
Chapter 12

Tree Search Methods

12.1 Introduction

In this chapter we will take a closer look at the principles and alternative methods of searching
for solutions in the presence of constraints. Let us first recall what we are talking about. We
assume we have the standard pattern of a constraint program:

solve(Data) :-

model(Data, Variables),

search(Variables),

print_solution(Variables).

The model part contains the logical model of our problem. It defines the variables and the
constraints. Every variable has a domain of values that it can take (in this context, we only
consider domains with a finite number of values).

Once the model is set up, we go into the search phase. Search is necessary since generally
the implementation of the constraints is not complete, i.e. not strong enough to logically infer
directly the solution to the problem. Also, there may be multiple solutions which have to be
located by search, e.g. in order to find the best one. In the following, we will use the following
terminology:

• If a variable is given a value (from its domain, of course), we call this an assignment. If
every problem variable is given a value, we call this a total assignment.

• A total assignment is a solution if it satisfies all the constraints.

• The search space is the set of all possible total assignments. The search space is usually
very large because it grows exponentially with the problem size:

SearchSpaceSize = DomainSizeNumberOfV ariables

117

Figure 12.1: A search space of size 16

12.1.1 Overview of Search Methods

Figure 12.1 shows a search space with N (here 16) possible total assignments, some of which are
solutions. Search methods now differ in the way in which these assignments are visited. We can
classify search methods according to different criteria:

Complete vs incomplete exploration complete search means that the search space is in-
vestigated in such a way that all solutions are guaranteed to be found. This is necessary
when the optimal solution is needed (one has to prove that no better solution exists).
Incomplete search may be sufficient when just some solution or a relatively good solution
is needed.

Constructive vs move-based this indicates whether the method advances by incrementally
constructing assignments (thereby reasoning about partial assignments which represent
subsets of the search space) or by moving between total assignments (usually by modifying
previously explored assignments).

Randomness some methods have a random element while others follow fixed rules.

Here is a selection of search methods together with their properties:

Method exploration assignments random

Full tree search complete constructive no
Credit search incomplete constructive no
Bounded backtrack incomplete constructive no
Limited discrepancy complete constructive no
Hill climbing incomplete move-based possibly
Simulated annealing incomplete move-based yes
Tabu search incomplete move-based possibly
Weak commitment complete hybrid no

The constructive search methods usually organise the search space by partitioning it system-
atically. This can be done naturally with a search tree (Figure 12.2). The nodes in this tree
represent choices which partition the remaining search space into two or more (usually disjoint)
sub-spaces. Using such a tree structure, the search space can be traversed systematically and
completely (with as little as O(N) memory requirements).

Figure 12.4 shows a sample tree search, namely a depth-first incomplete traversal. As opposed
to that, figure 12.3 shows an example of an incomplete move-based search which does not follow
a fixed search space structure. Of course, it will have to take other precautions to avoid looping
and ensure termination.

118

Figure 12.2: Search space structured using a search tree

Figure 12.3: A move-based search

Figure 12.4: A tree search (depth-first)

119

A few further observations: Move-based methods are usually incomplete. This is not surprising
given typical sizes of search spaces. A complete exploration of a huge search space is only possible
if large sub-spaces can be excluded a priori, and this is only possible with constructive methods
which allow one to reason about whole classes of similar assignments. Moreover, a complete
search method must remember which parts of the search space have already been visited. This
can only be implemented with acceptable memory requirements if there is a simple structuring
of the space that allows compact encoding of sub-spaces.

12.1.2 Optimisation and Search

Many practical problems are in fact optimisation problems, ie. we are not just interested in some
solution or all solutions, but in the best solution.

Fortunately, there is a general method to find the optimal solution based on the ability to find
all solutions. The branch-and-bound technique works as follows:

1. Find a first solution

2. Add a constraint requiring a better solution than the best one we have so far (e.g. require
lower cost)

3. Find a solution which satisfies this new constraint. If one exists, we have a new best
solution and we repeat step 2. If not, the last solution found is the proven optimum.

