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Abstract

The notions of γ and β-acyclicity are two classic generalizations of the acyclicity

of graphs to hypergraphs. They satisfy the property that, if a hypergraph is γ-acyclic

then it is β-acyclic, and the reverse is false. We give some new properties concerning

these notions. First we show that we can strictly insert another notion of acyclicity

between them, namely the fact of having a join tree with disjoint branches. And if we

add a condition on the existence of such a join tree, we obtain a notion equivalent to γ-

acyclicity. Then we present two characterizations, consisting in applying successively

a small set of rules, deciding γ and β-acyclicity respectively.

1 Introduction

A graph is acyclic if it contains no cycle. On hypergraphs, there exists different definitions
of a cycle and thus different non-equivalent notions of acyclicity. For instance, we can cite in
increasing order of generality (cf. [Fag83]): γ, β and α-acyclicity. They have been studied
in the context of hypergraph theory, database theory and constraint satisfaction problems.
For example, γ-acyclic database schemes have interesting structural properties (see for
instance [Fag83], [LL89] and [ZC02]) and α-acyclic conjunctive queries on databases (or
acyclic queries) form an important tractable subclass of the class of conjunctive queries.
Acyclic queries can be recognized in linear time (see [TY84]) and various efficient algo-
rithms have been developed to evaluate them (see for instance [Yan81], [PY99], [GP01]
and [BDG07]). In this paper, we focus on γ and β-acyclicity for which we give alternative
characterizations. We first introduce the notion of join tree with disjoint branches and
show that it provides a new measure of acyclicity which is more general than γ-acyclicity
and less general than β-acyclicity. Then, we show that γ-acyclic hypergraphs are precisely
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the hypergraphs that admit a join tree with disjoint branches with any hyperedge as root.
In the second part of the paper, we give rule-based characterizations of γ and β-acyclicity.
More precisely, we give two sets of rules Rγ and Rβ such that a hypergraph is γ-acyclic
(resp. β-acyclic) iff, after applying the rules Rγ (resp. Rβ) as long as possible, we obtain
the empty hypergraph. Such a set of rules characterizing a notion of acyclicity can help
to give a better intuition of it. This is also a convenient way to compare these different
notions. There already exist such rules characterizing α-acyclicity (cf. [BFMY83]) and
γ-acyclicity (cf. [DM82]), but our set of rules for γ-acyclicity is smaller and cannot be
obtained from these previous rules.

2 Preliminaries

A hypergraph is a couple H = (V, E) consisting of a finite set V and a set E of non-empty
subsets of V. The elements of V are called vertices and those of E are called hyperedges.
The arity of a hyperedge is its size.

A γ-cycle in a hypergraph is a sequence (E1, x1, ..., En, xn) (n ≥ 3) where the Eis are
distinct hyperedges and the xis distinct vertices, and satisfying the following properties :

• for all i ∈ [1, n − 1], xi belongs to Ei and Ei+1 and no other Ej and

• xn belongs to En and E1 (and possibly to other Ejs).

A hypergraph is γ-acyclic if it contains no γ-cycle.
A β-cycle in a hypergraph is a sequence (E1, x1, ..., En, xn) (n ≥ 3) where the Eis are

distinct hyperedges and the xis distinct vertices, and satisfying the following property :
for all i ∈ [1, n], xi belongs to Ei and Ei+1 and no other Ej (we identify En+1 with E1). A
hypergraph is β-acyclic if it contains no β-cycle.

The definitions of γ and β-acyclicity are quite similar. The difference concerns possibly
the last vertex of the cycle. It is obvious that γ-acyclicity implies β-acyclicity but these
notions are not as close as they can seem. There are various properties that they do not
share (see for instance [Fag83], [Leh85], [CZ02] and [Dur08]). However, on graphs (i.e.
when the maximum arity is 2), the two notions collapse and coincide with the classic
acyclicity.

A join tree for a hypergraph H = (V, E) is, if it exists, a rooted tree T = (E ,J ) with
set of nodes the hyperedges of H and such that, for every v ∈ V, the set of nodes of T that
contain v is connected in T . A hypergraph is α-acyclic if it has a join tree. We know that
any β-acyclic hypergraph is also α-acyclic.

