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Abstract. We present the w constraint combinator that models while
loops in Constraint Programming. Embedded in a finite domain con-
straint solver, it allows programmers to develop non-trivial arithmetical
relations using loops, exactly as in an imperative language style. The
deduction capabilities of this combinator come from abstract interpreta-
tion over the polyhedra abstract domain. This combinator has already
demonstrated its utility in constraint-based verification and we argue
that it also facilitates the rapid prototyping of arithmetic constraints
(e.g. power, gcd or sum).

1 Introduction

A strength of Constraint Programming is to allow users to implement their own
constraints. CP offers many tools to develop new constraints. Examples include
the global constraint programming interface of SICStus Prolog clp(fd) [5], the
ILOG concert technology, iterators of the GECODE system [17] or the Con-
straint Handling Rules [8]. In many cases, the programmer must provide prop-
agators or filtering algorithms for its new constraints, which is often a tedious
task. Recently, Beldiceanu et al. have proposed to base the design of filtering al-
gorithms on automaton [4] or graph description [3], which are convenient ways of
describing global constraints. It has been pointed out that the natural extension
of these works would be to get closer to imperative programming languages [4].

In this paper, we suggest to use the generic w constraint combinator to model
arithmetical relations between integer variables. This combinator provides a
mechanism for prototyping new constraints without having to worry about any
filtering algorithm. Its originality is to model iterative computations: it brings
while loops into constraint programming following what was done for logic pro-
gramming [16]. Originally, the w combinator has been introduced in [9] in the
context of program testing but it was not deductive enough to be used in a more
general context. In this paper, we base the generic filtering algorithm associated
to this combinator on case-based reasoning and Abstract Interpretation over the
polyhedra abstract domain. Thanks to these two mechanisms, w performs non-
trivial deductions during constraint propagation. In many cases, this combinator
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can be useful for prototyping new constraints without much effort. Note that we
do not expect the propagation algorithms generated for these new constraints
to always be competitive with hand-written propagators.

We illustrate the w combinator on a relation that models y = xn. Note that
writing a program that computes xn is trivial whereas building finite domain
propagators for y = xn is not an easy task for a non-expert user of CP. Figure 1
shows an imperative program (in C syntax) that implements the computation
of xn, along with the corresponding constraint model that exploits the w com-
binator (in CLP(FD) syntax). In these programs, we suppose that N is positive
although this is not a requirement of our approach.

power(X,N){ power(X,N, Y ) : −
Y = 1; w([X, 1, N ], [Xin, Y in, Nin], [Xin, Y out, Nout], [ , Y, ],
while(N ≥ 1){ Nin # >= 1,

Y = Y ∗ X; [Y out # = Y in ∗ Xin,
N = N − 1}; Nout # = Nin − 1]).

return Y ; }

Fig. 1. An imperative program for y = xn and a constraint model

It is worth noticing that the w combinator is implemented as a global con-
straint. As any other constraint, it will be awoken as soon as X, N or Y have
their domain pruned. Moreover, thanks to its filtering algorithm, it can prune
the domains of these variables. The following request shows an example where
w performs remarkably well on pruning the domains of X, Y and N .

| ?- X in 8..12, Y in 900..1100, N in 0..10, power(X,N,Y).

N = 3, X = 10, Y = 1000

The w combinator has been implemented with the clp(fd) and clpq libraries
of SICStus prolog. The above computation requires 20ms of CPU time on an
Intel Pentium M 2GHz with 1 Gb of RAM.
Contributions. In this paper, we detail the pruning capabilities of the w com-
binator. We describe its filtering algorithm based on case-based reasoning and
fixpoint computations over polyhedra. The keypoint of our approach is to re-
interpret every constraint in the polyhedra abstract domain by using Linear
Relaxation techniques. We provide a general widening algorithm to guarantee
termination of the algorithm. The benefit of the w combinator is illustrated on
several examples that model non-trivial arithmetical relations.
Organization. Section 2 describes the syntax and semantics of the w operator.
Examples using the w operator are presented. Section 3 details the filtering
algorithm associated to the combinator. It points out that approximation is
crucial to obtain interesting deductions. Section 4 gives some background on
abstract interpretation and linear relaxation. Section 5 shows how we integrate
abstract interpretation over polyhedra into the filtering algorithm. Section 6
discusses some related work. Section 7 concludes.
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2 Presentation of the w Constraint Combinator

This section describes the syntax and the semantics of the w combinator. Some
examples enlight how the operator can be used to define simple arithmetical
constraints.

