fz.xclt that it is
sometimes advantageous to introduce ncw “imagiqary" quantitics to the
actwork. Supposc that wc have the set of constraints {X| —/\T(,E[..—2,?],
N, - X, €[-2,2], X,-X,€[-2,2]}. If we try to cxpress thcs’c.usmlgf an
independent set drawn from the D, we will mcvntal?ly losc information. l;vc
tecord Dy, €[-2,2] and D,, €{-2,2], then evaluating Xy— X, = -D,, ~ D
will give us [—4, 4]. However, we can cxpress this constraint sct cxacll)'/ usmg‘a
sparc variable Y, and using thc node terms E,= Y—‘ X,. The lablcl ls;],t
(E,€[-1,1], E,€[-1,1], E, €[], 1]} allows the .rctr?cval"of C)'(acstky | c
correct bounds on X;— X,. The quantity Y here is csscn}tmlly a ‘ olem
constant. I have not been able to analyze the problem of finding the best tree,
given the ability to add imaginary quantities. .

In short, the use of an independent set gencrally mvglvcs some loss of
information, and often involves substantial loss of informa?non. If we drop the
requirement of an independent set, then we need not lose mformatngn, but wc;
must confront the problems of choosing which nodes are worth kccp{mg,' apd 0
choosing a representation for constraints and terms. Since the representation is
not unique, the choice of the best representation gencrally involves some
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scarch at run-time. Approaches to these problems arc likely to be highly
domain-dependent; however, the following gencral observations may be
uscful:

The kinds of terms used should be few, mathematically simple, and meaning-
ful in the domain. As discussed, TMM uscs differences of dates and SPAM uscs
the relative position, oricntation, and scale of two frames of reference.
MERCATOR (17] uses distances and oricntations of line scgments in the plane.

Networks are frequently organized hierarchically, where the clements of the
hicrarchy arc single quantitics or sets of quantitics. For cxample, spAM
organizes cach class of parameters (scale, oricntation, position) into a morc or
less arbitrary tree. MERCATOR associates quantitics with objects, and organizes
objccts hicrarchically by physical containment. Allen [31] suggests the usc of
“reference intervals” to organize date lines, and Kahn and Gorry [42] use
special reference dates in the same way. The hicrarchy can be used to restrict
the nodes in the system, by insisting that nodes related only parcnts and
children, or possibly siblings, in the hierarchy. It can also be used to guide
scarch, as discussed below.

The strict hicrarchy can be extended by the use of a “kernel” set: a rclatively
small sct of quantitics which arc in the focus of attention of the inference
system. Within the kernel set, all term nodes are represented. Quantities are
swapped into and out of the kernel as the system gains and loses interest in
them. When a quantity is swapped out, only those terms which properly
respect the hierarchy are preserved. Kernel sets are used in TMM [43].

When a constraint is added or a term is cvaluated, it must be expressed as a
function over a set of independent nodes. The major problem here is the
scarch problem of finding a sct of nodes connecting the quantities involved in
the term. If a network is organized hicrarchically, and terms arc kept which
rclate quantitics which arc father-and-son or siblings in the hicrarchy, then
relatively cfficient strategics can often be found using a GPS-like strategy.

Given two quantitics P and Q which must be connected, their common
ancestor in the tree, A, is located. At one level down in the hicrarchy from A,
we connect the ancestor of P to the ancestor of @; and then, recursively, we
connect P to its ancestor and Q to its ancestor (Fig. 6).

11. Propagation and Deletion in Incremental Systems

There remain two problems with incremental systems. The first is the question
of how far label inference should be taken when a new constraint is added to
the system. In large nctworks, the complete Waltz algorithm may run very
slowly, cven for well-behaved types of constraints. Three possibilitics suggest
themselves:

(1) Propagate to quicscence and hope for the best. Generally, it is safe to
assume that the effects of a single new constraint will only propagate through a
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Fi6. 6. Hierarchy of quantitics. To evaluate L—J as a function of the node terms, we first scarch
trom L and J upward in the tree until reaching the common ancestor A. At one level below that,
we find C and F as the ancestors of L and J, connected by the node C—F. We must now connect C
to J. Their common ancestor is C. Onc level down is B. B can be connected to C by going through
D and using the two nodes B—D and C—-D. B is connccted to J by the single node B - J.
Connecting L and F is similar. Note that, if the net contained the node L — J explicitly, this scarch
technique would miss it.

small portion of the nctwork. New information about the datc of Hammurabi
is unlikely to affect your belief about the date of the next Superbowl.

(2) Do not propagate at all. Refine the arguments of the new constraint
once, and never refer to it again. In this approach, an explicit constraint is not
saved at all, since it is only used once. This approach makes the behavior of the
system strongly dependent on the order in which constraints are added, but it
runs quickly and is often effective cnough. It was uscd in SPAM [16], becausc
the refincment algorithm used a hill-climber, and thercfore ran so slowly that
onc rcfinecment was all that could be afforded.