The branch and bound library provides generic predicates which implement this technique:

minimize(+Goal,-Cost) This is the simplest predicate in the branch and bound library: A
solution of the goal Goal is found that minimizes the value of Cost. Cost should be a
variable that is affected, and eventually instantiated, by the execution of Goal. Usually,
Goal is the search procedure of a constraint problem and Cost is the variable representing
the cost.

bb min(+Goal, -Cost, ++Options) A more flexible version where the programmer can take
more control over the branch and bound behaviour and choose between different strategies
and parameter settings.

12.1.3 Heuristics

Since search space sizes grow exponentially with problem size, it is not possible to explore all
assignments except for the very smallest problems. The only way out is not to look at the whole
search space. There are only two ways to do this:

• Prove that certain areas of the space contain no solutions. This can be done with the
help of constraints. This is often referred to as pruning.

• Ignore parts of the search space that are unlikely to contain solutions (i.e. do incomplete
search), or at least postpone their exploration. This is done by using heuristics. A heuristic
is a particular traversal order of the search space which explores promising areas first.

120

In the following sections we will first investigate the considerable degrees of freedom that are
available for heuristics within the framework of systematic tree search, which is the traditional
search method in the Constraint Logic Programming world.

Subsequently, we will turn our attention to move-based methods which in ECLiPSe can be
implemented using the facilities of the repair library.

12.2 Complete Tree Search with Heuristics

There is one form of tree search which is especially economic: depth-first, left-to-right search by
backtracking. It allows a search tree to be traversed systematically while requiring only a stack
of maximum depth N for bookkeeping. Most other strategies of tree search (e.g. breadth-first)
have exponential memory requirements. This unique property is the reason why backtracking
is a built feature of ECLiPSe. Note that the main disadvantage of the depth-first strategy (the
danger of going down an infinite branch) does not come into play here because we deal with
finite search trees.

Sometimes depth-first search and heuristic search are treated as antonyms. This is only justified
when the shape of the search tree is statically fixed. Our case is different: we have the freedom
of deciding on the shape of every sub-tree before we start to traverse it depth-first. While
this does not allow for absolutely any order of visiting the leaves of the search tree, it does
provide considerable flexibility. This flexibility can be exploited by variable and value selection
strategies.

12.2.1 Search Trees

In general, the nodes of a search tree represent choices. These choices should be mutually
exclusive and therefore partition the search space into two or more disjoint sub-spaces. In other
words, the original problem is reduced to a disjunction of simpler sub-problems.

In the case of finite-domain problems, the most common form of choice is to choose a particular
value for a problem variable (this technique is often called labeling). For a boolean variable,
this means setting the variable to 0 in one branch of the search tree and to 1 in the other. In
ECLiPSe, this can be written as a disjunction (which is implemented by backtracking):

(X1=0 ; X1=1)

Other forms of choices are possible. If X2 is a variable that can take integer values from 0 to 3
(assume it has been declared as X2::0..3), we can make a n-ary search tree node by writing

(X2=0 ; X2=1 ; X2=2 ; X2=3)

or more compactly

indomain(X2)

However, choices do not necessarily involve choosing a concrete value for a variable. It is also
possible to make disjoint choices by domain splitting, e.g.

(X2 #=< 1 ; X2 #>= 2)

121

X2

(1,2)(1,0)(0,3)(0,2)(0,1)(0,0) (1,1) (1,3)

0 1

3210 0 1 2 3

X2

X1

0 1 32

0 0 0 01 1 1 1

(0,0) (0,1) (0,2) (0,3)(1,0) (1,1) (1,2) (1,3)

X1 X1 X1 X1

X2

Figure 12.5: The effect of variable selection

or by choosing a value in one branch and excluding it in the other:

(X2 = 0 ; X2 #>= 1)

In the following examples, we will mainly use simple labeling, which means that the search tree
nodes correspond to a variable and a node’s branches correspond to the different values that the
variable can take.

