University of Southern California

Information Services Division

Integrated Document Delivery Services (IDD)
idd@usc.edu

COPYRIGHT NOTICE: The copy law of the U.S. (Title 17 U.S. Code)
governs the making of photocopies or other reproductions of copyrighted
material. Under certain conditions specified in the law, libraries and archives
are authorized to furnish a photocopy or other reproduction. One of these
specified conditions is that the photocopy or reproduction is not to be “used
for any purpose other than private study, scholarship or research”. Note that
in the case of electronic files, “reproduction” may also include forwarding
the file by email to a third part. If a user makes a request for, or later uses a
photocopy or reproduction for purposes in excess of “fair use”, that user may
be liable for copyright infringement. USC reserves the right to refuse to
process a request if, in its judgment, fulfillment of the order would involve
violation of copyright law. By using USC’s Integrated Document Delivery
services you expressly agree to comply with Copyright Law.

USC Integrated Document Delivery (IDD)
idd@usc.edu
http://www.usc.edu/isd/libraries/services/argo/interlibrary_loan/

Univ. of Kansas Libraries Interlibrary Loan (KKU)

InProcess Date: 2007/02/06
Date Printed: 02/07/2007 7:35 AM

| Special Instructions: .

ODYSSEY ARIEL
e AR

Patron: Choueiry, Berthe
Ariel: 128.125.41.168

S
)

-

(@)

]

14
<
E ILL Number: 27506518
O

(o}

Q

o]

Q

M~

Q

o

[qV]

Paging notes:

__Call#NOS __ Call# #Title
___Book/Volume/lssue/Series NOS (circle)
___Year # Volume (checked both)

___Article not found as cited (check index)

Call# Q334 .C66A
Location: ANSCHUTZ LIBRARY

Journal Title: Proceedings /
Volume: Issue:
Month/Year: 1987 Pages: 224--230

Article Author: Conference on Artificial Intelligence
Applications.

Article Title: Rina Dechter and Judea Pearl; The
Cycle-Cutset Method for improving Search
Performance in Al Applications

Patron: Choueiry, Berthe

Odyssey TN: 446899
N AW

Staff notes:
OCLC#: 16671019
ISSN#: 1043-0989

Lending String: *KKU,TXH AZU AZS,ORE
Maxcost: $20IFM
KKU Billing: EXEMPT

Shipping Address for CSL

University of Southern California
INTERLIBRARY SERVICES

DOHENY MEMORIAL LIBRARY RM 110 ARGO

- - 3550 TROUSDALE PARKWAY . -

Los Angeles, CA 90089-01825

THE CYCLE-CUTSET METHOD FOR IMPROVING SEARCH PERFORMANCE
IN AT APPLICATIONS*

Rina Dechter

Artificial Intelligence Center
Hughes Aircraft Compang, Calabasas, CA 91302

an
Cognitive Systems Laboratory, Computer Science Department
University of California, Los Angeles, CA 90024

Judea Pearl

Cognitive Systems Laboratory, Computer Science Department
University of California, Los Angeles CA 90024

ABSTRACT

This paper introduces a new way of improving search perfor-
mance by exploiting the availability of efficient methods for
solving tree-structured problems. The scheme is based on the
following observation: If, in the course of a backtrack search,
we remove from the constraint-graph the nodes corresponding
to instantiated variables and find that the remaining subgraph
is a tree, then the rest of the search can be completed in linear
time. Thus, rather than continue the search blindly, we invoke
a tree-searching algorithm tailored to the topology of the
remaining subproblem. The paper presents this method in

detail and evaluates its merit both theoretically and experi-

mentally.

1. Introduction

The subject of improving search efficiency has been on
the agenda of researchers in the area of Constraint-
Satisfaction-Problems (CSPs) for quite some time
[16,13,10,11,12,5]. A recent increase of interest in this sub-
ject, concentrating on the backtrack search, can be attributed
to its use as the control strategy in PROLOG [15,2, 3] and in
Truth Maintenance Systems [8,7, 14].

