
Evaluating Constraint Processing Algorithms �Rina Dechter and Daniel FrostDept. of Information and Computer ScienceUniversity of California, Irvine, CA 92697-3425 U.S.A.fdechter,frostg@ics.uci.eduAbstractSince for most arti�cial intelligence problems worst-case analysis does not necessarily reect actual per-formance and since informative performance guaran-tees are not always available, empirical evaluation ofalgorithms is necessary. To do that we need to ad-dress the question of distributions, and benchmarks.Based on our study of CSP algorithms we proposethe use of multiple types of benchmarks and multi-ple forms of presenting the results. The benchmarksshould include: 1. Individual problem instances rep-resenting domains of interest, 2. Parameterized ran-dom problems, 3. Application-based parameterizedrandom problems. Results should be presented using1. Average and variances of the data, 2. frequencyand distribution graphs, 3. scatter diagramsThe target is to identify a small number of algorithms(not one) that are dominating, namely proved superioron some class of problems. For dominating algorithmswe wish to identify problem characteristics on whichthey are likely to be good.IntroductionThe study of algorithms for constraint satisfactionproblems has often relied upon experimentation tocompare the relative merits of di�erent algorithms orheuristics. Experiments for the most part have beenbased on simple benchmark problems, such as the 8-Queens puzzle, and on randomly generated problem in-stances. In the 1990s, the experimental side of the �eldhas blossomed, due to the increasing power of inex-pensive computers and the identi�cation of the \cross-over" phenomenon, which has enabled hard randomproblems to be generated easily.Worst-case analysis in the area of Constraint Satis-faction has focussed largely on identifying and char-acterizing tractable classes of problems, that is, prob-lems that have a structure which guarantee polynomialcomplexity. The primary classi�cation of tractableclasses is by a graph parameter called induced width�This work was partially supported by NSF grant IRI-9157636 and by Air Force O�ce of Scienti�c Research grantAFOSR 900136.

(Dechter 1992; Arnborg 1985). It is known that ifa constraint problem's graph has an induced widthof size w�, the problem can be solved in time andspace exponentially in w�, using a variable elimina-tion algorithm like adaptive-consistency (Dechter &Pearl 1987). However, the space complexity of elimi-nation algorithms render them useful only for a nar-row class of problems having a very small inducedwidth. In addition, the average complexity of elim-ination algorithms was observed to be very close totheir worst-case performance (Dechter & Rish 1994;Dechter & Meiri 1994). On the other hand, simplebacktracking search, although exponential in the worstcase, can have good average performance.As a result, and because backtracking requires onlylinear space, most practical algorithms for solving con-straint problems are based on backtracking rather thanon elimination. A partial ordering of some simplesearch algorithms, subject to certain variable order-ing conditions, has been developed in (Kondrak & vanBeek 1997). Nevertheless, the lack of e�ective worst-case analysis of backtrack search makes empirical eval-uation mandatory.To do that researchers have to face the question ofproblem distributions, and benchmarks. Based on ourstudy of constraint satisfaction algorithms we advocatethe use of multiple types of benchmarks and multi-ple ways of presenting the results. Benchmarks shouldinclude 1. individual instances that come from vari-ous applications. 2. Parameterized random problems3. Application-based parameterized problems. Subse-quently, the results should be presented using 1. Aver-age and variances of measurements, 2. their frequencygraphs, and 3. scatter diagrams displaying data fromindividual instances.The goal is to identify a small number of algorithmsthat are dominating, namely observed to be superioron some class of problems. For these dominating algo-rithms we wish to identify problem characteristics onwhich they are likely to perform well.Individual instances as benchmarks: The meritof this approach is that it is close, if not identical,to the underlying goal of all research: to solve real



h350; 3; 0:0089;0:333iBT+DVO+IAC: �=9:09 �=1:45BJ+DVO+LRN: �=7:77 �=1:18BJ+DVO+LRN+LVO: �=9:55 �=1:16
0 5,000 10,000 15,000Consistency Checks

