
i Theoretical 

ELSEVIE; Theoretical Computer Science 173 (1997) 283-308 

Computer Science 

Local and global relational consistency 

Rina Dechter a,*, Peter van Beek b 
a Department of Information and Computer Science, University of California, Irvine, Irvine, 

CA 92717, USA 
b Department of’ Computing Science. University of Alberta, Edmonton, Alberta, Canada T6G 2HI 

Abstract 

Local consistency has proven to be an important concept in the theory and practice of con- 
straint networks. In this paper, we present a new definition of local consistency, called relational 
consistency. The new definition is relation-based, in contrast with the previous definition of lo- 
cal consistency, which we characterize as variable-based. We show the conceptual power of 
the new definition by showing how it unifies known elimination operators such as resolution 
in theorem proving, joins in relational databases, and variable elimination for solving linear in- 
equalities. Algorithms for enforcing various levels of relational consistency are introduced and 
analyzed. We also show the usefulness of the new definition in characterizing relationships be- 
tween properties of constraint networks and the level of local consistency needed to ensure global 
consistency. 

1. Introduction 

Constraint networks are a simple representation and reasoning framework. A prob- 
lem is represented as a set of variables, a domain of values for each variable, and a 
set of constraints between the variables. A central reasoning task is then to find an 
instantiation of the variables that satisfies the constraints. 

In general, what makes constraint networks hard to solve is that they can contain 
many local inconsistencies. A local inconsistency is a consistent instantiation of k - 1 
of the variables that cannot be extended to a kth variable and so cannot be part of 
any global solution. If we are using a backtracking search to find a solution, such 
an inconsistency can lead to a dead end in the search. This insight has led to the 
definition of conditions that characterize the level of local consistency of a network 
[29,33] and to the development of algorithms for enforcing local consistency conditions 
by removing local inconsistencies (e.g., [6, 15, 18,29,33]). 
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In this paper, we present a new definition of local consistency called relational 
consistency. ’ The virtue of the new definition of local consistency is that, firstly, it 
removes the need for referencing the arity of the constraints when discussing rela- 
tionships between the properties of the constraints and local consistency. Secondly, 
it is operational, thus generalizing the concept of the composition operation defined 
for binary constraints, and can be incorporated naturally in algorithms for enforcing 
desired levels of relational consistency. Thirdly, it unifies known operators such as 
resolution in theorem proving, joins in relational databases, and variable elimination 
for solving equations and inequalities, thus allowing the formulation of an elimination 
algorithm that generalizes algorithms appearing in each of these areas. Finally, it al- 
lows identifying those formalisms for which consistency can be decided by enforcing 
a bounded level of relational consistency, like propositional databases, linear equalities 
and inequalities, and crossword puzzles from general databases requiring higher levels 
of relational consistency. We also demonstrate the usefulness of the new definition 
in characterizing relationships between various properties of constraint networks - do- 
main size and acyclicity - and the level of local consistency needed to ensure global 
consistency. 

Following definitions and preliminaries (Section 2), relational local consistency is 
defined and algorithms for enforcing such conditions are introduced (Section 3). Section 
4 shows that the algorithms unify algorithms appearing in propositional databases and 
linear inequalities. Finally, Section 5 describes new associations between constraint 
properties and relational local consistency needed for global consistency. Discussion 
and conclusions are given in Sections 6 and 7, respectively. 

2. Definitions and preliminaries 

Definition 1 (Constraint network). 2 A constraint network W is a set of n variables 
x = {x, , . . . ,x,,}, a domain Di of possible values for each variable xi, 1 < i d n, and 
a set of t relations Rs,, . . . , Rs,, where S; CX, 1 < i 6 n. A constraint or relation Rs 
over a set of variables S = {XI, . . . ,xr} is a subset of the product of their domains (i.e., 
Rs&D, x ... x 0,). The set of subsets {Sr, . . . ,S,} on which constraints are specified 
is called the scheme of B. A binary constraint network is the special case where all 
constraints are over pairs of variables. A constraint graph associates each variable with 
a node and connects any two nodes whose variables appear in the same constraint. 

Definition 2 (Solution to a constraint network). An instantiation of the variables in 
X, denoted Xl, is an n-tuple (al,. . ., a,,), representing an assignment of ai E Di to xi, 
1 < i < n. A consistent instantiation of a network is an instantiation of the variables 

’ A preliminary version of this definition appears in [37]. 
2 Note that all the definitions and algorithms are applicable to relations without the finiteness assumption; a 
point we make explicit in Section 4.2. 
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such that the constraints between variables are satisfied. A consistent instantiation is 
also called a solution. 

The order of the variables constrained by a relation is not important; that is, we fol- 
low the set-of-mappings formulation of relations (see [34]). The notion of a consistent 
instantiation of a subset of the variables can be defined in several ways. We use the 
following definition: an instantiation is consistent if it satisfies all of the constraints 
that have no uninstantiated variables. 

Definition 3 (Consistent instantiation of subsets of variables). Let Y and S be sets of 
variables, and let Y, be an instantiation of the variables in Y. We denote by YI[S] the 
tuple consisting of only the components of YI that correspond to the variables in S. 
An instantiation YI is consistent relative to a network 52 iff for all Si in the scheme of 
9 such that S, C Y, Y/ [Si] E R, . The set of all consistent instantiations of the variables 
in Y is denoted p(Y). 

One can view p(Y) as the set of all solutions of the subnetwork defined by Y. We 
now introduce the needed operations on constraints adopted from the relational calculus 
(see [34] for details). 

Definition 4 (Operations on constraints). Let R be a relation on a set S of variables, 
let Y C S be a subset of the variables, and let YI be an instantiation of the variables 
in Y. We denote by q(R) the selection of those tuples in R that agree with YI. We 
denote by ZIy(R) the projection of the relation R on the subset Y; that is, a tuple over 
Y appears in fly(R) if and only if it can be extended to a full tuple in R. Let Rs, be 
a relation on a set St of variables and let Rs, be a relation on a set S2 of variables. 
We denote by Rs, w Rs, the natural join of the two relations. The join of Rs, and Rs, 
is a relation defined over St U SZ containing all the tuples t, satisfying t[$] E Rs, and 
Q&l E Rs2. 

Two properties of constraint networks that arise later in the paper are domain size 
and row convexity. 

Definition 5 (k-valued domains). [38]] A network of constraints is k-valued if the do- 
main sizes of all variables are bounded by k. 

Definition 6 (Row convex constraints [38]). A binary constraint R on a set {x1,x2} 
of variables with associated domains DI and D2, is row convex if there exists an or- 
dering of 02 such that, for every al E DI, the set (~2 / (al,xz) E R} can be ordered such 
that the elements appear consecutively in the ordering of D2. An r-ary relation R on a 
set S of variables {XI , . . . ,xr} is row convex if for every subset of r - 2 variables Y C S 
and for every instantiation Y, of the variables in Y, the binary relation ZI(s_y)(q,(R)) 
is row convex. A constraint network is row convex if all its constraints are row 
convex. 
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Example 1. We illustrate the definitions using the following network 9 over the set 
X of variables {x~,xz,x~,x~}. The network is 3-valued. The domains of the variables 
are Di = {a, b, c}, 1 6 i 6 4, and the relations are given by, 

Rs, = {(a, a, a>, (a, a, cl, (a, b, cl, (a, c, b), (b, a, cl, 

(4 b, b), (6 ~,a), (c, 0, b), Cc, b, a), Cc, c, cl) , 
Rs, = {(a, b), (6 a>, (6 cl, Cc, a>, Cc, cl), 
Rs, = {(a, b), (a, c), (b, bh Cc, a>, Cc, b)), 

where Si= {x~,x~,xJ}, &= {x2,xq}, and &= {x3,x4}. The projection of Rs, over 
{x1,x3}, is given by 

n{xl>x31 S R = {(~,~),(~,c),(~,b),(b,c),(b,b),(b,~),(c,b),(c,~),(c,c)}. 

