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Abstract

Enforcing local consistencies is one of the main features of constraint reasoning. Which

level of local consistency should be used when searching for solutions in a constraint network

is a basic question. Arc consistency and partial forms of arc consistency have been widely

studied, and have been known for sometime through the forward checking or the MAC

search algorithms. Until recently, stronger forms of local consistency remained limited to

those that change the structure of the constraint graph, and thus, could not be used in

practice, especially on large networks. This paper focuses on the local consistencies that

are stronger than arc consistency, without changing the structure of the network, i.e., only

removing inconsistent values from the domains. In the last �ve years, several such local

consistencies have been proposed by us or by others. We make an overview of all of them,

and highlight some relations between them. We compare them both theoretically and

experimentally, considering their pruning e�ciency and the time required to enforce them.

1. Introduction

There are more and more applications in arti�cial intelligence that use constraint networks

(CNs) to solve combinatorial problems, ranging from design to diagnosis, resource allocation

to car sequencing, natural language understanding to machine vision. Finding a solution in

a constraint network involves looking for a set of value assignments, one for each variable,

so that all the constraints are simultaneously satis�ed (Meseguer, 1989; Tsang, 1993). This

task is NP-hard and many exponential time algorithms have been proposed to solve this

problem. These algorithms, which make a systematic exploration of the search space, all

have backtracking as a basis. As long as the unassigned variables have values consistent

with the partial instantiation, they extend it by assigning values to variables. Otherwise,

a dead-end is reached and some previous assignments have to be changed before going on

with the partial instantiation extension. The explicit constraints of the network together

induce some implicit constraints. Since basic search algorithms do not record these implicit

constraints, they waste time by repeatedly detecting the local inconsistencies caused by

them. Filtering techniques are essential to reduce the size of the search space and so to

improve the e�ciency of search algorithms. They can be used during a preprocessing step to

remove once and for all some local inconsistencies that otherwise would have been repeatedly

found during search (Dechter & Meiri, 1994). They can also be maintained during search.
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Search algorithms di�er in the kind of local consistency they achieve after each choice

of a value for a variable. Most of them enforce partial arc consistency, going from forward

checking (FC,Golomb & Baumert, 1965; Haralick & Elliott, 1980), which only removes the

values directly arc inconsistent with the last assignment, to really full look-ahead (RFL,

Gaschnig, 1974), which achieves full arc consistency. Arc consistency (AC) and partial

forms of arc consistency are widely used for two reasons. First, they have low space and

time complexities, while path consistency and higher levels of k-consistency, which were

for a long time the only other options, are prohibitive and can change the structure of the

network. Moreover, until 1995, more pruningful local consistencies seemed uninteresting

since experimental evaluations of search algorithms showed that the limited local consistency

used by forward checking was the best choice (Nadel, 1988; Kumar, 1992; Bacchus & van

Run, 1995). This conclusion is not surprising since the comparisons were made on very

small and easy constraint networks. On such problems, the additional cost of pruning more

values could not be outweighed by the search savings.

However, the harder a constraint network is, the more useful �ltering techniques are.

More recent works (Bessi�ere & R�egin, 1996; Sabin & Freuder, 1994; Grant & Smith, 1996)

testing search algorithms at the threshold (Cheeseman, Kanefsky, & Taylor, 1991), where

most of the hard problems are expected to be, show that using more pruningful local

consistencies can be worthwhile. Their conclusion is that maintaining arc consistency during

search (MAC), namely achieving AC both after the choice of a value for a variable and after

the refutation of such a choice, outperforms forward checking on hard problems. The good

behavior of MAC is even more signi�cant on large problems, especially when domains are

large. It is conceivable that on very di�cult instances, maintaining an even more pruningful

local consistency may pay o�. Obviously, such an algorithm would waste seconds on easy

CNs but it would save many minutes (hours ?) on very hard problems, reducing the set of

pathological CNs on which search is really prohibitive.

In this paper we study the local consistencies as preprocessing �ltering techniques. This

is a preliminary work before trying to determine which local consistency is the most advan-

tageous to be maintained during search. In the last �ve years, many new local consistencies

have been proposed. In the remaining of this paper, we focus our attention on those that

leave unchanged the structure of the network since they are the only able to be used on large

CNs. In addition to an overview of these local consistencies that only remove inconsistent

values, we both compare, theoretically and experimentally, their pruning e�ciency and the

time needed to enforce them.

2. De�nitions and Notations

A network of binary constraints P = (X ; D; C) is de�ned by a set X = fi; j; : : :g of n

variables , each taking value in its respective �nite domain D

i

; D

j

; : : : elements of D, and a

set C of e binary constraints. d is the size of the largest domain. A binary constraint C

ij

is a subset of the Cartesian product D

i

� D

j

that denotes the compatible pairs of values

for i and j. We denote C

ij

(a; b) = true to specify that ((i; a); (j; b)) 2 C

ij

. We then say

that (j; b) is a support for (i; a) on C

ij

. Checking whether a pair of values is allowed by

a constraint is called a constraint check . With each CN we associate a constraint graph

in which nodes represent variables and arcs connect pairs of variables that are constrained
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explicitly. c is the number of 3-cliques in the constraint graph and g is the maximum degree

of a node in the constraint graph. The neighborhood of i is the set of variables adjacent to i

in the constraint graph. A domain D

0

= fD

0

i

; D

0

j

; : : :g is a sub-domain of D = fD

i

; D

j

; : : :g

if 8i; D

0

i

� D

i

. An instantiation I of a set of variables S is a set of value assignments

fI

j

g

j2S

, one for each variable belonging to S, s.t. 8j 2 S; I

j

2 D

j

. An instantiation I of

S satis�es a constraint C

ij

if fi; jg 6� S or C

ij

(I

i

; I

j

) is true. An instantiation is consistent

if it satis�es all the constraints. A pair of values ((i; a); (j; b)) is path consistent if for all

k 2 X s.t. j 6= k 6= i 6= j, this pair of values can be extended to a consistent instantiation

of fi; j; kg. (j; b) is a path consistent support for (i; a) if (a; b) 2 C

ij

and ((i; a); (j; b)) is

path consistent. A solution of P = (X ; D; C) is a consistent instantiation of X . A value

(i; a) is consistent if there is a solution I such that I

i

= a, and a CN is consistent if it has

at least one solution. We denote by P j

D

i

=fag

the CN obtained by restricting D

i

to fag in

P . If LC is a local consistency, a CN P is not LC-consistent i� LC does not hold on P .