Frequency
.01.02 IACLRN LRN+LVOFigure 1: Lognormal curves based on unsolvable prob-lems generated from parameters h350; 3; 0:0089; 0:333i.The graph is based on consistency checks.� and � pa-rameters were estimated using the Maximum Likeli-hood Estimatorproblems. If the benchmark problems are interesting,then the results of such a comparison are likely to beinteresting. The drawback of using benchmarks of thistype is that it is often impossible to extrapolate theresults. Algorithm A may beat algorithm B on onebenchmark and lose on another.Random problems A contrasting technique forevaluating or comparing algorithms is to run the algo-rithm on arti�cial, synthetic, parameterized, randomlygenerated data. Since a practically unlimited supply ofsuch random problems is easily generated, it is possi-ble to run an algorithm on a large number of instances,thereby minimizing sampling error. Because the prob-lem generator is controlled by several parameters, theexperimenter can observe the possibly changing e�-cacy of the algorithm as one or more of the parameterschange.Application-based random problems The idea isto identify a problem domain (e.g., job shop schedul-ing) that can be used to de�ne parameterized problemshaving a speci�c structure, and to generate instancesby randomly generating values for the problem's pa-rameters. This approach combines the virtues of thetwo approaches above: it focusses on problems that arerelated to real-life applications and it allows generatingmany instances for the purpose of statistical validity ofthe results.In the followingwe present examples fromour empir-ical evaluation with each of these three types of bench-

marks. Most of our experiments were conducted withparameterized random binary problems. By varyingthe parameters of the random problem generator, wecan observe how the relative strength of di�erent al-gorithms is a�ected by the type of problems they areapplied to. We also de�ne a class of random problemsthat model scheduling problems in the electric powerindustry, and report the performance of several algo-rithms on those constraint satisfaction problems. Tocomplement these random problems, we report on ex-periments with benchmark problems drawn from thestudy of circuits, and which have been used by otherresearchers. For details about this study see (Frost1997).We experimented with various new and old enhance-ments to a backtracking algorithms. For a recent sur-vey on backtracking algorithms see (Dechter & Frost1998). The algorithms are: BT+DVO, it augmentsbacktracking with dynamic variable ordering; IAC,it interleaves arc-consistency during backtrack search;BJ, is conict-directed backjumping; LVO, a particu-lar value ordering heuristics we developed; LRN, a par-ticular style of constraint learning during search thatwas proved to be the best among several schemes wetried. The various combinations of algorithms are ex-plicitly noted. For example BJ+DVO+LRN+LVO isan algorithm that augments backjumping and dynamicvariable ordering with value-ordering and learning.These experiments show that the new algorithmsand their hybrids can improve the performance of pre-vious techniques by an order of magnitude on manyinstances.Displaying the resultsDue to the big variance in the computational e�ort re-quired for each set of parameters it is clear the averagesand variances are not su�cient to capture the wholepicture. Clearly, a display of the distribution of thedata would be preferable (see Figure 1).Recently there have been indications (Rish & Frost1997; Gomes, Selman, & Crato 1997) that the distri-bution of the search e�ort required to solve a set ofCSPs created by a random generator can be succinctlyapproximated by well-known probability distributionssuch as the lognormal. This line of research may leadto more informative reporting of experimental resultson random problems. To have con�dence in the resultsit is useful to add some scatter diagrams for pairwisecomparison of algorithms.Experimenting with random binaryproblemsMost of our experiments were on randomly generatedproblems using 4 parameters: N;D;C; T : N being thenumber of variables, D is the number of values in eachdomain, T is the tightness of each constraint (the num-ber of allowed pairs divided by the total number ofpairs), and C: the number of constraints. For each