2.1 Syntax

Figure 2 gives the syntax of the finite domain constraint language where the w
operator is embedded.

W ::= w(Lvar, Lvar,Lvar, Lvar, Arith Constr, LConstr)
If ::= if(Lvar, Arith Constr, LConstr, LConstr)
Lvar ::= var Lvar | ε
LConstr ::= Constr LConstr | ε
Constr ::= var in int..int | Arith Constr | W | If
Arith Constr ::= var Op Expr
Op ::= < | ≤ | > | ≥ | �= | =
Expr ::= Expr + Expr | Expr − Expr | Expr ∗ Expr | var | int

Fig. 2. syntax of the w operator

As shown on the figure, a w operator takes as parameters four lists of variables,
an arithmetic constraint and a list of constraints. Let us call these parameters
Init, In, Out, End, Cond and Do. The Init list contains logical variables repre-
senting the initial value of the variables involved in the loop. In variables are
the values at iteration n. Out variables are the values at iteration n + 1. End
variables are the values when the loop is exited. Note that Init and End vari-
ables are logical variables that can be constrained by other constraints. On the
contrary, In and Out are local to the w combinator and do not concretely exist
in the constraint store. Cond is the constraint corresponding to the loop condi-
tion whereas Do is the list of constraints corresponding to the loop body. These
constraints are such that vars(Cond) ∈ In and vars(Do) ∈ In ∪ Out.

Line 2 of Figure 2 presents an if combinator. The parameter of type
Arith Constr is the condition of the conditional structure. The two parameters
of type LConstr are the “then” and “else” parts of the structure. Lvar is the
list of variables that appear in the condition or in one of the two branches. We
do not further describe this operator to focus on the w operator.

The rest of the language is a simple finite domain constraint programming
language with only integer variables and arithmetic constraints.

2.2 Semantics

The solutions of a w constraint is a pair of variable lists (Init, End) such that the
corresponding imperative loop with input values Init terminates in a state where
final values are equal to End. When the loop embedded in the w combinator
never terminates, the combinator has no solution and should fail. This point is
discussed in the next section.
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2.3 First Example: Sum

Constraint sum(S,I), presented on Figure 3, constrains S to be equal to the
sum of the integers between 1 and I: S =

∑n
i=1 i

sum(I){

S = 0;

while(I > 0){

S = S + I;

I = I - 1;

}

return S;

sum(S,I) :-

I > 0,

w([0,I],[In,Nin],[Out,Nout],[S,_],

Nin > 0,

[Out = In + Nin,

Nout = Nin - 1]).

Fig. 3. The sum constraint derived from the imperative code

The factorial constraint can be obtained by substituting the line
Out = In + Nin by Out = In * Nin and replacing the initial value 0 by 1.
Thanks to the w combinator, sum and factorial are easy to program as far as one
is familiar with imperative programming. Note that translating an imperative
function into a w operator can be done automatically.

2.4 Second Example: Greatest Common Divisor (gcd)

The second example is more complicated as it uses a conditional statement in the
body of the loop. The constraint gcd(X,Y,Z) presented on Figure 4 is derived
form the Euclidian algorithm. gcd(X,Y,Z) is true iff Z is the greatest common
divisor of X and Y .

gcd(X,Y){

while(X > 0){

if(X < Y){

At = Y;

Bt = X;

}else{

At = X;

Bt = Y;

}

X = At - Bt;

Y = Bt;

}

return Y;

gcd(X,Y,Z) :-

w([X,Y],[Xin,Yin],[Xout,Yout],[_,Z],

Xin > 0,

[if([At,Bt,Xin,Yin],

Xin < Yin,

[At = Yin, Bt = Xin],

[At = Xin, Bt = Yin]),

Xout = At - Bt,

Yout = Bt]).