A CN P is LC-inconsistent i� we cannot obtain a LC-consistent constraint network by

deletion of some local inconsistencies in P . If a local consistency LC is used to detect the

inconsistency of instantiations no longer than 1, we can say that a CN P = (X ; D; C) is

LC-inconsistent i� there is no sub-domain D

0

of D such that LC holds on (X ; D

0

; C).

3. The Local Consistencies Studied

Filtering techniques can be used to detect the inconsistency of a CN, and under some

assumptions, they can ensure a backtrack-free search (Freuder, 1982, 1985). However,

their usual purpose is not to �nd a solution in a constraint network. They remove some

local inconsistencies and so delete some regions of the search space that do not contain

any solution. The resulting CN is equivalent to the initial one since the set of solutions

is unchanged, but if substantial reductions are made the search becomes easier. In this

section we review the basis of arc consistency, k-consistency, restricted path consistency,

and inverse consistencies. Furthermore, we extend the idea of restricted path consistency

to k-restricted path consistency and Max-restricted path consistency. We propose a new

class of local consistencies called singleton consistencies. We also show a property of path

inverse consistency that can be used to have an optimal worst case time complexity in a

path inverse consistency algorithm (Debruyne, 2000).

Arc consistency The most widely used local consistency is arc consistency. It is based

on the notion of support. A value is viable as long as it has at least one compatible value in

the domain of each neighboring variable. An AC algorithm has to remove the values that

have no support on a constraint. As in most of the �ltering techniques, the value deletions

have to be propagated through the network since they can lead to the arc inconsistency of

some values that were previously viable.

k-consistency A consistent instantiation of length k-1 is k-consistent (i.e., (k-1, 1)-

consistent in the formalism of Freuder, 1985) if it can be extended to any additional k

th

variable. The time and space complexities of enforcing k-consistency are polynomial with

the exponent dependent on k. If k � 3, the constraints have to be represented in extension

to store the (k-1)-tuples deleted, and the structure of the network can be changed. This

leads to huge space requirements and subsequently important cpu time costs. In practice,
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only 2-consistency, which is arc consistency in binary CNs, can be used. Although path

consistency (PC, namely 3-consistency) cannot be used on large CNs, our experiments will

involve strong path consistency (namely enforcing both arc and path consistency) because

PC has been widely studied.

Restricted path consistency The aim of Berlandier when he proposed restricted path

consistency (RPC, Berlandier, 1995) was to remove more inconsistent values than AC

while avoiding the drawbacks of path consistency. Even the most e�cient PC algorithms

have to try to extend all the pairs of values (even those between two variables that are

not neighbors) to any third variable. The basis of RPC is to avoid most of this prohibitive

work. RPC performs only the most pruningful path consistency checks, namely those able

to directly delete a value. In addition to AC, an RPC algorithm checks the path consistency

of the pairs of values ((i; a); (j; b)) such that (j; b) is the only support for (i; a) in D

j

. If such

a pair is path inconsistent, its deletion would lead to the arc inconsistency of (i; a). Thus

(i; a) can be removed. These few additional path consistency checks allow detecting more

inconsistent values than AC without having to delete any pair of values, and so leaving

unchanged the structure of the network.

k-restricted path consistency We can extend the idea of RPC to a more pruningful

local consistency. If RPC holds, the values that have only one support on a constraint are

such that this support is path consistent. Checking the path consistency of more supports

can remove even more values without falling into the traps of PC. k-restricted path con-

sistency (k-RPC, Debruyne & Bessi�ere, 1997a) looks for a path consistent support on a

constraint for the values that have at most k supports on this constraint. RPC is 1-RPC

and AC corresponds to 0-RPC. If k-RPC holds, to achieve (k+1)-RPC we only have to

check the values that have exactly (k+1) supports on a constraint and to propagate their

possible deletion. So, it is possible to achieve AC, RPC, 2-RPC and so on, each time reusing

previous �ltering e�ort. This adaptive enforcement can be stopped as soon as each value

has at least one path consistent support on each constraint, the constraint network being

d-RPC where d is the size of the largest domain. Indeed, if after achieving k-RPC all the

values have at most k supports on each constraint, k

0

-RPC holds for all k

0

> k.

Max-restricted path consistency A constraint network is Max-restricted path consis-

tent (Max-RPC, Debruyne & Bessi�ere, 1997a) if all the values have at least one path

consistent support on each constraint, whatever is the number of supports. From the prun-

ing e�ciency point of view, Max-RPC is an upper bound for k-RPC. Achieving Max-RPC

involves deleting all the k-restricted path inconsistent values for all k. However, achieving

Max-RPC can be less expensive than enforcing a high level of k-RPC. As opposed to Max-

RPC, to achieve k-RPC we have to look for the values that have at most k supports on a

constraint to know the values for which a path consistent support has to be found. This

can be expensive if k is great, the algorithm having to look for k+1 supports for each value

on each constraint. Unconditionally looking for a path consistent support avoids this costly

extra work.

k inverse consistency The aim of Freuder and Elfe when they proposed inverse consis-

tency(Freuder & Elfe, 1996) was to achieve high order local consistencies with a good space

complexity. A k-consistency algorithm removes the instantiation of length k-1 that cannot
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be extended to any k

th

variable. It requires O(n

k�1

d

k�1

) space to keep track of the deleted

instantiations. Space requirements are no longer a problem with k inverse consistency ((1,

k-1)-consistency), which removes the values that cannot be extended to a consistent instan-

tiation including any k-1 additional variables. Its linear space complexity would allow using

it on large CNs. However, its worst case time complexity is polynomial with the exponent

dependent on k, which restricts its use to small values of k.

Path inverse consistency The �rst level of k inverse consistency removing more values

than AC is path inverse consistency (PIC, k = 3). By de�nition, (i; a) is path inverse

consistent if it can be extended to all the 3-tuples of variables containing i. However, as

said in (Freuder & Elfe, 1996), not all the 3-tuples need to be checked to enforce PIC. Only

one of the tuples (i; j; k) and (i; k; j) has to be checked. Moreover, if i is linked to neither j

nor k, (i; a) can be deleted because of (i; j; k) only if all the values of j or k are path inverse

inconsistent. In such a case, checking (i; j; k) is useless since PIC detects the inconsistency

of the network when processing j or k.