The join of Rs, and Rs, is given by 

RY =Rs, WRY, = {(a,a,b),(a ,b,bh( a , c , b), (b , c , a), (b , a , c h Cc , c , a), Cc , a , c l }, 

where Y = {x2,x3,x4}. The set of all solutions of the network is given by 

PW = {<a a, a, b), (a, a, c, b), (a, b, c, a), (b, a, c, b), 
(6 c, a, cl, Cc, a, b, b), Cc, b, a, cl, Cc, c, ~,a)) . 

Let Y = {x2,x3,x4} be a subset of the variables and let Y, be an instantiation of the 
variables in Y. The tuple Y, = (a, c, b) is consistent relative to 6% since YI[&] = (a, b) 

and (u, b) E Rs,, and Y,[&] = (c, b) and (c, b) E Rs,. The tuple Y, = (~,a, b) is not 
consistent relative to BJ since Yr[S,] = (c, b), and (c, b) $Z’ Rs,. The set of all consistent 
instantiations of the variables in Y is given by 

p(Y) = {(a, a, b), (a, b, b), ( a, c, b), (6 a, cl, (6 c, a), Cc, a, cl, Cc, c, a)). 

3. Local consistency 

Local consistency has proven to be an important concept in the theory and practice 
of constraint networks. In this section we first review previous definitions of local 
consistency, which we characterize as variable-based. We then present new definitions 
of local consistency that are relation-bused and present algorithms for enforcing these 
local consistencies. 

3.1. Variable-bused consistency 

Mackworth [29] defines three properties of networks that characterize local consis- 
tency of networks: node, arc, and path consistency. Freuder [ 181 generalizes this to 
k-consistency. 
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Definition 7 (k-consistency; Freuder [l&19]). A network is k-consistent if and only 
if given any instantiation of any k - 1 distinct variables satisfying all of the direct 
relations among those variables, there exists an instantiation of any kth variable such 
that the k values taken together satisfy all of the relations among the k variables. A 
network is strongly k-consistent if and only if it is j-consistent for all j 9 k. 

Node, arc, and path consistency correspond to one-, two-, and three-consistency, 
respectively. A strongly n-consistent network is called globally consistent. Globally 
consistent networks have the property that any consistent instantiation of a subset of 
the variables can be extended to a consistent instantiation of all the variables without 
backtracking [lo]. It is frequently enough to have a globally consistent network along 
a single ordering of the variables as long as this ordering is known in advance. 

Definition 8 (Globally solved). We say that a problem is globally solved if it is con- 
sistent, and if there is a known ordering of the variables along which solutions can be 
assembled without encountering deadends; that is, the network is strong n-consistent 
relative to the given ordering. An algorithm globally solves a problem if it generates 
a globally solved network. 

A globally solved representation is a useful representation of all solutions whenever 
such a representation is more compact than the set of all solutions. 

3.2. Relation-based consistency 

In [38], we extended the notions of arc and path consistency to non-binary rela- 
tions, and used it to specify an alternative condition under which row-convex non- 
binary networks are globally consistent. The new local consistency conditions were 
called relational arc- and path-consistency. In [37] we generalized relational arc- and 
path-consistency to relational m-consistency and used it to specify conditions under 
which tight binary constraints are globally consistent. In the definition of relational- 

consistency, the relations rather than the variables are the primitive entities. In partic- 
ular, this allows expressing the relationships between properties of the constraints and 
local consistency in a way that avoids an explicit reference to the arity of the con- 
straints. In this section we revisit the definition of relational consistency and augment 
it with the option of having also an explicit reference to a constraint’s arity, to allow 
polynomial algorithms for enforcing those conditions. 

Definition 9 (Relational arc, and path-consistency). Let 9 be a constraint network 
over a set of variables X, and let Rs and RT be two relations in 9?, where S, T CX. 

We say that Rs is relationally arc-consistent relative to a subset of variables A C S iff 
any consistent instantiation of the variables in A has an extension to a full tuple in Rs; 
that is, iff 

LO > C 17~ (Rs 1. 
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(Recall that p(A) is the set of all consistent instantiations of the variables in A.) 
A relation Rs is relationally arc-consistent if it is relationally arc-consistent relative 
to every subset A C S. A network is relationally arc-consistent iff every relation is 
relationally arc-consistent. We say that Rs and RT are relationally path-consistent 
relative to a subset of variables A C SU T iff any consistent instantiation of the variables 
in A has an extension to the variables in S U T that satisfies Rs and RT simultaneously; 
that is, iff 

P(A) G ~/OS w RT). 

A pair of relations Rs and RT is relationally path-consistent iff it is relationally path- 
consistent relative to every subset A C S U T. A network is relationally path-consistent 
iff every pair of relations is relationally path-consistent. 

Definition 10 (Relational m-consistency). Let B be a constraint network over a set of 
variables X, and let Rs,, . . . , Rs, be m distinct relations in 9, where Si LX. We say 
that R s,, . . . , Rs, are relationally m-consistent relative to a subset A C UL, Si iff any 
consistent instantiation of the variables in A, has an extension to Uy=, Si that satisfies 
Rs, , . . , Rs, simultaneously; that is, if and only if 

A set of relations {Rs,, . . . , Rs,} is relationally m-consistent iff it is relationally m- 
consistent relative to every A C UyZ1 Sj. A network is relationally m-consistent iff every 
set of m relations is relationally m-consistent. 

Note that if a network is relationally m-consistent then it is also relationally m’- 
consistent for every m’ 6 m. Relational arc- and path-consistency correspond to rela- 
tional l- and 2-consistency, respectively. 

We next refine the definition of relational consistency to be restricted to subsets of 
bounded size. This restriction is similar to the original restriction used for variable-based 
local consistency. In relational (i, m)-consistency defined below, m always indexes the 
cardinality of a set of relations and i corresponds to the constraint’s arity tested for 
local consistency. 

Definition 11 (Relational (i, m)-consistency). A set of relations {Rs, , . . . , Rs,} is rela- 
tionally (i, m)-consistent iff it is relationally m-consistent relative to every subset A of 
size i, A C Uy=, Si. A network is relationally (i, m)-consistent iff every set of m rela- 
tions is relationally (i, m)-consistent. A network is strong relational (i, m)-consistent iff 
it is relational (j, m)-consistent for every j d i. Strong relational (n, m)-consistency is 
identical to relational m-consistency. 

The relational based definition of arc-consistency given in [30] is identical to rela- 
tional (1,l )-consistency. 
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Definition 12 (Directional relational consistency). Given an ordering of the variables, 
u = xi,. . . ,x8, a network is ~-directionally rel~t~o~~lly co~~jste~t iff for every I, every 
subset of relations {Rs, , . . . , Rs,} whose largest index variable is XI, and for every subset 
AC{X,,... ,x1__ I}, every consistent assignment to A can be extended to xl while satis- 
fying all the relevant constraints in {Rs,, . . . , Rs,,,} simultaneously. Directional relational 
(resp., strong) (i, m)-consistency is defined accordingly, by restricting the cardinality 
of A to i. 