Fig. 4. The gcd constraint
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3 The Filtering Algorithm

In this section we present the filtering algorithm associated to the w operator
introduced in the previous section. The first idea of this algorithm is derived from
the following remark. After n iterations in the loop, either the condition is false
and the loop is over, or the condition is true and the statements of the body are
executed. Consequently, the filtering algorithm detailed on Figure 5 is basically
a constructive disjunction algorithm. The second idea of the algorithm is to use
abstract interpretation over polyhedra to over-approximate the behaviour of the
loop. Function w∞ is in charge of the computation of the over-approximation.
It will be fully detailed in Section 5.3.

The filtering algorithm takes as input a constraint store ((X, C, B) where X
is a set of variables, C a set of constraints and B a set of variable domains), the
constraint to be inspected (w(Init, In, Out, End, Cond, Do)) and returns a new
constraint store where information has been deduced from the w constraint. X̃
is the set of variables X extended with the lists of variables In and Out. B̃ is
the set of variable domains B extended in the same way.

Input:
A constraint, w(Init, In, Out, End, Cond, Do)
A constraint store, (X, C, B)

Output:
An updated constraint store

w filtering

1 (Xexit, Cexit, Bexit) := propagate(X̃, C ∧ Init = In = Out = End ∧ ¬Cond, B̃)
2 if ∅ ∈ Bexit

3 return (X̃, C ∧ Init = In ∧ Cond ∧ Do ∧
4 w(Out, FreshIn,FreshOut, End, Cond′, Do′), B̃)

5 (X1, C1, B1) := propagate(X̃, C ∧ Init = In ∧ Cond ∧ Do, B̃)
6 (Xloop, Cloop, Bloop) := w∞(Out, FreshIn,FreshOut, End, Cond′, Do′, (X1, C1, B1))
7 if ∅ ∈ Bloop

8 return (X̃, C ∧ Init = In = Out = End ∧ ¬Cond, B̃)
9 (X ′, C′, B′) := join((Xexit, Cexit, Bexit), (Xloop, Cloop, Bloop))Init,End

10 return (X ′, C′ ∧ w(Init, In, Out, End, Cond, Do), B′)

Fig. 5. The filtering algorithm of w

Line 1 posts constraints corresponding to the immediate termination of the
loop and launches a propagation step on the new constraint store. As the loop
terminates, the variable lists Init, In, Out and End are all equal and the condi-
tion is false (¬Cond). If the propagation results in a store where one variable has
an empty domain (line 2), then the loop must be entered. Thus, the condition
of the loop must be true and the body of the loop is executed: constraints Cond
and Do are posted (line 3). A new w constraint is posted (line 4), where the
initial variables are the variables Out computed at this iteration, In and Out
are replaced by new fresh variables (FreshIn and FreshOut) and End variables
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remain the same. Cond′ and Do′ are the constraints Cond and Do where vari-
able names In and Out have been substituted by FreshIn and FreshOut. The
initial w constraint is solved.

Line 5 posts constraints corresponding to the fact that the loop iterates one
more time (Cond and Do) and line 6 computes an over approximation of the
rest of the iterations via the w∞ function. If the resulting store is inconsistent
(line 7), then the loop must terminate immediately (line 8). Once again, the w
constraint is solved.

When none of the two propagation steps has led to empty domains, the stores
computed in each case are joined (line 9). The Init and End indices mean that
the join is only done for the variables from these two lists. After the join, the w
constraint is suspended and put into the constraint store (line 10).

We illustrate the filtering algorithm on the power example presented on Fig-
ure 1 and the following request:
X in 8..12, N in 0..10, Y in 10..14, power(X,N,Y).