Neighborhood inverse consistency Since k inverse consistency is polynomial with the

exponent dependent on k, checking the k inverse consistency of all the values is prohibitive if

k is great. However, if the variables are not uniformly constrained, it would be worthwhile to

adapt the level of k inverse consistency to the number of constraints involving them, focusing

�ltering e�ort on the most constrained variables (as it is done for adaptive consistency

Dechter & Pearl, 1988). This is the basis of neighborhood inverse consistency (NIC, Freuder

& Elfe, 1996), which removes the values that cannot be extended to a consistent instantiation

including all the neighboring variables. We have to point out that the behavior of NIC

is dependent on the structure of the constraint graph. If two variables i and j are not

neighbors, we can add a universal constraint allowing all the pairs of values (a; b) 2 D

i

�D

j

between i and j. The resulting CN is equivalent to the initial one since it has the same set of

solutions. However, as opposed to the other �lterings studied in this paper, NIC is a�ected

by this change since it can remove more values. Obviously, this process increases time

complexity. On complete constraint networks, NIC tries to extend all the values to a whole

solution, namely deleting all the globally inconsistent values (named variable completability

in Freuder, 1991). This is a far more di�cult task than looking for one solution. To be cost

e�ective, NIC has to be used only on sparse CNs, where the degree of the variables is small.

Singleton consistencies If a value (i; a) is consistent, the constraint network obtained

by restricting D

i

to the singleton fag is consistent. Singleton consistencies are a class of

�ltering techniques based on this remark. To detect the inconsistency of a value (i; a), a

singleton consistency �ltering technique checks whether a given local consistency can detect

the possible inconsistency of P j

D

i

=fag

. For example, singleton arc consistency (SAC, De-

bruyne & Bessi�ere, 1997b) deletes the values (i; a) such that P j

D

i

=fag

has no arc consistent

sub-domain.

1

SAC has been inspired by the strong path consistency algorithm proposed

by McGregor(McGregor, 1979). A SAC algorithm is obtained by omitting the deletions

1. Any AC algorithm can be used to know whether enforcing AC on P j

D

i

=fag

leads to a domain wipe out,

but a lazy approach (such as LAC7 Schiex, R�egin, Gaspin, & Verfaillie, 1996) is su�cient.
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� A binary CN is (i; j)-consistent i� 8i 2 X , D

i

6= ; and any consistent instan-

tiation of i variables can be extended to a consistent instantiation including

any j additional variables.

�

A value a 2 D

i

is arc consistent i�, 8j 2 X s.t. C

ij

2 C, there exists

b 2 D

j

s.t. C

ij

(a; b). A domain D

i

is arc consistent i�, 8a 2 D

i

; (i; a) is arc

consistent. A CN is arc consistent ((1, 1)-consistent) i� 8D

i

2 D, D

i

is a

non empty arc consistent domain.

�

A pair of values ((i; a); (j; b)) is path consistent i� 8k 2 X , there exists c 2 D

k

s.t. C

ik

(a; c) and C

jk

(b; c), otherwise it is path inconsistent. A CN is path

consistent ((2, 1)-consistent) i� no path inconsistent pair of values is allowed.

�

A binary CN is strongly path consistent i� it is node consistent, arc consistent

and path consistent.

�

A binary CN is path inverse consistent i� it is (1, 2)-consistent i.e.,

8(i; a)2D 8j; k2X s.t. j 6= i 6= k 6= j, 9(j; b)2D and 9(k; c)2D s.t.

C

ij

(a; b)^ C

ik

(a; c)^ C

jk

(b; c)

�

A binary CN is neighborhood inverse consistent i� 8(i; a)2D, (i; a) can be

extended to a consistent instantiation including the neighborhood of i.

�

A binary CN is restricted path consistent i�

8i 2 X , D

i

is a non empty arc consistent domain and,

8(i; a) 2 D, for all j 2 X s.t. (i; a) has an unique support b in D

j

,

for all k 2 X linked to both i and j, 9c 2 D

k

s.t. C

ik

(a; c) ^C

jk

(b; c).

�

A binary CN is k-restricted path consistent i�

8i 2 X , D

i

is a non empty arc consistent domain and,

8(i; a) 2 D, for all C

ij

2 C s.t. (i; a) has at most k supports in D

j

,

9b 2 D

j

s.t. C

ij

(a; b) and

8k 2 X linked to both i and j, 9c 2 D

k

s.t. C

ik

(a; c) ^C

jk

(b; c).

�

A binary CN is max-restricted path consistent i�

8i 2 X , D

i

is a non empty arc consistent domain and,

8(i; a) 2 D, for all C

ij

2 C,

9b 2 D

j

s.t. C

ij

(a; b) and

8k 2 X linked to both i and j, 9c 2 D

k

s.t. C

ik

(a; c) ^C

jk

(b; c).

�

A binary CN P is singleton arc consistent i� 8i 2 X , D

i

6= ; and 8(i; a) 2 D,

P j

D

i

=fag

has an arc consistent sub-domain.

�

A binary CN P is singleton restricted path consistent i� 8i 2 X , D

i

6= ; and

8(i; a) 2 D, P j

D

i

=fag

has a restricted path consistent sub-domain.

Figure 1: The mentioned local consistencies.
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Name of Worst case Worst case

the algorithm time complexity space complexity

AC7 (Bessi�ere, Freuder, & R�egin, 1999) O(ed

2

)

(�)

O(ed)

RPC2 (Debruyne & Bessi�ere, 1997a) O(en+ ed

2

+ cd

2

)

(�)

O(ed+ cd)

Max RPC1 (Debruyne & Bessi�ere, 1997a) O(en+ ed

2

+ cd

3

)

(�)

O(ed+ cd)

PC5 (Singh, 1995) O(n

3

d

3

)

(�)

O(n

3

d

2

)

PC8 (Chmeiss & J�egou, 1996) O(n

3

d

4

) O(n

2

d)

2

PIC1 (Freuder & Elfe, 1996) O(en

2

d

4

) O(n)

PIC2 (Debruyne, 2000) O(en+ ed

2

+ cd

3

)

(�)

O(ed+ cd)

NIC1 (Freuder & Elfe, 1996) O(g

2

(n+ ed)d

g+1

) O(n)

SAC1 (Debruyne & Bessi�ere, 1997b) O(en

2

d

4

) O(ed)

SRPC1 (Debruyne & Bessi�ere, 1997b) O(en+ n

2

(e+ c)d

4

) O(ed+ cd)

(�)

optimal worst case time complexity.

Table 1: The most e�cient algorithms achieving the mentioned local consistencies.

3

of pairs of values in that algorithm. Many other singleton consistencies can be considered

since any local consistency can be used to detect the possible inconsistency of the CNs

P j

D

i

=fag

with (i; a) 2 D. If a local consistency can be enforced in a polynomial time, the

corresponding singleton consistency also has a polynomial worst case time complexity.

The formal de�nitions of the local consistencies studied in this paper are presented in

Figure 1. Table 1 recalls the time and space complexities of the most e�cient algorithms

enforcing them. The worst case time complexity of SAC1, SRPC1, and NIC1 have not been

proved to be optimal.

