
TECHNICAL REPORT IC-PARC-05-1

E SCL P
ei

A Tutorial Introduction

Andrew M. Cheadle Andrew Eremin Warwick Harvey Andrew J. Sadler

Joachim Schimpf Kish Shen Mark G. Wallace

IC-PARC

Centre for Planning and Resource Control

William Penney Laboratory

Imperial College London

London

SW7 2AZ

c© Imperial College London 2003

Contents

Contents i

1 Introduction 1

2 Getting started with ECLiPSe 3
2.1 How do I install the ECLiPSe system? . 3
2.2 How do I read the online documentation? . 3
2.3 How do I run my ECLiPSe programs? . 3
2.4 How do I use tkeclipse? . 3

2.4.1 Getting started . 3
2.5 How do I write an ECLiPSe program? . 4

2.5.1 Compiling a program . 5
2.5.2 Executing a query . 5
2.5.3 Editing a file . 5
2.5.4 Debugging a program . 6
2.5.5 File menu . 6
2.5.6 Getting help . 7
2.5.7 Other tools . 8

2.6 How do I make things happen at compile time? 9
2.7 How do I use ECLiPSe libraries in my programs? 10
2.8 Other tips . 10

2.8.1 Recommended file names . 10

3 Prolog Introduction 11
3.1 Terms and their data types . 11

3.1.1 Numbers . 11
3.1.2 Strings . 12
3.1.3 Atoms . 12
3.1.4 Lists . 12
3.1.5 Structures . 13

3.2 Predicates, Goals and Queries . 14
3.2.1 Conjunction and Disjunction . 15

3.3 Unification and Logical Variables . 15
3.3.1 Symbolic Equality . 15
3.3.2 Logical Variables . 16

i

3.3.3 Unification . 17

3.4 Defining Your Own Predicates . 17

3.4.1 Comments . 17

3.4.2 Clauses and Predicates . 18

3.5 Execution Scheme . 19

3.5.1 Resolution . 19

3.6 Partial data structures . 22

3.7 More control structures . 22

3.7.1 Disjunction . 22

3.7.2 Conditional . 23

3.7.3 Call . 23

3.7.4 All Solutions . 23

3.8 Using Cut . 24

3.8.1 Commit to current clause . 24

3.8.2 Prune alternative solutions . 24

3.9 Common Pitfalls . 25

3.9.1 Unification works both ways . 25

3.9.2 Unexpected backtracking . 26

3.10 Exercises . 27

4 ECLiPSe Programming 29

4.1 Structure Notation . 29

4.2 Loops . 30

4.3 Working with Arrays of Items . 32

4.4 Storing Information Across Backtracking . 32

4.4.1 Bags . 33

4.4.2 Shelves . 33

4.5 Input and Output . 34

4.5.1 Printing ECLiPSe Terms . 34

4.5.2 Reading ECLiPSe Terms . 35

4.5.3 Formatted Output . 35

4.5.4 Streams . 36

4.6 Matching . 37

4.7 List processing . 38

4.8 String processing . 39

4.9 Term processing . 39

4.10 Module System . 40

4.10.1 Overview . 40

4.10.2 Making a Module . 40

4.10.3 Using a Module . 40

4.10.4 Qualified Goals . 41

4.10.5 Exporting items other than Predicates . 42

4.11 Exception Handling . 42

4.12 Time and Memory . 43

4.12.1 Timing . 43

ii

4.13 Exercises . 44

5 A Tutorial Tour of Debugging in TkECLiPSe 45

5.1 The Buggy Program . 46

5.2 Running the Program . 47

5.3 Debugging the Program . 47

5.4 Summary . 55

5.4.1 TkECLiPSe toplevel . 55

5.4.2 Predicate Browser . 56

5.4.3 Delayed Goals Viewer . 56

5.4.4 Tracer . 57

5.4.5 Tracer Filter . 58

5.4.6 Term Inspector . 58

6 Program Analysis 59

6.1 What tools are available? . 59

6.2 Profiler . 59

6.3 Line coverage . 62

6.3.1 Compilation . 63

6.3.2 Results . 63

7 An Overview of the Constraint Libraries 67

7.1 Introduction . 67

7.2 Implementations of Domains and Constraints . 67

7.2.1 Suspended Goals: suspend . 67

7.2.2 Interval Solver: ic . 67

7.2.3 Global Constraints: ic global . 68

7.2.4 Scheduling Constraints: ic cumulative, ic edge finder 68

7.2.5 Finite Integer Sets: ic sets . 68

7.2.6 Linear Constraints: eplex . 68

7.2.7 Constraints over symbols: ic symbolic . 69

7.3 User-Defined Constraints . 69

7.3.1 Generalised Propagation: propia . 69

7.3.2 Constraint Handling Rules: ech . 69

7.4 Search and Optimisation Support . 69

7.4.1 Tree Search Methods: ic search . 69

7.4.2 Optimisation: branch and bound . 69

7.5 Hybridisation Support . 69

7.5.1 Repair and Local Search: repair . 69

7.5.2 Hybrid: ic probing for scheduling . 70

7.6 Other Libraries . 70

iii

8 Getting started with Interval Constraints 71

8.1 Using the Interval Constraints Library . 71

8.2 Structure of a Constraint Program . 71

8.3 Modelling . 72

8.4 Built-in Constraints . 73

8.5 Global constraints . 79

8.5.1 Different strengths of propagation . 80

8.6 Simple User-defined Constraints . 81

8.6.1 Using Reified Constraints . 81

8.6.2 Using Propia . 82

8.6.3 Using the element Constraint . 82

8.7 Searching for Feasible Solutions . 83

8.8 Bin Packing . 83

8.8.1 Problem Definition . 83

8.8.2 Problem Model - Using Structures . 84

8.8.3 Handling an Unknown Number of Bins 85

8.8.4 Constraints on a Single Bin . 86

8.8.5 Symmetry Constraints . 88

8.8.6 Search . 88

8.9 Exercises . 89

9 Working with real numbers and variables 91

9.1 Real number basics . 91

9.2 Issues to be aware of when using bounded reals 92

9.3 IC as a solver for real variables . 95

9.4 Finding solutions of real constraints . 96

9.5 A larger example . 98

9.6 Exercise . 100

10 The Integer Sets Library 101

10.1 Why Sets . 101

10.2 Finite Sets of Integers . 101

10.3 Set Variables . 101

10.4 Constraints . 102

10.5 Search Support . 104

10.6 Example . 105

10.7 Weight Constraints . 106

10.8 Exercises . 107

11 Problem Modelling 109

11.1 Constraint Logic Programming . 109

11.2 Issues in Problem Modelling . 109

11.3 Modelling with CLP and ECLiPSe . 110

11.4 Same Problem - Different Model . 111

11.5 Rules for Modelling Code . 112

iv

11.5.1 Disjunctions . 112

11.5.2 Conditionals . 113

11.6 Symmetries . 114

12 Tree Search Methods 117

12.1 Introduction . 117

12.1.1 Overview of Search Methods . 118

12.1.2 Optimisation and Search . 120

12.1.3 Heuristics . 120

12.2 Complete Tree Search with Heuristics . 121

12.2.1 Search Trees . 121

12.2.2 Variable Selection . 122

12.2.3 Value Selection . 123

12.2.4 Example . 123

12.2.5 Counting Backtracks . 126

12.3 Incomplete Tree Search . 127

12.3.1 First Solution . 128

12.3.2 Bounded Backtrack Search . 128

12.3.3 Depth Bounded Search . 129

12.3.4 Credit Search . 130

12.3.5 Timeout . 131

12.3.6 Limited Discrepancy Search . 132

12.4 Exercises . 133

13 Repair and Local Search 135

13.1 Motivation . 135

13.2 Syntax . 135

13.2.1 Setting and Getting Tentative Values . 135

13.2.2 Building and Accessing Conflict Sets . 136

13.2.3 Propagating Conflicts . 137

13.3 Repairing Conflicts . 138

13.3.1 Combining Repair with IC Propagation 139

13.4 Introduction to Local Search . 141

13.4.1 Changing Tentative Values . 141

13.4.2 Hill Climbing . 142

13.5 More Advanced Local Search Methods . 143

13.5.1 The Knapsack Example . 144

13.5.2 Search Code Schema . 145

13.5.3 Random walk . 145

13.5.4 Simulated Annealing . 146

13.5.5 Tabu Search . 147

13.6 Repair Exercise . 149

v

14 Implementing Constraints 151

14.1 What is a Constraint in Logic Programming? . 151

14.2 Background: Constraint Satisfaction Problems 152

14.3 Constraint Behaviours . 153

14.3.1 Consistency Check . 153

14.3.2 Forward Checking . 154

14.3.3 Domain (Arc) Consistency . 154

14.3.4 Bounds Consistency . 155

14.4 Programming Basic Behaviours . 156

14.4.1 Consistency Check . 156

14.4.2 Forward Checking . 156

14.5 Basic Suspension Facility . 158

14.6 A Bounds-Consistent IC constraint . 158

14.7 Using a Demon . 159

14.8 Exercises . 160

15 Propia and CHR 163

15.1 Two Ways of Specifying Constraint Behaviours 163

15.2 The Role of Propia and CHR in Problem Modelling 164

15.3 Propia . 166

15.3.1 How to Use Propia . 166

15.3.2 Propia Implementation . 167

15.3.3 Propia and Related Techniques . 169

15.4 CHR . 170

15.4.1 How to Use CHR . 170

15.4.2 Multiple Heads . 171

15.5 A Complete Example of a CHR File . 172

15.5.1 CHR Implementation . 173

15.6 Global Reasoning . 174

15.7 Propia and CHR Exercise . 174

16 The Eplex Library 177

16.1 Introduction . 177

16.1.1 What is Mathematical Programming? . 177

16.1.2 Why interface to Mathematical Programming solvers? 178

16.1.3 Example formulation of an MP Problem 178

16.2 How to load the library . 179

16.3 Modelling MP problems in ECLiPSe . 180

16.3.1 Eplex instance . 180

16.3.2 Example modelling of an MP problem in ECLiPSe 180

16.3.3 Getting more solution information from the solver 182

16.3.4 Adding integrality constraints . 182

16.4 Repeated Solving of an Eplex Problem . 184

16.5 Exercise . 189

vi

17 Building Hybrid Algorithms 191
17.1 Combining Domains and Linear Constraints . 191
17.2 Reasons for Combining Solvers . 191
17.3 A Simple Example . 192

17.3.1 Problem Definition . 192
17.3.2 Program to Determine Satisfiability . 193
17.3.3 Program Performing Optimisation . 194

17.4 Sending Constraints to Multiple Solvers . 195
17.4.1 Syntax and Motivation . 195
17.4.2 Handling Booleans with Linear Constraints 196
17.4.3 Handling Disjunctions . 198
17.4.4 A More Realistic Example . 201

17.5 Using Values Returned from the Linear Optimum 203
17.5.1 Reduced Costs . 203
17.5.2 Probing . 205
17.5.3 Probing for Scheduling . 205

17.6 Other Hybridisation Forms . 206
17.7 References . 207
17.8 Hybrid Exercise . 207

18 The Colgen Library 209
18.1 The LP Model . 209
18.2 The Hybrid Colgen Model . 211

Bibliography 215

Index 218

vii

viii

Chapter 1

Introduction

This tutorial provides an introduction to programming in ECLiPSe. It assumes a broad under-
standing of constrained optimisation problems, some background in mathematical logic and in
programming languages. The tutorial tries to cover most of the basic aspects of using ECLiPSe:
underlying concepts, the programming language, library functionality and interaction with the
system.
A few topics have been left out of this tutorial and are covered elsewhere: The Embedding
Manual explains how to embed ECLiPSe applications into other software environments, and the
Visualisation Manual describes the use of the constraint visualisation facilities. All the features
described in this tutorial are documented in more detail in the ECLiPSe User Manual, Constraint
Library Manual and in particular the Reference Manual. A methodology for developing large
scale applications with ECLiPSe is presented in the document Developing Applications with
ECLiPSe by Simonis.
For an informal introduction to combinatorial optimisation and constraint programming see the
article Constraint Programming1 by Wallace. The most closely related books on the subject
are the textbook Programming with Constraints by Marriott and Stuckey [17] (which contains
ECLiPSe examples), and the seminal book Constraint Satisfaction in Logic Programming [27]
by Van Hentenryck.
A small selection of textbooks on related subjects includes: Foundations of Constraint Satisfac-
tion by Tsang [25], Model Building in Mathematical Programming by Williams [30] and Prolog
Programming for Artificial Intelligence by Bratko [6].

⊙

References to more detailed documentation are marked like this.

⊗

Notes that can be skipped on first reading are marked like this.

1http://www.icparc.ic.ac.uk/eclipse/reports/handbook/handbook.html

1

http://www.icparc.ic.ac.uk/eclipse/reports/handbook/handbook.html

2

Chapter 2

Getting started with ECLiPSe

2.1 How do I install the ECLiPSe system?

Please see the installation notes that came with ECLiPSe. For Unix/Linux systems, these are in
the file README_UNIX. For Windows, they are in the file README_WIN.TXT. For Mac OS X, they
are in the file README_MACOSX.

Please note that choices made at installation time can affect which options are available in the
installed system.

2.2 How do I read the online documentation?

Under Unix and Mac OS X, use any HTML browser to open the file doc/index.html in the
ECLiPSe installation directory. Under Windows, select the menu entry Start/Programs/ECLiPSe/Documentat

2.3 How do I run my ECLiPSe programs?

There are two ways of running ECLiPSe programs. The first is using tkeclipse, which provides
an interactive graphical user interface to the ECLiPSe compiler and system. The second is using
eclipse, which provides a more traditional command-line interface. We recommend you use
TkECLiPSe unless you have some reason to prefer a command-line interface.

2.4 How do I use tkeclipse?

2.4.1 Getting started

To start TkECLiPSe, either type the command tkeclipse at an operating system command-
line prompt, or select TkECLiPSe from the program menu on Windows. This will bring up the
TkECLiPSe top-level, which is shown in Figure 2.1.

Note that help on TkECLiPSe and its component tools is available from the Help menu in the
top-level window.

3

Figure 2.1: TkECLiPSe top-level

2.5 How do I write an ECLiPSe program?

You need to use an editor to write your programs. ECLiPSe does not come with an editor, but
any editor that can save plain text files can be used. Save your program as a plain text file, and
you can then compile the program into ECLiPSe and run it.

Extra support for editing ECLiPSe programs with common editors are available. An eclipse
mode for the GNU emacs editor is bundled with the ECLiPSe package. This mode provides
syntax highlighting, automatic indentation and many other features. To use this mode, you
need to load the eclipse.el file into emacs. This is done by adding the following line to your
.emacs file:

(autoload ’eclipse-mode "<eclipsedir>/lib_public/eclipse.el" "ECLIPSE editing mode" t)

where <eclipsedir> is the path to your ECLiPSe installation directory.

With TkECLiPSe, you can specify the editor you want to use, and this editor will be started
by TkECLiPSe, e.g. when you select a file in the ‘Edit’ option under the File menu. The
default values are the value of the VISUAL environment variable under Unix, or Wordpad
under Windows. This can be changed with the Preference Editor under the Tools menu.

4

2.5.1 Compiling a program

From the File menu, select the Compile ... option. This will bring up a file selection dialogue.
Select the file you wish to compile, and click on the Open button. This will compile the file and
any others it depends on. Messages indicating which files have been compiled and describing
any errors encountered will be displayed in the bottom portion of the TkECLiPSe window
(Output and Error Messages).
If a file has been modified since it was compiled, it may be recompiled by clicking on the make

button. This recompiles any files which have become out-of-date.

⊙

For more information on program compilation and the compiler, please see The Compiler
chapter in the user manual.

2.5.2 Executing a query

To execute a query, first enter it into the Query Entry text field. You will also need to specify
which module the query should be run from, by selecting the appropriate entry from the drop-
down list to the left of the Query Entry field. Normally, the default selection of eclipse will
be fine; this will allow access to all ECLiPSe built-ins and all predicates that have not explicitly
been compiled into a different module. Selecting another module for the query is only needed
if you wish to call a predicate which is not visible from the eclipse module, in which case you
need to select that module.

⊙

For more information about the module system, please see the Module System chapter in
the user manual.

To actually execute the query, either hit the Enter key while editing the query, or click on the
run button. TkECLiPSe maintains a history of commands entered during the session, and these
may be recalled either by using the drop-down list to the right of the Query Entry field, or by
using the up and down arrow keys while editing the Query Entry field.
If ECLiPSe cannot find a solution to the query, it will print No in the Results section of the
TkECLiPSe window. If it finds a solution and knows there are no more, it will print it in the
Results section, and then print Yes. If it finds a solution and there may be more, it will print
the solution found as before, print More, and enable the more button. Clicking on the more

button tells ECLiPSe to try to find another solution. In all cases it also prints the total time
taken to execute the query.
From Query menu, you can run the query with various analysis tools (see chapter 6): Time Profile

option will run the query with the profiler tool; Port Profile option will run the query with
the port profiler tool.
Note that a query can be interrupted during execution by clicking on the interrupt button.

2.5.3 Editing a file

If you wish to edit a file (e.g. a program source file), then you may do so by selecting the
Edit ... option from the File menu (or use the Edit new ... option if the file does not yet
exist). This will bring up a file selection dialogue. Select the file you wish to edit, and click on
the Open button.

5

When you have finished editing the file, save it. After you’ve saved it, if you wish to update the
version compiled into ECLiPSe (assuming it had been compiled previously), simply click on the
make button.

You can change which program is used to edit your file by using the TkECLiPSe Preference
Editor, available from the Tools menu. Alternatively you can use your editor separately from
ECLiPSe.

2.5.4 Debugging a program

To help diagnose problems in ECLiPSe programs, TkECLiPSe provides the tracer. It is activated
by selecting the Tracer option from the Tools menu. The next time a goal is executed, the
tracer window will become active, allowing you to step through the program’s execution and
examine the program’s state as it executes. A full example is given in chapter 5.

2.5.5 File menu

The File menu of TkECLiPSe provides various options to manipulate files:

Compile

Allows the user to select a file to compile into ECLiPSe.

Use module

Allows the user to select and load an ECLiPSe module file into ECLiPSe.

Edit

Allows the user to select a file to edit using the default text editor

⊙

See section 2.5.3 for more information on editors.

.

Edit new

Allows the user to specify a new file that will be opened with the default text editor.

Cross referencer

Allows the user to select an ECLiPSe source file and produce a cross reference over it, and
display the resulting graph in a new window.

Change directory

Allows the user to change the current working directory.

6

Change to example directory

Change the current working directory to the example directory in the ECLiPSe distribution.

New module

Allows the user to specify a new module that will be created. The new module becomes the
current toplevel module.

Clear toplevel module

Allows the user to clear the current toplevel module, i.e. to erase it and start with a fresh, empty
module.

Exit

Leave ECLiPSe

2.5.6 Getting help

More detailed help than is provided here can be obtained online for all the features of TkECLiPSe.
Simply select the entry from the Help menu on TkECLiPSe’s top-level window which corresponds
to the topic or tool you are interested in.
Detailed documentation about all the predicates in the ECLiPSe libraries can be obtained
through the Library Browser and Help tool. This tool allows you to browse the online help for
the ECLiPSe libraries. On the left is a tree display of the libraries available and the predicates
they provide.

• Double clicking on a node in this tree either expands it or collapses it again.

• Clicking on an entry displays help for that entry to the right.

• Double clicking on a word in the right-hand pane searches for help entries containing that
string.

You can also enter a search string or a predicate specification manually in the text entry box
at the top right. If there is only one match, detailed help for that predicate is displayed. If
there are multiple matches, only very brief help is displayed for each; to get detailed help, try
specifying the module and/or the arity of the predicate in the text field.
Alternatively, you can call the help/1 predicate in the query window (which contains the same
information as the HTML Reference Manual). It has two modes of operation. First, when a
fragment of a built-in name is specified, a list of short descriptions of all built-ins whose name
contains the specified string is printed. For example,

?- help(write).

will print one-line descriptions about write/1, writeclause/2, etc. When a unique specification
is given, the full description of the specified built-in is displayed, e.g. in

?- help(write/1).

7

or

?- help(ic:alldifferent/1).

2.5.7 Other tools

TkECLiPSe comes with a number of useful tools. Some have been mentioned above, but here is
a more complete list. Note that we only provide brief descriptions here; for more details, please
see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code and have it compiled. This is useful
for quick experimentation, but not for larger examples or programs you wish to keep, since the
source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source files have been compiled in the
current ECLiPSe session. You can select files to edit them, or compile them individually, as well
as adding new files.

Predicate Browser

This tool allows you to browse through the modules and predicates which have been compiled
in the current session. It also lets you alter some properties of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicates selected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allowing a spy point to be placed on the
predicate and the source code viewed.

Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation
panel can be launched which provides arrow buttons as an alternative way to navigate the tree.
Note that while the inspector window is open, interaction with other TkECLiPSe windows is dis-
allowed. This prevents the term from changing while being inspected. To continue TkECLiPSe,
the inspector window must be closed.

Visualisation Client

This starts a new Java visualisation client that allows ECLiPSe programs to be visualised with
the visualisation tools. See the Visualisation manual for details on the visualisation tools.

8

Global Settings

This tool allows the setting of some global flags governing the way ECLiPSe behaves. See also
the documentation for the set flag/2 and get flag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usage of the ECLiPSe system, up-
dated at regular intervals. See also the documentation for the statistics/0 and statistics/2
predicates.

Preference Editor

This tool allows you to edit and set various user preferences. This include parameters for how
TkECLiPSe will start up, e.g. the amount of memory it will be able to use, and a initial
query to execute; and parameters which affects the appearance of TkECLiPSe, such as the fonts
TkECLiPSe uses and which editor it launches.

2.6 How do I make things happen at compile time?

A file being compiled may contain queries. These are goals preceded by either the symbol “?-”
or the symbol “:-”. As soon as a query or command is encountered in the compilation of a file,
the ECLiPSe system will try to satisfy it. Thus by inserting goals in this fashion, things can be
made to happen at compile time.

In particular, a file can contain a directive to the system to compile another file, and so large
programs can be split between files, while still only requiring a single simple command to compile
them. When this happens, ECLiPSe interprets the pathnames of the nested compiled files
relative to the directory of the parent compiled file; if, for example, the user calls

[eclipse 1]: compile(’src/pl/prog’).

and the file src/pl/prog.pl contains a query

:- [part1, part2].

then the system searches for the files part1.pl and part2.pl in the directory src/pl and not in
the current directory. Usually larger ECLiPSe programs have one main file which contains only
commands to compile all the subfiles. In ECLiPSe it is possible to compile this main file from
any directory. (Note that if your program is large enough to warrant breaking into multiple files
(let alone multiple directories), it is probably worth turning the constituent components into
modules.)

⊙

See section 4.10 for more information about modules.

9

2.7 How do I use ECLiPSe libraries in my programs?

A number of files containing library predicates are supplied with the ECLiPSe system. They
are usually installed in an ECLiPSe library directory. These predicates are either loaded auto-
matically by ECLiPSe or may be loaded “by hand”.
During the execution of an ECLiPSe program, the system may dynamically load files containing
library predicates. When this happens, the user is informed by a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use module/1
predicates. E.g. to load the library called lists, use one of the following goals:

:- lib(lists)

:- use_module(library(lists))

This will load the library file unless it has been already loaded. In particular, a program can
ensure that a given library is loaded when it is compiled, by including an appropriate directive
in the source, e.g. :- lib(lists).

2.8 Other tips

2.8.1 Recommended file names

It is recommended programming practice to give the Prolog source programs the suffix .pl, or
.ecl if it contains ECLiPSe specific code. It is not enforced by the system, but it simplifies
managing the source programs. The compile/1 predicate automatically adds the suffix to the
filename, so that it does not need to be specified; if the literal filename can not be found, the
system tries appending each of the valid suffixes in turn and tries to find the resulting filename.

10

Chapter 3

Prolog Introduction

3.1 Terms and their data types

Prolog data (terms) and programs are built from a small set of simple data-types. In this section,
we introduce these data types together with their syntax (their textual representations). For
the full syntax see the User Manual appendix on Syntax.

3.1.1 Numbers

Numbers come in several flavours. The ones that are familiar from other programming languages
are integers and floating point numbers. Integers in ECLiPSe can be as large as fits into the
machine’s memory:

123 0 -27 3492374892749289174

Floating point numbers (represented as IEEE double floats) are written as

0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECLiPSe provides two additional numeric types, rationals and bounded reals. ECLiPSe can do
arithmetic with all these numeric types.
Note that performing arithmetic requires the use of the is/2 predicate:

?- X is 3 + 4.

X = 7

Yes

If one just uses =/2, ECLiPSe will simply construct a term corresponding to the arithmetic
expression, and will not evaluate it:

?- X = 3 + 4.

X = 3 + 4

Yes

⊙

For more details on numeric types and arithmetic in general see the User Manual chapter on
Arithmetic.

⊙

For more information on the bounded real numeric type, see Chapter 9.

11

3.1.2 Strings

Strings are a representation for arbitrary sequences of bytes and are written with double quotes:

"hello"

"I am a string!"

"string with a newline \n and a null \000 character"

Strings can be constructed and partitioned in various ways using ECLiPSe primitives.

3.1.3 Atoms

Atoms are simple symbolic constants, similar to enumeration type constants in other languages.
No special meaning is attached to them by the language. Syntactically, all words starting with
a lower case letter are atoms, sequences of symbols are atoms, and anything in single quotes is
an atom:

atom quark i486 -*- ??? ’Atom’ ’an atom’

3.1.4 Lists

A list is an ordered sequence of (any number of) elements, each of which is itself a term. Lists
are delimited by square brackets ([]), and elements are separated by a comma. Thus, the
following are lists:

[1,2,3]

[london, cardiff, edinburgh, belfast]

["hello", 23, [1,2,3], london]

A special case is the empty list (sometimes called nil), which is written as

[]

A list is actually composed of head-and-tail pairs, where the head contains one list element, and
the tail is itself a list (possibly the empty list). Lists can be written as a [Head|Tail] pair, with
the head separated from the tail by the vertical bar. Thus the list [1,2,3] can be written in
any of the following equivalent ways:

[1,2,3]

[1|[2,3]]

[1|[2|[3]]]

[1|[2|[3|[]]]]

The last line shows that the list actually consists of 3 [Head|Tail] pairs, where the tail of the
last pair is the empty list. The usefulness of this notation is that the tail can be a variable
(introduced below): [1|Tail], which leaves the tail unspecified for the moment.

12

3.1.5 Structures

Structures correspond to structs or records in other languages. A structure is an aggregate of a
fixed number of components, called its arguments. Each argument is itself a term. Moreover, a
structure always has a name (which looks like an atom). The canonical syntax for structures is

<name>(<arg> 1,...<arg> n)

Valid examples of structures are:

date(december, 25, "Christmas")

element(hydrogen, composition(1,0))

flight(london, new_york, 12.05, 17.55)

The number of arguments of a structure is called its arity. The name and arity of a structure are
together called its functor and is often written as name/arity. The last example above therefore
has the functor flight/4.

⊙

See section 4.1 for information about defining structures with named fields.

Operator Syntax

As a syntactic convenience, unary (1-argument) structures can also be written in prefix or postfix
notation, and binary (2-argument) structures can be written in prefix or infix notation, if the
programmer has made an appropriate declaration (called an operator declaration) about its
functor. For example if plus/2 were declared to be an infix operator, we could write:

1 plus 100

instead of

plus(1,100)

It is worth keeping in mind that the data term represented by the two notations is the same,
we have just two ways of writing the same thing. Various logical and arithmetic functors are
automatically declared to allow operator syntax, for example +/2, not/1 etc.

Parentheses

When prefix, infix and postfix notation is used, it is sometimes necessary to write extra paren-
theses to make clear what the structure of the written term is meant to be. For example to
write the following nested structure

+(*(3,4), 5)

we can alternatively write

3 * 4 + 5

because the star binds stronger than the plus sign. But to write the following differently nested
structure

13

Numbers ECLiPSehas integers, floats, rationals and bounded reals.

Strings Character sequences in double quotes.

Atoms Symbolic constants, usually lower case or in single quotes.

Lists Lists are constructed from cells that have an arbitrary head and a tail which is
again a list.

Structures Structures have a name and a certain number (arity) of arbitrary arguments.
This characteristic is called the functor, and written name/arity.

Figure 3.1: Summary of Data Types

*(3, +(4, 5))

in infix-notation, we need extra parentheses:

3 * (4 + 5)

A full table of the predefined prefix, infix and postfix operators with their relative precedences
can be found in the appendix of the User Manual.

3.2 Predicates, Goals and Queries

Where other programming languages have procedures and functions, Prolog and ECLiPSe have
predicates. A predicate is something that has a truth value, so it is similar to a function with
a boolean result. A predicate definition simply defines what is true. A predicate invocation (or
call) checks whether something is true or false. A simple example is the predicate integer/1,
which has a built-in definition. It can be called to check whether something is an integer:

integer(123) is true

integer(atom) is false

integer([1,2]) is false

A predicate call like the above is also called a goal. A starting goal that the user of a program
provides is called a query. To show queries and their results, we will from now on use the
following notation:

?- integer(123).

Yes.

?- integer(atom).

No.

?- integer([1,2]).

No.

A query can simply be typed at the eclipse prompt, or entered into the query field in a tkeclipse
window. Note that it is not necessary to enter the ?- prefix. On a console input, is however

14

necessary to terminate the query with a full-stop (a dot followed by a newline). After executing
the query, the system will print one of the answers Yes or No.

3.2.1 Conjunction and Disjunction

Goals can be combined to form conjunctions (AND) or disjunctions (OR). Because this is so
common, Prolog uses the comma for AND and the semicolon for OR. The following shows two
examples of conjunction, the first one is true because both conjuncts are true, the second is false:

?- integer(5), integer(7).

Yes.

?- integer(5), integer(hello).

No.

In contrast, a disjunction is only false if both disjuncts are false:

?- (integer(hello) ; integer(5)).

Yes.

?- (integer(hello) ; integer(world)).

No.

As in this example, it is advisable to always surround disjunctions with parentheses. While not
strictly necessary in this example, they are often required to clarify the structure.
In practice, when answering queries with disjunctions, the system will actually give a separate
Yes answer for every way in which the query can be satisfied (i.e. proven to be true). For
example, the following disjunction can be satisfied in two ways, therefore system will give two
Yes answers:

?- (integer(5) ; integer(7)).

Yes (0.00s cpu, solution 1, maybe more)

Yes (0.02s cpu, solution 2)

The second answer will only be given after the user has explicitely asked for more solutions.
Sometimes the system cannot decide whether an answer is the last one. In that case, asking for
more solutions may lead to an alternative No answer, like in the following example:

?- (integer(5) ; integer(hello)).

Yes (0.00s cpu, solution 1, maybe more)

No (0.02s cpu)

Of course, as long as there was at least one Yes answer, the query as a whole was true.

3.3 Unification and Logical Variables

3.3.1 Symbolic Equality

Prolog has a particularly simple idea of equality, namely structural equality by pattern match-
ing. This means that two terms are equal if and only if they have exactly the same structure.
No evaluation of any kind is perfomed on them:

15

?- 3 = 3.

Yes.

?- 3 = 4.

No.

?- hello = hello.

Yes.

?- hello = 3.

No.

?- foo(a,2) = foo(a,2).

Yes.

?- foo(a,2) = foo(b,2).

No.

?- foo(a,2) = foo(a,2,c).

No.

?- foo(3,4) = 7.

No.

?- +(3,4) = 7.

No.

?- 3 + 4 = 7.

No.

Note in particular the last two examples (which are equivalent): there is no automatic arithmetic
evaluation. The term +(3,4) is simply a data structure with two arguments, and therefore of
course different from any number.

Note also that we have used the built-in predicate =/2, which exactly implements this idea of
equality.

3.3.2 Logical Variables

So far we have only performed tests, giving only Yes/No results. How can we compute more
interesting results? The solution is to introduce Logical Variables. It is very important to
understand that Logical Variables are variables in the mathematical sense, not in the usual
programming language sense. Logical Variables are simply placeholders for values which are not
yet known, like in mathematics. In conventional programming languages on the other hand,
variables are labels for storage locations. The important difference is that the value of a logical
variables is typically unknown at the beginning, and only becomes known in the course of the
computation. Once it is known, the variable is just an alias for the value, i.e. it refers to a term.
Once a value has be assigned to a logical variable, it remains fixed and cannot be assigned a
different value.

Logical Variables are written beginning with an upper-case letter or an underscore, for example

X Var Quark _123 R2D2

If the same name occurs repeatedly in the same input term (e.g. the same query or clause), it
denotes the same variable.

16

Predicate Something that is true or false, depending on its definition and its arguments.
Defines a relationship between its arguments.

Goal A logical formula whose truth value we want to know. A goal can be a conjunction
or disjunction of other (sub-)goals.

Query The initial Goal given to a computation.

Unification An extension of pattern matching which can bind logical variables (place-
holders) in the matched terms to make them equal.

Clause One alternative definition for when a predicate is true. A clause is logically an
implication rule.

Figure 3.2: Basic Terminology

3.3.3 Unification

With logical variables, the above equality tests become much more interesting, resulting in the
concept of Unification. Unification is an extension of the idea of pattern matching of two terms.
In addition to matching, unification also causes the binding (instantiation, aliasing) of variables
in the two terms. Unification instantiates variables such that the two unified terms become
equal. For example

X = 7 is true with X instantiated to 7

X = Y is true with X aliased to Y (or vice versa)

foo(X) = foo(7) is true with X instantiated to 7

foo(X,Y) = foo(3,4) is true with X instantiated to 3 and Y to 4

foo(X,4) = foo(3,Y) is true with X instantiated to 3 and Y to 4

foo(X) = foo(Y) is true with X aliased to Y (or vice versa)

foo(X,X) = foo(3,4) is false because there is no possible value for X

foo(X,4) = foo(3,X) is false because there is no possible value for X

3.4 Defining Your Own Predicates

3.4.1 Comments

Since we will annotate some of our programs, we first introduce the syntax for comments. There
are two types:

Block comment The comment is enclosed between the delimiters /* and */. Such comments
can span multiple lines, and may be conveniently used to comment out unused code.

Line comment Anything following and including ’%’ in a line is taken as a comment (unless
the ’%’ character is part of a quoted atom or string).

17

3.4.2 Clauses and Predicates

Prolog programs are built from valid Prolog data-structures. A program is a collection of
predicates, and a predicate is a collection of clauses.
The idea of a clause is to define that something is true. The simplest form of a clause is the
fact. For example, the following two are facts:

capital(london, england).

brother(fred, jane).

Syntactically, a fact is just a structure (or an atom) terminated by a full stop.
Generally, a clause has the form

Head :- Body.

where Head is a structure (or atom) and Body is a Goal, possibly with conjunctions and disjunc-
tions like in the queries discussed above. The following is a clause

uncle(X,Z) :- brother(X,Y), parent(Y,Z).

Logically, this can be read as a reverse implication

uncle(X, Z) ←− brother(X, Y) ∧ parent(Y, Z)

or, more precisely

∀X∀Z : uncle(X, Z) ←− ∃Y : brother(X, Y) ∧ parent(Y, Z)

stating that uncle(X,Z) is true if brother(X,Y) and parent(Y,Z) are true. Note that a fact is
equivalent to a clause where the body is true:

brother(fred, jane) :- true.

One or multiple clauses with the same head functor (same name and number of arguments)
together form the definition of a predicate. Logically, multiple clauses are read as a disjunction,
i.e. they define alternative ways in which the predicate can be true. The simplest case is a
collection of alternative facts:

parent(abe, homer).

parent(abe, herbert).

parent(homer, bart).

parent(marge, bart).

18

The following defines the ancestor/2 predicate by giving two alternative clauses (rules):

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z).

Remember that a clause can be read logically, with the :- taking the meaning of implication,
and the comma separating goals read as a conjunction. The logical reading for several clauses
of the same predicate is disjunction between the clauses. So the first ancestor rule above states
that if X is a parent of Y, then this implies that X is an ancestor of Y. The second rule, which
specifies another way X can be an ancestor of Y states that if some other person, Z, is the parent
of Y, and X is an ancestor of Z, then this implies that X is also an ancestor of Y.

⊗

It is also important to remember that the scope of a variable name only extends over the
clause in which it is in, so any variables with the same name in the same clause refer to
the same variable, but variables which occur in different clauses are different even if they
have been written with the same name.

3.5 Execution Scheme

3.5.1 Resolution

Resolution is the computation rule used by Prolog. Given a set of facts and rules as a program,
execution begins with a query, which is an initial goal that is to be resolved. The set of goals
that still have to be resolved is called the resolvent.

Consider again the ancestor/2 and parent/2 predicate shown above.

ancestor(X,Y) :- parent(X,Y). % clause 1

ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z). % clause 2

parent(abe, homer). % clause 3

parent(abe, herbert). % clause 4

parent(homer, bart). % clause 5

parent(marge, bart). % clause 6

Program execution is started by issuing a query, for example

?- ancestor(X, bart).

This is our initial resolvent. The execution mechanism is now as follows: In our example, the
Prolog system would attempt to unify ancestor(X, bart) with the program’s clause heads.
Both clauses of the ancestor/2 predicate can unify with the goal, but the textually first clause,
clause 1, is selected first, and successfully unified with the goal:

19

1. Pick one (usually the leftmost) goal from the resolvent. If the resolvent is empty,
stop.

2. Find all clauses whose head successfully unifies with this goal. If there is no such
clause, go to step 6.

3. Select the first of these clause. If there are more, remember the remaining ones. This
is called a choice point.

4. Unify the goal with the head of the selected clause. (this may instantiate variables
both in the goal and in the clause’s body).

5. Prefix this clause body to the resolvent and go to 1.

6. Backtrack: Reset the whole computation state to how it was when the most recent
choice point was created. Take the clauses remembered in this choice point and go
to 3.

Figure 3.3: Execution Algorithm

Goal (Query): ancestor(X,bart)

Selected: clause 1

Unifying: ancestor(X,bart) = ancestor(X1,Y1)

results in: X=X1, Y1=bart

New resolvent: parent(X, bart)

More choices: clause 2

The body goal of clause 1 parent(X, bart) is added to the resolvent, and the system remembers
that there is an untried alternative – this is referred to as a choice-point.
In the same way, parent(X, bart) is next selected for unification. Clauses 5 and 6 are possible
matches for this goal, with clause 5 selected first. There are no body goals to add, and the
resolvent is now empty:

Goal: parent(X, bart)

Selected: clause 5

Unifying: parent(X,bart) = parent(homer,bart)

results in: X = homer

New resolvent:

More choices: clause 6, then clause 2

The execution of a program completes successfully when there is an empty resolvent. The
program has thus found the first solution to the query, in the form of instantiations to the
original Query’s variables, in this case X = homer. ECLiPSe returns this solution, and also asks
if we want more solutions:

?- ancestor(X,bart).

X = homer More? (;)

20

Responding with ’;’ will cause ECLiPSe to try to find alternative solutions by backtracking to
the most recent choice-point, i.e. to seek an alternative to parent/2. Any bindings done during
and after the selection of clause 5 are undone, i.e. the binding of X to homer is undone. Clause
6 is now unified with the goal parent(X,Y), which again produces a solution:

Goal: parent(X, bart)

Selected: clause 6

Unifying: parent(X,bart) = parent(marge,bart)

results in: X = marge

New resolvent:

More choices: clause 2

If yet further solutions are needed, then ECLiPSe would again backtrack. This time, parent/2
no longer has any alternatives left to unify, so the next older choice-point, the one made for
ancestor/2, is the one that would be considered. The computation is returned to the state it
was in just before clause 1 was selected, and clause 2 is unified with the query goal:

Goal: ancestor(X,bart)

Selected: clause 2

Unifying: ancestor(X,bart) = ancestor(X1,Y1)

results in: Y1 = bart, X1 = X

New resolvent: parent(Z1, bart), ancestor(X1, Z1)

More choices:

For the first time, there are more than one goal in the resolvent, the leftmost one, par-

ent(Z1,bart) is then selected for unification. Again, clauses 5 and 6 are candidates, and a
new choice-point is created, and clause 5 tried first.

Goal: parent(Z1, bart)

Selected: clause 5

Unifying: parent(Z1, bart) = parent(homer, bart)

results in: Z1 = homer

New resolvent: ancestor(X1, homer)

More choices: clause 6

Eventually, after a few more steps (via finding the ancestor of homer), this leads to a new
solution, with abe returned as an ancestor of bart:

?- ancestor(X,bart).

X = abe More? (;)

If yet more solutions are requested, then because only one parent for homer is given by the
program, ECLiPSe would backtrack to the only remaining choice-point, unifying clause 6 is
unified with the goal, binding Z1 to marge. However, no ancestor for marge can be found,
because no parent of marge is specified in the program. No more choice-points remains to be
tried, so the execution terminates.

21

3.6 Partial data structures

Logical variables can occur anywhere, not only as arguments of clause heads and goals, but
also within data structures. A data structure which contains variables is called a partial data
structure, because it will eventually be completed by substituting the variable with an actual
data term. The most common case of a partial data structure is a list whose tail is not yet
instantiated.
Consider first an example where no partial lists occur. In the following query, a list is built
incrementally, starting from its end:

?- L1 = [], L2 = [c|L1], L3 = [b|L2], L4 = [a|L3].

L1 = []

L2 = [c]

L3 = [b, c]

L4 = [a, b, c]

Whenever a new head/tail cell is created, the tail is already instantiated to a complete list.
But is is also possible to build the list from the front. The following code, in which the goals
have been reordered, gives the same final result as the code above:

?- L4 = [a|L3], L3 = [b|L2], L2 = [c|L1], L1 = [].

L1 = []

L2 = [c]

L3 = [b, c]

L4 = [a, b, c]

However, in the course of the computation, variables get instantiated to ”partial lists”, i.e. lists
whose head is known, but whose tail is not. This is perfectly legal: due to the nature of the
logical variable, the tail can be filled in later by instantiating the variable.