At line 1, posted constraints are:
Xin = X, Nin = N, Yin = 1, Y = Yin, Nin < 1. This constraint store is in-
consistent with the domain of Y. Thus, we deduce that the loop must be entered
at least once. The condition constraint and loop body constraints are posted (we
omit the constraints Init = In):
N >= 1, Yout = 1*X, Xout = X, Nout = N-1 and another w combinator is
posted:

w([Xout,Yout,Nout],[Xin’,Yin’,Nin’],[Xout’,Yout’,Nout’],[_,Y,_],
Nin’>= 1,[Yout’ = Yin’*Xin’, Xout’ = Xin’, Nout’ = Nin’-1]).

Again, line 1 of the algorithm posts the constraints Y = Yout, Nout < 1. This
time, the store is not inconsistent. Line 5 posts the constraints
Nout >= 1, Yout’ = Yout*X, Xout’ = X, Nout’ = Nout - 1, which reduces
domains to Nout in 1..9, Yout’ in 64..144, Xout’ in 8..12. On line 6,
w∞([Xout’,Yout’,Nout’],FreshIn,FreshOut,[_,Y,_],Cond,Do,Store)
is used to infer Y >= 64. Store denotes the current constraint store. This is
a very important deduction as it makes the constraint store inconsistent with
Y in 10..14. So Nout < 1,Y = X is posted and the final domains are
N in 1..1, X in 10..12, Y in 10..12. This example points out that ap-
proximating the behaviour of the loop with function w∞ is crucial to deduce
information.

On the examples of sections 2.3 and 2.4 some interesting deductions are done.
For the sum example, when S is instantiated the value of I is computed. If no
value exist, the filtering algorithm fails. Deductions are done even with partial
information: sum(S,I), S in 50..60 leads to S = 55, I = 10.

On the request gcd(X,Y,Z), X in 1..10, Y in 10..20, Z in 1..1000, the fil-
tering algorithm reduces the bounds of Z to 1..10. Again, this deduction is done
thanks to the w∞ function, which infers the relations Z ≤ X and Z ≤ Y . If
we add other constraints, which would be the case in a problem that would use
the gcd constraint, we obtain more interesting deductions. For example, if we add
the constraint X = 2 ∗ Y , then the filtering algorithm deduces that Z is equal to
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Y. On each of the above examples, the required computation time is not greater
than 30 ms.

Another important point is that approximating loops also allows the filtering
algorithm to fail instead of non terminating in some cases. Consider this very
simple example that infinitely loops if X is lower than 10.

loop(X,Xn) :-
w([X],[Xin],[Xout],[Xn],

X < 10,
[Xout = Xin])

Suppose that we post the following request, X < 0, loop(X,Xn), and apply the
case reasoning. As we can always prove that the loop must be unfolded, the
algorithm does not terminate. However, the filtering algorithm can be extended
to address this problem. The idea is to compute an approximation of the loop
after a given number of iterations instead of unfolding more and more the loop.
On the loop example, this extension performs well. Indeed the approximation
infers Xn < 0, which suffices to show that the condition will never be satisfied
and thus the filtering algorithm fails. If the approximation cannot be used to
prove non-termination, then the algorithm returns the approximation or con-
tinue iterating, depending on what is most valuable for the user: having a sound
approximation of the loop or iterating hoping that it will stop.

4 Background

This Section gives some background on abstract interpretation. It first presents
the general framework. Then, polyhedra abstract domain is presented. Finally,
the notion of linear relaxation is detailed.

4.1 Abstract Interpretation

Abstract Interpretation is a framework introduced in [6] for inferring program
properties. Intuitively, this technique consists in executing a program with ab-
stract values instead of concrete values. The abstractions used are such that
the abstract result is a sound approximation of the concrete result. Abstract
interpretation is based upon the following theory.