3 Join tree with disjoint branches

Definition 3.1. We say that a join tree T of a hypergraph H has disjoint branches if
hyperedges of H belonging to different branches of T are disjoint.
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The following two propositions show that having a join tree with disjoint branches for
a hypergraph is a notion located between γ and β-acyclicity.

Proposition 3.2. If a hypergraph is γ-acyclic, it has a join tree with disjoint branches.

Proof. We prove in fact a stronger result : for every γ-acyclic hypergraph H and every
hyperedge E of H, H has a join tree with disjoint branches whose root is E. We prove this
by induction on the number of hyperedges. This is obviously true when the hypergraph has
just one hyperedge. Let H = (V, E) be a γ-acyclic hypergraph and assume the induction
hypothesis is true for hypergraphs with strictly less hyperedges than H. Let E be any
hyperedge of H. We must show that H has a join tree T with disjoint branches and with
E as root.

First, we split the hypergraph H minus E

(V, E \ E)

in connected components H1, ..., Hn (we do not consider in these components the vertices
that belong only to the hyperedge E). Each of the subhypergraphs H1, ..., Hn is γ-acyclic
and has strictly less hyperedges than H. Thus, by induction hypothesis, each Hi := (Vi, Ei)
has a join tree with disjoint branches and we can choose any hyperedge of Hi as root. We
now specify which hyperedge we will choose and define a join tree T for H with disjoint
branches and with E as root.

For every i, there exists Ei ∈ Ei such that Vi ∩ E ⊂ Ei. Indeed, if there was two
hyperedges Ei,1 and Ei,2 in Ei such that Ei,1 ∩ E and Ei,2 ∩ E were incomparable for
inclusion (i.e. there is a t1 in (Ei,1 \ Ei,2) ∩ E and a t2 in (Ei,2 \ Ei,1) ∩ E) then there
would be in H a γ-cycle beginning with (Ei,1, t1, E, t2, Ei,2, ...) and continuing with any
path from Ei,1 to Ei,2 of minimal length (possibly just one vertex if Ei,1 and Ei,2 intersect).
For every i, let Ti be a join tree with disjoint branches for Hi with Ei as root. We define
the join tree T we are looking for as follows. The root of T is E and we connect E to each
Ti with an edge {E, Ei} (cf. Figure 1). Since the Vis are pairwise disjoint (by definition
of a connected component) and each Ti has disjoint branches, T has disjoint branches. It
remains to prove that T is a join tree i.e. that, for every v ∈ V, the set of hyperedges of H
that contain v is connected in T .

Figure 1: The tree T in the proof of Proposition 3.2.

If v ∈ E and v belongs to no other hyperedge, this is obvious. If v ∈ V \E, v belongs to
some Vi and the only hyperedges that contain v are in Ti. Thus, by connectedness of the
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set of hyperedges that contain v in Ti, we have also the connectedness in T . The remaining
case is when v belongs to E and some Vi. Since Vi ∩ E ⊂ Ei, we have v ∈ E ∩ Ei. The
set of hyperedges Si

v that contain v in Ti is connected and Ei is in Si
v. Moreover, the only

hyperedge not in Ti that contain v is E and it is connected to Ei in T . Thus, the set
{E} ∪ Si

v of hyperedges of H that contain v is connected.

The preceding proof is constructive. It even provides a polynomial time algorithm that
constructs, given a γ-acyclic hypergraph H and a hyperedge E of H, a join tree of H
with disjoint branches whose root is E. This algorithm would run as follows. For each
hyperedge F intersecting E, we check if it is an Ei as in the proof (i.e. F ∩ E is maximal
for inclusion) and if it is the first candidate we have found (i.e. the preceding hyperedges
have not the same intersection with E as F ∩E) because we do not want to connect E to
Ti several times. For every F satisfying these conditions (F is an Ei), we connect E to the
result of the algorithm applied recursively to H and F (this result is Ti).

Proposition 3.3. If a hypergraph has a join tree with disjoint branches, it is β-acyclic.

Proof. Let H be a hypergraph with a β-cycle (E1, x1, ..., En, xn) and let T be a join tree
with disjoint branches for H. We will obtain a contradiction. Since E1 and E2 intersect,
they must belong to the same branch of T . Without loss of generality, we can assume that
E1 is closer to the root of T than E2. Indeed, if the contrary was true, we could consider
instead the β-cycle

(E2, x1, E1, xn, En, xn−1, En−1, ..., E3, x2).

