
i Theoretical

ELSEVIE; Theoretical Computer Science 173 (1997) 283-308

Computer Science

Local and global relational consistency

Rina Dechter a,*, Peter van Beek b
a Department of Information and Computer Science, University of California, Irvine, Irvine,

CA 92717, USA
b Department of’ Computing Science. University of Alberta, Edmonton, Alberta, Canada T6G 2HI

Abstract

Local consistency has proven to be an important concept in the theory and practice of con-
straint networks. In this paper, we present a new definition of local consistency, called relational
consistency. The new definition is relation-based, in contrast with the previous definition of lo-
cal consistency, which we characterize as variable-based. We show the conceptual power of
the new definition by showing how it unifies known elimination operators such as resolution
in theorem proving, joins in relational databases, and variable elimination for solving linear in-
equalities. Algorithms for enforcing various levels of relational consistency are introduced and
analyzed. We also show the usefulness of the new definition in characterizing relationships be-
tween properties of constraint networks and the level of local consistency needed to ensure global
consistency.

1. Introduction

Constraint networks are a simple representation and reasoning framework. A prob-
lem is represented as a set of variables, a domain of values for each variable, and a
set of constraints between the variables. A central reasoning task is then to find an
instantiation of the variables that satisfies the constraints.

In general, what makes constraint networks hard to solve is that they can contain
many local inconsistencies. A local inconsistency is a consistent instantiation of k - 1
of the variables that cannot be extended to a kth variable and so cannot be part of
any global solution. If we are using a backtracking search to find a solution, such
an inconsistency can lead to a dead end in the search. This insight has led to the
definition of conditions that characterize the level of local consistency of a network
[29,33] and to the development of algorithms for enforcing local consistency conditions
by removing local inconsistencies (e.g., [6, 15, 18,29,33]).

* Corresponding author. E-mail: dechter@ics.uci.edu

0304-3975/97/$17.00 @ 1997 - Elsevier Science B.V. All tights reserved
PZZ SO304-3975(96)000158-2

284 R. Dechter. P. van Beekl Theoretical Computer Science 173 (1997) 283-308

In this paper, we present a new definition of local consistency called relational
consistency. ’ The virtue of the new definition of local consistency is that, firstly, it
removes the need for referencing the arity of the constraints when discussing rela-
tionships between the properties of the constraints and local consistency. Secondly,
it is operational, thus generalizing the concept of the composition operation defined
for binary constraints, and can be incorporated naturally in algorithms for enforcing
desired levels of relational consistency. Thirdly, it unifies known operators such as
resolution in theorem proving, joins in relational databases, and variable elimination
for solving equations and inequalities, thus allowing the formulation of an elimination
algorithm that generalizes algorithms appearing in each of these areas. Finally, it al-
lows identifying those formalisms for which consistency can be decided by enforcing
a bounded level of relational consistency, like propositional databases, linear equalities
and inequalities, and crossword puzzles from general databases requiring higher levels
of relational consistency. We also demonstrate the usefulness of the new definition
in characterizing relationships between various properties of constraint networks - do-
main size and acyclicity - and the level of local consistency needed to ensure global
consistency.

Following definitions and preliminaries (Section 2), relational local consistency is
defined and algorithms for enforcing such conditions are introduced (Section 3). Section
4 shows that the algorithms unify algorithms appearing in propositional databases and
linear inequalities. Finally, Section 5 describes new associations between constraint
properties and relational local consistency needed for global consistency. Discussion
and conclusions are given in Sections 6 and 7, respectively.

2. Definitions and preliminaries

Definition 1 (Constraint network). 2 A constraint network W is a set of n variables
x = {x, , . . . ,x,,}, a domain Di of possible values for each variable xi, 1 < i d n, and
a set of t relations Rs,, . . . , Rs,, where S; CX, 1 < i 6 n. A constraint or relation Rs
over a set of variables S = {XI, . . . ,xr} is a subset of the product of their domains (i.e.,
Rs&D, x ... x 0,). The set of subsets {Sr, . . . ,S,} on which constraints are specified
is called the scheme of B. A binary constraint network is the special case where all
constraints are over pairs of variables. A constraint graph associates each variable with
a node and connects any two nodes whose variables appear in the same constraint.

Definition 2 (Solution to a constraint network). An instantiation of the variables in
X, denoted Xl, is an n-tuple (al,. . ., a,,), representing an assignment of ai E Di to xi,
1 < i < n. A consistent instantiation of a network is an instantiation of the variables

’ A preliminary version of this definition appears in [37].
2 Note that all the definitions and algorithms are applicable to relations without the finiteness assumption; a
point we make explicit in Section 4.2.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 285

such that the constraints between variables are satisfied. A consistent instantiation is
also called a solution.

The order of the variables constrained by a relation is not important; that is, we fol-
low the set-of-mappings formulation of relations (see [34]). The notion of a consistent
instantiation of a subset of the variables can be defined in several ways. We use the
following definition: an instantiation is consistent if it satisfies all of the constraints
that have no uninstantiated variables.

Definition 3 (Consistent instantiation of subsets of variables). Let Y and S be sets of
variables, and let Y, be an instantiation of the variables in Y. We denote by YI[S] the
tuple consisting of only the components of YI that correspond to the variables in S.
An instantiation YI is consistent relative to a network 52 iff for all Si in the scheme of
9 such that S, C Y, Y/ [Si] E R, . The set of all consistent instantiations of the variables
in Y is denoted p(Y).

One can view p(Y) as the set of all solutions of the subnetwork defined by Y. We
now introduce the needed operations on constraints adopted from the relational calculus
(see [34] for details).

Definition 4 (Operations on constraints). Let R be a relation on a set S of variables,
let Y C S be a subset of the variables, and let YI be an instantiation of the variables
in Y. We denote by q(R) the selection of those tuples in R that agree with YI. We
denote by ZIy(R) the projection of the relation R on the subset Y; that is, a tuple over
Y appears in fly(R) if and only if it can be extended to a full tuple in R. Let Rs, be
a relation on a set St of variables and let Rs, be a relation on a set S2 of variables.
We denote by Rs, w Rs, the natural join of the two relations. The join of Rs, and Rs,
is a relation defined over St U SZ containing all the tuples t, satisfying t[$] E Rs, and
Q&l E Rs2.

Two properties of constraint networks that arise later in the paper are domain size
and row convexity.

Definition 5 (k-valued domains). [38]] A network of constraints is k-valued if the do-
main sizes of all variables are bounded by k.

Definition 6 (Row convex constraints [38]). A binary constraint R on a set {x1,x2}
of variables with associated domains DI and D2, is row convex if there exists an or-
dering of 02 such that, for every al E DI, the set (~2 / (al,xz) E R} can be ordered such
that the elements appear consecutively in the ordering of D2. An r-ary relation R on a
set S of variables {XI , . . . ,xr} is row convex if for every subset of r - 2 variables Y C S
and for every instantiation Y, of the variables in Y, the binary relation ZI(s_y)(q,(R))
is row convex. A constraint network is row convex if all its constraints are row
convex.

286 R. Dechter, P. van BeeklTheorefical Computer Science 173 (1997) 283-308

Example 1. We illustrate the definitions using the following network 9 over the set
X of variables {x~,xz,x~,x~}. The network is 3-valued. The domains of the variables
are Di = {a, b, c}, 1 6 i 6 4, and the relations are given by,

Rs, = {(a, a, a>, (a, a, cl, (a, b, cl, (a, c, b), (b, a, cl,

(4 b, b), (6 ~,a), (c, 0, b), Cc, b, a), Cc, c, cl) ,
Rs, = {(a, b), (6 a>, (6 cl, Cc, a>, Cc, cl),
Rs, = {(a, b), (a, c), (b, bh Cc, a>, Cc, b)),

where Si= {x~,x~,xJ}, &= {x2,xq}, and &= {x3,x4}. The projection of Rs, over
{x1,x3}, is given by

n{xl>x31 S R = {(~,~),(~,c),(~,b),(b,c),(b,b),(b,~),(c,b),(c,~),(c,c)}.