The various enhancements to Backtrack suggested for
both the CSP model and its extensions can usually be
classified as being either, Look-ahead schemes, affecting the
choice of the next variable binding [12,19,17,5], or Look-
back schemes, affecting the decision of where and how to go
in case of a dead-end situation [1, 6].

Another approach for improving the solution of CSPs
is to characterize classes of easy CSPs that can be identified
directly from their representation and to provide efficient algo-
rithms for their solutions. Recent effort in this direction is
focused on the use of graph representations of CSPs and iden-
tifying easy problems based on special properties of their
graphs [10,5]. The best known and most useful result in this
area is that binary-CSPs whose constraint graph is a tree can
be optimally solved in O(nk?) time where 1 is the number of
variables and k is the number of values for each variable.

*This work was supported in part by the National Science
Foundation, Grant #DCR 85-01234

CH2408-3/87/0000/0224$01.00 © 1987 IEEE

224

Solving easy problems can be instrumental in the solu-
tion of general problems since it provides valuable guidance
for efficiently searching for the general solution [18]. This
approach was investigated in a look-ahead scheme [4] where
heuristic advice is generated to guide the order by which back-
track assigns values to new variables.

In this paper we investigate a new method of utilizing
the simplicity of tree-structured problems. The approach is
presented for binary CSPs, but it can be generalized to any
non-binary CSP using Hyper-graphs instead of graphs. We
call it the cycle-cutset method since it is based on identifying
a set of nodes that, once removed, would render the
constraint-graph cycle-free. The method is based on the fol-
lowing observation: If, in the course of a backtrack search, we
remove from the constraint-graph the nodes corresponding to
instantiated variables and find that the remaining subgraph is a
tree, then the rest of the search can be completed in linear
time. Thus rather then continue the search blindly, we invoke
a tree searching algorithm tailored to the topology of the
remaining subproblem. Section 2 presents definitions and
preliminaries, section 3 describes the basic ideas involved, and
section 4 provides theoretical bounds on the complexity of the
method. Section 5 describes a set of experiments for
evaluating this method, and section 6 contains concluding
remarks.

2. Definitions and Preliminaries

A constraint satisfaction problem involves a set of n
variables X1,...,X,, each represented by its domain values,
Ry,...,R,, and a set of constraints. A constraint
CiX, -+,X;) is a subset of the Cartesian product
Ry X xRy, that specifies which values of the variables are
compatible with each other. A solution is an assignment of
values to all the variables which satisfy all the constraints, and
the task is to find one or all solutions. A constraint is usually
represented by the set of all tuples permitted by it. A Binary
CSP is one in which all the constraints are binary, i.e., they
involve only pairs of variables. A binary CSP can be associ-
ated with a constraint-graph in which nodes represent vari-
ables and arcs connects pairs of variables which are con-
strained explicitly. Consider, for instance, the CSP presented
in figure 1 (from [13]). Each node represents a variable whose
values are explicitly indicated, and the constraint between
connected variables is a strict lexicographic order along the
AITows.

being
A stal
assig
depth
lem, |
by w
space
The ¢
the si
putat
toev
of cc
searc
each
two T

able
cons
som
dent
"blo
path
othe
€ons
2a,
of it

o

“E

al in the solu-
able guidance
n [18]. This
me [4] where
y which back-

od of utilizing
e approach is
ralized to any
f graphs. We
on identifying
d render the
ed on the fol-
ack search, we
responding to
;- subgraph is a
leted in linear
ily, we invoke
pology of the
efinitions and
s involved, and
nplexity of the
periments for
ns concluding

ves a set of n
lomain values,

A constraint
esian product
e variables are
assignment of
onstraints, and
raint is usually
y it. A Binary
inary, i.e., they
can be associ-
represent vari-
vhich are con-
CSP presented
variable whose
straint between
order along the

