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of [11]). Indeed, higher levels df-consistency, such
Abstract as path consistency£3), are so expensive that they
can be used only on very small CNs. In the last three

Filtering techniques are essential to efficiently€ars: Néw local consistencies have been proposed

look for a solution in a constraint network (CN).""nd a comparison of those that can be used on large

However, for a long time it has been considered\S have been done in [9]. The conclusion of this
that to efficiently reduce the search space, the bé\’&mﬁarﬁlonl IS tTat Max-RPC [7] is one of the n:}ost
choice is the limited local consistency achieved rthwhile local consistencies. Experiments show

forward checking [15, 17]. However, more rece so that the cpu time required to enforce the local
works [18, 4, 16] show that maintaining arc Cor]Sisc_:onsistencies more pruningful than Max-RPC, such

tency (which is a more pruningful local consistencﬁS neighborhood inverse consistency [13] and single-

during search outperforms forward checking on hafn consistencies [6], is not of the same order of mag-

and large constraint networks. In this paper, we shofljtude- In this paper we show that Max-RPC is not

that maintaining a local consistency stronger '[haH1e limit we haye to do not exceed to guarantee a rea-
arc consistency during search can be advantageog@naPle cpu time. We propose a new local consis-
According to the comparison of the local consistef€CY called Max-RPCER that is significantly more
cies more pruningful than arc consistency that can funingful than Max-RPC while requiring almost no
used on large CNs in [9], Max-restricted path consi?—‘dd't'on"’1I Cpu time.

tency (Max-RPC, [7]) is one of the most promising

local consistencies. We propose a new local consi- Definitions and notations

tency, called Max-RPCERn, that is stronger than Max-
RPC and that has almost the same cpu time require-

ments. A network of binary constraint® = (X, D, C)

is defined by a set’ = {i, j,...} of n variables
each taking value in its respective findemainD;,
D;, ... elements ofD and a set of e binary con-
straints.d is the size of the largest domain.bAnary
constraintC;; is a subset of the Cartesian product
Finding a solution in a constraint network (CN)D; x D; that denotes the compatible pairs of values
involves looking for an assignment of values for thior 7 andj. We noteC;;(a, b) = true to specify
problem variables so that all the constraints are $fat ((i, a), (j, b)) € C;;. We then say thatj, b)
multaneously satisfied. This task is NP-hard, and i®a supportfor (i, a) on Cj;. Checking whether a
avoid a combinatorial explosion, the search space hpsr of value is allowed by a constraint is called a
to be reduced by filtering techniques, which remowmnstraint checkWith each CN we associatecan-
some local inconsistencies. Obviously, a given locstraint graphin which nodes represent variables and
consistency can advantageously be maintained dares connect pairs of variables that are constrained
ing search only if it requires less cpu time to desxplicitly. ¢ is the number of 3-cliques in the con-
tect that a branch of the search tree does not lestchint graph. Theeighborhoodof i is the set of
to any solution than a search algorithm to explorariables linked ta in the constraint graph. Aim-
this branch. For a long time, the only practicablstantiationof a set of variable$ ' is a set of value as-
local consistency was arc consistency (AC, namedignments{I;} cs, one for each variable belonging
2-consistency or (1, 1)-consistency in the formalisio S s.t. Vj € S, I; € D;. An instantiation/ of S