3.7 More control structures

3.7.1 Disjunction

Disjunction is normally specified in Prolog by different clauses of a predicate, but it can also be
specified within a single clause by the use of ;/2. For example,

atomic_particle(X) :- (X = proton ; X = neutron ; X = electron).

This is logically equivalent to:

atomic_particle(proton).

atomic_particle(neutron).

atomic_particle(electron).

22

3.7.2 Conditional

Conditionals can be specified using the ->/2 operator. In combination with ;/2, a conditional
similar to ‘if-then-else’ constructs of conventional language can be constructed: X->Y;Z, where
X, Y and Z can be one or more goals, means that if X is true, then Y will be executed, otherwise
Z. Only the first solution of X is explored, so that on backtracking, no new solutions for X will
be tried. In addition, if X succeeds, then the ‘else’ part, Z will never be tried. If X fails, then the
‘then’ part, Y, will never be tried. An example of ‘if-then-else’ is:

max(X,Y, Max) :-

number(X), number(Y),

(X > Y -> Max = X ; Max = Y).

where Max is the bigger of the numbers X or Y. Note the use of the brackets to make the scope
of the if-then-else clear and correct.

3.7.3 Call

One feature of Prolog is the equivalence of programs and data – both are represented as terms.
The predicate call allows program terms (i.e. data) to be treated as goals: call(X) will cause
X to be treated as a goal and executed. Although at the time when the predicate is executed,
X has to be instantiated, it does not need to be instantiated (or even known) at compile time.
For example, it would in principle be possible to define disjunction (;) as follows:

X ; Y :- call(X).

X ; Y :- call(Y).

3.7.4 All Solutions

In the pure computational model of Prolog, alternative solutions are computed one-by-one on
backtracking. Only one solution is available at any time, while previous solutions disappear on
backtracking:

?- weekday(X).

X = mo

More

X = tu

More

X = we

More

...

Sometimes it is useful to have all solution together in a list. This can be achieved by using one
of the all-solutions predicates findall/3, setof/3 or bagof/3:

23

?- findall(X, weekday(X), List).

X = X

List = [mo, tu, we, th, fr, sa, su]

Yes

⊙

For the differences between findall/3, setof/3 and bagof/3 see the ECLiPSe Reference Manual.

3.8 Using Cut

Cut (written as !) prunes away part of the Prolog search-space. This can be a very powerful
mechanism for improving the performance of programs, and even the suppression of unwanted
solutions. However, it can also be easily misused and over-used.

Cut does two things:

commit Disregard any later clauses for the predicate.

prune Throw away all alternative solutions to the goals to the left of the cut.

3.8.1 Commit to current clause

Consider the following encoding of the “minimum” predicate:

min(X,Y, Min) :- X <Y, Min = X.

min(X,Y, Min) :- Y=<X, Min = Y.

Whilst logically correct, the behaviour of this encoding is non-optimal for two reasons. Consider
the goal :- min(2,3,M). Although the first clause succeeds, correctly instantiating M to 2,
Prolog leaves an open choice point. If these clauses and goal occur as part of a larger program
and goal, a failure might occur later, causing backtracking. Prolog would then, vainly, try to
find another minimum using the second clause for min. Firstly the open choice point costs space,
and the secondly the unsuccessful evaluation of the second clause costs execution time.

To achieve the same logic, but more efficient behaviour, the programmer can introduce a cut.
For example min is typically encoded as follows:

min(X,Y, Min) :- X<Y, !, Min = X.

min(X,Y, Y).

The cut removes the unnecessary choice point and makes the second test redundant.

3.8.2 Prune alternative solutions

A cut may occur anywhere where a goal may occur, consider the following:

24

first_prime(X, P) :-

prime(X,P), !.

where first_prime returns the first prime number smaller than X. In this case, it calls a predicate
prime/2, which generates prime numbers smaller than X, starting from the largest one. The effect
of the cut here is to prune away all the remaining solutions to prime(X,P) once the first one is
generated, so that on backtracking, prime(X,P) is not tried for alternative solutions. The cut
will also commit the execution to this clause for first_prime/2, but as there is only one clause,
this has no visible effect.

3.9 Common Pitfalls

Prolog is different from conventional programming languages, and a common problem is to
program Prolog like a conventional language. Here are some points to note:

• Unification is more powerful than normal case discrimination (see section 3.9.1);

• Prolog procedure calls are more powerful than conventional procedure calls. In particular,
backtracking is possible (see section 3.9.2);

3.9.1 Unification works both ways

One common problem is to write a predicate expecting certain instantiation patterns for the
arguments, and then get unexpected results when the arguments do not conform to the expected
pattern. An example is the member relation, intended to check if an item Item is a member of
a list or not. This might be written as:

member(Item, [Item|_]).

member(Item, [_|List]) :- member(Item, List).

The expected usage assumes both Item and the list are ground. In such cases, the above predicate
does indeed check if Item occurs in the list given as a second argument. However, if either of the
arguments are not ground, then potentially unexpected behaviour might occur. Consider the
case where Item is a variable, then the above predicate will enumerate the elements of the list
successively through backtracking. On the other hand, if any of the list elements of the list is
a variable, they would be unified with Item. Other instantiation patterns for either arguments
can produce even more complex results.

If the intended meaning is simply to check if Item is a member of a list, this can be done by:

% is_member(+Element, +List)

% check if Element is an element that occurs in a List of

25

% ground elements

is_member(Item, [Element|_]) :- Item == Element.

is_member(Item, [_|List]) :- nonvar(List), is_member(Item, List).

Note the use of comments to make clear the intention of the use of the predicate. The convention
used is that ‘+’ indicates that an argument should be instantiated (i.e. not a variable), ‘-’ for an
argument that should be an uninstantiated variable, and ’?’ indicates that there is no restrictions
on the mode of the argument.

3.9.2 Unexpected backtracking

Remember that when coding in Prolog, any predicate may be backtracked into. So correctness
in Prolog requires:

• Predicate returns the correct answer when first called.

• Predicate behaves correctly when backtracked into.

Recall that backtracking causes alternative choices to be explored, if there are any. Typically
another choice corresponds to another clause in the poredicate definition, but alternative choices
may come from disjunction (see above) or built-in predicates with multiple (alternative) solu-
tions. The programmer should make sure that a predicate will only produce those solutions that
are wanted. Excess alternatives can be removed by coding the program not to produce them,
or by the cut, or the conditional.

For example, to return only the first member, in the is_member/2 example, the predicate can
be coded using the cut, as follows:

is_member(Item, [Element|_]) :- Item == Element, !.

is_member(Item, [_|List]) :- nonvar(List), is_member(Item, List).

Using conditional

Another way to remove excess choice points is the conditional:

is_member(Item, [Element|List]) :-

(Item == Element ->

true

;

nonvar(List), is_member(Item, List)

).

26

3.10 Exercises

1. Consider again the “family tree” example (see Section 3.4.2). As well as the parent/2

predicate, suppose we have a male/1 predicate as follows:

male(abe).

male(homer).

male(herbert).

male(bart).

Define a brother/2 predicate, expressed just in terms of parent/2 and male/1. Make
sure Homer is not considered his own brother.

2. Consider the following alternative definition of ancestor/2:

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).

What is wrong with this code? What happens if you use it to find out who Bart is an
ancestor of?

27

28

Chapter 4

ECLiPSe Programming

4.1 Structure Notation

In ECLiPSe, structure fields can be given names. This makes it possible to write structures in
a more readable and maintainable way. Such structures first need to be declared by specifying
a template like:

:- local struct(book(author, title, year, publisher)).

Structures with the functor book/4 can then be written as

book{}

book{title:’tom sawyer’}

book{title:’tom sawyer’, year:1876, author:twain}

which, in canonical syntax, correspond to the following:

book(_, _, _, _)

book(_, ’tom sawyer’, _, _)

book(twain, ’tom sawyer’, 1876, _)

There is absolutely no semantic difference between the two syntactical forms. The special struct-
syntax with names has the advantage that

• the arguments can be written in any order

• “dummy” arguments with anonymous variables do not need to be written

• the arity of the structure is not implied (and can be changed by changing the declaration
and recompiling the program)

Sometimes it is necessary to refer to the numerical position of a structure field within the
structure, e.g. in the arg/3 predicate:

arg(3, B, Y)

29

When the structure has been declared as above, we can write instead:

arg(year of book, B, Y)

Declared structures help readability, and make programs easier to modify. In order not to lose
these benefits, one should always use curly-bracket and of-syntax when working with them, and
never write them in canonical syntax or referring to argument positions numerically.
⊙

See also the update struct/4 built-in predicate.

4.2 Loops

To reduce the need for auxiliary recursive predicates, ECLiPSe allows the use of an iteration
construct

(IterationSpecs do Goals)

Typical applications are: Iteration over a list

?- (foreach(X,[1,2,3]) do writeln(X))

1

2

3

Yes (0.00s cpu)

Process all elements of one list and construct another:

?- (foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).

List = [4, 5, 6]

Yes (0.00s cpu)

Process a list to compute the sum of its elements:

?- (foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).

Sum = 6

Yes (0.00s cpu)

Note that the variables X, Y, In and Out are local variables in the loop, while the input list and
Sum are shared with the context.
If a parameter remains constant across all loop iterations it must be specified explicitly (via
param), for example when iterating over an array:

?- Array = [](4,3,6,7,8),

(

for(I,1,5),

fromto(0,In,Out,Sum),

param(Array)

do

Out is In + Array[I]

).

⊙

For details and more examples see the description of the do/2 built-in predicate. Additional
background can be found in [24].

30

fromto(First,In,Out,Last)
iterate Goals starting with In=First until Out=Last.

foreach(X,List)
iterate Goals with X ranging over all elements of List.

foreacharg(X,StructOrArray)
iterate Goals with X ranging over all arguments of StructOrArray.

foreacharg(X,StructOrArray,Idx)
same as before, but Idx is set to the argument position of X in StructOrArray.

foreachelem(X,Array)
like foreacharg/2, but iterates over all elements of an array of arbitrary dimension.

foreachelem(X,Array,Idx)
same as before, but Idx is set to the index position of X in Array.

foreachindex(Idx,Array)
like foreachelem/3, but returns just the index position and not the element.

for(I,MinExpr,MaxExpr)
iterate Goals with I ranging over integers from MinExpr to MaxExpr.

for(I,MinExpr,MaxExpr,Increment)
same as before, but Increment can be specified (it defaults to 1).

multifor(List,MinList,MaxList)
like for/3, but allows iteration over multiple indices (saves writing nested loops).

multifor(List,MinList,MaxList,IncrementList)
same as before, but IncrementList can be specified (i.e. how much to increment each
element of List by).

count(I,Min,Max)
iterate Goals with I ranging over integers from Min up to Max.

param(Var1,Var2,...)
for declaring variables in Goals global, i.e. shared with the context.

Figure 4.1: Iteration Specifiers for Loops

31

• Arrays are just structures

• The functor is not important

• Declare or query array size with dim/2

• Access elements in expressions by specifying their index list (e.g. A[7], M[2,3])

• Indices start at 1

Figure 4.2: Array notation

4.3 Working with Arrays of Items

For convenience, ECLiPSe has some features for facilitating working with arrays of items. Arrays
can be of any dimension, and can be declared with the dim/2 predicate:

?- dim(M,[3,4]).

M = []([](_131, _132, _133, _134),

[](_126, _127, _128, _129),

[](_121, _122, _123, _124))

yes.

dim/2 can also be used to query the dimensions of an array:

?- dim(M,[3,4]), dim(M,D).

...

D = [3, 4]

yes.

⊗

Note that arrays are just structures, and that the functor is not important.

To access a specific element of an array in an expression, specify the index list of the desired
element, e.g.

?- M = []([](2, 3, 5),

[](1, 4, 7)), X is M[1, 2] + M[2, 3].

X = 10

M = []([](2, 3, 5), [](1, 4, 7))

yes.

⊙

For further details see the Array Notation section of the User Manual.

4.4 Storing Information Across Backtracking

In pure logic programming, the complete state of a computation is reset to an earlier state on
backtracking. The all-solutions predicates introduced in section 3.7.4 provide a way to collect
solutions across backtracking.

32

The following section presents ECLiPSe’s lower-level primitives for storing information across
failures: bags and shelves. Both bags and shelves are referred to by handle, not by name,
so they make it easy to write robust, reentrant code. Bags and shelves disappear when the
system backtracks over their creation, when the handle gets garbage collected, or when they are
destroyed explicitly.

4.4.1 Bags

A bag is an anonymous object which can be used to store information across failures. A typical
application is the collection of alternative solutions.

A bag is an unordered collection, referred to by a handle. A bag is created using bag create/1,
terms can be added to a bag using bag enter/2, and the whole contents of the bag can be
retrieved using bag retrieve/2 or bag dissolve/2. A simple version of the findall/3 predicate
from section 3.7.4 can be implemented like:

simple_findall(Goal, Solutions) :-

bag_create(Bag),

(

call(Goal),

bag_enter(Bag, Goal),

fail

;

bag_dissolve(Bag, Solutions)

).

4.4.2 Shelves

A shelf is an anonymous object which can be used to store information across failures. A typical
application is counting of solutions, keeping track of the best solution, aggregating information
across multiple solutions etc.

A shelf is an object with multiple slots whose contents survive backtracking. The content of
each slot can be set and retrieved individually, or the whole shelf can be retrieved as a term.
Shelves are referred to by a handle.

A shelf is initialized using shelf create / 2 or shelf create / 3. Data is stored in the slots (or the
shelf as a whole) with shelf set / 3 and retrieved with shelf get / 3.

For example, here is a meta-predicate to count the number of solutions to a goal:

count_solutions(Goal, Total) :-

shelf_create(count(0), Shelf),

(

call(Goal),

shelf_get(Shelf, 1, Old),

New is Old + 1,

33

write(+Stream, ?Term)
write one term in a default format.

write term(+Stream, ?Term, +Options)
write one term, format options can be selected.

printf(+Stream, +Format, +ArgList)
write a string with embedded terms, according to a format string.

writeq(+Stream, ?Term), write canonical(+Stream, ?Term)
write one term so that it can be read back.

put(+Stream, +Char)
write one character.

Figure 4.3: Builtins for writing

shelf_set(Shelf, 1, New),

fail

;

shelf_get(Shelf, 1, Total)

),

shelf_abolish(Shelf).

4.5 Input and Output

4.5.1 Printing ECLiPSe Terms

The predicates of the write-group are generic in the sense that they can print any ECLiPSe

data structure. The different predicates print slightly different formats. The write/1 predi-
cate is intended to be most human-readable, while writeq/1 is designed so that the printed
data can be read back by the predicates of the read-family. If we print the structured term
foo(3+4, [1,2], X, ’a b’, "string") the results are as follows:

write: foo(3 + 4, [1, 2], X, a b, string)

writeq: foo(3 + 4, [1, 2], _102, ’a b’, "string")

The write-format is the shortest, but some information is missing, e.g. that the sequence a b is
an atomic unit and that string is a string and not an atom. The writeq-format quotes items
properly, moreover, the variables are printed with unique numbers, so different variables are
printed differently and identical ones identically.
Single characters, encoded in ascii, can be output using put/1, for example:

[eclipse: 1] put(97).

a

yes.

34

read(+Stream, -Term)
read one fullstop-terminated ECLiPSeterm.

read term(+Stream, -Term, +Options)
read one fullstop-terminated ECLiPSeterm.

get(+Stream, -Char)
read one character.

read string(+Stream, +Terminator, -Length, -String)
read a string up to a certain terminator character.

read token(+Stream, -Token, -Class)
read one syntactic token (e.g. a number, an atom, a bracket, etc).

Figure 4.4: Builtins for reading

4.5.2 Reading ECLiPSe Terms

If the data to be read is in Prolog syntax, it can be read using read(?Term). This predicate
reads one fullstop-terminated ECLiPSeterm from stream Stream. A fullstop is defined as a dot
followed by a layout character like blank space or newline. Examples:

[eclipse 4]: read(X).

123,a.

X = 123, a

yes.

[eclipse 6]: read(X).

[3,X,foo(bar),Y].

X = [3, X, foo(bar), Y]

yes.

Single characters can be input using get/1, which gets their ascii encoding, for example:

[eclipse: 1] get(X).

a

X=97

yes.

4.5.3 Formatted Output

The printf-predicate is similar to the printf-function in C, with some ECLiPSe-specific format
extensions. Here are some examples of printing numbers:

?- printf("%d", [123]).

35

123

yes.

?- printf("%5d,%05d", [123,456]).

123,00456

yes.

?- printf("%6.2f", [123]).

type error in printf("%6.2f", [123])

?- printf("%6.2f", [123.4]).

123.40

yes.

?- printf("%6.2f", [12.3]).

12.30

yes.

The most important ECLiPSe-specific format option is %w, which allows to print like the pred-
icates of the write-family:

?- printf("%w", [foo(3+4, [1,2], X, ’a b’, "string")]).

foo(3 + 4, [1, 2], X, a b, string)

The %w format allows a number of modifiers in order to access all the existing options for the
printing of ECLiPSe terms.
⊙

For details see the write term/2 and printf/2 predicates.

4.5.4 Streams

ECLiPSe I/O is done from and to named channels called streams. The following streams are
always opened when ECLiPSe is running: input (used by the input predicates that do not have
an explicit stream argument, e.g. read/1), output (used by the output predicates that do
not have an explicit stream argument, e.g. write/1), error (output for error messages and all
messages about exceptional states), warning output (used by the system to output warning
messages), log output (used by the system to output log messages, e.g. messages about garbage
collection activity), null (a dummy stream, output to it is discarded, on input it always gives
end of file).
Data can be read from a specific stream using read(+Stream, ?Term), and written to a
specific stream using write(+Stream, ?Term). If no particular stream is specified, input
predicates read from input and output predicates write to output.
New streams may be opened onto various I/O devices, see figure 4.5.
All types of streams are closed using close(+Stream).
⊙

See the complete description of the stream-related built-in predicates in the Reference Manual

For network communication over sockets, there is a full set of predicates modelled after the BSD
socket interface: socket/3, accept/3, bind/2, listen/2, select/3. See the reference manual
for details.
Output in ECLiPSe is usually buffered, i.e. printed text goes into a buffer and may not immedi-
ately appear on the screen, in a file, or be sent via a network connection. Use flush(+Stream)
to empty the buffer and write all data to the underlying device.

36

I/O device How to open

tty implicit (stdin,stdout,stderr) or open/3 of a device file

file open(FileName, Mode, Stream)

string open(string(String), Mode, Stream)

queue open(queue(String), Mode, Stream)

pipe exec/2, exec/3 and exec group/3

socket socket/3 and accept/3

null implicit (null stream)

Figure 4.5: How to open streams onto the different I/O devices

4.6 Matching

In ECLiPSe you can write clauses that use matching (or one-way unification) instead of head
unification. Such clauses are written with the ?- functor instead of :-. Matching has the property
that no variables in the caller will be bound. For example

p(f(a,X)) ?- writeln(X).

will fail for the following calls:

?- p(F).

?- p(f(A,B)).

?- p(f(A,b)).

and succeed (printing b) for

?- p(f(a,b)).

Moreover, the clause

q(X,X) ?- true.

will fail for the calls

?- q(a,b).

?- q(a,B).

?- q(A,b).

?- q(A,B).

and succeed for

?- q(a,a).

?- q(A,A).

37

4.7 List processing

Lists are probably the most heavily used data structure in Prolog and ECLiPSe. Apart from uni-
fication/matching, the most commonly used list processing predicates are: append/3, length/2,
member/2 and sort/2. The append/3 predicate can be used to append lists or to split lists:

?- append([1, 2], [3, 4], L).

L = [1, 2, 3, 4]

Yes (0.00s cpu)

?- append(A, [3, 4], [1, 2, 3, 4]).

A = [1, 2]

More (0.00s cpu)

No (0.01s cpu)

?- append([1, 2], B, [1, 2, 3, 4]).

B = [3, 4]

Yes (0.00s cpu)

The length/2 predicate can be used to compute the length of a list or to construct a list of a
given length:

?- length([1, 2, 3, 4], N).

N = 4

Yes (0.00s cpu)

?- length(List, 4).

List = [_1693, _1695, _1697, _1699]

Yes (0.00s cpu)

The member/2 predicate can be used to check membership in a list (but memberchk/2 should
be preferred for that purpose), or to backtrack over all list members:

?- memberchk(2, [1, 2, 3]).

Yes (0.00s cpu)

?- member(X, [1, 2, 3]).

X = 1

More (0.00s cpu)

X = 2

More (0.01s cpu)

X = 3

Yes (0.01s cpu)

The sort/2 predicate can sort any list and remove duplicates:

?- sort([5, 3, 4, 3, 2], Sorted).

Sorted = [2, 3, 4, 5]

Yes (0.00s cpu)

⊙

For more list processing utilities, see the documentation for library(lists).

38

4.8 String processing

ECLiPSe (unlike many Prolog systems) provides a string data type and the corresponding string
manipulation predicates, e.g. string length/2, concat string/2, split string/4, substring/4, and
conversion from and to other data types, e.g. string list/2, atom string/2, number string/2,
term string/2.

?- string_length("hello", N).

N = 5

Yes (0.00s cpu)

?- concat_string([abc, 34, d], S).

S = "abc34d"

Yes (0.00s cpu)

?- string_list("hello", L).

L = [104, 101, 108, 108, 111]

Yes (0.00s cpu)

?- term_string(foo(3, bar), S).

S = "foo(3, bar)"

Yes (0.00s cpu)

4.9 Term processing

Apart from unification/matching, there are a number of generic built-in predicates that work
on arbitrary data terms. The =.. predicate converts structures into lists and vice versa:

?- foo(a, b, c) =.. List.

List = [foo, a, b, c]

Yes (0.00s cpu)

?- Struct =.. [foo, a, b, c].

Struct = foo(a, b, c)

Yes (0.00s cpu)

The arg/3 predicate extracts an argument from a structure:

?- arg(2, foo(a, b, c), X).

X = b

Yes (0.00s cpu)

The functor/3 predicate extracts functor name and arity from a structured term, or, conversely,
creates a structured term with a given functor name and arity:

?- functor(foo(a, b, c), N, A).

N = foo

A = 3

Yes (0.00s cpu)

?- functor(F, foo, 3).

F = foo(_1696, _1697, _1698)

Yes (0.00s cpu)

39

The term variables/2 predicate extracts all variables from an arbitrarily complex term:

?- term_variables(foo(X, 3, Y, X), Vars).

Vars = [Y, X]

The copy term/2 predicate creates a copy of a term with fresh variables:

?- copy_term(foo(3, X), Copy).

Copy = foo(3, _864)

Yes (0.00s cpu)

4.10 Module System

4.10.1 Overview

The ECLiPSe module system controls the visibility of predicate names, syntax settings (struc-
tures, operators, options, macros), and non-logical store names (records, global variables). Pred-
icates and syntax items can be declared local or they can be exported and imported. Store names
are always local.

4.10.2 Making a Module

A source file can be turned into a module by starting it with a module directive. A simple
module is:

:- module(greeting).

:- export hello/0.

hello :-

who(X),

printf("Hello %w!%n", [X]).

who(world).

who(friend).

This is a module which contains two predicates. One of them, hello/0 is exported and can be
used by other modules. The other, who/1 is local and not accessible outside the module.

4.10.3 Using a Module

There are 3 ways to use hello/0 from another module. The first possibility is to import the
whole ”greeting” module. This makes everything available that is exported from ”greeting”:

:- module(main).

:- import greeting.

40

main :-

hello.

The second possibility is to selectively only import the hello/0 predicate:

:- module(main).

:- import hello/0 from greeting.

main :-

hello.

The third way is not to import, but to module-qualify the call to hello/0:

:- module(main).

main :-

greeting:hello.

4.10.4 Qualified Goals

The module-qualification using :/2 is also used to resolve name conflicts, i.e. in the case where
a predicate of the same name is defined in more than one imported module. In this case, none
of the conflicting predicates is imported - an attempt to call the unqualified predicate raises an
error. The solution is to qualify every reference with the module name:

:- lib(ic). % exports $>= / 2

:- lib(eplex). % exports $>= / 2

..., ic:(X $>= Y), ...

..., eplex:(X $>= Y), ...

A more unusual feature, which is however very appropriate for constraint programming, is the
possibility to call several versions of the same predicate by specifying several lookup modules:

..., [ic,eplex]:(X $>= Y), ...

which has exactly the same meaning as

..., ic:(X $>= Y), eplex:(X $>= Y), ...

Note that the modules do not have to be known at compile time, i.e. it is allowed to write code
like

after(X, Y, Solver) :-

Solver:(X $>= Y).

This is however likely to be less efficient because it prevents compile-time optimizations.

41

block(Goal, BTag, Recovery)
like call(Goal), except that in addition a Recovery goal is set up, which
can be called by exit_block from anywhere inside the call to Goal. When
exit_block(ETag) is called, then if ETag unifies with a BTag from an enclosing
block, the recovery goal associated with that block is called, with the system im-
mediately failing back to where the block was called. In addition, ETag can be used
to pass information to the recovery goal, if BTag occurs as an argument of Recovery.

exit block(ETag)
will transfer control to the innermost enclosing block/3 whose BTag argument unifies
with ETag.

Figure 4.6: Exception Handling

4.10.5 Exporting items other than Predicates

The most commonly exported items, apart from predicates, are structure and operator declara-
tions. This is done as follows:

:- module(data).

:- export struct(employee(name,age,salary)).

:- export op(500, xfx, reports_to).

...

Such declarations can only be imported by importing the whole module which exports them,
i.e. using import data..

⊙

For more details see the User Manual chapter on Modules.

4.11 Exception Handling

It is sometimes necessary to exit prematurely from an executing procedure, for example because
some situation was detected which makes continuing impossible. In this situation, one wants to
return to some defined state and perform some kind of recovery action. This functionality is
provided by block/3 and exit block/1. By wrapping a predicate call into block/3, any irregular
termination can be caught and handled, e.g.

protected_main(X,Y,Z) :-

block(

main(X,Y,Z),

Problem,

printf("Execution of main/3 aborted with %w%n", [Problem])

).

42

main(X,Y,Z) :-

...,

(test(...) -> ... ; exit_block(test_failed)),

...,

When built-in predicates raise errors, this results in the predicate being exited with the tag
abort, which can also be caught:

?- block(X is 1//0, T, true).

arithmetic exception in //(1, 0, X)

X = X

T = abort

Yes (0.00s cpu)

Note that timeouts and stack overflows also lead to exits and can be caught this way.

4.12 Time and Memory

4.12.1 Timing

Timings are available via the built-in predicates cputime/1nd statistics/2 To obtain the CPU
time consumption of a (succeeding) goal, use the scheme

cputime(StartTime),

my_goal,

TimeUsed is cputime-StartTime,

printf("Goal took %.2f seconds%n", [TimeUsed]).

The statistics/2 and statistics/0 commands can also be used to obtain memory usage infor-
mation. The memory areas used by ECLiPSe are:

Shared and private heap for compiled code, non-logical store (bags and shelves, findall)
dictionary of functors, various tables and buffers.

Global stack for most ECLiPSe data like lists, structures, suspensions. This is likely to be the
largest consumer of memory.

Local stack for predicate call nesting and local variables.

Control and trail stack for data needed on backtracking.

Automatic garbage collection is done on the global and trail stack, and on the dictionary.
Garbage collection parameters can be set using set flag/2 and an explicit collection can be
requested using garbage collect/0.

43

4.13 Exercises

1. Using a do loop, write a predicate which, when given a 1-d array, returns a list containing
the elements of the array in reverse order.

2. Write a predicate transpose(Matrix, Transpose) to transpose a 2-d array.

Can you make it work backwards? (i.e. if Transpose is specified, can you make it return
a suitable Matrix?)

44

Chapter 5

A Tutorial Tour of Debugging in
TkECLiPSe

This chapter demonstrates a sample debugging session using TkECLiPSe, showing how some
of the development tools can be used. We are by no means using all the tools or all the
functionalities of any tool, but hopefully this will give you a flavor of the tools so that you will
explore them on your own. You can get more information on the tools from the Help menu, and
from the popup balloons which appear when your mouse cursor stops over a feature for a few
seconds.

In the tutorial tour, we will assume that you have some knowledge of ECLiPSe. It is helpful if
you also have some knowledge of traditional Prolog debugging, although this is not necessary.

This chapter is designed for you to follow while running TkECLiPSe. To keep things simple, the
program is run with a very small data set, but it should be sufficient to see how the techniques
described can be applied to real programs.

At the end of the chapter, there is a summary of the main features of the main development
tools.

This chapter also contains many screen-shots, some of which are best viewed in colour, or in
looking at the actual screen as you follow along.

Balloon help A short description of a feature will popup in a ‘balloon’ when the mouse
cursor stops over the feature for a few seconds.

Help file Help files are available for all the tools and toplevel. They provide more detailed
information on the tools, and can be obtained from the Help menu, and by typing
Alt-h (Alt and h keys together) in the tool.

Figure 5.1: Getting Help

45

5.1 The Buggy Program

The program we will be debugging is a map colouring problem. The task is to colour a ‘map’
of countries with four colours such that no two neighbours have the same colour. Our program
colours a map of four countries, but has a bug and can colour two neighbours the same colour.
The map is displayed graphically as shown:

Map Displays of Program

The countries are identified by numbers displayed within each country. On the left, the map has
not yet been coloured. On the right, it has been coloured incorrectly by the program (countries
3 and 4 have the same colour).
This program uses code from the map colouring demo program, and is designed to use the GUI
to display a map. Most of this is not relevant to our debugging session, and although we will see
some of this code during the debugging, it is not necessary to understand it. You can think of
this debugging session as debugging someone else’s code, not all of which needs to be understood.
The program used here is included with your ECLiPSe distribution. You should find it under
the Examples/tutorial directory. You can change to the Examples directory in TkECLiPSe

using the Change to example directory option from the File menu.
The final step in this debug tutorial is to edit the buggy program and correct it. If you want to
do this, you should copy the distributed version of the program elsewhere so that you don’t edit
the original. You need to copy the following files from Examples/tutorial to another directory:

debugdemo.ecl mapcolour.ecl mapdebugdemo.tcl buggy_data.map

To load the program, start TkECLiPSe. After start up, switch the working directory to where
you have the programs – if you are using a UNIX system, and have started TkECLiPSe in
the directory of the programs, you are already there. Otherwise, go to the File menu of
TkECLiPSe, and select the Change directory option. Use the directory browser to find the
directory containing your programs and select it. This will change your working directory to the
selected directory.
Next, compile debugdemo.ecl. You can do this by selecting the Compile option from the File

menu (you can also compile the file with the query [debugdemo] from the query entry window).
When the program is compiled, the map display window should appear, and the program is
ready to run.

46

5.2 Running the Program

To start the program, the query ‘colour’ is run: type colour into TkECLiPSe’s query entry
window, followed by the return key. The program should run, colouring the map, arriving at
the incorrect solution as shown previously. The program uses the standard ‘generate-and-test’
method, so you will see colour flashing in the countries as the program tries different colours for
them.
The map display has two buttons: pressing More will cause the program to find an alternate
way of colouring the map. Pressing Done will end the program and return control to ECLiPSe.
You can press More to get more solutions and see that the program returns more solutions that
colour countries 3 and 4 to the same colour (along with some that are correct).
Press Done to finish the execution. We will now debug this program.

5.3 Debugging the Program

First type in the query clear to clear the map to its initial state.
The main tool to debug a program is the tracer tool. The tracer is one of the development
tools, all of which can be accessed from the Tools menu of TkECLiPSe. Select Tracer from the
menu as shown below, and a new window for the tracer tool should appear.

Starting the Tracer Tool

Run the query colour again. To save you from typing in the query, you can use the up-arrow
on your keyboard to step back to a previous query. Type return when colour appears in the
query window again.
The tracer tool traces the execution of the program, like the traditional Prolog debugger, it
stops at ‘debug ports’ of predicates that are executed.
⊙

See the Debugging chapter in the User Manual for more details on the model used in Prolog
debuggers.

47

Figure 5.2: The Tracer Tool

The trace lines displayed by the tracer has the following:

+(22) 14 *EXIT<3> inform_colour(1, 1)

1 2 3 4 5 6 7

1. A ’+’ displayed here shows that the procedure has a spy point set.

2. The invocation number of this goal, which uniquely identifies it. The ‘To Invoc:’ button can
be used to jump to the next port with the specified invocation number.

3. The depth of the goal, i.e. the number of its ancestors. The ‘To Depth:’ button can be used
to jump to the next port within the specified depth range.

4. An asterisk before an EXIT means that this procedure is nondeterministic and that it might
be resatisfied.

5. The type of the port. The ‘To Port:’ button can be used to select the type of port to jump
to.

6. This only appears if the goal is executing at a different priority than 12, the normal priority.
The number is the priority that the goal is executed at.

7. The goal is printed according to the current instantiations of its variables.

Figure 5.3: Debugger Trace Line

48

Currently, it is stopped at the call port of the query colour. The buttons in the middle of
the tool are for debugger commands. Try pressing Creep several times, and you should observe
something similar to Figure 5.2. Unlike the traditional debugger, the execution trace is shown
on two text windows: the bottom ‘Trace Log’ window, which shows a log of the debugger ports
much as a traditional debugger does; and the top ‘Call Stack’ window, showing the ancestors
(‘call stack’) of the current goal, which is updated at each debug port. The goals are displayed
with different colours: blue for a call port, green (success) for an exit port. Red (failure) for a
fail port. Note that in the call stack, the ancestor goals are displayed in black: this indicates
that the goal is not ‘current’, i.e. the bindings shown are as they were when the goal was called,
and not necessarily what they are now. We will show how these bindings can be ‘refreshed’ later
on.
To avoid stepping through the whole program, we will add a spy-point to a predicate that may be
causing the problem. Spy-points can be added in the traditional way, using the spy/1 predicate.
However, we can also use the predicate browser tool: start the Predicate Browser tool from
the Tools menu of TkECLiPSe. This tool allows you to observe and change various properties
of the predicates in your program. A list of predicates are displayed on the left hand side, and a
list of properties on the right. Currently the predicate list is showing all the predicates defined
in our program (i.e. in the eclipse module). Looking at this list, not_same_colour/3’s name
suggests that it checks that neighbouring countries do not have the same colour. Select it by
clicking on it, and now the right hand side should display the properties of this predicate:

The Predicate Browser Tool

We can now view the source code for the predicate by clicking on the Show source button,
which opens a source display window to show the source of the selected predicate. The code for
the predicate is:

not_same_colour(Solver, C1-C2, Countries) :-

% get the colours for the countries C1 and C2

arg(C1, Countries, Colour1),

arg(C2, Countries, Colour2),

% send constraint to either the fd or ic solver

Solver: (Colour1 #\= Colour2).

The code does indeed check that the countries C1 and C2 do not have the same colour.

49

Figure 5.4: The Tracer Filter Tool

⊗

For our example program, the list is not very long, but some programs may have many
predicates, and it could be difficult to find the predicate you want. The predicate list has
a search facility: typing in part of the name of the predicate in the predicate list will search
for the predicate you want. You can try typing in not_same_colour / 3 to see how this
works.

The predicate browser allows us to change some of the properties of a predicate. We can add a
spy-point to the predicate by clicking on the radio button for spy:

Setting Spy Property to On

With TkECLiPSe, we can do more than just place a spy point on a predicate: we can specify
further conditions for when the tracer should stop at a spy point, using the filter tool.
Start the filter tool by selecting Configure filter from the Options menu of the tracer tool:

Starting the Filter Tool from the Tracer

The filter tool opens in a new window, as shown in Figure 5.4. This tool allows us to specify
a ‘filter’ for the debug ports so that the tracer will only stop at a port with the properties
specified by the tool. In our case, we want to see not_same_colour/3 only when countries 3
and 4 are involved. This can be done with the “Predicate specification” facility, enabled by the

50

Specific predicate instance: radio button. Pressing this button will allow us to specify a
condition in Prolog syntax which will be checked at each debug port. For our purpose, we enter
the following:

Setting Conditions for Specific Predicate Instances

This specifies that the filter should stop at a not_same_colour/3 goal, when one of the countries
in the pair X-Y is country 4: the Goal template is used to specify the template the debug port
goal should match, and the Condition: can be any ECLiPSe goal, perhaps with variables from
the Goal template, as in our case. The test is done by unifying the goal with the template,
and then executing the condition. Note that any bindings are undone after the test.

Note that we have also deselected the exit port in the filter condition. You can do this by
clicking on the exit radio button. This means that the tracer does not stop at any exit port.

Press Go on the filter tool to start the tracer running with the filter. You can also press the
Filter command button on the tracer to do the same thing. We see that the tracer has jumped
to a not_same_colour/3 goal involving country 4 as expected. However, there is a gap in the
call stack as we skipped over the tracing of some ancestor goals. We can see these goals by
refreshing the goal stack. This can be done by pressing and holding down the right mouse
button while the mouse cursor is over a goal in the call stack, which will popup a menu for the
goal:

Popup Menu for a Goal in Tracer’s Call Stack

In this case, we have opened the menu over not_same_colour/3, and the options are for this
goal. Various options are available, but for now we choose the Refresh goal stack option.
This will result in the following goal stack display:

51

Refreshed Call Stack

Notice that the colour of the goals in the goal stack are now all blue, indicating that the bindings
shown are current.
Press Filter on the tracer several times to jump to other ports involving country 4. You will
see that none of them involve countries 3 and 4. So perhaps countries 3 and 4 are not checked
by not_same_colour/3, i.e. 3-4 or 4-3 are never passed to not_same_colour/3. Looking at
the call stack, we can see that the country pair in not_same_colour/3 seem to appear as an
element in a list of country pairs, as far back as colouring(...). Unfortunately, the debugger
does not display the whole list. We see something like:

do_colouring(prolog, input_order, indomain, [4 - 2, 4 - 1, ...

due to the ‘print depth’ feature, which shortens the printing of large terms. We can examine
the whole list by using the inspector to examine the goal. To do this, we double click on the
do_colouring(...) goal to ‘open’ it for inspection.
This will launch the Inspector tool on the do_colouring goal. The inspector displays the term
in a hierarchical fashion as a tree, which allows us to navigate the term. The initial display is
shown on the left panel below. We are interested in examining the full list. We can look at this
list by double clicking on it to expand the node, which results in the display in the right panel
below. You may need to scroll down to see the whole list:

Using the Inspector

The inspector shows that this list does not contain the pair 4-3 or 3-4, which should be there
so that not_same_colour can check that these two countries are not assigned the same colour.
The inspector tool is modal – when it is open, the rest of TkECLiPSe is inaccessible. Close
the Inspector by clicking on its Close button, go back to the tracer, and see where the country
pair list comes from. It first appears in the ancestor goals do_colouring(prolog,...), as the
next parent colouring(prolog,...) does not have this list. So the list is created in a body
goal of colouring(...) before do_colouring(...) is called. We can look at the source of
colouring(...) to see how this list is created. To do this, we can select Display source

option from the popup menu for the colouring(...) goal:

52

Displaying Source for a Goal in the Call Stack

The code for this predicate is quite long, but for our purposes we are only interested in the
country-pair list that is passed to do_colouring:

colouring1(Type, Select, Choice0, N, Backtracks) :-

....

findall(C1-C2, (neighbour(C1,C2), C1=<N,C2=<N), Neighbours),

....

do_colouring(Type, Select, Choice, Neighbours, Countries,

CountryList, Backtracks),

....

Looking at this source and the Call stack goal, we can see that the country pair list is constructed
from neighbour/2 calls. Let’s look at the source for neighbour/2. We can do this from the
predicate browser, by selecting neighbour/2 and pushing the Show source button. We see the
following:

neighbour / 2 in file buggy_data.map, line 2:

%neighbour(4, 3).

neighbour(4, 2).

neighbour(4, 1).

neighbour(4, 2).

neighbour(3, 1).

neighbour(3, 2).

neighbour(1, 2).

So neighbour(4,3)was indeed missing (it is commented out). Another way to check neighbour/2,
without looking at the source, would be using the Simple Query tool. This tool is again started
from TkECLiPSe’s Tools menu. It can be used to send simple queries to ECLiPSe, even while
another query is being executed (as we are here, executing the colour query). We can use this
tool to check if neighbour(4,3) or neighbour(3,4) are defined or not:

53

In TkECLiPSe, you can usually perform these operations on an object while the mouse
cursor is over it:

left-click selects the object.

double (left)-click ‘opens’ the object. This can mean expanding it (e.g. in the inspec-
tor), or calling the inspector on it (e.g. on a goal in the call stack).

Right-click and hold Opens a menu which gives further option/information on the ob-
ject.

Right-mouse button functionality are alternatively available through the left-mouse button
with the control key pressed.

Figure 5.5: Mouse Button Operations on Objects

The Simple Query Tool

To send a query, simply type it in the entry window and press return, and the reply will be
sent to the reply window. In the example above, we have tried neighbour(4,3), followed by
neighbour(3,4), and both failed, indicating that there is no neighbour relationship defined
between countries 3 and 4.

We can fix the program by editing the file buggy_data.map and adding the neighbour(4, 3) line
back. First, we end our current debugging session by closing the tracer window. You can see
from the map display that the execution continues until a solution is produced. Pressing Done

on the map display will return control to ECLiPSe. Alternatively, if continuing the execution is
undesirable, press the Abort command button in the tracer, which would abort the execution.

Once we have made the correction to the program and saved it, we compile it by pressing the
Make button on TkECLiPSe. This recompiles any files that have been updated since ECLiPSe

last compiled the file.

Running the program again will show that the bug is indeed fixed.

54

Compile scratch pad allow simple programs to be written and compiled. Equivalent to [user]

in command line ECLiPSe.

Source file manager manage source files for this ECLiPSe session.

Predicate browser view/change properties of predicates.

Delayed goals view delayed goals.

Tracer debugger for ECLiPSe programs.

Inspector term inspector. Useful for viewing large terms.

Visualisation client start a visualisation client.

Global settings view/change global ECLiPSe settings.

Statistics show statistics. Information is updated dynamically.

Simple query send simple queries to ECLiPSe.

Library browser and help interface to ECLiPSe documentation.