Parameters Algorithm CC Nodes CPUh200; 3; 0:0592; 0:111i BT+DVO 5,871,215 207,183 68.46BT+DVO+IAC 23,836,368 40,098 55.44BJ+DVO 5,365,467 188,726 69.28BJ+DVO+LVO 4,793,417 167,211 73.78BJ+DVO+LRN 5,731,244 186,582 63.39BJ+DVO+LRN+LVO 5,622,825 159,739 74.00h300; 3; 0:0206; 0:222i BT+DVO+IAC 141,606 632 0.65BJ+DVO 2,483,520 222,285 119.26BJ+DVO+LVO 1,623,455 131,593 86.76BJ+DVO+LRN 419,193 32,221 15.62BJ+DVO+LRN+LVO 392,606 25,771 13.98h350; 3; 0:0089; 0:333i BT+DVO+IAC 24,641 494 0.43BJ+DVO 1,238,479 182,328 140.81BJ+DVO+LVO 969,224 118,854 111.79BJ+DVO+LRN 3,727 464 0.46BJ+DVO+LRN+LVO 22,688 1,036 3.78Table 1: Comparison of �ve algorithms on random CSPs with D=3. Each number is the mean of 2,000 solvableand unsolvable instances. The algorithm with the lowest mean CPU seconds in each group is in boldface.Parameters Algorithm CC Nodes CPUh60; 6; 0:4797; 0:111i BT+DVO 24,503,115 412,494 59.72BT+DVO+IAC 104,319,923 65,432 130.54BJ+DVO 24,228,726 407,253 63.10BJ+DVO+LVO 23,904,430 401,131 66.47BJ+DVO+LRN 24,368,062 406,332 57.43BJ+DVO+LRN+LVO 24,103,544 405,899 65.75h75; 6; 0:1744; 0:222i BT+DVO 7,766,594 249,603 40.77BT+DVO+IAC 18,419,580 16,395 22.22BJ+DVO 7,530,726 241,124 42.67BJ+DVO+LVO 7,228,548 230,073 44.05BJ+DVO+LRN 7,856,321 230,367 42.13BJ+DVO+LRN+LVO 7,321,890 231,455 43.79h100; 6; 0:0772;0:333i BT+DVO+IAC 4,718,685 4,625 5.67BJ+DVO 6,248,608 293,922 67.30BJ+DVO+LVO 6,581,314 305,121 76.49BJ+DVO+LRN 5,979,767 232,780 54.34BJ+DVO+LRN+LVO 6,034,538 235,509 61.22h125; 6; 0:0395;0:444i BT+DVO+IAC 479,228 566 0.60BJ+DVO 3,526,619 238,584 66.17BJ+DVO+LVO 3,007,791 195,720 62.54BJ+DVO+LRN 2,050,232 108,482 28.80BJ+DVO+LRN+LVO 1,970,645 102,788 29.45h150; 6; 0:0209;0:555i BT+DVO+IAC 32,537 111 0.06BJ+DVO 3,253,255 359,095 111.70BJ+DVO+LVO 1,328,189 124,415 47.08BJ+DVO+LRN 339,191 28,056 8.25BJ+DVO+LRN+LVO 601,454 25,769 12.87Table 2: Comparison of �ve algorithms on random problems with D=6. Each number is the mean of 2,000 solvableand unsolvable instances. The algorithm with the lowest mean CPU seconds in each group is in boldface.



N;D and T we determined empirically the value Cthat correspond to the phase transition (Mitchell, Sel-man, & Levesque 1992) as determined by BJ+DVO.In Table 1 and Table 2 we display the results of ex-perimenting with particularly big and di�cult probleminstances, using a collection of algorithms that were ob-served to be superior over various other variants in ourearlier experiments. The tables display average cpuseconds.From these tables alone, the combination ofBT+DVO+IAC seems to be superior, in mostcases, by a big margin. The main competitor isBJ+DVO+LRN. Interestingly when we look at thedistribution of the data in Figure 1. We see that al-though the average cpu times of LRN and IAC are veryclose, there were many more problems solved quicklyby learning than by IAC, as reected by consistency-checks in Figure 1. This illustrates the need of usingthe distributions as a more informative basis of com-parison.Experiments with DIMACS benchmarkProblemsThe Second Dimacs Implementation Challenge in 1993(Johnson & Trick 1996) collected a set of satis�abilityproblem instances for the purpose of providing bench-marks for comparison of algorithms and heuristics. Wecompared our algorithms against six of the problemsthat were derived from circuit fault analysis. The prob-lems are encoded as Boolean satis�ability problems inconjunctive normal form. Clauses contain from one tosix variables.Each of our six algorithms was applied to thesebenchmark problems. The results are displayed in Ta-ble 3 and Table 4. The tables show other CPU timeson these problems reported in (Johnson & Trick 1996).Dubois et al. (Dubois et al. 1996) uses a complete al-gorithm based on the Davis-Putnam procedure; com-puter is a Sun SparcStation 10 model 40. Hampsonand Kibler (Hampson & Kibler 1996) use a randomizedhill climbing procedure; computer is a Sun SparcSta-tion II. Jaumard et al. (Jaumard, Stan, & Desrosiers1996) use a complete Davis-Putnam based algorithmwith a tabu search heuristic; computer is a Sun Sparc-Station 10 model 30. Pretolani's H2R algorithm (Pre-tolani 1996) is based on the Davis-Putnam procedureand uses a pruning heuristic; computer is a Sun Sparc-Station 2. Resende and Feo (Resende & Feo 1996)present a greedy randomized adaptive search proce-dure called GRASP-A; the computer used was not re-ported. Spears (Spears 1996) uses a simulated anneal-ing based algorithm; computer is a Sun SparcStation10. Van Gelder and Tsuji (Van Gelder & Tsuji 1996)use a complete algorithm that combines search andresolution; computer is a Sun SparcStation 10 model41.Among our six algorithms, we observe thatBT+DVO+IAC had the best CPU time on three