Now E3 must be on the same branch as E2 because they intersect. Since E1 is above
E2 (if we consider the root as the “top” of the tree), E1 and E3 are also on this same
branch. Moreover, E3 must be under E2 (i.e. E2 is closer to the root), else we would have
a contradiction :

• if E3 was between E1 and E2 then x1 should belong to E3 (indeed x1 ∈ E1 ∩E2 and
the set of hyperedges containing x1 is connected in T ) and

• if E3 was above E1 then x2 should belong to E1 (for the same reasons).

With the same arguments, we show that every Ei must belong to this same branch and
in the order E1, E2, ..., En from the root of T . In particular En is the farthest and thus,
for instance, E2 is between E1 and En. But, again, xn belongs to E1 and En and the
set of hyperedges containing xn is connected in T . So xn should belong to E2, which is a
contradiction.

Note that the reverse is false in both preceding propositions. Indeed, the hypergraph

({1, 2, 3}, {{1, 2, 3}, {1, 2}, {2, 3}})

contains the γ-cycle ({1, 2}, 1, {1, 2, 3}, 3, {2, 3}, 2) and has a join tree with disjoint branches
(cf. Figure 2). And the hypergraph

({1, 2, 3, 4}, {{1, 2, 3, 4}, {1, 2}, {1, 3}, {1, 4}})
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Figure 2: A join tree with disjoint branches for a γ-cyclic hypergraph and a β-acyclic hypergraph

that has no join tree with disjoint branches.

is β-acyclic and we can easily check that it has no join tree with disjoint branches.
In the proof of Proposition 3.2, we have seen that we can take any hyperedge as root

of the join tree with disjoint branches. Since we will show that the reverse is also true, we
obtain the following characterization of γ-acyclicity.

Proposition 3.4. A hypergraph H is γ-acyclic if and only if, for every hyperedge E of H,
H has a join tree with disjoint branches whose root is E.

Proof. As already noticed, the proof of 3.2 yields the only if part. It remains to prove
that, if H has a γ-cycle, there is a hyperedge that cannot be the root of a join tree with
disjoint branches for H. Since a γ-cycle is either a β-cycle or a γ-cycle of size 3 that is not
a β-cycle (see [Fag83]), we can distinguish between these two cases. Proposition 3.3 says
that, if H has a β-cycle, then no hyperedge can be the root of a join tree with disjoint
branches for H. So it remains to study the second case. Let (A, a, B, b, C, c) be a γ-cycle
of H of size 3 that is not a β-cycle. This means that a ∈ (A∩B) \C, b ∈ (B ∩C) \A and
c ∈ A∩B∩C. We show that B cannot be the root of a join tree with disjoint branches for
H. If B was the root, A and C should be in the same branch because they are not disjoint
(c ∈ A∩C). On this branch, A cannot be under C (i.e. farther from the root B), because
else a would be in C (by connectedness of hyperedges containing a in the tree). Similarly
C can neither be under A because this time b would be in A. This is a contradiction.

It seems hard to find such a condition on join trees that would characterize β-acyclicity.
Indeed, if we add a vertex to every hyperedge of a hypergraph, we do not modify its β-
acyclicity. The same holds even if we do not add the vertex to every hyperedge but only to
some hyperedges chosen cautiously. The situation is quite different for γ-acyclicity since
adding a vertex to each hyperedge has much chance to create a γ-cycle.

We finish this section with two corollaries of Proposition 3.2.

Corollary 3.5. Let k ≥ 1 be an integer. Every γ-acyclic hypergraph of maximum arity at
most k has a join tree of maximum degree at most k + 1.

Proof. Let H be a γ-acyclic hypergraph. By Proposition 3.2, it has a join tree T with
disjoint branches. Let E be a vertex of T (i.e. a hyperedge of H) with at most k elements.
By the pigeonhole principle and since the children of E in T are disjoint, E has at most k
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children that intersect it. Moreover, if a child C of E does not intersect E, we can remove
the subtree TC under C (i.e. the subtree of T induced by C and all its descendants in T )
and hook it to any leaf. The tree we obtain is still a join tree of H with disjoint branches
(because the vertices of TC are disjoint from the other vertices of T ). If we proceed this
way with every hyperedge E, we get a join tree of H with disjoint branches of maximum
degree at most k + 1.