The join of Rs, and Rs, is given by

RY =Rs, WRY, = {(a,a,b),(a ,b,bh(a , c , b), (b , c , a), (b , a , c h Cc , c , a), Cc , a , c l },

where Y = {x2,x3,x4}. The set of all solutions of the network is given by

PW = {<a a, a, b), (a, a, c, b), (a, b, c, a), (b, a, c, b),
(6 c, a, cl, Cc, a, b, b), Cc, b, a, cl, Cc, c, ~,a)) .

Let Y = {x2,x3,x4} be a subset of the variables and let Y, be an instantiation of the
variables in Y. The tuple Y, = (a, c, b) is consistent relative to 6% since YI[&] = (a, b)

and (u, b) E Rs,, and Y,[&] = (c, b) and (c, b) E Rs,. The tuple Y, = (~,a, b) is not
consistent relative to BJ since Yr[S,] = (c, b), and (c, b) $Z’ Rs,. The set of all consistent
instantiations of the variables in Y is given by

p(Y) = {(a, a, b), (a, b, b), (a, c, b), (6 a, cl, (6 c, a), Cc, a, cl, Cc, c, a)).

3. Local consistency

Local consistency has proven to be an important concept in the theory and practice
of constraint networks. In this section we first review previous definitions of local
consistency, which we characterize as variable-based. We then present new definitions
of local consistency that are relation-bused and present algorithms for enforcing these
local consistencies.

3.1. Variable-bused consistency

Mackworth [29] defines three properties of networks that characterize local consis-
tency of networks: node, arc, and path consistency. Freuder [181 generalizes this to
k-consistency.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 287

Definition 7 (k-consistency; Freuder [l&19]). A network is k-consistent if and only
if given any instantiation of any k - 1 distinct variables satisfying all of the direct
relations among those variables, there exists an instantiation of any kth variable such
that the k values taken together satisfy all of the relations among the k variables. A
network is strongly k-consistent if and only if it is j-consistent for all j 9 k.

Node, arc, and path consistency correspond to one-, two-, and three-consistency,
respectively. A strongly n-consistent network is called globally consistent. Globally
consistent networks have the property that any consistent instantiation of a subset of
the variables can be extended to a consistent instantiation of all the variables without
backtracking [lo]. It is frequently enough to have a globally consistent network along
a single ordering of the variables as long as this ordering is known in advance.

Definition 8 (Globally solved). We say that a problem is globally solved if it is con-
sistent, and if there is a known ordering of the variables along which solutions can be
assembled without encountering deadends; that is, the network is strong n-consistent
relative to the given ordering. An algorithm globally solves a problem if it generates
a globally solved network.

A globally solved representation is a useful representation of all solutions whenever
such a representation is more compact than the set of all solutions.

3.2. Relation-based consistency

In [38], we extended the notions of arc and path consistency to non-binary rela-
tions, and used it to specify an alternative condition under which row-convex non-
binary networks are globally consistent. The new local consistency conditions were
called relational arc- and path-consistency. In [37] we generalized relational arc- and
path-consistency to relational m-consistency and used it to specify conditions under
which tight binary constraints are globally consistent. In the definition of relational-

consistency, the relations rather than the variables are the primitive entities. In partic-
ular, this allows expressing the relationships between properties of the constraints and
local consistency in a way that avoids an explicit reference to the arity of the con-
straints. In this section we revisit the definition of relational consistency and augment
it with the option of having also an explicit reference to a constraint’s arity, to allow
polynomial algorithms for enforcing those conditions.

Definition 9 (Relational arc, and path-consistency). Let 9 be a constraint network
over a set of variables X, and let Rs and RT be two relations in 9?, where S, T CX.

We say that Rs is relationally arc-consistent relative to a subset of variables A C S iff
any consistent instantiation of the variables in A has an extension to a full tuple in Rs;
that is, iff

LO > C 17~ (Rs 1.

288 R. Dechter. P. van Beekl Theoretical Computer Science 173 (1997) 283-308

(Recall that p(A) is the set of all consistent instantiations of the variables in A.)
A relation Rs is relationally arc-consistent if it is relationally arc-consistent relative
to every subset A C S. A network is relationally arc-consistent iff every relation is
relationally arc-consistent. We say that Rs and RT are relationally path-consistent
relative to a subset of variables A C SU T iff any consistent instantiation of the variables
in A has an extension to the variables in S U T that satisfies Rs and RT simultaneously;
that is, iff

P(A) G ~/OS w RT).

A pair of relations Rs and RT is relationally path-consistent iff it is relationally path-
consistent relative to every subset A C S U T. A network is relationally path-consistent
iff every pair of relations is relationally path-consistent.

Definition 10 (Relational m-consistency). Let B be a constraint network over a set of
variables X, and let Rs,, . . . , Rs, be m distinct relations in 9, where Si LX. We say
that R s,, . . . , Rs, are relationally m-consistent relative to a subset A C UL, Si iff any
consistent instantiation of the variables in A, has an extension to Uy=, Si that satisfies
Rs, , . . , Rs, simultaneously; that is, if and only if

A set of relations {Rs,, . . . , Rs,} is relationally m-consistent iff it is relationally m-
consistent relative to every A C UyZ1 Sj. A network is relationally m-consistent iff every
set of m relations is relationally m-consistent.

Note that if a network is relationally m-consistent then it is also relationally m’-
consistent for every m’ 6 m. Relational arc- and path-consistency correspond to rela-
tional l- and 2-consistency, respectively.

We next refine the definition of relational consistency to be restricted to subsets of
bounded size. This restriction is similar to the original restriction used for variable-based
local consistency. In relational (i, m)-consistency defined below, m always indexes the
cardinality of a set of relations and i corresponds to the constraint’s arity tested for
local consistency.

Definition 11 (Relational (i, m)-consistency). A set of relations {Rs, , . . . , Rs,} is rela-
tionally (i, m)-consistent iff it is relationally m-consistent relative to every subset A of
size i, A C Uy=, Si. A network is relationally (i, m)-consistent iff every set of m rela-
tions is relationally (i, m)-consistent. A network is strong relational (i, m)-consistent iff
it is relational (j, m)-consistent for every j d i. Strong relational (n, m)-consistency is
identical to relational m-consistency.

The relational based definition of arc-consistency given in [30] is identical to rela-
tional (1,l)-consistency.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 289

Definition 12 (Directional relational consistency). Given an ordering of the variables,
u = xi,. . . ,x8, a network is ~-directionally rel~t~o~~lly co~~jste~t iff for every I, every
subset of relations {Rs, , . . . , Rs,} whose largest index variable is XI, and for every subset
AC{X,,... ,x1__ I}, every consistent assignment to A can be extended to xl while satis-
fying all the relevant constraints in {Rs,, . . . , Rs,,,} simultaneously. Directional relational
(resp., strong) (i, m)-consistency is defined accordingly, by restricting the cardinality
of A to i.

Revisiting the definition of a globally solved problem:

Definition 13 (Globdy solved). A problem is globally solved iff there is a known
ordering along which the problem is e-directionally relationally consistent, where e is
the maximum number of constraints.

Example 2. Consider the constraint network over the set of variables {xt,x~,x~,x~,x~},
where the domains of the variables are all Di = {a, b, c}, 1 g i < 4, and the relations
are given by

R2,3,4,3 = { ia, a, a, a), (b, a, at a), (a, b, a, a), (a, a, b, ~1, (a, a, a, b)),
R1,2,s = {(b, a, bh (c, b, cl, (b, a, ~11.

The constraints are not relationally arc-consistent. For example, the instantiation x2 =a,
x3 = 6, x4 = b is a consistent instantiation as it satisfies all the applicable cons~aints
(trivially so, as there are no constraints defined strictly over {x2,x3,x4} or over any
subset), but it does not have an eXtenSiOn t0 x5 that SatiSfieS &3,4,5. It iS not even
(1, 1)-consistent since the value x2 = b is consistent, but is not consistent relative to
R~,J,~,J. Similarly, the constraints are not relationally path-consistent. For example, the
instantiation xi =c, x2 =b, x3 =a, x4=u is a consistent instantiation (again, trivially so),
but it does not have an extension to xg that satisfies R2,3,4,5 and Ri,2,5 simultaneously.
If we add the constraints R2 = R3 = R4 = (a} and RI = R5 = {b} (namely, if we
enforce (1,2)-consistency) the set of solutions of the network does not change, and
the network is both relationally arc- and path-consistent. The reason being that all the
variables’ domains have a singleton value and therefore, the set of solutions over every
subset of variables will contain a single tuple only; the one that is extended to a full
solution.