Figure 1: An example CSP

The search space associated with a CSP has states
being consistent assignments of values to subsets of variables.
A state ((1=X1, .- ,X;=x;) can be extended by any consistent
assignment to any of the remaining variables. The states in
depth n which are consistent represent solutions to the prob-
lem, namely n-tuples satisfying all the constraints. If the order
by which variables are instantiated is fixed, then the search
space is limited to contain -only states. in that specific order.
The efficiency of various search algorithms is determined by
the size of the search space they visit and the amount of com-
putation invested in the generation of each state. It is common
to evaluate the performance of such algorithms by the number
of consistency checks they make rather than the size of the
search space they explicate, where a consistency check occurs
each time the algorithm query about the consistency of any

two values.
3. The cycle-cutset method

The cycle-cutset method is based on the fact that vari-
able instantiation changes the effective connectivity of the
constraint graph. In Figure 1, for example, instantiating X 3 to
some value, say g, renders the choices of X and X3 indepen-
dent of each other as if the pathway X; —X3 — X, were
"plocked" at X3. Similarly, this instantiation "blocks" the
pathways X, - X3 -Xs5, Xq -~ X3 ~Xa, X4 -X3 -X5 and
others, leaving only one path between any two variables. The
constraint graph for the rest of the variables is shown in Figure
2a, where the instantiated variable, X3 is duplicated for each

of its neighbors.

< x1 x2 <1 x2

1 x2
x&) c{i x3 X3
x3f fxs

x4 x5 x4 X5

x4 5 x5

(@ (®) ‘ ©)

Figure 2: An instantiated variable cuts its own cycles.

225

When the group of instantiated variables constitute a
cycle-cutset, the remaining network is cycle-free, and the
efficient algorithm for solving tree-constraint problems is
applicable. In the example above, X3 cuts the single cycle
X5 -X4—Xs in the graph, and the graph in Figure 2a is
cycle-free. Of course, the same effect would be achieved by
instantiating either X4 or Xs, resulting in the constraint-trees
shown in Figure 2b and 2c. In most practical cases it would

take more than a single variable to cut all the cycles in the
graph (see Figure 3).

A
B
c E
D
E
y:]
v D D

Figure 3: A constraint graph and a constraint-tree generated by
: the cutset {C,D}

A general way of exploiting the simplicity inherent in
tree-structured problems works as follows: To solve a problem
whose constraint graph contains cycles, instantiate the vari-
ables in a cycle-cutset in a consistent way and solve the
remaining tree-structured problem. If a solution to the res-
tricted problem is found, then a solution to the entire problem
is at hand. If not, consider another instantiation of the cycle-
cutset variables and continue. Thus, if we wish to solve the
problem in Figure 1, we first assume X3 =a and solve the
remaining problem. If no solution is found, then assume

X3 =band try again.

This version of the cutset method is practical only
when the cycle-cutset is very small because, in the worst case,
we may examine all consistent instantiations of the cycle-
cutset variables, the number of which grows exponentially
with the size of the cutset.

A more general version of the cycle-cutset method
would be to keep the ordering of variables unchanged, but to
enhance péerformance - once a tree-structured problem is
encountered. Since all backtracking algorithms work by pro-
gressively instantiating sets of variables, all one needs to do is
to keep track of the connectivity status of the constraint graph.
Whenever the set of instantiated variables constitutes a cycle-
cutset, the search algorithm is switched to a specialized tree-
solving algorithm on the remaining problem, ie., either
finding a consistent instantiation for the remaining variables
(thus, finding a solution to the entire problem) or concluding
that no consistent instantiation for the remaining variables
exists (in which case backtracking must take place).