A lattice 〈L,�,�,	〉 is complete iff each subset of L has a greatest lower bound
and a least upper bound. Every complete lattice has a least element ⊥ and a
greatest element �. An ascending chain p1 � p2 � . . . is a potentially infinite
sequence of ordered elements of L. A chain eventually stabilizes iff there is an i
such that pj = pi for all j ≥ i. A lattice satisfies the ascending chain condition
if every infinite ascending chain eventually stabilizes. A function f : L → L is
monotone if p1 � p2 implies f(p1) � f(p2). A fixed point of f is an element p
such that f(p) = p. In a lattice satisfying ascending chain condition, the least
fixed point lfp(f) can be computed iteratively: lfp(f) =

⊔
i≥0 f i(⊥).
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The idea of abstract interpretation is to consider program properties at each
program point as elements of a lattice. The relations between the program prop-
erties at different locations are expressed by functions on the lattice. Finally,
computing the program properties consists in finding the least fixed point of a
set of functions.

Generally, interesting program properties at a given program point would be
expressed as elements of the lattice 〈P(N),⊆,∩,∪〉 (if variables have their val-
ues in N). However, computing on this lattice is not decidable in the general case
and the lattice does not satisfy the ascending chain condition. This problem often
appears as soon as program properties to be inferred are not trivial. This means
that the fixed points must be approximated. There are two ways for approximating
fixed points. A static approach consists in constructing a so-called abstract lattice
〈M,�M ,�M ,	M 〉 with a Galois connection 〈α, γ〉 from L to M . α : L → M and
γ : M → L are respectively an abstraction and concretization function such that
∀l ∈ L, l � γ(α(l)) and ∀m ∈ M, m �M α(γ(m)). A Galois connection ensures
that fixed points in L can be soundly approximated by computing in M . A dy-
namic approximation consists in designing a so-called widening operator (noted
∇) to extrapolate the limits of chains that do not stabilize.

4.2 Polyhedra Abstract Domain

One of the most used instanciation of abstract interpretation is the interpretation
over the polyhedra abstract domain, introduced in [7]. On this domain, the set of
possible values of some variables is abstracted by a set of linear constraints. The
solutions of the set of linear constraints define a polyhedron. Each element of the
concrete set of values is a point in the polyhedron. In this abstract domain, the
join operator of two polyhedra is the convex hull. Indeed, the smallest polyhedron
enclosing two polyhedra is the convex hull of these two polyhedra. However,
computing the convex hull of two polyhedra defined by a set of linear constraints
requires an exponential time in the general case.

Recent work suggest to use a join operator that over-approximates the convex
hull [15]. Figure 6 shows two polyhedra with their convex hull and weak join.

Intuitively, the weak join of two polyhedra is computed in three steps. Enlarge
the first polyhedron without changing the slope of the lines until it encloses the
second polyhedron. Enlarge the second polyhedron in the same way. Do the
intersection of these two new polyhedra.

In many works using abstract interpretation on polyhedra, the standard widen-
ing is used. The standard widening operator over polyhedra is computed as fol-
lows: if P and Q are two polyhedra such that P � Q. Then, the widening P∇Q

Fig. 6. Convex Hull vs Weak Join
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is obtained by removing from P all constraints that are not entailed in Q. This
widening is efficient but not very accurate. More accurate widening operators
are given in [1].

4.3 Linear Relaxation of Constraints

Using polyhedra abstract interpretation requires us to interpret non linear con-
straints on the domain of polyhedra. Existing techniques aim at approximating
non linear constraints with linear constraints. In our context, the only sources
of non linearity are multiplications, strict inequalities and disequalities. These
constraints can be linearized as follows:

Multiplications. Let X and X be the lower and upper bounds of variable
X . A multiplication Z = X ∗ Y can be approximated by the conjunction of
inequalities [12]:

(X − X)(Y − Y ) ≥ 0 ∧ (X − X)(Y − Y ) ≥ 0

∧ (X − X)(Y − Y ) ≥ 0 ∧ (X − X)(Y − Y ) ≥ 0

This constraint is linear as the product X ∗Y can be replaced by Z. Fig.7 shows
a slice of the relaxation where Z = 1. The rectangle corresponds to the bounding
box of variables X, Y , the dashed curve represents exactly X ∗ Y = 1, while the
four solid lines correspond to the four parts of the inequality.