By definition, relational k-consistency implies relational (i, k)-consistency for i d
k - 1, which, for binary constraints, implies strong variable-based k-consistency. The
virtue in the relational definition (relative, for instance, to the one based on the dual
graph [23]) is that it is easy to work with; it can be inco~orated naturally into algo-
rithms for enforcing desired levels of relational consistency.

Below we present algorithm Relational-Consistency or RC(i+), a brute-force algo-
rithm for enforcing relational (i, m)-consistency on a network W. Note that RA stands
for the current unique constraint specified over a subset of variables A. If no constraint

290 R. Dechter, P. van BeeklTheoretical Computer Science 173 (1997) 283-308

exists, then RA denotes the universal relation over A. Algorithm RC, is the unbounded
version of algorithm RCti,,) in which the recorded constraints arity is not restricted.

Relational-Consistency (9, i, m)(RCci,,))

1. repeat
2. Q+L%

3. for every m relations Rs, , . . . , Rs, E Q
4. and every subset Ai of size i, Ai C Uyzl Sj do

5. RA, + RA, n flAx (q=, Rs, >

6. if RA, is the empty relation
7. then exit and return the empty network
8. until Q=W

We call the operation in Step 5 extended composition, since it generalizes the com-
position operation defined on binary relations.

Definition 14 (Extended composition). The extended composition of relation
Rs, , . . . , Rs,,, relative to a subset of variables A C Uyll, Si, denoted ECA(R~,, . . . , Rs,,,)
is defined by

E~A(&,,..., Rs, > = nA WY=“=1 Rs,

When the operator is applied to m relations, it is called extended m-composition. If
the projection operation is restricted to a set of size i, it is called extended (i, m)-
composition.

Algorithm RCci,m) computes the closure of .L% with respect to extended (i, m)-
composition. Its complexity is O(exp(i.m)) (see Theorem 16) which is clearly compu-
tationally expensive for large i and m though it can be improved in a manner parallel
to the improvements of path-consistency algorithms [31].

As with variable-based local-consistency, we can improve the efficiency of enforc-
ing relational consistency by enforcing it only along a certain direction. In Fig. 1 we
present two versions of algorithm Directional-Relational-Consistency, DRCC,,,, (DRC,,
respectively) which enforces directional relational (i, m)-consistency (m-consistency, re-
spectively) on a network W, relative to a given ordering o =x1,x2,. . . ,x,. We call the
network generated by the algorithm the (i, m)-directional extension (m-directional ex-
tension, respectively) of 9, denoted Eci,,)(R) (E,(R), respectively). Given an ordering
of the variables, the algorithm partitions the relations into buckets. In the bucket of xj
it places all the relations whose largest indexed variable is Xj. Buckets are subsequently
processed in descending order, and each is closed under the extended (i, m)-composition
relative to subsets that exclude the bucket’s variable. The resulting relations are placed
in lower buckets. Since the operation of extended composition computes constraints
that eliminate certain variables it is often called an elimination operator. Indeed, as we
discuss later, algorithm DRC,,, belongs to the class of variable elimination algorithms.

R. Dechter, P. van BeeklTheoretical Computer Science 173 (1997) 283-308 291

DIRECTIONAL-RELATIONAL-C• NSISTENCY(~& i, m, o) (DRCci,,))
1. Initialize: generate an ordered partition of the constraints, bzccketl, . . . , bucke&,

where bucket, contains all constraints whose highest variable is Zi.
2. for p + n downto 1 do
3. simplification step:

for every Si, S, E bucket,, such that S; 2 Sj do
Rs, + Ils,(Rs, W Rs,)

4. instantiation step:
if bucket, contains the constraint xP = u then

for every Si E bucket,, do

A + S, - {xp}
RA +- fl~(~~,,=t,R~,)

if RA is not the empty relation then
add RA to its appropriate bucket

else exit and return the empty network
5. else (the general case)

j + min{cardina.lity of bucket,,, m}
6. for every j relations Rs, , . . . , Rsj in bucket, do

F, + W:cl Rs,
7. for every subset A of size i A s UfcI S, - {xp} do
8. RA + fl~F,

9. if RA is not the empty relation then
10. add RA to its appropriate bucket
11. else exit and return the empty network
12. return Eci,,)(R) = UyzI bucketj

Fig. 1. Algorithm DRCi,,.

In addition to the main operation of extended composition we propose two optional
steps of simplijcation and instantiation. These steps are targeted to provide a more
efficient implementation and allow the identification of some tractable classes. The
simplification step ensures that each bucket contains relations defined on distinct subsets
of variables that are not included in each other. The instantiation step exploits the
property that whenever one of the relations in the bucket is a singleton tuple we need
not perform the ii.111 extended m-composition. Instead we can restrict each relation to
those tuples that are consistent with the singleton tuple and move each restricted relation
to its appropriate bucket. This is equivalent to applying extended 2-composition between
each relation and the singleton relation. This special case-handling for instantiation
exploits the computational effect of conditioning as described in [9, 111.

In Step 7 of the algorithm, if the size of lJi=, S, - {xp} is smaller than i, we apply
the operation to A = Ui=, S, - {x,}. In Step 8, if more than one relation is recorded
on the same subset of variables, a subsequent simplification step will combine all such
relations into one. Algorithm DRC, is identical to DRC(i,,) except that constraints are

292 R. Dechter. P. van Beekl Theoretical Computer Science I73 (1997) 283-308

recorded on all the variables in the bucket excluding xp; that is, Step 7 is modified to
7a. for A t u;=, S, - {xp} do

Theorem 15. Let 6%’ be a network processed by DRCci3m) (DRC,, respectively) along

ordering o, then the directional extension E(i,,)(B) (E,,,(B), respectively) is direction-

ally relationally (i, m)-consistent (m-consistent, respectively) relative to 0.

Proof. Clear. 0

Theorem 16. The complexity of DRC(im) is O(n’(k B n)(im)) where k bounds the do-

main sizes and n is the number of variables. The complexity of RCcim) is O((n . k)‘.
&k . np))

Proof. The main step of the algorithm (lines 5-8) relates to the processing of a bucket.
The number of relations in each bucket is bounded by e + ni where e is the size of
the initial set of relations and O(n’) bounds the number of possible relations of arity i

out of n variables. The new relations are of size k’ at the most since they are recorded
on at most i variables. The number of subsets of size m out of ni relations (assuming
e d O(n’)) is O(E@). Pe~o~ing an m-way join when each relation is of size at most
k’ takes Ofk’“), leading to an overall complexity of O((n .k)““). Applying a projection
over all subsets of size i (Step 8) adds a factor of ni leading to an overall bound of
O(n’(n * k)““). The complexity of RCcin) can be derived similarly. One loop of the
algorithm (Steps 2-7) may require O(n’(n 1 k)‘“‘) using a similar analysis. Since the
number of loops is bounded by the total number of tuples that can be removed in all
the i-ary constraints, which is O(n’k’), the result follows, q

The complexity of the nonrestricted version of the algorithms, DRC,, is not likely
to be polynomial even for m = 2 since, as we will see, it can solve NP-complete
problems. Like similar algorithms for enforcing directional consistency, the worst-case
complexity of directional-Relations-Consistency can be bounded as a function of the
topological structure of the problem via parameters like the induced width of the graph
[14], also known as tree-width [l, 21.