Observe that the applicability of this idea is entirely

independent on the particular type of backtracking algorithm

used (e.g., paive backtracking, backjumping, backtracking

with learning, etc.). Let B be any algorithm for solving CSPs

and let B, be its enhanced version. Suppose the variables are |
,X,) and that o

c={Xy,....X;}is the first cutset reached. Both algorithms

instantiated in a fixed order d=Xi,.--

will explore the search space up to depth j in precisely the
same manner (dictated by the specifics of algorithm B), with

&
§

algorithm B;, using a trec-algorithm for exploring the
remainder of the search space (see Figure 4).

Backirack's search
on gutset

cutset-lea Tree's search

Figure 4: The search space of algorithm B,.

In the case when the problem has a tree-constraint
graph, Backtrack, coincides with a tree-algorithm, and when
the constraint graph is complete, the algorithm becomes regu-
lar backtrack again.

4. Bounds on the performance of the cutset method

In [5] it is shown that tree-CSPs can be solved in
O(nkz) and that no algorithm can do better in the worst case.
This leads to the following important observation. Backtrack-
ing algorithm will improve its worst case bound if it
cooperates with a tree algorithm via the cycle-cutset method.
Denote the worst case complexity of algorithm A by M(A),
when complexity is measured by the number of consistency
checks performed.

Theorem 1;

Let B be the naive backtrack algorithm for solving a CSP, and
let B, be the algorithm resulting from incorporating a tree-
algorithm in B via the cycle-cutsets approach. Then

M(B)<M(B) €9)

Proof:

Let Scuer be the search space explored by B, truncated at
depth corresponding to cutset states, and let M(S;,.) be the
number of consistency checks used by B to explore this search
space. Each leaf node in S, corresponds either to a leaf
state in the full search space, one which cannot be extended by
any consistent assignment, or to an instantiated cycle-cutset.
Denote the latter type leaves by CUTSET -LEAVES, and let
M;(B) stand for the effort spent by B in exploring the sub-tree
rooted at state i. ‘The overall complexity of B is given by

M(B) =M (Scusser) + > M;(B) @
ie CUTSET -LEAVES

Algorithm B, being naive backtrack, does not acquire any
information from searching the subtree rooted at i. Namely, if
an oracle were to inform backtrack that a certain state leads to
a deadend, the rest of the search would be the same, had B
discovered this information on its own. Therefore, the trun-
cated search space and the set of CUTSET -LEAVES are the
same for both B and B.. Let TREE be the tree-solving algo-
rithm. The complexity of B, is given, therefore, by:

M®B)=M@Beuse) + X M(Tree) (3)
ie CUTSET -LEAVES

226

Each state in the CUTSET -LEAVES induces a new CSP prob-
lem, which has a tree-structured graph and therefore can be
solved efficiently by a tree-algorithm. Moreover, since for
naive backtrack M;{B) is dependent only on state i, we get @

M;(Tree)sM;(B)

yielding
M(B)2M (B.)
a

Other types of backtrack algorithms may not satisfy
the conditions of the above theorem since their behavior at
each state of the search may depend not only on that state
alone but also on the entire history of the search. We may no
longer assume either that the truncated search spaces are the
same for an algorithm ,A, and its cyclé-cutset version, nor that
the tree algorithm solves a tree-structured problem better than
A. A may have acquired useful information not available to
the tree-algorithm. Equipping ' the tree-algorithm with
equivalent information gathering features, would enable us to
extend the theorem over some other versions of backtrack.
However this option is beyond the scope of the current paper.

Observe that, when ordering of variables is not fixed,
each state should be tested for the cycle-cutset property which
would render the cycle-cutset method computationally unat-
tractive. In the analysis that follows we assume, therefore,
that the algorithm instantiates variables in a fixed order, Let
d=Xi,...,X,, be an ordering of the variables, and let
C =X1,.X, be a cycle-cutset in the graph. The performance
of B, can be bounded as follows. For a state in the
CUTSET -LEAVES, only n—c variables remain to be instan-
tiated. Therefore, all tree-structured CSPs induced by these
states have n-—c variables and can be solved by a tree-
algorithm in O((n—c)kz) (k is the number of values). To
switch from the original representation of the problem to a
representation required by the tree algorithm may take
O ((n—c)ck)) consistency checks, since each cutset-variable
must propagate its value to all its neighbors which are not in
the cutset. The complexity of Tree algorithm at state i is
given therefore by:)