Fig. 7. Relaxation of the multiplication constraint

Strict inequalities and disequalities. Strict inequalities X < V ar (resp.
X > V ar) can be rewritten without approximation into X ≤ V ar−1 (resp. X ≥
V ar + 1), as variables are integers. Disequalities are considered as disjunctions
of inequalities. For example, X �= Y is rewritten into X =< Y −1∨X >= Y +1.
Adding the bounds constraints on X and Y and computing the convex hull of
the two disjuncts leads to an interesting set of constraints. For example, if X
and Y are both in 0..10, the relaxation of X �= Y is X + Y ≥ 1 ∧ X + Y ≤ 19.

5 Using Abstraction in the Filtering Algorithm of w

In this section, we detail how abstract interpretation is integrated in the w
filtering algorithm. Firstly, we show that solutions of w can be computed with a
fixed point computation. Secondly, we explain how abstract interpretation over
polyhedra allows us to compute an abstraction of these solutions. Finally, the
implementation of the w∞ function is presented.
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5.1 Solutions of w as the Result of a Fixed Point Computation

Our problem is to compute the set of solutions of a w constraint:

Z = {((x1, . . . , xn), (xf
1 , . . . , xf

n)) |
w((x1, . . . , xn), In, Out, (xf

1 , . . . , xf
n), Cond, Do)}

Let us call Si the possible values of the loop variables after i iterations in a loop.
When i = 0 possible variables values are the values that satisfy the domain
constraint of Init variables. We call Sinit this set of values. Thus S0 = Sinit. Let
us call T the following set:

T = {((x1, . . . , xn), (x′
1, . . . , x

′
n)) | (x1, . . . , xn) ∈ Sinit ∧ ∃i(x′

1, . . . , x
′
n) ∈ Si}

T is a set of pairs of lists of values (l, m) such that initializing variables of the
loops with values l and iterating the loop a finite number of times produce the
values m. The following relation holds

Z = {(Init, End) | (Init, End) ∈ T ∧ End ∈ sol(¬Cond)}

where sol(C) denotes the set of solutions of a constraint C. The previous formula
expresses that the solutions of the w constraint are the pairs of lists of values
(l, m) such that initializing variables of the loops with values l and iterating
the loop a finite number of times leads to some values m that violate the loop
condition.

In fact, T is the least fixed point of the following equation:

T k+1 = T k ∪ {(Init, Y ) | (Init, X) ∈ T k ∧ (X, Y ) ∈ sol(Cond ∧ Do})} (1)
T 0 = {(Init, Init) | Init ∈ Sinit} (2)

Cond and Do are supposed to involve only In and Out variables. Thus, com-
posing T k and sol(Cond ∧ Do) is possible as they both are relations between
two lists of variables of length n.

Following the principles of abstract interpretation this fixed point can be
computed by iterating Equation 1 starting from the set T 0 of Equation 2.

For the simple constraint: w([X],[In],[Out],[Y],In < 2,[Out = In+1])
and with the initial domain X in 0..3, the fixed point computation proceeds
as follows.

T 0 = {(0, 0), (1, 1), (2, 2), (3, 3)}
T 1 = {(0, 1), (1, 2)} ∪ T 0

= {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (3, 3)}
T 2 = {(0, 1), (0, 2), (1, 2)} ∪ T 1

= {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), (3, 3)}
T 3 = T 2
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Consequently, the solutions of the w constraint are given by

Z = {(X, Y ) | (X, Y ) ∈ T 3 ∧ Y ∈ sol(In ≥ 2)}
= {(0, 2), (1, 2), (2, 2), (3, 3)}

Although easy to do on the example, iterating the fixed point equation is unde-
cidable because Do can contain others w constraints. Thus, Z is not computable
in the general case.

5.2 Abstracting the Fixed Point Equations

We compute an approximation of T using the polyhedra abstract domain. Let
P be a polyhedron that over-approximates T , which means that all elements of
T are points of the polyhedron P . Each list of values in the pairs defining T has
a length n thus P involves 2n variables. We represent P by the conjunction of
linear equations that define the polyhedron.