Definition 17 (Width, tree-width). A constraint network 98 can be associated with a
cons~int graph, where each node is a variable and two variables that appear in one
constraint are connected. A general graph can be embedded in a chordal graph. 3 This
is normally accomplished by picking a variable ordering o = xl,. . .,x,, then, moving
from x, to xl, recursively connecting all the neighbors of xi that precede it in the
ordering. The induced width (or tree width) of this ordered graph, denoted w*(o),
is the maximal number of earlier neighbors in the resulting graph of each node. The
maximal cliques in the newly generated chordal graph form a clique-tree and may serve
as the subproblems in a procedure called tree-clustering [15]. The size of the smallest

3 A graph is chordal if every cycle of size 4 or more has a chord.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 293

induced width over all the graph’s clique-tree embeddings is the induced width, w* of
the graph.

It is known that finding the induced width of a graph is NP-complete [2]; nevertheless
every ordering of the variables o, yields a simple to compute upper bound denoted
w*(o) (see [151). The complexity of DRC,,, along o can be bounded as a function of
w*(o) of its constraint graph. Specifically [151,

Theorem 18. The time complexity and size of the network generated by DRC,,, along
ordering o is O(nm . (2mk3)(W*(0)+1)). In particular, the time complexity of DRC2 is
0((4k3p*m9,

Proof. Observe that the number of variables mentioned in any bucket is at most
w*(o) + 1, and thus the number of relations in a bucket is bounded by 0(2w*(0)+‘) and
the number of subsets of size m is O(2(w*(o)+‘)”). Also, the number of tuples in each
relation is bounded by k w*(0)+’ The complexity of an m-way join of relations of size
k”‘(O)+’ can be bounded by O(m . k2(‘“*(0)+‘)) since the size of the relation resulting
from every pair-wise join is still bounded by k”*(“)+’ and thus, m consecutive joins
do not multiply but only add. Projection adds a factor of k”*(O)+‘. Consequently, the
overall complexity is O((nm) . 2(W*(0)+‘)m . k3(“‘*(0)+‘)) which equals the claim. 0

A case for which DRC,,, is tractable occurs when m = 1.

Lemma 19. The complexity of DRCl is O(n . e2 t2) when e is the number of input

relations, and t bounds the number of tuples in each relation.

Proof. We have n buckets to process. Each bucket will not contain more then e re-
lations, at any time. The reason is that extended l-composition involves projections
and intersections only, which add only a linear number of constraints and which takes
O(t e) steps. Simplification of a bucket takes O(e2 . t2) yielding the result. 0

Example 3. Crossword puzzles have been used experimentally in evaluating backtrack-
ing algorithms for solving constraint networks [20]. We use an example puzzle to il-
lustrate algorithm DRC2 (see Fig. 2). One possible constraint network formulation of
the problem is as follows: there is a variable for each square that can hold a character,
xi,. . ,x13; the domains of the variables are the alphabet letters; and the constraints are
the possible words. For this example, the constraints are given by,

R1,2,3,4,5 = {(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),(S,N,A,I,L),(S,T,E,E,R))

R3,6,9,12 = {(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),(S,A,M,E)}

&,7,11 = {(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N))

&3,9,10,1 I = R3,6,9,12

294 R. Dechter, P. van BeeklTheoretical Computer Science 173 (1997) 283-308

Fig. 2. A crossword puzzle.

ho,13 = {(N Oh 0% EL UJ, S), (1, ‘U)

l&2,13 = R10,13

Let us perform a few iterations of Directional-Relational-Consistency, with m equal
to 2 and o as the ordering of the variables x13,x12,.. . ,x1. Thus, x1 is the highest
variable in the ordering and xl3 is the lowest. The bucket for x1 contains the single
relation R1,2,3,4,5. Processing bucket, adds the relation,

R2,3,4,5 = n2,3,4,5@1 2 3 4 5) , , , ,

= { (0, S, E, S), (A, S, E, RI, W, E, E, T), (N A 1, L), CT, E, E, R)),

to the bucket of variable x2 which is processed next. The bucket for x2 contains the
single relation R2,3,4,5. Processing bucket2 adds the r&tiOn,

R3,4,5 = n3,4,5@2,3,4,5) = {(S,E, Sk (s, E, R), 0% E, T), (A 1, Lh 0% E, R)),

to the bucket of variable x3 which is processed next. This bucket contains the relations
R3,4,5 and R3,6,9,~2. Processing bucket3 adds one r&itiOII,

R4,5,6,9,12 = n4,5,6,9,12@3,4,5 w R3,6,9,12)

= {(E, S, A, M, E), (E, R, A, M E), 0% T, A, R, N), (1, L, R, 0, Nh (E, R, A, R, N)),

to the bucket of variable x4. The bucket for x4 now contains the relation R4 5 69 12. , 1 1 ,
Processing bucket4 adds the relation

&,6,9,12 = {(S, A M EL CR, A, M EL U, A, R, W CL R, 0, N), CR, A, R, VI.

The bucket for x5 contains now the relations R‘j,6,9,12, and R5,7,11. Processing buckets:
adds the relation

R6,7,9,11,12 = {(A E, R, N, N), (A, U, M, N E), (A, U, R, N N), CR, E, 0, T, W).

The bucket for x6 contains only the newly generated relation R(j7,9,11,~2. Processing
bucket6 adds the relation

R7,9,11,12 = {(E,R,N,N),(U,M,N,E),(U,R,N,N),(E,O,T,N)},

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 295

to the bucket for x7. Processing bucket7 adds the relation,

R9~1.12 = {(R,N,N),(M,N,E),(O,T,N)),

to the bucket of x9. The bucket of xs contains only the original relation Rs,9,is,~i, and
when processed it adds the relation,

R9,10,11 = {(I,K,E),(R,O,N),(E,E,T),(A,R,N),(A,M,E)}.

The bucket for x9 contains the relations R 9,1~,~1, R9,1i,i2. Processing bucket9 adds the
relation,

R10, 11 , 12 = { (O, N, N)) .

The bucket for xi0 contains the relations Ris,ii,i2, and Ris,is. Processing bucket10
adds the empty relation. Since the empty relation was derived, the algorithm stops and
reports that the network is inconsistent.

Finally, we propose algorithm Adaptive-Relational-Consistency (ARC) which is the
relational counter-part of algorithm adaptive-consistency [141. Like algorithm DRC,,,,
it processes the buckets in order from last to first. When processing the bucket of xj,
it applies extended composition relative to all the relations in that bucket, and with
respect to the whole set of variables appearing in the bucket excluding xj. It then places
the resulting relation in its appropriate bucket. Algorithm ARC’ is a restricted version of
ARC that records relations of arity i only. It is identical to ARC accept that step 4 and
5 are modified to record constraints on subsets of size i at the most. Algorithm ARC
generates a globally-solved problem and it can be viewed as a compilation algorithm
since it yields a representation from which the set of solutions can be recovered in
linear time. It is identical to DRC, when m is not bounded. For brevity, we omit the
full steps of simplification and instantiations.

Adaptive-Relational-Consistency(W, o)

1. Initialize: generate an ordered partition of the constraints, bucketi, . . , bucket,,
where bucketi contains all constraints whose highest variable is xi.

2. for p t n downto 1 do
3. simplify,
4. instantiate,
5. for all the relations Rs,, . . . ,Rs, in bucket, do

6. A + U;=, S, - {xp}

7. RA + RA n nA(& &,)

8. if RA is not the empty relation then
9. add RA to its appropriate bucket

10. else exit and return the empty network
11. return E,(R) = bucket, U bucket;! U . . . U bucket,

296 R. Dechter, P. van BeeklTheoretical Computer Science 173 (1997) 283-308

Theorem 20. Algorithm Adaptive-Relational-Consistency (ARC) globally solves any
constraint network. The complexity of the algorithm when processed along ordering

o is bounded by O(n . (2k3)w*(o)+1).

Proof. The algorithm is clearly generating a backtrack-free representation. The number
of relations in each bucket will increase to at most 2w*(o)+1 relations. The arity of each
relation is bounded by w*(o) + 1 and thus its size is bounded by O(kw*(0)“). Conse-
quently the overall complexity is bounded by the cost of joining at most 0(2”‘*(‘)+‘)
relations of size O(k”‘*(‘)+’) which, when adding a factor of O(kw*(0)+1) for projection,
can be bounded by O(n . 2w*(0)+1 . k3(“‘*(‘)+‘)). 0

Finally we can show that some NP-complete problems are solved by DRCz.