TkECLiPSe preference editor view/change TkECLiPSe settings.

Figure 5.6: Available Development tools

5.4 Summary

5.4.1 TkECLiPSe toplevel

Type in query here

History mechanism:

 1. up/down arrow keys

 2. press arrow box for history list

3. right−click for history list (with duplicates)

Interrupt button
Press to interrupt program execution

(Disabled if no program is running)

Query entry window

Make button
Press to recompile changed programs

Displays status of last query

Query status window

Current module
Shows current module for query entry

Change module by pressing down arrow box and

select from list (new module must be created from

‘New module’ option of File menu

Output window

Output from program appears here

 − old output in black

 − most current output in blue

 − error output in red

 − warning output in orange

Results window
Query, bindings to query, execution status of query

appears here

 − older queries in black

 − most recent query in blue

55

5.4.2 Predicate Browser

Predicate module
Module of predicates listed

Change by pressing arrow box

Selected predicate properties
Show properties of selected predicate

Non−changable property
Shown grayed−out

Predicate type
Type of predicate listed

Change type by pressing arrow box

Predicate search
search for predicate in predicate list

by typing while in list window

Shown solid. Click to change

Changable property

Show source button
Press to display source of selected

predicate (if available)

Selected predicate
Click to select predicate

Predicate list
list of predicate in selected module

of selected type

5.4.3 Delayed Goals Viewer

Hold right−mouse button while over goal

 − summary information for goal

 − display source (if available)

 − inspect goal with inspector

 − observe goal for change with

 display matrix

Scheduled goals
scheduled (but not yet executed)

goal shown in green

Suspended goals

Delayed goal popup menu
(menu options when tracer is active)

Refresh button
press button to update display

(updated at every trace line by default)

select types of delayed goals shown:

Goal filter

 − spied only: show goals that have

 spy points

 − traced only: show goals that can

 be traced

 goals.

− scheduled only: show scheduled

− Select from triggers: show goals

 that are delayed on the symbolic

 trigger selected from the combobox

56

5.4.4 Tracer

Shows all ports traced by debugger

Indentation indicates depth of goal

fail type port in red (failure)

call type port in blue

exit type port in green (success)

Call stack window
Shows the current call stack (current goal + ancestors)

non−current in black

 Trace Log window

current in blue green (success) red (failure)

Call stack goal popup menu
Right−hold mouse button on a call stack goal to get

window.

 − Summaries predicate (name/arity@module <priority>)

 − toggle spy point for predicate

 − invoked inspector on this goal

 (equivalent to double clicking on goal directly)

 − observe goal for change using display matrix

 − force this goal to fail

 − jump to this invocation

 − jump to this depth

 − refresh goal stack (also under Options menu)

Tracer command buttons
Press button to execute tracer command:

− Creep: creep to next port (‘c’ key)

−Skip: skip to exit port (‘s’ key)

− Leap: leap to a goal with spied point (‘l’ key)

− Filter: jump to next port with filter conditions

− Abort: abort execution and stop debugging

− Nodebug: continue execution without debugging

−Up: jump to a port of parent goal (‘u’ key)

Jump buttons
Press button to jump to port according to condition

(use Filter tool for combination of conditions)

− To Invoc: jump to given invocation number

− To Depth: jumpt to goal between specified depth

− To Port: jump to specified port type (‘z’ key)

Options menu options:

Configure filter Starts the tracer filter window, to allow the filter to be configured.

Change print options Changes the way the tracelines are printed.

Analyse failure Get the invocation number of the most recent failure so that a new run of the query
can jump to its call port.

Refresh goal stack now Refreshes the Call Stack’s display.

Refresh goal stack at every trace line Select check box to allow the call stack to be refreshed auto-
matically every time the tracer stops

Refresh delay goals at every trace line Select check box to allow the Delayed goals viewer to be
automatically refreshed every time the tracer stops.

Raise tracer window at every tracer line Select check box to allow the tracer window to be raised
(uncovered) automatically every time the tracer stops.

57

5.4.5 Tracer Filter

Port type filter
stop if port is of selected type

(note fail type ports non−selectable)

Stop at any predicate if selected

Stop at spied predicate if selected

Depth and Invocation filter

stop if port within specified depth and invocation

range

Apply filter
press button to jump to goal meeting all conditions

Predicate instance filter if selected

 − Goal template: template for goal

 − Condition: condition for stopping

conditions for goal instance to stop

 − Defining module: where goal is defined

 − Calling module: where goal is called from

 − Number of times the conditions have been met

5.4.6 Term Inspector

Popup menu for subterm
right−hold over a subterm to get menu

 − summary of subterm

 − observe subterm for change with

 display matrix

Selected subterm
left−click to select

double click to expand/collapse

Term display window
Inspected term displayed as a tree

navigate by expanding/collapsing

subterms

selected term displayed textually

path to subterm also displayed here

Text display window

System message window
error messages displayed here

58

Chapter 6

Program Analysis

This chapter describes some of the tools provided by ECLiPSe to analyse the runtime behaviour
of a program.

6.1 What tools are available?

ECLiPSe provides a number of different tools to help the programmer understand their how
their program behaves at runtime.

Debugger Provides a low level view of program activity.
⊙

See chapter 5 and the Debugging section in the user manual for a comprehensive look at
debugging ECLiPSe programs

Profiler Samples the running program at regular intervals to give a statistical summary of where
the execution time is spent.

Port Profiler Collects statistics about program execution in terms of the box model of execution.
See library(port profiler) or use the Port Profile option from the tkeclipse Run menu.

Coverage Records the number of times various parts of the program are executed.

Visualisation framework
⊙

See the Visualisation Tools Manual for more information

Available Program Analysis tools

This section focuses on two complementary tools

1. The profiler

2. The coverage library

6.2 Profiler

The profiling tool helps to find hot spots in a program that are worth optimising. It can be used
any time with any compiled Prolog code, it is not necessary to use a special compilation mode
or set any flags. Note however that it is not available on Windows. When

59

?- profile(Goal).

is called, the profiler executes the Goal in the profiling mode, which means that every 100th of
a second the execution is interrupted and the profiler records the currently executing procedure.

Consider the following n-queens code.

queen(Data, Out) :-

qperm(Data, Out),

safe(Out).

qperm([], []).

qperm([X|Y], [U|V]) :-

qdelete(U, X, Y, Z),

qperm(Z, V).

qdelete(A, A, L, L).

qdelete(X, A, [H|T], [A|R]) :-

qdelete(X, H, T, R).

safe([]).

safe([N|L]) :-

nodiag(L, N, 1),

safe(L).

nodiag([], _, _).

nodiag([N|L], B, D) :-

D =\= N - B,

D =\= B - N,

D1 is D + 1,

nodiag(L, B, D1).

Issuing the following query will result in the profiler recording the currently executing goal 100
times a second.

?- profile(queen([1,2,3,4,5,6,7,8,9],Out)).

goal succeeded

PROFILING STATISTICS

Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)

Total user time: 0.03s

Predicate Module %Time Time %Cum

60

--

qdelete /4 eclipse 50.0% 0.01s 50.0%

nodiag /3 eclipse 50.0% 0.01s 100.0%

Out = [1, 3, 6, 8, 2, 4, 9, 7, 5]

Yes (0.14s cpu)

From the above result we can see how the profiler output contains four important areas of
information:

1. The first line of output indicates whether the specified goal succeeded, failed or aborted.
The profile/1 predicate itself always succeeds.

2. The line beginning Goal: shows the goal which was profiled.

3. The next line shows the time spent executing the goal.

4. Finally the predicates which were being executed when the profiler sampled, ranked in
decreasing sample count order are shown.

The problem with the results displayed above is that the sampling frequency is too low when
compared to the total user time spent executing the goal. In fact in the above example the
profiler was only able to take two samples before the goal terminated.
The frequency at which the profiler samples is fixed, so in order to obtain more representative
results one should have an auxiliary predicate which calls the goal a number of times, and
compile and profile a call to this auxiliary predicate. eg.

queen_100 :-

(for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9],_Out)).

Note that, when compiled, the above do/2 loop would be efficiently implemented and not cause
overhead that would distort the measurement.

⊙

See section 4.2 for more information on logical loops

?- profile(queen_100).

goal succeeded

PROFILING STATISTICS

Goal: queen_100

Total user time: 3.19s

Predicate Module %Time Time %Cum

--

61

nodiag /3 eclipse 52.2% 1.67s 52.2%

qdelete /4 eclipse 27.4% 0.87s 79.6%

qperm /2 eclipse 17.0% 0.54s 96.5%

safe /1 eclipse 2.8% 0.09s 99.4%

queen /2 eclipse 0.6% 0.02s 100.0%

Yes (3.33s cpu)

In the above example, the profiler takes over three hundred samples resulting in a more accurate
view of where the time is being spent in the program. In this instance we can see that more than
half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for optimisation.
This is left as an exercise for the reader.

6.3 Line coverage

The line coverage library provides a means to ascertain exactly how many times individual
clauses are called during the evaluation of a query.
The library works by placing coverage counters at strategic points throughout the code being
analysed. These counters are incremented each time the evaluation of a query passes them.
There are three locations in which coverage counters can be inserted.

1. At the beginning of a code block.

2. Between predicate calls within a code block.

3. At the end of a code block.
Locations where coverage counters can be placed

A code block is defined to be a conjunction of predicate calls. ie. a sequence of goals separated
by commas.
As previously mentioned, by default, code coverage counters are inserted before and after every
subgoal in the code. For instance, in the clause

p :- q, r, s.

four counters would be inserted: before the call to q, between q and r, between r and s, and
after s:

p :- point(1), q, point(2), r, point(3), s, point(4).

This is the most precise form provided. The counter values do not only show whether all code
points were reached but also whether subgoals failed or aborted (in which case the counter before
a subgoal will have a higher value than the counter after it). For example, the result of running
the above code is:

p :- 43 q, 25 r, 25 s 0 .

62

which indicates that q was called 43 times, but succeeded only 25 times, r was called 25 times
and succeeded always, and s was called 25 times and never succeeded. Coverage counts of zero
are displayed in red (the final box) because they indicate unreached code. The format of the
display is explained in the next section.

6.3.1 Compilation

In order to add the coverage counters to code, it must be compiled with the ccompile/1
predicate which can be found in the coverage library.

The predicate ccompile/1 (note the initial ‘c’ stands for coverage) can be used in place of the
normal compile/1 predicate to compile a file with coverage counters.

Here we see the results of compiling the n-queens example given in the previous section.

?- coverage:ccompile(queens).

coverage: inserted 22 coverage counters into module eclipse

foo.ecl compiled traceable 5744 bytes in 0.00 seconds

Yes (0.00s cpu)

Once compiled, predicates can be called as usual and will (by default) have no visible side effects.
Internally however, the counters will be incremented as the execution progresses. To see this in
action, consider issuing the following query having compiled the previously defined code using
ccompile/1.

?- queens([1,2,3,4,5,6,7,8,9], Out).

The default behaviour of the ccompile/1 predicate is to place coverage counters as explained
above, however such a level of detail may be unnecessary. If one is interested in reachability
analysis the two argument predicate ccompile/2 can take a list of name:value pairs which can
be used to control the exact manner in which coverage counters are inserted.

⊙

See ccompile/2 for a full list of the available flags.

In particular by specifying the option blocks_only:on, counters will only be inserted at the
beginning and end of code blocks. Reusing the above example this would result in counters at
point(1) and point(4).

p :- 43 q, r, s 0 .

This can be useful in tracking down unexpected failures by looking for exit counters which differ
from entry counters, for example.

6.3.2 Results

To generate an html file containing the coverage counter results issue the following query.

?- coverage:result(queens).

63

Figure 6.1: Results of running queens([1,2,3,4,5,6,7,8,9],)

64

result/0 Creates results for all files which have been compiled with coverage counters.

result/1 This predicate takes a single argument which is the name of the file to print the
coverage counters for.

result/2 The result predicate has a two argument form, the second argument defining a
number of flags which control (amongst other things)

• The directory in which to create the results file. Default: coverage.

• The format of the results file (html or text). Default: html.

⊙

See coverage library and pretty printer library for more details

Figure 6.2: Result generating commands

This will create the result file coverage/queens.html which can be viewed using any browser.
It contains a pretty-printed form of the source, annotated with the values of the code coverage
counters as described above. An example is shown in figure 6.1.
For extra convenience the predicate result/0 is provided which will create results for all files
which have been compiled with coverage counters.
Having generated and viewed results for one run, the coverage counters can be reset by calling

?- coverage:reset_counters.

Yes (0.00s cpu)

65

66

Chapter 7

An Overview of the Constraint
Libraries

7.1 Introduction

In this section we shall briefly summarize the constraint solving libraries of ECLiPSewhich will
be discussed in the rest of this tutorial.

7.2 Implementations of Domains and Constraints

7.2.1 Suspended Goals: suspend

The constraint solvers of ECLiPSe are all implemented using suspended goals. The simplest im-
plementation of any constraint is to suspend it until all its variables are sufficiently instantiated,
and then test it.

The suspend solver implements this behaviour for all the mathematical constraints of ECLiPSe,
>=, >, =:=, =\=, =< and <.

7.2.2 Interval Solver: ic

The standard constraint solver offered by most constraint programming systems is the finite
domain solver, which applies constraint propagation techniques developed in the AI community
[27]. ECLiPSe supports finite domain constraints via the ic library1. The library implements
finite domains of integers, together with a basic set of constraints.

In addition, ic also allows continuous domains (in the form of numeric intervals), and constraints
(equations and inequations) between expressions involving variables with continuous domains.
These expressions can contain non-linear functions such as sin and built-in constants such as pi.
Integrality is treated as a constraint, and it is possible to mix continuous and integral variables
in the same constraint. Specialised search techniques (splitting [26] and squashing [15]) support
the solving of problems with continuous variables.

1and the fd library which will not be addressed in this tutorial

67

Most constraints are also available in reified form, providing a convenient way of combining
several primitive constraints.

Note that the ic library itself implements only a standard, basic set of arithmetic constraints.
Many more finite domain constraints can be defined, which have uses in specific applications.
The behaviour of these constraints is to prune the finite domains of their variables, in just the
same way as the standard constraints. ECLiPSe offers several further libraries which implement
such constraints using the underlying domain of the ic library.

7.2.3 Global Constraints: ic global

One such library is ic global. It supports a variety of constraints, each of which takes as an
argument a list of finite domain variables, of unspecified length. Such constraints are called
“global” constraints [2]. Examples of such constraints, available from the ic global library are
alldifferent/1, maxlist/2, occurrences/3 and sorted/2. For more details see section 8.5
in chapter 8.

7.2.4 Scheduling Constraints: ic cumulative, ic edge finder

There are several ECLiPSe libraries implementing global constraints for scheduling applica-
tions. The constraints take a list of tasks (start times, durations and resource needs), and a
maximum resource level. They reduce the finite domains of the task start times by reasoning
on resource bottlenecks [13]. Three ECLiPSe libraries implementing scheduling constraints are
ic cumulative, ic edge finder and ic edge finder3. They implement the same constraints declar-
atively, but with different time complexity and strength of propagation. For more details see
the library documentation in the Reference Manual.

7.2.5 Finite Integer Sets: ic sets

The ic sets library implements constraints over the domain of finite sets of integers2. The
constraints are the usual relations over sets, e.g. membership, inclusion, intersection, union,
disjointness. In addition, there are constraints between sets and integers, e.g. cardinality and
weight constraints. For those, the ic sets library cooperates with the ic library. For more details
see chapter 10.

7.2.6 Linear Constraints: eplex

eplex supports a tight integration [4] between an external linear programming (LP) / mixed
integer programming (MIP) solver (XPRESS [20] or CPLEX [11]) and ECLiPSe. Constraints
as well as variables can be handled by the external LP/MIP solver, by a propagation solver like
ic, or by both. Optimal solutions and other solution porperties can be returned to ECLiPSe

as required. Search can be carried out either in ECLiPSe or in the external solver. For more
details see chapter 16.

2 the other set solvers lib(conjunto) and lib(fd sets) are similar but not addressed in this tutorial

68

7.2.7 Constraints over symbols: ic symbolic

The ic symbolic library supports variables ranging over ordered symbolic domains (e.g. the
names of products, the names of the weekdays), and constraints over such variables. It is imple-
mented by mapping such variables and constraints to variables over integers and ic-constraints.

7.3 User-Defined Constraints

7.3.1 Generalised Propagation: propia

The predicate infers takes as one argument any user-defined predicate, and as a second argument
a form of propagation to be applied to that predicate.
This functionality enables the user to turn any predicate into a constraint [14]. The forms of
propagation include finite domains and intervals. For more details see chapter 15.

7.3.2 Constraint Handling Rules: ech

The user can also specify predicates using rules with guards [9]. They delay until the guard is
entailed or disentailed, and then execute or terminate accordingly.
This functionality enables the user to implement constraints in a way that is clearer than directly
using the underlying suspend library. For more details see chapter 15.

7.4 Search and Optimisation Support

7.4.1 Tree Search Methods: ic search

ECLiPSe has built-in backtracking and is therefore well suited for performing depth-first tree
search. With combinatorial problems, naive depth-first search is usually not good enough, even
in the presence of constraint propagation. It is usually necessary to apply heuristics, and if the
problems are large, one may even need to resort to incomplete search. The ic search contains a
collection of predefined, easy-to-use search heuristics as well as incomplete tree search strategies,
applicable to problems involving ic variables. For more details see chapter 12.

7.4.2 Optimisation: branch and bound

Solvers that are based on constraint propagation are typically only concerned with satisfiability,
i.e. with finding some or all solutions to a problems. The branch-and-bound method is a general
technique to build optimisation on top of a satisfiability solver. The ECLiPSe branch and bound
library is a solver-independent implementation of the branch-and-bound method, and provides
a number of options and variants of the basic technique.

7.5 Hybridisation Support

7.5.1 Repair and Local Search: repair

The repair library allows a tentative value to be associated with any variable [28]. This tentative
value may violate constraints on the variable, in which case the constraint is recorded in a list

69

of violated constraints. The repair library also supports propagation invariants [18]. Using
invariants, if a variable’s tentative value is changed, the consequences of this change can be
propagated to any variables whose tentative values depend on the changed one. The use of
tentative values in search is illustrated in chapter 13.

7.5.2 Hybrid: ic probing for scheduling

For scheduling applications where the cost is dependent on each start time, a combination of
solvers can be very powerful. For example, we can use finite domain propagation to reason on
resources and linear constraint solving to reason on cost [7]. The probing for scheduling library
supports such a combination, via a similar user interface to the cumulative constraint mentioned
above in section 7.2.3. For more details see chapter 17.

7.6 Other Libraries

The solvers described above are just a few of the many libraries available in ECLiPSe and listed
in the ECLiPSe library directory. Any ECLiPSe user who has implemented a constraint solver
is encouraged to make it available to the user community and publicise it via the eclipse-

users@icparc.ic.ac.uk mailing list! Comments and suggestions on the existing libraries are
also welcome!

70

Chapter 8

Getting started with Interval
Constraints

The Interval Constraints (IC) library provides a constraint solver which works with both integer
and real interval variables. This chapter provides a general introduction to the library, and
then focusses on its support for integer constraints. For more detail on IC’s real variables and
constraints, please see Chapter 9.

8.1 Using the Interval Constraints Library

To use the Interval Constraints Library, load the library using either of:

:- lib(ic).

:- use_module(library(ic)).

Specify this at the beginning of your program.

8.2 Structure of a Constraint Program

The typical top-level structure of a constraint program is

solve(Variables) :-

read_data(Data),

setup_constraints(Data, Variables),

labeling(Variables).

where setup_constraints/2 contains the problem model. It creates the variables and the con-
straints over the variables. This is often, but not necessarily, deterministic. The labeling/1

predicate is the search part of the program that attempts to find solutions by trying all instan-
tiations for the variables. This search is constantly pruned by constraint propagation.

71

The above program will find all solutions. If the best solution is wanted, a branch-and-bound
procedure can be wrapped around the search component of the program:

solve(Variables) :-

read_data(Data),

setup_constraints(Data, Variables, Objective),

branch_and_bound:minimize(labeling(Variables), Objective).

⊙

The branch and bound library provides generic predicates that support optimization in con-
junction with any ECLiPSe solver. Section 12.1.2 discusses these predicates.

8.3 Modelling

The problem modelling code must:

• Create the variables with their initial domains

• Setup the constraints between the variables

A simple example is the “crypt-arithmetic”puzzle, SEND+MORE = MONEY. The idea is to associate
a digit (0-9) with each letter so that the equation is true. The ECLiPSe code is as follows:

:- lib(ic).

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

% Assign a finite domain with each letter - S, E, N, D, M, O, R, Y -

% in the list Digits

Digits :: [0..9],

% Constraints

alldifferent(Digits),

S #\= 0,

M #\= 0,

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y,

% Search

labeling(Digits).

72

Vars :: Domain Constrains Vars to take only integer or real values from the domain
specified by Domain. Vars may be a variable, a list, or a submatrix (e.g. M[1..4,
3..6]); for a list or a submatrix, the domain is applied recursively so that one can
apply a domain to, for instance, a list of lists of variables. Domain can be specified as
a simple range Lo .. Hi, or as a list of subranges and/or individual elements (integer
variables only). The type of the bounds determines the type of the variable (real or
integer). Also allowed are the (untyped) symbolic bound values inf, +inf and -inf.

Vars $:: Domain Like ::/2, but for declaring real variables (i.e. it never imposes inte-
grality, regardless of the types of the bounds).

Vars #:: Domain Like ::/2, but for declaring integer variables.

reals(Vars) Declares that the variables are IC variables (like declaring Vars :: -

inf..inf).

integers(Vars) Constrains the given variables to take integer values only.

Figure 8.1: Domain constraints

8.4 Built-in Constraints

The following section summarises the built-in constraint predicates of the ic library.
The most common way to declare an IC variable is to use the ::/2 predicate (or $::/2 or #::/2)
to give it an initial domain:

?- X :: -10 .. 10.

X = X{-10 .. 10}

Yes

?- X :: -10.0 .. 10.0.

X = X{-10.0 .. 10.0}

Yes

?- X #:: -10 .. 10.

X = X{-10 .. 10}

Yes

?- X $:: -10 .. 10.

X = X{-10.0 .. 10.0}

Yes

?- X :: 0 .. 1.0Inf.

X = X{0 .. 1.0Inf}

Yes

73

ExprX #= ExprY ExprX is equal to ExprY. ExprX and ExprY are integer expressions,
and the variables and subexpressions are constrained to be integers.

ExprX #>= ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY
are integer expressions, and the variables and subexpressions are constrained to be
integers.

ExprX #=< ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are inte-
ger expressions, and the variables and subexpressions are constrained to be integers.

ExprX #> ExprY ExprX is greater than ExprY. ExprX and ExprY are integer ex-
pressions, and the variables and subexpressions are constrained to be integers.

ExprX #< ExprY ExprX is less than ExprY. ExprX and ExprY are integer expres-
sions, and the variables and subexpressions are constrained to be integers.

ExprX #\= ExprY ExprX is not equal to ExprY. ExprX and ExprY are integer ex-
pressions, and the variables are constrained to be integers.

ac eq(X, Y, C) Arc-consistent implementation of X #= Y + C. X and Y are con-
strained to be integer variables and to have “reasonable” bounds. C must be an
integer.

Figure 8.2: Integral Arithmetic constraints

?- X :: 0.0 .. 1.0Inf.

X = X{0.0 .. 1.0Inf}

Yes

?- X :: [1, 4 .. 6, 9, 10].

X = X{[1, 4 .. 6, 9, 10]}

Yes

Note that for ::/2 the type of the bounds defines the type of the variable (integer or real) but that
infinities are considered type-neutral. To just declare the type of a variable without restricting
the domain at all, one can use the integers/1 and reals/1.

The final way to declare that a variable is an IC variable is to just use it in an IC constraint:
this performs an implicit declaration.

The basic IC relational constraints come in two forms. The first form is for integer-only con-
straints, and is summarised in Figure 8.2. All of these constraints contain # in their name,
which indicates that all numbers appearing in them must be integers, and all variables and
subexpressions will be constrained to be integral. It is important to note that subexpressions
are constrained to be integral, because it means, for instance, that X/2 + Y/2 #= 1 and X
+ Y #= 2 are different constraints, since the former constrains X and Y to be even.

The second form is the general form of the constraints, and is summarised in Figure 8.3. These
constraints can be used with either integer or real variables and numbers. With the exception

74

ExprX $= ExprY ExprX is equal to ExprY. ExprX and ExprY are general expressions.

ExprX $>= ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY are
general expressions.

ExprX $=< ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are gen-
eral expressions.

ExprX $> ExprY ExprX is greater than ExprY. ExprX and ExprY are general expres-
sions.

ExprX $< ExprY ExprX is less than ExprY. ExprX and ExprY are general expressions.

ExprX $\= ExprY ExprX is not equal to ExprY. ExprX and ExprY are general ex-
pressions.

Figure 8.3: Non-Integral Arithmetic Constraints

of integrality issues, the two versions of each constraint are equivalent. Thus if the constants
are integers and the variables and subexpressions are integral, the two forms may be used
interchangeably.
Most of the basic constraints operate by propagating bound information (performing interval
reasoning). The exceptions are the disequality (not equals) constraints and the ac eq/3 con-
straint, which perform domain reasoning (arc consistency). An example:

?- [X, Y] :: 0 .. 10, X #>= Y + 2.

X = X{2 .. 10}

Y = Y{0 .. 8}

There is 1 delayed goal.

Yes

In the above example, since the lower bound of Y is 0 and X must be at least 2 greater, the
lower bound of X has been updated to 2. Similarly, the upper bound of Y has been reduced to 8.
The delayed goal indicates that the constraint is still active: there are still some combinations
of values for X and Y which violate the constraint, so the constraint remains until it is sure that
no such violation is possible.
Note that if a domain ever becomes empty as the result of propagation (no value for the vari-
able is feasible) then the constraint must necessarily have been violated, and the computation
backtracks.
For a disequality constraint, no deductions can be made until there is only one variable left, at
which point (if it is an integer variable) the variable’s domain can be updated to exclude the
relevant value:

?- X :: 0 .. 10, X #\= 3.

X = X{[0 .. 2, 4 .. 10]}

Yes

75

?- [X, Y] :: 0 .. 10, X - Y #\= 3.

X = X{0 .. 10}

Y = Y{0 .. 10}

There is 1 delayed goal.

Yes

?- [X, Y] :: 0 .. 10, X - Y #\= 3, Y = 2.

X = X{[0 .. 4, 6 .. 10]}

Y = 2

Yes

For the ac eq/3 constraint, “holes” in the domain of one variable are propagated to the other:

?- [X, Y] :: 0 .. 10, ac_eq(X, Y, 3).

X = X{3 .. 10}

Y = Y{0 .. 7}

There is 1 delayed goal.

Yes

?- [X, Y] :: 0 .. 10, ac_eq(X, Y, 3), Y #\= 4.

X = X{[3 .. 6, 8 .. 10]}

Y = Y{[0 .. 3, 5 .. 7]}

There is 1 delayed goal.

Yes

Compare with the corresponding bounds consistency constraint:

?- [X, Y] :: 0 .. 10, X #= Y + 3, Y #\= 4.

X = X{3 .. 10}

Y = Y{[0 .. 3, 5 .. 7]}

There is 1 delayed goal.

Yes

⊙

IC supports a range of mathematical operators beyond the basic +/2, -/2, */2, etc. See the
IC chapter in the Constraint Library Manual for full details.

⊗

If one wishes to construct an expression to use in an IC constraint at run time, then one
must wrap it in eval/1:

?- [X, Y] :: 0..10, Expr = X + Y, Sum #= Expr.

number expected in set_up_ic_con(7, 1, [0 * 1, 1 * Sum{-1.0Inf .. 1.0Inf}, -

1 * (X{0 .. 10} + Y{0 .. 10})])

Abort

?- [X, Y] :: 0..10, Expr = X + Y, Sum #= eval(Expr).

76

X = X{0 .. 10}

Y = Y{0 .. 10}

Sum = Sum{0 .. 20}

Expr = X{0 .. 10} + Y{0 .. 10}

There is 1 delayed goal.

Yes

Reification provides access to the logical truth of a constraint expression and can be used by:

• The ECLiPSe system to infer the truth value, reflecting the value into a variable.

• The programmer to enforce the constraint or its negation by giving a value to the truth
variable.

This logical truth value is a boolean variable (domain 0..1), where the value 1 means the
constraint is or is required to be true, and the value 0 means the constraint is or is required to
be false.
When constraints appear in an expression context, they evaluate to their reified truth value.
Practically, this means that the constraints are posted in a passive check but do not propagate
mode. In this mode no variable domains are modified but checks are made to determine whether
the constraint has become entailed (necessarily true) or disentailed (necessarily false).
The simplest and arguably most natural way to reify a constraint is to place it in an expression
context (i.e. on either side of a $=, #=, etc.) and assign its truth value to a variable. For example:

?- X :: 0 .. 10, TruthValue $= (X $> 4).

TruthValue = TruthValue{[0, 1]}

X = X{0 .. 10}

There is 1 delayed goal.

Yes

?- X :: 6 .. 10, TruthValue $= (X $> 4).

TruthValue = 1

X = X{6 .. 10}

Yes

?- X :: 0 .. 4, TruthValue $= (X $> 4).

TruthValue = 0

X = X{0 .. 4}

Yes

All the basic relational constraint predicates also come in a three-argument form where the third
argument is the reified truth value, and this form can also be used to reify a constraint directly.
For example:

?- X :: 0 .. 10, $>(X, 4, TruthValue).

X = X{0 .. 10}

77

and Constraint conjunction. e.g. X $> 3 and X $< 8

or Constraint disjunction. e.g. X $< 3 or X $> 8

=> Constraint implication. e.g. X $> 3 => Y $< 8

neg Constraint negation. e.g. neg X $> 3

Figure 8.4: Constraint Expression Connectives

TruthValue = TruthValue{[0, 1]}

There is 1 delayed goal.

Yes

As noted above the boolean truth variable corresponding to a constraint can also be used to
enforce the constraint (or its negation):

?- X :: 0 .. 10, TruthValue $= (X $> 4), TruthValue = 1.

X = X{5 .. 10}

TruthValue = 1

Yes

?- X :: 0 .. 10, TruthValue $= (X $> 4), TruthValue = 0.

X = X{0 .. 4}

TruthValue = 0

Yes

By instantiating the value of the reified truth variable, the constraint changes from being passive
to being active. Once actively true (or actively false) the constraint will prune domains as though
it had been posted as a simple non-reified constraint.

⊙

Additional information on reified constraints can be found in the ECLiPSe Constraint Library
Manual that documents IC: A Hybrid Finite Domain / Real Number Interval Constraint
Solver.

IC also provides a number of connectives useful for combining constraint expressions. These are
summarised in Figure 8.4. For example:

?- [X, Y] :: 0 .. 10, X #>= Y + 6 or X #=< Y - 6.

X = X{0 .. 10}

Y = Y{0 .. 10}

There are 3 delayed goals.

Yes

?- [X, Y] :: 0 .. 10, X #>= Y + 6 or X #=< Y - 6, X #>= 5.

Y = Y{0 .. 4}

78

X = X{6 .. 10}

There is 1 delayed goal.

Yes

In the above example, once it is known that X #=< Y - 6 cannot be true, the constraint X #>=

Y + 6 is enforced.
Note that these connectives exploit constraint reification, and actually just reason about boolean
variables. This means that they can be used as boolean constraints as well:

?- A => B.

A = A{[0, 1]}

B = B{[0, 1]}

There is 1 delayed goal.

Yes

?- A => B, A = 1.

B = 1

A = 1

Yes

?- A => B, A = 0.

B = B{[0, 1]}

A = 0

Yes

8.5 Global constraints

The IC constraint solver has some optional components which provide so-called global con-
straints. These are high-level constraints that tend to provide more global reasoning than the
constraints in the main IC library. These optional components are contained in the ic_global,
ic_cumulative, ic_edge_finder and ic_edge_finder3 libraries. The ic_global library pro-
vides a collection of general global constraints, while the others provide constraints for resource-
constrained scheduling.
To use these global constraints, load the relevant optional library or libraries using directives in
one of these forms:

:- lib(ic_global).

:- use_module(library(ic_global)).

Specify this at the beginning of your program.
Note that some of these libraries provide alternate implementations of predicates which also
appear in other libraries. For example, the alldifferent/1 constraint is provided by both
the standard ic library and the ic_global library. This means that if you wish to use it, you
must use the relevant module qualifier to specify which one you want: ic:alldifferent/1 or
ic global:alldifferent/1.

79

⊙

See the “Additional Finite Domain Constraints” section of the Library Manual for more
details of these libraries and a full list of the predicates they provide.

8.5.1 Different strengths of propagation

The alldifferent(List) predicate imposes the constraint on the elements of List that they
all take different values. The standard alldifferent/1 predicate from the IC library provides a
level of propagation equivalent to imposing pairwise #\=/2 constraints (though it does it more
efficiently than that). This means that no propagation is performed until elements of the list
start being made ground. This is despite the fact that there may be “obvious” inferences which
could be made.
Consider as an example the case of 5 variables with domains 1..4. Clearly the 5 variables
cannot all be given different values, since there are only 4 distinct values available. However,
the standard alldifferent/1 constraint cannot determine this:

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic:alldifferent(L).

X1 = X1{1 .. 4}

X2 = X2{1 .. 4}

X3 = X3{1 .. 4}

X4 = X4{1 .. 4}

X5 = X5{1 .. 4}

L = [X1{1 .. 4}, X2{1 .. 4}, X3{1 .. 4}, X4{1 .. 4}, X5{1 .. 4}]

There are 5 delayed goals.

Yes

Consider another example where three of the variables have domain 1..3. Clearly, if all the
variables are to be different, then no other variable can take a value in the range 1..3, since
each of those values must be assigned to one of the original three variables. Again, the standard
alldifferent/1 constraint cannot determine this:

?- [X1, X2, X3] :: 1 .. 3, [X4, X5] :: 1 .. 5,

ic:alldifferent([X1, X2, X3, X4, X5]).

X1 = X1{1 .. 3}

X2 = X2{1 .. 3}

X3 = X3{1 .. 3}

X4 = X4{1 .. 5}

X5 = X5{1 .. 5}

There are 5 delayed goals.

Yes

On the other hand, ic_global’s alldifferent/1 constraint performs some stronger, more global
reasoning, and for both of the above examples makes the appropriate inference:

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic_global:alldifferent(L).

No

80

?- [X1, X2, X3] :: 1 .. 3, [X4, X5] :: 1 .. 5,

ic_global:alldifferent([X1, X2, X3, X4, X5]).

X1 = X1{1 .. 3}

X2 = X2{1 .. 3}

X3 = X3{1 .. 3}

X4 = X4{[4, 5]}

X5 = X5{[4, 5]}

There are 2 delayed goals.

Yes

Of course, there is a trade-off here: the stronger version of the constraint takes longer to perform
its propagation. Which version is best depends on the nature of the problem being solved.

⊙

Note that even stronger propagation can be achieved if desired, by using the Propia library
(see Chapter 15).

In a similar vein, the ic_cumulative, ic_edge_finder and ic_edge_finder3 libraries provide
increasingly strong versions of constraints such as cumulative/4, but with increasing cost to do
their propagation (linear, quadratic and cubic, respectively).

8.6 Simple User-defined Constraints

User-defined, or ‘conceptual’ constraints can easily be defined as conjunctions of primitive con-
straints. For example, let us consider a set of products and the specification that allows them
to be colocated in a warehouse. This should be done in such a way as to propagate possible
changes in the domains as soon as this becomes possible.
Let us assume we have a symmetric relation that defines which product can be colocated with
another and that products are distinguished by numeric product identifiers:

colocate(100, 101).

colocate(100, 102).

colocate(101, 100).

colocate(102, 100).

colocate(103, 104).

colocate(104, 103).

Suppose we define a constraint colocate_product_pair(X, Y) such that any change of the
possible values of X or Y is propagated to the other variable. There are many ways in which
this pairing can be defined in ECLiPSe. They are different solutions with different properties,
but they yield the same results.

8.6.1 Using Reified Constraints

We can encode directly the relations between elements in the domains of the two variables:

81

colocate_product_pair(A, B) :-

cpp(A, B),

cpp(B, A).

cpp(A, B) :-

[A,B] :: [100, 101, 102, 103, 104],

A #= 100 => B :: [101, 102],

A #= 101 => B #= 100,

A #= 102 => B #= 100,

A #= 103 => B #= 104,

A #= 104 => B #= 103.

This method is quite simple and does not need any special analysis; on the other hand it
potentially creates a huge number of auxiliary constraints and variables.

8.6.2 Using Propia

By far the simplest mechanism, that avoids this potential creation of large numbers of auxiliary
constraints and variables, is to load the Generalised Propagation library (propia) and use arc-
consistency (ac) propagation, viz:

?- colocate(X,Y) infers ac

⊙

Additional information on propia can be found in section 15.3, section 15 and the ECLiPSe

Constraint Library Manual.

8.6.3 Using the element Constraint

In this case we use the element/3 predicate, that states in a list of integers that the element
at an index is equal to a value. Every time the index or the value is updated, the constraint is
activated and the domain of the other variable is updated accordingly.

relates(X, Xs, Y, Ys) :-

element(I, Xs, X),

element(I, Ys, Y).

We define a generic predicate, relates/4, that associates the corresponding elements at a specific
index of two lists, with one another. The variable I is an index into the lists, Xs and Ys, to yield
the elements at this index, in variables X and Y.

colocate_product_pair(A, B) :-

relates(A, [100, 100, 101, 102, 103, 104],

B, [101, 102, 100, 100, 104, 103]).

82

The colocate_product_pair predicate simply calls relates/4 passing a list containing the
product identifiers in the first argument of colocate/2 as Xs and a list containing product
identifiers from the second argument of colocate/2 as Ys.

Behind the scenes, this is exactly the implementation used for arc-consistency propagation by
the Generalised Propagation library.

Because of the specific and efficient algorithm implementing the element/3 constraint, it is
usually faster than the first approach, using reified constraints.

8.7 Searching for Feasible Solutions

indomain(+DVar) This predicate instantiates the domain variable DVar to an element of its
domain; on backtracking the subsequent value is taken. It is used, for example, to find
a value of DVar which is consistent with all currently imposed constraints. If DVar is a
ground term, it succeeds. Otherwise, if it is not a domain variable, an error is raised.

labeling(+List) The elements of the List are instantiated using the indomain/1 predicate.

⊙

Additional information on search algorithms, heuristics and their use in ECLiPSe can be
found in chapter 12.

8.8 Bin Packing

This section presents a worked example using finite domains to solve a bin-packing problem.

8.8.1 Problem Definition

In this type of problem the goal is to pack a certain amount of different items into the minimal
number of bins under specific constraints. Let us solve an example given by Andre Vellino in
the Usenet group comp.lang.prolog, June 93:

• There are 5 types of items:

glass, plastic, steel, wood, copper

• There are three types of bins:

red, blue, green

• The capacity constraints imposed on the bins are:

– red has capacity 3

– blue has capacity 1

– green has capacity 4

• The containment constraints imposed on the bins are:

– red can contain glass, wood, copper

83

– blue can contain glass, steel, copper

– green can contain plastic, wood, copper

• The requirement constraints imposed on component types (for all bin types) are:

wood requires plastic

• Certain component types cannot coexist:

– glass and copper exclude each other

– copper and plastic exclude each other

• The following bin types have the following capacity constraints for certain components:

– red contains at most 1 wood item

– blue implicitly contains at most 1 wood item

– green contains at most 2 wood items

• Given the initial supply stated below, what is the minimum total number of bins required
to contain the components?

– 1 glass item

– 2 plastic items

– 1 steel item

– 3 wood items

– 2 copper items

8.8.2 Problem Model - Using Structures

In modelling this problem we need to refer to an array of quantities of glass items, plastic items,
steel items, wood items and copper items. We therefore introduce:
A structure to hold this array:

:- local struct(contents(glass, plastic, steel, wood, copper)).

A structure that defines the colour for each of the bin types:

:- local struct(colour(red, blue, green)).

By defining the bin colours as fields of a structure there is an implicit integer value associated
with each colour. This allows the readability of the code to be preserved by writing, for example,
red of colour rather than explicitly writing the colour’s integer value ‘1’.
And a structure that represents the bin itself, with its colour, capacity and contents:

84

:- local struct(bin(colour, capacity, contents:contents)).

⊗

The contents attribute of bin is itself a contents structure. The contents field declaration
within the bin structure using ’:’ allows field names of the contents structure to be used
as if they were field names of the bin structure. More information on accessing nested
structures and structures with inherited fields can be found in section 4.1 and in the
Structure Notation section of the ECLiPSe User Manual.

The predicate solve_bin/2 is the general predicate that takes an amount of components packed
into a contents structure and returns the solution.

?- Demand = contents{glass:1, plastic:2, steel:1, wood:3, copper:2},

solve_bin(Demand, Bins).

8.8.3 Handling an Unknown Number of Bins

solve_bin/2 calls bin_setup/2 to generate a list Bins. It adds redundant constraints to remove
symmetries (two solutions are considered symmetrical if they are the same, but with the bins in
a different order). Finally it labels all decision variables in the problem.

solve_bin(Demand, Bins) :-

bin_setup(Demand, Bins),

remove_symmetry(Bins),

bin_label(Bins).