M;(Tree) < O ((n—c)k? + (n—c)ck)

The number of consistency checks required for generating all
CUTSET-LEAVES and the cardinality of this set are bounded
by c* since the CUTSET-LEAVES are the solutions of a CSP
restricted to the cutset variables whose cardinality is ¢c. We
get: ©
M(B.) <O k) + 0 (k{(n—)k? + (n—c)ck})
and therefore, -

MBS O (K°{(nk®) + (n2k)}) = O (k°)

Obviously, as the size of the cycle-cutset diminishes the
exponential term in the above expression is reduced and we
get better upper-bounds for the performance of the algorithm,
In general, given a cycle cutset of size ¢, the upper bound on
the Bcrfon’nance of any algorithm is reduced from O (k") to
O &*).

Practically, however, the algorithms rarely exhibit
their worst-case performance, and their average case perfor-
mance is of greater interest. We do not expect to see the
superiority of the cycle-cutset method on an instance-by-
instance basis. This is so because there is no tree-algorithm

. whic

tree-
ally

appr
trach
subs
insts
men
satis

incr
hew
desc
cuts
tion

pro¢
four

'y
at
e

1©
at
4
to

to

h
1t-
e,

et
ce
he
n-

e~
To
a
ke
J_le

is

(5)

led
SP
We

©®

o
mmwmum‘“hm .

which is superior to all other algorithms for all trees; so, the
tree-algorithm used in the cycle-cutset method may occasion-
ally perform worse then the original backtrack algorithm.

5. Experimental evaluation

We compared the performance of the cycle-cutset
approach to that of naive backtrack on several CSPs. Back-
track works by provisionally assigning consistent values to a
subset of variables and attempting to append to it a new
instantiation such that the whole set is consistent. An assign-
ment of values to a subset of the variables is consistent if it
satisfies all the constraints applicable to this subset.

Variables were instantiated in a fixed order, non-
increasing with the variables’ degrees. This is a reasonable
heuristic since it estimates the notion of width of the graph as
described by [10]. Whenever Backtrack, reaches the first
cutset in thisordering it switches to 2 tree-algorithm, If a solu-
tion is found, the algorithm stops and returns the solution, oth-
erwise, backtrack, finds a new consistent cutset-state and

proceeds with the tree algorithm until either a solution is

found or there is no solution.

The tree algorithm was the one presented in [5], is
optimal for tree-CSPs. The algorithm performs directional
arc-consistency (DAC) from leaves to 1oot, ie., a child always
precedes its parent. If, in the course of the DAC algorithm, a
variable becomes empty of values, the algorithm concludes
immediately that no solution exists. Many orderings will
satisfy the partial order above (e.g. child precede its parent)
and the choice may have a substantial effect on the average
performance. The ordering we implemented is the reverse of
"in-order” traversal of trees [9]. This orderings had the poten-
tial of realizing empty-valued variables early in the DAC
algorithm and thus concluding that no solution exist as soon as
possible. This ordering compared favourably with other order-
ings tried. When a solution exists, the tree-algorithm assigns
values to the variables in a backtrack-free manner, going from
the oot to the leaves. For completeness we present the tree-
algorithm next.

Tree-backtrack (d =X 1,Xn)

begin
call DAC(d)
If completed then find-solution(d)
else (return, no solution exist)
end

el ol ade

DAC- d-arc-consistency
(the order d is assumed)

1. begin
Fori=nto 1by-1 do
For each arc (X;,X;);j<ido
REVISE(X;, X))
If X; is empty, return (no solution exit)
end
end
end

Nt pwn

The procedure find-solution is a simple backtrack-
algorithm on the order d which, in this case, is expected to
find a solution with no backtrackings and therefore its com-
plexity is O(nk). The algorithm REVISE(X j,X,-) [13] deletes
values from the domain of X; until the directed arc (X;.X;) is
arc-consistent, i.e., each value of X; is consistent with at least
one value of X;. The complexity of REVISE is O(k?).