1 Introduction
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satisfies a constrairt;; if {i,j} ¢ S or Cy;(I;,I;) constraint not only for the values that have only one
is true. An instantiation i€onsistentf it satisfies support on this constraint as in RPC, but also for the
all the constraints. A pair of valué$i, a), (j, b)) values having at most supports on this constraint
is path consistenif for all & € X s.t. j#k# i#j, (k-restricted path consistendyRPC [7]), or for all
this pair of values can be extended to a consistent the values, whatever is the number of supports they
stantiation of{i, j, k}. Checking whether a pair ofhave (Max-restricted path consistency). Considering
values is path consistent is calleghath consistency the pruning efficiency, Max-RPC is an upper bound
check (j, b) is apath consistent suppofor (i, a) for k-RPC and a Max-RPC algorithm removes all the
if (a,b) € Cy; and((i, a), (4, b)) is path consistent. k-restricted path inconsistent values for /all How-
A solutionof P = (X, D, C) is a consistent instan-ever, we can delete even more values than Max-RPC,
tiation of X'. Avalue (i, a) is consistent(or com- still without adding any constraint in the network.
pletable[12]) if there is a solutior suchthatl; = a,  The limit in terms of pruning efficiency of check-
and aCN iSCOnSiStenﬁ |t haS at |eaSt one Solution. |ng the path Consistency of pairs Of Va'ues Wh||e
keeping the structure of the network is conservative
path consistency (CPC). CPC is the restriction of
. K strong path consistency (a strong PC algorithm en-
servative path consistency forces both arc and path consistency) to the explicit
constraints of the network. If there is no constraint
Let us recall that a-consistency algorithm re-between two variables and j, any pair of values
moves the instantiations of length- 1 that cannot be (¢, @), (j, b)) is conservative path consistent.ilf
extended to a consistent instantiation including ad; are linked by a constraiid;; € C, a pair of val-
additionalkt® variable. So, an arc consistency algd{es((i, a), (j, b)) allowed by this constraintis con-
rithm (k = 2) deletes the values that have not at leaggrvative path consistent if, and only if, for any third
one compatible value (a support) on each constrairiablek € X linked to bothi andj, ((i, a), (j, b))
Higher levels Ofk-_consistency, such as path Consi§an be extended to a consistent instantiation includ-
tency (PCk = 3), are so expensive that they can p&g k. A constraint network is conservative path con-
used only on very small CNs. A path consistency aistentiff it is arc consistent and all the pairs of values
gorithm has to try to extend all the pairs of valuegllowed by the constraints explicitly present in the
even those between two variables that are not linkBgtwork are conservative path consistent (see Fig. 1).
by a constraint, to any third variable. Thus, even t§ePC is more pruningful than Max-RPC (see Section
most efficient PC algorithms [5, 19] are prohibitive?) and does not change the structure of the network,
Obviously, enforcing an higher level dfconsistency but on complete constraint networks it is as expen-
is even more expensive. Furthermorekif> 2 a sive as Stl’ong path ConSiStency. Furthermore, in real
k-consistency algorithm changes the structure of tRgplications, a constraint is seldom represented by a
network. Indeed, constraints involvirig— 1 vari- Boolean matrix or a set of compatible pairs of values.
ables may have to be added to store the deletion of tHeey are often represented by a predicate which has a
(k—1)-inconsistent instantiations. To avoid these inarticular semantics4, <, ...). Enforcing CPC leads
portant drawbacks, a restricted path consistency al§@1he generation of the Boolean matrix to store the
rithm (RPC, [1]) performs only the most pruningfupleletion of the conservative path inconsistent pairs
path consistency checks, namely those that can ¢fivalues and the semantics of the constraints is lost.
rectly lead to the deletion of a value, and it deletdd1e drawbacks of CPC are too important, and enforc-
only values in order to keep unchanged the structufé it is too expensive to be worthwhile. So, in the
of the network. In addition to AC, an RPC algorithniollowing, we study the pruning efficiency of CPC,
checks the path consistency of the pairs of valuggt we do not try to know the cpu time required to
((i, a), (j, b)) such that(j, b) is the only support achieve it.
for (i, @) in D;. If such a pair of values is path in- To avoid the drawbacks of CPC while removing
consistent, its deletion would lead to the arc incomore values than an algorithm achieving Max-RPC,
sistency of(i, a), and thus(i, a) can be removed.the new filtering algorithm proposed in the next sec-
So, these few path consistency checks allow to r#en, called Max-RPCEN1, does not try to check the
move more values than arc consistency while leasenservative path consistency of all the pairs of val-
ing unchanged the set of constraints. We can extames. Max-RPCEnN1 does not delete any pair of val-
the idea of RPC to remove more values by checkies and it performs more value deletions than an al-
ing the existence of a path consistent support orgarithm achieving Max-RPC only when the enforce-

3 From arc consistency to con-
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e A binary CN is (i, j)-consistentff V2 € X, D; # 0 and any consistent instantiation df
variables can be extended to a consistent instantiation including agitional variables.