When k = 2, this is the special case of acyclic graphs.

Corollary 3.6. Every acyclic graph has a join tree of maximum degree at most 3.

Notice that the join tree obtained in the proof of this corollaries still have disjoint
branches.

4 Rule-based characterizations

In this section, we present two sets of rules such that applying them successively as long it
is possible allows to decide respectively if a hypergraph is γ-acyclic and β-acyclic. These
kinds of rules can be convenient to understand better these notions as for the rules for
α-acyclicity (remove any vertex belonging to at most one hyperedge and any hyperedge
included in another hyperedge, cf. [BFMY83]). They can also be seen as algorithms
deciding γ and β-acyclicity.

Let H = (V, E) be a hypergraph. We consider the three following rules :

1. If a vertex is isolated (i.e. belongs to only one hyperedge) or belongs to no hyperedge,
then we remove it from H (i.e. from V and from the hyperedge that contains it if it
is isolated).

2. If a hyperedge E satisfies the property : ∀F ∈ E (E ⊂ F ∨ E ∩ F = ∅), then we
remove it from E (remark: we only remove E from the list of hyperedges not the
vertices of E).

3. If two hyperedges have the same elements, then we remove one of them from E
(remark : when applying the rules, it happens that we do not have a hypergraph any
more, because two hyperedges can then have the same elements ; this is why E is
considered as a multi-set).

Proposition 4.1. A hypergraph H is γ-acyclic if and only if, after applying the three
rules successively until none can be applied, we obtain the empty hypergraph (i.e. with no
hyperedge and no vertex).

Proof. If H contains a γ-cycle (E1, x1, ..., En, xn), then Rule 1 can’t remove an xi, because
they all belong to at least two hyperedges (Ei and Ei+1) (remark : we assume that the
index n + 1 corresponds to 1). Rule 2 doesn’t remove an Ei, because each Ei is connected
to at least one other without being included (Ei+1 for example). And Rule 3 can at most
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replace an Ei by a hyperedge with the same elements. Consequently, after applying the
three rules successively, there will always remain at least one γ-cycle in H, and so we won’t
obtain the empty hypergraph.

Reciprocally, let H be a hypergraph such that, if we apply successively 1, 2 and 3,
we obtain a non-empty hypergraph H′ to which we cannot apply 1, 2 or 3 anymore. We
will show that H′ contains a γ-cycle (and thus that H contains a γ-cycle). Let A be any
hyperedge of H′. Since we cannot apply 2, A intersects a hyperedge B without being
included in it. Among the possible Bs, we choose a B that is minimal for inclusion.

If B is not included in A, there exists a ∈ A ∩ B and b ∈ B \ A. If B is included in A,
since we cannot apply 2 to B, there exists a B′ that intersects B and does not contain B.
Moreover B′ cannot be included in B because B is minimal among hyperedges intersecting
A and not containing A. Thus there exists u ∈ B ∩ B′, v ∈ A ∩ (B \ B′) and w ∈ B′ \ B.
If w was in A, then

(B, v, A, w, B′, u)

would be a γ-cycle of H′ and we could already conclude. In every case (even if we must
replace B by B′ and b by w), there exists a ∈ A ∩ B and b ∈ B \ A. Before we continue,
we replace B by a B̃ maximal for inclusion, containing B and such that A ∩ B̃ = A ∩ B.

Since b is not isolated (because we cannot apply 1), there exists a hyperedge C ̸= B
that contains b. We choose C minimal for l’inclusion among the different candidates. We
can assume that B ̸⊂ C for we would else have A ∩B ! A ∩C (because we have replaced
B by B̃), thus there would be a z ∈ (A ∩ C) \ B and

(A, z, C, b, B, a)

would be a γ-cycle. So we can use the same argument as in the preceding paragraph with
the hyperedges C and B instead of B and A. We conclude that there exists b ∈ B∩C and
c ∈ C \ B.