4. Relations between PIC, RPC and Max-RPC

To highlight the relations between PIC, RPC and Max-RPC, let us show a property of path

inverse consistency. As shown in (Debruyne, 2000), if we assume that the constraint network

is arc consistent, enforcing PIC requires checking even less 3-tuples than those mentioned in

(Freuder & Elfe, 1996). If (i; a) is arc consistent, it can be extended to any 3-tuple (i; j; k)

such that there is no constraint between j and k. Indeed, (i; a) has a support (j; b) on C

ij

and a support (k; c) on C

ik

, and since j is not linked to k, ((i; a); (j; b); (k; c)) is consistent.

Furthermore, (i; a) can be extended to (i; j; k) if there is no constraint between i and k

(resp. between i and j). Indeed, (i; a) has a support b in D

j

(resp. c in D

k

) and this value

being arc consistent too, it has a support c in D

k

(resp. b in D

j

). So, ((i; a); (j; b); (k; c))

is consistent. Consequently, if the constraint network is arc consistent, the only 3-tuples

that have to be checked to achieve PIC correspond to the 3-cliques of the constraint graph.

2. However a O(n

2

d

2

) data structure is required for the constraint representation.

3. See Section 2 for a de�nition of n, d, e, c, and g.
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jai

0 support

AC, RPC, PIC, and
Max-RPC delete (i,a)

a

b
j

bi

1 support

RPC, PIC, and Max-RPC 
delete (i,a) because its unique support

is not path consistent

a

b
k

a

b j
i

2 supports

( i ,  a)  is  RPC-consi stent  w. r . t .
b u t  PIC and  Max -RPC 

del ete this  value

(C)

k ji

2 supports

( i ,  a)  is  RPC-co nsistent  w.r . t .
and PIC-consistent  w.r . t .         but  

Max -RPC d el etes  t h is  v alu e

(D)

a

b
k

a

b
l

a

a

b
c

a

b

a

b

a

b

c

a

b

c

C ij C ij

C ij

(A) (B)

A forbidden pair of values.

Figure 2: Examples showing the relations between PIC, RPC and Max-RPC.

Furthermore, the de�nition of PIC shows that any constraint network involving less than

three variables is path inverse consistent, even though it is not arc consistent.

Property 1 A CN is path inverse consistent i�

� it involves less than three variables, or

� it is arc consistent and for each value (i; a) in D, for any 3-clique fi; j; kg,

(i; a) can be extended to a consistent instantiation of fi; j; kg.

This property allows us to see the relations between PIC, RPC and Max-RPC. If a

value (i; a) has no support on a constraint C

ij

, the three local consistencies delete this

arc inconsistent value (see Figure 2A). If (i; a) has only one support b in D

j

, PIC, RPC,

and Max-RPC delete (i; a) because of C

ij

if ((i; a); (j; b)) is path inconsistent (see Figure

2B). The di�erence between these three local consistencies appears if (i; a) has at least two

supports on C

ij

. In such a case, (i; a) is restricted path consistent w.r.t. C

ij

but PIC can

delete it if there is a 3-clique fi; j; kg such that all the supports of (i; a) in D

j

are path

inconsistent because of k (see Figure 2C). So, PIC is more pruningful than RPC. But it
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often deletes only few additional values because the supports of a value are seldom all path

inconsistent because of the same third variable. Max-RPC is far more pruningful since it

deletes (i; a) because of C

ij

if all its supports in D

j

are path inconsistent, even if they are

not path inconsistent because of the same third variable (see Figure 2D).

5. Pruning E�ciency

5.1 Qualitative Study

To compare the pruning e�ciency of the local consistencies presented above, we use the

transitive relation \stronger" introduced in (Debruyne & Bessi�ere, 1997b). A local consis-

tency LC is stronger than another local consistency LC

0

if in any CN in which LC holds,

LC

0

holds too. Consequently, if LC is stronger than LC

0

, any algorithm achieving LC

deletes at least all the values removed by an algorithm achieving LC

0

. For instance, since

by de�nition of restricted path consistency RPC is stronger than AC, an RPC algorithm

removes at least all the arc inconsistent values. A local consistency LC is strictly stronger

than another local consistency LC

0

if LC is stronger than LC

0

and there is at least one CN

in which LC

0

holds and LC does not.

Theorem 1 Restricted path consistency is strictly stronger than AC.

Proof By de�nition of restricted path consistency, RPC is stronger than arc consistency.

Figure 3a shows that there exists a constraint network on which AC holds and RPC does

not. Therefore, RPC is strictly stronger than AC. 2

Theorem 2 If k > k

0

�0, k-RPC is strictly stronger than k

0

-RPC.

Proof The proof that k-RPC is stronger than k

0

-RPC if k > k

0

�0 is trivial. Figure 3g

shows that there exists a constraint network on which k

0

-RPC holds and k-RPC (k > k

0

�0)

does not. Therefore, k-RPC is strictly stronger than k

0

-RPC if k > k

0

�0. 2

Theorem 3 Max-RPC is strictly stronger than k-RPC, 8k �0.

Proof The proof that Max-RPC is stronger than k-RPC 8k �0 is trivial. Figure 3g shows

that for any k �0 there exists a constraint network on which k-RPC holds and Max-RPC

does not. Therefore, Max-RPC is strictly stronger than k-RPC 8k �0. 2

Theorem 4 If jX j �3, path inverse consistency is strictly stronger than restricted path

consistency.

Proof From property 1, PIC is stronger than AC if jX j �3. Now, consider a value (i; a)

having only one support (j; b) on C

ij

. If PIC holds, for any third variable k, (i; a) can be

extended to a consistent instantiation I including fi; j; kg and since b is the only support of

(i; a) in D

j

, I

j

= b. So ((i; a); (j; b)) is path consistent and (i; a) is restricted path consistent

w.r.t. C

ij

. Furthermore, Figure 3b shows that there exists a constraint network on which
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RPC holds and PIC does not. Therefore, path inverse consistency is strictly stronger than

restricted path consistency if jX j �3. 2

Theorem 5 If jX j �3, max-restricted path consistency is strictly stronger than path inverse

consistency.

Proof Suppose there is a max-restricted path consistent CN P with a value (i; a) which

is not path inverse consistent. Since the CN is max-restricted path consistent, it is also

arc consistent by de�nition of max-restricted path consistency. Thus, because of property

1 we know there exist two variables j and k such that fi; j; kg is a clique in the constraint

graph and (i; a) cannot be extended to a consistent instantiation on fi; j; kg. As a result,

none of the supports of (i; a) on C

ij

is path consistent, which contradicts the assumption

that the CN P is max-restricted path consistent. Furthermore, Figure 3i shows that there

exists a constraint network on which path inverse consistency hold and max-restricted path

consistency does not. Therefore, if jX j �3, max-RPC is strictly stronger 2

Theorem 6 Singleton arc consistency is strictly stronger than Max-RPC.