e A domainD; is arc consistent iffva € D;, VjeX s.t. C;; € C, there existd € D; s.t.
Cij(a, b). A CN is arc consisten((1, 1)-consistent) ifYD; € D, D; # 0 and D, is arc
consistent.

e A pair of variables(i, j) is path consistent iff/(a, b) € C;;, Yk € X, there exists € Dy, s.t.
Cik(a, c) andCj (b, ¢). A CNis path consistenf(2, 1)-consistent) iff/i, j € X, (¢, j) is path
consistent.

e A binary CN isstrongly path consistentff it is node consistent, arc consistent and path
consistent.

e Abinary CN isrestricted path consisteiift
Vie X, D; is a non empty arc consistent domain and,

V(i, a) €D, VYj€X s.t. (i, a) has only one suppobtin D;,
for all k € X linked to bothi andy,
Jc€ Dy s.t.Cir(a, ¢) ACj (b, c).

e Abinary CN ismax restricted path consisteifit
Vie X, D; is a non empty arc consistent domain and,

(i, a) €D, forall j € X linked tos,
dbeD; s.t. Cy(a, b) and for aIIkeX linked to bothi andj,
EIcEDk s.t.Cix(a, ¢

e A pair of values((i, a) (]J, Such that there is no constrarﬁIJ € C is conservative path
consistent. 13C;; € C a palr of valueg(i, a), (j, b)) is conservative path consistent iff
Cij(a, b) andvk e X linked to bothi andj, 3¢ € Dy, s.t. Cix(a, c) ACji(b, c). A constraint
C;; € C is conservative path consistent iff all the pairs of val(@s a), (j, b)) s.t.C;;(a, b)
are conservative path consistent. A CNe@1servative path consisteifft V(i, a) € D, (i, a)
is arc consistent andC;; € C, C;; is conservative path consistent.

Figure 1. The mentioned local consistencies

ment of Max-RPC allows it to detect some conservpath consistent support f6i, ) if and only if (5, b)

tive path inconsistent values. is a path consistent support for, a). So, the bidi-
rectionality of the constraints allows not only avoids
some constraint checks, but also some path consis-

4 Max-RPCEnl tency checks.
The second improvement of Max-RPCEn1 on
4.1 Bases of the algorithm Max-RPC1 is an enhancement of the pruning effi-

ciency. We say that a pair of valugg, a), (4, b)) is

Max-RPCEN1 is an improvement on Max-RPClalid path consisterif for all the 3-cliques{i, j, k}
Max-RPCL1 is based on the idea of AC6 [2] which isaf the constraint graph there exists a vatue Dy,
very efficient arc consistency algorithm but that doe®mpatible with both(i, a) and (j, b) such that
not use the bidirectionality of the constraints, namelax-RPCEnN1 has not found the conservative path in-
the property that a valug@, a) is a support of an- consistency of (i, a), (k, ¢)) or ((j, b), (k, ¢)).
other valug(j, b) if and only if (4, b) is a support for A value (j, b) is a valid path consistent support
(i, a). Like AC7 [3], Max-RPCEnNL1 uses this propfor (i, a) if (j, b) is compatible with(i, a) and
erty of the constraints to infer the existence, or th€i, a), (4, b)) is valid path consistent. The values
non-existence of supports. This substantially reducgsleted by Max-RPCEnN1 are those that do not have
the number of constraint checks and the cpu time @y valid path consistent support on a constraint. So,
quired to enforce the local consistency on most Max-RPCEn1 removes the Max-restricted path in-
the CNs. Since all the constraints of a CN are bidtonsistent values and some of the conservative path
rectional, if we find that a valuéj, b) is a support inconsistent values. The data structure that allows
for (i, a), we can infer thafi, a) is a support for Max-RPCEnL1 to detect the conservative path incon-
(4, b). Furthermore, if we have found thét a) is sistency of some pairs of values is the array of coun-
not compatible with any value lower tharin D;, it tersM. M;;, = b if there is no valid path consis-
is useless to check wheth@r «) is compatible with tent support ofé, ) in D; lower thanb. To know
(7, ") (with " < b) when we look for a support forwhether a pair of valué(i, a), (4, b)) allowed by a
(4, b') in D,. Taking advantage of the bidirectionaleonstraintC;; is path consistent w.r.t. a third variable
ity to achieve Max-RPC leads to even more savingdinked to bothi andj, we have to look for a value
than during the enforcement of AC. Indeégl,b)isa ¢ € Dy that is compatible with(i, a) and (4, b).
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procedure Max — RPCEn1();
1 DeletionList + 0; InitList < (;

function Has AV alid PC Support(i, a, j)