12.2.2 Variable Selection

Figure 12.5 shows how variable selection reshapes a search tree. If we decide to choose values
for X1 first (at the root of the search tree) and values for X2 second, then the search tree has
one particular shape. If we now assume a depth-first, left-to-right traversal by backtracking, this
corresponds to one particular order of visiting the leaves of the tree: (0,0), (0,1), (0,2), (0,3),
(1,0), (1,1), (1,2), (1,3).

If we decide to choose values for X2 first and X1 second, then the tree and consequently the
order of visiting the leaves is different: (0,0), (1,0), (0,1), (1,1), (0,2), (1,2), (0,3), (1,3).

While with 2 variables there are only 2 variable selection strategies, this number grows expo-
nentially with the number of variables. For 5 variables there are already 22

5
−1 = 2147483648

different variable selection strategies to choose from.

Note that the example shows something else: If the domains of the variables are different, then
the variable selection can change the number of internal nodes in the tree (but not the number
of leaves). To keep the number of nodes down, variables with small domains should be selected
first.

122

X2

1

X2

X1

1 0

02 1 3 20

(1,2) (1,1) (1,0) (1,3) (0,1) (0,3) (0,0) (0,2)

3

Figure 12.6: The effect of value selection

12.2.3 Value Selection

The other way to change the search tree is value selection, i.e. reordering the child nodes of a
node by choosing the values from the domain of a variable in a particular order. Figure 12.6
shows how this can change the order of visiting the leaves: (1,2), (1,1), (1,0), (1,3), (0,1), (0,3),
(0,0), (0,2).
By combining variable and value selection alone, a large number of different heuristics can be
implemented. To give an idea of the numbers involved, table 12.7 shows the search space sizes,
the number of possible search space traversal orderings, and the number of orderings that can
be obtained by variable and value selection (assuming domain size 2).

12.2.4 Example

We use the famous N-Queens problem to illustrate how heuristics can be applied to backtrack
search through variable and value selection. We model the problem with one variable per queen,
assuming that each queen occupies one colunm. The variables range from 1 to N and indicate
the row in which the queen is being placed. The constraints ensure that no two queens occupy
the same row or diagonal:

:- lib(ic).

queens(N, Board) :-

length(Board, N),

Board :: 1..N,

(fromto(Board, [Q1|Cols], Cols, []) do

(foreach(Q2, Cols), count(Dist,1,_), param(Q1) do

noattack(Q1, Q2, Dist)

)

).

noattack(Q1,Q2,Dist) :-

Q2 #\= Q1,

Q2 - Q1 #\= Dist,

Q1 - Q2 #\= Dist.

123

Variables Search space Visiting orders Selection Strategies

1 2 2 2
2 4 24 16
3 8 40320 336
4 16 2.1 ∗ 1013 1.8 ∗ 107

5 32 2.6 ∗ 1035 3.5 ∗ 1015

n 2n 2n! 22
n
−1

∏n−1

i=0
(n − 1)2

i

Figure 12.7: Flexibility of Variable/Value Selection Strategies

We are looking for a first solution to the 16-queens problem by calling

?- queens(16, Vars), % model

labeling(Vars). % search

We start naively, using the pre-defined labeling-predicate that comes with the ic library. It is
defined as follows:

labeling(AllVars) :-

(foreach(Var, AllVars) do

indomain(Var) % select value

).

The strategy here is simply to select the variables from left to right as they occur in the list, and
they are assigned values starting from the lowest to the numerically highest they can take (this
is the definition of indomain/1). A solution is found after 542 backtracks (see section 12.2.5
below for how to count backtracks).