(3) Usc some more or less arbitrary criterion (number of constraints refined
on, clapsed time, etc.) to stop propagation after a while. This may not be
suitable if the top-level program has a very flexible control structure, since
propagation may be resumcd accidentally.

The other problem involves deletion. Deleting constraints is often uscful in
incremental systems. Constraints are deleted when, temporally, they ccasc to
be true, or when, inferentially, the knowlcdge base ccases to believe them.
Generally, deletion is performed in networks using data dependencics, which
record the connection between the conclusion of an inference and its premiscs
[44]. Data dependencies work well when there are many premises and rclative-
ly shallow inference. The success of this scheme in constraint networks
therefore depends critically on the presumption that any constraint will have
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only local cffects, even after more constraints have been added and prop-
agated. However, it is hard to belicve that this will be truc in general; it would
scem that, when cnough time has passed after adding a constraint, almost all
the labels will depend on it If so, then deleting a constraint will involve
recomputing all labels, starting from carlicr valucs, and using all the remaining
constraints. This is cssentially a wholesale computation; the incremental fea-
tures of the system are lost. If heuristic techniques arc used in systems with
complex term nodes, then the problem is even more difficult, since choices as
to how to express a constraint or which nodes to include may have depended
on label valucs which arc now invalidated. McDermott [45] has implemented a
system in which cach node contains a “signal function” which determines
whether its value should be recomputed when its original support is withdrawn.

If interval labels on nodes are uscd together with data dependencics, then
the upper and lower bound on a quantity should be considered scparate data
with scparatc dependencies. In general, the upper and lower bounds of a
quantity will be derived from different constraints and will be used as a basis
for inference in different constraints. If the constraints in the systems arce lincar
incqualitics, then this will always be truc. For example, if C is the constraint
“5X +3Y >2Z,” then refining C may have the cffect of changing the lower
bounds of X and Y and the upper bound of Z; it cannot change the upper
bounds of X and Y or the lower bound of Z. Morcover, these changes will be
dependent only on the current upper bounds of X and Y and the current lower
bound of Z. This is not truc of nonlincar constraints; the constraint X +Y' =<
4 may change all the bounds of X and Y.

12. Conclusions

In terms of computational complexity, Al systems occupy a strange no-man’s-
land. The problems (game playing, theorem proving, scheduling, inductive
inference) are known to be intractable in general, but AT systems must solve
them for large, complex knowledge bases in close to constant time. To close
this gap, we must cither determine that the problems being addressed have
special featurcs that make them tractable, or we must be able to make do with
approximate answers in a way which leads both to usable results and to fast
algorithms.

Our analysis provides two arguments that label inference may be adequate
for infercnce on guantitics in important Al applications. Firstly, there is a
significant class of problems which can bc expressed in terms of order
relationships and bounded differences. Such sets of relationships can be
completely solved by wholesale label inference in polynomial time. Secondly,
most applications of quantitative inference support a locality assumption that

This is based on my own expericnce in spatial reasoning systcms. Tom Dean informs me that,
in temporal reasoning, such interactions arc relatively slight (personal communication).
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there is a natural grouping of quantities and that most constraints and terms
rclate quantities within the same grouping. It is plausible that an incremental
system with such a locality property will lend itsclf to local algorithms, such as
constraint propagation, and to a hicrarchical organization; and these al-
sorithms will run cffectively and cfficiently on such a structurc. However, we
have no proof of this.

Beyond these two limited results, our analysis has little that is cncouraging.
As the language of constraints is made more complex, the inherent computa-
tional complexity increases rapidly, and the effectivencss and cfficiency of
propagating sign or interval labels declines rapidly. We have not found any
arguments that the partial results computed by label inference should be
adequate for the purposes of Al

Analysis having failed, we may fall back on cmpirical cvaluation; how well
do these systems work in practice? Here the evidence is more encouraging.
Kuipers [5], Dean [23], and de Kleer and Brown [3] report, of their various
systems, that in practice they run quickly and cffectively on problems of
substantial size (hundreds of nodes and constraints). Apparently, however, the
code must be written with considerable care to achieve this [43, 46].

The major exceptions here have been the spatial rcasoning systems SPAM
[16} and MERCATOR [17]. (Quantitative inference was by no means the only or
cven the major problem in these systems; however, it was a substantial
problem.) SPAM suffered from two problems. Firstly, the hill-climber uscd to
perform refinement was unreliable and very slow. Secondly, SPAM’s require-
ment that the node set be independent meant that much information was lost
in going from explicit constraints to labelled nodes (sce Section 10.) In
MERCATOR, the problem was mainly onc of scale and time; constraint propaga-
tion was unbearably slow in dcaling with thc nctworks involved (one or two
hundred nodes, thousands of refinements), though it was reasonably effective
in making important inferences. Possibly, this could have been alleviated by
improving the underlying code.