: boolean

1 while S, # 0 do

2 forall (i, a) € D do 2 b < first(Sija)
3 SPO — 0 3 if b ¢ D; then removeb from S,
4 forall C;; € Cdo 4 elseS;;, < Sjip U {a}; retumn true;
5 Sija + 0; M;j4 < nil; 5 M;iq < next(D M;ja);
6 InitList «+ InitList U {[(4, j), a)]}; 6 Whﬁe M;jq # 00 “do
7 forall C;; € C[s .t ]z < 6do 7 if (@ > Mjing,, ) and (Cij(a, Mijq)) then
8 Common[C;;] + 8 ValidPC < true;
20 forallf(/z‘[,k € Cgct)h 9 foraII k € Common|[C;;] while ValidPC do
i k € en 10 nil;
11 czmmon[cij] « Common[Cij] U {k} 11 i IsValzdPathConszs—
12 Common[Cj;] < Common[Cj;]; 12 tent(i, a, j, Mija, k, c) then CS[k] « c;
13 while IniList # () OrDeletwanst # (0 do 13 elseValid PC < false;
14 if DeletionList # () then 14 if ValidPC then
15 choose and deletéi, a) from DeletionList; 15 Sjisiza = Sjing;j, U{al;
%g | PropagDeletion i, a, DeletionList); 16 forall & € Common[ j]do
else 17 SPC sk U jy, M;j
18 choose and deleté(i, j), a] from InitList; 18 rettfr%st[%: kcs[k] {((l ), (J Mija))}
19 if (i, a) € D and not 19 M <—nea:t(D Mija):
HasAValzdPCSupport(z a, 7)then 20returmn fi | ija)s
20 remove(D;, a); arse;
21 DeletionList - DeletionList u{(Z, a)}; function IsValidPathConsistent(i, a, j, b, k,inout ¢) :
procedure PropagDeletion(j,b, in out DeletionList); EOOII?a(n Mgy = ) then

1 while Sj, # 0 do

if Mkq € bk then

2 choose and deletgi, a) from S, % & M, retumn true;
3 ifa € D; and not HasAValidPC Support(i,a, j) then 4 elsec «+ mazx(c, M;k,);
4 remove(D;,a); 5 elsec « maz(c, Mo, Mjpp);
5 DeletionList < DeletionList U {(i,a)}; 6 if c & Dy, thenc < next(Dy, c);
6 while SPO # 0 do 7 while ¢ # oo do
7 choose and deleté(i, a), (k, c)) from SEC; 8 if (@ > Myic) A (b > Myje) A (Cig(a, c))
. Jb A(Cjk (b, ¢)) thenreturn true;
8 if ab,e Dibandc € D anda € Si;. then 9 ¢ « next(Dy, c);
$— ; : ) ’
10 if IsValidPathConsistent(i, a, k, ¢, j, b') then 10 retum false;
1 SHY « SHF UG, a), (k, )} . .
12 else’ ! Figure 3. The functions of Max-RPCEN1.
13 remove a from Sy;.; . . .
%451 if ¢ € Sikg tr}en ’“; lowing constant time functions and procedures
remove c from L
16 if not HasAValzdPCSupport(k ¢, 7) then to handle the current domain:
17 remove(Dy, c); _ . ma
18 DeletionList < DeletionListU{(k, ¢)}; newt(D.“ nil) returns the smallest \./alue
19 if not Has?Valid)PCSupport(i, a, k) then of D; if D; # () and oo otherwise.
20 remove(D;, a); . i 1
21 DeletionList ¢ DeletionList U {(i, a)}; nest(D;, a) With o # nil retums the

