
A Disjunctive Decomposition Control Schema
for Constraint Satisfaction*

Eugene C. Freuder 
Paul D. Hubbe

Department of Computer Science
University of New Hampshire
Durham, NH 03824, U.S.A.

ecf@cs.unh.edu
pdh@cs.unh.edu

Abstract

The paper presents a control schema for constraint satisfaction. Several algorithms, old and new, are
formulated as instances of this schema by specifying different methods of problem decomposition. This
formulation facilitates description and comparison of the algorithms and suggests directions for further research.
A new decomposition method is presented that is virtually guaranteed to reduce problem size, while always
retaining at least one of the solutions to the original problem. 

1 Introduction

A solution to a constraint satisfaction problem (CSP) is an assignment of a value to each problem variable
that satisfies all the constraints, or restrictions, on which combinations of variables are permitted. We will focus
here on binary CSPs where the constraints involve two variables. The potential values for a variable constitute its
domain. We will assume finite domains. 

We propose a disjunctive divide and conquer control schema for constraint satisfaction. The schema encompasses
a wide variety of specific algorithms, including a new one presented here. It facilitates presentation and comparative
analysis of these algorithms and suggests new algorithmic possibilities. In particular, the problem decomposition
offers new opportunities for ordered search in a space of alternative problems, and for parallel and distributed
processing. A specific new decomposition technique is presented that is virtually guaranteed to reduce the number of
possible solutions, i.e. the number of different ways to assign a value to each variable, while always retaining at
least one of the actual solutions to the original problem. 

Our basic CSP algorithm schema can be stated very simply: 

Decomposition Algorithm Schema:
Place the initial problem on the Agenda
Until Agenda empty:

Remove a problem P from Agenda
If P has only instantiated variables

then Exit with their values 
else 

Decompose P into a set of subproblems {Pi}

Place each non-empty Pi onto the Agenda

Exit with no solution

*This material is based upon work supported by the National Science Foundation under Grant No. IRI-9207633. 



Initially all variables are uninstantiated; the decomposition methods mark variables as instantiated. Intuitively,
the instantiated variables are the variables for which we have chosen values. Upon exit the cross product of the
instantiated variable domains is the set of reported solutions. (This is not necessarily all the solutions, but some of
our algorithms will naturally find sets of solutions even while searching for a first solution.) A problem is empty if
any of its domains is empty. 

We impose the following three conditions on {Pi}:

1. Soundness: Any solution to any Pi is a solution to P. 

2. Termination: Each of the {Pi} is smaller than P. (Problem size can be measured as the product of the

domain sizes for each variable, i.e. the number of combinations of values that could be generated as potential
solutions.) 

3. Semi-completeness: If there is a solution to P, then there will be a solution to at least one of the {Pi}. 

This disjunctive decomposition breaks a problem into subproblems in a manner that guarantees that the
decomposition algorithm schema will produce a solution to solvable problems and terminate without a solution
when none exists. Notice that if we are only looking for one solution, we do not need to require that every solution
to P will be a solution to some Pi. (Conjunctive decompositions break a problem into subproblems such that all

the subproblems must be solved, and the solutions must fit together properly, for the original problem to be solved.)
This schema immediately suggests two avenues of exploration: 

1. How is the decomposition performed?
2. How is the agenda organized?

Different answers to these questions produce a family of divergent algorithms. 
Notice that if the agenda is maintained as a stack we have a form of depth-first search, which does not need to

present a serious space problem. Stack size requirements are O(nD), for n variables and a maximum of D problems
in any decomposition {Pi}. (In fact if we represent all but the first component as a continuation, generating the

individual subproblems as needed, stack size can be reduced to O(n).) On the other hand, if we are more flexible in
the agenda ordering, it permits opportunities for heuristic ordering that may save processing time. (If ordering is
limited to ordering a set {Pi} before placing it on the agenda, stack size requirements can still be O(nD).) 

All of our examples will assume a stack organization for the agenda. However, that  still leaves open questions
about which problems to place next on the stack, and in what order. 

We will indicate how versions of five specific algorithms can be formulated using this schema:

1. backtracking (BT) [Golumb and Baumert, 1965]: We use this basic algorithm to introduce the schema. 