Theorem 21. Crossword puzzles can be globally solved by DRCz in any variable
ordering and its complexity is O(n . k3(“*(“)+‘)).

Proof. Let 9 be a crossword puzzle instance. We will show that the buckets of the
network generated by ARC have at most two relations. Therefore, for such prob-
lems ARC reduces to DRC2. Since ARC generates a backtrack-free problem it fol-
lows that so will DRC2. We will now prove that there are at most two relations
in each bucket of the crossword puzzle at any time during processing by ARC. Let
us annotate each variable in a constraint by a + if it appears in a horizontal word
and by a - if it appears in a vertical word. Clearly, in the initial specification each
variable appears in at most two constraints and each annotated variable appears in
just one constraint (with that annotation). We show that this property is maintained
throughout the algorithm’s performance. It could be the case that the two annotated
variables will appear in the same constraint. The annotation of the variables in the
constraint resulting from extended 2-composition inherits the annotation in the par-
ent constraints. If a variable appeared with annotation “+” in one, and annotation
“ - ” in the other, its annotation in the resulting constraint will be “+,-“. The claim
can be proved by induction on the processed buckets. Assume that after processing
buckets x,, . . . , xi all the constraints appearing in the union of all the buckets from
bucketi-1 to bucketl, satisfy that each annotated variable appears in at most one
constraint. When processing bucketi_ 1, since it contains only two constraints (oth-
erwise it will contain multiple annotations of variable xi-1), it generates a single
new constraint. Assume that the constraint is added to the bucket of Xi. Clearly, if
xj is annotated positively (respectively negatively) in the added constraint, bucketj
cannot contain already a constraint with a positive (respectively, negative) annota-
tion of Xi. Otherwise, it means that before processing bucket i - 1, there were two
constraints with positive (respectively negative) annotation of Xj, one in the bucket
of xi-1 and one in the bucket of xi, which contradicts the induction hypothesis. A
very similar argument can be applied to the multiple annotation case. The complexity

R. Dechter, P. van BeeklTheoretical Computer Science 173 (1997) 283-308 291

of DRC2 for the crossword puzzles is bounded by O(n . k 3(w*(0)-t1)) thus reducing the
base of the exponent by a factor of 2w*(0) relative to the general bound of DRC2.

0

4. Variable elimination operators

The extended m-composition operator unifies known operators such as resolution
in theorem proving, joins in relational databases, and variable elimination for solving
equations and inequalities.

4.1. Variable elimination in propositional CNF theories

We denote propositional symbols, also called variables, by uppercase letters P, Q, R,
. ..) propositional literals (i.e., P, -P) by lowercase letters p, q, r, . . . , and disjunctions
of literals, or clauses, by CI, p, A unit clause is a clause of size 1. The notation
(a V T), when CI = (P V Q V R) is a shorthand for the disjunction (P V Q V R V T),

and LX V /3 denotes the clause whose literal appears in either CI or /I. The resolution
operation over two clauses (a V Q) and (p V 1Q) results in a clause (CX V /3), thus
eliminating Q. A formula cp in conjunctive normal form (CNI;) is a set of clauses
cp = {@I,..., CI~} that denotes their conjunction. The set of models of a formula cp,
denoted models(cp), is the set of all satisfying truth assignments to all its symbols. A
Horn formula is a CNF formula whose clauses all have at most one positive literal.
Let ECQI(RA, RB) denote the relation generated by extended 2-composition of RA and
RB relative to A U B - {Q}, Q E A n B. It is easy to see that pairwise resolution is
equivalent to extended 2-composition.

Lemma 22. The resolution operation over two clauses (K V Q) and (/I V -Q), results

in a clause (a V /3) satisfying: models(a V /?) = ECQ~(models(cx),models(B)).

Proof. Clear. q

In [35] we have shown that row-convex relations that are closed under extended
2-composition can be globally solved by DRC2. Observe that any bi-valued relation is
row-convex, therefore, since CNF theories are bi-valued, DRC2, if applied to the rela-
tional representation of a CNF theory, will decide the problem’s satisfiability and gener-
ate a globally solved representation. From the above lemma, extended 2-decomposition
can be applied to the CNF representation directly and therefore, transformation to a
relational representation can be avoided.

Replacing extended 2-composition by resolution and the instantiation step by unit
resolution in DRC2, results in algorithm Directional Resolution (denoted DR) which is
the core of the well known Davis Putnam algorithm for satisfiability [8,17]. Applying
the same exchange within DRC(i,z) yields algorithm bounded directional resolution
(BDRi) which is a polynomial approximation of DR [17]. As is well known and as

298 R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308

also follows from our theory, algorithm directional resolution globally solves any CNF
theory.

Directional-Resolution (cp, o)
Input: A CNF theory cp, an ordering o = Qi,. . . , Q,, of its variables.

Output: A decision of whether cp is satisfiable. if it is, a theory E,(cp), equivalent
to cp, else an empty directional extension.

1. Initialize: generate an ordered partition of clauses into buckets. bucketi,. . . ,
bucket,, where bucketi contains all clauses whose highest literal is Qi.

2. for i c n downto 1 do
3. if there is a unit clause then

apply unit-resolution and place the resolvents in their right bucket
if the empty clause was generated, theory is not satisfiable

4. else resolve each pair {(LX V Qi),(/? V lQi>} c bucketi.
if y = c1 V p is empty, return E,(cp) = {}, theory is not satisfiable
else determine the index of y and add it to the appropriate bucket.

5. return E,(q) +- Ui bucketi

Incorporating resolution into DRC, yields algorithm unit propagation. The operation
of extended l-composition in DRC, will have no effect since projections on clauses
generate universal relations. The only relevant steps are the simplification and instanti-
ation. The simplification step, if included, allows resolution involving non-unit clauses
as long as the variables appearing in one clause are contained in the other clause. The
instantiations step translates to unit resolution.

As in the general case, DR generates a globally solved representation and its com-
plexity can be bounded exponentially as a function of the induced width w* of the
CNF theory. The graph of a CNF theory associates propositional symbols with nodes
and connects two nodes if their associated symbols appear in the same clause.

4.2. Variable elimination in linear inequalities

In database theory, a k-ary relation r is a finite set of tuples and a database is a finite
set of relations. However, the relational calculus and algebra can be developed without
the finiteness assumptions for relations. We will use the term unrestricted relation, for
finite or infinite sets of points in a k-dimensional space [25]. In particular, it was shown
that relational calculus is identical to relational algebra for countable domains and that
relational algebra for infinite relations is exactly the same as for finite relations [24]. 4
Therefore, the relational framework we have presented applies as is to infinite relations.
In this section we will demonstrate the applicability of our results to the special case
of linear inequalities over infinite domains like the rationals as well as over finite and
infinite subsets of the integers.

4 We thank Manolis Koubarakis for pointing to us the extension to infinite domains.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 299

Let us consider the class of linear inequalities where a constraint between r variables
or less is a conjunction of linear equalities and inequalities of the form CF__, aixi d c,
where ai, and c are rational constants. For example, the conjunction (3xi -I- 2Xj d 3) i\
(-4xi + 5Xj < 1) is an allowed constraint between variables Xi and xi. A network with
constraints of this form can be formulated as a linear program where the domains
are infinite rational, or integers, or finite subsets of integers restricted by unary linear
inequalities. We will show first that over the Rationals the standard operation of vari-
able elimination is equivalent to extended 2-composition while this equivalence is not
maintained over the integers. Let us denote by sol(a) the unrestricted relation of tuples
from the domain satisfying a set of linear inequalities, 01. We define the elimination
operation as follows:

Definition 23 (Linear e~~~~~~~~ff~). Let CI=~LT’) aixi+a,~~ < c, and /I=~~~~” bixi+
bg, < d. Then elim, (a, p) is applicable only if a, and b, have opposite signs, in which
case elim,(a, /I) = Clz;(-aib,/a, + bi)xi d - b,/a,c -I- d. If a, and 6, have the same
sign the elimination implicitly generates the universal constraint.