Proof Suppose that there exists a CN P with a singleton arc consistent value (i; a) that

is not max-restricted path consistent. Let j 2 X be a variable such that (i; a) has no

path consistent support in D

j

. For each support b of (i; a) in D

j

, there exists a variable k

such that 6 9c 2 D

k

such that C

ik

(a; c) ^ C

jk

(b; c). Therefore, all the values of D

j

are arc

inconsistent w.r.t. P j

D

i

=fag

and (i; a) is not singleton arc consistent. So, SAC is stronger

than Max-RPC. Figure 3e shows that there exists a constraint network on which Max-RPC

holds and SAC does not. Therefore, SAC is strictly stronger than Max-RPC. 2

Theorem 7 Neighborhood inverse consistency is strictly stronger than max-restricted path

consistency.

Proof Let (i; a) be any value of a neighborhood inverse consistent CN P . There exists a

consistent instantiation I including i and its neighborhood s.t. I

i

= a. For any C

ij

2 C, I

j

is a path consistent support of (i; a). Indeed, let k be any third variable. If k is linked to i,

((i; a); (j; I

j

); (k; I

k

)) is a consistent instantiation since P is neighborhood inverse consistent.

Otherwise, there are two cases: First, if k is not linked to j, ((i; a); (j; I

j

); (k; c)) is consistent

8c 2 D

k

; Second, if 9C

jk

2 C, there exists a consistent instantiation I

0

of j and its neigh-

borhood s.t. I

0

j

= I

j

and ((i; a); (j; I

0

j

); (k; I

0

k

)) is consistent. So, (i; a) is max-restricted path

consistent. Furthermore, Figure 3d shows that there exists a constraint network on which

Max-RPC holds and NIC does not. Therefore, NIC is strictly stronger than Max-RPC. 2

Theorem 8 Strong path consistency is strictly stronger than singleton arc consistency.

Proof Consider a problem that is strong path consistent. Any pair of values can be ex-

tended to any third variable. Furthermore, since the problem is strong path consistent, it

is also arc consistent and a sub-problem obtained by restricting a domain D

i

to a singleton
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f(i; a)g can be made arc consistent. The initial problem is therefore singleton arc consistent.

Figure 3c shows that there exists a constraint network on which SAC holds and strong PC

does not. Therefore, strong PC is strictly stronger than SAC. 2

Theorem 9 Singleton restricted path consistency is strictly stronger than singleton arc

consistency.

Proof Singleton restricted path consistency is stronger than singleton arc consistency since

RPC is stronger than AC. Figure 3d shows that there exists a constraint network on which

SAC holds and SRPC does not. Therefore, SRPC is strictly stronger than SAC. 2

The stronger relation does not induce a total ordering. Some local consistencies are

incomparable.

Theorem 10

1. If jX j �3, path inverse consistency and k-restricted path consistency are incomparable.

2. Neighborhood inverse consistency and singleton arc consistency are incomparable.

3. Neighborhood inverse consistency and strong path consistency are incomparable.

4. Neighborhood inverse consistency and singleton restricted path consistency are incom-

parable.

Proof

1. cf. Figure 3h and Figure 3j.

2. cf. Figure 3d and Figure 3e.

3. cf. Figure 3d and Figure 3e.

4. cf. Figure 3e and Figure 3f.

Figure 4 summarizes the relations between the local consistencies. There is an arrow

from LC to LC

0

i� LC is strictly stronger than LC

0

. A crossed line between two local

consistencies means that they are not comparable w.r.t. the \stronger" relation. When

LC is not stronger than LC

0

(LC

0

is strictly stronger than LC, or LC and LC

0

are not

comparable), a CN in which LC holds and LC

0

does not can be found in Figure 3. Obviously,

the stronger relation is transitive. In Figure 4 we omit the transitivity arcs.
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AC RPC RPC PIC

SAC NIC

SAC SRPC
Strong  PC NIC

Strong  PC SRPC NIC Strong  PC
SRPC

SRPC NIC

SRPC Strong  PC

SAC Strong  PC

 pair of values.
in A B A is not stronger than B (B deletes the value     on this A consistent network)

forbidden

... The domain of a variable.
 A

Max-RPC
NIC
NIC

SAC
SAC

RPC 2-RPC

2-RPC PIC

k-RPC Max-RPC

PIC 2-RPC
PIC Max-RPC

(c)(a) (b)

(e)(d )

(f) (g)

(h ) (j)(i)

k-RPC k'-RPC   if  k '>k>0

Max-RPC NIC
k+ 1

k+ 1

k+1

k+ 1

k+ 1

Figure 3: Some CNs proving the \not stronger" relations between some of the mentioned

local consistencies.
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A B : A and B are incomparable w.r.t. the stronger relation.
A B : A is strictly stronger than B.

SRPC

SAC

Max-RPC

k-RPC
(k>1)

RPC

AC

PIC

NICStrong PC

Figure 4: Relations between the mentioned local consistencies.

5.2 Experimental Evaluation

Figure 4 does not give any quantitative information. A local consistency LC can remove

more values than another local consistency LC

0

on most of the CNs even though it is

incomparable with LC because of some particular CNs. When they are comparable, it does

not show if a local consistency is far more pruningful than another or if it performs only

few additional value deletions. To have some quantitative information about the pruning

e�ciency of these local consistencies, we performed an experimental evaluation. The aim of

this evaluation is to show how pruningful a local consistency is on random CNs, with a �xed

number of variables and values, when the number of constraints and the constraint tightness
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Figure 5: The T

0

bounds for random CNs having 40 variables and 15 values in each domain.

are changing. We used the random uniform CN generator of (Frost, Bessi�ere, Dechter, &

R�egin, 1996) which produces instances according to the Model B (Prosser, 1996). It involves

four parameters: n the number of variables, d the common size of the initial domains, p1

the proportion of constraints in the network (the density p1=1 corresponds to the complete

graph) and p2 the proportion of forbidden pairs of values in a constraint (the tightness).

The generated problems have 40 variables and 15 values in each domain. For each local

consistency and each density p1, two particular values of the tightness have been determined.