2. forward checking (FC) [Haralick and Elliott,  1980]: This is one of the most successful CSP techniques. The
effective minimal domain size variable ordering [Haralick and Elliott, 1980] is naturally incorporated as a
decomposition decision. 

3. network consistency (NC) [Mackworth, 1977]: This algorithm explicitly operated in a recursive divide and
conquer form, alternating local consistency processing with variable domain splitting. The schema formulation helps
suggest a variety of NC variations to explore, and clarifies the relationship between NC and FC. 

4. backtracking with cross product representation (BT-CPR) [Hubbe and Freuder, 1992]: The schema
formulation, similar to that used in the original presentation of the algorithm, facilitates viewing backtracking as a
degenerate case of backtracking with CPR. This in turn facilitates the demonstration that adding CPR can not
increase the number of constraint checks (a standard measure of CSP algorithm performance) when searching for all
solutions (and may reduce the number of checks significantly). A similar formulation is possible for forward
checking with CPR. 



5. inferred disjunctive constraints (IDC) [Freuder and Hubbe, to apear]: The new IDC algorithm was explicitly
intended as a decomposition algorithm. It takes advantage of the fact that some solutions may be thrown away in the
search for a single solution. The comparison with forward checking that the schema facilitates provides insight into
the effective use of this technique. The technique can be shown to virtually always reduce problem size, i.e. the sum
of the sizes of the subproblems will virtually always be less than the size of the decomposed problem. 

Decomposition methods can be combined. IDC incorporates aspects of FC. An algorithm that uses heuristics to
alternatively choose between FC and IDC decomposition during search has proven superior to either IDC or FC
alone (testing all three with minimal domain size variable ordering) on some very hard problems [Freuder and Hubbe,
to appear]. 

In the following five sections we specify the decomposition techniques that effectively define each of the five
basic algorithms listed above. Plugging each decomposition technique into the decomposition schema produces a
version of one of the algorithms. In each case we specify the decomposition abstractly and then illustrate it with a
simple example. Section 7 discusses some theoretical aspects of the efficacy and efficiency of these algorithms. The
final section proposes some directions for further work. 

The abstract decomposition descriptions will refer to a decomposed problem, P, with n variables. Each of the
subproblems in the decomposition will be specified by describing how to construct them from P. The subproblems
are to placed on the decomposition schema's stack so that they reside on the stack in the same order as they are
specified. We will often refer to the "first" uninstantiated variable, or the "first" value in a domain, assuming the
variables and values are stored in some order. We specify "first" rather than "any" in order to present a more specific
algorithm, rather than another schema, parameterized around the method of variable and value choice. However, we
could also impose a heuristic variable or value search ordering scheme to choose the variables or values (or provide
their initial ordering), and such schemes are of considerable interest.  

We will use as an example a simple coloring problem. The variables are countries, the values are colors, the
constraints specify that neighboring countries cannot have the same color. We will have four countries (variables):
W, X, Y and Z. Each country has three possible colors (values): r(ed), b(lue), and g(reen). The countries are arranged
in a "ring": W neighbors X, X neighbors Y, Y neighbors Z and Z neighbors W. 

Coloring problems and subproblems will be represented by listing the domains for W, X, Y and Z in order.
Thus the original problem can be represented: 

r b g
r b g
r b g
r b g

The domains of instantiated variables will be represented in italics. We will carry out the decomposition depth-
first until a solution is found. We will show all the non-empty sibling subproblems for each decomposition, even
though in practice we need not generate all siblings at once. Empty subproblems will not be shown. 

This example is purposely trivial for pedagogical purposes. It is not intended to illustrate the relative merits of
the different algorithms. However, it may provide some insight into their potential, as well as their operation. 



2 Backtracking

Decomposition:  

1. The instantiated subproblem.
Mark the first uninstantiated variable, V, instantiated. Make its domain the first value, v, in the domain of V. If

v is inconsistent with any of the (single) values in the domains of any of the previously instantiated variables, also
remove v from the domain of V, leaving the instantiated problem empty (to be discarded by the algorithm schema). 