smallest value irD; greater tham if a is

Figure 2. Max-RPCEn1. not the greatest value d¥;, andoo oth-

; : erwise.
However, even if such a valueexists, a CPC algo- B (D;, ) removes the value:
rithm can deletd (i, a), (j, b)) if ((4, a), (k, c)) ?ﬁ,’;"}’i b 8

or ((j, b), (k, c)) is conservative path inconsistent.
If a supportc € Dy of (i, a) is lower thanM;,

or if a < M. then((i, a), (k, ¢)) is conserva-
tive path inconsistent. This is the property used by
Max-RPCEN1 to detect some conservative path in-
consistent pairs of values. Therefore, a pair of values
((i, a), (j, b)) is valid path consistent if for all the
3-cliques{i, j, k} of the constraint graph there ex-
ists a value: € D;, compatible with both(i, a) and

(4, b) such that(c > M;r,) A (¢ > Mjgp) A (a >
Mkic) AN (b > Mkjc)- °

e Avalueaisin Sj; if (i, a) is currently sup-
ported by(j, b) i.e. b is the current valid path
consistent support dfi, a) on C;;. In other
words,S;; is the set of the values that may no
longer have a valid path consistent support in
D; if we delete(j, b). Sj; is the set of the val-
ues(i, a) suchthatu € S;; for someC;; € C.

If Sjin # 0, first(S;u) returns the first value
in S;;» andoo otherwise.

To take advantage of the bidirectionality of
the constraints and to detect the conservative
path inconsistency of some pairs of values,
Max-RPCEnN1 uses the arrayf. M;;j, = b
if Vo' € Dj st. b < b, (j, V') is not
e each initial domain is considered as the inte- a valid path consistent support fgi, a),
ger range 1|D;|. The currentdomain is repre- namely(j, b") is not compatible with(i, a),
sented by a table of booleans. We use the fol-  ((, a), (4, b')) is path inconsistent, or Max-

4.2 The Algorithm

The data structures of Max-RPCEN1 are:
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RPCEN1 has found the conservative path ifunction looks for the smallest valugn D;, support-
consistency of (i, a), (j, b')). ing ((¢, a), (4, b)), namely such thdt(i, a), (k, c))

o If ((i, a), (j, b)) € SEC and(a € D; A b € and ((j, b), (k, ¢) are aIIowgd pair; of values
D;), bis the current valid path consistent suplot detected conservative path inconsistent by Max-
port of (i, a) in D; and (k, ¢) is currently RPCEpl. If we say that a valu.e.e'Dk supports
supporting((i, a), (j, b)), i.e. (k, c) is th_e pair of valueg(i, a), (J, b).).lf.lt is compatible
such that(Cyy(a, ¢) A Cj(b, ¢)) and Max- with both (i, a) and(j, b) and if it is such thatc >
RPCEN1 has not found théti, a), (k, ¢)) or Mika)A(¢ > Mjrp)A(a > Myic)A(b > Myjec), then
((j, b), (k, c)) are conservative path incond sValidPathConsistent(i, a, J b, k., c) IOO.kS for
sistent. S05C is the set of the pairs of val-the smallest value € Dy supportind((i, a), (4, b))-

ues that may be no longer valid path consistefitat the call of this function the parameter is
w.r.t. k if we delete(k, c). not nil, c is the value ofD;, that was supporting

((i, a), (j, b)), and so, no value lower thann Dy,
supportg(i, a), (j, b)). This allows to never check
a value ofDy, twice to know whethe((i, a), (4, b))
is valid path consistent w.r.k. If M, = M, and
M;i. € Dy, IsValidPathConsistent infers that
e An arc-value paif(i, j), a] is in InitList if pr.  supportq(i, a), (j, b)). We could infer a sup-
Max-RPCEN1 h_as not yet qhecked Wheth@brt of (i, a), (j, b)) in Dy, looking for a value in
(i, a) has a valid path consistent support ifis;, . 1 S, N Dy,) but this is not cost effective.
D;. Avalue(j, b)isin Deleti(.)nLiSt If b has If for all the 3-clique{i, j, k} a valuec € Dy
been removed fronD; but this deletion has supporting (i, a), (j, b)) has been found, is added
not been propagated yet. in S;;; to store thab is the current valid path con-
sistent support ofi, a) in D;, and((i, a), (4, b))