Proof. It is easy to see that if a, and b, have the same sign (both are positive or
both are negative), then for any assignment to xi , . . . ,xi- 1 there is always a value for
x, that extends xi,. . . ,xi_i and that satisfies both a and /I. Therefore, the extended
composition produces the universal relation, Assume now that a, and 6, have opposite
signs. Multiplying ct by -b,./a,. and summing the resulting inequality with /I yields the
inequality

In other words, any tuple satisfying this inequality can be extended to a rational value
of x,. in a way that satisfies both c(and fl. It is unclear, though, that there exists an
integer extension to x, which is the reason for partial containment for the integers. •i

In 1351 we have shown that linear inequali~ cons~aints over finite sets of integers
are row-convex and therefore can be globally solved by DRC2 using their relational
form. The definition of row-convexity can be extended to infinite domains without any
modification. This implies that linear inequalities over the Rationals that are relationally
2-consistent are globally solved and consequently linear inequalities can be globally
solved by DRC2.

Incorporating linear elimination into DRC2 (when the constraints are presented as
linear inequalities) results in algorithm Directional Linear Elimination (abbreviated
DLE) which is the well known Fourier elimination algorithm (see [28]). Indeed, as
dictated by our theory and as is already known the algorithm decides the solvability

300 R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308

of any set of linear inequalities over the rationals. The algorithm may be modified to
solve linear inequalities over the integers directly (without translation to a relational
form). The algorithm does not include a simplification step.

Directional-Linear-Elimination (cp, o)
Input: A set of linear inequalities rp, an ordering o = xl,. . . ,x, of its variables.
Output: A decision of whether 40 is satisfiable. If it is, a theory E,(p), equivalent

to cp, else an empty directional extension.
I. Initialize: generate an ordered partition of the inequalities into buckets.
2. for i +-- n downto 1 do
3. if xi has one value in its domain then
4. substitute the value into each inequality in the bucket and put the

resulting inequality in the right bucket.
4. else for each pair { ~1, p} C bucketi, compute y = elimi(a, B)

if y has no solutions, return E,(Q) = {}, theory is not satisfiable
else add y to the appropriate bucket.

5. retmn ~~(~) +- ui bUCketi

Example 4.

4+1,~2,~3,~4) = {(1) 5X4 f 3x2 -Xl < 5, (2) X4 +X1 < 2, (3) -X4 < 0,

(4) x3 6 5, (5) Xl +x2 -x3 < - 10, (6) x1 + 2.Q < 0).

Initially, bucket4 = (5x4 +3x2 --xl < 5, ~4 +x1 ,< 2, -x4 d 0), bucket3 = { x3 6 5, x1 +
xz -x3 < - 10) and bucket2 = {xl + 2x2 < 0). Processing bucketd, applying elimination
r&&! to x4 over inequalities (l), (3), and (2), (3), respectively, results in: 3x2 -
x1 < 5, placed into bucketz, and xl < 2, placed into bucketl. Processing bucket3 next,
eliminates x3 from (4) and (5), yielding x1 +x2 < -5, placed into buckets and processing
bucket2 adds no new inequality. We can now generate a backtrack-free solution in the
following way. Select a value for x1 from its domains satisfying the unary inequalities
in bucketl. ARer selecting assignments to xl,. . . , Xi-1 select a value for Xi satisfying
all the inequalities in bucketi. This is easy since all the constraints are unary once the
values of xi , . . . ,Xi_l are dete~ined.

Theorem 25. DLE (Fourier elimination) globally solves a set of linear inequalities
over the rationals. 5

Proof. It is known that the Fourier elimination algorithm decides the consistency of
a set of linear inequalities over the rationals. Since DRC2 globally solves a set of

s The result holds also for the reals, However, since relational algebra was extended for countable domains
only it does not follow from the general theory and needs to be proved directly.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 301

row-convex constraints, since linear inequalities are row-convex and are closed under
extended 2-composition, and since DLE is equivaIent to DRC2, the claim follows. 0

Linear inequalities over the integers: When the domains are the Integers the al-
gorithm is no longer guaranteed to decide consistency since linear elimination is not
identical to extended 2-composition. If the empty relation is generated by DLE, the
problem is indeed inconsistent, else, the problem may or may not be consistent. Never-
theless, the representation generated by D&E could be useful since it is a backtrack-free
representation relative to the rationals, of a superset of the sought-for integer solutions.
From such a representation an integer solution may be extracted using backtrack search
that may enjoy a substantial amount of pruning.

Complexity of DLE: Algorithm DLE is generally exponential since it may record
an exponential number of inequalities. If the domains are finite, the finite relational
representation can be used (in which case DLE=DRCz), and in this case the complexity
can be bounded using the notion of induced width. Otherwise, DLE’s complexity may
be worst-case exponential even when the induced width w*, is bounded. The reason
is that an exponential number of inequalities may need to be recorded on the same
subset of variables. One cannot “intersect” two inequalities and replace them by one.
In other words, linear inequalities are not closed under intersection while relations are.

Case of binary inequalities: When the linear inequalities are over pairs of variables
only, algorithm DLE, as presented here is still exponential. However, a variation of the
algorithm was shown to have a polynomial implementation over the rationals that uses
a special data stmc~re that bounds the number of inequalities over any pair of variables
and leads to a polynomial algorithm [22]. Over the integers the binary linear problem is
NP-complete [27]. A more restricted case of binary monotone inequalities of the form
ax, - bxj < c, where a, b,c positive integers, was shown to be weakly NP-complete
since there exists a pseudo-polynomial algorithm [22]. A polynomial algorithm that
globally solves the problem over the rationals is given in [21]. For bounded integer
domains the general binary linear problem can be expressed in a relational form and
since DRCz is polynomial over binary constraints, the class can be solved in polynomial
time relative to the maximal range of the integer domains. In summary,

Theorem 26. Algorithm DLE is exponential even fbr binary inequalities and even for
bounded induced width. F5r unite domains DRCz is applicable. Its c~rn~~e~ity for

binary constraints is polynomial (in ihe input and the maximum domain range), and
is exponentially bounded by the induced width, for arbitrary constraints.

There are additional special classes for which DLE is polynomial, One case is the
class of sirnpl~~ temporal constraints. Those are unary and binary constraints of the
form X - Y < a. Algorithm DLE reduces, in this case, to the shortest path algorithm
presented in [131. The algorithm is polynomial since the number of inequalities pro-
duced is bounded (in this simple case at most two inequalities are needed between
any pair of variables) and since the class is closed under linear elimination. The linear

302 R. Dechter, P. van BeeklTheoretical Computer Science 173 (1997) 283-308

elimination operator over the integers, coincides with extended 2-composition in this
case, and therefore, DLE is complete for simple temporal constraints over the integers
as well. Note, that although this is a subclass of monotone inequalities, tractability of
DLE over this class does not follow from [22] whereby a special implementation was
required.

Theorem 27. Algorithm DLE is polynomial over the class of unary and binary in-
equalities of the form X-Y < a, X < b. The algorithm globally solves such inequalities,

over the Integers (if a and b are integers), the rationals and the reals.

Proof. Over the integers and the rationals, global consistency follows from the global
consistency of DRC2. In this case DLE is complete since simple temporal inequalities
over the integers are closed under extended 2-composition and intersection. The proof
is given in [13]. 0

Case of zero-diversity theories: Propositional CNFs as well as linear inequalities
share an interesting syntactic property: It is easy to recognize whether applying ex-
tended 2-composition relative to variable xi results in a universal constraint. Both res-
olution and linear elimination relative to xi are effective only when the variable to be
eliminated appears with opposite signs. This leads to a simple-to-identify tractable class
for both these languages. If there exists an ordering of the variables, such that in each
of its bucket;, xi appears with the same sign, then the theory is already globally solved
relative to that ordering. We called in [171 such theories as “zero diversity” and we
showed that they can be recognized in linear time.

5. From local to global consistency

Much work has been done on identifying relationships between properties of con-
straint networks and the level of local consistency sufficient to ensure global con-
sistency. This work falls into two classes: identifying topological properties of the
underlying graph of the network and identifying properties of the constraints.