The major outstanding rescarch problems, thercfore, seem to be the fol-
lowing: ‘

(1) Design an effective system for quantitative infcrence in the spatial
domain.

(2) Determine the scope of such successful techniques as those cited above.
Apply them to other domains.

(3) Determine the power of systems like Kuipers’ ENV [5], which propagate
a simple binary constraint through more complex constraints. .

(4) Demonstrate analytically a rclation between a locality assumption and
the successful running of an incremental system.
(5) Design an incremental system which allows for the cffective delction of

constraints.
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Appendix A. Propagation around Constraints of Bounded
Differences

In this appendix, we consider constraint propagation around constraints of the
form x — yE€[a, b]. We first consider networks which contain as nodes all
terms of the form X, =X, — X;, and then we consider nctworks with only
nodes of the form X;. In nctworks of the first kind, there are no cxplicit
constraints; the constraint propagation occurs through implicit constraints of
the form X;; + X, = X,,. There are two important results: (1) the Waltz
algorithm is complete for assimilation in each of these systems; (2) if the
system of constraints is consistent, then, given a proper order for refining
constraints, thc Waltz algorithm will terminatc in time O(n’) in cach of these
systcms.

The problem of propagating labels around a network of terms X is closely
rclated to the problem of calculating shortest paths on weighted graphs.
Construct a graph whose nodes are the quantitics x;, and which has an arc of
cost ¢, from x; to x; just if the constraint X; —x; =<, is in the system. Then
given any path x,, x,,...,x,, with costs, c,,, C53,. . ., C.—1..» these corres-
pond to the incqualities x, —x, <c,,, x;—x,<c,,,.... Summing these
incqualities gives x, —x, <S¢, + ¢y + - + C,-1,n- Thus the relation x;, — x, <
¢ is derivablc from the cquations iff there is a path from x; to x; of cjost =<c.
Indeed, we can read the statement “x;—x;<c”as }ncaning just timt there is a
path from x; to x; of length at most c; in this case, the deduction is a deduction
about paths in the graph. The system of equations is consistent just if there is
no necgative cost cycle in the graph. (The connection between inequalities of
this form and the shortest paths problem was first observed in {47])

The basic refinement rule for bounded differences is as follows: If X, €
(a;, b,], X €lay, byl, Xy €la,, b,], then X, may be refined to X,.,:E
[max(a,, a; + a,), min(b,, b, + b;,)]. This corresponds exactly to the central
operation of most shortest path algorithms: d(u, v) = min(d(u, v), d(u, w) +
d(w, v)). Therefore, we can carry out these algorithms within a label inference
system just by choosing the constraints to refine in the proper order. (The
order, in other words, is all that the algorithm buys us.) In particular, we know
that Floyd’s algorithm finds all shortest paths in time O(n’) [48, p. 198].
Therefore, we likewise can cause label inference to terminate in time O(n) for
consistent sets of constraints and labels by choosing the constraints to refine in
the same order as Floyd’s algorithm: First perform all refinement of constraints
a;, +a;=a, then on constraints a;, + a, =a,;, and so on. Moreover, the
correctness of Floyd's algorithm guarantecs the completeness of the Waltz
algorithm.

Recently, Fredman and Tarjan [49] have devised an improvement to Floyd’s
algorithm which runs in time O(n’ log n + en) where e is the number of edges
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(constraints), by using a carcfully tailored data structure to chqosc t.hc order in
which to perform the above operation. Therefore, this running time can be
achieved for Waltz’s algorithm, at the cost of using a very complex control
structure. On the other hand there arc known to be pathological cxamples
where, by choosing to carry out the operations in the wrong order, it may take
(2") opcrations to find the correct solution (sce, for cxamp.lc, (48, p- 221
’roblem 5.24]. Therefore, the Waltz algorithm must be carcful in choosmg the
order to do refinement, to avoid an unneccessary exponential running time.

If the constraints are inconsistent, then it is possible for the Waltz a!gorithm
0 enter into an arbitrarily long loop. Consider, for example, performing label
inference around the constraints x =y and x = y + 1, starting \x{ith the labcels
x €0, 1000}, y €0, 1000]. We begin by using the second cquation to deduce
X €1, 1000], y €(0,999]; then use the first equation to deduce x €[1,999],
v € [1,999]; then use the second cquation to deduce x € [2, 992], y €[1,998];
:nd so on. It will take 500 iterations to discover the contradiction.