The usual pattern for solving finite domain problems is to state constraints on a set of variables,
and then label them. However, because the number of bins needed is not known initially, it is
awkward to model the problem with a fixed set of variables.
One possibility is to take a fixed, large enough, number of bins and to try to find a minimum
number of non-empty bins. However, for efficiency, we choose to solve a sequence of problems,
each one with a - larger - fixed number of bins, until a solution is found.
The predicate bin_setup/2, to generate a list of bins with appropriate constraints, works as
follows. First it tries to match the (remaining) demand with zero, and use no (further) bins. If
this fails, a new bin is added to the bin list; appropriate constraints are imposed on all the new
bin’s variables; its contents are subtracted from the demand; and the bin_setup/2 predicate
calls itself recursively:

bin_setup(Demand,[]) :-

all_zeroes(Demand).

bin_setup(Demand, [Bin | Bins]) :-

85

constrain_bin(Bin),

reduce_demand(Demand, Bin, RemainingDemand),

bin_setup(RemainingDemand, Bins).

all_zeroes(

contents{glass:0, plastic:0, wood:0, steel:0, copper:0}

).

reduce_demand(

contents{glass:G, plastic:P, wood:W, steel:S, copper:C},

bin{glass:BG, plastic:BP, wood:BW, steel:BS, copper:BC},

contents{glass:RG, plastic:RP, wood:RW, steel:RS, copper:RC}

) :-

RG #= G - BG,

RP #= P - BP,

RW #= W - BW,

RS #= S - BS,

RC #= C - BC.

8.8.4 Constraints on a Single Bin

The constraints imposed on a single bin correspond exactly to the problem statement:

constrain_bin(bincolour:Col, capacity:Cap, contents:C) :-

colour_capacity_constraint(Col, Cap),

capacity_constraint(Cap, C),

contents_constraints(C),

colour_constraints(Col, C).

colour capacity constraint The colour capacity constraint relates the colour of the bin to
its capacity, we implement this using the relates/4 predicate (defined in section 8.6.3):

colour_capacity_constraint(Col, Cap) :-

relates(Col, [red of colour, blue of colour, green of colour],

Cap, [3, 1, 4]).

capacity constraint The capacity constraint states the following:

• The number of items of each kind in the bin is non-negative.

• The sum of all the items does not exceed the capacity of the bin.

86

• and the bin is non-empty (an empty bin serves no purpose)

capacity_constraint(Cap, contents{glass:G,

plastic:P,

steel:S,

wood:W,

copper:C}) :-

G #>= 0, P #>= 0, S #>= 0, W #>= 0, C #>= 0,

NumItems #= G + P + W + S + C,

Cap #>= NumItems,

NumItems #> 0.

contents constraints The contents constraints directly enforce the restrictions on items in
the bin: wood requires paper, glass and copper exclude each other, and copper and plastic
exclude each other:

contents_constraints(contents{glass:G, plastic:P, wood:W, copper:C}) :-

requires(W, P),

exclusive(G, C),

exclusive(C, P).

These constraints are expressed as logical combinations of constraints on the number of items.
‘requires’ is expressed using implication, =>. ‘Wood requires paper’ is expressed in logic as ‘If
the number of wood items is greater than zero, then the number of paper items is also greater
than zero’:

requires(W,P) :-

W #> 0 => P #> 0.

Exclusion is expressed using disjunction, or. ‘X and Y are exclusive’ is expressed as ‘Either the
number of items of kind X is zero, or the number of items of kind Y is zero’:

exclusive(X,Y) :-

X #= 0 or Y #= 0.

colour constraints The colour constraint limits the number of wooden items in bins of differ-
ent colours. Like the capacity constraint, the relation between the colour and capacity, WCap,
is expressed using the relates/4 predicate. The number of wooden items is then constrained
not to exceed the capacity:

87

colour_constraints(Col, contents{wood:W}) :-

relates(Col, [red of colour, blue of colour, green of colour],

WCap, [1, 1, 2]),

W #=< WCap.

This model artificially introduces a capacity of blue bins for wood items (set simply at its
maximum capacity for all items).

8.8.5 Symmetry Constraints

To make sure two solutions (a solution is a list of bins) are not just different permutations of
the same bins, we impose an order on the list of bins:

remove_symmetry(Bins) :-

(fromto(Bins, [B1, B2 | Rest], [B2 | Rest], [_Last])

do

lex_ord(B1, B2)

).

We order two bins by imposing lexicographic order onto lists computed from their colour and
contents, (recall that in defining the bin colours as fields of a structure we have encoded them
as integers, which allows them to be ordered):

lex_ord(bincolour:Col1, contents:Conts1,

bincolour:Col2, contents:Conts2) :-

% Use ‘=..’ to extract the contents of the bin as a list

Conts1 =.. [_ | Vars1],

Conts2 =.. [_ | Vars2],

lexico_le([Col1 | Vars1], [Col2 | Vars2]).

8.8.6 Search

The search is done by first choosing a colour for each bin, and then labelling the remaining
variables.

bin_label(Bins) :-

(foreach(bincolour:C Bins) do indomain(C)),

term_variables(Bins, Vars),

search(Vars, 0, first_fail, indomain, complete, []).

88

The remaining variables are labelled by employing the first fail heuristic (using the search/6

predicate of the ic library).

⊙

Additional information on search algorithms, heuristics and their use in ECLiPSe can be
found in section 12.

8.9 Exercises

1. A magic square is a 3×3 grid containing the digits 1 through 9 exactly once, such that each
row, each column and the two diagonals sum to the same number (15). Write a program
to find such magic squares. (You may wish to use the “Send More Money” example in
section 8.3 as a starting point.)

Bonus points if you can add constraints to break the symmetry, so that only the one unique
solution is returned.

2. Fill the circles in the following diagram with the numbers 1 through 19 such that the
numbers in each of the 12 lines of 3 circles (6 around the outside, 6 radiating from the
centre) sum to 23.

If the value of the sum is allowed to vary, which values of the sum have solutions, and
which do not?

(Adapted from Puzzle 35 in Dudeney’s “The Canterbury Puzzles”.)

3. Consider the following code:

foo(Xs, Ys) :-

(

foreach(X, Xs),

foreach(Y, Ys),

fromto(1, In, Out, 1)

do

In #= (X #< Y + Out)

89

).

Which constraint does this code implement? (Hint: declaratively, it is the same as one of
the constraints from ic_global, but is implemented somewhat differently.) How does it
work?

90

Chapter 9

Working with real numbers and
variables

9.1 Real number basics

In general, real values cannot be represented exactly if the representation is explicit. As a
result, they are usually approximated on computers by floating point numbers, which have a
finite precision. This approximation is sufficient for most purposes; however, in some situations
it can lead to significant error. Worse, there is usually nothing to indicate that the final result
has significant error; this can lead to completely wrong answers being accepted as correct.

One way to deal with this is to use interval arithmetic. The basic idea is that rather than
using a single floating point value to approximate the true real value, a pair of floating point
bounds are used which are guaranteed to enclose the true real value. Each arithmetic operation
is performed on the interval represented by these bounds, and the result rounded to ensure it
encloses the true result. The result is that any uncertainty in the final result is made explicit:
while the true real value of the result is still not known exactly, it is guaranteed to lie somewhere
in the computed interval.

Of course, interval arithmetic is no panacea: it may be that the final interval is too wide
to be useful. However this indicates that the problem was probably ill-conditioned or poorly
computed: if the same computation had been performed with normal floating point numbers,
the final floating point value would probably not have been near the true real value, and there
would have been no indication that there might be a problem.

In ECLiPSe, such intervals are represented using the bounded real data type.

An example of using bounded reals to safely compute the square root of 2:

?- X is sqrt(breal(2)).

X = 1.4142135623730949__1.4142135623730954

Yes

To see how using ordinary floating point numbers can lead to inaccuracy, try dividing 1 by 10,
and then adding it together 10 times. Using floats the result is not 1.0; using bounded reals the
computed interval contains 1.0 and gives an indication of how much potential error there is:

91

• Bounded reals are written as two floating point bounds separated by a double un-
derscore (e.g. 1.5__2.0, 1.0__1.0, 3.1415926535897927__3.1415926535897936)

• Other numeric types can be converted to bounded reals by giving them a breal/1

wrapper, or by calling breal/2 directly

• Bounded reals are not usually entered directly by the user; normally they just occur
as the results of computations

• A bounded real represents a single real number whose value is known to lie somewhere
between the bounds and is uncertain only because of the limited precision with which
is has been calculated

• An arithmetic operation is only performed using bounded reals if at least one of its
arguments is a bounded real

Figure 9.1: Bounded reals

?- Y is float(1) / 10, X is Y + Y + Y + Y + Y + Y + Y + Y + Y + Y.

X = 0.99999999999999989

Y = 0.1

Yes

?- Y is breal(1) / 10, X is Y + Y + Y + Y + Y + Y + Y + Y + Y + Y.

X = 0.99999999999999978__1.0000000000000007

Y = 0.099999999999999992__0.1

Yes

9.2 Issues to be aware of when using bounded reals

When working with bounded reals, some of the usual rules of arithmetic no longer hold. In
particular, it is not always possible to determine whether one bounded real is larger, smaller,
or the same as another. This is because, if the intervals overlap, it is not possible to know the
relationship between the true values.

An example of this can be seen in Figure 9.2. If the true value of X is X1, then depending upon
whether the true value of Y is (say) Y1, Y2 or Y3, we have X > Y, X =:= Y or X < Y, respectively.

Different classes of predicate deal with the undecidable cases in different ways:

Arithmetic comparison (</2, =:=/2, etc.) If the comparison cannot be determined defini-
tively, the comparison succeeds but a delayed goal is left behind, indicating that the result
of the computation is contingent on the relationship actually being true. Examples:

?- X = 0.2__0.3, Y = 0.0__0.1, X > Y.

X = 0.2__0.3

Y = 0.0__0.1

Yes

92

X Y

Y
Y

Y

X

1

2

3

1

Figure 9.2: Comparing two bounded reals

?- X = 0.2__0.3, Y = 0.0__0.1, X < Y.

No

?- X = 0.0__0.1, Y = 0.0__0.1, X < Y.

X = 0.0__0.1

Y = 0.0__0.1

Delayed goals:

0.0__0.1 < 0.0__0.1

Yes

?- X = Y, X = 0.0__0.1, X < Y.

No

Term equality or comparison (=/2, ==/2, compare/3, @</2, etc.) These predicates con-
sider bounded reals from a purely syntactic point of view: they determine how the bounded
reals compare syntactically, without taking into account their meaning. Two bounded reals
are considered equal if and only if their bounds are syntactically the same (note that the
floating point numbers 0.0 and -0.0 are considered to be syntactically different). A unique
ordering is also defined between bounded reals which do not have identical bounds; see the
documentation for compare/3 for details. This is important as it means predicates such
as sort/2 behave in a sensible fashion when they encounter bounded reals (in particular,
they do not throw exceptions or leave behind large numbers of meaningless delayed goals)
— though one does need to be careful when comparing or sorting things of different types.
Examples:

?- X = 0.2__0.3, Y = 0.0__0.1, X == Y.

No

?- X = 0.0__0.1, Y = 0.0__0.1, X == Y.

X = 0.0__0.1

Y = 0.0__0.1

Yes

?- X = 0.2__0.3, Y = 0.0__0.1, compare(R, X, Y).

93

R = >

X = 0.2__0.3

Y = 0.0__0.1

Yes

?- X = 0.1__3.0, Y = 0.2__0.3, compare(R, X, Y).

R = <

X = 0.1__3.0

Y = 0.2__0.3

Yes

?- X = 0.0__0.1, Y = 0.0__0.1, compare(R, X, Y).

R = =

X = 0.0__0.1

Y = 0.0__0.1

Yes

?- sort([-5.0, 1.0__1.0], Sorted).

Sorted = [1.0__1.0, -5.0] % 1.0__1.0 > -5.0, but 1.0__1.0 @< -5.0

Yes

Note that the potential undecidability of arithmetic comparisons has implications when writing
general code. For example, a common thing to do is test the value of a number, with different
code being executed depending on whether or not it is above a certain threshold; e.g.

(X >= 0 ->

% Code A

;

% Code B

)

When writing code such as the above, if X could be a bounded real, one ought to decide what
should happen if X’s bounds span the threshold value. In the above example, if X = -0.1__0.1

then a delayed goal -0.1__0.1 >= 0 will be left behind and Code A executed. If one does not
want the delayed goal, one can instead write:

(not X >= 0 ->

% Code B

;

% Code A

)

94

• Real variables may be declared using reals/1, $::/2, ::/2 (specifying non-integer
bounds) or just by using them in an IC constraint

• Basic constraints available for real variables are $=/2, $>=/2, $=</2, $>/2,
$</2 and $\=/2, as well as their reified versions and the reified connectives

• Real constraints also work with integer variables and a mix of integer and real vari-
ables

• Solutions to real constraints can be found using locate/2, locate/3, locate/4 or
squash/3

Figure 9.3: Real variables and constraints

The use of not ensures that any actions performed during the test (in particular the set up of
any delayed goals) are backtracked, regardless of the outcome of the test.

Finally, if one wishes Code B to be executed instead of Code A in the case of an overlap, one
can reverse the sense of the test:

(not X < 0 ->

% Code A

;

% Code B

)

9.3 IC as a solver for real variables

The IC solver is a hybrid solver which supports both real and integer variables.

⊙

See Chapter 8 for an introduction to IC and how to use it with integer variables.

⊙

See the IC chapter in the Constraint Library Manual for a full list of the arithmetic operators
which are available for use in IC constraint expressions.

IC’s real constraints perform bounds propagation in the same way as the integer versions; in-
deed, most of the basic integer constraints are transformed into their real counterparts, plus a
declaration of the integrality of the variables appearing in the constraint.

Note that the interval reasoning performed to propagate real bounds is the same as that used
for bounded reals; that is, the inferences made are safe, taking into account potential floating
point errors.

95

2

1

-2

-1

-1-2 21

Bounds propagation
solution

3

3

Locate solutions

Figure 9.4: Example of using locate/2

9.4 Finding solutions of real constraints

In very simple cases, just imposing the constraints may be sufficient to directly compute the
(unique) solution. For example:

?- 3 * X $= 4.

X = 1.3333333333333333__1.3333333333333335

Yes

Other times, propagation will reduce the domains of the variables to suitably small intervals:

?- 3 * X + 2 * Y $= 4, X - 5 * Y $= 2, X $>= -100.

Y = Y{-0.11764705946382902 .. -0.1176470540212896}

X = X{1.4117647026808551 .. 1.4117647063092196}

There are 2 delayed goals.

Yes

In general though, some extra work will be needed to find the solutions of a problem. The IC
library provides two methods for assisting with this. Which method is appropriate depends on
the nature of the solutions to be found. If it is expected that there a finite number of discrete
solutions, locate/2 and locate/3 would be good choices. If solutions are expected to lie in a
continuous region, squash/3 may be more appropriate.

Locate works by nondeterministically splitting the domains of the variables until they are nar-
rower than a specified precision (in either absolute or relative terms). Consider the problem of
finding the points where two circles intersect (see Figure 9.4). Normal propagation does not
deduce more than the obvious bounds on the variables:

96

2

1

-2

-1

-1-2 21

Squashing solution

Bounds propagation
solution

3

3

Figure 9.5: Example of propagation using the squash algorithm

?- 4 $= X^2 + Y^2, 4 $= (X - 1)^2 + (Y - 1)^2.

X = X{-1.0000000000000004 .. 2.0000000000000004}

Y = Y{-1.0000000000000004 .. 2.0000000000000004}

There are 12 delayed goals.

Yes

Calling locate/2 quickly determines that there are two solutions and finds them to the desired
accuracy:

?- 4 $= X^2 + Y^2, 4 $= (X-1)^2 + (Y-1)^2, locate([X, Y], 1e-5).

X = X{-0.8228756603552696 .. -0.82287564484820042}

Y = Y{1.8228756448482002 .. 1.8228756603552694}

There are 12 delayed goals.

More

X = X{1.8228756448482004 .. 1.8228756603552696}

Y = Y{-0.82287566035526938 .. -0.82287564484820019}

There are 12 delayed goals.

Yes

Squash works by deterministically cutting off parts of the domains of variables which it deter-
mines cannot contain any solutions. In effect, it is like a stronger version of bounds propagation.
Consider the problem of finding the intersection of two circular discs and a hyperplane (see
Figure 9.5). Again, normal propagation does not deduce more than the obvious bounds on the
variables:

?- 4 $>= X^2 + Y^2, 4 $>= (X-1)^2 + (Y-1)^2, Y $>= X.

97

Y = Y{-1.0000000000000004 .. 2.0000000000000004}

X = X{-1.0000000000000004 .. 2.0000000000000004}

There are 13 delayed goals.

Yes

Calling squash/3 results in the bounds being tightened (in this case the bounds are tight for
the feasible region, though this is not true in general):

?- 4 $>= X^2 + Y^2, 4 $>= (X-1)^2 + (Y-1)^2, Y $>= X,

squash([X, Y], 1e-5, lin).

X = X{-1.0000000000000004 .. 1.4142135999632601}

Y = Y{-0.41421359996326 .. 2.0000000000000004}

There are 13 delayed goals.

Yes

⊙

For more details, see the IC chapter of the Library Manual or the documentation for the
individual predicates.

9.5 A larger example

Consider the following problem:

George is contemplating buying a farm which is a very strange shape, comprising a
large triangular lake with a square field on each side. The area of the lake is exactly
seven acres, and the area of each field is an exact whole number of acres. Given that
information, what is the smallest possible total area of the three fields?

A diagram of the farm is shown in Figure 9.6.
This is a problem which mixes both integer and real quantities, and as such is ideal for solving
with the IC library. A model for the problem appears below. The farm/4 predicate sets up the
constraints between the total area of the farm F and the lengths of the three sides of the lake,
A, B and C.

:- lib(ic).

farm(F, A, B, C) :-

[A, B, C] :: 0.0 .. 1.0Inf, % The 3 sides of the lake

triangle_area(A, B, C, 7), % The lake area is 7

[F, FA, FB, FC] :: 1 .. 1.0Inf, % The square areas are integral

square_area(A, FA),

square_area(B, FB),

square_area(C, FC),

F #= FA+FB+FC,

98

7

A

B

C

Figure 9.6: Triangular lake with adjoining square fields

FA $>= FB, FB $>= FC. % Avoid symmetric solutions

triangle_area(A, B, C, Area) :-

S $>= 0,

S $= (A+B+C)/2,

Area $= sqrt(S*(S-A)*(S-B)*(S-C)).

square_area(A, Area) :-

Area $= sqr(A).

A solution to the problem can then be found by first instantiating the area of the farm, and then
using locate/2 to find the lengths of the sides of the lakes. Instantiating the area of the farm
first ensures that the first solution returned will be the minimal one, since indomain/1 always
chooses the smallest possible value first:

solve(F) :-

farm(F, A, B, C), % the model

indomain(F), % ensure that solution is minimal

locate([A, B, C], 0.01).

99

9.6 Exercise

1. Consider the “farm” problem in section 9.5. (Source code may be found in farm.ecl, if
you have access to it.) Try running this program to find the answer. Note that other,
larger solutions are available by selecting more.

This implementation sums three integer variables (FA, FB and FC), and then constrains
their order to remove symmetries. Would this be a good candidate for the global constraint
ordered_sum/2? Modify the program so that it does use ordered_sum/2. How does the
run time compare with the original?

100

Chapter 10

The Integer Sets Library

10.1 Why Sets

The ic sets library is a solver for constraints over the domain of finite sets of integers. Modelling
with sets is useful for problems where one is not interested in each item as a specific individual,
but in a collection of item where no specific distinction is made and thus where symmetries
among the element values need to be avoided.

10.2 Finite Sets of Integers

In the context of the ic sets library, (ground) integer sets are simply sorted, duplicate-free lists
of integers e.g.

SetOfThree = [1,3,7]

EmptySet = []

Lists which contain non-integers, are unsorted or contain duplicates, are not sets in the sense of
this library.

10.3 Set Variables

Set variables are variables which can eventually take a ground integer set as their value. They
are characterized by a lower bound (the set of elements that are definitely in the set) and an
upper bound (the set of elements that may be in the set). A set variable can be declared as
follows:

SetVar :: []..[1,2,3,4,5,6,7]

If the lower bound is the empty set and the upper bound is a set of consecutive integers, one
can also declare it like

intset(SetVar, 1, 7)

which is equivalent to the above.
The system prints set variables in a particular way, for instance:

101

?Set :: ++Lwb..++Upb Set is an integer set within the given bounds

intset(?Set, +Min, +Max) Set is a set containing numbers between Min and Max

intsets(?Sets, ?N, +Min, +Max) Sets is a list of N sets containing numbers between
Min and Max

Figure 10.1: Declaring Set Variables

?- lib(ic_sets).

?- X :: [2,3]..[1,2,3,4].

X = X{[2, 3] \/ ([] .. [1, 4]) : _308{[2 .. 4]}}

The curly brackets contain the description of the current domain of the set variable in the form
of

1. the lower bound of the set (values which definitely are in the set)

2. the union symbol \/

3. the set of optional values (which may or may not be in the set)

4. a colon

5. a finite domain variable indicating the admissible cardinality for the set

10.4 Constraints

The constraints that ic sets implements are the usual relations over sets. The membership
(in/2, notin/2) and cardinality constraints (#/2) establish relationships between set variables
and integer variables:

?- X ::[]..[1, 2, 3], 2 in X, 3 in X, #(X, 2).

X = [2, 3]

Yes (0.01s cpu)

?- X :: []..[1, 2, 3, 4], 3 in X, 4 notin X.

X = X{[3] \/ ([] .. [1, 2]) : _2161{1 .. 3}}

Yes (0.00s cpu)

?X in ?Set The integer X is member of the integer set Set

?X notin ?Set The integer X is not a member of the integer set Set

#(?Set, ?Card) Card is the cardinality of the integer set Set

Figure 10.2: Membership and Cardinality Constraints

102

?Set1 sameset ?Set2 The sets Set1 and Set2 are equal

?Set1 disjoint ?Set2 The integer sets Set1 and Set2 are disjoint

?Set1 includes ?Set2 Set1 includes (is a superset) of the integer set Set2

?Set1 subset ?Set2 Set1 is a (non-strict) subset of the integer set Set2

intersection(?Set1, ?Set2, ?Set3) Set3 is the intersection of the integer sets Set1 and
Set2

union(?Set1, ?Set2, ?Set3) Set3 is the union of the integer sets Set1 and Set2

difference(?Set1, ?Set2, ?Set3) Set3 is the difference of the integer sets Set1 and Set2

symdiff(?Set1, ?Set2, ?Set3) Set3 is the symmetric difference of the integer sets Set1
and Set2

Figure 10.3: Basic Set Relations

Possible constraints between two sets are equality, inclusion/subset and disjointness:

?- X subset [1, 2, 3, 4].

X = X{([] .. [1, 2, 3, 4]) : _2139{0 .. 4}}

Yes (0.00s cpu)

?- X :: []..[1, 2, 3, 4], Y :: []..[3, 4, 5, 6], X subset Y.

X = X{([] .. [3, 4]) : _2176{0 .. 2}}

Y = Y{([] .. [3, 4, 5, 6]) : _2367{0 .. 4}}

There are 4 delayed goals.

Yes (0.00s cpu)

?- X :: [2] .. [1, 2, 3, 4], Y :: [3] .. [1, 2, 3, 4], X disjoint Y.

X = X{[2] \/ ([] .. [1, 4]) : _2118{1 .. 3}}

Y = Y{[3] \/ ([] .. [1, 4]) : _2213{1 .. 3}}

There are 2 delayed goals.

Yes (0.00s cpu)

Possible constraints between three sets are for example intersection, union, difference and sym-
metric difference. For example:

?- X :: [2, 3] .. [1, 2, 3, 4],

Y :: [3, 4] .. [3, 4, 5, 6],

ic_sets : intersection(X, Y, Z).

X = X{[2, 3] \/ ([] .. [1, 4]) : _2127{2 .. 4}}

Y = Y{[3, 4] \/ ([] .. [5, 6]) : _2222{2 .. 4}}

Z = Z{[3] \/ ([] .. [4]) : _2302{[1, 2]}}

There are 6 delayed goals.

103

all disjoint(+Sets) Sets is a list of integers sets which are all disjoint

all union(+Sets, ?SetUnion) SetUnion is the union of all the sets in the list Sets

all intersection(+Sets, ?SetIntersection) SetIntersection is the intersection of all the
sets in the list Sets

Figure 10.4: N-ary Set Relations

Yes (0.00s cpu)

⊗

Note that we needed to qualify the intersection/3 constraint with the ic sets module prefix
because of a name conflict with a predicate from the lists library of the same name.

⊗

Note the lack of a complement constraint: this is because the complement of a finite set
is infinite and cannot be represented. Complements can be modelled using an explicit
universal set and a difference constraint.

Finally, there are a number of n-ary constraints that apply to lists of sets: disjointness, union
and intersection. For example:

?- intsets(Sets, 5, 1, 5), all_intersection(Sets, Common).

Sets = [_2079{([] .. [1, 2, 3, 4, 5]) : _2055{0 .. 5}}, ...]

Common = Common{([] .. [1, 2, 3, 4, 5]) : _3083{0 .. 5}}

There are 24 delayed goals.

Yes (0.00s cpu)

In most positions where a set or set variable is expected one can also use a set expression. A
set expression is composed from ground sets (integer lists), set variables, and the following set
operators:

Set1 /\ Set2 % intersection

Set1 \/ Set2 % union

Set1 \ Set2 % difference

When such set expressions occur, they are translated into auxiliary intersection/3, union/3
and difference/3 constraints, respectively.

10.5 Search Support

The insetdomain/4 predicate can be used to enumerate all ground instantiations of a set
variable, much like indomain/1 in the finite domain case. Here is an example of the default
enumeration strategy:

?- X::[]..[1,2,3], insetdomain(X,_,_,_), writeln(X), fail.

[1, 2, 3]

[1, 2]

104

[1, 3]

[1]

[2, 3]

[2]

[3]

[]

Other enumeration strategies can be selected (see the Reference Manual on insetdomain/4).

10.6 Example

The following program computes so-called Steiner triplets. The problem is to compute triplets
of numbers between 1 and N, such that any two triplets have at most one element in common.

:- lib(ic_sets).

:- lib(ic).

steiner(N, Sets) :-

NB is N * (N-1) // 6, % compute number of triplets

intsets(Sets, NB, 1, N), % initialise the set variables

(foreach(S,Sets) do

#(S,3) % constrain their cardinality

),

(fromto(Sets,[S1|Ss],Ss,[]) do

(foreach(S2,Ss), param(S1) do

#(S1 /\ S2, C), % constrain the cardinality

C #=< 1 % of pairwise intersections

)

),

label_sets(Sets). % search

label_sets([]).

label_sets([S|Ss]) :-

insetdomain(S,_,_,_),

label_sets(Ss).

Running this program yields the following first solution:

?- steiner(9,X).

X = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],

[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],

[3, 5, 7], [3, 6, 8], [4, 7, 8], [5, 6, 9]] More? (;)

105

weight(?Set, ++ElementWeights, ?Weight) According to the array of element
weights, the weight of set Set1 is Weight

Figure 10.5: Set Weight Constraint

10.7 Weight Constraints

Another constraint between sets and integers is the weight/3 constraint. It allows the association
of weights to set elements, and can help when solving problems of the knapsack or bin packing
type. The constraint takes a set and an array of element weights and constrains the weight of
the whole set:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),

Weights = [](20, 34, 9, 12, 19),

weight(Container, Weights, W).

Container = Container{([] .. [1, 2, 3, 4, 5]) : _2127{0 .. 5}}

Weights = [](20, 34, 9, 12, 19)

W = W{0 .. 94}

There is 1 delayed goal.

Yes (0.01s cpu)

By adding a capacity limit and a search primitive, we can solve a knapsack problem:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),

Weights = [](20, 34, 9, 12, 19),

weight(Container, Weights, W),

W #=< 50,

insetdomain(Container,_,_,_).

Weights = [](20, 34, 9, 12, 19)

W = 41

Container = [1, 3, 4]

More (0.00s cpu)

By using the heuristic options provided by insetdomain, we can implement a greedy heuristic,
which finds the optimal solution (in terms of greatest weight) straight away:

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),

Weights = [](20, 34, 9, 12, 19),

weight(Container, Weights, W),

W #=< 50,

insetdomain(Container,decreasing,heavy_first(Weights),_).

W = 48

Container = [1, 3, 5]

Weights = [](20, 34, 9, 12, 19)

More (0.00s cpu)

106

10.8 Exercises

1. Consider the knapsack problem in section 10.7. Suppose that the items each have an
associated profit, namely 17, 38, 18, 10 and 5, respectively. Which items should be included
to maximise profit?

2. Write a predicate which, given a list of sizes of items and a list of capacities of buckets,
returns a list of (ground) sets indicating which items should go into each bucket. Obviously
each item should go into exactly one bucket.

Try it out with 5 items of sizes 20, 34, 9, 12 and 19, into 3 buckets of sizes 60, 20 and 20.

107

108

Chapter 11

Problem Modelling

11.1 Constraint Logic Programming

One of the main ambitions of Constraint Programming is the separation of Modelling, Algorithms
and Search. This is best characterised by two pseudo-equations. The first one is paraphrased
from Kowalski [12]

Solution = Logic + Control

and states that we intend to solve a problem by giving a logical, declarative description of the
problem and adding control information that enables a computer to deduce a solution.

The second equation

Control = Reasoning + Search

is motivated by a fundamental difficulty we face when dealing with combinatorial problems:
we do not have efficient algorithms for finding solutions, we have to resort to a combination of
reasoning (via efficient algorithms) and (inefficient) search.

We can consider every constraint program as an exercise in combining the 3 ingredients:

• Logic - The design of a declarative Model of the problem.

• Reasoning - The choice of clever Constraint Propagation algorithms that reduce the need
for search.

• Search - The choice of search strategies and heuristics for finding solutions quickly.

In this chapter we will focus on the first issue, Problem Modelling, and how it is supported
by ECLiPSe.

11.2 Issues in Problem Modelling

A good formalism for problem modelling should fulfil the following criteria:

• Expressive power - Can we write a formal model of the real world problem?

109

• Clarity for humans - How easily can the model be written, read, understood or modified?

• Solvability for computers - Are there good known methods to solve it?

Higher-level models are typically closer to the user and close to the problem and therefore easier
to understand and to trust, easier to debug and to verify, and easier to modify when customers
change their mind. On the other hand, it is not necessarily easy to see how they can be
solved, because high-level models contain high-level notions (e.g. sets, tasks) and heterogeneous
constraints.

The constraint programming approach also addresses one of the classical sources of error in
application development with traditional programming languages: the transition from a formal
description of the problem to the final program that solves it. The question is: Can the final
program be trusted? The Constraint (Logic) Programming solution is to

• Keep the initial formal model as part of the final program

• Enhance rather than rewrite

The process of enhancing the initial formal model involves for example

• Adding control annotations, e.g. algorithmic information or heuristic information.

• Transformation: Mapping high-level (problem) constraints into low-level (solver) con-
straints, possibly exploiting multiple, redundant mappings.

There are many other approaches to problem modelling software. The following is a brief
comparison:

Formal specification languages (e.g. Z, VDM) More expressive power than ECLiPSe, but
not executable

Mathematical modelling languages (e.g. OPL, AMPL) Similar to ECLiPSe, but usu-
ally limited expressive power, e.g. fixed set of constraints.

Mainstream programming languages (e.g. C++ plus solver library) Variables and con-
straints are ”aliens” in the language. Specification is mixed with procedural control.

Other CLP/high-level languages (e.g. CHIP) Most similar to ECLiPSe. Less support for
hybrid problem solving. Harder to define new constraints.

11.3 Modelling with CLP and ECLiPSe

When modelling problems with constraints, the basic idea is to set up a network of variables and
constraints. Figure 11.1 shows such a constraint network. It can be seen that the Constraint
Logic Programming (CLP) formulation

• is a natural declarative description of the constraint network

• can serve as a program to set up the constraint network

110

alldifferent#\=

X3{1..9}

Constraints

#>

X2{1.9}

predicates involving
one or more variables

e.g. domain
with attributes

Variables

Model
= setup program:
[X1,X2,X3,X4]::1..9,
X1 #> X2,
alldifferent([X2,X3,X4]),
X1 #\= X4.

X4{1..9}

X1{1..9}

Figure 11.1: A Constraint Network

The main ECLiPSe language constructs used in modelling are

Built-in constraints
X #> Y

Abstraction
before(task(Si,Di), task(Sj,Dj)) :- Si+Di #<= Sj.

Conjunction
between(X,Y,Z) :- X #< Y, Y #< Z.

Disjunction (but see below)
neighbour(X,Y) :- (X #= Y+1 ; Y #= X+1).

Iteration
not_among(X, L) :- (foreach(Y,L),param(X) do X #\= Y).

Recursion
not_among(X, []).

not_among(X, [Y|Ys]) :- X #\= Y, not_among(X, Ys).

11.4 Same Problem - Different Model

There are often many ways of modelling a problem. Consider the famous ”SEND + MORE =
MONEY” example:

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

Digits :: [0..9],

alldifferent(Digits),

111

S #\= 0, M #\= 0,

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y.

An alternative model is based on the classical decimal addition algorithm with carries:

sendmore(Digits) :-

Digits = [S,E,N,D,M,O,R,Y],

Digits :: [0..9],

Carries = [C1,C2,C3,C4],

Carries :: [0..1],

alldifferent(Digits),

S #\= 0,

M #\= 0,

C1 #= M,

C2 + S + M #= O + 10*C1,

C3 + E + O #= N + 10*C2,

C4 + N + R #= E + 10*C3,

D + E #= Y + 10*C4.

Both models work fine, but obviously involve different variables and constraints. Even though
high-level models reduce the need for finding sophisticated encodings of problems, finding good
models still requires substantial expertise and experience.

11.5 Rules for Modelling Code

In CLP, the declarative model is at the same time the constraint setup code. This code should
therefore be deterministic and terminating, so:

Careful with disjunctions Don’t leave choice-points (alternatives for backtracking). Choices
should be deferred until search phase.

Use only simple conditionals Conditions in (...->...;...) must be true or false at mod-
elling time!

Use only structural recursion and loops Termination conditions must be know at mod-
elling time!

11.5.1 Disjunctions

Disjunctions in the model should be avoided. Assume that a naive model would contain the
following disjunction:

112

% DO NOT USE THIS IN A MODEL

no_overlap(S1,D1,S2,D2) :- S1 #>= S2 + D2.

no_overlap(S1,D1,S2,D2) :- S2 #>= S1 + D1.

There are two basic ways of treating the disjunction:

• Deferring the choice until the search phase by introducing a decision variable.

• Changing the behaviour of the disjunction so it becomes a constraint (see also 14 and 15).

In the example, we can introduce a boolean variable B{0,1} which represents the choice. The
actual choice can be then be taken in search code by choosing a value for the variable. The
model code must then be changed to observe the decision variable, either using the delay facility
of ECLiPSe:

delay no_overlap(S1,D1,S2,D2,B) if var(B).

no_overlap(S1,D1,S2,D2,0) :- S1 #>= S2 + D2.

no_overlap(S1,D1,S2,D2,1) :- S2 #>= S1 + D1.

or using an arithmetic encoding like in

no_overlap(S1,D1,S2,D2,B) :-

B :: 0..1,

S1 + B*1000 #>= S2 + D2,

S2 + (1-B)*1000 #>= S1 + D1.

The alternative of turning the disjunction into a proper constraint is achieved most easily using
propia’s infer-annotation (see 15). The original formulation of neighbour/2 is kept but it is used
as follows:

..., no_overlap(S1,D2,S2,D2) infers most, ...

11.5.2 Conditionals

Similar considerations apply to conditionals where the condition is not decidable at constraint
setup time. For example, suppose we want to impose a no-overlap constraint only if two tasks
share the same resource. The following code is currently not safe in ECLiPSe:

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-

(Res1 #= Res2 -> % WRONG!!!

113

no_overlap(Start1, Dur1, Start2, Dur2)

;

true

)

The reason is that (at constraint setup time) Res1 and Res2 will most likely be still uninstan-
tiated. Therefore, the condition will in general delay (rather than succeed or fail), but the
conditional construct will erroneously take this for a success and take the first alternative.
Again, this can be handled using delay

delay nos(Res1, Res2, _, _, _, _) if nonground([Res1,Res2]).

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-

(Res1 == Res2 ->

no_overlap(Start1, Dur1, Start2, Dur2)

;

true

).

It might also be possible to compute a boolean variable indicating the truth of the condition.
This is particularly easy when a reified constraint can be used to express the condition, like in
this case:

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-

#=(Res1, Res2, Share),

cond_no_overlap(Start1, Dur1, Start2, Dur2, Share).

delay cond_no_overlap(_,_,_,_,Share) if var(Share).

cond_no_overlap(Start1, Dur1, Start2, Dur2, Share) :-

(Share == 1 ->

no_overlap(Start1, Dur1, Start2, Dur2)

;

true

).

11.6 Symmetries

Consider the following puzzle, where numbers from 1 to 19 have to be arranged in a hexagonal
shape such that every diagonal sums up to 38:

puzzle(Pattern) :-

Pattern = [

114

A,B,C,

D,E,F,G,

H,I,J,K,L,

M,N,O,P,

Q,R,S

],

Pattern :: 1 .. 19,

% Problem constraints

alldifferent(Pattern),

A+B+C #= 38, A+D+H #= 38, H+M+Q #= 38,

D+E+F+G #= 38, B+E+I+M #= 38, D+I+N+R #= 38,

H+I+J+K+L #= 38, C+F+J+N+Q #= 38, A+E+J+O+S #= 38,

M+N+O+P #= 38, G+K+O+R #= 38, B+F+K+P #= 38,

Q+R+S #= 38, L+P+S #= 38, C+G+L #= 38,

...

In this formulation, the problem has 12 solutions, but it turns out they are just rotated and
mirrored variants of each other. Removal of symmetries is still an area of active research, but a
simple method is applicable in situations like this one. One can add constraints which require the
solution to have certain additional properties, and so exclude many of the symmetric solutions:

...,

% Optional anti-symmetry constraints

% Forbid rotated solutions: require A to be the smallest corner

A #< C, A #< H, A #< L, A #< S, A #< Q,

% Forbid solutions mirrored on the A-S diagonal

C #< H.

115

116

Chapter 12

Tree Search Methods

12.1 Introduction

In this chapter we will take a closer look at the principles and alternative methods of searching
for solutions in the presence of constraints. Let us first recall what we are talking about. We
assume we have the standard pattern of a constraint program:

solve(Data) :-

model(Data, Variables),

search(Variables),

print_solution(Variables).

The model part contains the logical model of our problem. It defines the variables and the
constraints. Every variable has a domain of values that it can take (in this context, we only
consider domains with a finite number of values).

Once the model is set up, we go into the search phase. Search is necessary since generally
the implementation of the constraints is not complete, i.e. not strong enough to logically infer
directly the solution to the problem. Also, there may be multiple solutions which have to be
located by search, e.g. in order to find the best one. In the following, we will use the following
terminology:

• If a variable is given a value (from its domain, of course), we call this an assignment. If
every problem variable is given a value, we call this a total assignment.

• A total assignment is a solution if it satisfies all the constraints.

• The search space is the set of all possible total assignments. The search space is usually
very large because it grows exponentially with the problem size:

SearchSpaceSize = DomainSizeNumberOfV ariables

117

Figure 12.1: A search space of size 16

12.1.1 Overview of Search Methods

Figure 12.1 shows a search space with N (here 16) possible total assignments, some of which are
solutions. Search methods now differ in the way in which these assignments are visited. We can
classify search methods according to different criteria:

Complete vs incomplete exploration complete search means that the search space is in-
vestigated in such a way that all solutions are guaranteed to be found. This is necessary
when the optimal solution is needed (one has to prove that no better solution exists).
Incomplete search may be sufficient when just some solution or a relatively good solution
is needed.

Constructive vs move-based this indicates whether the method advances by incrementally
constructing assignments (thereby reasoning about partial assignments which represent
subsets of the search space) or by moving between total assignments (usually by modifying
previously explored assignments).

Randomness some methods have a random element while others follow fixed rules.

Here is a selection of search methods together with their properties:

Method exploration assignments random

Full tree search complete constructive no
Credit search incomplete constructive no
Bounded backtrack incomplete constructive no
Limited discrepancy complete constructive no
Hill climbing incomplete move-based possibly
Simulated annealing incomplete move-based yes
Tabu search incomplete move-based possibly
Weak commitment complete hybrid no

The constructive search methods usually organise the search space by partitioning it system-
atically. This can be done naturally with a search tree (Figure 12.2). The nodes in this tree
represent choices which partition the remaining search space into two or more (usually disjoint)
sub-spaces. Using such a tree structure, the search space can be traversed systematically and
completely (with as little as O(N) memory requirements).

Figure 12.4 shows a sample tree search, namely a depth-first incomplete traversal. As opposed
to that, figure 12.3 shows an example of an incomplete move-based search which does not follow
a fixed search space structure. Of course, it will have to take other precautions to avoid looping
and ensure termination.

118

Figure 12.2: Search space structured using a search tree

Figure 12.3: A move-based search

Figure 12.4: A tree search (depth-first)

119

A few further observations: Move-based methods are usually incomplete. This is not surprising
given typical sizes of search spaces. A complete exploration of a huge search space is only possible
if large sub-spaces can be excluded a priori, and this is only possible with constructive methods
which allow one to reason about whole classes of similar assignments. Moreover, a complete
search method must remember which parts of the search space have already been visited. This
can only be implemented with acceptable memory requirements if there is a simple structuring
of the space that allows compact encoding of sub-spaces.

12.1.2 Optimisation and Search

Many practical problems are in fact optimisation problems, ie. we are not just interested in some
solution or all solutions, but in the best solution.

Fortunately, there is a general method to find the optimal solution based on the ability to find
all solutions. The branch-and-bound technique works as follows:

1. Find a first solution

2. Add a constraint requiring a better solution than the best one we have so far (e.g. require
lower cost)

3. Find a solution which satisfies this new constraint. If one exists, we have a new best
solution and we repeat step 2. If not, the last solution found is the proven optimum.

The branch and bound library provides generic predicates which implement this technique:

minimize(+Goal,-Cost) This is the simplest predicate in the branch and bound library: A
solution of the goal Goal is found that minimizes the value of Cost. Cost should be a
variable that is affected, and eventually instantiated, by the execution of Goal. Usually,
Goal is the search procedure of a constraint problem and Cost is the variable representing
the cost.

bb min(+Goal, -Cost, ++Options) A more flexible version where the programmer can take
more control over the branch and bound behaviour and choose between different strategies
and parameter settings.