We compared Backtrack to Backirack, on two classes
of problems, randomly generated CSPs, and Planar problems.
Two probabilistic parameters were used in the generation of
each class; For the random CSPs, py determines the probabil-
ity that any two variables are directly connected and p, the
probability that any two values in an existing constraint are
permitted. Two other parameters are 7, the number of vari-
ables, and k, the number of values for each variable. The
Planar problems are CSPs whose constraint-graph is planar.
These problems were generated from an initial maximally
connected planar constraint-graph with 16 variables. In this
case, the parameter p; determines the probability that an arc
will be deleted from the graph, while p» controls the genera-
tion of each constraint as in the case of random CSPs.

We tested the algorithms on random-CSPs with 10 and
15 variables, having 5 or 9 values. Tables 1,2, and 3 present
the results. Each row in a table describes the performance on
one problem instance, ie., it gives the size of the cutset, the
ratio between the cutset size and the number of variables, the
number of consistency checks performed by each algorithm,
and the ratio between the performance of the two algorithms.
We see that in most cases Backtrack, outperformed Back-
track, but not in all cases. This indicates that, for some CSPs,
the tree-algorithm was less efficient than regular backtrack.
Indeed, while no algorithm for trees can do better then O(nkz)
in the worst case, the performance of such algorithms ranges
between O(nk) to O(anz) when there is a solution, and it can
be as good as O(k“) when no solution exists. It depends
mainly on the order of visiting variables, either for establish-
ing arc-consistency or for instantiation. Regular backtrack
may unintentionally step in the right order and, since it avoids
the preparation work required for switching to a tree represen-
tation (which may cost as much as O(n2k)), it may outperform
Backtrack,.

On the average, the cutset method improved backtrack
by 20%, for this class of problems. When the size of the
cutset is relatively small, Backtrack, outperforms Backtrack
more often. Also, the superiority of Backtrack, is more pro-
nounced when the number of values is smaller (see the com-
parisons between tables 2 and 3). We conjecture that, since
the worst-case performance increases quadratically with the
number of values, the tree-algorithm exhibit its worst perfor-
mance more often, while the performance of regular backtrack
remains closer to the average. Notice that, in some instances,
the performance of the two algorithms is exactly the same.
This happens when the search goes no deeper then cycle-
cutset states; so the tree-algorithm is not invoked.

The planar problems were tested with 16 variables and
9 values. The results on this class differ only slightly from the
results on random CSPs. An average improvement of 25% is
observed for this class of CSPs.

In Figure 5 and Figure 6 we compare the two algo-
rithms graphically on the random CSPs, and in Figure 7 and
Figure 8 we do the same for the planar CSPS (due to space
considerations the tables for this class are omitted). In Figures

5 and 7 the X-axis is the number of consistency checks (on a
log log paper) performed by Backtrack and the Y-axis
displays the same information for Backirack,.. Each point in
the graph corresponds to one problem instance. The 45-
degree line represents instances for which both algorithms
performed equally well; above this line Backirack did better;
and below this line Backtrack, did better. We see that most
problem instances lic underneath this line.

In figures 6, and 8, the graph displays the relationship
between the performance of Backtrack, and the size of the
cycle-cutset. The X-axis gives the ratio of cutset size to the
number of variables, and the Y-axis gives the ratio between
the performances of Backtrack, and backtrack. When the ratio
of the cutset size to # is less than 0.3, almost all problems lie
underneath the line Y=1, for which Backtrack, outperformed
Backtrack.