Systems which maintain just the simple quantities x; as nodes can also be
modelled in the same way. We can trcat a bound on x; as a bound on x; — x,,
where x, is an additional quantity associated with thc constant value 0. The
jroblem is thus isomorphic to constructing singlc-sogrcc shortest paths al-
porithms, using only the assignments “d(x,, x) = min(d(x,, x), d(x,, y) +
d(y, x)).”” If all arc lengths arc positive—that is, all upper bou.nds are positive
and all lower bounds are negative—then Dijkstra’s algorithm gives an o.rdcrmg
of propagation which terminates in time O(n?). lf' there arc negative arc
icngths, then a cyclic order of refinement, as an Algorithm A1, gives an O(n”)
solution. :

Algorithm A.l. Single-source shortest path algorithm. .
7+ This procedure computes the cost of the least cost path from 1 to i. */

procedure Single-source (C: cost matrix)
var D: array of reals; /* D[i] is the cost of the cheapest path from
ltoi=/
begin for i:=1 to n do D[i]:= C [0, {];
for k:=1ton—1do
for j:=1to n do
for i:=1 to n do D{j}:=min(D[j], D[i] + C[i, j])

end

/* At the beginning of the first iteration of the outer loop (k = 1), cach vertex
whosc shortest path has one arc has D correctly sct. At the end of the first
itcration, cach vertex whosc shortest path has two arcs has D correctly sct. At
the end of the kth iteration, cach vertex whose shortest path has k arcs has D
correctly set. */
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Appendix B. Interval Label Inference on Unit Coefficient
Linear Inequalities

There are two major results in this appendix. The first deals with label
inference around constraints of a general kind. It states that, for any sct of
interval refinements and any starting sct of interval labels, one of two
conditions holds. The rcfincments may contain a “self-dependency,” in which
the value of some bound depends on itself, in a strong sense. This is a potential
infinite loop. If there is no such sclf-dependency, then there is a “bee-line” sct
of refincments, which reaches quicscence after changing cach bound on cach
variable at most once.

The second result applics to refinement on unit coefficient constraints in
particular. Here we can show that no consistent set of constraints can lcad to a
sclf-dependency, and that, therefore, there is always a bee-line sct of refine-

ments. We end with some discussion of how to apply these results algorithmi-
cally.

B.1. Dependencies and redundancies in general refinement

Definition B.1. Given an n-tuple of variables (X,, Xy ooy X)), a valuation is
a function from the variables to reals. We writc V(X)=v, or V=
(vy,...,0,).

Example: (3,5,2) is a valuation on (X, X,, X3).

Definition B.2. Given an n-tuple of variables (X, X,,...,X,),a labelling is
a function from the variables to closed intervals. We write L{X;))=la;, b,] or
L={([a,,b],...,[a,,b,]). Notc that a labelling L can be considered as a sct
of valuations on (X,,..., X, ), where a valuation V is in L if V(X)) € L(X,)
for cach i. Alternately, we can look at L as a valuation on the 2n variables
(X, X\, X3, X3, ...}, wherc X;, X} arc the upper and lower bounds of X..
We will play off these two viewpoints in the course of the proof.

Example: L =([2.0,4.0], [-1.0,3.0], [5.0, 7.0]) is a labelling on
(X,, Xp, X;). If V=(3.0,0.0,5.0), then VEL. L is associated with the
valuation (2.0, 4.0, 1.0, 3.0, 5.0, 7.0) on the variables (X}, xv, X, X3, X,
X5).

Definition B.3. If B is a bound on a variable X (i.c. Bis cither X' or X"), then
SIGN(B) = 1 if B is an upper bound and —1 if B is a lower bound. If L and L’
arc labellings, L’ is said to be tighter than L on B if L'(B)= L(B) -
SIGN(B) - 4 for some A > 0. Thus, an upper bound is tightened by lowering; a
lower bound is tightened by raising.
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Example: If L =(]1.0,3.0], [5.0,7.0]) and L’ = {[0.0,3.0], [5.0,6.0]) arc
labellings on (X,, X,), then L is tighter on X} and L' is tighter on X}.

Lemma B.4. If L and L' are two labellings the following conditions are
cquivalent:

(a) L' is a subset of L.

(b) For each variable bound B, L' is tighter than or equal to L on B.

Proof. Immediate from Decfinition B.3. In this case, we say that L’ is at lcast as
tight as L.

Example: ([2.0,4.0], [5.0,6.0]) is at lcast as tight as ([1.0,4.0], [5.0,7.0]).

Definition B.5. A constraint is a sct of valuations. Given a constraint C, a
labelling L, and a variable X we dcfinc REFINE(C, L, X)) ={V(X)|VeLn
C}. This is the set of valucs of X, consistent with the labelling and the
constraint.

Example: 1f C={V|V(X,)=V(X,)} and L = ([1.0,3.0], [0.0,2.0]), then
REFINE(C, L, X,;) =[1.0,2.0}.

Definition B.6. Given a constraint C and a variable X, we define two refinement
operators R°(X,, C) and R'(X,, C), which arc functions from labellings to
labellings. If L = {a,, b,,...,a,, b,), then R*(X;, C)(L) is formed by replac-
ing b, with upper_bound(REFINE(C, L, X,)), and R'(X,, C)(L) is formed by
replacing a; with lower_bound(REFINE(C, L, X;)). Thus, thesc refinement
opcrators allow us to replacc onc bound at a time.