A first improvement is to employ a general-purpose variable-selection heuristic, the so
called first-fail principle. It requires to label the variables with the smallest domain first. This
reduces the branching factor at the root of the search tree and the total number of internal
nodes. The delete/5 predicate from the ic search library implements this strategy for finite
integer domains. Using delete/5, we can redefine our labeling-routine as follows:

:- lib(ic_search).

labeling_b(AllVars) :-

(fromto(AllVars, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select

indomain(Var) % select value

).

124

Indeed, for the 16-queens example, this leads to a dramatic improvement, the first solution
is found with only 3 backtracks now. But caution is necessary: The 256-queens instance for
example solves nicely with the naive strategy, but our improvement leads to a disappointment:
the time increases dramatically! This is not uncommmon with heuristics: one has to keep in
mind that the search space is not reduced, just re-shaped. Heuristics that yield good results
with some problems can be useless or counter-productive with others. Even different instances
of the same problem can exhibit widely different characteristics.
Let us try to employ a problem-specific heuristic: Chess players know that pieces in the
middle of the board are more useful because they can attack more fields. We could therefore
start placing queens in the middle of the board to reduce the number of unattacked fields earlier.
We can achieve that simply by pre-ordering the variables such that the middle ones are first in
the list:

labeling_c(AllVars) :-

middle_first(AllVars, AllVarsPreOrdered), % static var-select

(foreach(Var, AllVarsPreOrdered) do

indomain(Var) % select value

).

The implementation of middle first/2 requries a bit of list manipulation and uses primitives from
the lists-library:

:- lib(lists).

middle_first(List, Ordered) :-

halve(List, Front, Back),

reverse(Front, RevFront),

splice(Back, RevFront, Ordered).

This strategy also improves things for the 16-queens instance, the first solution requires 17
backtracks.
We can now improve things further by combining the two variable-selection strategies: When
we pre-order the variables such that the middle ones are first, the delete/5 predicate will prefer
middle variables when several have the same domain size:

labeling_d(AllVars) :-

middle_first(AllVars, AllVarsPreOrdered), % static var-select

(fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select

indomain(Var) % select value

).

125

N = 8 12 14 16 32 64 128 256

labeling a 10 15 103 542
labeling b 10 16 11 3 4 148
labeling c 0 3 22 17
labeling d 0 0 1 0 1 1
labeling e 3 3 38 3 7 1 0 0

Figure 12.8: N-Queens with different labeling strategies: Number of backtracks

The result is positive: for the 16-queens instance, the number of backtracks goes down to zero,
and more difficult instances become solvable!
Actually, we have not yet implemented our intuitive heuristics properly. We start placing queens
in the middle columns, but not on the middle rows. With our model, that can only be achieved
by changing the value selection, ie. setting the variables to values in the middle of their
domain first. For this we can use indomain/2, a more flexible variant of indomain/1, provided
by the ic search library. It allows us to specify that we want to start labeling with the middle
value in the domain:

labeling_e(AllVars) :-

middle_first(AllVars, AllVarsPreOrdered), % static var-select

(fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select

indomain(Var, middle) % select value

).

Surprisingly, this improvement again increases the backtrack count for 16-queens again to 3.
However, when looking at a number of different instances of the problem, we can observe that
the overall behaviour has improved and the performance has become more predictable than with
the initial more naive strategies. Figure 12.2.4 shows the behaviour of the different strategies
on various problem sizes.

12.2.5 Counting Backtracks

An interesting piece of information during program development is the number of backtracks.
It is a good measure for the quality of both constraint propagation and search heuristics. We
can instrument our labeling routine as follows:

labeling(AllVars) :-

init_backtracks,

(foreach(Var, AllVars) do

count_backtracks, % insert this before choice!

indomain(Var)

),

126

get_backtracks(B),

printf("Solution found after %d backtracks%n", [B]).

The backtrack counter itself can be implemented by the code below. It uses a non-logical
counter variable (backtracks) and an additional flag (deep fail) which ensures that backtracking
to exhausted choices does not increment the count.