Revisiting the definition of a globally solved problem: 

Definition 13 (Globdy solved). A problem is globally solved iff there is a known 
ordering along which the problem is e-directionally relationally consistent, where e is 
the maximum number of constraints. 

Example 2. Consider the constraint network over the set of variables {xt,x~,x~,x~,x~}, 
where the domains of the variables are all Di = {a, b, c}, 1 g i < 4, and the relations 
are given by 

R2,3,4,3 = { ia, a, a, a), (b, a, at a), (a, b, a, a), (a, a, b, ~1, (a, a, a, b)), 
R1,2,s = {(b, a, bh (c, b, cl, (b, a, ~11. 

The constraints are not relationally arc-consistent. For example, the instantiation x2 =a, 
x3 = 6, x4 = b is a consistent instantiation as it satisfies all the applicable cons~aints 
(trivially so, as there are no constraints defined strictly over {x2,x3,x4} or over any 
subset), but it does not have an eXtenSiOn t0 x5 that SatiSfieS &3,4,5. It iS not even 
(1, 1 )-consistent since the value x2 = b is consistent, but is not consistent relative to 
R~,J,~,J. Similarly, the constraints are not relationally path-consistent. For example, the 
instantiation xi =c, x2 =b, x3 =a, x4=u is a consistent instantiation (again, trivially so), 
but it does not have an extension to xg that satisfies R2,3,4,5 and Ri,2,5 simultaneously. 
If we add the constraints R2 = R3 = R4 = (a} and RI = R5 = {b} (namely, if we 
enforce (1,2)-consistency) the set of solutions of the network does not change, and 
the network is both relationally arc- and path-consistent. The reason being that all the 
variables’ domains have a singleton value and therefore, the set of solutions over every 
subset of variables will contain a single tuple only; the one that is extended to a full 
solution. 

By definition, relational k-consistency implies relational (i, k)-consistency for i d 
k - 1, which, for binary constraints, implies strong variable-based k-consistency. The 
virtue in the relational definition (relative, for instance, to the one based on the dual 
graph [23]) is that it is easy to work with; it can be inco~orated naturally into algo- 
rithms for enforcing desired levels of relational consistency. 

Below we present algorithm Relational-Consistency or RC(i+), a brute-force algo- 
rithm for enforcing relational (i, m)-consistency on a network W. Note that RA stands 
for the current unique constraint specified over a subset of variables A. If no constraint 
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exists, then RA denotes the universal relation over A. Algorithm RC, is the unbounded 
version of algorithm RCti,,) in which the recorded constraints arity is not restricted. 

Relational-Consistency (9, i, m)(RCci,,)) 

1. repeat 
2. Q+L% 

3. for every m relations Rs, , . . . , Rs, E Q 
4. and every subset Ai of size i, Ai C Uyzl Sj do 

5. RA, + RA, n flAx (q=, Rs, > 

6. if RA, is the empty relation 
7. then exit and return the empty network 
8. until Q=W 

We call the operation in Step 5 extended composition, since it generalizes the com- 
position operation defined on binary relations. 

Definition 14 (Extended composition). The extended composition of relation 
Rs, , . . . , Rs,,, relative to a subset of variables A C Uyll, Si, denoted ECA(R~,, . . . , Rs,,,) 
is defined by 

E~A(&,,..., Rs, > = nA WY=“=1 Rs, 

When the operator is applied to m relations, it is called extended m-composition. If 
the projection operation is restricted to a set of size i, it is called extended (i, m)- 
composition. 

Algorithm RCci,m) computes the closure of .L% with respect to extended (i, m)- 
composition. Its complexity is O(exp(i.m)) (see Theorem 16) which is clearly compu- 
tationally expensive for large i and m though it can be improved in a manner parallel 
to the improvements of path-consistency algorithms [31]. 

As with variable-based local-consistency, we can improve the efficiency of enforc- 
ing relational consistency by enforcing it only along a certain direction. In Fig. 1 we 
present two versions of algorithm Directional-Relational-Consistency, DRCC,,,, (DRC,, 
respectively) which enforces directional relational (i, m)-consistency (m-consistency, re- 
spectively) on a network W, relative to a given ordering o =x1,x2,. . . ,x,. We call the 
network generated by the algorithm the (i, m)-directional extension (m-directional ex- 
tension, respectively) of 9, denoted Eci,,)(R) (E,(R), respectively). Given an ordering 
of the variables, the algorithm partitions the relations into buckets. In the bucket of xj 
it places all the relations whose largest indexed variable is Xj. Buckets are subsequently 
processed in descending order, and each is closed under the extended (i, m)-composition 
relative to subsets that exclude the bucket’s variable. The resulting relations are placed 
in lower buckets. Since the operation of extended composition computes constraints 
that eliminate certain variables it is often called an elimination operator. Indeed, as we 
discuss later, algorithm DRC,,, belongs to the class of variable elimination algorithms. 
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DIRECTIONAL-RELATIONAL-C• NSISTENCY(~& i, m, o) (DRCci,,)) 
1. Initialize: generate an ordered partition of the constraints, bzccketl, . . . , bucke&, 

where bucket, contains all constraints whose highest variable is Zi. 
2. for p + n downto 1 do 
3. simplification step: 

for every Si, S, E bucket,, such that S; 2 Sj do 
Rs, + Ils,(Rs, W Rs,) 

4. instantiation step: 
if bucket, contains the constraint xP = u then 

for every Si E bucket,, do 

A + S, - {xp} 
RA +- fl~(~~,,=t,R~,) 

if RA is not the empty relation then 
add RA to its appropriate bucket 

else exit and return the empty network 
5. else (the general case) 

j + min{cardina.lity of bucket,,, m} 
6. for every j relations Rs, , . . . , Rsj in bucket, do 

F, + W:cl Rs, 
7. for every subset A of size i A s UfcI S, - {xp} do 
8. RA + fl~F, 

9. if RA is not the empty relation then 
10. add RA to its appropriate bucket 
11. else exit and return the empty network 
12. return Eci,,)(R) = UyzI bucketj 

Fig. 1. Algorithm DRCi,,. 

In addition to the main operation of extended composition we propose two optional 
steps of simplijcation and instantiation. These steps are targeted to provide a more 
efficient implementation and allow the identification of some tractable classes. The 
simplification step ensures that each bucket contains relations defined on distinct subsets 
of variables that are not included in each other. The instantiation step exploits the 
property that whenever one of the relations in the bucket is a singleton tuple we need 
not perform the ii.111 extended m-composition. Instead we can restrict each relation to 
those tuples that are consistent with the singleton tuple and move each restricted relation 
to its appropriate bucket. This is equivalent to applying extended 2-composition between 
each relation and the singleton relation. This special case-handling for instantiation 
exploits the computational effect of conditioning as described in [9, 111. 

In Step 7 of the algorithm, if the size of lJi=, S, - {xp} is smaller than i, we apply 
the operation to A = Ui=, S, - {x,}. In Step 8, if more than one relation is recorded 
on the same subset of variables, a subsequent simplification step will combine all such 
relations into one. Algorithm DRC, is identical to DRC(i,,) except that constraints are 
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recorded on all the variables in the bucket excluding xp; that is, Step 7 is modified to 
7a. for A t u;=, S, - {xp} do 

Theorem 15. Let 6%’ be a network processed by DRCci3m) (DRC,, respectively) along 

ordering o, then the directional extension E(i,,)(B) (E,,,(B), respectively) is direction- 

ally relationally (i, m)-consistent (m-consistent, respectively) relative to 0. 