Example: 1f C and L are as in the previous example, then R'(X,, C)(L) =
([1.0,3.0], [1.0,2.0]) and R*(X,, C)(L)= ([1.0,3.0], [0.0,2.0]).

Lemma B.7. For any constraint C, variable X and labelling L,
(@) R*(X, C)(L) and R'(X,)(L) are subsets of L and supersets of CN L.
(b) If L’ is a subset of L, then R*(X, C)(L'}) is a subset of R*(X, C)(L), and
likewise for R

Proof. Immediate from the definitions.

Definition B.8. For any refinement operator R, the oufput bound of R,
OUT(R), is the bound which is affected by R. The arguments of R, ARGS(R),
arc the bounds, other than OUT(R) itsclf, which enter into the calculation of
OUT(R).

Example: Let C be the constraint X, = X, + X, —4.0. R= R*(X;, C) is the
replacement of X3 by min(X}, X} — X} +4.0). Therefore OUT(R) = X3 and
ARGS(R) = (X}, X}}.
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Henceforward, we will be looking at sets of constraints and scts of refine-
ment  operators  derived from  those constraints. Given a series R=
(R,R,,...,R,) of rcfinements, and a labelling L, we will denote the
composition of all the refinements as R(L) = R, (R, _,( - (Ry(R, (L)) - ).
A scries § is a subscrics of R if S contains a subsct of the refinements in R in
the same order. $ need not be a consccutive subsct; (R, R;, R,) is a subscrics
of (R, Ry, Ry, Ry, Rs, R,). Given a scries (R, ..., R, ), the notation R,
denotes the consceutive subscries (R, R,_|,..., R;). Serics arc assumed to
be finite unless otherwise specified.

Lemma B.9. Given a series R of refinement operators, if S is a subseries of R,
then, for all labellings L, R(L) is at least as tight as S(L).

Proof. By induction on the length & of S. If § has zero length, then S(L)= L
and R(L) is tighter than L by Lemma B.7(a). If the statement is true for
Si...x-i» then let S, = R,. Since S, ., is a subserics of length k£ — 1 of
R, ;-, we know inductively that R, . (L) is at least as tight as
Si...x—1(L). Applying S, = R; to this cquation and using Lemma B.7(b) gives
J(L) is at lcast as tight as S, (L).

Definition B.10. Given a scrics of refinement operators R,..., R, and a
labelling L, R, is said to be active if it changes the valuc of L; that is,
R, (L)#R, , (L).If all the refinement in a scries are active on L, the
scrics is active on L.

Lxample: In the example of Definitions B.5 and B.6, R"(X,, C) is not active
on L; RI(XZ, C) is active.

Lemma B.11. Given a series R of refinement operators, and a labelling L, if Q
is the subsceries consisting of the active refinements, then Q(L) = R(L).

Proof. Clearly, since inactive refinements do not affect the labelling, they may
be omitted without changing the result.

Definition B.12. Given a scrics of refinements R, . . ., R,,, we say that R, is an
immediate predecessor of R, if i <j, OUT(R;) € ARGS(R;), and for all k such
that { <k <j, OUT(R,) # OUT(R,). Thus, some particular argument of R’ has
been sct most recently in the serics by R,. We say that R, depends on R, if (a)
Jj=ior (b) (recursively) R, depends on R,, and R, is an immediate predecessor
of R,. We say that R; depends on some bound B if, for some i, R, depends on
R, and B € ARGS(R,).

Example: Suppose R=(R,,R,,R,, R,) and OUT(R)) = B,, ARGS(R,) =
{B,, By}; OUT(R,)=B,, ARGS(R,)={B,}; OUT(R,)=B,, ARGS(R,)=
{B,, B,}; OUT(R,)= B,, ARGS(R,)={B,, B;}. Then R, and R, arc im-
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mediate predecessors of R,; R, and Ry are immediate predecessors of R,; and
{7, depends (indirectly) on R, (sec Fig. B.1).

iemma B.13. Let R=(R,,...,R,) be a series of refinements, not all of
which are dependent on R,. Let Q=(Q,=R,, Q,,...) be the refinements
which depend on R, in order, and let P= (P, P,, ..., P.) be the refinements
which  do  not depend on R,. Then the series R'=
Py Py Q4 Q.. .) is at least as tight as R on any labelling L.

roof. The P do not depend on any of the Q. Hence the value of the
.iguments of the P are unchanged and they rcturn the same valucs for their

atput variables. When each Q, is entered, the input labelling is at lcast as tight
.~ in the original series. Hence, the output variables arc made at least as tight
.« they were in the original serics. Thus, when we arc all done, cach variable
.ias been sct to a value at lcast as tight as its sctting in the original scrics of
finements.