On the one hand, T

0

(p1) is the tightness such that the local consistency does not delete any

value on 50% of the CNs generated with p1 for density. For values of tightness lower than

T

0

(p1), the local consistency seldom deletes many values. On the other hand, T

all

(p1) is the

tightness such that the local consistency �nds the inconsistency of 50% of the CNs generated

with density p1. On constraint networks with tighter constraints, the local consistency

often removes all the values. For all the mentioned local consistencies, the values T

0

(p1)
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Figure 6: The T

all

bounds for randomCNs having 40 variables and 15 values in each domain.

and T

all

(p1) for any density p1 are given in Figure 5 and Figure 6 respectively. We also

show these bounds for the variable completability �ltering which removes all the globally

inconsistent values, and thus is the strongest �ltering we can have when we limit �ltering to

the domains. To determine the T

0

and T

all

bounds, 300 CNs have been generated for each

(density, tightness) pair. This explains why the generated problems are relatively small.

As already proved theoretically, PIC is stronger than RPC. Their pruning e�ciencies

are closed. RPC deletes most of the path inverse inconsistent values and is halfway between

AC and Max-RPC in terms of pruning e�ciency. k-RPC with k > 1 is incomparable

with PIC with regard to the stronger relation. However, Figure 5 and Figure 6 show that

2-RPC is more pruningful than PIC. SAC and strong PC have almost the same pruning

e�ciency. Their T

0

limits merge and their T

all

limits show a slight di�erence. This con�rms

the similitude between SAC and strong PC pointed out in Section 3. Although SRPC and

strong PC are not comparable w.r.t. the stronger relation, SRPC removes is more pruningful

than strong PC. As predicted in (van Beek, 1994), these polynomial �lterings have more
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Figure 7: The T

0

(black points) and T

all

(white points) bounds for random CNs having 40

variables, 15 values in each domain, and density 1.

di�culties to delete inconsistent values on dense problems with loose constraints. On sparse

CNs, the polynomial local consistencies studied are close to variable completability, whereas

on very dense CNs, Figure 5 and Figure 6 show a large range of tightnesses between them and

variable completability. NIC behaves very di�erently since on complete constraint networks

it corresponds to variable completability. So, on dense CNs, NIC is far more pruningful

than the other local consistencies. On CNs generated with a density lower than .28 NIC

is less pruningful than SRPC, strong PC and SAC. The more important the propagation

through the network is, the closer T

0

and T

all

are. If a �ltering (such as AC) uses a very

local property to delete inconsistent values, there is a large set of CNs on which it removes

some but not all the values. More pruningful local consistencies consider a more important

part of the network to know whether a value is consistent or not. So, they seldom delete

few values. On most of the CNs, they do not delete any value, or detect inconsistency: the

propagation of the �rst value deletions often leads to a domain wipe out.

6. Time E�ciency

6.1 Radio Link Frequency Assignment Problems

An experimental evaluation has been done on the radio link frequency assignment problems

described in (Cabon, de Givry, Lobjois, Schiex, & Warners, 1999), namely the instances

of the CELAR

4

named Scen01 to Scen11, and the GRAPH instances generated using the

GRAPH generator at Delft University named Graph01 to Graph14. In these problems we

have to assign frequencies to a set of radio links de�ned between pairs of sites in order to

avoid interferences

5

. These problems have from 200 to 916 variables and there are 40 values

in average in each domain. The constraints are binary and have a cost of violation speci�ed

4. We thanks the Centre d'Electronique de l'Armement (France).

5. See http://www-bia.inra.fr/T/schiex/Doc/CELARE.html for a more detailed presentation of these

problems.
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AC7 RPC2 PIC2 Max-RPC1 SAC1 SRPC1 NIC1

Scen02 0.27 0.7 4.38 6.33 45.5 434.93 10.45

Scen03 0.58 1.55 9.13 14.21 99.49 946.31 26.58

Scen11 0.89 2.53 13.79 25.84 144.3 1362.18 time out

Table 2: Cpu time performances on some RLFAP instances on which all the local consis-

tencies studied hold.

by a level from 0 to 4. The level 0 corresponds to hard constraints, and levels from 1 to 4

have a decreasing cost of violation. For each problem ScenXX (resp. GraphXX), we call

ScenXX.3, ScenXX.2, ScenXX.1 and ScenXX.0 (resp. GraphXX.3, GraphXX.2, GraphXX.1

and GraphXX.0) the problems of satisfaction obtained by considering the problem ScenXX

(resp. GraphXX) with only the constraints of level 0 to 3, 0 to 2, 0 to 1, and 0 respectively.

In this experimental evaluation, we consider both the cpu time performances and the

percentage of values deleted by the local consistencies studied. The algorithms used are AC7

(Bessi�ere, Freuder, & R�egin, 1995), RPC2 (Debruyne & Bessi�ere, 1997a), PIC2 (Debruyne,

2000), Max-RPC1 (Debruyne & Bessi�ere, 1997a), the singleton arc consistency algorithm

of (Debruyne & Bessi�ere, 1997b) (SAC1) based on AC6, a SRPC algorithm based on RPC2

(SRPC1), and the NIC algorithm proposed in (Freuder & Elfe, 1996) (NIC1) using FC-

CBJ (Prosser, 1993) (as inFreuder & Elfe, 1996) with dom+deg dynamic variable ordering

heuristic (minimal domain �rst, in which ties are broken by choosing the variable with the

highest degree in the constraint graph Frost & Dechter, 1995; Bessi�ere & R�egin, 1996). All

these algorithms have been modi�ed to stop as soon as a domain wipe out occurs. We do

not show results on strong PC in this section because on these large problems it requires

often more than our 2 hours time out limit. These algorithms have been tested on each

ScenXX, Scen XX.X, GraphXX, and GraphXX.X problem using a Sun UltraSparc IIi 440

Mhz. For sake of clarity, we only show the results on some representative problems.

6.1.1 Results on problems on which all the studied local consistencies hold

(cf. Table 2)

If all the local consistencies studied hold on a constraint network, all the corresponding

�ltering algorithms are useless. They waste time to check whether the local consistencies

hold without deleting any inconsistent value. On these problems, the stronger the local

consistency is, the more important is the time wasted.

We can see the consequence of the exponential worst case time complexity of NIC1. On

most of these problems, NIC1 requires a reasonable cpu time. But as we can see on the

problem Scen11, a combinatorial explosion can lead to really prohibitive cpu time for NIC1.

6.1.2 Results on arc inconsistent problems (cf. Table 3)

When arc consistency is su�cient to detect the inconsistency of the problem, stronger local

consistencies are not always more costly. On Figure 3 we can see that Max-RPC1 has

often the best cpu time performances and on Graph06 for example, AC7 is one of the
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AC7 RPC2 PIC2 Max-RPC1 SAC1 SRPC1 NIC1

Scen07 0.42 0.43 0.44 0.09 0.59 0.47 1.89

Graph07 0.11 0.14 0.12 0.16 0.24 0.14 1.08

Scen08 0.75 0.48 0.73 0.4 0.52 0.47 time out

Graph06 0.48 0.27 0.44 0.26 0.27 0.27 10.13

Table 3: Cpu time performances on some arc inconsistent RLFAP instances.