Proof. Clear. 0 

Theorem 16. The complexity of DRC(im) is O(n’(k B n)(im)) where k bounds the do- 

main sizes and n is the number of variables. The complexity of RCcim) is O((n . k)‘. 
&k . np)) 

Proof. The main step of the algorithm (lines 5-8) relates to the processing of a bucket. 
The number of relations in each bucket is bounded by e + ni where e is the size of 
the initial set of relations and O(n’) bounds the number of possible relations of arity i 

out of n variables. The new relations are of size k’ at the most since they are recorded 
on at most i variables. The number of subsets of size m out of ni relations (assuming 
e d O(n’)) is O(E@). Pe~o~ing an m-way join when each relation is of size at most 
k’ takes Ofk’“), leading to an overall complexity of O((n .k)““). Applying a projection 
over all subsets of size i (Step 8) adds a factor of ni leading to an overall bound of 
O(n’(n * k)““). The complexity of RCcin) can be derived similarly. One loop of the 
algorithm (Steps 2-7) may require O(n’(n 1 k)‘“‘) using a similar analysis. Since the 
number of loops is bounded by the total number of tuples that can be removed in all 
the i-ary constraints, which is O(n’k’), the result follows, q 

The complexity of the nonrestricted version of the algorithms, DRC,, is not likely 
to be polynomial even for m = 2 since, as we will see, it can solve NP-complete 
problems. Like similar algorithms for enforcing directional consistency, the worst-case 
complexity of directional-Relations-Consistency can be bounded as a function of the 
topological structure of the problem via parameters like the induced width of the graph 
[14], also known as tree-width [l, 21. 

Definition 17 (Width, tree-width). A constraint network 98 can be associated with a 
cons~int graph, where each node is a variable and two variables that appear in one 
constraint are connected. A general graph can be embedded in a chordal graph. 3 This 
is normally accomplished by picking a variable ordering o = xl,. . .,x,, then, moving 
from x, to xl, recursively connecting all the neighbors of xi that precede it in the 
ordering. The induced width (or tree width) of this ordered graph, denoted w*(o), 
is the maximal number of earlier neighbors in the resulting graph of each node. The 
maximal cliques in the newly generated chordal graph form a clique-tree and may serve 
as the subproblems in a procedure called tree-clustering [15]. The size of the smallest 

3 A graph is chordal if every cycle of size 4 or more has a chord. 
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induced width over all the graph’s clique-tree embeddings is the induced width, w* of 
the graph. 

It is known that finding the induced width of a graph is NP-complete [2]; nevertheless 
every ordering of the variables o, yields a simple to compute upper bound denoted 
w*(o) (see [ 151). The complexity of DRC,,, along o can be bounded as a function of 
w*(o) of its constraint graph. Specifically [ 151, 

Theorem 18. The time complexity and size of the network generated by DRC,,, along 
ordering o is O(nm . (2mk3)(W*(0)+1) ). In particular, the time complexity of DRC2 is 
0((4k3p*m9, 

Proof. Observe that the number of variables mentioned in any bucket is at most 
w*(o) + 1, and thus the number of relations in a bucket is bounded by 0(2w*(0)+‘) and 
the number of subsets of size m is O(2(w*(o)+‘)” ). Also, the number of tuples in each 
relation is bounded by k w*(0)+’ The complexity of an m-way join of relations of size 
k”‘(O)+’ can be bounded by O(m . k2(‘“*(0)+‘) ) since the size of the relation resulting 
from every pair-wise join is still bounded by k”*(“)+’ and thus, m consecutive joins 
do not multiply but only add. Projection adds a factor of k”*(O)+‘. Consequently, the 
overall complexity is O((nm) . 2(W*(0)+‘)m . k3(“‘*(0)+‘)) which equals the claim. 0 

A case for which DRC,,, is tractable occurs when m = 1. 

Lemma 19. The complexity of DRCl is O(n . e2 t2) when e is the number of input 

relations, and t bounds the number of tuples in each relation. 

Proof. We have n buckets to process. Each bucket will not contain more then e re- 
lations, at any time. The reason is that extended l-composition involves projections 
and intersections only, which add only a linear number of constraints and which takes 
O(t e) steps. Simplification of a bucket takes O(e2 . t2) yielding the result. 0 

Example 3. Crossword puzzles have been used experimentally in evaluating backtrack- 
ing algorithms for solving constraint networks [20]. We use an example puzzle to il- 
lustrate algorithm DRC2 (see Fig. 2). One possible constraint network formulation of 
the problem is as follows: there is a variable for each square that can hold a character, 
xi,. . ,x13; the domains of the variables are the alphabet letters; and the constraints are 
the possible words. For this example, the constraints are given by, 

R1,2,3,4,5 = {(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),(S,N,A,I,L),(S,T,E,E,R)) 

R3,6,9,12 = {(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),(S,A,M,E)} 

&,7,11 = {(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)) 

&3,9,10,1 I = R3,6,9,12 
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Fig. 2. A crossword puzzle. 

ho,13 = {(N Oh 0% EL UJ, S), (1, ‘U) 

l&2,13 = R10,13 

Let us perform a few iterations of Directional-Relational-Consistency, with m equal 
to 2 and o as the ordering of the variables x13,x12,.. . ,x1. Thus, x1 is the highest 
variable in the ordering and xl3 is the lowest. The bucket for x1 contains the single 
relation R1,2,3,4,5. Processing bucket, adds the relation, 

R2,3,4,5 = n2,3,4,5@1 2 3 4 5) , , , , 

= { (0, S, E, S), (A, S, E, RI, W, E, E, T), (N A 1, L), CT, E, E, R)), 

to the bucket of variable x2 which is processed next. The bucket for x2 contains the 
single relation R2,3,4,5. Processing bucket2 adds the r&tiOn, 

R3,4,5 = n3,4,5@2,3,4,5) = {(S,E, Sk (s, E, R), 0% E, T), (A 1, Lh 0% E, R)), 

to the bucket of variable x3 which is processed next. This bucket contains the relations 
R3,4,5 and R3,6,9,~2. Processing bucket3 adds one r&itiOII, 

R4,5,6,9,12 = n4,5,6,9,12@3,4,5 w R3,6,9,12) 

= {(E, S, A, M, E), (E, R, A, M E), 0% T, A, R, N), (1, L, R, 0, Nh (E, R, A, R, N)), 

to the bucket of variable x4. The bucket for x4 now contains the relation R4 5 69 12. , 1 1 , 
Processing bucket4 adds the relation 

&,6,9,12 = {(S, A M EL CR, A, M EL U, A, R, W CL R, 0, N), CR, A, R, VI. 

The bucket for x5 contains now the relations R‘j,6,9,12, and R5,7,11. Processing buckets: 
adds the relation 

R6,7,9,11,12 = {(A E, R, N, N), (A, U, M, N E), (A, U, R, N N), CR, E, 0, T, W). 

The bucket for x6 contains only the newly generated relation R(j7,9,11,~2. Processing 
bucket6 adds the relation 

R7,9,11,12 = {(E,R,N,N),(U,M,N,E),(U,R,N,N),(E,O,T,N)}, 
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to the bucket for x7. Processing bucket7 adds the relation, 

R9~1.12 = {(R,N,N),(M,N,E),(O,T,N)), 

to the bucket of x9. The bucket of xs contains only the original relation Rs,9,is,~i, and 
when processed it adds the relation, 

R9,10,11 = {(I,K,E),(R,O,N),(E,E,T),(A,R,N),(A,M,E)}. 