(=] (=] (=] 3]
N

/
D
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\ >
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16, B.1. Dependency of refinements.
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Example: In the cxample of Decfinition B.12, the refinement series R’ =
(R,, R, Ry, R,) is at lcast as tight as the serics R = (R,, Ry, Ry, R,), since
R, does not depend on R,. The reverse is not necessarily true, since, in R', R,
does depend on R,

Definition B.14. A scrics of refinements R=(R,, ..., R,,) is self-dependent
for labelling L if it is active on L and R,, depends on OUT(R,,), its own output
variable. R contains a self-dependency for L if, for some i and j, the subseries
R,, ..., R, is sclf-dependent for R, (L)

Example: In the example of Definition B.12, if the serics is active on some
labelling L, then it is self-dependent on L sincc R, depends on B, = OUT(R,).

Lemma B.15. Any infinite sequence of active refinements contains a self-
dependency for L.

Proof. For any N it is possible to choosc refinements R,, R;, where j>i> N
and where R, is an immediate predecessor of R;. For if it were not possible,
this would mean that for all j > N, all the arguments of R, are sct by refincment
before N. This would mean that no refinement could be active twice after N,
since it would get the samc valuc as beforc. But in an infinitc scquence of
finitcly many refinements, some refinements must appear infinitcly often. By
itcrating this argument, we find that it is possible to find a subscrics Q =
(Q,, 050+, Q,) such that Q, is an immediate predecessor of Q,,, in R.
Since this list can be made arbitrarily long, at some point we will have two Q
with the same output bound. At this point, we have a self-dependency.

Definition B.16. A scrics of refinements, is redundant if two rcfinements have
the same output variable bound.

Example: The scrics of refinements in the example of Definition B.12 is
redundant, since R, and R, have thc same output variable B,.

Lemma B.17. Given a redundant series of active refinements R =
(R,,...,R,) and alabelling L, either the series contains a self-dependency for
L or there exists a shorter series which is at least as tight on L.

Proof. Assume, without loss of generality, that all the refinements arc active
on L. Since R is rcdundant, it contains multiple refinements with the same
output variable. Let R; and R, i <j, be two refinements with the same output
variable such that no refincments in between i and j has that same output
variable. There are two cases to consider:

(1) R; depends on R;. In this casc, the series contains a sclf-dependency.

(2) R; docs not depend on R,. Let B =0UT(R;). Consider the subserics
S=(R,,...,R;). As in Lemma B.13, let 0=(Q,=R,,Q,,...) be the
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refinements between R, and R; which do depend on R, and let P=
(P, Py...,P = R;) be those which do not depend on R,. Then, by Lemma
B3.13 the series §'=(P,,P,,...,P,,Q,, Q,,...) is at lcast as tight as S.
Morcover, even if we¢ remove R, from §', lcaving §"=
(P, Py,..., P, Q,,Q:,...), §" is still as tight as S. For, in the original
scrics S, R; was active. Therefore, it sct OUT(R;) to a tighter value than did R,.
bince it does not depend on any of the Q,, it sets OUT(R;) to the same valuc in
5" as it did in §. The only cffect of the inclusion of R;in S, as opposed to its
omission in §” is that B may be sct to a higher value still, but cven without this
it is still as tight as in S. But $” is shorter than S. If we replace §” for S in the
original series R, we obtain a scrics shorter than R but at lcast as tight.

Example: Let R=(R,,R,, Ry, R,) where OUT(R,)= B,, ARGS(R)) =
{B,, By}; OUT(R,)=B,, ARGS(R,)={B,)}; OUT(R;) = B,, ARGS(R,)=
{B,, B,}; OUT(R,) = B, ARGS(R,) = {B,, B,}. Supposc R is active on some
labelling L. By Lemma B.13, the modificd serics R’ = (R,, R,, R,, R,) is at
lcast as tight on L, since neither R, nor R, depends on R,. Morcover, the value
calculated by R, for B, is unaffected by the transformation, since, in cither
series, Ry depends only on the values of B,, and B,; and the valuc of B,
calculated by R, depends only on the starting value of B,. Thus, nothing is lost
o R, by not having R, before it. If we now delete R, from R, lcaving
R"=(R,, Ry, R,), the statc of the labelling on entering R, is exactly the same
as it was in R. Thus R" is as tight as R, and shorter (sce Fig. B.2).

Definition B.18. Given a sct of refinements S = (R, . . ., R}, alabelling L is
quicscent on the set if R (L)=R,(L)=---= L. Given a sct of refincments
S={R,,..., R}, a labelling L and a scrics of refinements from S, Q=
(@1, Q.- ., Q,,), we say that Q brings L to quicscence if Q(L) is quiescent
on §.

i.emma B.19. Given a set of refinements S and a labelling L, let P and Q be two
scries of refinements drawn from S. If Q(L) is quiescent on S, then it is at least
as tight as P(L).