:- local variable(backtracks), variable(deep_fail).

init_backtracks :-

setval(backtracks,0).

get_backtracks(B) :-

getval(backtracks,B).

count_backtracks :-

setval(deep_fail,false).

count_backtracks :-

getval(deep_fail,false), % may fail

setval(deep_fail,true),

incval(backtracks),

fail.

Note that there are other possible ways of defining the number of backtracks. However, the one
suggested here has the following useful properties:

• Shallow backtracking (an attempt to instantiate a variable which causes immediate failure
due to constraint propagation) is not counted. If constraint propagation works well, the
count is therefore zero.

• With a perfect heuristic, the first solution is found with zero backtracks.

• If there are N solutions, the best achievable value is N (one backtrack per solution). Higher
values indicate an opportunity to improve pruning by constraints.

The search/6 predicates from the libary ic_search have this backtrack counter built-in.

12.3 Incomplete Tree Search

The library ic_search contains a flexible search routine search/6, which implements several
variants of incomplete tree search.

For demonstration, we will use the N-queens problem from above. The following use of search/6
is equivalent to labeling(Xs) and will print all 92 solutions:

127

bbs(10)

Figure 12.9: Bounded-backtrack search

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, complete, []),

writeln(Xs),

fail.

[1, 5, 8, 6, 3, 7, 2, 4]

...

[8, 4, 1, 3, 6, 2, 7, 5]

No.

12.3.1 First Solution

One of the easiest ways to do incomplete search is to simply stop after the first solution has
been found. This is simply programmed using cut or once/1:

?- queens(8, Xs),

once search(Xs, 0, input_order, indomain, complete, []),

writeln(Xs),

fail.

[1, 5, 8, 6, 3, 7, 2, 4]

No.

This will of course not speed up the finding of the first solution.

12.3.2 Bounded Backtrack Search

Another way to limit the scope of backtrack search is to keep a record of the number of back-
tracks, and curtail the search when this limit is exceeded. The bbs option of the search/6
predicate implements this:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, bbs(20), []),

writeln(Xs),

fail.

[1, 5, 8, 6, 3, 7, 2, 4]

[1, 6, 8, 3, 7, 4, 2, 5]

128

dbs(2, bbs(0))

Figure 12.10: Depth-bounded, combined with bounded-backtrack search

[1, 7, 4, 6, 8, 2, 5, 3]

[1, 7, 5, 8, 2, 4, 6, 3]

No.

Only the first 4 solutions are found, the next solution would have required more backtracks than
were allowed. Note that the solutions that are found are all located on the left hand side of the
search tree. This often makes sense because with a good search heuristic, the solutions tend to
be towards the left hand side. Figure 12.9 illustrates the effect of bbs (note that the diagram
does not correspond to the queens example, it shows an unconstrained search tree with 5 binary
variables).

12.3.3 Depth Bounded Search

A simple method of limiting search is to limit the depth of the search tree. In many constraint
problems with a fixed number of variables this is not very useful, since all solutions occur at the
same depth of the tree. However, one may want to explore the tree completely up to a certain
depth and switch to an incomplete search method below this depth. The search/6 predicate
allows for instance the combination of depth-bounded search with bounded-backtrack search.
The following explores the first 2 levels of the search tree completely, and does not allow any
backtracking below this level. This gives 16 solutions, equally distributed over the search tree:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, dbs(2,bbs(0)), []),

writeln(Xs),

fail.