The bucket for x9 contains the relations R 9,1~,~1, R9,1i,i2. Processing bucket9 adds the 
relation, 

R10, 11 , 12  = { ( O, N, N) ) .  

The bucket for xi0 contains the relations Ris,ii,i2, and Ris,is. Processing bucket10 
adds the empty relation. Since the empty relation was derived, the algorithm stops and 
reports that the network is inconsistent. 

Finally, we propose algorithm Adaptive-Relational-Consistency (ARC) which is the 
relational counter-part of algorithm adaptive-consistency [ 141. Like algorithm DRC,,,, 
it processes the buckets in order from last to first. When processing the bucket of xj, 
it applies extended composition relative to all the relations in that bucket, and with 
respect to the whole set of variables appearing in the bucket excluding xj. It then places 
the resulting relation in its appropriate bucket. Algorithm ARC’ is a restricted version of 
ARC that records relations of arity i only. It is identical to ARC accept that step 4 and 
5 are modified to record constraints on subsets of size i at the most. Algorithm ARC 
generates a globally-solved problem and it can be viewed as a compilation algorithm 
since it yields a representation from which the set of solutions can be recovered in 
linear time. It is identical to DRC, when m is not bounded. For brevity, we omit the 
full steps of simplification and instantiations. 

Adaptive-Relational-Consistency(W, o) 

1. Initialize: generate an ordered partition of the constraints, bucketi, . . , bucket,, 
where bucketi contains all constraints whose highest variable is xi. 

2. for p t n downto 1 do 
3. simplify, 
4. instantiate, 
5. for all the relations Rs,, . . . ,Rs, in bucket, do 

6. A + U;=, S, - {xp} 

7. RA + RA n nA(& &,) 

8. if RA is not the empty relation then 
9. add RA to its appropriate bucket 

10. else exit and return the empty network 
11. return E,(R) = bucket, U bucket;! U . . . U bucket, 
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Theorem 20. Algorithm Adaptive-Relational-Consistency (ARC) globally solves any 
constraint network. The complexity of the algorithm when processed along ordering 

o is bounded by O(n . (2k3)w*(o)+1 ). 

Proof. The algorithm is clearly generating a backtrack-free representation. The number 
of relations in each bucket will increase to at most 2w*(o)+1 relations. The arity of each 
relation is bounded by w*(o) + 1 and thus its size is bounded by O(kw*(0)“). Conse- 
quently the overall complexity is bounded by the cost of joining at most 0(2”‘*(‘)+‘) 
relations of size O(k”‘*(‘)+’ ) which, when adding a factor of O(kw*(0)+1) for projection, 
can be bounded by O(n . 2w*(0)+1 . k3(“‘*(‘)+‘)). 0 

Finally we can show that some NP-complete problems are solved by DRCz. 

Theorem 21. Crossword puzzles can be globally solved by DRCz in any variable 
ordering and its complexity is O(n . k3(“*(“)+‘)). 

Proof. Let 9 be a crossword puzzle instance. We will show that the buckets of the 
network generated by ARC have at most two relations. Therefore, for such prob- 
lems ARC reduces to DRC2. Since ARC generates a backtrack-free problem it fol- 
lows that so will DRC2. We will now prove that there are at most two relations 
in each bucket of the crossword puzzle at any time during processing by ARC. Let 
us annotate each variable in a constraint by a + if it appears in a horizontal word 
and by a - if it appears in a vertical word. Clearly, in the initial specification each 
variable appears in at most two constraints and each annotated variable appears in 
just one constraint (with that annotation). We show that this property is maintained 
throughout the algorithm’s performance. It could be the case that the two annotated 
variables will appear in the same constraint. The annotation of the variables in the 
constraint resulting from extended 2-composition inherits the annotation in the par- 
ent constraints. If a variable appeared with annotation “+” in one, and annotation 
“ - ” in the other, its annotation in the resulting constraint will be “+,-“. The claim 
can be proved by induction on the processed buckets. Assume that after processing 
buckets x,, . . . , xi all the constraints appearing in the union of all the buckets from 
bucketi-1 to bucketl, satisfy that each annotated variable appears in at most one 
constraint. When processing bucketi_ 1, since it contains only two constraints (oth- 
erwise it will contain multiple annotations of variable xi-1 ), it generates a single 
new constraint. Assume that the constraint is added to the bucket of Xi. Clearly, if 
xj is annotated positively (respectively negatively) in the added constraint, bucketj 
cannot contain already a constraint with a positive (respectively, negative) annota- 
tion of Xi. Otherwise, it means that before processing bucket i - 1, there were two 
constraints with positive (respectively negative) annotation of Xj, one in the bucket 
of xi-1 and one in the bucket of xi, which contradicts the induction hypothesis. A 
very similar argument can be applied to the multiple annotation case. The complexity 
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of DRC2 for the crossword puzzles is bounded by O(n . k 3(w*(0)-t1)) thus reducing the 
base of the exponent by a factor of 2w*(0) relative to the general bound of DRC2. 

0 

4. Variable elimination operators 

The extended m-composition operator unifies known operators such as resolution 
in theorem proving, joins in relational databases, and variable elimination for solving 
equations and inequalities. 

4.1. Variable elimination in propositional CNF theories 

We denote propositional symbols, also called variables, by uppercase letters P, Q, R, 
. ..) propositional literals (i.e., P, -P) by lowercase letters p, q, r, . . . , and disjunctions 
of literals, or clauses, by CI, p, . . . . A unit clause is a clause of size 1. The notation 
(a V T), when CI = (P V Q V R) is a shorthand for the disjunction (P V Q V R V T), 

and LX V /3 denotes the clause whose literal appears in either CI or /I. The resolution 
operation over two clauses (a V Q) and (p V 1Q) results in a clause (CX V /3), thus 
eliminating Q. A formula cp in conjunctive normal form (CNI;) is a set of clauses 
cp = {@I,..., CI~} that denotes their conjunction. The set of models of a formula cp, 
denoted models(cp), is the set of all satisfying truth assignments to all its symbols. A 
Horn formula is a CNF formula whose clauses all have at most one positive literal. 
Let ECQI(RA, RB) denote the relation generated by extended 2-composition of RA and 
RB relative to A U B - {Q}, Q E A n B. It is easy to see that pairwise resolution is 
equivalent to extended 2-composition. 

Lemma 22. The resolution operation over two clauses (K V Q) and (/I V -Q), results 

in a clause (a V /3) satisfying: models(a V /?) = ECQ~(models(cx),models(B)). 

Proof. Clear. q 

In [35] we have shown that row-convex relations that are closed under extended 
2-composition can be globally solved by DRC2. Observe that any bi-valued relation is 
row-convex, therefore, since CNF theories are bi-valued, DRC2, if applied to the rela- 
tional representation of a CNF theory, will decide the problem’s satisfiability and gener- 
ate a globally solved representation. From the above lemma, extended 2-decomposition 
can be applied to the CNF representation directly and therefore, transformation to a 
relational representation can be avoided. 

Replacing extended 2-composition by resolution and the instantiation step by unit 
resolution in DRC2, results in algorithm Directional Resolution (denoted DR) which is 
the core of the well known Davis Putnam algorithm for satisfiability [8,17]. Applying 
the same exchange within DRC(i,z) yields algorithm bounded directional resolution 
(BDRi) which is a polynomial approximation of DR [17]. As is well known and as 
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also follows from our theory, algorithm directional resolution globally solves any CNF 
theory. 