I'roof. Since Q(L) is quiescent, P(Q(L)) = Q(L). (None of the refinements in
I* can have any effect on Q(L).) However, since Q(L) is at lcast as tight as L,
P(Q(L)) is at least as tight as P(L). Hence Q(L) is at lcast as tight as P(L).

Corollary B.20. Given a set of refinements S and a labelling L, if Q and P are

iwo different series of refinements both of which bring L to quiescence, then
Q(L) = P(L).

Proof. By the above lemma, P(L) is as tight as Q(L) and vice versa, so the
two arc cqual.
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Fi. B.2. Compressing a serics of refinements.

Theorem B.21. Given a set of refinements, S = {R,, . . ., R}, on n variables,
and a labelling L, then either there exists a series of refinements in S containing a

self-dependency on L, or there exists a series of refinements which is not
redundant which brings L to quiescence.

Proof. Let O be any infinite scrics of refinements from S in which each
refinement appears infinitcly often. Let R be the subseries of O containing all
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thie active refinements. If R has no sclf-dependency, then by Lemma B.15 it
s:ust be finite. If R is finite, then R(L) must be quiescent on S, since, after the
-nd of R, Q tries all the different refinements in S and none of them arc active.
“.jorcover, since R has no sclf-dependency, it can be gradually pruned down,
sicp-by-step, using Lemma B.17 until it has no redundancics left. Each step
waves it at least as tight as it was before. Since no scrics of refinements can get
iighter than the quiescent state (Lemma B.19) the resultant scrics of refine-
-ients must reach quiescence.

".2. Unit coefficient constraints

-ofinition B.22. A unit coefficient constraint is a relation C of the form

p= > X, — > X <¢q,
kEPC(C) kENC(C)
here p and g are constants and PC(C) and NC(C) are disjoint scts of variable
aidices. (PC and NC stand for “positive coefficients” and “ncgative cocf-
hicients.”)

Hecnceforward in this section, we will assume that all constraints arc unit
vocfficiecnt constraints, and that all re¢finements arc drawn from unit cocfficient
constraints.

i.emma B.23. For any variable X,, labelling L, and constraint C of the form in
Definition B.22, REFINE(C, L, X;) can be calculated as follows: Let L(X,)=
la,, b} for all k and let REFINE(C, L, X;) =[a}, b}].

If i€ PC(C), then

a; =max<a,., p+ > a, - > bk> ,

kENC(C) kEPC(C) k#i
%
b:.=mm(bi,q+ > b, — > ak>.
kENC(C) kEPC ki

If ieNC(C), then

a;=max(a’.’ E a, —4q— E bk) ’

kEPC(C) kENC(C), k#i
b;=min(b,, > bo-p- X a,().
kEPC(C) KENC(C),k¥i

Proof. By solving the incquality.

Lemma B.24. If refinement R(X, C) is active on L, then R has one of the
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Jollowing forms:
If i€ PC(C), then

ai=p+ 2 a~ 2 b,

kENC(C) kEPC(C) k#i
Y
bi=q+ 2 b,- 2 a,.
kENC(C) kEPC(C) ki

If ieNC(C), then

a;= > a,~q-— > b,,

kEPC(C) KENC(C)k#i
b'i = Z bk -p- 2 a .
KEPC(C) KENC(C).k#i

Proof. Immediate from Lemma B.23.

Lemma B.25. Let the refinement R be active on L. Let B be a bound in
ARGS(R). Let L' be tighter than L, and let L'(B) be tighter than L(B) by an
amount A>0). Then R(L") is tighter than R(L) on OUT(R) by at least A.

That is, under the specified conditions, a change in the input is mirrored by at
least as great a change in the output. Here the limitation to unit cocfficient
equations is critical; this is not true of other kinds of refinement.

Proof. Since R is active on L, R(L) cvaluates OUT(R) as the sum and
difference of the bounds in ARGS(R), including B. R is not nccessarily active
on L', since OUT(R) may have been very much tightened in L’. However, in
computing OUT(R) in R(L") we make sure that it is at least as tight as the same
sum and difference over the values in L'. Since tightening in the arguments
shows up as tightening in the sum with coefficient 1, this sum is tighter in L’
than in L by the sum of the tightenings of all the bounds in ARGS(R). Hence,
OUT(R) is tighter in R(L') than in R(L) by at least the sum of all the
tightenings. Howcver, this sum contains no negative terms, and onc term A.
Hence, R(L') is tighter than R(L) on OUT(R) by at least A.

Example: Let C be the constraint 4= X, — X, + X,. Let R= R"(X;, C).
Thus R scts X} to min(X}, —X| + X) +4). Let L= ([5.0,8.0], [2.0,4.0],
[0.0,5.0]), and L' = ([7.0, 8.0}, [2.0,4.0], [0.0,2.0]). The L’ is tighter by 2.0
on X', which is an ARGS(OUT(R)). R(L) evaluatcs X3 as 3.0, and R(L")
evaluates it as 1.0. Thus R(L) is tighter than R(L') by 2.0 on X3.