Max-

AC7 RPC2 PIC2 RPC1 SAC1 SRPC1 NIC1

Scen06.1 cpu time 0.27 0.48 0.96 2.04 66.32 227.13 time out

% of DV 7.88 8.33 17.85 19.7 42.47 42.57 ?

Scen09.1 cpu time 0.8 1.52 1.87 5.88 167.85 568.08 318.38

% of DV 22.48 25.79 29.79 31.03 35.86 35.86 31.57

Graph04 cpu time 0.81 2.07 18.65 25.39 2238.13 time out 101.77

% of DV 4.97 6.67 6.95 10.35 18.44 ? 13.14

Graph10 cpu time 1.43 3.32 37.7 51.42 3984.13 time out 2033.39

% of DV 1.43 1.62 1.68 5.42 9.53 ? 7.35

Graph06.1 cpu time 0.39 0.81 0.9 0.8 6.69 3.21 8.54

% of DV 14.96 17.69 100 100 100 100 100

Graph12.1 cpu time 0.73 1.35 2.83 5.41 9.47 32.12 3.97

% of DV 10.42 12.23 15.28 100 100 100 100

Table 4: Cpu time performances and percentages of values deleted by the local consistencies

studied (% of DV) on some RLFAP instances.

most expensive local consistencies. When enforcing AC requires propagation to �nd the

arc inconsistency of the problem, a stronger local consistency can wipe out a domain more

quickly than AC7.

On these constraint networks, all the algorithms used have very low cpu time require-

ments, except NIC1, which can be very expensive on some instances, such as Scen08.

6.1.3 Results on the other problems (cf. Table 4)

On many of the RLFAP problems the local consistencies do not delete the same sets of

inconsistent values. We can see an important di�erence between the pruning e�ciencies

especially on the problems ScenXX.1 and GraphXX.1.

Obviously, on most of these problems, the more pruningful the local consistency is, the

more important is the time required. We can see this on the problems Scen06.1 and Scen09.1

for example. However, AC7, RPC2, PIC2, and Max-RPC1 have cpu time performances in

the same order of magnitude while SAC1, SRPC1, and NIC1 are often far more expensive.
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This is especially obvious on Graph04 and Graph10. However, it is di�cult to say which

is the most interesting local consistency on these problems since even if SAC1, and SRPC1

are costly, we can see on Scen06.1 and Graph04 that they can be far more pruningful.

These problems highlight that NIC1 is not very stable. It sometimes shows good per-

formances, but an exponential explosion can lead to a prohibitive cost on some instances.

When NIC1 requires a reasonable time, its pruning e�ciency is closer to the one of Max-

RPC1 than to the one of SAC1. These results con�rm that if the neighborhoods of the

variables are not small, NIC1 can be really prohibitive.

On Graph06.1, PIC2 (and obviously the algorithms enforcing a stronger local consis-

tency) �nds the inconsistency of the problem whereas AC7, and RPC2 remove only a part

of the inconsistent values. We can see a similar behavior on Graph12.1 where Max-RPC1

wipes out a domain whereas AC7, RPC2 and PIC2 do not �nd the inconsistency of the

problem. On these instances, Max-RPC1 is the best choice.

6.2 Randomly Generated Problems

The random uniform CN generator of section 5.2 is used to compare the cpu time required

to enforce the local consistencies. We have to point out that NIC has not been designed

to be used on uniform CNs but to adapt �ltering e�ort to the degree of the variables in

the constraint graph. So, NIC would have better performances on non-uniform CNs than

those presented in this section. The generated problems have 200 variables and 30 values

in each initial domain. Figure 8 shows the results on CNs with density of .02. These CNs

are relatively sparse since the variables have four neighbors on average. Figure 9 presents

performances at density .15 (the variables have 30 neighbors on average). Because of the

set of parameters, there are no 
awed variables (MacIntyre, Prosser, Smith, & Walsh,

1998) in the generated problems.

6

In addition to the algorithms of the previous section, we

use a strong path consistency algorithm based on PC8 (Chmeiss & J�egou, 1996) and AC6.

This algorithm stops as soon as a domain wipe out occurs or as soon as a constraint no

longer allows any pair of values. In addition to the percentage of deleted values and cpu

time performances, Figure 8 and Figure 9 show the cpu time to number of deleted values

ratio for each tightness where the local consistency removes at least one value on average.

For each tightness, 50 instances were generated. Figure 8 and Figure 9 show mean values

obtained on a Pentium II-266 Mhz with 32 Mb of memory under Linux.

As observed in (Gent, MacIntyre, Prosser, Shaw, & Walsh, 1997) for arc consistency,

the �ltering algorithms tested have a complexity peak. For low values of the tightness, they

easily prove that the values are locally consistent, and when constraints are very tight, they

quickly wipe out a domain. Each local consistency has a phase transition where most of

the hardest problems for an algorithm achieving this local consistency tend to occur.

6.3 Experiments on Sparse CNs

Even on sparse CNs (see Figure 8), the cpu time results are so di�erent between the al-

gorithms (7h 48min for strong PC at its peak when AC7 requires at most .22 seconds on

average) that a logarithmic scale has to be used. Strong PC is really prohibitive, even for

6. In Section 5.2,the tightness reaching 1, there was obviously 
awed variables for some sets of parameters.
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low values of tightness. SRPC and SAC have bad cpu time to number of deleted values

ratios, except SAC on CNs having very tight constraints because the SAC algorithm used

is based on AC6 which can be more e�cient than AC7 on such problems. On these sparse

CNs, NIC has often better cpu time performances than SAC but it does not remove more

values than Max-RPC. Consequently, NIC has a bad cpu time to number of deleted values

ratio. Unlike strong PC, SRPC, SAC, and NIC, the cpu time requirements of AC7, PIC2,

RPC2 and Max-RPC are of the same order of magnitude. The cpu time to number of

deleted values ratios of these four last �lterings are also very close, with a little advantage

for PIC2. Although PIC is stronger than RPC, PIC2 can be less expensive than RPC2 on

sparse CNs. If there are few 3-cliques in the constraint graph, PIC2 does not require far

more cpu time than AC7 whereas RPC2 is about two times as expensive as AC7 since it

looks for two supports for each value on each constraint.