Directional-Resolution (cp, o) 
Input: A CNF theory cp, an ordering o = Qi,. . . , Q,, of its variables. 

Output: A decision of whether cp is satisfiable. if it is, a theory E,(cp), equivalent 
to cp, else an empty directional extension. 

1. Initialize: generate an ordered partition of clauses into buckets. bucketi,. . . , 
bucket,, where bucketi contains all clauses whose highest literal is Qi. 

2. for i c n downto 1 do 
3. if there is a unit clause then 

apply unit-resolution and place the resolvents in their right bucket 
if the empty clause was generated, theory is not satisfiable 

4. else resolve each pair {(LX V Qi),(/? V lQi>} c bucketi. 
if y = c1 V p is empty, return E,(cp) = {}, theory is not satisfiable 
else determine the index of y and add it to the appropriate bucket. 

5. return E,(q) +- Ui bucketi 

Incorporating resolution into DRC, yields algorithm unit propagation. The operation 
of extended l-composition in DRC, will have no effect since projections on clauses 
generate universal relations. The only relevant steps are the simplification and instanti- 
ation. The simplification step, if included, allows resolution involving non-unit clauses 
as long as the variables appearing in one clause are contained in the other clause. The 
instantiations step translates to unit resolution. 

As in the general case, DR generates a globally solved representation and its com- 
plexity can be bounded exponentially as a function of the induced width w* of the 
CNF theory. The graph of a CNF theory associates propositional symbols with nodes 
and connects two nodes if their associated symbols appear in the same clause. 

4.2. Variable elimination in linear inequalities 

In database theory, a k-ary relation r is a finite set of tuples and a database is a finite 
set of relations. However, the relational calculus and algebra can be developed without 
the finiteness assumptions for relations. We will use the term unrestricted relation, for 
finite or infinite sets of points in a k-dimensional space [25]. In particular, it was shown 
that relational calculus is identical to relational algebra for countable domains and that 
relational algebra for infinite relations is exactly the same as for finite relations [24]. 4 
Therefore, the relational framework we have presented applies as is to infinite relations. 
In this section we will demonstrate the applicability of our results to the special case 
of linear inequalities over infinite domains like the rationals as well as over finite and 
infinite subsets of the integers. 

4 We thank Manolis Koubarakis for pointing to us the extension to infinite domains. 
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Let us consider the class of linear inequalities where a constraint between r variables 
or less is a conjunction of linear equalities and inequalities of the form CF__, aixi d c, 
where ai, and c are rational constants. For example, the conjunction (3xi -I- 2Xj d 3) i\ 
(-4xi + 5Xj < 1) is an allowed constraint between variables Xi and xi. A network with 
constraints of this form can be formulated as a linear program where the domains 
are infinite rational, or integers, or finite subsets of integers restricted by unary linear 
inequalities. We will show first that over the Rationals the standard operation of vari- 
able elimination is equivalent to extended 2-composition while this equivalence is not 
maintained over the integers. Let us denote by sol(a) the unrestricted relation of tuples 
from the domain satisfying a set of linear inequalities, 01. We define the elimination 
operation as follows: 

Definition 23 (Linear e~~~~~~~~ff~). Let CI=~LT’) aixi+a,~~ < c, and /I=~~~~” bixi+ 
bg, < d. Then elim, (a, p) is applicable only if a, and b, have opposite signs, in which 
case elim,(a, /I) = Clz;(-aib,/a, + bi)xi d - b,/a,c -I- d. If a, and 6, have the same 
sign the elimination implicitly generates the universal constraint. 

Proof. It is easy to see that if a, and b, have the same sign (both are positive or 
both are negative), then for any assignment to xi , . . . ,xi- 1 there is always a value for 
x, that extends xi,. . . ,xi_i and that satisfies both a and /I. Therefore, the extended 
composition produces the universal relation, Assume now that a, and 6, have opposite 
signs. Multiplying ct by -b,./a,. and summing the resulting inequality with /I yields the 
inequality 

In other words, any tuple satisfying this inequality can be extended to a rational value 
of x,. in a way that satisfies both c( and fl. It is unclear, though, that there exists an 
integer extension to x, which is the reason for partial containment for the integers. •i 

In 1351 we have shown that linear inequali~ cons~aints over finite sets of integers 
are row-convex and therefore can be globally solved by DRC2 using their relational 
form. The definition of row-convexity can be extended to infinite domains without any 
modification. This implies that linear inequalities over the Rationals that are relationally 
2-consistent are globally solved and consequently linear inequalities can be globally 
solved by DRC2. 

Incorporating linear elimination into DRC2 (when the constraints are presented as 
linear inequalities) results in algorithm Directional Linear Elimination (abbreviated 
DLE) which is the well known Fourier elimination algorithm (see [28]). Indeed, as 
dictated by our theory and as is already known the algorithm decides the solvability 
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of any set of linear inequalities over the rationals. The algorithm may be modified to 
solve linear inequalities over the integers directly (without translation to a relational 
form). The algorithm does not include a simplification step. 

Directional-Linear-Elimination (cp, o) 
Input: A set of linear inequalities rp, an ordering o = xl,. . . ,x, of its variables. 
Output: A decision of whether 40 is satisfiable. If it is, a theory E,(p), equivalent 

to cp, else an empty directional extension. 
I. Initialize: generate an ordered partition of the inequalities into buckets. 
2. for i +-- n downto 1 do 
3. if xi has one value in its domain then 
4. substitute the value into each inequality in the bucket and put the 

resulting inequality in the right bucket. 
4. else for each pair { ~1, p} C bucketi, compute y = elimi(a, B) 

if y has no solutions, return E,(Q) = {}, theory is not satisfiable 
else add y to the appropriate bucket. 

5. retmn ~~(~) +- ui bUCketi 

Example 4. 

4+1,~2,~3,~4) = {( 1) 5X4 f 3x2 -Xl < 5, (2) X4 +X1 < 2, (3) -X4 < 0, 

(4) x3 6 5, (5) Xl +x2 -x3 < - 10, (6) x1 + 2.Q < 0). 

Initially, bucket4 = (5x4 +3x2 --xl < 5, ~4 +x1 ,< 2, -x4 d 0), bucket3 = { x3 6 5, x1 + 
xz -x3 < - 10) and bucket2 = {xl + 2x2 < 0). Processing bucketd, applying elimination 
r&&! to x4 over inequalities (l), (3), and (2), (3), respectively, results in: 3x2 - 
x1 < 5, placed into bucketz, and xl < 2, placed into bucketl. Processing bucket3 next, 
eliminates x3 from (4) and (5), yielding x1 +x2 < -5, placed into buckets and processing 
bucket2 adds no new inequality. We can now generate a backtrack-free solution in the 
following way. Select a value for x1 from its domains satisfying the unary inequalities 
in bucketl. ARer selecting assignments to xl,. . . , Xi-1 select a value for Xi satisfying 
all the inequalities in bucketi. This is easy since all the constraints are unary once the 
values of xi , . . . ,Xi_l are dete~ined. 