Lemma B.26. Let the sequence R=(R,,..., R, ) be active on a labelling L
and dependent on the variable bound B. Let B,, = OUT(R,,) be the last variable
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bound set. Let L' be a labelling which is tighter than L, such that L'(B)=
L(B) —SIGN(B)- 4, for some A>0. Then R(L') is tighter than R(L) on B, by
at least A.

Proof. By Lemma B.7(a), since L' is tighter than L, R, | J(L") is at lcast as
tight as R, (L) for cach i. Let R, R, ,... bc a subscrics of R such that
B € ARGS(R,), B, = OUT(R;) € ARGS(R, ), ctc. Since no refincment has resct
B, before applying R;, it is still truc that R, (L") is tighter than
R, ;-(L)onB by A. (Thesc arc the labellings just before applying R; .) By
Lemma B.25, it follows that R, _; (L") is tighter than R, (L) on B, by at
lcast A. (Thesc are the labellings after applying R, .) Similarly, since B, is not
resct before applying L, it follows that R, ,I,I(L') is tighter than
R, ;,-:(L) on B, by 4. Again, it follows that R, ,(L') is tighter than

R, ,Z(L') on B, by at least A. And so it gocs inductively, up through R,

Lemma B.27. Let R=(R,,...,R,) be self-dependent for L. Let B=
OUT(R,,). Construct the infinite series of refinements

R*=RRR-=(R,, Ry, ..., Ry Ry, Ryy o Ry Riv )

m?

by iterating the series R infinitely often. Let L, =L, L,=R(L), L,= RYL) =
R(R(L)), etc. Then the sequence L,(B), L,(B), Ly(B),. .. increases or de-
creases at least arithmetically. :

Proof. Since R,, is active, R(L)=L, tightcr than L on B. Let A=
abs(L,(B) — L(B)). Then L, satisfics the conditions for L' in Lemma B.20.
Hence R} (L) = L, is tighter than L, on B by at lcast 4, and hence tighter than
L by at lcast 24. Using L, as L' in Lemma B.26 gives the conclusion that Ly is
tighter than L, on B by at least 4. Inductively, L, is tighter than L on B by at
least kA.

Lemma B.28. If {(R,, ..., R,,) is self-dependent for L, then the original set of
constraints and labels was inconsistent.

Proof. We arc able to construct a serics of refinements which tightens B
toward plus or minus infinity. This mcans either that some upper bound on
some variable is arbitrarily small or that some lower bound is arbitrarily large,
which is an impossible conclusion. However, since each refinement is a
necessary consequence of the original state of the system, the original system
must have been inconsistent.

Theorem B.29. If (R,,...,R,) contains a self-dependency for L, then the
original constraints together with L are inconsistent.
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Proof. Let (R, ..., R;) be self-dependent. The original sct of constraints
together with L imply L, ,. Using Lemma B28 on L,_, and (R,,..., Rj)

shows that the constraints and original labellings are inconsistent.

Theorem B.30. Starting with a consistent set of constrainis and a labelling L,
there is a nonredundant series of refinements which reaches a quiescent stale.
This may be called a *bee-line” series for L.

Proof. Follows immediatcly from Theorems B.21 and B.29.

Corollary B.31. Given a set of constraints on n variables and a labelling L
which are consistent, let R be a series containing each refinement drawn from the
set exactly once. Then R™={(R,R,R, ... (2n times)) reaches quiescence.

2 . . . . . .

Proof. R contains the bec-line serics as a subscrics, and thercfore is as tight

as the bee-line serics on L. Since the bee-line scries reaches quiescence, so
2n

does R™.

The only rcmaining question is how quickly this can be implemented. It
turns out that all the refinements for a single constraint on a labelling can be
done together in time O(length of the constraint), by incrementally changing
the sum and differences in Lemma B.24, rather than recalculating cach time.
Thus, the average time to apply a refinement is O(1). Thus, we arc repeating
2E rcfinements 22 times, giving us an O(nE) algorithm.

The techniques of Mackworth and Freuder [18], used in Algorithm 3.2, can
be applicd to make this practically more cfficient, if not to give theorctically
better bounds. The idea is that if nonc of the arguments of a given constraint
have changed since it was last refined, then the constraint need not be refined
again. Thus, we can usc a queucing structure, where a constraint is added to
the queuc when one of its arguments is changed. It is casily shown that, if
constraints are taken off the qucue, either in fixed, cyclic order or in FIFO
order, then the scries of refinements will be a superseries of the bee-line series
when it is not more than E times as long, where E is the number of
refinements. Thus, cither ordering scheme gives us a worst case of O(nE)
running time before reaching quiescence.
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