[3, 5, 2, 8, 1, 7, 4, 6]

[3, 6, 2, 5, 8, 1, 7, 4]

[4, 2, 5, 8, 6, 1, 3, 7]

[4, 7, 1, 8, 5, 2, 6, 3]

[4, 8, 1, 3, 6, 2, 7, 5]

[5, 1, 4, 6, 8, 2, 7, 3]

[5, 2, 4, 6, 8, 3, 1, 7]

[5, 3, 1, 6, 8, 2, 4, 7]

[5, 7, 1, 3, 8, 6, 4, 2]

[6, 4, 1, 5, 8, 2, 7, 3]

129

[7, 1, 3, 8, 6, 4, 2, 5]

[7, 2, 4, 1, 8, 5, 3, 6]

[7, 3, 1, 6, 8, 5, 2, 4]

[8, 2, 4, 1, 7, 5, 3, 6]

[8, 3, 1, 6, 2, 5, 7, 4]

[8, 4, 1, 3, 6, 2, 7, 5]

No (0.18s cpu)

12.3.4 Credit Search

Credit search[1] is a tree search method where the number of nondeterministic choices is limited
a priori. This is achieved by starting the search at the tree root with a certain integral amount
of credit. This credit is split between the child nodes, their credit between their child nodes, and
so on. A single unit of credit cannot be split any further: subtrees provided with only a single
credit unit are not allowed any nondeterministics choices, only one path though these subtrees
can be explored, i.e. only one leaf in the subtree can be visited. Subtrees for which no credit is
left are pruned, i.e. not visited.

The following code (a replacement for labeling/1) implements credit search. For ease of under-
standing, it is limited to boolean variables:

% Credit search (for boolean variables only)

credit_search(Credit, Xs) :-

(

foreach(X, Xs),

fromto(Credit, ParentCredit, ChildCredit, _)

do

(var(X) ->

ParentCredit > 0, % possibly cut-off search here

(% Choice

X = 0, ChildCredit is (ParentCredit+1)//2

;

X = 1, ChildCredit is ParentCredit//2

)

;

ChildCredit = ParentCredit

)

).

Note that the leftmost alternative (here X=0) gets slightly more credit than the rightmost one
(here X=1) by rounding the child node’s credit up rather than down. This is especially relevant
when the leftover credit is down to 1: from then on, only the leftmost alternatives will be taken
until a leaf of the search tree is reached. The leftmost alternative should therefore be the one
favoured by the search heuristics.

130

credit(16)

Figure 12.11: Credit-based incomplete search

What is a reasonable amount of credit to give to a search? In an unconstrained search tree, the
credit is equivalent to the number of leaf nodes that will be reached. The number of leaf nodes
grows exponentially with the number of labelled variables, while tractable computations should
have polynomial runtimes. A good rule of thumb could therefore be to use as credit the number
of variables squared or cubed, thus enforcing polynomial runtime.
Note that this method in its pure form allows choices only close to the root of the search tree,
and disallows choices completely below a certain tree depth. This is too restrictive when the
value selection strategy is not good enough. A possible remedy is to combine credit search with
bounded backtrack search.
The implementation of credit search in the search/6 predicate works for arbitrary domain vari-
ables: Credit is distributed by giving half to the leftmost child node, half of the remaining credit
to the second child node and so on. Any remaining credit after the last child node is lost. In
this implementation, credit search is always combined with another search method which is to
be used when the credit runs out.
When we use credit search in the queens example, we get a limited number of solutions, but
these solutions are not the leftmost ones (like with bounded-backtrack search), they are from
different parts of the search tree, although biased towards the left:

?- queens(8, Xs),

search(Xs, 0, input_order, indomain, credit(20,bbs(0)), []),

writeln(Xs),

fail.

[2, 4, 6, 8, 3, 1, 7, 5]

[2, 6, 1, 7, 4, 8, 3, 5]

[3, 5, 2, 8, 1, 7, 4, 6]

[5, 1, 4, 6, 8, 2, 7, 3]

No.

We have used a credit limit of 20. When credit runs out, we switch to bounded backtrack search
with a limit of 0 backtracks.

12.3.5 Timeout

Another form of incomplete tree search is simply to use time-outs. The branch-and-bound
primitives bb_min/3,6 allow a maximal runtime to be specified. If a timeout occurs, the best

131

lds(1)

Figure 12.12: Incomplete search with LDS

solution found so far is returned instead of the proven optimum.