Week 1Unit 1Week 1Unit 2Week 1Unit 3Week 1Unit 4Week 1Unit 5
Week 2Unit 1Week 2Unit 2Week 2Unit 3Week 2Unit 4Week 2Unit 5

� � �� � �� � �� � �� � �
Wk 12Unit 1Wk 12Unit 2Wk 12Unit 3Wk 12Unit 4Wk 12Unit 5Figure 2: A diagrammatic representation of a main-tenance scheduling constraint satisfaction problem.Each circle stands for a variable representing the statusof one unit in one week. The dashed vertical ovals in-dicate constraints between all of the units in one week:meeting the minimum power demand and optimizingthe cost per week. The horizontal ovals represent con-straints on one unit over the entire period: schedulingan adequate period for maintenance.problems, including one tie with BJ+DVO+LRN,and BJ+DVO+LRN was best on two, including thetie. BJ+DVO+LVO and BJ+LVO+LRN+LVO wereeach best one on problem. On the hardest prob-lem, ssa2670-141, we cancelled BT+DVO after 24CPU hours had passed without the algorithm com-pleting. Overall, the two most e�ective algorithms thatemerge are BT+DVO+IAC and BJ+DVO+LRN (withor without LVO).Experimenting with MaintenanceScheduling ProblemsThe problem of scheduling o�-line preventative mainte-nance of power generating units is of critical interest tothe electric power industry. Computational approachesto maintenance scheduling have been intensively stud-ied since the mid 1970's (Dopazo & Merrill 1975;Zurm & Quintana 1975).In (Frost 1997) chapter 9, we formalize the mainte-nance scheduling problem as a constraint optimizationproblem and experiment with various algorithms forits solution.Since the maintenance scheduling problem is an op-timization problem we solve it iteratively as a sequenceof constraint problem having a �xed cost bound for thecost function. The idea of this method is straightfor-ward: we �x a certain cost for the cost function andtry to see if there exists a satisfying solution for the



Problem Algorithm CC Nodes CPUssa0432-003 BT+DVO 51,190 901 0.73435 variables BT+DVO+IAC 73,817 512 0.701,027 clauses BJ+DVO 48,811 865 0.81unsatis�able BJ+DVO+LVO 69,100 823 0.92BJ+DVO+LRN 52,505 827 0.71BJ+DVO+LRN+LVO 59,091 816 0.78Dubois 1.40Jaumard 9.00Pretolani 0.83Van Gelder 0.55Wallace 499.30ssa2670-141 BT+DVO1,359 variables BT+DVO+IAC 535,875,109 1,279,009 1,943.513,321 clauses BJ+DVO 173,446,699 7,117,071 2,791.01unsatis�able BJ+DVO+LVO 41,073,083 1,858,408 803.81BJ+DVO+LRN 35,689,610 1,036,554 488.25BJ+DVO+LRN+LVO 31,854,918 843,099 449.76Dubois 2,674.40Van Gelder 164.58ssa7552-038 BT+DVO 755,034 45,796 14.521,501 variables BT+DVO+IAC 1,274,887 3,766 3.513,575 clauses BJ+DVO 687,122 40,008 12.17satis�able BJ+DVO+LVO 578,909 31,899 11.01BJ+DVO+LRN 439,755 22,884 5.50BJ+DVO+LRN+LVO 398,541 16,001 3.78Dubois 1.20Pretolani 3.67Hampson 152.2Resende 8.31Van Gelder 1.85Table 3: Comparison of �ve algorithms on DIMACS problems. The names refer to authors who participated inthe DIMACS challenge; references are given in the text. Numbers for our algorithms are all results from singleinstances. Some CPU times from other authors are averages over multiple randomized runs on the problem.