(see Fig. 2) uses the functioifasAV alid- is added inS}¢ to store that is currently support-
' ing ((¢, a), (j, b)). Obviously, if (i, a) has no

PCS t (Fig. 3) to know whethefi, a) has a i ) X
upport (Fig. 3) (i, o) valid path consistent support B;, (¢, a) is deleted

valid path consistent support @;. This function . ] )
tries first (lines 1 to 4) to infer a valid path consis2nd Max-RPCEN1 adds this value Ieletion List

tent support looking for an undeleted valuedp,, '© Propag its deletionPropag Deletion propagates
i.e. in the list of the values supported i «) on the deletion of the values dbeletion List. For each

value(j, b) in DeletionList, we have to delete all

C;;. If no valid path consistent support can be in '
ferred, Max-RPCEN1 goes on with its search Iookintﬁe values supported by, b) (the values ofSj;)
that no longer have any valid path consistent sup-

for the smallest valid path consistent supporfif. . X

The arrayM allows to reduce the number of conPOrt N D;. Fur.the;rgore, for all the pairs of values
straint checks performed as AV alidPCSupport (&> @), (K, €)) in S3™ (the pairs of values that were
does not checkj, M;;,) (see line 5) because it jsSupported by(j, b)), PropagDeletion has to check
not a valid path consistent support fér «). Indeed, Whether((i, a), (k. ) is still valid path consistent
if it is the first time thatHas AV alid PC Support is W.r.t J- If no supportmg value can ,be found
called for the pair arc valulii, j), a], Mijq = nil, (l:c, ¢) isno Iongeravallq path consistent support for
otherwiseH as AV Alid PC Support has been called (> @) andPropagDeletion has to look for another
by PropagDeletion (Fig. 2) because the current’@lid path consistent supportf@r, a) in D to know
valid path consistent support ¢f, a) on C;; has whether(i, a) has to be deleted.

been deleted an@, 1M;;,) is no longer inD;. Fur- _

thermore, by definition ofZ;;,, there is no valid path 4-3  Complexity

consistent support dfi, a) in D; lower thanh;;,.

So, if (i, a) has a valid path consistent supporfin, To check whether a value is in S (line

it is greater than/;;,. Furthermore, ib € D; isa 8 of PropagDeletion) and to remove this value
valid path consistent support f6f, a), a > Mj; from Si;. (line 13) in constant time, we use in
since ifa < Mj; (4, a) is not a valid path consistentour implementation an array calleSupportedBy
supportfor(j, b) and ifa = M;;;, bwould have been such thatSupportedBy;i. is the current valid path
found in S;j,. IsValidPathConsistent (Fig. 3) is consistent support ofi, a) in D, and an array
used to know whether a pair of valugs, a), (4, b)) PtSupportedBy s.t. PtSupportedBy;, points at
is valid path consistent w.r.t. a third varialdle This the valuea in Sy;., wherec is the current valid path

e Common|Cy;] is the set of the variabldsthat
are linked to bothi andj, i.e. the variables
k such that{i, j, k} is a 3-clique in the con-
straint graph.

For each arc-value paj(i, j), a] Max-RPCEN1
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consistent support ofi, a) in D;. The space re- “jF'C

ui uctu isGiie , |Strong PE_—>CPCi—>Max-RPCEN —>Max-RPC —>k-RPC —>RPC—>AC
quired by these data structures is(¥ed) and so RP

they do not change the worst case space complexity e YN

of Max-RPCEnNL1 (see below). A0 Al sty svongr ran,

The cost of the initialization of the data struci:i ure 4. Relations between the men-
tures S, SF¢, M, and InitList (lines 1 to 6 of 9 '

Max-RPCEN1) is inO(ed). The time required tioned local consistencies.

to determine the 3-cliques of the constraint grapfase space complexity of the data structffé” is
(lines 7 to 12) is inO(en). SinceHasAValidPC-  (O(cd) since for each valugi, a) € D and each 3-
Support removes fromS;;, the values that are noclique{i, j, k} there is only one value € Dy, such
longer in D;, the test of line 3 is performed athat a pair((i, a), (j, %)) is in SPC and there is
mOStO(d) times for each arc-value pair. Further0n|y one such a pair of values iﬁ]ic_ Therefore,
more, the value ofM;;, (which never decreaseshe worst case space complexity of Max-RPCEn1 is
is increased at each step of the second loop (Iir@§ed+ cd).