12.1.3 Heuristics

Since search space sizes grow exponentially with problem size, it is not possible to explore all
assignments except for the very smallest problems. The only way out is not to look at the whole
search space. There are only two ways to do this:

• Prove that certain areas of the space contain no solutions. This can be done with the
help of constraints. This is often referred to as pruning.

• Ignore parts of the search space that are unlikely to contain solutions (i.e. do incomplete
search), or at least postpone their exploration. This is done by using heuristics. A heuristic
is a particular traversal order of the search space which explores promising areas first.

120

In the following sections we will first investigate the considerable degrees of freedom that are
available for heuristics within the framework of systematic tree search, which is the traditional
search method in the Constraint Logic Programming world.

Subsequently, we will turn our attention to move-based methods which in ECLiPSe can be
implemented using the facilities of the repair library.

12.2 Complete Tree Search with Heuristics

There is one form of tree search which is especially economic: depth-first, left-to-right search by
backtracking. It allows a search tree to be traversed systematically while requiring only a stack
of maximum depth N for bookkeeping. Most other strategies of tree search (e.g. breadth-first)
have exponential memory requirements. This unique property is the reason why backtracking
is a built feature of ECLiPSe. Note that the main disadvantage of the depth-first strategy (the
danger of going down an infinite branch) does not come into play here because we deal with
finite search trees.

Sometimes depth-first search and heuristic search are treated as antonyms. This is only justified
when the shape of the search tree is statically fixed. Our case is different: we have the freedom
of deciding on the shape of every sub-tree before we start to traverse it depth-first. While
this does not allow for absolutely any order of visiting the leaves of the search tree, it does
provide considerable flexibility. This flexibility can be exploited by variable and value selection
strategies.

12.2.1 Search Trees

In general, the nodes of a search tree represent choices. These choices should be mutually
exclusive and therefore partition the search space into two or more disjoint sub-spaces. In other
words, the original problem is reduced to a disjunction of simpler sub-problems.

In the case of finite-domain problems, the most common form of choice is to choose a particular
value for a problem variable (this technique is often called labeling). For a boolean variable,
this means setting the variable to 0 in one branch of the search tree and to 1 in the other. In
ECLiPSe, this can be written as a disjunction (which is implemented by backtracking):

(X1=0 ; X1=1)

Other forms of choices are possible. If X2 is a variable that can take integer values from 0 to 3
(assume it has been declared as X2::0..3), we can make a n-ary search tree node by writing

(X2=0 ; X2=1 ; X2=2 ; X2=3)

or more compactly

indomain(X2)

However, choices do not necessarily involve choosing a concrete value for a variable. It is also
possible to make disjoint choices by domain splitting, e.g.

(X2 #=< 1 ; X2 #>= 2)

121

X2

(1,2)(1,0)(0,3)(0,2)(0,1)(0,0) (1,1) (1,3)

0 1

3210 0 1 2 3

X2

X1

0 1 32

0 0 0 01 1 1 1

(0,0) (0,1) (0,2) (0,3)(1,0) (1,1) (1,2) (1,3)

X1 X1 X1 X1

X2

Figure 12.5: The effect of variable selection

or by choosing a value in one branch and excluding it in the other:

(X2 = 0 ; X2 #>= 1)

In the following examples, we will mainly use simple labeling, which means that the search tree
nodes correspond to a variable and a node’s branches correspond to the different values that the
variable can take.

12.2.2 Variable Selection

Figure 12.5 shows how variable selection reshapes a search tree. If we decide to choose values
for X1 first (at the root of the search tree) and values for X2 second, then the search tree has
one particular shape. If we now assume a depth-first, left-to-right traversal by backtracking, this
corresponds to one particular order of visiting the leaves of the tree: (0,0), (0,1), (0,2), (0,3),
(1,0), (1,1), (1,2), (1,3).

If we decide to choose values for X2 first and X1 second, then the tree and consequently the
order of visiting the leaves is different: (0,0), (1,0), (0,1), (1,1), (0,2), (1,2), (0,3), (1,3).

While with 2 variables there are only 2 variable selection strategies, this number grows expo-
nentially with the number of variables. For 5 variables there are already 22

5
−1 = 2147483648

different variable selection strategies to choose from.

Note that the example shows something else: If the domains of the variables are different, then
the variable selection can change the number of internal nodes in the tree (but not the number
of leaves). To keep the number of nodes down, variables with small domains should be selected
first.

122

X2

1

X2

X1

1 0

02 1 3 20

(1,2) (1,1) (1,0) (1,3) (0,1) (0,3) (0,0) (0,2)

3

Figure 12.6: The effect of value selection

12.2.3 Value Selection

The other way to change the search tree is value selection, i.e. reordering the child nodes of a
node by choosing the values from the domain of a variable in a particular order. Figure 12.6
shows how this can change the order of visiting the leaves: (1,2), (1,1), (1,0), (1,3), (0,1), (0,3),
(0,0), (0,2).
By combining variable and value selection alone, a large number of different heuristics can be
implemented. To give an idea of the numbers involved, table 12.7 shows the search space sizes,
the number of possible search space traversal orderings, and the number of orderings that can
be obtained by variable and value selection (assuming domain size 2).

12.2.4 Example

We use the famous N-Queens problem to illustrate how heuristics can be applied to backtrack
search through variable and value selection. We model the problem with one variable per queen,
assuming that each queen occupies one colunm. The variables range from 1 to N and indicate
the row in which the queen is being placed. The constraints ensure that no two queens occupy
the same row or diagonal:

:- lib(ic).

queens(N, Board) :-

length(Board, N),

Board :: 1..N,

(fromto(Board, [Q1|Cols], Cols, []) do

(foreach(Q2, Cols), count(Dist,1,_), param(Q1) do

noattack(Q1, Q2, Dist)

)

).

noattack(Q1,Q2,Dist) :-

Q2 #\= Q1,

Q2 - Q1 #\= Dist,

Q1 - Q2 #\= Dist.

123

Variables Search space Visiting orders Selection Strategies

1 2 2 2
2 4 24 16
3 8 40320 336
4 16 2.1 ∗ 1013 1.8 ∗ 107

5 32 2.6 ∗ 1035 3.5 ∗ 1015

n 2n 2n! 22
n
−1

∏n−1

i=0
(n − 1)2

i

Figure 12.7: Flexibility of Variable/Value Selection Strategies

We are looking for a first solution to the 16-queens problem by calling

?- queens(16, Vars), % model

labeling(Vars). % search

We start naively, using the pre-defined labeling-predicate that comes with the ic library. It is
defined as follows:

labeling(AllVars) :-

(foreach(Var, AllVars) do

indomain(Var) % select value

).

The strategy here is simply to select the variables from left to right as they occur in the list, and
they are assigned values starting from the lowest to the numerically highest they can take (this
is the definition of indomain/1). A solution is found after 542 backtracks (see section 12.2.5
below for how to count backtracks).

A first improvement is to employ a general-purpose variable-selection heuristic, the so
called first-fail principle. It requires to label the variables with the smallest domain first. This
reduces the branching factor at the root of the search tree and the total number of internal
nodes. The delete/5 predicate from the ic search library implements this strategy for finite
integer domains. Using delete/5, we can redefine our labeling-routine as follows:

:- lib(ic_search).

labeling_b(AllVars) :-

(fromto(AllVars, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select

indomain(Var) % select value

).

124

Indeed, for the 16-queens example, this leads to a dramatic improvement, the first solution
is found with only 3 backtracks now. But caution is necessary: The 256-queens instance for
example solves nicely with the naive strategy, but our improvement leads to a disappointment:
the time increases dramatically! This is not uncommmon with heuristics: one has to keep in
mind that the search space is not reduced, just re-shaped. Heuristics that yield good results
with some problems can be useless or counter-productive with others. Even different instances
of the same problem can exhibit widely different characteristics.
Let us try to employ a problem-specific heuristic: Chess players know that pieces in the
middle of the board are more useful because they can attack more fields. We could therefore
start placing queens in the middle of the board to reduce the number of unattacked fields earlier.
We can achieve that simply by pre-ordering the variables such that the middle ones are first in
the list:

labeling_c(AllVars) :-

middle_first(AllVars, AllVarsPreOrdered), % static var-select

(foreach(Var, AllVarsPreOrdered) do

indomain(Var) % select value

).

The implementation of middle first/2 requries a bit of list manipulation and uses primitives from
the lists-library:

:- lib(lists).

middle_first(List, Ordered) :-

halve(List, Front, Back),

reverse(Front, RevFront),

splice(Back, RevFront, Ordered).

This strategy also improves things for the 16-queens instance, the first solution requires 17
backtracks.
We can now improve things further by combining the two variable-selection strategies: When
we pre-order the variables such that the middle ones are first, the delete/5 predicate will prefer
middle variables when several have the same domain size:

labeling_d(AllVars) :-

middle_first(AllVars, AllVarsPreOrdered), % static var-select

(fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select

indomain(Var) % select value

).

125

N = 8 12 14 16 32 64 128 256

labeling a 10 15 103 542
labeling b 10 16 11 3 4 148
labeling c 0 3 22 17
labeling d 0 0 1 0 1 1
labeling e 3 3 38 3 7 1 0 0

Figure 12.8: N-Queens with different labeling strategies: Number of backtracks

The result is positive: for the 16-queens instance, the number of backtracks goes down to zero,
and more difficult instances become solvable!
Actually, we have not yet implemented our intuitive heuristics properly. We start placing queens
in the middle columns, but not on the middle rows. With our model, that can only be achieved
by changing the value selection, ie. setting the variables to values in the middle of their
domain first. For this we can use indomain/2, a more flexible variant of indomain/1, provided
by the ic search library. It allows us to specify that we want to start labeling with the middle
value in the domain:

labeling_e(AllVars) :-

middle_first(AllVars, AllVarsPreOrdered), % static var-select

(fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select

indomain(Var, middle) % select value

).

Surprisingly, this improvement again increases the backtrack count for 16-queens again to 3.
However, when looking at a number of different instances of the problem, we can observe that
the overall behaviour has improved and the performance has become more predictable than with
the initial more naive strategies. Figure 12.2.4 shows the behaviour of the different strategies
on various problem sizes.

12.2.5 Counting Backtracks

An interesting piece of information during program development is the number of backtracks.
It is a good measure for the quality of both constraint propagation and search heuristics. We
can instrument our labeling routine as follows:

labeling(AllVars) :-

init_backtracks,

(foreach(Var, AllVars) do

count_backtracks, % insert this before choice!

indomain(Var)

),

126

get_backtracks(B),

printf("Solution found after %d backtracks%n", [B]).

The backtrack counter itself can be implemented by the code below. It uses a non-logical
counter variable (backtracks) and an additional flag (deep fail) which ensures that backtracking
to exhausted choices does not increment the count.

:- local variable(backtracks), variable(deep_fail).

init_backtracks :-

setval(backtracks,0).

get_backtracks(B) :-

getval(backtracks,B).

count_backtracks :-

setval(deep_fail,false).

count_backtracks :-

getval(deep_fail,false), % may fail

setval(deep_fail,true),

incval(backtracks),

fail.

Note that there are other possible ways of defining the number of backtracks. However, the one
suggested here has the following useful properties:

• Shallow backtracking (an attempt to instantiate a variable which causes immediate failure
due to constraint propagation) is not counted. If constraint propagation works well, the
count is therefore zero.

• With a perfect heuristic, the first solution is found with zero backtracks.

• If there are N solutions, the best achievable value is N (one backtrack per solution). Higher
values indicate an opportunity to improve pruning by constraints.

The search/6 predicates from the libary ic_search have this backtrack counter built-in.

12.3 Incomplete Tree Search

The library ic_search contains a flexible search routine search/6, which implements several
variants of incomplete tree search.

For demonstration, we will use the N-queens problem from above. The following use of search/6
is equivalent to labeling(Xs) and will print all 92 solutions:

127

bbs(10)

Figure 12.9: Bounded-backtrack search

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, complete, []),

writeln(Xs),

fail.

[1, 5, 8, 6, 3, 7, 2, 4]

...

[8, 4, 1, 3, 6, 2, 7, 5]

No.

12.3.1 First Solution

One of the easiest ways to do incomplete search is to simply stop after the first solution has
been found. This is simply programmed using cut or once/1:

?- queens(8, Xs),

once search(Xs, 0, input_order, indomain, complete, []),

writeln(Xs),

fail.

[1, 5, 8, 6, 3, 7, 2, 4]

No.

This will of course not speed up the finding of the first solution.

12.3.2 Bounded Backtrack Search

Another way to limit the scope of backtrack search is to keep a record of the number of back-
tracks, and curtail the search when this limit is exceeded. The bbs option of the search/6
predicate implements this:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, bbs(20), []),

writeln(Xs),

fail.

[1, 5, 8, 6, 3, 7, 2, 4]

[1, 6, 8, 3, 7, 4, 2, 5]

128

dbs(2, bbs(0))

Figure 12.10: Depth-bounded, combined with bounded-backtrack search

[1, 7, 4, 6, 8, 2, 5, 3]

[1, 7, 5, 8, 2, 4, 6, 3]

No.

Only the first 4 solutions are found, the next solution would have required more backtracks than
were allowed. Note that the solutions that are found are all located on the left hand side of the
search tree. This often makes sense because with a good search heuristic, the solutions tend to
be towards the left hand side. Figure 12.9 illustrates the effect of bbs (note that the diagram
does not correspond to the queens example, it shows an unconstrained search tree with 5 binary
variables).

12.3.3 Depth Bounded Search

A simple method of limiting search is to limit the depth of the search tree. In many constraint
problems with a fixed number of variables this is not very useful, since all solutions occur at the
same depth of the tree. However, one may want to explore the tree completely up to a certain
depth and switch to an incomplete search method below this depth. The search/6 predicate
allows for instance the combination of depth-bounded search with bounded-backtrack search.
The following explores the first 2 levels of the search tree completely, and does not allow any
backtracking below this level. This gives 16 solutions, equally distributed over the search tree:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, dbs(2,bbs(0)), []),

writeln(Xs),

fail.

[3, 5, 2, 8, 1, 7, 4, 6]

[3, 6, 2, 5, 8, 1, 7, 4]

[4, 2, 5, 8, 6, 1, 3, 7]

[4, 7, 1, 8, 5, 2, 6, 3]

[4, 8, 1, 3, 6, 2, 7, 5]

[5, 1, 4, 6, 8, 2, 7, 3]

[5, 2, 4, 6, 8, 3, 1, 7]

[5, 3, 1, 6, 8, 2, 4, 7]

[5, 7, 1, 3, 8, 6, 4, 2]

[6, 4, 1, 5, 8, 2, 7, 3]

129

[7, 1, 3, 8, 6, 4, 2, 5]

[7, 2, 4, 1, 8, 5, 3, 6]

[7, 3, 1, 6, 8, 5, 2, 4]

[8, 2, 4, 1, 7, 5, 3, 6]

[8, 3, 1, 6, 2, 5, 7, 4]

[8, 4, 1, 3, 6, 2, 7, 5]

No (0.18s cpu)

12.3.4 Credit Search

Credit search[1] is a tree search method where the number of nondeterministic choices is limited
a priori. This is achieved by starting the search at the tree root with a certain integral amount
of credit. This credit is split between the child nodes, their credit between their child nodes, and
so on. A single unit of credit cannot be split any further: subtrees provided with only a single
credit unit are not allowed any nondeterministics choices, only one path though these subtrees
can be explored, i.e. only one leaf in the subtree can be visited. Subtrees for which no credit is
left are pruned, i.e. not visited.

The following code (a replacement for labeling/1) implements credit search. For ease of under-
standing, it is limited to boolean variables:

% Credit search (for boolean variables only)

credit_search(Credit, Xs) :-

(

foreach(X, Xs),

fromto(Credit, ParentCredit, ChildCredit, _)

do

(var(X) ->

ParentCredit > 0, % possibly cut-off search here

(% Choice

X = 0, ChildCredit is (ParentCredit+1)//2

;

X = 1, ChildCredit is ParentCredit//2

)

;

ChildCredit = ParentCredit

)

).

Note that the leftmost alternative (here X=0) gets slightly more credit than the rightmost one
(here X=1) by rounding the child node’s credit up rather than down. This is especially relevant
when the leftover credit is down to 1: from then on, only the leftmost alternatives will be taken
until a leaf of the search tree is reached. The leftmost alternative should therefore be the one
favoured by the search heuristics.

130

credit(16)

Figure 12.11: Credit-based incomplete search

What is a reasonable amount of credit to give to a search? In an unconstrained search tree, the
credit is equivalent to the number of leaf nodes that will be reached. The number of leaf nodes
grows exponentially with the number of labelled variables, while tractable computations should
have polynomial runtimes. A good rule of thumb could therefore be to use as credit the number
of variables squared or cubed, thus enforcing polynomial runtime.
Note that this method in its pure form allows choices only close to the root of the search tree,
and disallows choices completely below a certain tree depth. This is too restrictive when the
value selection strategy is not good enough. A possible remedy is to combine credit search with
bounded backtrack search.
The implementation of credit search in the search/6 predicate works for arbitrary domain vari-
ables: Credit is distributed by giving half to the leftmost child node, half of the remaining credit
to the second child node and so on. Any remaining credit after the last child node is lost. In
this implementation, credit search is always combined with another search method which is to
be used when the credit runs out.
When we use credit search in the queens example, we get a limited number of solutions, but
these solutions are not the leftmost ones (like with bounded-backtrack search), they are from
different parts of the search tree, although biased towards the left:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, credit(20,bbs(0)), []),

writeln(Xs),

fail.

[2, 4, 6, 8, 3, 1, 7, 5]

[2, 6, 1, 7, 4, 8, 3, 5]

[3, 5, 2, 8, 1, 7, 4, 6]

[5, 1, 4, 6, 8, 2, 7, 3]

No.

We have used a credit limit of 20. When credit runs out, we switch to bounded backtrack search
with a limit of 0 backtracks.

12.3.5 Timeout

Another form of incomplete tree search is simply to use time-outs. The branch-and-bound
primitives bb_min/3,6 allow a maximal runtime to be specified. If a timeout occurs, the best

131

lds(1)

Figure 12.12: Incomplete search with LDS

solution found so far is returned instead of the proven optimum.

A general timeout is available from the library test_util. It has parameters timeout(Goal,

Seconds, TimeOutGoal). When Goal has run for more than Seconds seconds, it is aborted and
TimeOutGoal is called instead.

12.3.6 Limited Discrepancy Search

Limited discrepancy search (LDS) is a search method that assumes the user has a good heuristic
for directing the search. A perfect heuristic would, of course, not require any search. However
most heuristics are occasionally misleading. Limited Discrepancy Search follows the heuristic
on almost every decision. The “discrepancy” is a measure of the degree to which it fails to follow
the heuristic. LDS starts searching with a discrepancy of 0 (which means it follows the heuristic
exactly). Each time LDS fails to find a solution with a given discrepancy, the discrepancy is
increased and search restarts. In theory the search is complete, as eventually the discrepancy
will become large enough to admit a solution, or cover the whole search space. In practice,
however, it is only beneficial to apply LDS with small discrepancies. Subsequently, if no solution
is found, other search methods should be tried. The definitive reference to LDS is [29]

There are different possible ways of measuring discrepancies. The one implemented in the
search/6 predicate is a variant of the original proposal. It considers the first value selection
choice as the heuristically best value with discrepancy 0, the first alternative has a discrepancy
of 1, the second a discrepancy of 2 and so on.

As LDS relies on a good heuristic, it only makes sense for the queens problem if we use a
good heuristic, e.g. first-fail variable selection and indomain-middle value selection. Allowing a
discrepancy of 1 yields 4 solutions:

?- queens(8, Xs),

search(Xs, 0, first_fail, indomain_middle, lds(1), []),

writeln(Xs),

fail.

[4, 6, 1, 5, 2, 8, 3, 7]

[4, 6, 8, 3, 1, 7, 5, 2]

[4, 2, 7, 5, 1, 8, 6, 3]

[5, 3, 1, 6, 8, 2, 4, 7]

No.

132

The reference also suggests that combining LDS with Bounded Backtrack Search (BBS) yields
good behaviour. The search/6 predicate accordingly supports the combination of LDS with BBS
and DBS. The rationale for this is that heuristic choices typically get more reliable deeper down
in the search tree.

12.4 Exercises

For exercises 1-3, start from the constraint model for the queens problem given in section 12.2.4.
It is available in the examples directory as queens ic.ecl.

1. Use the search/6 predicate from the ic search library and the standard model for the queens
problem (given below) to find ONE solution to the 42-queens problem. With a naive search
strategy this requires millions of backtracks. Using heuristics and/or incomplete search,
try to find a solution in less than 100 backtracks!

2. How many solutions does the 9-queens problem have?

3. Solve the ”8 sticky queens problem”: Assume that the queens in neighbouring columns
want to stick together as close as possible. Minimize the sum of the vertical distances
between neighbouring queens. What is the best and what is the worst solution for this
problem?

4. For given N, create a list of length N whose members are numbers between 1 and N
(inclusive), which are all different (easy so far) and satisfy the following constraint. For
each element E of the list, its successors are divided into two sets,

• BiggerE: the successors which are greater than E and

• SmallerE: the successors less than E.

(Thus no successor takes the same value as E). The cardinalities of the sets BiggerE and
SmallerE differ by at most 1.

5. A harder version of the problem is similar. For given N, create a list of length N whose
members are numbers between 1 and some upper bound Max (start with, say Max = N2),
which are all different (easy so far) and satisfy the following (more complex) constraint.
For each K from 1..N, call the Kth element of the list Ek. Its successors are divided into
two sets, as before:

• BiggerEk: the successors which are greater than or equal to Ek + K and

• SmallerEk: the successors less than or equal to Ek - K.

(Thus no successor takes a value between Ek-K+1 and Ek+K-1.) The cardinalities of the
sets BiggerEk and SmallerEk differ by at most 1.

What is the smallest upper bound Max for which there is a feasible solution?

133

134

Chapter 13

Repair and Local Search

13.1 Motivation

Constraint logic programming uses logical variables. This means that when a variable is instan-
tiated, its value must satisfy all the constraints on the variable. For example if the program
includes the constraint X >= 2, then any attempt to instantiate X to a value less than 2 will
fail.

However, there are various contexts and methods in which it is useful to associate (temporarily)
a value with a variable that does not satisfy all the constraints on the variable. Generally this
is true of repair techniques. These methods start with a complete, infeasible, assignment of
values to variables and change the values of the variables until a feasible assignment is found.

Repair methods are useful in the case where a problem has been solved, but subsequently external
changes to the problem render the solution infeasible. This is the normal situation in scheduling
applications, where machines and vehicles break down, and tasks are delayed.

Repair methods are also useful for solving problems which can be broken down into quasi-
independent simpler subproblems. Solutions to the subproblems which are useful for solving
the complete problem, may not be fully compatible with each other, or even completely feasible
with respect to the full problem.

Finally there are techniques such as conflict minimisation which seek solutions that minimise
infeasibility. These techniques can be treated as optimisation algorithms, whose constraints are
wrapped into the optimisation function. However they can also be treated as repair problems,
which means that the constraints can propagate actively during problem solving.

13.2 Syntax

13.2.1 Setting and Getting Tentative Values

With the repair library each variable can be given a tentative value. This is different from
instantiating the variable. Rather the tentative value is a piece of updatable information asso-
ciated with the variable. The tentative value can be changed repeatedly during search, not just
on backtracking. The value is set using the syntax tent_set, and retrieved using tent_get.
For example the following query writes first 1 and then 2:

135

Repair is used for:

• Re-solving problems which have been modified

• Combining subproblem solutions and algorithms

• Implementing local search

• Implementing powerful search heuristics

Figure 13.1: Uses of Repair

?- X tent_set 1,

X tent_get Tent1,

writeln(Tent1),

X tent_set 2,

X tent_get Tent2,

writeln(Tent2).

Throughout this query X remains a variable.

A tentative variable may violate constraints. The following query writes succeed, because
setting the tentative value to 1 does not cause a failure:

?- X $> 2,

X tent_set 1,

writeln(succeed).

13.2.2 Building and Accessing Conflict Sets

The relation between constraints and tentative values can be maintained in two ways. The first
method is by monitoring a constraint for conflicts.

?- X $> 2 r_conflict myset,

X tent_set 1,

writeln(succeed).

This query also succeeds - but additionally it creates a conflict set named myset. Because
X$ > 2 is violated by the tentative value of X, the constraint is recorded in the conflict set.
The conflict set written out by the following query is [X{1} $> 2]:

?- X $> 2 r_conflict myset,

X tent_set 1,

conflict_constraints(myset,Conflicts),

writeln(Conflicts).

The conflict can be repaired by changing the tentative value of the variable which causes it:

136

Repair supports the following primitives:

• tent_set/2

• tent_get/2

• r_conflict/2

• conflict_constraints/2

• tent_is/2

(and some others that are not covered in this tutorial).

Figure 13.2: Syntax

?- X $> 2 r_conflict myset,

X tent_set 1,

conflict_constraints(myset,Conflicts),

X tent_set 3,

conflict_constraints(myset,NoConflicts).

This program instantiates Conflicts to [X{1} $> 2], but NoConflicts is instantiated to [].

13.2.3 Propagating Conflicts

Arithmetic equality (=:=, $=) constraints, instead of monitoring for conflicts, can be maintained
by propagating tentative values. To do so, they must be rewritten in a functional syntax.
Consider the constraint X =:= Y+1. For propagation of tentative values, this must be rewritten
in the form X tent_is Y+1. If the tentative value of Y is set to 1, then this will be propagated
to the tentative value of X. The following query writes out the value 2.

?- X tent_is Y+1,

Y tent_set 1,

X tent_get(TentX),

writeln(TentX).

Each time the tentative value of Y is changed, the value of X is kept in step, so the following
writes out the value 3:

?- X tent_is Y+1,

Y tent_set 1,

Y tent_set 2,

X tent_get(TentX),

writeln(TentX).

137

13.3 Repairing Conflicts

If all the constraints of a problem are monitored for conflicts, then the problem can be solved
by:

• Finding an initial assignment of tentative values for all the problem variables

• Finding a constraint in conflict, and labelling a variable in this constraint

• Instantiating the remaining variables to their tentative values, when there are no more
constraints in conflict

Consider a satisfiability problem with each clause represented by an ic constraint, whose form
is illustrated by the following example: (X1 or neg X2 or X3 $= 1. This represents the clause
X1 ∨ ¬X2 ∨ X3.

To apply conflict minimisation to this problem use the predicate:

• tent_init to find an initial solution

• conflict_constraints and term_variables to find a variable to label

• set_to_tent to set the remaining variables to their tentative values

The code is as follows:

prop_sat_1(Vars) :-

Vars = [X1,X2,X3],

tent_init(Vars),

(X1 or neg X2 or X3 $= 1) r_conflict cs,

(neg X1 or neg X2 $= 1) r_conflict cs,

(X2 or neg X3 $= 1) r_conflict cs,

min_conflicts(Vars).

tent_init(List) :-

(foreach(Var,List) do Var tent_set 1).

min_conflicts(Vars) :-

conflict_constraints(cs,List),

(List = [] -> set_to_tent(Vars) ;

List = [Constraint|_] ->

term_variables(Constraint,[Var|_]),

guess(Var),

min_conflicts(Vars)

).

guess(0).

guess(1).

138

set_to_tent(Term) :-

Term tent_get Tent,

Term = Tent.

The value choice predicate guess is naive. Since the variable occurs in a conflict constraint it
would arguably be better to label it to another value. This would be implemented as follows:

guess(Var) :-

Var tent_get Value,

(Value = 0 -> (Var=1 ; Var=0)

; Value = 1 -> (Var=0 ; Var=1)

).

13.3.1 Combining Repair with IC Propagation

To illustrate a combination of repair with ic propagation we tackle a scheduling example. The
problem involves tasks with unknown start times, and known durations, which are related by
a variety of temporal constraints. These temporal constraints are handled, for the purposes of
this example, by ic. The temporal constraints are encoded thus:

before(TimePoint1,Interval,TimePoint2) :-

TimePoint1+Interval #=< TimePoint2.

TimePoint1 and TimePoint2 are variables (or numbers), but we assume, for this example, that
the Interval is a number. This constraint can enforce a minimum separation between start
times, or a maximum separation (if the Interval is negative). It can also enforce constraints
between end times, by adjusting the Interval to account for the task durations.
Additionally we assume that certain tasks require the same resource and cannot therefore proceed
at the same time. The resource constraint is encoded thus:

noclash(Start1,Duration1,Start2,_) :-

Start2 #>= Start1+Duration1.

noclash(Start1,_,Start2,Duration2) :-

Start1 #>= Start2+Duration2.

Suppose the requirement is to complete the schedule as early as possible. To express this we
introduce a last time point End which is constrained to come after all the tasks. Ignoring the
resource constraints, the temporal constraints are easily handled by ic. The optimal solution is
obtained simply by posting the temporal constraints and then instantiating each start time to
the lowest value in its domain.

139

To deal with the resource constraints conflict minimisation is used. The least (i.e. optimal) value
in the domain of each variable is chosen as its tentative value, at each node of the search tree.

To fix a constraint in conflict, we simply invoke its nondetermistic definition, and ECLiPSe then
unfolds the first clause and sends the new temporal constraint Start2 #>= Start1+Duration1

to ic. On backtracking, the second clause will be unfolded instead.

After fixing a resource constraint, and posting a new temporal constraint, ic propagation takes
place, and then the tentative values are changed to the new ic lower bounds.

The code is simply this:

:- lib(ic), lib(repair), lib(branch_and_bound).

schedule(Starts,End) :-

Starts = [S1,S2,...,End],

Starts :: 0..1000,

before(S2,5,S1),

before(S1,8,End),

...

noclash(S1,4,S2,8) r_conflict resource_cons,

...

minimize(repair_ic(Starts),End).

repair_ic(Starts) :-

set_tent_to_min(Starts),

conflict_constraints(resource_cons,List),

(List = [] ->

set_to_tent(Starts)

; List = [Constraint|_] ->

call(Constraint),

repair_ic(Starts)

).

set_tent_to_min(Vars) :-

(foreach(Var,Vars)

do

get_min(Var,Min),

Var tent_set Min

).

This code is much more robust than the traditional code for solving the bridge scheduling
example from [27]. The code is in the examples directory file bridge_repair.pl.

This algorithm uses the ic solver to:

• Enforce the consistency of the temporal constraints

• Set the tentative values to an optimal solution (of this relaxation of the original problem)

140

Repair naturally supports conflict minimisation. This algorithm can be combined with
other solvers, such as ic, and with optimization.

Figure 13.3: Conflict Minimisation

This technique is called probing. The use of the eplex solver, instead of ic for probing is
described in chapter 17 below.

13.4 Introduction to Local Search

13.4.1 Changing Tentative Values

From a technical point of view, the main difference between tree search and local (or move-based)
search is that tree search adds assignments while local search changes them. During tree search
constraints get tightened when going down the tree, and this is undone in reverse order when
backing up the tree to a parent node. This fits well with the idea of constraint propagation.
It is characteristic of local search that a move produces a small change, but it is not clear
what effect this will have on the constraints. They may become more or less satisfied. We
therefore need implementations of the constraints that monitor changes rather than propagate
instantiations.
Local search can be implemented quite naturally in ECLiPSe using the repair library. In
essence, the difference between implementing tree search techniques and local search in ECLiPSe

is that, instead of instantiating variables during search, local search progresses by changing
tentative values of variables. For the satisfiability example of the last section, we can change
min_conflicts to local_search by simply replacing the guess predicate by the predicate move:

local_search(Vars) :-

conflict_constraints(cs,List),

(List = [] ->

set_to_tent(Vars)

; List = [Constraint|_] ->

term_variables(Constraint,[Var|_]),

move(Var),

local_search(Vars)

).

move(Var) :-

Var tent_get Value,

NewValue is (1-Value),

Var tent_set NewValue.

There is no guarantee that this move will reach a better assignment, since NewValue may violate
more constraints than the original Value.

141

13.4.2 Hill Climbing

To find a neighbour which overall increases the number of satisfied constraints we could replace
local_search with the predicate hill_climb:

hill_climb(Vars) :-

conflict_constraints(cs,List),

length(List,Count),

(Count = 0 ->

set_to_tent(Vars)

; try_move(List,NewCount), NewCount < Count ->

hill_climb(Vars)

;

write(’local optimum: ’), writeln(Count)

).

try_move(List,NewCount) :-

select_var(List,Var),

move(Var),

conflict_constraints(cs,NewList),

length(NewList,NewCount).

select_var(List,Var) :-

member(Constraint,List),

term_variables(Constraint,Vars),

member(Var,Vars).

Some points are worth noticing:

• Constraint satisfaction is recognised by finding that the conflict constraint set is empty.

• The move operation and the acceptance test are within the condition part of the if-then-
else construct. As a consequence, if the acceptance test fails (the move does not improve
the objective) the move is automatically undone by backtracking.

The code code for try_move is very inefficient, because it repeatedly goes through the whole list
of conflict constraints to count the number of constraints in conflict. The facility to propagate
tentative values supports more efficient maintenance of the number constraints in conflict. This
technique is known as maintenance of invariants (see [18]). For the propositional satisfiability ex-
ample we can maintain the number of satisfied clauses to make the hill climbing implementation
more efficient.

The following program not only monitors each clause for conflict, but it also records in a boolean
variable whether the clause is satisfied. Each tentative assignment to the variables is propagated
to the tentative value of the boolean. The sum of the boolean BSum records for any tentative
assignment of the propositional variables, the number of satisfied clauses. This speeds up hill

142

Local search can be implemented in ECLiPSe with the repair library. Invariants can be
implemented by tentative value propagation using tent_is/2.

Figure 13.4: Local Search and Invariants

climbing because, after each move, its effect on the number of satisfied clauses is automatically
computed by the propagation of tentative values.

prop_sat_2(Vars) :-

Vars = [X1,X2,X3],

tent_init(Vars),

clause_cons(X1 or neg X2 or X3,B1),

clause_cons(neg X1 or neg X2,B2),

clause_cons(X2 or neg X3,B3),

BSum tent_is B1+B2+B3,

hill_climb_2(Vars,BSum).

clause_cons(Clause,B) :-

Clause $= 1 r_conflict cs,

B tent_is Clause.

hill_climb_2(Vars,BSum) :-

conflict_constraints(cs,List),

BSum tent_get Satisfied,

(List=[] ->

set_to_tent(Vars)

; select_var(List,Var), move(Var), tent_get(BSum) > Satisfied ->

hill_climb_2(Vars,BSum)

;

write(’local optimum: ’), writeln(Count)

).

To check whether the move is uphill, we retrieve the tentative value of BSum before and after the
move is done. Remember that, since the move operator changes the tentative values of some
variable, the tent_is primitive will automatically update the BSum variable.

This code can be made more efficent by recording more invariants, as described in [28].

13.5 More Advanced Local Search Methods

In the following we discuss several examples of local search methods. These methods have origi-
nally been developed for unconstrained problems, but they work for certain classes of constrained
problems as well.

143

The ECLiPSe code for all the examples in this section is available in the file knapsack_ls.ecl

in the doc/examples directory of your ECLiPSe installation.

13.5.1 The Knapsack Example

We will demonstrate the local search methods using the well-known knapsack problem. The
problem is the following: given a container of a given capacity and a set of items with given
weights and profit values, find out which items have to be packed into the container such that
their weights do not exceed the container’s capacity and the sum of their profits is maximal.

The model for this problem involves N boolean variables, a single inequality constraint to ensure
the capacity restriction, and an equality to define the objective function.

:- lib(ic).

:- lib(repair).

knapsack(N, Profits, Weights, Capacity, Opt) :-

length(Vars, N),

Vars :: 0..1,

Capacity #>= Weights*Vars r_conflict cap,

Profit tent_is Profits*Vars,

local_search(<extra parameters>, Vars, Profit, Opt).

The parameters mean

• N - the number of items (integer)

• Profits - a list of N integers (profit per item)

• Weights - a list of N integers (weight per item)

• Capacity - the capacity of the knapsack (integer)

• Opt - the optimal result (output)

144

13.5.2 Search Code Schema

In the literature, e.g. in [18], local search methods are often characterised by the the following
nested-loop program schema:

local_search:

set starting state

while global_condition

while local_condition

select a move

if acceptable

do the move

if new optimum

remember it

endwhile

set restart state

endwhile

We give three examples of local search methods coded in ECLiPSe that follow this schema:
random walk, simulated annealing and tabu search. Random walk and tabu search do not use
the full schema, as there is only a single loop with a single termination condition.

13.5.3 Random walk

The idea of Random walk is to start from a random tentative assignment of variables to 0
(item not in knapsack) or 1 (item in knapsack), then to remove random items (changing 1 to
0) if the knapsack’s capacity is exceeded and to add random items (changing 0 to 1) if there is
capacity left. We do a fixed number (MaxIter) of such steps and keep track of the best solution
encountered.

Each step consists of:

• Changing the tentative value of some variable, which in turn causes the automatic recom-
putation of the conflict constraint set and the tentative objective value.

• Checking whether the move lead to a solution and whether this solution is better than the
best one so far.

145

Here is the ECLiPSe program. We assume that the problem has been set up as explained above.
The violation of the capacity constraint is checked by looking at the conflict constraints. If
there are no conflict constraints, the constraints are all tentatively satisfied and the current
tentative values form a solution to the problem. The associated profit is obtained by looking at
the tentative value of the Profit variable (which is being constantly updated by tent_is).

random_walk(MaxIter, VarArr, Profit, Opt) :-

init_tent_values(VarArr, random), % starting point

(for(_,1,MaxIter), % do MaxIter steps

fromto(0, Best, NewBest, Opt), % track the optimum

param(Profit,VarArr)

do

(conflict_constraints(cap,[]) -> % it’s a solution!

Profit tent_get CurrentProfit, % what is its profit?

(

CurrentProfit > Best % new optimum?

->

printf("Found solution with profit %w%n", [CurrentProfit]),

NewBest=CurrentProfit % yes, remember it

;

NewBest=Best % no, ignore

),

change_random(VarArr, 0, 1) % add another item

;

NewBest=Best,

change_random(VarArr, 1, 0) % remove an item

)

).

The auxiliary predicate init_tent_values sets the tentative values of all variables in the array
randomly to 0 or 1: The change_random predicate changes a randomly selected variable with
a tentative value of 0 to 1, or vice versa. Note that we are using an array, rather than a list
of variables, to provide more convenient random access. The complete code and the auxiliary
predicate definitions can be found in the file knapsack_ls.ecl in the doc/examples directory
of your ECLiPSe installation.

13.5.4 Simulated Annealing

Simulated Annealing is a slightly more complex variant of local search. It follows the nested loop
schema and uses a similar move operator to the random walk example. The main differences
are in the termination conditions and in the acceptance criterion for a move. The outer loop
simulates the cooling process by reducing the temperature variable T, the inner loop does random
moves until MaxIter steps have been done without improvement of the objective.
The acceptance criterion is the classical one for simulated annealing: Uphill moves are always
accepted, downhill moves with a probability that decreases with the temperature. The search
routine must be invoked with appropriate start and end temperatures, they should roughly
correspond to the maximum and minimum profit changes that a move can incur.

146

sim_anneal(Tinit, Tend, MaxIter, VarArr, Profit, Opt) :-

starting_solution(VarArr), % starting solution

(fromto(Tinit, T, Tnext, Tend),

fromto(0, Opt1, Opt4, Opt),

param(MaxIter,Profit,VarArr,Tend)

do

printf("Temperature is %d%n", [T]),

(fromto(MaxIter, J0, J1, 0),

fromto(Opt1, Opt2, Opt3, Opt4),

param(VarArr,Profit,T)

do

Profit tent_get PrevProfit,

(flip_random(VarArr), % try a move

Profit tent_get CurrentProfit,

exp((CurrentProfit-PrevProfit)/T) > frandom,

conflict_constraints(cap,[]) % is it a solution?

->

(CurrentProfit > Opt2 -> % is it new optimum?

printf("Found solution with profit %w%n",

[CurrentProfit]),

Opt3=CurrentProfit, % accept and remember

J1=J0

; CurrentProfit > PrevProfit ->

Opt3=Opt2, J1=J0 % accept

;

Opt3=Opt2, J1 is J0-1 % accept

)

;

Opt3=Opt2, J1 is J0-1 % reject

)

),

Tnext is max(fix(0.8*T),Tend)

).

flip_random(VarArr) :-

functor(VarArr, _, N),

X is VarArr[random mod N + 1],

X tent_get Old,

New is 1-Old,

X tent_set New.

13.5.5 Tabu Search

Another variant of local search is tabu search. Here, a number of moves (usually the recent
moves) are remembered (the tabu list) to direct the search. Moves are selected by an acceptance
criterion, with a different (generally stronger) acceptance crtierion for moves in the tabu list.
Like most local search methods there are many possible variants and concrete instances of this
basic idea. For example, how a move would be added to or removed from the tabu list has to
be specified, along with the different acceptance criteria.

147

Repair can be used to implement a wide variety of local search and hybrid search tech-
niques.

Figure 13.5: Implementing Search

In the following simple example, the tabu list has a length determined by the parameter Tabu-
Size. The local moves consist of either adding the item with the best relative profit into the
knapsack, or removing the worst one from the knapsack. In both cases, the move gets rememe-
bered in the fixed-size tabu list, and the complementary move is forbidden for the next TabuSize
moves.

tabu_search(TabuSize, MaxIter, VarArr, Profit, Opt) :-

starting_solution(VarArr), % starting solution

tabu_init(TabuSize, none, Tabu0),

(fromto(MaxIter, I0, I1, 0),

fromto(Tabu0, Tabu1, Tabu2, _),

fromto(0, Opt1, Opt2, Opt),

param(VarArr,Profit)

do

(try_set_best(VarArr, MoveId), % try uphill move

conflict_constraints(cap,[]), % is it a solution?

tabu_add(MoveId, Tabu1, Tabu2) % is it allowed?