Theorem 25. DLE (Fourier elimination) globally solves a set of linear inequalities 
over the rationals. 5 

Proof. It is known that the Fourier elimination algorithm decides the consistency of 
a set of linear inequalities over the rationals. Since DRC2 globally solves a set of 

s The result holds also for the reals, However, since relational algebra was extended for countable domains 
only it does not follow from the general theory and needs to be proved directly. 
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row-convex constraints, since linear inequalities are row-convex and are closed under 
extended 2-composition, and since DLE is equivaIent to DRC2, the claim follows. 0 

Linear inequalities over the integers: When the domains are the Integers the al- 
gorithm is no longer guaranteed to decide consistency since linear elimination is not 
identical to extended 2-composition. If the empty relation is generated by DLE, the 
problem is indeed inconsistent, else, the problem may or may not be consistent. Never- 
theless, the representation generated by D&E could be useful since it is a backtrack-free 
representation relative to the rationals, of a superset of the sought-for integer solutions. 
From such a representation an integer solution may be extracted using backtrack search 
that may enjoy a substantial amount of pruning. 

Complexity of DLE: Algorithm DLE is generally exponential since it may record 
an exponential number of inequalities. If the domains are finite, the finite relational 
representation can be used (in which case DLE=DRCz), and in this case the complexity 
can be bounded using the notion of induced width. Otherwise, DLE’s complexity may 
be worst-case exponential even when the induced width w*, is bounded. The reason 
is that an exponential number of inequalities may need to be recorded on the same 
subset of variables. One cannot “intersect” two inequalities and replace them by one. 
In other words, linear inequalities are not closed under intersection while relations are. 

Case of binary inequalities: When the linear inequalities are over pairs of variables 
only, algorithm DLE, as presented here is still exponential. However, a variation of the 
algorithm was shown to have a polynomial implementation over the rationals that uses 
a special data stmc~re that bounds the number of inequalities over any pair of variables 
and leads to a polynomial algorithm [22]. Over the integers the binary linear problem is 
NP-complete [27]. A more restricted case of binary monotone inequalities of the form 
ax, - bxj < c, where a, b,c positive integers, was shown to be weakly NP-complete 
since there exists a pseudo-polynomial algorithm [22]. A polynomial algorithm that 
globally solves the problem over the rationals is given in [21]. For bounded integer 
domains the general binary linear problem can be expressed in a relational form and 
since DRCz is polynomial over binary constraints, the class can be solved in polynomial 
time relative to the maximal range of the integer domains. In summary, 

Theorem 26. Algorithm DLE is exponential even fbr binary inequalities and even for 
bounded induced width. F5r unite domains DRCz is applicable. Its c~rn~~e~ity for 

binary constraints is polynomial (in ihe input and the maximum domain range), and 
is exponentially bounded by the induced width, for arbitrary constraints. 

There are additional special classes for which DLE is polynomial, One case is the 
class of sirnpl~~ temporal constraints. Those are unary and binary constraints of the 
form X - Y < a. Algorithm DLE reduces, in this case, to the shortest path algorithm 
presented in [ 131. The algorithm is polynomial since the number of inequalities pro- 
duced is bounded (in this simple case at most two inequalities are needed between 
any pair of variables) and since the class is closed under linear elimination. The linear 
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elimination operator over the integers, coincides with extended 2-composition in this 
case, and therefore, DLE is complete for simple temporal constraints over the integers 
as well. Note, that although this is a subclass of monotone inequalities, tractability of 
DLE over this class does not follow from [22] whereby a special implementation was 
required. 

Theorem 27. Algorithm DLE is polynomial over the class of unary and binary in- 
equalities of the form X-Y < a, X < b. The algorithm globally solves such inequalities, 

over the Integers (if a and b are integers), the rationals and the reals. 

Proof. Over the integers and the rationals, global consistency follows from the global 
consistency of DRC2. In this case DLE is complete since simple temporal inequalities 
over the integers are closed under extended 2-composition and intersection. The proof 
is given in [13]. 0 

Case of zero-diversity theories: Propositional CNFs as well as linear inequalities 
share an interesting syntactic property: It is easy to recognize whether applying ex- 
tended 2-composition relative to variable xi results in a universal constraint. Both res- 
olution and linear elimination relative to xi are effective only when the variable to be 
eliminated appears with opposite signs. This leads to a simple-to-identify tractable class 
for both these languages. If there exists an ordering of the variables, such that in each 
of its bucket;, xi appears with the same sign, then the theory is already globally solved 
relative to that ordering. We called in [ 171 such theories as “zero diversity” and we 
showed that they can be recognized in linear time. 

5. From local to global consistency 

Much work has been done on identifying relationships between properties of con- 
straint networks and the level of local consistency sufficient to ensure global con- 
sistency. This work falls into two classes: identifying topological properties of the 
underlying graph of the network and identifying properties of the constraints. 

For work on identifying topological properties, Freuder [19] identifies a relationship 
between the width of a constraint graph and the level of local consistency needed to 
ensure a solution can be found without backtracking. In particular, binary trees can 
be solved by arc-consistency [31]. Dechter and Pearl [14] provide an adaptive scheme 
where the level of local consistency is adjusted on a node-by-node basis. Dechter and 
Pearl [ 151 generalize the results on trees to hyper-trees which are called acyclic in the 
database community [4]. 

For work on identifying properties of the constraints, Montanari [33] shows that 
path consistency is sufficient to guarantee that a binary network is globally consis- 
tent if the relations are monotone. Dechter [lo] identifies a relationship between the 
size of the domains of the variables, the arity of the constraints, and the level of 



R Dechter. P. van BeeklTheoretical Computer Science 173 (1997) 283-308 303 

local consistency sufficient to ensure the network is globally consistent. These results 
were extended recently by van Beek and Dechter to the property of tightness and 
looseness of the constraints in the network [36,37]. Van Hentenryck et al. [39] show 
that arc consistency is sufficient to test whether a network is satisfiable if the rela- 
tions are from a restricted class of functional and monotone constraints. These proper- 
ties were generalized recently to implicational constraints [26,7] and to row-convexity 

[ 381.  
Finally, for work that falls into both classes, Dechter and Pearl [ 161 present effective 

procedures for determining whether a constraint network can be formulated as a causal 
theory and thus a solution can be found without backtracking. Whether a constraint 
network can be so formulated depends on the topology of the underlying constraint 
graph and the type of the constraints. 

Most of these relationships were formulated initially using the variable-based def- 
inition of local-consistency. Reference to constraints was indirect via the constraint’s 
arity as a parameter. Recently, we have shown that these relationships can be general- 
ized using relational consistency and that they lead to a characterization of classes of 
problems that can be solved by a restricted level m of DRC,,,. The general pattern is 
as follows. We present a sufficient condition showing that a network satisfying a prop- 
erty p, and having a corresponding level of relational consistency Z(p), is globally 
consistent. This implies that whenever the property p is maintained under extended 
I(p)-composition, those networks (satisfying p) can be globally solved by DRCl(,). 
Furthermore, it is sufficient for condition Z(p) to hold only relative to the particu- 
lar ordering on which the algorithm is applied. We have recently demonstrated the 
use of our definition for two properties: row-convexity and tightness. We have shown 
that. 

Theorem 28 (van Beek and Dechter [38]). A network of relations that are row-convex 
and are relational 2-consistent are globally consistent. 

Consequently, a network of row-convex relations that are closed under extended 
2-composition can be globally-solved by DRC2. Similarly, we have shown 

Theorem 29 (van Beek and Dechter [37]). If a network of constraints is m-tight and 
m + 2-relational consistent, than it is globally consistent. 