The fixed point equations become:

P k+1(Init, Out) = P k 	 (P k(Init, In) ∧ Relax(Cond ∧ Do))Init,Out (3)
P 0(Init, Out) = α(Sinit) ∧ Init = Out (4)

Compared to equations 1 and 2, the computation of the set of solutions of
constraint C is replaced by the computation of a relaxation of the constraint
C. Relax is a function that computes linear relaxations of a set of constraints
using the relaxations presented in Section 4.3. PL1,L2 denotes the projection
of the linear constraints P over the set of variables in L1 and L2. Projecting
linear constraints on a set of variables S consists in eliminating all variables not
belonging to S. Lists equality L = M is a shortcut for ∀i ∈ [1, n]L[i] = M [i],
where n is the length of the lists and L[i] is the ith element of L. P1	P2 denotes
the weak join of polyhedron P1 and P2 presented in Section 4.2.

In Equation 4, Sinit is abstracted with the α function. This function com-
putes a relaxation of the whole constraint store and projects the result on Init
variables.

An approximation of the set of solutions of a constraint w is given by

Q(Init, In) = P (Init, In) ∧ Relax(¬Cond) (5)

We detail the abstract fixed point computation on the same example as in
the previous section. As the constraints Cond and Do are almost linear their
relaxation is trivial: Relax(Cond ∧ Do) = Xin ≤ 1, Xout = Xin + 1. Xin is only
constrained by its domain, thus α(Sinit) = Xin ≥ 0 ∧ Xin ≤ 3. The fixed point
is computed as follows

P 0(Xin, Xout) = Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xin = Xout

P 1(Xin, Xout) = (P 0(Xin, X0) ∧ X0 ≤ 1 ∧ Xout = X0 + 1)Xin,Xout

	 P 0(Xin, Xout)
= (Xin ≥ 0 ∧ Xin ≤ 1 ∧ Xout = Xin + 1) 	 P 0(Xin, Xout)
= Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xout ≤ Xin + 1 ∧ Xout ≥ Xin
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P 2(Xin, Xout) = (P 1(Xin, X1) ∧ X1 ≤ 1 ∧ Xout = X1 + 1)Xin,Xout

	 P 1(Xin, Xout)
= (Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xin ≤ Xout − 1) 	 P 1(Xin, Xout)
= Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xout ≤ Xin + 2 ∧ Xout ≥ Xin ∧ Xout ≤ 4

P 3(Xin, Xout) = (P2(Xin, X2) ∧ X2 ≤ 1 ∧ Xout = X2 + 1)Xin,Xout

	 P 2(Xin, Xout)
= (Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xin ≤ Xout − 1) 	 P 2(Xin, Xout)
= P 2(Xin, Xout)

Figure 8 shows the difference between the exact fixed point computed with
the exact equations and the approximate fixed point. The points correspond to
elements of T 3 whereas the grey zone is the polyhedron defined by P 3.

Fig. 8. Exact vs approximated fixed point

An approximation of the solutions of the w constraint is

Q = P 3(Xinit, Xend) ∧ Xend ≥ 2
= Xend ≥ 2 ∧ Xend ≤ 4 ∧ Xin ≤ Xend ∧ Xin ≤ 3 ∧ Xin ≥ Xend − 2

On the previous example, the fixed point computation converges but it is not
always the case. Widening can address this problem. The fixed point equation
becomes:

P k+1(Init, Out) = P k(Init, Out)∇
(P k 	 (P k(Init, In) ∧ Relax(Cond, Do))Init,Out)

In this equation ∇ is the standard widening operator presented in Section 4.2.