->

Profit tent_get CurrentProfit,

(CurrentProfit > Opt1 -> % is it new optimum?

printf("Found solution with profit %w%n", [CurrentProfit]),

Opt2=CurrentProfit % accept and remember

;

Opt2=Opt1 % accept

),

I1 is I0-1

;

(try_clear_worst(VarArr, MoveId), % try downhill move

tabu_add(MoveId, Tabu1, Tabu2) % is it allowed?

->

I1 is I0-1,

Opt2=Opt1 % reject

;

I1=0, % no moves possible, stop

Opt2=Opt1 % reject

)

)

).

In practice, the tabu search forms only a skeleton around which a complex search algorithm is
built. An example of this is applying tabu search to the job-shop problem, see e.g. [19].

148

13.6 Repair Exercise

Write a predicate min_conflicts(Vars,Count) that takes two arguments:

• Vars - a list of variables, with tentative 0/1 values

• Count - a variable, with a tentative integer value

The specification of min_conflicts(Vars,Count) is as follows:

1. If conflict set cs is empty, instantiate Vars to their tentative values

2. Otherwise find a variable, V, in a conflict constraint

3. Instantiate V to the value (0 or 1) that maximises the tentative value of Count

4. On backtracking instantiate V the other way.

This can be tested with the following propositional satisfiability program.

cons_clause(Clause,Bool) :-

Clause =:= 1 r_conflict cs,

Bool tent_is Clause.

prop_sat(Vars,List) :-

(foreach(N,List),

foreach(Cl,Clauses),

param(Vars)

do

cl(N,Vars,Cl)

),

init_tent_values(Vars),

(foreach(Cl,Clauses),

foreach(B,Bools)

do

cons_clause(Cl,B)

),

Count tent_is sum(Bools),

min_conflicts(Vars,Count).

init_tent_values(Vars) :-

(foreach(V,Vars) do V tent_set 1).

cl(1,[X,Y,Z], (X or neg Y or Z)).

cl(2,[X,Y,Z], (neg X or neg Y)).

cl(3,[X,Y,Z], (Y or neg Z)).

cl(4,[X,Y,Z], (X or neg Z)).

149

cl(5,[X,Y,Z], (Y or Z)).

To test your program try the following queries:

?- prop_sat([X,Y,Z],[1,2,3]).

?- prop_sat([X,Y,Z],[1,2,3,4]).

?- prop_sat([X,Y,Z],[1,2,3,4,5]).

150

Chapter 14

Implementing Constraints

This chapter describes how to use ECLiPSe’s advanced control facilities for implementing con-
straints. Note that the Generalised Propagation library lib(propia) and the Constraint Handling
Rules library lib(ech) provide other, higher-level ways to implement constraints. Those are more
suited for prototyping, while this chapter introduces those low-level primitives that are actually
used in the implementation of the various ECLiPSe constraint solvers.

14.1 What is a Constraint in Logic Programming?

Constraints fit very naturally into the Logic Programming paradigm. Declaratively, a constraint
is just the same as any other predicate. Indeed, in ECLiPSe, “constraints” are not a particular
programming language construct, constraints are just a conceptual notion.

Consider the following standard Prolog query:

?- member(X, [5,7,3,4]), X =< 4.

This will succeed with X = 3 after some search. In this example, both the member/2 goal and
the inequality goal could be considered ‘constraints on X’ because they both restrict the possible
values for X. Usually, however, member/2 would not be considered a “constraint” because of its
backtracking (search) behaviour:

?- member(X, [5, 7, 3, 4]).

X = 5

More (0.00s cpu)

X = 7

More (0.04s cpu)

Also, the standard Prolog inequality would not be considered a “constraint”, because if invoked
on its own it will raise an error:

?- X =< 4.

instantiation fault in X =< 4

In the following, we will call a predicate a constraint only if it

151

• behaves deterministically

• somehow actively enforces its declarative meaning

14.2 Background: Constraint Satisfaction Problems

There is a large body of scientific work and literature about Constraint Satisfaction Problems,
or CSPs. CSPs are a restricted class of constraint problems with the following properties

• there is a fixed set of variables X1, ..., Xn

• every variable Xi has a finite domain Di of values that the variable is allowed to take. In
general, this can be an arbitrary, unordered domain.

• usually one considers only binary (2-variable) constraints cij(Xi, Xj). Every constraint is
simply defined as a set of pairs of consistent values.

• the problem is to find a valuation (labeling) of the variables such that all the constraints
are satisfied.

The restriction to binary constraints is not really limiting since every CSP can be transformed
into a binary CSP. However, this is often not necessary since many algorithms can be generalised
to n-ary constraints.
A CSP network is the graph formed by considering the variables as nodes and the constraints
as arcs between them. In such a network, several levels of consistency can be defined:

Node consistency ∀v ∈ Di : ci(v) (not very interesting). It means that all unary constraints
are reflected in the domains

Arc consistency ∀v ∈ Di ∃w ∈ Dj : cij(v, w) (most practically relevant). It means that for
every value in the domain of one variable, there is a compatible value in the domain of
the other variable in the constraint. In practice, constraints are symmetric, so the reverse
property also holds.

Path consistency ∀v ∈ Di ∀w ∈ Dj ∃u ∈ Dk : cik(v, u), ckj(u, w) (usually too expensive). One
can show that this property extends to whole paths, i.e. on any path of constraints between
variables i and j the variables have domain values which are compatible with any domain
values for i and j.

Note that neither of these conditions is sufficient for the problem to be satisfiable. It is still
necessary to search for solutions. Computing networks with these consistency levels can however
be a useful intermediate step to finding a solution to the CSP.
Consequently, a complete CSP solver needs the following design decisions:

• what level of consistency do we want to employ?

• at what time during search do we want to (re)establish this consistency?

• what algorithm do we use to establish this consistency?

In practice, the most relevant consistency level is arc-consistency. Consequently, a number of
algorithms have been proposed for the purpose of establishing arc-consistency. The algorithms
used in ECLiPSe are mostly variants of AC-3 [16] and AC-5 [10].

152

Program-driven

Search/heuristics

Data-driven

Propagation

Program-driven

Search/heuristics

Figure 14.1: Control during Constraint Solving

14.3 Constraint Behaviours

As opposed to the theoretical CSP framework sketched in the previous section, in ECLiPSe

we usually deal with more heterogeneous situation. We want to allow the integration of very
different constraints, and we want to achieve a separation of constraint propagation and search.
Therefore, we are not interested in an overall problem solving algorithm which controls search
and constraint propagation globally for the whole problem and all constraints. We prefer to
view the constraint solving process as in figure 14.1: the search process is controlled by an
algorithmic program, while constraint propagation is performed by data-driven agents which do
local (again algorithmic) computations on one or several constraints. Individual constraints can
then be implemented with different behaviours, and freely mixed within a single computation.
Constraint behaviours can essentially be characterised by

• their triggering condition (when are they executed)

• the action they perform when triggered (what do they do)

Let us now look at examples of different constraint behaviours.

14.3.1 Consistency Check

The =</2 predicate, whose standard Prolog version raises an error when invoked with uninstan-
tiated variable, is also implemented by the suspend library. Both implementations have the
same declarative meaning, but the suspend version can be considered to be a proper constraint.
It implements a passive test, i.e. it simply delays until both arguments are numbers, and then
succeeds or fails:

?- suspend : (X =< 4).

X = X

153

There is 1 delayed goal.

Yes (0.00s cpu)

?- suspend : (X =< 4), X = 2.

X = 2

Yes (0.00s cpu)

?- suspend : (X =< 4), X = 5.

No (0.00s cpu)

14.3.2 Forward Checking

Often a constraint can already do useful work before all its arguments are instantiated. In
particular, this is the case when we are working with domain variables. Consider ic’s disequality
constraint #\= : Even when only one side is instantiated, it can already remove this value from
the domain of the other (still uninstantiated) side:

?- X :: 1 .. 5,

X #\= 3.

X = X{[1, 2, 4, 5]}

Yes (0.00s cpu)

If both sides are uninstantiated, the constraint cannot do anything useful. It therefore waits (de-
lays) until one side becomes instantiated, but then wakes up and acts as before. This behaviour
is sometimes called forward checking [27]:

?- [X,Y] :: 1 .. 5,

X #\= Y. % delays

X = X{1 .. 5}

Y = Y{1 .. 5}

There is 1 delayed goal.

Yes (0.00s cpu)

?- X :: 1 .. 5,

X #\= Y, % delays

Y = 3. % wakes

X = X{[1, 2, 4, 5]}

Y = 3

Yes (0.01s cpu)

14.3.3 Domain (Arc) Consistency

For many constraints, even more eager behaviour is possible. For example, ic’s inequality
constraints performs domain updates as soon as possible, even when one or both arguments
are still variables:

?- [X, Y] :: 1 .. 5, X #< Y.

154

Consistency Checking wait until all variables instantiated, then check

Forward Checking wait until one variable left, then compute consequences

Domain (Arc) Consistency wait until a domain changes, then compute consequences
for other domains

Bounds Consistency wait until a domain bound changes, then compute consequences
for other bounds

Figure 14.2: Typical Constraint Behaviours

X = X{1 .. 4}

Y = Y{2 .. 5}

There is 1 delayed goal.

Yes (0.00s cpu)

?- [X, Y] :: 1 .. 5, X #< Y, X #> 2.

Y = Y{[4, 5]}

X = X{[3, 4]}

There is 1 delayed goal.

Yes (0.00s cpu)

Inconsistent values are removed form the domains as soon as possible. This behaviour corre-
sponds to arc consistency as discussed in section 14.2.

14.3.4 Bounds Consistency

Note however that not all ic constraints maintain full domain arc consistency. For performance
reasons, the #= constraint only maintains bounds consistency, which is weaker, as illustrated by
the following example:

?- [X, Y] :: 1 .. 5, X #= Y + 1, X #\= 3.

Y = Y{1 .. 4}

X = X{[2, 4, 5]}

There is 1 delayed goal.

Yes (0.00s cpu)

Here, the value 4 for Y was not removed even though it is not arc consistent (there is no value
for X which is compatible with it).

It is important to understand that this kind of propagation incompleteness does not affect
correctness: the constraint will simply detect the inconsistency later, when its arguments have
become more instantiated. In terms of the search tree, this means that a branch will not be
pruned as early as possible, and extra time might be spent searching.

155

14.4 Programming Basic Behaviours

As an example, we will look at creating constraint versions of the following predicate. It defines
a relationship between containers of type 1, 2 or 3, and their capacity:

capacity(1, N) :- N>=0.0, N=<350.0.

capacity(2, N) :- N>=0.0, N=<180.0.

capacity(3, N) :- N>=0.0, N=<50.0.

This definition gives the intended declarative meaning, but does not behave as a constraint:
capacity(3, C) will raise an error, and capacity(Type, 30.5) will generate several solutions
nondeterministically. Only calls like capacity(3, 27.1) will act correctly as a test.

14.4.1 Consistency Check

To program the passive consistency check behaviour, we need to wait until both arguments of
the predicate are instantiated. This can be achieved by adding an ECLiPSe delay clause:

delay capacity(T,N) if var(T);var(N).

capacity(1, N) :- N>=0.0, N=<350.0.

capacity(2, N) :- N>=0.0, N=<180.0.

capacity(3, N) :- N>=0.0, N=<50.0.

The delay clause specifies that any call to capacity/2 will delay as long as one of the argu-
ments is a variable. When the variables become instantiated later, execution will be resumed
automatically, and the instantiations will be checked for satisfying the constraint.

14.4.2 Forward Checking

For Forward Checking, we will assume that we have interval domain variables, as provided by
the ic library (without domain variables, there would not be much interesting propagation to
be done).
Here is one implementation of a forward checking version:

:- lib(ic).

delay capacity(T, N) if var(T), var(N).

capacity(T, N) :- nonvar(N), !,

N >= 0,

(N =< 50.0 -> T :: [1,2,3]

; N =< 180.0 -> T :: [1,2]

; N =< 350.0 -> T = 1

; fail

).

156

capacity(1, N) :- N$>=0.0, N$=<350.0.

capacity(2, N) :- N$>=0.0, N$=<180.0.

capacity(3, N) :- N$>=0.0, N$=<50.0.

Note that the delay clause now only lets goals delay when both arguments are variables. As soon
as one is instantiated, the goal wakes up and, depending on which is the instantiated argument,
either the first, or one of the last three clauses is executed. Some examples of the behaviour:

?- capacity(T, C).

There is 1 delayed goal.

Yes (0.00s cpu)

?- capacity(3, C).

C = C{0.0 .. 50.0}

Yes (0.00s cpu)

?- capacity(T, C), C = 100.

T = T{[1, 2]}

C = 100

Yes (0.00s cpu)

A disadvantage of the above implementation is that when the predicate wakes up, it can be
either because T was instantiated, or because C was instantiated. An extra check (nonvar(N))
is needed to distinguish the two cases. Alternatively, we could have created two agents (delayed
goals), each one specialised for one of these cases:

capacity(T, N) :-

capacity_forward(T, N),

capacity_backward(T, N).

delay capacity_forward(T, _N) if var(T).

capacity_forward(1, N) :- N$>=0.0, N$=<350.0.

capacity_forward(2, N) :- N$>=0.0, N$=<180.0.

capacity_forward(3, N) :- N$>=0.0, N$=<50.0.

delay capacity_backward(_T, N) if var(N).

capacity_backward(T, N) :-

N >= 0,

(N =< 50.0 -> T :: [1,2,3]

; N =< 180.0 -> T :: [1,2]

; N =< 350.0 -> T = 1

; fail

).

157

Unfortunately, there is a drawback to this implementation as well: once one of the two delayed
goals has done its work, all the constraint’s information has been incorporated into the remaining
variable’s domain. However, the other delayed goal is still waiting, and will eventually wake up
when the remaining variable gets instantiated as well, at which time it will then do a redundant
check.

The choice between having one or several agents for a constraint is a choice we will face every
time we implement a constraint.

14.5 Basic Suspension Facility

For the more complex constraint behaviours (beyond those waiting for instantiations), we need
to employ lower-level primitives of the ECLiPSe kernel (suspensions and priorities). If we want
to add a new constraint to an existing solver, we also need to use the lower-level interface that
the particular solver provides.

Apart from the delay clauses used above, ECLiPSe also provides a more powerful (though
less declarative) way of causing a goal to delay. The following is another implementation of
the constraint checking behaviour, this time using the suspend/3 built-in predicate to create a
delayed goal for capacity/2:

capacity(T,N) :- (var(T);var(N)), !,

suspend(capacity(T,N), 0, [T,N]->inst).

capacity(1, N) :- N>=0.0, N=<350.0.

capacity(2, N) :- N>=0.0, N=<180.0.

capacity(3, N) :- N>=0.0, N=<50.0.

14.6 A Bounds-Consistent IC constraint

To show the basic ideas, we will simply reimplement a constraint that already exists in the ic
solver, the inequality constraint. We want a constraint ge/2 that takes two ic variables (or
numbers) and constrains the first to be greater or equal to the second.

The behaviour should be to maintain bounds-consistency: If we have a goal ge(X,Y), where
the domain of X is X{1..5} and the domain of Y is Y{3..7}, we would like the domains to
be updated such that the upper bound of Y gets reduced to 5, and the lower bound of X gets
increased to 3. The following code achieves this:

ge(X, Y) :-

get_bounds(X, _, XH),

get_bounds(Y, YL, _),

(var(X),var(Y) ->

suspend(ge(X,Y), 0, [X->ic:max, Y->ic:min])

;

158

suspend(Goal, Priority, Triggers) Creates Goal as a delayed goal with a given waking
priority and triggering conditions. Triggers is a list of Variables->Conditions terms,
specifying under which conditions the goal will be woken up. The priority specifies
with which priority the goal will be scheduled after it has been triggered. A priority
of 0 selects the default for the predicate. Otherwise, valid priorities range are from
1 (most urgent, reserved for debugging purposes) to 12 (least urgent).

Some valid triggers:

X->inst wake when the variable becomes instantiated (most specific)

X->constrained wake when the variable becomes constrained somehow (most general)

X->ic:min wake when the lower bound of an ic-variable changes

X->ic:max wake when the upper bound of an ic-variable changes

X->ic:hole wake an internal domain value gets removed

Figure 14.3: The Basic Suspension Facilities

true

),

X #>= YL, % impose new bounds

Y #=< XH.

We have used a single primitive from the low-level interface of the ic library: get bounds/3,
which extracts the current domain bounds from a variable. Further, we have used the information
that the library implements trigger conditions called min and max, which cause a goal to wake
up when the lower/upper bound on an ic variable changes.

Note that we suspend a new instance of the ge(X,Y) goal before we impose the new bounds on
the variables. This is important when the constraint is to be used together with other constraints
of higher priority: imposing a bound may immediately wake and execute such a higher-priority
constraint. The higher-priority constraint may then in turn change one of the bounds that ought
to wake ge/2 again. This only works if ge/2 has already been (re-)suspended at that time.

14.7 Using a Demon

Every time the relevant variable bounds change, the delayed ge/2 goal wakes up and (as long as
there are still two variables) a new, identical goal gets delayed. To better support this situation,
ECLiPSe provides a special type of predicate, called a demon. A predicate is turned into a
demon by annotating it with a demon/1 declaration. A demon goal differs from a normal goal
only in its behaviour on waking. While a normal goal disappears from the resolvent when it
is woken, the demon remains in the resolvent. Declaratively, this corresponds to an implicit

159

recursive call in the body of each demon clause. Or, in other words, the demon goal forks into
one goal that remains in the suspended part of the resolvent, and an identical one that gets
scheduled for execution.

With a demon, our above example can be done more efficiently. One complication arises, how-
ever. Since the goal implicitly re-suspends, it now has to be explicitly killed when it is no longer
needed. The easiest way to achieve this is to let it have a handle to itself (its ‘suspension’) in
one of its arguments. This can then be used to kill the suspension when required:

ge(X, Y) :-

suspend(ge(X,Y,MySusp), 0, [X->ic:max, Y->ic:min], MySusp),

ge(X, Y, MySusp).

:- demon ge/3.

ge(X, Y, MySusp) :-

get_bounds(X, _, XH),

get_bounds(Y, YL, _),

(var(X),var(Y) ->

true % implicitly re-suspend

;

kill_suspension(MySusp)

),

X #>= YL, % impose new bounds

Y #=< XH.

We have used the new primitives suspend/4 and kill suspension/1.

14.8 Exercises

1. Implement a constraint atmost/3

atmost(+N, +List, +V)

which takes an integer N, an integer V and a list List containing integers or integer domain
variables.

Meaning: at most N elements of List have value V.

Behaviour: Fail as soon as too many list elements are instantiated to value V. This requires
only basic suspension facilities, no domain information needs to be taken into account.

Tests are provided in the file atmost.tst. You can test your constraint by loading the
library lib(test_util) and then calling test(atmost).

2. Implement a constraint offset/3

offset(?X,+Const,?Y)

160

which is declaratively like

offset(X,Const,Y) :- Y #= X+Const.

but maintains domain-arc-consistency (i.e. propagates ”holes”, while the above definition
only maintains bounds-consistency).

Use suspension built-ins and domain-access primitives from the ic kernel module. Use
not unify/2 to test whether a value is outside a variable’s domain.

Tests are provided in the file offset.tst. You can test your constraint by loading the
library lib(test_util). and then calling test(offset).

161

162

Chapter 15

Propia and CHR

15.1 Two Ways of Specifying Constraint Behaviours

There are two elegant and simple ways of building constraints available in ECLiPSe, called
Propia and Constraint Handling Rules (or CHR’s). They are themselves built using the facilities
described in chapter 14.

Consider a simple noclash constraint requiring that two activities cannot be in progress at the
same time. For the sake of the example, the constraint involves two variables, the start times S1
and S2 of the two activities, which both have duration 5. Logically this constraint states that
noclash ⇔ (S1 >= S2 + 5 ∨ S2 >= S1 + 5). The same logic can be expressed as two ECLiPSe

clauses:

noclash(S1,S2) :-

ic:(S1 $>= S2+5).

noclash(S1,S2) :-

ic:(S2 $>= S1+5).

Constraint propagation elicits information from constraints without leaving any choice points.
Constraint propagation behaviour can be associated with each of the above representations, by
CHR’s and by Propia.

One way to propagate information from noclash is to wait until the domains of the start times
are reduced sufficiently that only one ordering of the tasks is possible, and then to enforce the
constraint that the second task not start until the first is finished.

This behaviour can be implemented in CHR’s as follows:

:- constraints noclash/2.

noclash(S1,S2) <=> ic:(S2 #< S1+5) | ic:(S1 #>= S2+5).

noclash(S1,S2) <=> ic:(S1 #< S2+5) | ic:(S2 #>= S1+5).

Consider the query:

163

Propia and CHRs make it easy to turn the logical statement of a constraint into code that
efficiently enforces that constraint.

Figure 15.1: Building Constraints without Tears

?- ic:([S1,S2]::1..10),

noclash(S1,S2),

S1 #>= 6.

In this query noclash achieves no propagation when it is initially posted with the start time
domains set to 1..10. However, after imposing S1 >= 6, the domain of S1 is reduced to 6..10.
Immediately the noclash constraint wakes, detects that the first condition S1 + 5 >= S2 is
entailed, and narrows the domain of S2 to 1..5.
The same behaviour can be expressed in Propia, but this time the original ECLiPSe represen-
tation of noclash as two clauses is used directly. The propagation behaviour is automatically
extracted from the two clauses by Propia when the noclash goal is annotated as follows:

?- [S1,S2]::1..10,

noclash(S1,S2) infers most,

S1 #>= 6.

15.2 The Role of Propia and CHR in Problem Modelling

To formulate and solve a problem in ECLiPSe the standard pattern is as follows:

1. Initialise the problem variables

2. State the constraints

3. Specify the search behaviour

Very often, however, the constraints involve logical implications or disjunctions, as in the case
of the noclash constraint above. Such constraints are most naturally formulated in a way that
would introduce choice points during the constraint posting phase. The two ECLiPSe clauses
defining noclash, above, are a case in point.
There are two major disadvantages of introducing choice points during constraint posting:

• Posting and reposting constraints during search is an unnecessary and computationally
expensive overhead

• Mixing constraint behaviour and search behaviour makes it harder to explore and optimize
the algorithm executed by the program.

Propia and CHR’s support the separation of constraint setup and search behaviour, by allowing
constraints to be formulated naturally without their execution setting up any choice points.
The effect on performance is illustrated by the following small example. The aim is to choose a
set of 9 products (Products, identified by their product number 101-109) to manufacture, with

164

Propia and CHRs can be used to build clear problem models that have no (hidden) choice
points.

Figure 15.2: Modelling without Choice Points

a limited quantity of raw materials (Raw1 and Raw2), so as to achieve a profit (Profit) of over
40. The amount of raw materials (of two kinds) needed to produce each product is listed in a
table, together with its profit.

product_plan(Products) :-

length(Products,9),

Raw1 #=< 95,

Raw2 #=< 95,

Profit #>= 40,

sum(Products,Raw1,Raw2,Profit),

labeling(Products).

product(101,1,19,1). product(102,2,17,2). product(103,3,15,3).

product(104,4,13,4). product(105,10,8,5). product(106,16,4,4).

product(107,17,3,3). product(108,18,2,2). product(109,19,1,1).

sum(Products,Raw1,Raw2,Profit) :-

(foreach(Item,Products),

foreach(R1,R1List),

foreach(R2,R2List),

foreach(P,PList)

do

product(Item,R1,R2,P)

),

Raw1 #= sum(R1List),

Raw2 #= sum(R2List),

Profit #= sum(PList).

The drawback of this program is that the sum constraint calls product which chooses an item
and leaves a choice point at each call. Thus the setup of the sum constraint leaves 9 choice
points. Try running it, and the program fails to terminate within a reasonable amount of time.

Now to make the program run efficiently, we can simply annotate the call to product as a
Propia constraint making: product(Item,R1,R2,P) infers most. This program leaves no
choice points during constraint setup, and finds a solution in a fraction of a second.

In the remainder of this chapter we show how to use Propia and CHR’s, give some examples,
and outline their implementation.

165

15.3 Propia

Propia is an implementation of Generalised Propagation which is described in the paper [14].

15.3.1 How to Use Propia

In principle Propia propagates information from an annotated goal by finding all solutions to the
goal and extracting any information that is common to all the different solutions. (In practice,
as we shall see later, Propia does not typically need to find all the solutions.)
The“common” information that can be extracted depends upon what constraint solvers are used
when evaluating the underlying un-annotated ECLiPSe goal. To illustrate this, consider another
simple example.

p(1,3).

p(1,4).

?- p(X,Y) infers most.

If the ic library is not loaded when this query is invoked, then the information propagated by
Propia is that X = 1. If, on the other hand, ic is loaded, then more common information is
propagated. Not only does Propia propagate X = 1 but also the domain of Y is tightened from
-inf..inf to 3..4. (In this case the additional common information is that Y 6= 0, Y 6= 1,
Y 6= 2 and so on for all values except 3 and 4!)
Any goal Goal in an ECLiPSe program, can be transformed into a constraint by annotating it
thus: Goal infers Parameter. Different behaviours can be specified with different parameters,
viz:

• Goal infers most

Propagates all common information produced by the loaded solvers

• Goal infers unique

Fails if there is no solution, propagates the solution if it is unique, and succeeds without
propagating further information if there is more than one solution.

• Goal infers consistent

Fails if there is no solution, and propagates no information otherwise

These behaviours are nicely illustrated by the crossword demonstration program crossword in
the examples code directory. There are 72 ways to complete the crossword grid with words from
the accompanying directory. For finding all 72 solutions, the comparative performance of the
different annotations is given in the table Comparing Annotations.
The example program also illustrates the effect of specifying the waking conditions for Propia.
By only waking a Propia constraint when it becomes instantiated, the time to solve the cross-
word problem can be changed considerably. For example by changing the annotation from
Goal infers most to suspend(Goal,4,Goal->inst) infers most the time needed to find all
solutions goes down from 10 seconds to just one second.
For other problems, such as the square tiling problem in the example directory, the fastest
version is the one using infers consistent. To find the best Propia annotation it is necessary
to experiment with the current problem using realistic data sets.

166

Annotation CPU time (secs)

consistent 13.3
unique 2.5
most 9.8
ac 0.3

Table 15.1: Comparing Annotations

15.3.2 Propia Implementation

In this section we describe how Propia works.

Outline

When a goal is annotated as a Propia constraint, eg. p(X,Y) infers most, first the goal
p(X,Y) is in effect evaluated in the normal way by ECLiPSe. However Propia does not stop
at the first solution, but continues to find more and more solutions, each time combining the
information from the solutions retrieved. When all the information has been accumulated,
Propia propagates this information (either by narrowing the domains of variables in the goal, or
partially instantiating them).
Propia then suspends the goal again, until the variables become further constrained, at which
point it wakes, extracts information from solutions to the more constrained goal, propagates it,
and suspends again.
If Propia detects that the goal is entailed (i.e. the goal would succeed whichever way the variables
were instantiated), then after propagation it does not suspend any more.

Most Specific Generalisation

Propia works by treating its input both as a goal to be called, and as a term which can be ma-
nipulated as data. As with any ECLiPSe goal, when executed its result is a further instantiation
of the term. For example the first result of calling member(X,[a,b,c]) is to further instantiate
the term yielding member(a,[a,b,c]). This instantiated term represents the (first) solution to
the goal.
Propia combines information from the solutions to a goal using their most specific generalisation
(MSG). The MSG of two terms is a term that can be instantiated (in different ways) to either
of the two terms. For example p(a, f(Y)) is the MSG of p(a, f(b)) and p(a, f(c)). This is the
meaning of generalisation. The meaning of most specific is that any other term that generalises
the two terms, is more general than the MSG. For example, any other term that generalises
p(a, f(b) and p(a, f(c)) can be instantiated to p(a, f(Y)). The MSG of two terms captures only

Propia extracts information from a procedure which may be defined by multiple ECLiPSe

clauses. The information to be extracted is controlled by the Propia annotation.

Figure 15.3: Transforming Procedures to Constraints

167

information that is common to both terms (because it generalises the two terms), and it captures
all the information possible in the two terms (because it is the most specific generalisation).

Some surprising information is caught by the MSG. For example the MSG of p(0, 0) and p(1, 1)
is p(X, X). We can illustrate this being exploited by Propia in the following example:

% Definition of logical conjunction

conj(1,1,1).

conj(1,0,0).

conj(0,1,0).

conj(0,0,0).

conjtest(X,Z) :-

conj(X,Y,Z) infers most,

X=Y.

The test succeeds, recognising that X must take the same truth value as Z. Running this in
ECLiPSe yields:

[eclipse]: conjtest(X,Z).

X = X

Z = X

Delayed goals:

conj(X, X, X) infers most

Yes (0.00s cpu)

If the ic library is loaded more information can be extracted, because the MSG of 0 and 1 is a
variable with domain 0..1. Thus the result of the above example is not only to equate X and
Z but to associate with them the domain 0..1.

The MSG of two terms depends upon what information is expressible in the MSG term. As the
above example shows, if the term can employ variable domains the MSG is more precise.

By choosing the class of terms in which the MSG can be expressed, we can capture more or less
information in the MSG. If, for example, we allow only terms of maximum depth 1 in the class,
then MSG can only capture functor and arity. In this case the MSG of f(a, 1) and f(a, 2) is
simply f(,), even though there is more shared information at the next depth.

In fact the class of terms can be extended to a lattice, by introducing a bottom ⊥ and a top
>. ⊥ is a term carrying no information; > is a term representing inconsistent information; the
meet of two terms is the result of unifying them; and their join is their MSG.

The Propia Algorithm

We can now specify the Propia algorithm more precisely. The Propia constraint is

Goal infers Parameter

• Set OutTerm := >

168

Propia computes the Most Specific Generalisation (MSG) of the set of solutions to a
procedure. It does so without, necessarily, backtracking through all the solutions to the
procedure. The MSG depends upon the annotation of the Propia call.

Figure 15.4: Most Specific Generalisation

• Repeat

– Find a solution S to Goal which is not an instance of OutTerm

– Find the MSG, in the class specified by Parameter, of OutTerm and S. Call it MSG

– Set OutTerm := MSG

until either Goal is an instance of OutTerm, or no such solution remains

• Return OutTerm

When infers most is being handled, the class of terms admitted for the MSG is the biggest
class expressible in terms of the currently loaded solvers. In case ic is loaded, this includes
variable domain, but otherwise it includes any ECLiPSe term without variable attributes.
The algorithm supports infers consistent by admitting only the two terms > and ⊥ in the
MSG class. infers unique is a variation of the algorithm in which the first step OutTerm := >
is changed to finding a first solution S to Goal and initialising OutTerm := S.
Propia’s termination is dramatically improved by the check that the next solution found is not
an instance of OutTerm. In the absence of domains, there is no infinite sequence of terms that
strictly generalise each other. Moreover, if the variables in Goal have finite domains, the same
result holds. Thus, because of this check, Propia will terminate as long as each call of Goal
terminates.
For example the Propia constraint member(Var,List) infers Parameter will always termi-
nate, if each call of member(Var,List) does, even in case member(Var,List) has infinitely
many solutions!

15.3.3 Propia and Related Techniques

If the finite domain solver is loaded then Goal infers most prunes the variable domains so
every value is supported by values in the domains of the other variables. If every problem
constraint was annotated this way, then Propia would enforce arc consistency.
Propia generalises traditional arc consistency in two ways. Firstly it admits n-ary constraints,
and secondly it handles predicates defined by rules, as well as ground facts. In the special case
that the goal can be “unfolded” into a finite set of ground solutions, this can be exploited by
using infers ac to make Propia run more efficiently. When called with parameter infers ac,
Propia simply finds all solutions and applies n-ary arc-consistency to the resulting tables.
Propia also generalises constructive disjunction. Constructive disjunction could be applied in
case the predicate was unfolded into a finite set of solutions, where each solution was expressed
using ic constraints (such as equations, inequations etc.). Propia can also handle recursively
defined predicates, like member, exampled above, which may have an infinite number of solutions.

169

15.4 CHR

Constraint Handling Rules were originally implemented in ECLiPSe. They are introduced in
the paper [9].

15.4.1 How to Use CHR

CHR’s offer a rule-based programming style to express constraint simplification and constraint
propagation. The rules all have a head, an explicit or implicit guard, and a body, and are written
either

Head <=> Guard | Body. %Simplification Rule

or

Head ==> Guard | Body. %Propagation Rule

When a constraint is posted that is an instance of the head, the guard is checked to determine
whether the rule can fire. If the guard is satisfied (i.e. CHR detects that it is entailed by the
current search state), the rule fires. Unlike ECLiPSe clauses, the rules leave no choice points.
Thus if several rules share the same head and one fires, the other rules are never fired even after
a failure.

Normally the guards exclude each other, as in the noclash example:

:- lib(ech).

:- constraints noclash/2.

noclash(S1,S2) <=> ic:(S2 #< S1+5) | ic:(S1 #>= S2+5).

noclash(S1,S2) <=> ic:(S1 #< S2+5) | ic:(S2 #>= S1+5).

Henceforth we will not explicitly load the ech library.

The power of guards lies in the behaviour of the rules when they are neither entailed, nor
disentailed. Thus in the query

?- ic:([S1,S2]::1..10),

noclash(S1,S2),

S1 #>= 6.

when the noclash constraint is initially posted, neither guard is entailed, and CHR sim-
ply postpones the handling of the constraint until further constraints are posted. As soon
as a guard becomes entailed, however, the rule fires. For simplification rules, of the form
Head <=> Guard | Body, the head is replaced by the body. In this example, therefore,
noclash(S1,S2) is replaced by S1 #>= S2+5.

Propagation rules are useful to add constraints, instead of replacing them. Consider, for example,
an application to temporal reasoning. If the time T1 is before time T2, then we can propagate
an additional ic constraint saying T1 =< T2:

170

CHRs are guarded rules which fire without leaving choice points. A CHR rule may have
one or many goals in the head, and may take the following forms: Simplification rule,
Propagation rule or Simpagation rule.

Figure 15.5: CHRs

:- constraints before/2.

before(T1,T2) ==> ic:(T1 $=< T2)

This rule simply posts the constraint T1 $=< T2 to ic. When a propagation rule fires its body
is invoked, but its head remains in the constraint store.

15.4.2 Multiple Heads

Sometimes different constraints interact, and more can be deduced from the combination of
constraints than can be deduced from the constraints separately. Consider the following query:

?- ic:([S1,S2]::1..10),

noclash(S1,S2),

before(S1,S2).

Unfortunately the ic bounds are not tight enough for the noclash rule to fire. The two con-
straints can be combined so as to propagate S2 ≥ S1 + 5 using a two-headed CHR:

noclash(S1,S2), before(S1,S2) ==> ic:(S2 #>= S1+5).

We would prefer to write a set of rules that captured this kind of inference in a general way.

This can be achieved by writing a more complete solver for prec, and combining it with noclash.
prec(S1, D, S2) holds if the time S1 precedes the time S2 by at least D units of time. For the
following code to work, S1 and S2 may be numbers or variables, but D must be a number.

:- constraints prec/3.

prec(S,D,S) <=> D=<0.

prec(S1,0,S2), prec(S2,0,S1) <=> S1=S2.

prec(S1,D1,S2), prec(S2,D2,S3) ==> D3 is D1+D2, prec(S1,D3,S3).

prec(S1,D1,S2) \ prec(S1,D2,S2) <=> D2=<D1 | true. % Simpagation

noclash(S1,S2), prec(S1,D,S2) ==> D > -5 | prec(S1,5,S2).

noclash(S1,S2), prec(S2,D,S1) ==> D > -5 | prec(S2,5,S1).

Note the simpagation rule, whose head has two parts Head1 \ Head2. In a simpagation rule
Head2 is replaced, but Head1 is kept in the constraint store.

171

15.5 A Complete Example of a CHR File

Sometimes whole sets of constraints can be combined. Consider, for example, a program where
disequalities on pairs of variables are accumulated during search. Whenever a point is reached
where any subset of the variables are all constrained to be different an alldifferent constraint
can be posted on that subset, thus supporting more powerful propagation. This can be achieved
by finding cliques in the graph whose nodes are variables and edges are disequality constraints.
We start our code with a declaration to load the ech library. The constraints are then declared,
and subsequently defined by rules. The CHR encoding starts by generating a clique whenever
two variables are constrained to be different.

:- lib(ech).

:- constraints neq/2.

neq(X,Y) ==>

sort([X,Y],List),

clique(List),

neq(Y,X).

Each clique is held as a sorted list to avoid any duplication. The symmetrical disequality is added
to simplify the detection of new cliques, below. Whenever a clique is found, the alldifferent

constraint is posted, and the CHRs seek to extend this clique to include another variable:

:- constraints clique/1.

clique(List) ==> alldifferent(List).

clique(List),neq(X,Y) ==>

in_clique(Y,List), not in_clique(X,List) |

sort([X|List],Clique),

extend_clique(X,List,Clique).

in_clique(Var,List) :-

member(El,List), El==Var, !.

The idea is to search the constraint store for a disequality between the new variable X and
each other variable in the original clique. This is done by recursing down the list of remaining
variables. When there are no more variables left, a new clique has been found.

neq(X,Y) \ extend_clique(X,[Y|Tail],Clique) <=>

extend_clique(X,Tail,Clique).

extend_clique(_,[],Clique) <=>

clique(Clique).

172

Finally, we add three optimisations. Don’t try and find a clique that has already been found, or
find the same clique twice. If the new variable is equal to a variable in the list, then don’t try
any further.

clique(Clique) \ extend_clique(_,_,Clique) <=> true.

extend_clique(_,_,Clique) \ extend_clique(_,_,Clique) <=> true.

extend_clique(Var,List,_) <=> in_clique(Var,List) | true.

15.5.1 CHR Implementation

CHR’s are implemented using the ECLiPSe suspension and waking mechanisms. A rule is woken
if:

• a new goal is posted, which matches one of the goals in its head

• a goal which has already been posted earlier becomes further instantiated.

The rule cannot fire unless the goal is more instantiated than the rule head. Thus the rule
p(a,f(Y),Y) <=> q(Y) is really a shorthand for the guarded rule:

p(A,B,C) <=> A=a, B=f(Y), C=Y | q(Y)

The guard is “satisfied” if, logically, it is entailed by the constraints posted already.
In practice the CHR implementation cannot always detect the entailment. The consequence is
that goals may fire later than they could. For example consider the program

:- constraints p/2.

p(X,Y) <=> ic:(X $> Y) | q(X,Y).

and the goal

?- ic:(X $> Y),

p(X,Y).

Although the guard is clearly satisfied, the CHR implementation cannot detect this and p(X,Y)

does not fire. If the programmer needs the entailment of inequalities to be detected, it is necessary
to express inequalities as CHR constraints, which propagate ic constraints as illustrated in the
example prec(S1,D,S2) above.
CHRs can detect entailment via variable bounds, so p(X,0) does fire in the following example:

?- ic:(X $> 1),

p(X,0).

The implementation of this entailment test in ECLiPSe is to impose the guard as a constraint,
and fail (the entailment test) as soon as any variable becomes more constrained. A variable
becomes more constrained if:

173

CHRs suspend on the variables in the rule head. On waking the CHR tests if its guard is
entailed by the current constraint store. The entailment test is efficient but incomplete,
and therefore rules may fail to fire as early as they could in theory.

Figure 15.6: CHR Implementation

• it becomes more instantiated

• its domain is tightened

• a new goal is added to its suspension list

There are many examples of applications expressed in CHR in the ECLiPSe distribution. They
are held as files in the chr subdirectory of the standard ECLiPSe library directory lib.

15.6 Global Reasoning

Constraints in ic are handled separately and individually. More global consistency techniques
can be achieved using global constraints. Propia and CHRs provide alternative methods of
achieving more global consistency. Propia allows any subproblem to be treated as a single
constraint. CHRs allow any set of constraints to be handled by a single rule. Each technique has
special strengths. Propia is good for handling complicated logical combinations of constraints.
CHRs are good for combining sets of constraints to extract transitive closures, and cliques.
Both are fun to implement and use!

15.7 Propia and CHR Exercise

The problem is to implement three constraints, and, or and xor in CHRs and, as a separate
exercise, in Propia. The constraints are specified as follows: All boolean variables have domain
{0, 1}: 0 for ’false’ and 1 for ’true’.

and(X,Y,Z) =def (X & Y) = Z
or(X,Y,Z) =def (X or Y) = Z
xor(X,Y,Z) =def ((X & -Y) or (-X & Y)) = Z

Suppose your constraints are called cons_and, cons_or and cons_xor Now write enter the
following procedure:

full_adder(I1,I2,I3,O1,O2) :-

cons_xor(I1,I2,X1),

cons_and(I1,I2,Y1),

cons_xor(X1,I3,O1),

cons_and(I3,X1,Y2),

cons_or(Y1,Y2,O2).

174

The problem is solved if you enter the query:

?- full_adder(I1,I2,0,O1,1).

and get the correct answer.
Note: you are not allowed to load the ic library nor to use search and backtracking!

175

176

Chapter 16

The Eplex Library

16.1 Introduction

The eplex library allows an external Mathematical Programming solver to be used by ECLiPSe.
It is designed to allow the external solver to be seen as another solver for ECLiPSe, possibly in
co-operation with the existing ‘native’ solvers of ECLiPSe such as the ic solver. It is not specific
to a given external solver, with the differences between different solvers (largely) hidden from
the user, so that the user can write the same code and it will run on the different solvers.

The exact types of problems that can be solved (and methods to solve them) are solver depen-
dent, but currently linear programming, mixed integer programming and quadratic programming
problems can be solved.

The rest of this chapter is organised as follows: the remainder of this introduction gives a very
brief description of Mathematical Programming, which can be skipped if the reader is familiar
with the concepts. Section 16.3 demonstrates the modelling of an MP problem, and the following
section discusses some of the more advanced features of the library that are useful for hybrid
techniques.

16.1.1 What is Mathematical Programming?

Mathematical Programming (MP) (also known as numerical optimisation) is the study of opti-
misation using mathematical/numerical techniques. A problem is modelled by a set of simulta-
neous equations: an objective function that is to be minimised or maximised, subject to a set
of constraints on the problem variables, expressed as equalities and inequalities.