We continue to define hyperedges this way until the sequence A, B, C, ... contains the
same hyperedge twice. We finally obtain a sequence

S := (E1, x1, ..., En, xn)

such that, for every i, xi ∈ Ei ∩Ei+1 (with En+1 := E1) and, for every i ∈ [2, n], xi ̸∈ Ei−1.
We choose S with minimal size among all possible sequences we could obtain, and we will
show that this S gives rise to a γ-cycle.

First, we have necessarily n ≥ 3 because x2 ̸∈ E1. If n = 3, then

(E2, x2, E3, x3, E1, x1)

is a γ-cycle, because x2 ∈ (E2 ∩ E3) \ E1, x3 ∈ (E3 ∩ E1) \ E2 and x1 ∈ E1 ∩ E2. The
remaining case is n ≥ 4. We show that S is a γ-cycle i.e. that, for every i, xi belongs to
no other Ej than Ei and Ei+1.

We notice that, for every j ∈ [2, n − 1], xj ̸∈ E1 because

(E1, x1, ..., Ej, xj)
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would else contradict the minimality of S. We can now show that, for every j ∈ [3, n],
x1 ̸∈ Ej. Indeed, for every j ∈ [3, n − 1], x1 ̸∈ Ej because

(E1, x1, Ej, xj , ..., En, xn)

would also contradict the minimality of S since xj ̸∈ E1. And x1 ̸∈ En because else this is

(E2, x2, ..., En−1, xn−1, En, x1)

that would contradict the minimality of S since we have just seen that x1 ̸∈ En−1.
We now consider the sequence

(E2, x2, E3, x3, ..., En, xn, E1, x1).

As x1 ̸∈ En, the preceding argument shows that, for every j ∈ [4, n]∪ {1}, x2 ̸∈ Ej . Then,
considering the sequence

(E3, x3, E4, x4, ..., En, xn, E1, x1, E2, x2),

we obtain that, for every j different from 3 and 4, x3 ̸∈ Ej. And so on, we have that, for
every i, xi belongs to no other Ej than Ei and Ei+1, which is what we needed.

Notice that the preceding proof contains the proof of the following fact.

Fact 4.2. If a hypergraph H has a sequence (E1, x1, ..., En, xn) such that,

for every i, xi ∈ Ei ∩ Ei+1 (with En+1 := E1) and for every i ∈ [2, n], xi ̸∈ Ei−1,

then H has a γ-cycle.

Now we consider the two following rules :

1. If a vertex is a nest point (i.e. the set of hyperedges containing it is a chain for the
inclusion relation), then we remove it from H (i.e. from V and from the hyperedges
that contain it).

2. If a hyperedge is empty, then we remove it from E .

In [BK80], Brouwer and Kolen show that a hypergraph is β-acyclic if and only if every
induced subhypergraph has a nest point. So, applying the rules successively on a β-acyclic
hypergraph will yield the empty hypergraph. And conversely, we see easily that, if a
hypergraph has a β-cycle, we will not be able to apply the rules on the elements of the
β-cycle, and thus we will not obtain the empty hypergraph. Consequently, we have the
following proposition.

Proposition 4.3. A hypergraph H is β-acyclic if and only if, after applying the two rules
successively until none can be applied, we obtain the empty hypergraph.

It is interesting to notice that, if we want to test β-acyclicity, we thus not have to search
for a nest point in every induced subhypergraph, but only in |V| induced subhypergraph.
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5 Conclusion

We have seen the position of join trees with disjoint branches in the hierarchy of hypergraph
acyclicity. Since we know that having a join tree (with no additional condition) is equivalent
to being α-acyclic, we have the following recap :

jtdb for any root = γ-acyclicity ! jtdb ! β-acyclicity ! α-acyclicity = jt,

where jt means “join tree” and db “disjoint branches”.
Inspired from the notion of join tree with disjoint branches, it could be interesting to

investigate the condition of disjoint branches in classical decomposition methods, such as
hypertree decompositions (cf. [GLS02]). These decompositions are very useful in the areas
of databases and CSPs since recognize queries of bounded hypertree width, construct a
hypertree decomposition for them and evaluate them are all feasible in polynomial time.

The rule-based characterizations of γ and β-acyclicity give the idea of studying further
“local conditions”, for instance conditions concerning the set of hyperedges containing a
vertex (as in the case of β-acyclicity where they form a chain for inclusion).

Acknowledgements I wish to thank Arnaud Durand for his valuable comments and
advice.
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