Problem Algorithm CC Nodes CPUssa7552-158 BT+DVO 1,009,736 51,756 19.981,363 variables BT+DVO+IAC 1,863,152 17,938 8.253,034 clauses BJ+DVO 845,991 25,611 10.72satis�able BJ+DVO+LVO 445,172 8,122 4.55BJ+DVO+LRN 612,791 19,088 8.64BJ+DVO+LRN+LVO 467,890 12,876 7.07Dubois 0.80Hampson 82.50Jaumard 43.00Pretolani 2.28Resende 2.42Van Gelder 1.14ssa7552-159 BT+DVO 883,614 39,110 14.451,363 variables BT+DVO+IAC 1,378,253 4,167 3.203,032 clauses BJ+DVO 674,091 20,093 6.07satis�able BJ+DVO+LVO 691,654 18,987 6.98BJ+DVO+LRN 503,122 12,077 3.20BJ+DVO+LRN+LVO 563,871 12,890 3.67Dubois 0.90Hampson 82.30Jaumard 6.00Pretolani 2.68Resende 1.63Van Gelder 1.14ssa7552-160 BT+DVO 712,009 35,877 12.921,391 variables BT+DVO+IAC 1,265,887 4,098 3.023,126 clauses BJ+DVO 687,833 22,088 6.28satis�able BJ+DVO+LVO 792,615 23,766 7.14BJ+DVO+LRN 453,788 9,745 3.67BJ+DVO+LRN+LVO 495,166 10,687 4.50Dubois 0.90Hampson 86.00Jaumard 6.00Pretolani 2.80Resende 22.79Van Gelder 1.44Table 4: Continuation of Table 3.



original set of constraints including the constraint ofthe cost function. If there is a solution we lower thecost bound and solve the problem again. We repeat theprocess untill we encounter an unsatis�able problem.This approach reminds one of the method of solvingplanning problems using satis�ability (e.g., satplan),and more generally it resembles previous methods forsolving optimization iteratively such as iterative deep-ening A*.Iterative LearningAn interesting algorithm within this iterative schemeis learning. We used the learning algorithm,BJ+DVO+LRN, to solve the maintenance schedulingCSPs (MSCSPs), and the new constraints introducedby learning are retained for use in later iterations withtighter cost-bounds. We call this approach iterativelearning. Retaining a memory of constraints is safe be-cause as the cost-bound is lower the constraints becometighter. Any solution to an MSCSP with a certain cost-bound is also a valid solution to the same problem witha higher cost-bound. If the the cost-bound were bothlowered and raised, as suggested by a binary search ap-proach, then some learned constraints would have tobe \forgotten" when the cost-bound was raised.Our experiments demonstrated (not shown here forlack of space) that including the learned constraintimproved signi�cantly to e�ectiveness of this scheme.Also, using this set of experiment as an exampleto application-based random problems we observed(see Table 5) that on small problems (100 instances)BT+DVO+IAC is the best algorithm. However onlarger problems it had the worst average time while"pure" BJ+DVO was best.ConclusionThe empirical evaluation of constraint processing al-gorithms aims at �nding dominating algorithms andclasses of problems instances on which each algorithmis likely to perform best. Since empricial evaluationcan cover only a small portion of the problem space,and since the statistics of a realistic problem space arenot likely to be available, we must seek general guide-lines that will lead to superior and more robust algo-rithms and heuristics. Our recent studies of constraintprocessing algorithms have identi�ed several dominat-ing algorithms and have provided initial guidelines foroptimizing their utilization (Frost 1997).ReferencesArnborg, S. 1985. E�cient algorithms for combinato-rial problems on graphs with bounded decomposabil-ity - a survey. BIT 25:2{23.Dechter, R., and Frost, D. 1998. Backtracking algo-rithms for constraint satisfaction problems{ a tuto-rial survey. In UCI technical report. Also on web pagewww.ics.uci.edu/~dechter.