5.3 w∞: Implementing the Approximation

In Section 3, we have presented the filtering algorithm of the w operator. Here,
we detail more concretely the integration of the abstract interpretation over
polyhedra into the constraint combinator w via the w∞ function.

w∞ is an operator that performs the fixed point computation and communi-
cates the result to the constraint store. Figure 9 describes the algorithm. All the
operations on linear constraints are done with the clpq library [10].
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Input:
Init, In, Out, End vectors of variables
Cond and Do the constraints defining the loop
A constraint store (X, C, B)

Output:
An updated constraint store

w∞ :
1 P i+1 := project(relax(C,B), [Init]) ∧ Init = Out
2 repeat
3 P i := P i+1

4 P j := project(P i ∧ relax(Cond ∧ Do, B), [Init, Out])

5 P k := weak join(P i, P j)

6 P i+1 := widening(P i, P k)
7 until includes(P i, P i+1)
8 Y := P i+1 ∧ relax(¬Cond, B)
9 (C′, B′) := concretize(Y )
10 return (X, C′ ∧ w(Init, In, Out, End, Cond, Do), B′)

Fig. 9. The algorithm of w∞ operator

This algorithm summerizes all the notions previously described. Line 1 com-
putes the initial value of P . It implements the α function introduced in Equa-
tion 4. The relax function computes the linear relaxation of a constraint C given
the current variables domains, B. When C contains another w combinator, the
corresponding w∞ function is called to compute an approximation of the sec-
ond w. The project(C, L) function is a call to the Fourier variable elimination
algorithm. It eliminates all the variables of C but variables from the list of lists
L. Lines 2 to 7 do the fixed point computation following Equation 3. Line 6
performs the standard widening after a given number of iterations in the repeat
loop. This number is a parameter of the algorithm. At Line 7, the inclusion
of P i+1 in P i is tested. includes(P i, P i+1) is true iff each constraint of P i is
entailed by the constraints P i+1.

At line 8, the approximation of the solution of w is computed following Equa-
tion 5. Line 9 concretizes the result in two ways. Firstly, the linear constraints
are turned into finite domain constraints. Secondly, domains of End variables
are reduced by computing the minimum and maximum values of each variable in
the linear constraints Y . These bounds are obtained with the simplex algorithm.

6 Discussion

The polyhedra abstract domain is generally used differently from what we pre-
sented. Usually, a polyhedron denotes the set of linear relations that hold between
variables at a given program point. As we want to approximate the solutions of a
w constraint, our polyhedra describe relations between input and output values
of variables and, thus, they involve twice as many variables. In abstract interpre-
tation, the analysis is done only once whereas we do it each time a w operator is
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awoken. Consequently, we cannot afford to use standard libraries to handle poly-
hedra, such as [2], because they use the dual representation, which is a source of
exponential time computations. Our representation implies, nevertheless, doing
many variables elimination with the Fourier elimination algorithm. This remains
costly when the number of variables grows. However, the abstraction on polyhe-
dra is only one among others. For example, abstraction on intervals is efficient
but leads to less accurate deductions. The octagon abstract domain [13] could be
an interesting alternative to polyhedra as it is considered to be a good trade-off
between accuracy and efficiency.

Generalized Propagation [14] infers an over-approximation of all the answers
of a CLP program. This is done by explicitely computing each answer and joining
these answers on an abstract domain. Generalized Propagation may not termi-
nate because of recursion in CLP programs. Indeed, no widening techniques are
used. In the same idea, the 3r’s are three principles that can be applied to speed
up CLP programs execution [11]. One of these 3r’s stands for refinement, which
consists in generating redundant constraints that approximate the set of an-
swers. Refinement uses abstract interpretation, and more specifically widenings,
to compute on abstract domains that have infinite increasing chains. Hence, the
analysis is guaranteed to terminate. Our approach is an instantiation of this
theoretical scheme to the domain of polyhedra.

7 Conclusion

We have presented a constraint combinator, w, that allows users to make a
constraint from an imperative loop. We have shown examples where this com-
binator is used to implement non trivial arithmetic constraints. The filtering
algorithm associated to this combinator is based on case reasoning and fixed
point computation. Abstract interpretation on polyhedra provides a method for
approximating the result of this fixed point computation. The results of the ap-
proximation are crucial for pruning variable domains. On many examples, the
deductions made by the filtering algorithm are considerable, especially as this
algorithm comes for free in terms of development time.
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