6 to 19) of HasAValidPCSupport and if M;;, Consequently, Max-RPCEn1 has the same worst

has reached the last value &f;, M;;, is set t0 case time and space complexities as Max-RPC1.
oo at line 19 to stop the loop. Therefore, for

each arc-value paif(i, j), a], and each value . .
b € D;, HasAValidPCSupport checks at most® Pruning efficiency
once whethe(j, b) is a valid path consistent sup-

port for (i, a). So, Max-RPCEnl checks the e call Max-restricted path consistency enhanced
valid path consistency of at mosP(ed®) pairs (Max-RPCEn) the local consistency achieved by
of values. To know whether a pair of valugjax-RPCEn1. Like directional arc consistency
((4, a), (j, b)) is valid path consistent, for eacl10], which depends on the variable ordering used,
3-clique {i, j, k} in the constraint graph, Max-Max-RPCEn depends on the orderings used to han-
RPCEN1 calld sValidPathConsistent to look for gle the domains/nitList, and DeletionList. In
the smallest value € Dy supporting(é, a), (j, b)). the following experiments, the arc-value pairs of
When I'sV alidPath-Consistent checks the valid 1¢List are checked in the lexicographic order and
path consistency df(i, a), (j, b)) W.r.t. k, itchecks DejetionList is a “Last In, First Out” list. Fig.
only the values oD, greater than the previous sups summarizes the relations between Max-RPCEn,
port of ((i, a), (j, b)) in Dy. So, for each supportcpc, AC, RPCk-RPC, Max-RPC, path inverse con-
(J, b) of avalue(i, a), and each 3-cliquéi, j, k}, @ sistency (PIC, [13]), neighborhood inverse consis-
value of Dy, is checked at most once to knowwhethqg,ncy (NIC, [13]), singleton arc consistency (SAC,
(4, b) is a valid path consistent support f0; @) [6]), singleton restricted path consistency (SRPC,
w.rt. k. Therefore, the CompleXity due to the Ca”%]), and strong path Consistency (Strong PC [5, 19])
to IsValidPathConsistent is O(cd”*) wherec is  There is an arrow frondC' to LC" iff LC' is strictly
the number of 3-cliques in the constraint graph, a%@onger [6] tharl.C", namely if on any CN on which
the worst case time complexity of Max-RPCENL isC holds, LC’ holds too and there is at least one CN
O(en + ed® + cd®). in which LC’ holds and LC does not. A crossed line
The size ofInitList is O(ed) since each arc- between two local consistencies means that they are
value pair is put in this list once. When a value isot comparable w.r.t. the stronger relation. A proof
deleted, it is put inDeletion List and it will not be of these relations can be found in [8].
put in this list any more. So, the worst case space The stronger relation does not induce a total order-
complexity of DeletionList is O(nd). A valuea ing. Especially, CPC and Max-RPCEn are not com-
is in S;u if (4, b) is the current valid path consisparable to SAC, NIC and SRPC w.r.t. the stronger
tent support of(i, a). Since Max-RPCEn1 looksrelation. Furthermore, Fig. 4 does not show if a local
for only one valid path consistent support for eaatonsistency is far more pruningful than another or if
value on each constraint, the size of the data struicperforms only few additional value deletions.
tureS isin O(ed). The data structur@/ is an array =~ Therefore an experimental evaluation has been
of O(ed) counters. If a paif((i, a), (j, b)) isin done. We used the random uniform CN generator
SPC, b is the current valid path consistent suppodf [14]. It involves four parameters: the number
of (¢, a) in D, {i, j, k} is a 3-clique, andk, c¢) of variables,d the common size of the initial do-
is currently supportind(z, a), (j, b)). The worst mains,pl the proportion of constraints in the network
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ot d S A 28l A8 ) variables and 20 values in each initial domain, and
H T / H— Tightness e Fig. 7 presents performances on complete CNs with
i LT / 7 n=100 andd=30. For each tightness, 50 instances
L s 1 % were generated, and Fig. 6 and Fig. 7 show mean
E /L Maxpcen =7 474N ] values obtained on a Pentium [1-266 Mhz with 64 Mo
e ! i A of memory under Linux.