A general timeout is available from the library test_util. It has parameters timeout(Goal,

Seconds, TimeOutGoal). When Goal has run for more than Seconds seconds, it is aborted and
TimeOutGoal is called instead.

12.3.6 Limited Discrepancy Search

Limited discrepancy search (LDS) is a search method that assumes the user has a good heuristic
for directing the search. A perfect heuristic would, of course, not require any search. However
most heuristics are occasionally misleading. Limited Discrepancy Search follows the heuristic
on almost every decision. The “discrepancy” is a measure of the degree to which it fails to follow
the heuristic. LDS starts searching with a discrepancy of 0 (which means it follows the heuristic
exactly). Each time LDS fails to find a solution with a given discrepancy, the discrepancy is
increased and search restarts. In theory the search is complete, as eventually the discrepancy
will become large enough to admit a solution, or cover the whole search space. In practice,
however, it is only beneficial to apply LDS with small discrepancies. Subsequently, if no solution
is found, other search methods should be tried. The definitive reference to LDS is [29]

There are different possible ways of measuring discrepancies. The one implemented in the
search/6 predicate is a variant of the original proposal. It considers the first value selection
choice as the heuristically best value with discrepancy 0, the first alternative has a discrepancy
of 1, the second a discrepancy of 2 and so on.

As LDS relies on a good heuristic, it only makes sense for the queens problem if we use a
good heuristic, e.g. first-fail variable selection and indomain-middle value selection. Allowing a
discrepancy of 1 yields 4 solutions:

?- queens(8, Xs),

search(Xs, 0, first_fail, indomain_middle, lds(1), []),

writeln(Xs),

fail.

[4, 6, 1, 5, 2, 8, 3, 7]

[4, 6, 8, 3, 1, 7, 5, 2]

[4, 2, 7, 5, 1, 8, 6, 3]

[5, 3, 1, 6, 8, 2, 4, 7]

No.

132

The reference also suggests that combining LDS with Bounded Backtrack Search (BBS) yields
good behaviour. The search/6 predicate accordingly supports the combination of LDS with BBS
and DBS. The rationale for this is that heuristic choices typically get more reliable deeper down
in the search tree.

12.4 Exercises

For exercises 1-3, start from the constraint model for the queens problem given in section 12.2.4.
It is available in the examples directory as queens ic.ecl.

1. Use the search/6 predicate from the ic search library and the standard model for the queens
problem (given below) to find ONE solution to the 42-queens problem. With a naive search
strategy this requires millions of backtracks. Using heuristics and/or incomplete search,
try to find a solution in less than 100 backtracks!

2. How many solutions does the 9-queens problem have?

3. Solve the ”8 sticky queens problem”: Assume that the queens in neighbouring columns
want to stick together as close as possible. Minimize the sum of the vertical distances
between neighbouring queens. What is the best and what is the worst solution for this
problem?

4. For given N, create a list of length N whose members are numbers between 1 and N
(inclusive), which are all different (easy so far) and satisfy the following constraint. For
each element E of the list, its successors are divided into two sets,

• BiggerE: the successors which are greater than E and

• SmallerE: the successors less than E.

(Thus no successor takes the same value as E). The cardinalities of the sets BiggerE and
SmallerE differ by at most 1.

5. A harder version of the problem is similar. For given N, create a list of length N whose
members are numbers between 1 and some upper bound Max (start with, say Max = N2),
which are all different (easy so far) and satisfy the following (more complex) constraint.
For each K from 1..N, call the Kth element of the list Ek. Its successors are divided into
two sets, as before:

• BiggerEk: the successors which are greater than or equal to Ek + K and

• SmallerEk: the successors less than or equal to Ek - K.

(Thus no successor takes a value between Ek-K+1 and Ek+K-1.) The cardinalities of the
sets BiggerEk and SmallerEk differ by at most 1.

What is the smallest upper bound Max for which there is a feasible solution?

133