Consequently, whenever a set of m-tight relations is closed under extended m + 2- 
composition it can be solved by DRC,,,,l. The notion of m-tightness is defined as 
follows. A binary relation is m-tight if every value of one variable is consistent with 
at most m values of the second variable. A general relation is m-tight if every tuple 
on all the variables excluding one, has an extension in the constraint to the missing 
variable using at most m values. 

In this section we apply the definition of relational consistency to relationships in- 
volving properties such as the size of the domains, acyclicity and causality. 
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5. I. Domain size and global consistency 

In [lo], we have shown 

Theorem 30 (Dechter [lo]). If W is a k-valued binary constraint network that is k+l 
consistent then it is globally consistent. If R is a k-valued r-ary constraint network 

that is k(r - 1) + 1 consistent then it is globally consistent. 

We now show that by using the notion of relational consistency the above relation- 
ship for r-ary networks (as well as its proof), are simplified. Moreover, the algorithm 
can be stated more coherently. 

Theorem 31. A k-valued constraint network W, that is k-relationally-consistent is 
globally consistent. 

Proof. We prove the theorem by showing that relationally k-consistent k-valued net- 
works are relationally (k + i)-consistent for any i 2 1. According to the definitions, we 
need to show that, if there are relations Rs, , . . . , Rs,+{, all sharing variable x1, and if 
x is a locally consistent tuple defined over UfT;& - {q}, then there is a value a of 
x1 such that (X, a) belongs to the joined relation Rs, w, . . . , w Rs,+~. With each value 
j, in the domain of xI we associate a subset Ai that contains all those relations in 
{Rs, , . . ., Ra,,} that are consistent with the assignment xr = j. Since variable xt may 
take on k possible values 1,2,. . . , k we get k such subsets, Al,. . . ,Ak. We claim that 
there must be at least one set, say Al, that contains all the constraints {Rs,, . . . ,Rs,+,}. 

If this were not the case, each subset Aj would be missing some member, say R$, 

which means that the partial tuple X’ =ZIA(Z), A = Uf=, S; - {q}, is locally consistent, 
namely it belongs to PA, but it cannot be consistently extended to a value of X, while 
satisfying the k relations R’s;, . . . , R’sL. This leads to a contradiction because as a subset 

- -, of X, x is locally consistent, and from the assumption of relational k-consistency, this 
tuple should be extensible by any additional variable including q. 0 

Since the domains do not increase by extended k-composition we get: 

Theorem 32. Any k-valued network 92 can be globally solved by DRCk. 

Example 5. From Theorem 32, bi-valued networks can be globally solved by DRC2. 
In particular, propositional CNFs can be globally solved by DRC2. As we have seen, in 
this case, the operator of extended 2-composition takes the form of pairwise resolution 
yielding algorithm directional resolution [ 171. 

5.2. Acyclicity, causality and global consistency 

Relational consistency and the DRC,,, algorithms can also capture the tractable classes 
of acyclic and causal networks. It is well known that acyclic networks are tractable 
[32, 151. 
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Definition 33 (Acyclic networks). A network of constraints is acyclic if it has a chordal 
constraint graph and if each maximal clique is associated with a single constraint. 

It is easy to see that: 

Lemma 34. If a network is acyclic then there exists an ordering of the variables for 
which each bucket has a single relation. 

Causal networks include acyclic networks. They were defined in order to capture the 
ease of some tasks in physical systems, such as projection. 

Definition 35 (Causal networks [16]). A constraint network is causal relative to an 
ordering o = x1 , . . ,xn iff it is globally solved (i.e., backtrack-free). 

Definition 36 (Causal relations [ 161). A constraint is called causal if its projection on 
any subset of variables generates a universal relation. 

Lemma 37 (Dechter and Pearl [16]). A network whose buckets all have single causal 

constraints (called, a single-bucket network) relative to ordering o, is causal relative 
to 0. 

Finally, it is easy to see that 

Theorem 38. Single-bucket networks that are closed under DRC, are tractable. 

Proof. Since each bucket contains a single relation throughout processing, DRC, is 
equivalent to ARC and therefore, complete. Since DRCt is polynomial, the claim fol- 
lows. q 

Since acyclic networks are single-buckets and closed under DRCl, and since single- 
bucket causal relations are closed under DRC,, and, since CNF formulas as well as 
linear inequalities are causal relations, we conclude: 

Corollary 39. Algorithm DRCl is complete for: (1) Acyclic networks, (2) single- 

bucket causal relations, and in particular for single-bucket CNFs and linear inequal- 
ities. For the latter two classes this is a special case of the zero-diversity class. 

6. Discussion 

The algorithms we present in this paper belong to the class of variable elimination 
algorithms, formulated recently within the bucket elimination framework [ll], which 
generalize non-serial dynamic programming [5]. We have recently shown how a col- 
lection of probabilistic and combinatorial optimization tasks can be formulated within 
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this framework [l 11. Such algorithms were also presented for various graph-based tasks 
by [ 1,3]. All the algorithms possess similar properties of compiling a theory into a 
backtrack-free one (or greedy) and their complexity is dependent on the same graph 
properties. Specifically they all have a complexity bound which is exponential in the 
induced-width of some graph. 

Another common property often overlooked of all such algorithms, is that they also 
require space exponential in the induced width. We have recently demonstrated how 
a method of conditioning can be incorporated into the bucket-elimination scheme to 
allow trading space for time. The special case-handling of singleton values that we 
had introduced (i.e., instantiation) permits this extension [12] and will lead to similar 
time-space tradeoffs. 

Since the algorithms may be quite time demanding, unless the problem is very sparse, 
practical considerations call for the use of approximations. Polynomial approximation 
algorithms such as DRC(im) could be useful and may be extended to optimization and 
probabilistic inference as well. 

7. Conclusions 

We focused on a new definition of local consistency called relational consistency. 
This definition is relational-based, in contrast with previous definitions which were 
variable-based. We presented algorithms, Directional Relational Consistency (DRC,,,), 
enforcing relational consistency using a general composition operator which unifies 
resolution for CNF theories, variable elimination in linear inequalities and the project- 
join operator in relational databases. We also show that relational consistency is useful 
in characterizing relationships between properties of constraint networks and the level 
of local consistency needed to ensure global consistency. 

Specifically, we have shown that different levels of DRC can globally solve different 
classes of constraint networks: 

1. DRC, globally solves acyclic and single-bucket, causal relations in polynomial 
time. 

2. DRC2 globally solves bi-valued domain networks, crossword puzzles, and linear 
inequalities over finite subsets of the integers. The algorithm is polynomial for binary 
constraints over finite domains in relational form, and is exponential otherwise. Algo- 
rithm DLE (or Fourier elimination) is a linear elimination algorithm equivalent to DRCz 
over the rationals, and approximates DRC2 over integers. The resolution algorithm of 
Davis-Putnam is equivalent to DRC2. 

3. Algorithm DRC,,, globally solves m-valued networks. The algorithm is polynomial 
for binary constraints. 

4. Algorithm ARC globally solves all networks. 
5. The complexity of both DRC,,, and ARC is exponentially bounded by w*, the 

induced-width (tree-width) of the network over finite domains. 



R. Dechter. P. van Beekl Theoretical Computer Science 173 (1997) 283-308 307 

6. We introduced a class of polynomial directional relational consistency algorithms 
DRCcim) that approximate DRC,,,. The algorithms are complete when i 2 w*(o). 

All the algorithms we presented belong to the family of variable elimination al- 
gorithms that are widely applicable to deterministic reasoning tasks, to optimization 
problems and to probabilistic inference [ 11, 121. 
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