For work on identifying topological properties, Freuder [19] identifies a relationship
between the width of a constraint graph and the level of local consistency needed to
ensure a solution can be found without backtracking. In particular, binary trees can
be solved by arc-consistency [31]. Dechter and Pearl [14] provide an adaptive scheme
where the level of local consistency is adjusted on a node-by-node basis. Dechter and
Pearl [151 generalize the results on trees to hyper-trees which are called acyclic in the
database community [4].

For work on identifying properties of the constraints, Montanari [33] shows that
path consistency is sufficient to guarantee that a binary network is globally consis-
tent if the relations are monotone. Dechter [lo] identifies a relationship between the
size of the domains of the variables, the arity of the constraints, and the level of

R Dechter. P. van BeeklTheoretical Computer Science 173 (1997) 283-308 303

local consistency sufficient to ensure the network is globally consistent. These results
were extended recently by van Beek and Dechter to the property of tightness and
looseness of the constraints in the network [36,37]. Van Hentenryck et al. [39] show
that arc consistency is sufficient to test whether a network is satisfiable if the rela-
tions are from a restricted class of functional and monotone constraints. These proper-
ties were generalized recently to implicational constraints [26,7] and to row-convexity

[381.
Finally, for work that falls into both classes, Dechter and Pearl [161 present effective

procedures for determining whether a constraint network can be formulated as a causal
theory and thus a solution can be found without backtracking. Whether a constraint
network can be so formulated depends on the topology of the underlying constraint
graph and the type of the constraints.

Most of these relationships were formulated initially using the variable-based def-
inition of local-consistency. Reference to constraints was indirect via the constraint’s
arity as a parameter. Recently, we have shown that these relationships can be general-
ized using relational consistency and that they lead to a characterization of classes of
problems that can be solved by a restricted level m of DRC,,,. The general pattern is
as follows. We present a sufficient condition showing that a network satisfying a prop-
erty p, and having a corresponding level of relational consistency Z(p), is globally
consistent. This implies that whenever the property p is maintained under extended
I(p)-composition, those networks (satisfying p) can be globally solved by DRCl(,).
Furthermore, it is sufficient for condition Z(p) to hold only relative to the particu-
lar ordering on which the algorithm is applied. We have recently demonstrated the
use of our definition for two properties: row-convexity and tightness. We have shown
that.

Theorem 28 (van Beek and Dechter [38]). A network of relations that are row-convex
and are relational 2-consistent are globally consistent.

Consequently, a network of row-convex relations that are closed under extended
2-composition can be globally-solved by DRC2. Similarly, we have shown

Theorem 29 (van Beek and Dechter [37]). If a network of constraints is m-tight and
m + 2-relational consistent, than it is globally consistent.

Consequently, whenever a set of m-tight relations is closed under extended m + 2-
composition it can be solved by DRC,,,,l. The notion of m-tightness is defined as
follows. A binary relation is m-tight if every value of one variable is consistent with
at most m values of the second variable. A general relation is m-tight if every tuple
on all the variables excluding one, has an extension in the constraint to the missing
variable using at most m values.

In this section we apply the definition of relational consistency to relationships in-
volving properties such as the size of the domains, acyclicity and causality.

304 R. Dechter, P. van Beekl Theoretical Computer Science I73 (1997) 283-308

5. I. Domain size and global consistency

In [lo], we have shown

Theorem 30 (Dechter [lo]). If W is a k-valued binary constraint network that is k+l
consistent then it is globally consistent. If R is a k-valued r-ary constraint network

that is k(r - 1) + 1 consistent then it is globally consistent.

We now show that by using the notion of relational consistency the above relation-
ship for r-ary networks (as well as its proof), are simplified. Moreover, the algorithm
can be stated more coherently.

Theorem 31. A k-valued constraint network W, that is k-relationally-consistent is
globally consistent.

Proof. We prove the theorem by showing that relationally k-consistent k-valued net-
works are relationally (k + i)-consistent for any i 2 1. According to the definitions, we
need to show that, if there are relations Rs, , . . . , Rs,+{, all sharing variable x1, and if
x is a locally consistent tuple defined over UfT;& - {q}, then there is a value a of
x1 such that (X, a) belongs to the joined relation Rs, w, . . . , w Rs,+~. With each value
j, in the domain of xI we associate a subset Ai that contains all those relations in
{Rs, , . . ., Ra,,} that are consistent with the assignment xr = j. Since variable xt may
take on k possible values 1,2,. . . , k we get k such subsets, Al,. . . ,Ak. We claim that
there must be at least one set, say Al, that contains all the constraints {Rs,, . . . ,Rs,+,}.

If this were not the case, each subset Aj would be missing some member, say R$,

which means that the partial tuple X’ =ZIA(Z), A = Uf=, S; - {q}, is locally consistent,
namely it belongs to PA, but it cannot be consistently extended to a value of X, while
satisfying the k relations R’s;, . . . , R’sL. This leads to a contradiction because as a subset

- -, of X, x is locally consistent, and from the assumption of relational k-consistency, this
tuple should be extensible by any additional variable including q. 0

Since the domains do not increase by extended k-composition we get:

Theorem 32. Any k-valued network 92 can be globally solved by DRCk.

Example 5. From Theorem 32, bi-valued networks can be globally solved by DRC2.
In particular, propositional CNFs can be globally solved by DRC2. As we have seen, in
this case, the operator of extended 2-composition takes the form of pairwise resolution
yielding algorithm directional resolution [171.

5.2. Acyclicity, causality and global consistency

Relational consistency and the DRC,,, algorithms can also capture the tractable classes
of acyclic and causal networks. It is well known that acyclic networks are tractable
[32, 151.

R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308 305

Definition 33 (Acyclic networks). A network of constraints is acyclic if it has a chordal
constraint graph and if each maximal clique is associated with a single constraint.

It is easy to see that:

Lemma 34. If a network is acyclic then there exists an ordering of the variables for
which each bucket has a single relation.

Causal networks include acyclic networks. They were defined in order to capture the
ease of some tasks in physical systems, such as projection.

Definition 35 (Causal networks [16]). A constraint network is causal relative to an
ordering o = x1 , . . ,xn iff it is globally solved (i.e., backtrack-free).

Definition 36 (Causal relations [161). A constraint is called causal if its projection on
any subset of variables generates a universal relation.

Lemma 37 (Dechter and Pearl [16]). A network whose buckets all have single causal

constraints (called, a single-bucket network) relative to ordering o, is causal relative
to 0.

Finally, it is easy to see that

Theorem 38. Single-bucket networks that are closed under DRC, are tractable.

Proof. Since each bucket contains a single relation throughout processing, DRC, is
equivalent to ARC and therefore, complete. Since DRCt is polynomial, the claim fol-
lows. q

Since acyclic networks are single-buckets and closed under DRCl, and since single-
bucket causal relations are closed under DRC,, and, since CNF formulas as well as
linear inequalities are causal relations, we conclude:

Corollary 39. Algorithm DRCl is complete for: (1) Acyclic networks, (2) single-

bucket causal relations, and in particular for single-bucket CNFs and linear inequal-
ities. For the latter two classes this is a special case of the zero-diversity class.

6. Discussion

The algorithms we present in this paper belong to the class of variable elimination
algorithms, formulated recently within the bucket elimination framework [ll], which
generalize non-serial dynamic programming [5]. We have recently shown how a col-
lection of probabilistic and combinatorial optimization tasks can be formulated within

306 R. Dechter, P. van Beekl Theoretical Computer Science 173 (1997) 283-308

this framework [l 11. Such algorithms were also presented for various graph-based tasks
by [1,3]. All the algorithms possess similar properties of compiling a theory into a
backtrack-free one (or greedy) and their complexity is dependent on the same graph
properties. Specifically they all have a complexity bound which is exponential in the
induced-width of some graph.

Another common property often overlooked of all such algorithms, is that they also
require space exponential in the induced width. We have recently demonstrated how
a method of conditioning can be incorporated into the bucket-elimination scheme to
allow trading space for time. The special case-handling of singleton values that we
had introduced (i.e., instantiation) permits this extension [12] and will lead to similar
time-space tradeoffs.