2. The remainder subproblem.
Remove the value v from the domain of V. 

Example: (Remember that we are not showing empty subproblems.)

r b g
r b g
r b g
r b g
  | \
r b g
r b g r b g
r b g r b g
r b g r b g
  |
r
b g
r b g
r b g
  | \
r r
b g
r b g r b g
r b g r b g
  | \
r r
b b
r b g
r b g r b g
  |
r
b
r
bg
  | \
r r
b b
r r
b g



3 Forward Checking

Decomposition: 

1. The precluded subproblem .
Mark the first uninstantiated variable, V, instantiated. Make its domain the first value, v, in the domain of V.

Remove values inconsistent with v from the domains of the remaining uninstantiated variables. As an obvious non-
standard refinement, if there is only one uninstantiated variable, it too can be marked instantiated. 

2. The remainder subproblem. 
Remove the value v from the domain of V. (Same as in the backtracking decomposition.)

Example: 

r b g
r b g
r b g
r b g
  | \
r b g
b g r b g
r b g r b g
b g r b g
  | \
r r
b g
r g r b g
b g b g
  | \
r r
b b
r g
b g b g



4 Network Consistency

Decomposition: 

1. The first divided subproblem .
Remove half the values from the domain of the first uninstantiated variable, V. Subject the subproblem to arc

consistency processing, which may further reduce variable domains. Finally, mark any variables with single value
domains instantiated, and if there is only one uninstantiated variable, mark it instantiated also. 

2. The second divided subproblem. 
Remove from the domain of V the values in the domain of V in the first divided subproblem. As with the first

divided subproblem: Subject the subproblem to arc consistency processing, which may further reduce variable
domains. Finally, mark any variables with single value domains instantiated, and if there if only one uninstantiated
variable, mark it instantiated also. 

(Note that in employing this decomposition in the decomposition algorithm schema the arc consistency
processing does not actually have to be done until we take the subproblem off the agenda.)

Example: 

r b g
r b g
r b g
r b g
  | \
r b g
b g r b g
r b g r b g
b g r b g
  | \
r r
b g
r g r b
b g b g
  | \
r r
b b
r g
b g b



5 Backtracking With Cross Product Representation 

Decomposition:

The CPR subproblems.
a. Split: For each value v in the first uninstantiated variable, V, create a subproblem where the domain of V is

restricted to v, and the domains of each instantiated variable are restricted to those values consistent with v. 
b. Merge: If any set of subproblems differ only in the domain of V, merge them into a single subproblem where

the domain of V is the union of all their individual V domains (and the other domains are the same as they are in
each of these subproblems). 

Mark V instantiated in each subproblem. 

Example: 

r b g
r b g
r b g
r b g
  |
r b g
r b g
r b g
r b g
  | \ \
b g r g r b
r b g
r b g r b g r b g
r b g r b g r b g
  |
b g
r
b g
r b g
 | \ \
b g g b
r r r
b g g b
r b g



6 Inferred Disjunctive Constraint

Decomposition:  

1. The precluded subproblem. 
Mark the first uninstantiated variable, V1, instantiated. Make its domain the first value, v, in the domain of V1.

Remove values inconsistent with v from the domains of the remaining uninstantiated variables. If there is only one
uninstantiated variable, it too can be marked instantiated. (Same as in the forward checking decomposition.) 

2. The excised subproblems.
For each remaining uninstantiated variable Vi, i = 2 to n, create a subproblem by removing v from the domain

of V1, removing any values inconsistent with v from the domains of V2 through Vi-1 and  removing any values
consistent with v from the domain of Vi. (Note any variables that do not share a constraint with V1 will
automatically lead to empty subproblems.) 

Example: 

r b g
r b g
r b g
r b g
  | \ \
r b g b g
b g r b g
r b g r b g r b g
b g r b g r 
  | \
r r
b g
r g b
b g b g
  |
r
b
r
b g



7 Theory

All of these decompositions meet the three conditions laid out in the first section, and thus when the
decomposition algorithm schema uses them it will terminate and find a solution to solvable problems. Only the IDC
decomposition takes advantage of the fact that some solutions can be thrown away as long as not all are thrown
away. The others do not throw away any solutions, and thus if the algorithms employing these decompositions
continue to explore the search space after finding solutions ("pretending" to fail) they will find all solutions. 