4 E 1 1 The advantage of using Max-RPCEN1 on sparse
In : i CNs is obvious. The bidirectionality allows sub-
S I I tantial constraint check savings and although Max-
PR RV | 1 DO— RPCEN1 deletes more values than Max-RPC1, it re-
Y / { /’ : [f +— Max-RPCEN. quires less cpu time. There is “few” 3-cliques in
773 // : I ’ I the constraint graph of these sparse CNs, and Max-
o2 I ] | ;z‘:;gpc RPC1 and Max-RPCEn1 requires at most 108 sec-

i [ onds (On all the CNs generated with a tightness lower
97 Jf {I“' ,’ ; o—Ne than 0.69, PC8, the PC algorithm presented in [5], re-
1 BRI = compltabiy quires more than 68 hours).
Figure 5. The T,; bounds for random P e secons o N
120 ime (seconds) n=1000, d=30, and density=5%

CNs with n=40 and d=15.
(the densityp1=1 corresponds to the complete graph)
and p2 the proportion of forbidden pairs of values
in a constraint (the tightness). The generated prob-,
lems have 40 variables and 15 values in each domain,
For each local consistency and each dengitywe ol o o
have determined,; (p1), namely the tightness such ., Percentage of deleted values
that the local consistency finds the inconsistency ofx
50% of the CNs generated with tightneBs; (p1) 0000 oo o o o oo oo o ol T
and densitypl. For all the mentioned local consis- - fenstantchecks and st checks
tencies, the valu&,; (p1) for any density!l is given 5E
in Fig. 5. We also show these bounds for the variable.,
completability filtering [12], which removes the val- =~
ues that do not belong to any solution, and thus is the”
strongest filtering we can have when we limit filter- Tghiness
ing to the domains. Many instances have to be con- erERee 35_ fEmeeEn 75,80 e
sidered to determine thg,; bound. This explains Figure 6. Experimental evaluation on
that the generated problems are relatively small. CNs with  n=1000, d=30, and den-
On sparse random uniform CNs, conservative pasity=0.05.
consistency is less prunigful than singleton arc con-
sistency, but on more dense CNs, CPC has a better

. . On dense CNs, Max-RPCENL1 still requires less
pruning efficiency than SAC. These two local con- . !
. . .~ constraint checks and list checks than Max-RPCL1.
sistencies removes almost all the strong path inc

sistent values. Obviously, on complete CNs, CPC s Vever, there is many 3-cliques in the constramt
. .~ graph, and Max-RPCEn1l detects the conservative
strong path consistency. However, even on relativ . . ;
th inconsistency of many pairs of values. There-
sparse CNs, th&,;; bounds of CPC and strong P j .
ore, for each valugi, a) and each constraird;;,
are very close. Compared to Max-RPC, Max-RPC )
. : : ax-RPCEN1 checks more values Df; to find a
is a substantial enhancement w.r.t. the pruning effi-. . .
cienc valid path consistent support f¢f, a) than Max-
Y- RPC1 to find a path consistent support. So, Max-
. . RPCEN1 requires more cpu time than Max-RPC1 as
6 Time efficiency long as it removes only few values. However, the cpu
time performances of Max-RPCEn1 and Max-RPC1
The same random uniform CN generator is useemain of the same order of magnitude, and the im-
to compare the time efficiency. Fig. 6 shows the rgrovement of the pruning efficiency is significant on

sults on relatively sparse CNgl=5%) having 1000 these complete CNs.

Tightness
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120 CPU time (seconds) n=100, d=20, and density=1.
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