Since the algorithms may be quite time demanding, unless the problem is very sparse,
practical considerations call for the use of approximations. Polynomial approximation
algorithms such as DRC(im) could be useful and may be extended to optimization and
probabilistic inference as well.

7. Conclusions

We focused on a new definition of local consistency called relational consistency.
This definition is relational-based, in contrast with previous definitions which were
variable-based. We presented algorithms, Directional Relational Consistency (DRC,,,),
enforcing relational consistency using a general composition operator which unifies
resolution for CNF theories, variable elimination in linear inequalities and the project-
join operator in relational databases. We also show that relational consistency is useful
in characterizing relationships between properties of constraint networks and the level
of local consistency needed to ensure global consistency.

Specifically, we have shown that different levels of DRC can globally solve different
classes of constraint networks:

1. DRC, globally solves acyclic and single-bucket, causal relations in polynomial
time.

2. DRC2 globally solves bi-valued domain networks, crossword puzzles, and linear
inequalities over finite subsets of the integers. The algorithm is polynomial for binary
constraints over finite domains in relational form, and is exponential otherwise. Algo-
rithm DLE (or Fourier elimination) is a linear elimination algorithm equivalent to DRCz
over the rationals, and approximates DRC2 over integers. The resolution algorithm of
Davis-Putnam is equivalent to DRC2.

3. Algorithm DRC,,, globally solves m-valued networks. The algorithm is polynomial
for binary constraints.

4. Algorithm ARC globally solves all networks.
5. The complexity of both DRC,,, and ARC is exponentially bounded by w*, the

induced-width (tree-width) of the network over finite domains.

R. Dechter. P. van Beekl Theoretical Computer Science 173 (1997) 283-308 307

6. We introduced a class of polynomial directional relational consistency algorithms
DRCcim) that approximate DRC,,,. The algorithms are complete when i 2 w*(o).

All the algorithms we presented belong to the family of variable elimination al-
gorithms that are widely applicable to deterministic reasoning tasks, to optimization
problems and to probabilistic inference [11, 121.

Acknowledgement

We would like to thank Simon Kasif for mentioning Fourier’s elimination algorithm
to us and to Irma Rish for commenting on the latest version of this manuscript. This
work was partially supported by NSF grant IRI-9157636, by the electrical Power Re-
search institute (EPRI) and by grants from Northrop and Rockwell. This work was
also supported in part by the Natural Sciences and Engineering Research Council of
Canada.

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability -
a survey, BIT 25 (1985) 2-23.

[2] S. Amborg, D.G. Comeil and A. Proskurowski, Complexity of finding an embedding in k-trees, SIAM
J. Algebraic Discrete Methods 8 (1987) 177-184.

[3] S. Amborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial
k-trees, Discrete Appl. Math. 23 (1989) 1 l-24.

[4] C. Beeri, R. Fagin, D. Maier and M. Yannakakis, On the desirability of acyclic database schemes,
J. ACM 30 (1983) 479-513.

[5] U. Bertele and F. Brioschi, Nonserial Dynamic Programming (Academic Press, New York, 1972).
[6] M.C. Cooper, An optimal k-consistency algorithm, Artif: Zntell. 41 (1989) 89-95.
[7] M.C. Cooper, D.A. Cohen and P.G. Jeavons, Characterizing tractable constraints, Artif: Zntell. 65 (1994)

347-361.
[8] M. Davis and H. Putnam, A computing procedure for quantification theory, J. ACM 7 (1960) 201-215.
[9] R. Dechter, Enhancement schemes for constraint processing incorporating, backjumping, learning and

cutset decomposition, Artif: Zntell. 41 (1990) 273-312.
[lo] R. Dechter, From local to global consistency, Artif: Zntell. 55 (1992) 87-107.
[1 l] R. Dechter, Bucket elimination: a unifying framework for probabilistic inference, in: Proc. Uncertainty

in Artificial Intelligence, UAZ-96, (1996).
[12] R. Dechter, Topological properties of time-space tradeoff, in: Proc. Uncertainty in Artijicial Intelligence,

UAZ-96, 1996.
[13] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artif: Zntell. 49 (1991) 61-95.
[141 R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, ArtiJ: Zntell. 34

(1988) l-38.
[151 R. Dechter and J. Pearl, Tree clustering for constraint networks, Artif: Zntell. 38 (1989) 353-366.
[16] R. Dechter and J. Pearl, Directed constraint networks: a relational framework for causal modeling, in:

Proc. 12th Znternat Joint Conf: on AZ (1991) 11641170.
[17] R. Dechter and 1. Rish, Directional resolution: the Davis-Putnam procedure, revisited, in: Proc. 4th

Znternat ConJ on Principles of KR&R (1994) 134-145.
[18] E.C. Freuder, Synthesizing constraint expressions, Comm. ACM 21 (1978) 958-966.
[19] E.C. Freuder, A sulficient condition for backtrack-free search, J. ACM 29 (1982) 24-32.
[20] M.L. Ginsberg, M. Frank, M.P. Halpin and M.C. Torrance, Search lessons learned from crossword

puzzles, in: Proc. 8th National ConjY on AZ (1990) 21&215.

308 R. Dechter, P. van BeekITheoretical Computer Science I73 (1997) 283-308

[21] D.Q. Goldin and P.C. Kanellakis, Constraint query algebras, in: Constraints 1 (1996) l-41.
[22] D.S. Hochbaum and J. Naor, Simple and fast algorithms for linear integer programs with two variables

per inequality, SIAM J. Comput. 23(6) (1994) 1179-l 192.
[23] P. Jegou, On the consistency of general constraint satisfaction problems, in: Proc. 11th National Conf

on AZ (1993) 114-119.
[24] P. Kanellakis, in: J. van Leeuwen, ed., Elements of Relational Database Theory, Handbook of

Theoretical Computer Science, Vol. B (North-Holland, Amsterdam, 1990) Ch. 7.
[25] PC. Kanellakis, G.M. Kuper and P.Z. Revesz, Constraint query languages, Proc. 9th ACM PODS

(1990) 299-313.
[26] L.M. Kirousis, Fast parallel constraint satisfaction, Artif: Zntell. 64 (1993) 147-160.
[27] J.C. Lagarias, The computational complexity of simultaneous diophantine approximation problems,

SIAM J. Comput. 14(1) (1985) 196209.
[28] J.-L. Lassez and M. Mahler, On Fourier’s algorithm for linear constraints, J. Autom. Reasoning 9,

(1992).
[29] A.K. Mackworth, Consistency in networks of relations, ArtiJ: Intell. 8 (1977) 99-l 18.
[30] A.K. Mackworth, On reading sketch maps, in: Proc Internat. Joint Conf on Artificial

InieNigence(IJCAI-77), Cambridge, MA (1977) 587-606.
[3 l] A.K. Ma&worth and E.C. Freuder, The complexity of some polynomial network consistency algorithms

for constraint satisfaction problems, Artif Zntell. 25 (1985) 65-74.
[32] D. Maier, The Theory of Relational Databases (Computer Science Press, Rockville, MD, 1983).
[33] U. Montanari, Networks of constraints: fundamental properties and applications to picture processing,

Inform. Sci. 7 (1974) 95-132.
[34] J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1 (Computer Science Press,

Rockville, MD, 1988).
[35] P. van Beek, On the minimality and decomposability of constraint networks, in: Proc. 10th National

Conf: on AI (1992) 447452.
[36] P. van Beek, On the inherent level of local consistency in constraint networks, in: Proc. 12th National

Conf on AZ (1994) 368-373.
[37] P. van Beek and R. Dechter, Constraint tightness versus global consistency, in: Proc. 4th Internat.

Conf on Principles of KR&R (1994) 572-582.
[38] P. van Beek and R. Dechter, On the minimality and global consistency of row-convex constraint

networks, J. ACM 42 (1995) 543-561.
[39] P. Van Hentenryck, Y. Deville and C-M. Teng, A generic arc consistency algorithm and its

specializations, Artif: Zntell. 57 (1992) 291-321.