Table 1: CSPs with 10 variables, and 5 values
Backtrack,
cutset | ratio | Backtrack | Backtrack, | ————
' Backtrack
4 04 1701 1572 0.9
5 0.5 1100 997 091
3 0.3 705 842 1.19
4 04 1392 458 0.33
3 0.3 150 142 0.95
4 04 283 268 095
3 0.3 247 185 0.75
5 05 367 504 1.37
3 0.3 184 87 047
4 04 384 284 0.75
4 04 1188 903 0.76
3 03 483 317 0.66
3 0.3 177 130 0.73
mean 676 550 0.84
RANDOM PROBLEMS
+« 100,000 -
g
2 f
(5]
=
3
Ad
q .
_E 10,000 |-
3
m
g
w
A
2 2,000
=
l;\ 1,000
5 .
.2
&
2]
(5
B
o‘ . H 1
Z 100 1,000 2.000 10,000 100,000

No. of consistency-checks in Backtrack

Figure 5

228

Table 2: CSPs with 15 variables and § values

o | Backtrack | Back Backtrack,
cuiset | ratio acktraci acktrack, Backirack
9 0.6 623 623 1
10 0.66 840 840 1
3 02 6779 914 0.13
3 0.2 214 125 0.58
2 0.13 117 143 1.22
3 02 589 950 1.61
3 0.2 3849 1288 033
4 0.27 971 750 0.77
2 0.13 903 153 0.17
3 0.2 1322 1301 0.98
3 0.2 450 199 0.44
3 02 264 165 0.63
4 0.27 3443 3190 093
3 02 292 210 0.72
2 0.13 1368 533 0.39
4 0.27 2042 1631 0.8
4 0.27 1531 870 0.57
5 0.33 1363 839 0.64
5 0.33 1137 1699 1.49
5 0.33 669 567 0.85
mean 1438 849 0.59
Table 3: CSPs with 15 variables and 9 values
Backtrack,
cutset | ratio | Backtrack | Backtrack, | ————
Backtr
11 0.7 2753 2753 1
5 0.33 4832 4167 0.86
4 0.27 56774 12094 0.21
5 0.33 67686 55350 0.82
4 0.27 2414 2265 0.94
5 0.33 71063 102627 144
7 047 5069 5975 1.18
7 047 38316 32792 0.86
5 0.33 1805 1460 0.81
5 0.33 27934 28996 1.04
5 0.33 9280 10045 1.08
2 0.13 4014 2263 0.56
4 0.27 19534 6316 0.32
5 033 | 2989 4902 1.64
6 04 1397 1688 1.21
3 02 10505 1140 0.11
mean 17177 20397 0.81

CUTSET/BACKTRACK

No. of consistency-checks in Backtrack with cutset

10

1.8
1.7 -

1.5 — .
1.4 —
1.3 -
1.2 .
1.1
10—
0.8 — . o
0.8 - .t
0.7 — .
0.6 — .
0.5 —
0.4 —
0.3 -
02—

01— °
IS S I NN R N N : -
010203040506 0708

CUTSET/BACKTRACK
-

CUTSET/n

Figure 6

PLANAR PROBLEMS

100,000 +-

10,000

1,000 * . °

T

No. of consistency-checks in Backtrack with cutset

! 1 1

!
100 1,000 2,000 10,000 100,000

No. of consistency-checks in Backtrack

Figure 7

PLANAR PROBLEMS

1.9

1.6 - .

1.4
1.3 .

1.2

1.0 ~
0.9 —

0.8 -

CUTS_ET/BACKTRACK

0.5 .

0.4 .

I

02—

0.1

I L | !

0.3 0.4 0.5 0.6

=]
S
O |or
(N

CUTSET/n

Figure 8

6. Conclusions

The cycle-cutset method provides a promising
approach for improving a wide range of search algorithms.
The experiments presented demonstrate that the effectiveness
of this method depends on the size of the cutset. This provides
an a-priori criterion for deciding whether or not the method
should be utilized in any specific instance.