CPR, a relatively new decomposition, is based on the insight that sets of incomplete solutions may be
represented and efficiently processed in a cross product representation. It is proven analytically in [Hubbe and Freuder,
1992] that BT-CPR never requires more constraint checks than BT, when searching for all solutions, or proving that
none exist. A similar result is obtained for CPR in conjunction with FC. 

The new decomposition, IDC, is based on the hypothesis that, if P is solvable, either there will be a solution
involving v for V, or there will be a solution involving a value inconsistent with v. It is proven in [Freuder and
Hubbe, to appear] that:

1. IDC will find a solution if one exists. It may throw away some solutions, but often we are only looking for
one anyway. 

2. The size of the IDC decomposition (the sum of the sizes of the subproblems) will always be smaller than the
size of the decomposed problem (except in the degenerate case when the instantiated value is the only value in its
domain, and all other values are consistent with it). None of the other decomposition schemes can make such a
strong reduction claim. 

3. The size of the IDC decomposition will always be less than the size of the FC decomposition by an amount
equal to the size of the consistent subproblem. If v is the value in the domain of the first variable, V, in the
precluded subproblem, the consistent subproblem is formed from the decomposed problem by removing v from the
domain of V and removing from all other domains any value inconsistent with v. 

This theoretical analysis of IDC is facilitated by another decomposition process. We will describe this process
and then present an example, again using our coloring problem. (The forward checking decomposition in the
example is shown in the reverse order to that shown in Section 3.) Compare the leaves of the tree in the example
with the first decomposition in Section 6. 

Description: 

First carry out a forward checking decomposition. Call the variable instantiated in the precluded subproblem V
and the value in its domain v. Now decompose the remainder problem into two subproblems using a variation of the
NC decomposition: divide the domain of the variable after V, not in half, but into two pieces, one containing all
values inconsistent with v, the other containing all the values consistent with v. Repeat this NC-like decomposition
process on the second subproblem, the one containing the consistent values, dividing the domain of the next variable
into two pieces. Continue in this manner until all domains have been so divided. The leaves of the resulting
decomposition tree will be the subproblems of the IDC decomposition plus the consistent subproblem. Now observe
that given any solution to the consistent subproblem we can substitute v for the value of the first variable and still
have a solution. 



Example:

r b g
r b g
r b g
r b g
  | \
b g r
r b g b g
r b g r b g
r b g b g
  | \
b g b g
b g r
r b g r b g
r b g r b g
  |
b g
b g
r b g
r b g
  | \
b g b g
b g b g
r b g r b g
b g r

8 Further Work

Viewing these algorithms as instances of the decomposition schema helps us to compare them, and suggests
new variations. For example, if we alter NC to subdivide a domain of d values into d pieces instead of 2 pieces, and
reduce the amount of arc consistency processing appropriately, we arrive at forward checking. Is there another way to
subdivide the domain that outperforms both algorithms for an interesting class of problems? 

Ordering heuristics for subproblem consideration provide a new avenue to explore. We can view ourselves as
searching in a metalevel "subproblem space". This subproblem space obviously lends itself to distributed and parallel
processing, especially given the disjunctive nature of our decompositions. Sophisticated constraint languages may
someday mix and match decomposition techniques as most appropriate for the problem at hand. Most intriguing of
all is the possibility that useful new forms of decomposition are waiting to be discovered. 

References

[Freuder and Hubbe, to appear] E. Freuder and P. Hubbe. Using inferred disjunctive constraints to decompose
constraint satisfaction problems. Proceedings of the Thirteenth IJCAI.

[Golumb and Baumert, 1965] S. Golumb and L. Baumert. Backtrack programming. JACM 12. 516-524. 
[Haralick and Elliott, 1980] R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence 14. 263-313. 
[Hubbe and Freuder, 1992] P. Hubbe and E. Freuder. An efficient cross product representation of the constraint

satisfaction problem search space. Proceedings of the Tenth National Conference on Artificial Intelligence.
421-427.

[Mackworth, 1977] A. Mackworth. On reading sketch maps. Proceedings of the Fifth IJCAI. 598-606. 