Many subclasses of MP problems have found important practical applications. In particular, Lin-
ear Programming (LP) problems and Mixed Integer Programming (MIP) problems are perhaps
the most important. LP problems have both a linear objective function and linear constraints.
MIP problems are LP problems where some or all of the variables are constrained to take on
only integer values.

It is beyond the scope of this chapter to cover MP in any more detail. However, for most usages
of the eplex library, the user need not know the details of MP – it can be treated as a black-box
solver.

⊙

For more information on Mathematical Programming, you can read a textbook on the subject

177

• Linear Programming (LP) problems: linear constraints and objective function, con-
tinuous variables.

• Mixed Integer Programming (MIP) problems: LP problems with some or all variables
restricted to taking integral values.

Figure 16.1: Classification of MP problems

such as H. P. Williams’ Model Building in Mathematical Programming [30].

16.1.2 Why interface to Mathematical Programming solvers?

Much research effort has been devoted to developing efficient ways of solving the various sub-
classes of MP problems for over 50 years. The external solvers are state-of-the-art implementa-
tions of some of these techniques. The eplex library allows the user to model an MP problem in
ECLiPSe, and then solve the problem using the best available MP tools.

In addition, the eplex library allows for the user to write programs that combines MP’s global
algorithmic solving techniques with the local propagation techniques of Constraint Logic Pro-
gramming.

16.1.3 Example formulation of an MP Problem

Figure 16.2 shows an example of an MP problem. It is a transportation problem where several
plants (1-3) have varying product producing capacities that must be transported to various
clients (A-D), each requiring various amounts of the product. The per-unit cost of transporting
the product to the clients also varies. The problem is to minimise the transportation cost whilst
satisfying the demands of the clients.

To formulate the problem, we define the amount of product transported from a plant N to a
client p as the variable Np, e.g. A1 represents the cost of transporting to plant A from client 1.
There are two kinds of constraints:

• The amount of product delivered from all the plants to a client must be equal to the client’s
demand, e.g. for client A, which can recieve products from plants 1-3: A1 + A2 + A3 = 21

• The amount of product sent by a plant must not be more than its capacity, e.g. for plant
1, which can send products to plants A-D: A1 + B1 + C1 + D1 ≤ 50

The objective is to minimise the transportation cost, thus the objective function is to minimise
the combined costs of transporting the product to all 4 clients from the 3 plants.

Putting everything together, we have the following formulation of the problem:
Objective function:

min(10A1 + 7A2 + 200A3 + 8B1 + 5B2 + 10B3 + 5C1 + 5C2 + 8C3 + 9D1 + 3D2 + 7D3)

178

10

10

8
5

9

7

5

5

3
8

7

=< 50

=< 30

=< 40

200

21

40

34

10

per−unit transportation costs client demandplant capacities

Figure 16.2: An Example MP Problem

Constraints:

A1 + A2 + A3 = 21

B1 + B2 + B3 = 40

C1 + C2 + C3 = 34

D1 + D2 + D3 = 10

A1 + B1 + C1 + D1 ≤ 50

A2 + B2 + C2 + D2 ≤ 30

A3 + B3 + C3 + D3 ≤ 40

16.2 How to load the library

To use the library, you must have an MP solver that eplex can use (for example, XPRESS-MP
or CPLEX). Your ECLiPSe should be configured to load in a ‘default’ solver if there is more
than one available.

⊙

See the library manual’s Eplex chapter for details for how to install the solver.

When configured properly, the library can be loaded with the directive:

179

An eplex instance represents a single MP problem in a module. Constraints for the
problem are posted to the module. The problem is solved with respect to an objective
function.

Figure 16.3: Eplex Instance

:- lib(eplex).

This will load the library with the default external MP solver.

You may need a valid license in order to use an external solver. With your ECLiPSe license,
you can obtain a full OEM version of XPRESS-MP1 that runs with ECLiPSe version 5.5 and
later from ECLiPSe’s ftp site.

16.3 Modelling MP problems in ECLiPSe

16.3.1 Eplex instance

The simplest way to model an eplex problem is through an eplex instance. Abstractly, it can be
viewed as a solver module that is dedicated to one MP problem. MP constraints can be posted
to the instance and the problem solved with respect to an objective function by the external
solver.

Declaratively, an eplex instance can be seen as a compound constraint consisting of all the vari-
ables and constraints of its eplex problem. Like normal constraints, different eplex instances can
share variables, although the individual MP constraints in an eplex instance do not necessarily
have to be consistent with those in another.

16.3.2 Example modelling of an MP problem in ECLiPSe

The following code models (and solves) the transportation problem of Figure 16.2, using an
eplex instance:

:- lib(eplex).

:- eplex_instance(prob). % a. declare an eplex instance

main1(Cost, Vars) :-

% b. create the problem variables and set their range

Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],

prob: (Vars $:: 0.0..1.0Inf),

% c. post the constraints for the problem to the eplex instance

prob: (A1 + A2 + A3 $= 21),

prob: (B1 + B2 + B3 $= 40),

1XPRESS-MP is a product from Dash Associates Ltd. (www.dashoptimization.com)

180

prob: (C1 + C2 + C3 $= 34),

prob: (D1 + D2 + D3 $= 10),

prob: (A1 + B1 + C1 + D1 $=< 50),

prob: (A2 + B2 + C2 + D2 $=< 30),

prob: (A3 + B3 + C3 + D3 $=< 40),

% d. set up the external solver with the objective function

prob: eplex_solver_setup(min(

10*A1 + 7*A2 + 200*A3 +

8*B1 + 5*B2 + 10*B3 +

5*C1 + 5*C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3)),

%------------------------------- End of Modelling code

prob: eplex_solve(Cost). % e. Solve problem using external solver

To use an eplex instance, it must first be declared with eplex_instance/1. This is usually done
with a directive, as in line a. Once declared, an eplex instance can be referred to using its name
like a module qualifier.
We first create the problem variables and set their range to be non-negative, as is conventional
in MP. Note that the bounds are posted to our eplex instance, using $::/2.

⊗

The default bounds for variables is -1.0Inf..1.0Inf. Bounds posted to an eplex instance are
specific to that eplex instance.

Next, we set up the MP constraints for the problem by posting them to the eplex instance. The
MP constraints accepted by eplex are the arithmetic equalities and inequalities: $=/2, $=</2
and $>=/2.

⊗

The arithmetic constraints can be linear expressions on both sides. The restriction to linear
expressions originates from the external solver.

We need to setup the external solver with the eplex instance, so that the problem can be solved
by the external solver. This is done by eplex_solver_setup/1, with the objective function given
as the argument, enclosed by either min(...) or max(...). In this case, we are minimising.
Note that generally the setup of the solver and the posting of the MP constraints can be done
in any order.
Having set up the problem, we can solve it by calling eplex_solve/1 in line e.
When an instance gets solved, the external solver takes into account all constraints posted to
that instance, the current variable bounds for the problem variables, and the objective specified
during setup.
In this case, there is an optimal solution of 710.0:

?- main1(Cost, Vars).

181

Cost = 710.0

Vars = [A1{0.0 .. 1e+20 @ 0.0}, A2{0.0 .. 1e+20 @ 21.0},]

Note that the problem variables are not instantiated by the solver. However, the ‘solution’ values,
i.e. the values that the variable are given by the solver, are available in the eplex attribute. The
eplex attribute is shown as Lo..Hi @ Sol where Lo is the lower bound, Hi the upper bound,
and Sol the solution value for the variable (e.g., A2 has the solution value of 21.0 in the example
above). Note also that the external solver may not allow very large floats, hence 1e+20, this
external solver’s representation of infinity, is the upper bound of the variables, even though we
specified 1.0Inf in our code.
One reason the problem variables are not assigned their solution values is so that the eplex
problem can be solved again, after it has been modified. A problem can be modified by the
addition of more constraints, and/or changes in the bounds of the problem variables.

16.3.3 Getting more solution information from the solver

The solution values of the problem variables can be obtained by eplex_var_get/3. The example
program in the previous section can be modified to return the solution values:

main2(Cost, Vars) :-

.... % same as previous example up to line e

prob: eplex_solve(Cost), % e. Solve problem using external solver

(foreach(V, Vars) do

% f. set the problem variables to their solution values

prob: eplex_var_get(V, typed_solution, V)

).

In line f, eplex_var_get/3 is used to obtain the solution value for a problem variable. The
second argument, set to typed_solution, specifies that we want the solution value for the
variable to be returned. Here, we instantiate the problem variable itself to the solution value
with the third argument:

?- main2(Cost, Vars).

Cost = 710.0

Vars = [0.0, 21.0, 0.0, 16.0, 9.0, 15.0, 34.0, 0.0, 0.0, 0.0, 0.0, 10.0]

Note that, in general, an MP problem can have many optimal solutions, i.e. different solutions
which give the optimal value for the objective function. As a result, the above instantiations for
Vars might not be what is returned by the solver used.

16.3.4 Adding integrality constraints

In general, a problem variable is not restricted to taking integer values. However, for some
problems, there may be a requirement that some or all of the variable values be strictly integral

182

(for example, in the previous transportation problem, it may be that only whole units of the
products can be transported; also variables may often be used to model booleans by allowing
them to take on the values of 0 or 1 only). This can be specified by posting an additional
integers/1 constraint on the variables.
Consider the example problem again, where it so happens that the optimal value for the objective
function can be satisfied with integral values for the variables. To show the differences that
imposing integer constraints might make, we add the constraint that client A must receive an
equal amount of products from plants 1 and 2. Now the problem (without the integer constraints)
can be written as:

:- lib(eplex).

:- eplex_instance(prob).

main3(Cost, Vars) :-

Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],

prob: (Vars $:: 0.0..1.0Inf),

prob: (A1 + A2 + A3 $= 21),

prob: (B1 + B2 + B3 $= 40),

prob: (C1 + C2 + C3 $= 34),

prob: (D1 + D2 + D3 $= 10),

prob: (A1 + B1 + C1 + D1 $=< 50),

prob: (A2 + B2 + C2 + D2 $=< 30),

prob: (A3 + B3 + C3 + D3 $=< 40),

prob: eplex_solver_setup(min(

10*A1 + 7*A2 + 200*A3 +

8*B1 + 5*B2 + 10*B3 +

5*C1 + 5*C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3)),

prob: (A1 $= A2), % g. the new constraint, added after setup

%------------------------------- End of Modelling code

prob: eplex_solve(Cost),

(foreach(V, Vars) do

prob: eplex_var_get(V, typed_solution, V)

).

In this example, the new constraint in line g is imposed after the solver setup. In fact it can be
imposed anytime before eplex_solve(Cost) is called.
This problem also has an optimal Cost of 710, the same as the original problem. However, the
solution values are not integral:

?- main3(Cost, Vars).

183

Cost = 710.0

Vars = [10.5, 10.5, 0.0, 5.5, 19.5, 15.0, 34.0, 0.0, 0.0, 0.0, 0.0, 10.0]

Now, to impose the constraints that only whole units of the products can be transported, we
modify the program as follows:

main4(Cost, Vars) :-

Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],

prob: (Vars $:: 0.0..1.0Inf),

prob: integers(Vars), % h. impose the integrality constraint

....% Rest is the same as main3

In line h, we added the integers/1 constraint. This imposes the integrality constraint on Vars

for the eplex instance prob. Now, the external solver will only assign integer solution values to
the variables in the list.

⊗

In fact, with the integer constraints, the problem is solved as a MIP problem rather than
an LP problem, which involves different (and generally computationally more expensive)
techniques. This difference is hidden from the eplex user.

Running this program, we get:

?- main4(Cost,Vars).

Cost = 898.0

Vars = [10, 10, 1, 6, 20, 14, 34, 0, 0, 0, 0, 10]

In this case, A1 and A2 are now integers. In fact, notice that all the values returned are now
integers rather than floats. This is because the typed_solution option of eplex_var_get/3
returns the solution values taking into account if the variables have been declared as integers
for the eplex instance.

⊗

Posting an integers/1 constraint to an eplex instance only inform the external solver to treat
those variables as integers (in fact the external solver will still represent the variables as
floats, but will only assign intergral solution values to them), but does not constrain the
variable itself to be of type integer.

16.4 Repeated Solving of an Eplex Problem

Part of the power of using the eplex library comes from being able to solve an eplex problem re-
peatedly after modification. For example, we can solve the original transportation problem, add
the extra constraint, and resolve the problem. Remember that as eplex_solve/1 instantiates
its argument, we need to use a new variable for each call:

184

• Declare an eplex instance using eplex instance(+Instance).

• Post the constraints ($=/2, $>=/2, $=</2, integers/1, $::/2) for the problem
to the eplex instance.

• Setup the solver with the objective function using
Instance: eplex solver setup(+ObjFunc).

Figure 16.4: Modelling an MP Problem

.... % setup the constraints for the original problem as before

prob: (A3 + B3 + C3 + D3 =< 40),

prob: eplex_solver_setup(min(....)), % as before

prob: eplex_solve(Cost1), % h. solve original problem

prob: (A1 $= A2),

prob: eplex_solve(Cost2), % i. solve modified problem

.....

Note that posted constraints behave logically: they are added to an eplex instance when posted,
and removed when they are backtracked over.
In the examples so far, the solver has been invoked explicitly. However, the solver can also
behave like a normal constraint, i.e. it is automatically invoked when certain conditions are met.
As an example, we implement the standard branch-and-bound method of solving a MIP problem,
using the external solver as an LP solver only. Firstly we outline how this can be implemented
with the facilities we have already encountered. We then show how this can be improved usin
more advanced features of lib(eplex).
With the branch-and-bound approach, a search-tree is formed, and at each node a ‘relaxed’
version of the MIP problem is solved as an LP problem. Starting at the root, the problem
solved is the original MIP problem, but without any of the integrality constraints:

:- eplex_instance(mip).

main5(Cost, Vars) :-

% set up variables and constraints, but no integers/1 constraints

....

% assume minimise for simplicity

mip: eplex_solver_setup(min(Obj)),

mip: eplex_solve(RelaxedCost),

mip: (Cost $>= RelaxedCost), % RelaxedCost is lower bound

In general, this initial LP solution contains non-integer assignments to integer variables. The
objective value of this LP is a lower bound on the actual MIP objective value. The task of
the search is to find integer assignments for the integer variables that optimises the objective

185

X = 4.2

4.2
54

X >= 5X =< 4

Figure 16.5: Labelling a variable at a MIP tree node

function. Each node of the search-tree solves the problem with extra bound constraints on these
variables. At each node, a particular variable is ‘labelled’ as shown in Figure 16.5. The integer
variable in this case has been assigned the non-integer value of 4.2. In the subsequent nodes of
the tree, we consider two alternate problems, which creates two branches in the search. In one
problem, we impose the bound constraint X ≤ 4, and in the other, X ≥ 5: these are the two
nearest integer values to 4.2. In each branch, the problem is solved again as an LP problem with
its new bound for the variable:

branching(IntVars) :-

....

% for each integer variable X which violates the integer constraint

mip: eplex_var_get(X, solution, XVal),

...

Split is floor(XVal),

% choice: branch on the two ranges for X

(mip: (X $=< Split) ; mip: (X $>= Split + 1)),

mip: eplex_solve(RelaxedCost),

...% repeat until there are no integer violations

A choice-point for the two alternative branchings is created in the above code, the problem
is solved with one of the branchings (X $=< Split). The program then proceeds to further
labelling of the variables. The alternative branch is left to be tried on backtracking.
Eventually, if the problem has a solution, all the integer variables will be ‘labelled’ with integer
values, resulting in a solution to the MIP problem. However, this will generally not be optimal,
and so the program needs to backtrack into the tree to search for a better solution by trying
the other branches for the variables, using the existing solution value as a bound. This ‘branch-
and-bound’ search technique is implemented in lib(branch_and_bound).
In the code, the external solver is invoked explicitly at every node. This however may not be nec-
essary as the imposed bound may already be satisfied. As stated at the start of this section, the

Remember that ECLiPSe provides libraries that make some programming tasks much
easier. There is no need to write your own code when you can use what is provided by an
ECLiPSe library.

Figure 16.6: Reminder: use ECLiPSe libraries!

186

invocation of the solver could be done in a data-driven way, more like a normal constraint. This is
done with eplex_solver_setup/4: eplex_solver_setup(+Obj,-ObjVal,+Options,+Trigs),
a more powerful version of eplex_solver_setup/1 for setting up a solver. The Trigs argument
specifies a list of ‘trigger modes’ for triggering the solver.
⊙

See the ECLiPSe reference manual for a complete description of the predicate.

For our example, we add a bound constraint at each node to exclude a fractional solution value
for a variable. The criterion we want to use is to invoke the solver only if this old solution
value is excluded by the new bounds (otherwise the external solver will solve the same problem
redundantly). This is done by specifying deviating_bounds in the trigger modes. The full code
that implements a MIP solution for the example transportation problem is given below:

:- lib(eplex).

:- lib(branch_and_bound).

:- eplex_instance(mip).

main6(Cost, Vars) :-

% b. create the problem variables and set their range

Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],

mip: (Vars :: 0.0..1.0Inf),

% c. post the constraints for the problem to the eplex instance

mip: (A1 + A2 + A3 $= 21),

mip: (B1 + B2 + B3 $= 40),

mip: (C1 + C2 + C3 $= 34),

mip: (D1 + D2 + D3 $= 10),

mip: (A1 + B1 + C1 + D1 $=< 50),

mip: (A2 + B2 + C2 + D2 $=< 30),

mip: (A3 + B3 + C3 + D3 $=< 40),

mip: (A1 $= A2),

% j. post the objective function as a constraint

ObjFunc = 10*A1 + 7*A2 + 200*A3 +

8*B1 + 5*B2 + 10*B3 +

5*C1 + 5*C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3,

mip: (ObjFunc $= Cost),

% k. this is a more flexible method for setting up a solver.

% [deviating_bounds] specifies that the external solver should be

% invoked when any solution value is outside the variable bounds

mip: eplex_solver_setup(min(ObjFunc), Cost, [], [deviating_bounds]),

% l. Use the branch_and_bound library to do the branch and bound

bb_min((branching(Vars),

mip: eplex_get(cost, Cost)

(foreach(V, Vars) do mip: eplex_var_get(V,solution,V))

), Cost, _).

187

branching(IntVars) :-

% Find a variable X which does not have an integer solution value

(integer_violation(IntVars, X, XVal) ->

% m. try the closer integer range first

Split is round(XVal),

(Split > XVal ->

(mip: (X $>= Split) ; mip: (X $=< Split - 1))

;

(mip: (X $=< Split) ; mip: (X $>= Split + 1))

),

branching(IntVars)

;

% cannot find any integer violations; found a solution

true

).

% returns Var with solution value Val which violates the integer constraint

integer_violation([X|Xs], Var, Val) :-

mip: eplex_var_get(X, solution, RelaxedSol),

% m. we are dealing with floats here, so need some ‘margin’ for a

% float value to be considered integer (1e-5 on either side)

(abs(RelaxedSol - round(RelaxedSol)) >= 1e-5 ->

Var = X, Val = RelaxedSol

;

integer_violation(Xs, Var, Val)

).

The setup of the solver is done in line k, with the use of the deviating_bounds trigger mode.
There are no explicit calls to trigger the solver – it is triggered automatically. In addition, the
first call to eplex_solve/1 for an initial solution is also not required, because when trigger
modes are specified, then by default, eplex_solver_setup/4 will invoke the solver once the
problem is setup.
Besides the deviating_bounds trigger condition, the other argument of interest in our use of
eplex_solver_setup/4 is the second argument, the objective value of the problem (Cost in the
example): recall that this was returned previously by eplex_solve/1. Unlike in eplex_solve/1,
the variable is not instantiated when the solver returns. Instead, one of the bounds (lower bound
in the case of minimise) is updated to the optimal value, reflecting the range the objective value
can take, from suboptimal to the ‘best’ value at optimal. The variable is therefore made a
problem variable by posting of the objective as a constraint in line j. This informs the external
solver needs to be informed that the Cost variable is the objective value.
In line m, the branch choice is created by the posting of the bound constraint, which may trigger
the external solver. Here, we use a simple heuristic to decide which of the two branches to try
first: the branch with the integer range closer to the relaxed solution value. For example, in the
situation of Figure 16.5, the branch with X $=< 4 is tried first since the solution value of 4.2 is
closer to 4 than 5.
By using lib(branch and bound)’s bb_min/3 predicate in m, there is no need to explicitly write

188

• Use Instance:eplex solver setup(+Obj,-ObjVal,+Opts,+Trigs) to set up an
external solver state for instance Instance. Trigs specifies a list of trigger conditions
to automatically trigger the external solver.

• Instance:eplex var get(+Var,+What,-Value) can be used to obtain informa-
tion for the variable Var in the eplex instance.

• Instance:eplex get(+Item, -Value) can be used to retrieve information about
the eplex instance’s solver state.

Figure 16.7: More advanced modelling in eplex

our own branch-and-bound routine. However, this predicate requires the cost variable to be
instantiated, so we call eplex_get(cost, Cost) to instantiate Cost at the end of each labelling
of the variables. We also get the solution values for the variables, so that the branch-and-bound
routine will remember it. The final value returned in Cost (and Vars for the solution values) is
the optimal value after the branch-and-bound search, i.e. the optimal value for the MIP problem.
Of course, in practice, we do not write our own MIP solver, but use the MIP solver provided
with the external solvers instead. These solvers are highly optimised and tightly coupled to their
own LP solvers. The techniques of solving relaxed subproblems described here are however very
useful for combining the external solver with other solvers in a hybrid fashion.

⊙

See chapter 17 for more details on hybrid techniques.

16.5 Exercise

A company produces two types of products T1 and T2, which requires the following resources
to produce each unit of the product:

Resource T1 T2

Labour (hours) 9 6

Pumps (units) 1 1

Tubing (m) 12 16

The amount of profit per unit of products are:

T1 £350

T2 £300

They have the following resources available: 1566 hours of labour, 200 pumps, and 2880 metres
of tubing.

1. Write a program to maximise the profit for the company, using eplex as a black box solver.
Write a predicate that returns the profit and the values for T1 and T2.

189

2. What program change is required to answer this question: What profit can be achieved if
exactly 150 units of T1 are required?

3. What would the profit be if fractional numbers of refrigerators could be produced?

4. Rewrite the program from (1) without optimize/2, using eplex solver setup/1, eplex solve/1,
and eplex var get/3.

5. In the program from (4), remove the integrality constraints (so that eplex only sees an
LP problem). Solve the integer problem by interleaving solving of the LP problem with a
rounding heuristic:

• solve the continuous relaxation

• round the solution for T1 to the nearest integer and instantiate it Initially just return
the maximum profit value.

• re-solve the new continuous relaxation

• round the solution for T2 to the nearest integer and instantiate it

• re-solve the new continuous relaxation

What is the result in terms of T1, T2 and Profit?

6. Rewrite the program from (5) using eplex solver setup/4 and automatic triggering of the
solver instead of explicit calls to eplex solve/1. The solver should be triggered whenever
variables get instantiated.

190

Chapter 17

Building Hybrid Algorithms

17.1 Combining Domains and Linear Constraints

Most optimisation problems arising in industry and commerce involve different subproblems that
are best addressed by different algorithms and constraint solvers. In ECLiPSe it is easy to use
different constraint solvers in combination. The different solvers may share variables and even
constraints.
We discuss reasons for combining the eplex and IC solver libraries and explore ways of doing
this. The repair library plays a useful role in propagating solutions generated by a linear solver
to other variables handled by the domain solver. We show how this works in a generic hybrid
algorithm termed probing.

17.2 Reasons for Combining Solvers

The ic solver library implements two kinds of constraints

• finite domain constraints

• interval constraints

Each constraint is handled separately and individually, and the only communication between
them is via the bounds on their shared variables.
The benefits of the ic solvers are

1. the repeated tightening of guaranteed upper and lower bounds on the variables

2. the application of tailored algorithms to standard subproblems (encapsulated as global
constraints)

3. the implementation of a very wide class of constraints

The eplex solver library implements two kinds of constraints

• linear numeric constraints

• integrality constraints

191

There are two main reasons for combining eplex and ic in a hybrid algorithm

• ic handles a wider class of constraints than eplex

• The solvers extract different kinds of information from the constraints

Figure 17.1: Motivation

The linear constraints are handled by a very powerful solver that enforces global consistency on
all the constraints. The integrality constraints are handled via a built-in search mechanism.

The benefits of the eplex solvers are

1. the enforcement of global consistency for linear constraints

2. the production of an optimal solution satisfying the linear constraints

For some years researchers have sought to characterise the classes of problems for which the
different solvers are best suited. Problems involving only linear constraints are very well handled
by eplex. Problems involving disjunctions of constraints are often best handled by ic. Often
set covering problems are best handled by eplex and scheduling problems by ic. However in
general there is no method to recognise for a new problem which solver is best.

Luckily in ECLiPSe there is no need to choose a specific solver for each problem, since it is
possible to apply both solvers. Moreover the solvers communicate with each other, thus further
speeding up constraint solving. The ic solver communicates new tightened bounds to the eplex
solver. These tightened bounds have typically been deduced from non-linear constraints and
thus the linear solver benefits from information which would not otherwise have been available
to it. On the other hand the eplex solver often detects inconsistencies which would not have
been detected by the ic solvers. Moreover it returns a bound on the optimisation function
which can be used by the ic constraints. Finally the optimal solution returned by eplex to the
“relaxed” problem comprising just the linear constraints, can be used as a search heuristic that
can focus the ic solver on the most promising parts of the search space.

17.3 A Simple Example

17.3.1 Problem Definition

We start with a simple example of linear constraints being posted to eplex and the other
constraints being sent to ic.

The example problem involves three tasks (task1, task2, task3) and a time point time1. We
enforce the following constraints:

• Exactly one of task1 and task2 overlaps with time1

• Both tasks task1 and task2 precede task3

192

17.3.2 Program to Determine Satisfiability

For this example we handle the first constraint using ic, because it is not expressible as a
conjunction of linear constraints, and we handle the second pair of linear constraints using
eplex.

⊗

Note that since we use both solvers eplex and ic we will explicitly module qualify all numeric
constraints to avoid ambiguity.

Each task has a start time Start and a duration Duration. We encode the (non-linear) overlap
constraint in ic thus:

:- lib(ic).

overlap(Start,Duration,Time,Bool) :-

% Bool is 1 if the task with start time Start and duration

% Duration overlaps time point Time and 0 otherwise

ic: (Bool #= ((Time $>= Start) and (Time $=< Start+Duration-1))).

The variable Bool takes the value 1 if the task overlaps the time point, and 0 otherwise. To
enforce that only one task overlaps the time point, the associated boolean variables must sum
to 1.
We encode the (linear) precedence constraint in eplex thus:

:- lib(eplex).

before(Start,Duration,Time) :-

% the task with start time Start and duration Duration is

% completed before time point Time

eplex: (Start+Duration $=< Time).

To complete the program, we can give durations of 3 and 5 to task1 and task2, and have the
linear solver minimise the start time of task3:

ic_constraints(Time,S1,S2,B1,B2) :-

% exactly one of task 1 with duration 3 and task 2 with

% duration 5 overlaps time point Time

ic: ([S1,S2]::1..20),

overlap(S1,3,Time,B1),

overlap(S2,5,Time,B2),

ic: (B1+B2 #= 1).

eplex_constraints(S1,S2,S3) :-

% task 1 with duration 3 and task 2 with duration 5 are both

% completed before the start time of task 3

193

before(S1,3,S3),

before(S2,5,S3).

hybrid1(Time, [S1,S2,S3], End) :-

% give the eplex cost variable some default bounds

ic:(End $:: -1.0Inf..1.0Inf),

% we must give the start time of task 3 ic bounds in order to

% suspend on changes to them

ic: (S3::1..20),

% setup the problem constraints

ic_constraints(Time,S1,S2,B1,B2),

% setup the eplex solver

eplex_constraints(S1,S2,S3),

eplex:eplex_solver_setup(min(S3),End,[sync_bounds(yes)],[ic:min,ic:max]),

% label the variables occurring in ic constraints

labeling([B1,B2,S1,S2]).

During the labeling of the boolean variables, the bounds on S1 and S2 are tightened as a result
of ic propagation, which wakes the linear solver, which has been set to trigger on ic bound
changes (ic:min, ic:max). Note that all variables occurring in the linear solver must then
have ic attributes.

The ic bounds are passed to the linear solver before the problem is solved with the option
sync_bounds(yes). The linear solver derives a new lower bound for End. In case this exceeds
its upper bound, the search fails and backtracks.

Using this method of bound communication the bounds for all problem variables are retrieved
from any bounds solvers before resolving the linear problem. If however only a small number of
variable bounds have changed sufficiently to affect the relaxed solution this will be inefficient.

Instead bound updates for individual variables and bound solvers may be transferred to the linear
solver separately. This may be achieved (using the eplex instance’s ::/2) either explicitly within
the search code or through demons attached to the appropriate solver bound changes.

Note that the optimisation performed by the linear solver does not respect the ic constraints,
so a correct answer can only be guaranteed once all the variables involved in ic constraints are
instantiated.

Henceforth we will not explicitly show the loading of the ic and eplex libraries.

17.3.3 Program Performing Optimisation

When different constraints are sent to ic and to eplex, the optimisation built into the linear
solver must be combined with the optimisation provided by the ECLiPSe branch and bound
library.

The following program illustrates how to combine these optimisations:

:- lib(branch_and_bound).

194

A simple way to combine eplex and ic is to send the linear constraints to eplex and the
other constraints to ic. The optimisation primitives must also be combined.

Figure 17.2: A Simple Example

hybrid2(Time, [S1,S2,S3], End) :-

% give the eplex cost variable some default bounds

ic:(End $:: -1.0Inf..1.0Inf),

% we must give the start time of task 3 ic bounds in order to

% suspend on changes to them

ic: (S3::1..20),

% setup the problem constraints

ic_constraints(Time,S1,S2,B1,B2),

eplex_constraints(S1,S2,S3),

% perform the optimisation

both_opt(labeling([B1,B2,S1,S2]),min(S3),End).

both_opt(Search,Obj,Cost) :-

% setup the eplex solver

eplex:eplex_solver_setup(Obj,Cost,[sync_bounds(yes)],[ic:min,ic:max]),

% minimize Cost by branch-and-bound

minimize((Search,eplex_get(cost,Cost)),Cost).

17.4 Sending Constraints to Multiple Solvers

17.4.1 Syntax and Motivation

Because of the cooperation between solvers, it is often useful to send constraints to multi-
ple solvers. A linear constraint, such as X + 2 ≥ Y , can be posted to eplex by the code
eplex: (X+2 $>= Y). The same constraint can be posted to ic by the code ic: (X+2 $>= Y).
The constraint can be sent to both solvers by the code

?- [ic,eplex]: (X+2 $>= Y)

By sending constraints to both solvers, where possible, we can improve search algorithms for
solving constraint problems. Through enhanced constraint reasoning at each node of the search
tree we can:

• prune the search tree, thus improving efficiency

• render the algorithm less sensitive to search heuristics

The second advantage is a particular benefit of combining different solvers, as opposed to en-
hancing the reasoning power of a single solver. See [22] and [23] for experimental results and
application examples using multiple solvers in this way.

195

17.4.2 Handling Booleans with Linear Constraints

The overlap constraint example above is disjunctive and therefore non-linear, and is only han-
dled by ic. However as soon as the boolean variable is labelled to 1, during search, the constraint
becomes linear.
The cooperation between the eplex and ic solvers could therefore be improved by passing the
resulting linear constraint to eplex as soon as the boolean is labelled to 1. This could be achieved
using a constraint handling rule (see CHR) or a suspended goal (see chapter 14).
However the same improved cooperation can be achieved by a well known mathematical pro-
gramming technique (see e.g. [30]) that builds the boolean variable into a linear constraint that
can be sent to eplex even before the boolean is instantiated. This linear constraint effectively
enforces the overlap constraint if the boolean is instantiated to 1, but does not enforce it if the
boolean is instantiated to 0.
To achieve this we introduce sufficiently big multipliers, that when the boolean is set to 0 the
constraint is satisfied for all values within the variables’ bounds. This method is known as the
bigM transformation.
It is illustrated in the following encoding of pos_overlap:

pos_overlap(Start,Duration,Time,Bool) :-

% if Bool is 1 then the task with start time Start and

% duration Duration overlaps time point Time

Max1 is maxdiff(Start,Time),

Max2 is maxdiff(Time,Start+Duration-1),

eplex: (Time+(1-Bool)*Max1 $>= Start), % lin1

eplex: (Time $=< Start+Duration-1+(1-Bool)*Max2). % lin2

maxdiff(Expr1,Expr2,MaxDiff) :-

% the maximum diffrence between Expr1 and Expr2 is the max val

% of (Expr1 - Expr2)

MaxDiff is max_val(Expr1 - Expr2).

max_val(Expr, Max) :-

% the maximum value of a variable is its upper bound

var(Expr),!,

get_var_bounds(Expr, _, Max).

max_val(Expr, Max) :-

% the maximum value of a number is itself

number(Expr),!,

Max = Expr.

max_val(Expr1 + Expr2, Max) :-

% the maximum value of (Exrp1 + Expr2) is the maximum value of

% Expr1 plus the maximum value of Expr2

Max is max_val(Expr1) + max_val(Expr2).

max_val(Expr1 - Expr2, Max) :-

% the maximum value of (Exrp1 - Expr2) is the maximum value of

196

% Expr1 minus the minimum value of Expr2

Max is max_val(Expr1) - min_val(Expr2).

min_val(Expr, Min) :-

% the minimum value of a variable is its lower bound

var(Expr),!,

get_var_bounds(Expr, Min, _).

min_val(Expr, Min) :-

% the minimum value of a number is itself

number(Expr),!,

Min = Expr.

min_val(Expr1 + Expr2, Max) :-

% the minimum value of (Exrp1 + Expr2) is the minimum value of

% Expr1 plus the minimum value of Expr2

Max is min_val(Expr1) + min_val(Expr2).

min_val(Expr1 - Expr2, Max) :-

% the minimum value of (Exrp1 - Expr2) is the minimum value of

% Expr1 minus the maximum value of Expr2

Max is min_val(Expr1) - max_val(Expr2).

The linear constraints, which will enforce the overlap condition when the variable Bool is set
to 1, are labelled lin1 and lin2. If the variable Bool is instantiated to 0, then the variables (or
values) Start, Time and Duration are free to take any value in their respective domains.
Notice that pos_overlap is logically weaker than overlap because

• it does not enforce the integrality of the boolean variable, (i.e. pos_overlap is a linear
relaxation of the disjunctive constraint), and

• it does not enforce the negation of overlap in case the boolean is set to 0.

The tighter cooperation is achieved simply by adding the pos_overlap constraint to the original
encoding:

eplex_constraints_2(Time,S1,S2,S3,B1,B2) :-

% task 1 with duration 3 and task 2 with duration 5 are both

% completed before the start time of task 3

before(S1,3,S3),

before(S2,5,S3),

% task 1 with duration 3 overlaps time point Time if B1 = 1

pos_overlap(S1,3,Time,B1),

% task 2 with duration 5 overlaps time point Time if B2 = 1

pos_overlap(S2,5,Time,B2).

hybrid3(Time, [S1,S2,S3], End) :-

% give the eplex cost variable some default bounds

197

ic:(End $:: -1.0Inf..1.0Inf),

% we must give the start time of task 3 ic bounds in order to

% suspend on changes to them

ic: (S3::1..20),

% setup the problem constraints

ic_constraints(Time,S1,S2,B1,B2),

eplex_constraints(Time,S1,S2,S3,B1,B2),

% perform the optimisation

both_opt(labeling([B1,B2,S1,S2]),min(S3),End).

Although it may at first glance seem better to enforce the integerality of all variables in the
linear solver as well, this is in fact counter-productive for variables that will be explicitly labelled
during search in hybrid algorithms. The external solver would then perform its own branch-and-
bound search in addition to the branch-and-bound search being performed within the ECLiPSe

program.

17.4.3 Handling Disjunctions

The same technique, of introducing boolean variables and sufficiently large multipliers, can be
used to translate any disjunction of linear constraints into linear constraints (and integrality
constraints on the booleans) which can be handled by eplex.

Consider the negation of the overlap constraints above: if a task does not overlap a time point
then it is either completed before the time point or starts after the timepoint. This disjunction
can be expressed in eplex using two boolean further variables:

neg_overlap(Start,Duration,Time,Bool1,Bool2) :-

% if Bool1 is 1 then the task with start time Start and duration

% Duration starts after time point Time

Max1 is maxdiff(Time,Start-1),

eplex:(Time $=< Start-1+(1-Bool1)*Max1),

% if Bool2 is 1 then the task with start time Start and duration

% Duration is completed before time point Time

Max2 is maxdiff(Start+Duration,Time),

eplex:(Time+(1-Bool2)*Max2 $>= Start+Duration).

eplex_constraints_3(T,S1,S2,S3,B1,N1B1,N2B1,B2,N1B2,N2B2) :-

% task 1 with duration 3 and task 2 with duration 5 are both

% completed before the start time of task 3

before(S1,3,S3),

before(S2,5,S3),

% task 1 with duration 3 either overlaps time point Time,

% starts after it or is completed before it

pos_overlap(S1,3,T,B1),

neg_overlap(S1,3,T,N1B1,N2B1),

198

eplex:(N1B1+N2B1 $= 1-B1),

% task 2 with duration 5 either overlaps time point Time,

% starts after it or is completed before it

pos_overlap(S2,5,T,B2),

neg_overlap(S2,5,T,N1B2,N2B2),

eplex:(N1B2+N2B2 $= 1-B2),

% exactly one of task 1 with duration 3 and task 2 with

% duration 5 overlaps time point Time

eplex:(B1+B2 $= 1).

hybrid4(Time, [S1,S2,S3], End) :-

% give the eplex cost variable some default bounds

ic:(End $:: -1.0Inf..1.0Inf),

% we must give the start time of task 3 and the non-overlap

% booleans ic bounds in order to suspend on changes to them

ic:(S3::1..20),

ic:([N1B1,N2B1,N1B2,N2B2]::0..1),

% setup the problem constraints

ic_constraints(Time,S1,S2,B1,B2),

eplex_constraints_3(Time,S1,S2,S3,B1,N1B1,N2B1,B2,N1B2,N2B2),

% perform the optimisation

both_opt(labeling([B1,N1B1,N2B1,B2,N1B2,N2B2,S1,S2]),min(S3),End).

Now the negation of the overlap will be enforced whenever either of the non-overlap booleans
is set to 1. Note that it is not strictly necessary to label the non-overlap booleans: whenever
the start time of a task is labelled in such a way that the task falls to one side of the time
point, the other non-overlap boolean will be forced to 0 by its linear non-overlap constraint.
The constraint requiring a task to either overlap or fall to one side of the time point will then
force the remaining non-overlap boolean to be 1.
In fact in this simple example we gain nothing by including the neg_overlap constraints on the
“direction” of non-overlap. As soon as a labeling decision has been made as to whether one task
overlaps the time point, the earliest possible start time of both tasks is updated in the linear
solver. Since the problem cost is minimized by starting all tasks as early as possible, the relaxed
eplex solution will conicide with the integer solution.
As another simple example consider a naive program to choose values for the elements of a finite
list (of length Length) such that each pair of values differs by at least 2. The diff2 constraint
on each pair X and Y of elements can be expressed as a disjunction in ic:

diff2ic(X,Y) :-

% X and Y must differ by at least 2

ic: ((X+2 $=< Y) or (Y+2 $=< X)).

list_diff2ic(List) :-

% each pair must differ by at least 2

199

(

fromto(List, [X|Rest], Rest, [])

do

(

foreach(Y, Rest),

param(X)

do

diff2ic(X,Y)

)

).

Alternatively it can be expressed in eplex using a boolean variable:

diff2eplex(X,Y,Length,B) :-

% if B is 1 then Y is at least 2 greater than X

eplex: (X+2+B*Length $=< Y+Length),

% if B is 0 then X is at least 2 greater than Y

eplex: (X+Length $>= Y+2+(1-B)*Length).

list_diff2eplex(List, Length, Bools) :-

% each pair must differ by at least 2

(

fromto(List, [X|Rest], Rest, []),

fromto(Bools, Out, In, []),

param(Length)

do

(

foreach(Y, Rest),

fromto(Out, [B|Bs], Bs, In),

param(X, Length)

do

diff2eplex(X,Y,Length,B)

)

).

Suppose each element E of the list must take a value between 1 and 2 ∗ (Length− 1), then any
attempted labelling of the elements must fail. Sending the constraints to ic and labelling the
elements of the list is inefficient.

ic_list(List) :-

length(List, Length),

Max is 2*(Length-1),

% each element must take a value between 1 and 2*(Length-1)

200

ic: (List::1..Max),

list_diff2ic(List),

labeling(List).

Sending the constraints to eplex and enforcing integrality of the booleans is more efficient.

eplex_list(List) :-

length(List, Length),

Max is 2*(Length-1),

% each element must take a value between 1 and 2*(Length-1)

eplex: (List::1..Max),

list_diff2eplex(List, Length, Bools),

% enforce Bools to be 0..1 and integer

eplex: integers(Bools),

eplex: (Bools::0..1),

% setup the eplex solver with a dummy objective function

eplex:eplex_solver_setup(min(0),Cost,[],[]),

% solve by linear solver

eplex:eplex_solve(Cost).

Better still is to post the constraints to both ic and eplex, and label the booleans.

hybrid_list(List) :-

% give the eplex cost variable some default bounds

ic:(Cost $:: -1.0Inf..1.0Inf),

length(List, Length),

Max is 2*(Length-1),

% each element must take a value between 1 and 2*(Length-1)

ic: (List::1..Max),

list_diff2ic(List),

list_diff2eplex(List, Length, Bools),

% enforce Bools to be 0..1 (but not integer in eplex)

ic: (Bools::0..1),

% setup the eplex solver with a dummy objective function

eplex:eplex_solver_setup(min(0),Cost,[sync_bounds(yes)],[ic:min,ic:max]),

% minimize Cost by branch-and-bound

minimize((labeling(Bools),eplex_get(cost,Cost)),Cost).