The effectiveness of this method also depends on the
efficiency of the tree-algorithm employed and on the amount
of adjustment required while switching to a iree-
representation. The development of an algorithm that exploits
the topology of tree-structured problems without intentional
pre-processing would be very beneficial.

References

n Bruynooghe, Maurice, ‘‘Solving combina-
torial search problems by intelligent back-
tracking,”” Information Processing
Letrers, Vol. 12, No. 1, 1981.

(21

(3]

(4]

(5]

(6]

7

(8]

9

{101

[11]

[12]

[13]

(14]

Bruynooghe, Maurice and Luis M.
Pereira, ‘‘Deduction Revision by Intelli-
gent backtracking,”’ in Implementation of
Prolog, J.A. Campbell, Ed. Ellis Har-
wood, 1984, pp. 194-215.

Cox, P.T., **Finding backtrack points for
intelligent backtracking,’ in Implementa-
tion of Prolog, J.A. Campbell, Ed. Ellis
Harwood, 1984, pp. 216-233.

Dechter, R. and J.Pearl, “A problem
simplification approach that generates
heuristics for constraint satisfaction prob-
lems.,”” UCLA-Eng-rep.8497. To appear
in Machine Intelligence 11., 1985,

Dechter, R. and J. Pearl, ‘“The anatomy of
casy problems: a constraint-satisfaction
formulation,” in Proceedings Ninth Inter-
national Conference on Artificial Intelli-
gence, Los Angeles, Cal: 1985, pp. 1066-
1072.

Dechter, R., “‘Learning while searching in
constraint-satisfaction-problems,”’ in
Proceedings AAAI-86, Philadelphia, Pen-
silvenia: 1986.

De-Kleer, Johan, ““Choices without back-
tracking,”” in Proceedings AAAI, Wash-
ington D.C.: 1983, pp. 79-85.

Doyle, Jon, *“‘A truth maintenance sys-
tem,” Artificial Intelligence, Vol. 12,
1979, pp. 231-272.

Even, S., Graph Algorithms, Maryland,
USA: Computer Science Press, 1979,

Freuder, E.C., “‘A sufficient condition of
backtrack-free search.,” Journal of the
ACM, Vol. 29, No. 1, 1982, pp. 24-32.

Gaschnig, J, ““A problem similarity
approach to devising heuristics: first
results,”” in Proceedings 6th international
Joint conf. on Artificial Intelligence.,
Tokyo, Jappan: 1979, pp. 301-307.

Haralick, R. M. and G.L. Elliot, ‘“Increas-
ing tree search efficiency for constraint
satisfaction problems,’” Al Journal, Vol.
14, 1980, pp. 263-313.

Mackworth, A.K., “Consistency in net-
works of relations,”” Artifficial intelli-
gence, Vol. 8, No. 1, 1977, pp. 99-118.

Martins, Joao P. and Stuart C. Shapiro,
““Theoretical Foundations for belief revi-
sion,” in Proceedings Theoretical aspects
of Reasoning about knowledge, 1986.

[15]

[16]

[17]

(18]

(19]

230

Matwin, Stanislaw and Tomasz Pietrzy-
kowski, “‘Intelligent backtracking in
plan-based deduction,’’ IEEE Transaction
on Pattern Analysis and Machine Intelli-
gence, Vol. PAMI-7, No. 6, 1985, pp.
682-692.

Montanari, U., ““Networks of constraints
:fundamental properties and applications
to picture processing,” Information Sci-
ence, Vol. 7, 1974, pp. 95-132.

Nudel, B., ““Consistent-Labeling problems
and their algorithms: Expected complexi-
ties and theory based heuristics.,”’
Artificial Intelligence, Vol. 21, 1983, pp.
135-178.

Pearl, J., ““On the discovery and genera-
tion of certain heuristics,”” A7 Magazine,
No. 22-23, 1983.

Purdom, P.W. and C.A. Brown, The
Analysis of Algorithms: CBS College Pub-
lishing, Holt, Rinehart and Winston, 1985,