AverageAlgorithm CC Nodes CPU100 smaller problems:BT+DVO+IAC 315,988 3,761 51.65BJ+DVO 619,122 8,981 70.07BJ+DVO+LVO 384,263 5,219 54.48BJ+DVO+LRN 671,756 8,078 67.51BJ+DVO+LRN+LVO 476,901 5,085 57.45100 larger problems:BT+DVO+IAC 7,673,173 32,105 694.02BJ+DVO 2,619,766 28,540 460.42BJ+DVO+LVO 6,987,091 26,650 469.65BJ+DVO+LRN 5,892,065 27,342 521.89BJ+DVO+LRN+LVO 6,811,663 26,402 475.12Table 5: Statistics for �ve algorithms applied tosolvable randomly generated Maintenance Schedulingproblems.Dechter, R., and Meiri, I. 1994. Experimental eval-uation of preprocessing algorithms for constraint sat-isfaction problems. Arti�cial Intelligence 68:211{241.Dechter, R., and Pearl, J. 1987. Network-basedheuristics for constraint satisfaction problems. Ar-ti�cial Intelligence 34:1{38.Dechter, R., and Rish, I. 1994. Directional reso-lution: The davis-putnam procedure, revisited. InPrinciples of Knowledge Representation and Reason-ing (KR-94), 134{145.Dechter, R. 1992. Constraint networks. Encyclopediaof Arti�cial Intelligence 276{285.Dopazo, J. F., and Merrill, H. M. 1975. OptimalGenerator Maintenance Scheduling using Integer Pro-gramming. IEEE Trans. on Power Apparatus andSystems PAS-94(5):1537{1545.Dubois, O.; Andre, P.; Boufkhad, Y.; and Carlier, J.1996. SAT versus UNSAT. In Johnson, D. S., andTrick, M. A., eds., Cliques, Coloring, and Sati�abil-ity, volume 26 of DIMACS Series in Discrete Mathe-matics and Theoretical Computer Science. AmericanMathematical Society.Frost, D. H. 1997. Algorithms and heuristics for con-straint satisfaction problems. Technical report, Phdthesis, Information and Computer Science, Universityof California, Irvine, California.Gomes, C.; Selman, B.; and Crato, N. 1997. Heavy-Tailed Distributions in Combinatorial Search. InSmolka, G., ed., Principles and Practice of ConstraintProgramming { CP97, 121{135.Hampson, S., and Kibler, D. 1996. Large Plateausand Plateau Search in Boolean Satis�ability Prob-lems: When to Give Up Searching and Start Again. InJohnson, D. S., and Trick, M. A., eds., Cliques, Col-oring, and Sati�ability, volume 26 of DIMACS Series



in Discrete Mathematics and Theoretical ComputerScience. American Mathematical Society.Jaumard, B.; Stan, M.; and Desrosiers, J. 1996. TabuSearch and a Quadratic Relaxation for the Satis�abil-ity Problems. In Johnson, D. S., and Trick, M. A.,eds., Cliques, Coloring, and Sati�ability, volume 26 ofDIMACS Series in Discrete Mathematics and The-oretical Computer Science. American MathematicalSociety.Johnson, D. S., and Trick, M. A., eds. 1996. Cliques,Coloring, and Sati�ability, volume 26 of DIMACS Se-ries in Discrete Mathematics and Theoretical Com-puter Science. Providence, Rhode Island: AmericanMathematical Society.Kondrak, G., and van Beek, P. 1997. A Theoreti-cal Evaluation of Selected Backtracking Algorithms.Arti�cial Intelligence 89:365{387.Mitchell, D.; Selman, B.; and Levesque, H. 1992.Hard and Easy Distributions of SAT Problems. InProceedings of the Tenth National Conference on Ar-ti�cial Intelligence, 459{465.Pretolani, D. 1996. E�ciency and Stability of Hyper-graph SAT Algorithms. In Johnson, D. S., and Trick,M. A., eds., Cliques, Coloring, and Sati�ability, vol-ume 26 of DIMACS Series in Discrete Mathematicsand Theoretical Computer Science. American Mathe-matical Society.Resende, M. G. C., and Feo, T. A. 1996. A GRASPfor Satis�ability. In Johnson, D. S., and Trick, M. A.,eds., Cliques, Coloring, and Sati�ability, volume 26 ofDIMACS Series in Discrete Mathematics and The-oretical Computer Science. American MathematicalSociety.Rish, I., and Frost, D. 1997. Statistical analysis ofbacktracking on inconsistent csps. In Smolka, G., ed.,Principles and Practice of Constraint Programming {CP97, 150{162r.Spears, W. M. 1996. Simulated Annealing for HardSatis�ability Problems. In Johnson, D. S., and Trick,M. A., eds., Cliques, Coloring, and Sati�ability, vol-ume 26 of DIMACS Series in Discrete Mathematicsand Theoretical Computer Science. American Mathe-matical Society.Van Gelder, A., and Tsuji, Y. K. 1996. Satis�abilityTesting with More Reasoning and Less Guessing. InJohnson, D. S., and Trick, M. A., eds., Cliques, Col-oring, and Sati�ability, volume 26 of DIMACS Seriesin Discrete Mathematics and Theoretical ComputerScience. American Mathematical Society.Zurm, H. H., and Quintana, V. H. 1975. GeneratorMaintenance Scheduling Via Successive Approxima-tion Dynamic Programming. IEEE Trans. on PowerApparatus and Systems PAS-94(2).