17.4.4 A More Realistic Example

For more complex applications, sending all “linearisable” constraints to both ic and eplex is
rarely the best method. Sending too many constraints to ic can result in many wakings but

201

little useful propagation. Sending too many constraints to eplex can cause a big growth in the
size of the constraint store, which slows down constraint solving with little improvement in the
relaxed optimum. If the extra variables are constrained to be integer, then the (MIP) solver
may enter a deep search tree with disastrous consequences for efficiency. In this example we
briefly illustrate the point, though there is no space to include the whole program, and complete
supporting results.
Consider the problem of generating test networks for IP (internet protocol). To generate such
networks, it is necessary to assign capacities to each line. We assume a routing algorithm that
sends each message along a “cheapest” path, where the cost is dependent on the bandwidth.
Messages from a particular start to end node are divided equally amongst all cheapest paths.

QtyP2 = 0
CostP2 = 4

CostP1 = 1

QtyP1 = 3

QtyP3 = 3

CostP3 = 1

Flow Quantity: Qty = 6
Minimum Cost Path: MinCost = 1
Number of minimum cost paths: Count = 2

start end

Path Flows

Given a total quantity Qty of messages, between a particular start and end node, it is necessary
to compute the quantity of messages QtyP along each path P between the two nodes. The
variable CostP represents the cost of this path, and the variable MinCost represents the cost of
the cheapest path. The variable Count represents the number of cheapest paths (between which
the messages were equally divided). A boolean variable BP records whether the current path is
a cheapest path, and therefore whether QtyP is non-zero. The encoding in ic is as follows:

ic: ’$>=’(MinCost + 1, CostP,BP), % con3

ic: (QtyP*Count $= BP*Qty) % con4

Note that it is not possible to test for equality between MinCost and CostP because they are
not integers but real number variables.
These constraints are very precise but propagate little until the variables MinCost and CostP

have tight bounds.
The challenge is to find a combination of ic and eplex constraint handling that efficiently
extract the maximum information from the constraints. Linearising con3 so it can be handled
by eplex does not help prune the search tree. Worse, it may significantly increase the size of
the linear constraint store and the number of integer (boolean) variables, which impacts solver
performance.

202

It is easy to send a constraint to more than one solver. Even disjunctive constraints can
be encoded in a form that enables them to be sent to both solvers. However for large
applications it is best to send constraints only to those solvers that can extract useful
information from them. This requires experimentation.

Figure 17.3: Sending Constraints to Multiple Solvers

Once all the boolean variables are instantiated, the sum of QtyP for all the paths equals the total
quantity Qty (because precisely Count paths have a non-zero PQty = Qty/Count). We therefore
introduce a variable Qties constrained to be the sum of all the path quantities. If QtyList is
a list of the path quantities, we can express the constraint thus Qties $= sum(QtyList). We
can now add a redundant constraint Qty $= Qties. The above constraints are both linear and
can be handled by eplex.

In practice this encoding dramatically enhances the efficiency of the test network generation.
Experimentation with this program revealed that posting the redundant constraints to eplex

yields a much more significant improvement than just posting them to ic.

17.5 Using Values Returned from the Linear Optimum

In this section we explore ways of using the information returned from the optimum solution
produced by the linear solver. We will cover two kinds of information. First we will show how
reduced costs can be used to filter variable domains. Secondly we will show how solutions can
be used as a search heuristic. We have termed this second technique probing.

17.5.1 Reduced Costs

The reduced cost of a variable is a safe estimate of how much the optimum will be worsened
by changing the value of that variable. For example when minimising, suppose a variable V
takes a value of Val at the minimum Min found by the linear solver, and its reduced cost is RC.
Then if the value of V was fixed to NewVal the following holds of the new minimum NewMin:
NewMin-Min≥abs(NewVal-Val)×RC. Thus if RC is 3.0 and the value of V is changed by an
amount Diff, then the minimum increases by at least 3.0×Diff.

Note that the reduced cost is not necessarily a good estimate: it is often just 0.0 which gives no
information about the effect of changing the variable’s value.

Reduced cost pruning is a way of tightening the domains of variable in case we already have a
worst case bound on the optimum (such as the previous best value, during a branch and bound
search). The approach is described in [8].

This reasoning allows the eplex solver to integrate tightly with the ic solver because both
solvers wake each other and communicate by tightening domains. In fact the eplex solver is
performing domain propagation, just like any ic constraint.

Let us impose reduced cost pruning for a list of variables Vars. The variable being optimised is
Opt.

203

rc_prune_all(Vars,min,Opt) :-

% get the current minimum value

eplex_get(cost,Curr),

(

foreach(Var,Vars),

param(Curr,Opt)

do

% apply reduced cost pruning to each variable

rc_prune(Var,min,Curr,Opt)

).

First we extract the current optimum Curr, and then we apply reduced cost pruning to each
variable in the list. This is achieved as follows:

rc_prune(Num,_,_,_) :- nonvar(Num), !.

rc_prune(Var,min,Curr,Opt) :-

eplex_var_get(Var,reduced_cost,RC),

(RC =:=0.0 ->

true

;

% if the variable is still uninstantiated and has a

% non-zero reduced cost restrict its domain

eplex_var_get(Var,solution,Val),

ic: ((Var-Val)*RC+Curr $=< Opt) % cons5

).

If the variable is already instantiated, then no pruning takes place. If the reduced cost is zero,
then again no pruning takes place. Otherwise the variable is constrained by cons5, which pre-
vents it from changing so far that the optimum Opt exceeds its upper bound. For maximisation
problems a different constraint would be imposed.
To use reduced costs it is necessary to switch on reduced cost recording during the solver setup.
Reduced cost pruning can then be implemented as a post goal. This is a goal that is executed
immediately after each waking of the linear solver.
Here is a toy program employing reduced cost pruning:

test(X,Y,Z,Opt) :-

% set up variable bounds

ic: ([X,Y,Z]::1..10),

ic: (Opt:: -1.0Inf..1.0Inf),

% setup constraints

eplex: (5*X+2*Y+ Z $>= 10),

eplex: (3*X+4*Y+5*Z $>= 12),

% setup the linear solver with reduced cost recording enabled

204

% and a post goal to perform reduced cost pruning

eplex:eplex_solver_setup(

min(X+Y+Z),

Opt,

[sync_bounds(yes),reduced_cost(yes)],

[new_constraint,inst,

post(rc_prune_all([X,Y,Z],min,Opt))]

),

% label the variables

labeling([X,Y,Z]).

(Note that a more precise and robust implementation of reduced cost pruning is available as an
ECLiPSe predicate reduced_cost_pruning/2 available in the eplex library.)

17.5.2 Probing

Probing is a method which, during search, posts more and more constraints to the linear solver
until the linear constraints are logically tighter than the original problem constraints. This
is always possible in theory, since any solution can be precisely captured as a set of linear
constraints, viz: X 1 = val 1, X 2 = val 2, . . . , X n = val n

The idea is to take the solution produced by the linear solver (which only enforces the linear
constraints of the problem), and to extend this solution to a “tentative” assignment of values
to all the problem variables. If all the constraints are satisfied by the tentative assignments,
then a solution has been found. Otherwise a violated constraint is selected, and a new linear
constraint is posted that precludes this violation. The linear solver then wakes and generates a
new solution.
If the set of constraints become unsatisfiable, the system backtracks to the choice of a linear
constraint to fix a violated constraint. A different linear constraint is added to preclude the
violation and the search continues.

Probing is complete and terminating if each problem constraint is equivalent to a finite disjunc-
tion of finite conjunctions of linear constraints. The conjunction must be finite to ensure each
branch of the search tree is finite, and the disjunction must be finite to ensure that there are
only finitely many different branches at each node of the search tree.

17.5.3 Probing for Scheduling

Probing can be applied to resource-constrained scheduling problems, and there is an ECLiPSe

library called probing_for_scheduling supporting this. The method is described in detail in
the paper [7]. In the following we briefly discuss the implementation of probing for scheduling.
The problem involves tasks with durations, start times and resources. Any set of linear con-
straints may be imposed on the task start times and durations. Assuming each task uses a single
resource, and that there is a limited number MaxR of resources, the resource constraints state
that only MaxR tasks can be in progress simultaneously.
The resource limit can be expressed by the same overlap constraints used in the first example
above. All the constraints can therefore be handled by eplex alone. However the probing

205

algorithm does not send the resource constraints to eplex. Instead it takes the start times
returned from the optimal eplex solution, and computes the associated resource profile. The
resource bottleneck is the set of tasks running at the time the profile is at its highest.

The probing algorithm selects two tasks at the bottleneck and constrains them not to overlap,
by posting a before constraint (defined in the example above) between one task and the start
time of another.

The resource constraint is indeed expressible as a finite disjunction of finite conjunctions of
before constraints, and so the algorithm is complete and terminating.

The computation of the resource profile is performed automatically by encoding the overlap
constraints in the repair library, annotating them as described in chapter 13.

To make this work, the solutions returned from the linear solver are copied to the tentative
values of the variables. This is achieved using a post goal as follows:

eplex_to_tent(Expr,Opt) :-

eplex_solver_setup(

Expr,

Opt,

[sync_bounds(yes),solution(yes)],

[new_constraint,post(set_ans_to_tent)]

).

set_ans_to_tent :-

eplex_get(vars,Vars),

eplex_get(typed_solution,Solution),

Vars tent_set Solution.

When conflicts are detected by the repair library further constraints repairing the violation
are posted to the eplex solver, causing problem resolution and possibly further conflicts to be
repaired.

17.6 Other Hybridisation Forms

This module has covered a few forms of hybridisation between ic and eplex. There are a variety
of problem decomposition techniques that support other forms of hybridisation. Three forms
which employ linear duality are Column Generation, Benders Decomposition and Lagrangian
Relaxation. All three forms have been implemented in ECLiPSe and used to solve large problems,
and the ECLiPSe library colgen, described in the next chapter, supports Column Generation.

Often it is useful to extract several linear subproblems and apply a separate linear solver to each
one. The eplex library offers facilities to support multiple linear solvers. Space does not permit
further discussion of this feature.

Cooperating solvers have been used to implement some global constraints, such as piecewise
linear constraints [21]. Linearisation of ic global constraints is another method of achieving
tight cooperation.

206

Three kinds of information can be used

• Reduced Costs

• The solution (the value for each variable at the linear optimum)

• Dual values

Reduced costs allow values to be pruned from variable domains. The solution can be
checked for feasibility against the remaining constraints, and even if infeasible can be used
to support search heuristics. Dual values are used in other hybridisation forms, devised
by the mathematical programming community.

Figure 17.4: Using information returned from the linear optimum

Finally many forms of hybridisation involve different search techniques, as well as different
solvers. For example stochastic search can be used for probing instead of a linear solver, as
described in [28].
In conclusion, ECLiPSe provides a wonderful environment for exploring different forms of hy-
bridisation.

17.7 References

The principles of hybridising linear and domain constraint solving and search are presented in
[5]. The techniques were first described in [3]. Hybrid techniques are the topic of the CPAIOR
workshops whose proceedings are published in the Annals of Operations Research.

17.8 Hybrid Exercise

Build a hybrid algorithm to create lists whose elements all differ by at least 2. Try lists of
length 3,5,7,8. To test its performance, reduce the domains thus: ic:(List::1..TwoL-2) so
the program tries all possibilities before failing.
Use the following skeleton:

differ(Length,List) :-

length(List,Length),

TwoL is 2*Length,

ic:(List::1..TwoL-1),

alldiff(List,TwoL,Bools),

[To be completed]

alldiff(List,Length,Bools) :-

(fromto(List,[X|Rest],Rest,[]),

fromto([],BIn,BOut,Bools),

207

param(Length)

do

diffeach(X,Rest,Length,BIn,BOut)

).

diffeach(X,List,Length,BIn,BOut) :-

(foreach(Y,List),

fromto(BIn,TB,[B|TB],BOut),

param(X,Length)

do

diff2(X,Y,Length,B)

).

(a) Create an IC algorithm using

diff2(X,Y,_,_) :- ic: ((X+2 #=< Y) or (Y+2 #=< X)).

(b) Create an eplex algorithm using

diff2(X,Y,Max,B) :-

eplex:(B::0..1),

eplex:(X+2 + B*Max $=< Y+Max),

eplex:(X+Max $>= Y+2 + (1-B)*Max).

(c) Try and find the best hybrid algorithm. (NB This is, unfortunately, a trick question ;-))

208

Chapter 18

The Colgen Library

This chapter provides a brief introduction to the use of the colgen library by comparing the
solution of a simple 1-dimensional cutting stock problem — in which we wish to minimize the
waste in cutting stock boards of length l to produce specified numbers of boards of various
lengths li — by LP using lib(eplex) and hybrid column generation using lib(colgen).

18.1 The LP Model

In modeling this problem as a MILP we could choose to introduce a variable xj for each feasible
way of cutting a board of length l into boards of length li with coefficients aij representing the
number of boards of length li obtained from the cutting associated with xj and a constraint
∑n

j=1 aijxj ≥ bi specifying the number of boards bi required for each length li; for realistic
problems there will frequently be very many feasible cuttings and associated variables xj and
as these must be enumerated before problem solution can begin this approach may be imprac-
tical. We could instead introduce for each stock board used a set of variables xi,j for each
demand i indicating the cutting required, a variable wj representing the resulting waste and
a constraint

∑m
i=1 lixi,j + wj = l ensuring the cutting is valid. Although we do not know how

many boards will be required in the optimal solution, we do have an upper bound on this number
K0 =

∑m
i=1 dbi/ bl/lice and introduce the above variable sets and constraint for K0 boards. The

constraints
∑K0

j=1
xij ≥ bi specify the number of boards bi required for each length li. Since all

K0 boards may not be required we introduce a variable xj denoting whether a board is used
and modify the valid cutting constraint

m
∑

i=1

lixij + wj = lxj

209

so that unused boards have zero cost in the objective function. The complete problem formula-
tion is then:

P : minimize z =
K0
∑

j=1

wj

subject to
∑K0

j=1
xij ≥ bi ∀i

∑m
i=1 lixi,j + wj

wj

xi,j

xj

=
∈
∈
∈

lxj

{0, . . . , l}
{0, . . . , hi} ∀i
{0, 1}



















∀j

where hi = bl/lic. This problem formulation is modeled and solved in ECLiPSe as follows:

:- lib(eplex).

% eplex instance creation

:- eplex_instance(cut_stock).

lp_cut_stock(Lengths, Demands, StockLength, Vars, Cost) :-

(

foreach(Li, Lengths),

foreach(Bi, Demands),

foreach([], XijVars0),

foreach(Maxi, Bounds),

fromto(0, KIn, KOut, K0),

param(StockLength)

do

KOut is KIn + fix(ceiling(Bi/floor(StockLength/Li))),

Maxi is fix(floor(StockLength/Li))

),

(

for(J, 1, K0),

foreach(Wj, Obj),

foreach(Xj:Used, Vars),

fromto(XijVars0, VIn, VOut, XijVars),

param(Lengths, StockLength, Bounds)

do

cut_stock:integers([Xj,Wj]),

% Xj variable bounds

cut_stock:(Xj::0..1),

% Wj variable bounds

cut_stock:(Wj::0..StockLength),

(

foreach(Li, Lengths),

foreach(Xij, Used),

210

foreach(Li*Xij, Knapsack),

foreach(XiVars, VIn),

foreach([Xij|XiVars], VOut),

foreach(Maxi, Bounds),

param(Xj)

do

% Xij variable bounds

cut_stock:integers(Xij),

cut_stock:(Xij::0..Maxi)

),

% cutting knapsack constraint

cut_stock:(sum(Knapsack) + Wj =:= StockLength*Xj)

),

(

foreach(Bi, Demands),

foreach(Xijs, XijVars)

do

% demand constraint

cut_stock:(sum(Xijs) >= Bi)

),

cut_stock:eplex_solver_setup(min(sum(Obj))),

% optimization call

cut_stock:eplex_solve(Cost).

18.2 The Hybrid Colgen Model

The cutting stock problem can be decomposed into a master problem in which an optimum
combination of existing cuttings is found and a subproblem in which new cuttings are generated
which could improve upon the current combination. For clarity we denote by Q the set of feasible
cuttings and index variables λq by the column of master problem constraint coefficients q ∈ Q
corresponding to the equivalent subproblem solution:

MP : minimize z =
∑

q∈Q cqλq

subject to
∑

q∈Q qλq ≥ b
∑

q∈Q λq ≥ L0
∑

q∈Q λq ≤ K0

λq ∈ 0, 1 q ∈ Q

SP : maximize w =
∑m

i=1 uiqi − cq
subject to

∑m
i=1 liqi ≤ l

qi ∈ {0, . . . , bl/lic} i = 1, . . . , m

where L0 = d
∑m

i=1 bili/le and K0 =
∑m

i=1 dbi/ bl/lice are initial bounds on the number of stock
boards required, cq = l −

∑m
i=1 liqi, the subproblem objective function coefficients u represent

the benefit obtained by producing boards of each type, and the subproblem is simply a general

211

integer knapsack problem maximizing the benefit due to the boards produced by a cutting. The
problem is modeled and solved as follows:

cg_cut_stock(Lengths, Demands, StockLength, Vars, Cost) :-

% column generation instance creation

colgen_instance(cut_stock),

(

fromto(Ids, [demand(Li)|IRest], IRest, [lower, upper]),

foreach(Li, Lengths),

foreach(Bi, Demands),

fromto(Q, [Qi|Rest], Rest, [Lower, Upper]),

foreach(Li*Qi, Knapsack),

fromto(0, LIn, LOut, L),

fromto(0, KIn, KOut, K0),

fromto(StockLength, CIn, COut, CMax),

param(StockLength)

do

LOut is LIn + Bi*Li,

KOut is KIn + fix(ceiling(Bi/floor(StockLength/Li))),

COut is min(Li-1, CIn),

% subproblem variable bounds

Max is fix(floor(StockLength/Li)),

ic:(Qi::0..Max),

% master problem column generation constraint

% for demand i

cut_stock:identified_constraint(implicit_sum(Qi) >= Bi,

demand(Li))

),

% master problem initial lower and upper bound constraints

L0 is fix(ceiling(L/StockLength)),

cut_stock:identified_constraint(implicit_sum(Lower) >= L0,

lower),

cut_stock:identified_constraint(implicit_sum(Upper) =< K0,

upper),

% subproblem cost variable bounds

ic:(C::0..CMax),

% the subproblem knapsack constraint

ic:(sum(Knapsack) + C =:= StockLength),

% subproblem structure

SubProblem = sp_prob{

cost:C,

coeff_vars:Q,

aux:[]

},

% optimization call

212

cut_stock:solver_setup(cutting(SubProblem, Ids), implicit_sum(C)),

cut_stock:solve(Cost),

cut_stock:get(non_zero_vars, Vars).

where we first create a colgen instance cut_stock, set up the variable domains of the sub-
problem and the demand constraints of the master problem, set up the initial master problem
bound constraints and subproblem knapsack constraint, then solve and return the variables with
non-zero values in the optimal solution. The definition of cutting cost as waste has been com-
bined with the knapsack constraint, while the bounds placed on this cost exclude cuttings with
sufficient waste to produce further boards, thus limiting the amount of search in subproblem
solution. The chosen method of subproblem solution is:

cutting(SubProblem, Ids) :-

SubProblem = sp_prob{

cost:Cost,

coeff_vars:Vars,

aux:[]

},

% sort variables in descending order of dual value

(

fromto(Ids, [Id|IRest], IRest, [lower, upper]),

fromto(Vars, [Var|Rest], Rest, [1, 1]),

foreach(Dual-Var, KeyedVars),

fromto(Soln, [Id-Var|SRest], SRest, [lower-1, upper-1])

do

cut_stock:get(dual(Id), Dual)

),

sort(1, >=, KeyedVars, Sorted),

% label vars with non-negative duals to maximum values,

% vars with negative duals to minimum

(

foreach(Dual-Var, Sorted)

do

(Dual >= 0 -> label_max(Var) ; label_min(Var))

),

% create solution structure and post to problem instance

Sol = sp_sol{

cost:Cost,

coeff_vars:Soln,

aux:[]

},

cut_stock:subproblem_solution(Sol).

label_max(Var) :-

get_var_bounds(Var, Lo, Hi),

(Var = Hi ;

213

Hi1 is Hi - 1,

set_var_bounds(Var, Lo, Hi1),

label_max(Var)).

label_min(Var) :-

get_var_bounds(Var, Lo, Hi),

(Var = Lo ;

Lo1 is Lo + 1,

set_var_bounds(Var, Lo1, Hi),

label_min(Var)).

we first rank the variables in order of decreasing dual value, label to maximize those with
non-negative dual value and minimize those with negative dual value, then construct a sp_sol

structure and post it to the master problem instance.

214

Bibliography

[1] N. Beldiceanu, E. Bourreau, P. Chan, and D. Rivreau. Partial search strategy in CHIP. In
2nd International Conference on Metaheuristics - MIC 97, Sophia Antipolis, France, July
1997.

[2] N. Beldiceanu and E. Contjean. Introducing global constraints in
CHIP. Mathematical and Computer Modelling, 12:97–123, 1994.
citeseer.nj.nec.com/beldiceanu94introducing.html.

[3] H. Beringer and B. de Backer. Combinatorial Problem Solving in Constraint Logic Pro-
gramming with Cooperating Solvers, pages 245–272. Elsevier, 1995.

[4] A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer and finite
domain constraint programming. INFORMS Journal on Computing, 10(3):287–300, 1998.

[5] A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer and finite
domain constraint programming. INFORMS Journal on Computing, 10(3):287–300, 1998.

[6] Ivan Bratko. Prolog Programming for Artificial Intelligence. International Computer Sci-
ence. Addison-Wesley, 1986.

[7] H. H. El Sakkout and M. G. Wallace. Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints, 5(4):359–388, 2000.

[8] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In CP’99, volume 1713
of LNCS, pages 189–203. Springer, 1999.

[9] T. Frühwirth. Theory and practice of constraint handling rules. Logic Programming, 37(1-
3):95–138, 1988.

[10] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-consistency
algorithm and its specializations. Artificial Intelligence, 57(2-3):291–321, 1992.

[11] ILOG. CPLEX. www.ilog.com/products/cplex/, 2001.

[12] Robert Kowalski. Algorithm = logic + control. Communications of the ACM, 22(7):424–
436, 1979.

[13] C. Le Pape and P. Baptiste. Resource constraints for preemptive job-shop scheduling.
Constraints, 3(4):263–287, 1998.

215

[14] T. Le Provost and M.G. Wallace. Generalized constraint propagation over the CLP Scheme.
Journal of Logic Programming, 16(3-4):319–359, July 1993. Special Issue on Constraint
Logic Programming.

[15] Olivier Lhomme, Arnaud Gotlieb, Michel Rueher, and Patrick Taillibert. Boosting the
interval narrowing algorithm. In Joint International Conference and Symposium on Logic
Programming, pages 378–392, 1996.

[16] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118,
1977.

[17] Kim Marriott and Peter J. Stuckey. Programming with Constraints. MIT Press, 1998.

[18] L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search. Lecture
Notes in Computer Science, 1330, 1997.

[19] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42(6):797–813, June 1996.

[20] Dash Optimization. XPRESS-MP. www.dash.co.uk/, 2001.

[21] P. Refalo. Tight cooperation and its application in piecewise linear optimization. In CP’99,
volume 1713 of LNCS, pages 375–389. Springer, 1999.

[22] R. Rodosek, M. G. Wallace, and M. T. Hajian. A new approach to integrating mixed integer
programming and constraint logic programming. Annals of Operations Research, 86:63–87,
1999. Special issue on Advances in Combinatorial Optimization.

[23] R. Rodosek and M.G. Wallace. A generic model and hybrid algorithm for hoist scheduling
problems. In Proceedings of the 4th International Conference on Principles and Pract ice
of Constaint Programming, pages 385–399, Pisa, 1998.

[24] Joachim Schimpf. Logical loops. In Peter. J. Stuckey, editor, Proceedings of the 18th
International Conference on Logic Programming, pages 224–238. Springer, July/August
2002.

[25] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[26] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a
branch and prune approach. SIAM Journal on Numerical Analysis, 1995.

[27] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Programming
Series. MIT Press, Cambridge, MA, 1989.

[28] M.G. Wallace and J. Schimpf. Finding the right hybrid algorithm - a combinatorial meta-
problem. Annals of Mathematics and Artificial Intelligence, 34(4):259–270, 2002.

[29] Matthew L. Ginsberg William D. Harvey. Limited discrepancy search. In Chris S. Mellish,
editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95); Vol. 1, pages 607–615, Montréal, Québec, Canada, August 20-25 1995.
Morgan Kaufmann, 1995.

216

[30] H.P. Williams. Model Building in Mathematical Programming. Management Science. Wiley,
4th edition, 1999.

217

Index

->/2, 23

::/2

ic, 73, 74, 95

ic sets, 102

;/2, 22

=/2, 11

#/2

ic sets, 102

#::/2

ic, 73

#</2

ic, 74

#=/2

ic, 74

#=</2

ic, 74

#>/2

ic, 74

#>=/2

ic, 74

#\=/2

ic, 74, 80

$::/2

ic, 73, 95

$</2

ic, 75, 95

$=/2

eplex, 181

ic, 75, 95

$=</2

eplex, 181

ic, 75, 95

$>/2

ic, 75, 95

$>=/2

eplex, 181
ic, 75, 95

$\=/2
ic, 74, 95

ac, 166
AC-3, 152
AC-5, 152
ac eq/3, 74, 76
accept/3, 36, 37
aliasing, 17
all disjoint/1, 104
all intersection/2, 104
all union/2, 104
alldifferent/1

ic, 79, 80
ic global, 79, 80

alternative search methods, 117
arc consistency, 152, 154, 169
arity, 13
assignment, 117
atom, 12

backtrack count, 126
backtracking, 20
bagof/3, 23
bb min/3, 131
bb min/6, 131
before, 193
behaviour of a constraint, 153
benders decomposition, 206
bigM transformation, 196
bin packing, 106
bind/2, 36
binding, 17
bounded backtrack search, 128

218

bounded reals, 11, 91–95

comparison, 92

bounds consistency, 155, 158

branch-and-bound, 120

branch and bound, 69

breal/2, 92

C++, 110

call, 23

cardinality constraint, 102

ccompile

coverage, 63

ccompile/1, 63

ccompile/2, 63

CHIP, 110

choice, 121

CHR, 170

chr, 69

clause, 18

clique, 172

close/1, 36

column generation, 206

combinatorial problems, 109

comment, 17

commit, 24

compilation

nesting compile commands, 9

compile, 5

compile/1, 10

complete search, 118, 121

conditional, 23

conditional spying, 51

conflict minimisation, 138

conflict sets, 136

conflict constraints/2, 137

conjunction, 15

consistency check, 153, 156

consistent, 166

constraint, 151

Constraint Logic Programming, 109

constraint satisfaction problem, 152

constraints/1, 163

constructive disjunction, 169

constructive search, 118

coverage, 62, 63, 65

coverage counters, 62

cputime/1, 43

credit search, 130

crossword, 166

CSP, 152

cumulative, 68

cut, 24

delayed goals viewer, development tool, 56

delete/5, 125

demon, 159

demon/1, 159

depth-bounded search, 129

depth-first search, 121

difference/3, 104

ic sets, 103

dim/2, 32

discrepancy, 132

disjoint/2

ic sets, 103

disjointness constraint, 103

disjunction, 15, 22

disjunctive, 196

do/2, 30

domain consistency, 154

domain splitting, 121

dual values, 206

ech, 69

edge finder, 68

empty list, 12

entailment, 173

eplex, 68

eplex get/2, 189

eplex instance/1, 181

eplex solve/1, 181

eplex solver setup/1, 181

eplex solver setup/4, 187

eplex var get/3, 182

equality

symbolic, 15

error, 36

exec/2, 37

exec/3, 37

exec group/3, 37

219

findall/3, 23
finite sets, 101
first solution, 128
first-fail principle, 124
floating point numbers, 11
flush/1, 36
forward checking, 154, 156
functor, 13

garbage collect/0, 43
generalised propagation, 166
generating test networks, 201
get flag/2, 9
global constraints

ic, 79–81
global reasoning, 174
goal, 14
greedy heuristic, 106

help, 7
heuristics, 120
hybrid optimization, 194

ic, 67
ic global, 68
ic search, 69, 124
ic sets, 68
ic symbolic, 69
implementing constraints, 151
in/2

ic sets, 102
includes/2

ic sets, 103
inclusion constraint, 103
incomplete search, 118, 127
incompleteness of propagation, 155
indomain/1, 83, 99, 104
infers/2, 166
infix, 13
input, 36
insetdomain/4, 104
inspecting terms, 52
instantiation, 17
integer numbers, 11
integer/1, 14
integers/1

eplex, 183
ic, 73, 74

intersection/3, 104
ic sets, 103

interval arithmetic, 91
intset/3, 102
intsets/4, 102
is/2, 11

knapsack, 106, 144
Kowalski, 109

labeling, 121
ic, 83

labeling/1, 83
lagrangian relaxation, 206
lib/1, 10
libraries, 10
library

coverage, 62
ic, 95–100
ic cumulative, 79
ic edge finder, 79
ic edge finder3, 79
ic global, 79–81
ic sets, 101–107

limited discrepancy search, 132
line coverage, 62
Linear Programming (LP), 177
linear relaxation, 197
list, 12
listen/2, 36
local search, 143
locate/2, 95–97, 99
locate/3, 95, 96
locate/4, 95
log output, 36
logical variable, 16
logical variables, 16

mathematical modelling languages, 110
Mathematical Programming (MP), 177
membership constraint, 102
metacall, 23
middle-first, 125
Mixed Integer Programming (MIP), 177

220

modelling, 109, 164
modelling, LP problem, 180
modelling, MIP, 182
most, 166
most specific generalisation, 167
move-based search, 118
MSG, 167
multiple solvers, 195

nil, 12
noclash, 163
node consistency, 152
notin/2

ic sets, 102
null, 36
number, 11

objective function, 177
once/1, 128
open/3, 37
operator syntax, 13
optimisation, 59, 120
optimisation (numerical), 177
output, 36
overlap, 193

partition a search space, 121
path consistency, 152
performance, 59
piecewise linear, 206
postfix, 13
predicate, 14, 18
predicate browser, development tool, 49, 56
prefix, 13
pretty printer, 65
printf/2, 36
priority, 158
probing, 140, 205
probing for scheduling, 205
probing for scheduling, 70
problem-specific heuristic, 125
product, 165
product plan, 165
profile/1, 60
profiling, 59
program analysis, 59–65

propagation rule, 170
propia, 69, 166
prune, 24
pruning, 120

queens, 123
query, 5, 9, 14

r conflict/2, 137
random search, 118
random walk, 145
rational numbers, 11
read/1, 36
read/2, 36
reals/1

ic, 73, 74, 95
reduced costs, 203
reduced cost pruning, 205
repair, 69, 135
reset counters

coverage, 65
reset counters/0, 65
resolution, 19
resolvent, 19
result

coverage, 63, 65
result/0, 65
result/1, 63, 65
result/2, 65

sameset/2
ic sets, 103

search space, 117
search tree, 118
search/6, 127
select/3, 36
set variable, 101
set flag/2, 9, 43
setof/3, 23
shallow backtrack, 127
simpagation rule, 171
simplification rule, 170
simulated annealing, 146
socket/3, 36, 37
specification languages, 110
squash/3, 95, 96, 98

221

statistics/0, 9, 43
statistics/2, 9, 43
Steiner problem, 105
string, 12
structure, 13
subset constraint, 103
subset/2

ic sets, 103
suspend, 67
suspend/3, 158, 159
suspension, 158
symdiff/3

ic sets, 103

tabu Search, 147
tail, 22
tent get/2, 137
tent is/2, 137
tent set/2, 137
term, 11
term inspector, development tool, 52, 58
timeout, 131
toplevel, 55
tracer filter, development tool, 51, 58
tracer, development tool, 47, 57
tracing program execution, 47
tree search, 118
trigger condition, 153, 159
types, 11

atom, 12
bounded real, 11
float, 11
integer, 11
list, 12
rational, 11
string, 12
structures, 13

unification, 17
union/3, 104

ic sets, 103
unique, 166
update struct/4, 30
use module/1, 10

value selection, 123

variable selection, 122
variables, 16

scope, 19

warning output, 36
weight constraint, 106
weight/3, 106
windows, 59
write/1, 36
write/2, 36
write term/2, 36

222

	Contents
	1 Introduction
	2 Getting started with ECLiPSe
	2.1 How do I install the ECLiPSe system?
	2.2 How do I read the online documentation?
	2.3 How do I run my ECLiPSe programs?
	2.4 How do I use tkeclipse?
	2.4.1 Getting started

	2.5 How do I write an ECLiPSe program?
	2.5.1 Compiling a program
	2.5.2 Executing a query
	2.5.3 Editing a file
	2.5.4 Debugging a program
	2.5.5 File menu
	2.5.6 Getting help
	2.5.7 Other tools

	2.6 How do I make things happen at compile time?
	2.7 How do I use ECLiPSe libraries in my programs?
	2.8 Other tips
	2.8.1 Recommended file names

	3 Prolog Introduction
	3.1 Terms and their data types
	3.1.1 Numbers
	3.1.2 Strings
	3.1.3 Atoms
	3.1.4 Lists
	3.1.5 Structures

	3.2 Predicates, Goals and Queries
	3.2.1 Conjunction and Disjunction

	3.3 Unification and Logical Variables
	3.3.1 Symbolic Equality
	3.3.2 Logical Variables
	3.3.3 Unification

	3.4 Defining Your Own Predicates
	3.4.1 Comments
	3.4.2 Clauses and Predicates

	3.5 Execution Scheme
	3.5.1 Resolution

	3.6 Partial data structures
	3.7 More control structures
	3.7.1 Disjunction
	3.7.2 Conditional
	3.7.3 Call
	3.7.4 All Solutions

	3.8 Using Cut
	3.8.1 Commit to current clause
	3.8.2 Prune alternative solutions

	3.9 Common Pitfalls
	3.9.1 Unification works both ways
	3.9.2 Unexpected backtracking

	3.10 Exercises

	4 ECLiPSe Programming
	4.1 Structure Notation
	4.2 Loops
	4.3 Working with Arrays of Items
	4.4 Storing Information Across Backtracking
	4.4.1 Bags
	4.4.2 Shelves

	4.5 Input and Output
	4.5.1 Printing ECLiPSe Terms
	4.5.2 Reading ECLiPSe Terms
	4.5.3 Formatted Output
	4.5.4 Streams

	4.6 Matching
	4.7 List processing
	4.8 String processing
	4.9 Term processing
	4.10 Module System
	4.10.1 Overview
	4.10.2 Making a Module
	4.10.3 Using a Module
	4.10.4 Qualified Goals
	4.10.5 Exporting items other than Predicates

	4.11 Exception Handling
	4.12 Time and Memory
	4.12.1 Timing

	4.13 Exercises

	5 A Tutorial Tour of Debugging in TkECLiPSe
	5.1 The Buggy Program
	5.2 Running the Program
	5.3 Debugging the Program
	5.4 Summary
	5.4.1 TkECLiPSe toplevel
	5.4.2 Predicate Browser
	5.4.3 Delayed Goals Viewer
	5.4.4 Tracer
	5.4.5 Tracer Filter
	5.4.6 Term Inspector

	6 Program Analysis
	6.1 What tools are available?
	6.2 Profiler
	6.3 Line coverage
	6.3.1 Compilation
	6.3.2 Results

	7 An Overview of the Constraint Libraries
	7.1 Introduction
	7.2 Implementations of Domains and Constraints
	7.2.1 Suspended Goals: suspend
	7.2.2 Interval Solver: ic
	7.2.3 Global Constraints: ic_global
	7.2.4 Scheduling Constraints: ic_cumulative, ic_edge_finder
	7.2.5 Finite Integer Sets: ic_sets
	7.2.6 Linear Constraints: eplex
	7.2.7 Constraints over symbols: ic_symbolic

	7.3 User-Defined Constraints
	7.3.1 Generalised Propagation: propia
	7.3.2 Constraint Handling Rules: ech

	7.4 Search and Optimisation Support
	7.4.1 Tree Search Methods: ic_search
	7.4.2 Optimisation: branch_and_bound

	7.5 Hybridisation Support
	7.5.1 Repair and Local Search: repair
	7.5.2 Hybrid: ic_probing_for_scheduling

	7.6 Other Libraries

	8 Getting started with Interval Constraints
	8.1 Using the Interval Constraints Library
	8.2 Structure of a Constraint Program
	8.3 Modelling
	8.4 Built-in Constraints
	8.5 Global constraints
	8.5.1 Different strengths of propagation

	8.6 Simple User-defined Constraints
	8.6.1 Using Reified Constraints
	8.6.2 Using Propia
	8.6.3 Using the element Constraint

	8.7 Searching for Feasible Solutions
	8.8 Bin Packing
	8.8.1 Problem Definition
	8.8.2 Problem Model - Using Structures
	8.8.3 Handling an Unknown Number of Bins
	8.8.4 Constraints on a Single Bin
	8.8.5 Symmetry Constraints
	8.8.6 Search

	8.9 Exercises

	9 Working with real numbers and variables
	9.1 Real number basics
	9.2 Issues to be aware of when using bounded reals
	9.3 IC as a solver for real variables
	9.4 Finding solutions of real constraints
	9.5 A larger example
	9.6 Exercise

	10 The Integer Sets Library
	10.1 Why Sets
	10.2 Finite Sets of Integers
	10.3 Set Variables
	10.4 Constraints
	10.5 Search Support
	10.6 Example
	10.7 Weight Constraints
	10.8 Exercises

	11 Problem Modelling
	11.1 Constraint Logic Programming
	11.2 Issues in Problem Modelling
	11.3 Modelling with CLP and ECLiPSe
	11.4 Same Problem - Different Model
	11.5 Rules for Modelling Code
	11.5.1 Disjunctions
	11.5.2 Conditionals

	11.6 Symmetries

	12 Tree Search Methods
	12.1 Introduction
	12.1.1 Overview of Search Methods
	12.1.2 Optimisation and Search
	12.1.3 Heuristics

	12.2 Complete Tree Search with Heuristics
	12.2.1 Search Trees
	12.2.2 Variable Selection
	12.2.3 Value Selection
	12.2.4 Example
	12.2.5 Counting Backtracks

	12.3 Incomplete Tree Search
	12.3.1 First Solution
	12.3.2 Bounded Backtrack Search
	12.3.3 Depth Bounded Search
	12.3.4 Credit Search
	12.3.5 Timeout
	12.3.6 Limited Discrepancy Search

	12.4 Exercises

	13 Repair and Local Search
	13.1 Motivation
	13.2 Syntax
	13.2.1 Setting and Getting Tentative Values
	13.2.2 Building and Accessing Conflict Sets
	13.2.3 Propagating Conflicts

	13.3 Repairing Conflicts
	13.3.1 Combining Repair with IC Propagation

	13.4 Introduction to Local Search
	13.4.1 Changing Tentative Values
	13.4.2 Hill Climbing

	13.5 More Advanced Local Search Methods
	13.5.1 The Knapsack Example
	13.5.2 Search Code Schema
	13.5.3 Random walk
	13.5.4 Simulated Annealing
	13.5.5 Tabu Search

	13.6 Repair Exercise

	14 Implementing Constraints
	14.1 What is a Constraint in Logic Programming?
	14.2 Background: Constraint Satisfaction Problems
	14.3 Constraint Behaviours
	14.3.1 Consistency Check
	14.3.2 Forward Checking
	14.3.3 Domain (Arc) Consistency
	14.3.4 Bounds Consistency

	14.4 Programming Basic Behaviours
	14.4.1 Consistency Check
	14.4.2 Forward Checking

	14.5 Basic Suspension Facility
	14.6 A Bounds-Consistent IC constraint
	14.7 Using a Demon
	14.8 Exercises

	15 Propia and CHR
	15.1 Two Ways of Specifying Constraint Behaviours
	15.2 The Role of Propia and CHR in Problem Modelling
	15.3 Propia
	15.3.1 How to Use Propia
	15.3.2 Propia Implementation
	15.3.3 Propia and Related Techniques

	15.4 CHR
	15.4.1 How to Use CHR
	15.4.2 Multiple Heads

	15.5 A Complete Example of a CHR File
	15.5.1 CHR Implementation

	15.6 Global Reasoning
	15.7 Propia and CHR Exercise

	16 The Eplex Library
	16.1 Introduction
	16.1.1 What is Mathematical Programming?
	16.1.2 Why interface to Mathematical Programming solvers?
	16.1.3 Example formulation of an MP Problem

	16.2 How to load the library
	16.3 Modelling MP problems in ECLiPSe
	16.3.1 Eplex instance
	16.3.2 Example modelling of an MP problem in ECLiPSe
	16.3.3 Getting more solution information from the solver
	16.3.4 Adding integrality constraints

	16.4 Repeated Solving of an Eplex Problem
	16.5 Exercise

	17 Building Hybrid Algorithms
	17.1 Combining Domains and Linear Constraints
	17.2 Reasons for Combining Solvers
	17.3 A Simple Example
	17.3.1 Problem Definition
	17.3.2 Program to Determine Satisfiability
	17.3.3 Program Performing Optimisation

	17.4 Sending Constraints to Multiple Solvers
	17.4.1 Syntax and Motivation
	17.4.2 Handling Booleans with Linear Constraints
	17.4.3 Handling Disjunctions
	17.4.4 A More Realistic Example

	17.5 Using Values Returned from the Linear Optimum
	17.5.1 Reduced Costs
	17.5.2 Probing
	17.5.3 Probing for Scheduling

	17.6 Other Hybridisation Forms
	17.7 References
	17.8 Hybrid Exercise

	18 The Colgen Library
	18.1 The LP Model
	18.2 The Hybrid Colgen Model

	Bibliography
	Index