6.4 Experiments on more Dense CNs

On more dense CNs (see Figure 9), the complexity peaks of AC7, RPC2, PIC2, and Max-

RPC stay close to each other. PIC2 is less worthwhile since it deletes few additional values

compared to RPC2 while its cpu time requirements are close to those of Max-RPC. Max-

RPC has one of the best cpu time to number of deleted values ratios. As soon as RPC

leads to a domain wipe out, the cpu time performances of SRPC and RPC2 merge. Indeed,

the SRPC algorithm used enforces RPC2 before checking the restricted path consistency of

the sub-problems P j

D

i

=fag

for each (i; a) 2 D. If all the values of a domain are restricted

path inconsistent, the RPC preprocessing �nds the global inconsistency of the problem and

the SRPC algorithm stops. SRPC is less expensive than strong PC although it is more

pruningful. These two �lterings remain the most expensive. NIC is the most pruningful

local consistency on these CNs. Hence, on a large range of tightnesses, NIC has the best

cpu time to number of deleted values ratio. However, on some instances, NIC cannot avoid

the combinatorial explosion. Although NIC requires \only" �fteen minutes on average

at tightness .52, more than two hours are required on some instances. It is conceivable

that instances on which NIC requires far more cpu time exist for this set of parameters.

Obviously, the set of CNs on which NIC is prohibitive grows when the density increases.

The results on SAC have a lower standard deviation. SAC never requires more than �fty

two minutes on the problems generated for these experiments.

6.5 Discussion

What can we conclude from these results? Strong PC is by far the least interesting �ltering

technique. Compared to SAC, which removes most of the strong path inconsistent values,

strong PC is really prohibitive.

7

Achieving SAC or SRPC is costly as long as these two

local consistencies do not delete any value. Obviously, although SAC and SRPC are more

expensive than Max-RPC on almost all the generated problems, we cannot say that it is

better to use Max-RPC. Indeed, at density .15 for example, Max-RPC is useless for

7. We can point out that when the path consistency of a constraint can be expressed without explicitly

storing the set of forbidden tuples, path consistency can be used (e.g., temporal networks Allen, 1983,

constraint networks Smith, 1992).

224



Domain Filtering Consistencies

1 E -3

1E-2

1 E -1

1E+0

1E+1

1E+2

1 E + 3

1 E + 5

1E-7

1 E-6

1 E-5

1 E-4

1 E-3

1 E-2

1E-1

1E+0

1 E + 1

1 E + 2

1 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5 9 9

cpu time (in sec.)

Tightness

1 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5 9 9

Tightness
0

100
Percentage of values deleted

1 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5 9 9

Tightness

cpu time to number of deleted values ratio

7 5 8 0 8 5 9 0 9 5

1E-5

1E-4

1E-3

1E-2

1 E-1

AC 7

R P C 2

P IC 2

Ma x-RP C

S A C

SR PC Strong PC

N I C

A C 7

R PC 2PI C2

Max-R PC

SAC

NIC

n=200, d=30, and  p1=.02

1E+4

Strong PC

SR PC

7h48m i n

16m i n15sec

2 m i n 3 6 s e c

9.33sec

0.36sec

0.22sec

AC 7 R PC 2 PIC2 Max-RPC Strong PCSA C SR PC NIC

0.24sec

0.37s ec

Figure 8: Experimental evaluation on random CNs with n=200, d=30, and p1=.02.
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Figure 9: Experimental evaluation on random CNs with n=200, d=30, and p1=.15.
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tightnesses lower than .63 since it does not delete any value, while for SRPC the limit is .57

of tightness. Furthermore, for singleton consistencies we can argue that the algorithm used

to achieve them is not optimal. An algorithm reusing part of the �ltering performed on

P j

D

i

=fag

to process other sub-problems P j

D

j

=fbg

, ((i; a) and (j; b) belonging to D) would

improve cpu time performances. However, the cpu time to number of deleted values ratios of

SAC and SRPC algorithms are often among the worst ones, especially on sparse CNs. SAC

and SRPC are so expensive that it is hardly likely that enhancements of these algorithms

could lead them to be the most worthwhile �lterings. On sparse uniform CNs, NIC is not

the best choice. Compared to Max-RPC, it does not delete enough values to o�set the

additional cpu time cost. Furthermore, NIC cannot be used on dense CNs since its cpu

time requirements become greater than those of a search algorithm. So, NIC has to be used

only on \relatively" dense CNs, as those of Figure 9 on which NIC is worthwhile on average

(although on some instances a combinatorial explosion cannot be avoided). On very dense

CNs, the worst case time complexity of Max-RPC and PIC2 is close to the one of the best

path consistency algorithm (O(en+ ed

2

+ cd

3

) against O(n

3

d

3

)). However, the experiments

underline that achieving Max-RPC and PIC2 is far less expensive in practice. Compared

to RPC2 and Max-RPC, PIC2 is not a good solution in-between. The cpu time to number

of deleted values ratios of RPC2 and Max-RPC are better than the one of PIC2 (except on

very sparse CNs on which PIC2 can be less expensive than RPC2). Indeed, PIC2 deletes

only few additional values compared to RPC2, while its cpu time performances are close to

those of Max-RPC.

Cpu time performances are even more essential when the aim is to maintain a local con-

sistency during search. Maintaining a local consistency during search requires to repeatedly

propagate the choice of a value for a variable (namely the restriction of a domain to a

singleton) or the refutation of a value. To be worthwhile, a local consistency has to require

less time to detect that a branch of the search tree does not lead to a solution than a search

algorithm to explore this branch. So, maintaining a local consistency during search can

outperform MAC on hard problems only if this local consistency is more pruningful than

AC while requiring only a little additional cpu time. With regard to this criterion, we can

discard strong PC, SAC, SRPC, and NIC on dense CNs because they are too expensive. It

is conceivable that we can �nd instances on which maintaining these consistencies during

search outperforms MAC, but the more expensive the maintained local consistency is, the

more seldom the problems on which MAC is outperformed will be. On sparse CNs, NIC is

not prohibitive, but it deletes only few additional values compared to Max-RPC and it has

therefore a bad cpu time to number of deleted values ratio. Finally, The most promising

local consistencies are RPC and Max-RPC. If we exclude arc consistency, RPC is the least

expensive local consistency we studied. Furthermore, the RPC algorithms delete most of

the path inverse inconsistent values. Although Max-RPC is far more pruningful than arc

consistency, experiments show that in practice, Max-RPC has very good cpu time results.

Therefore, it seems very likely that maintaining RPC or Max-RPC during search could

outperform MAC on very hard problems.

To con�rm these results, an algorithm called Quick that maintains an adaptation of

Max-RPC has been compared to MAC. The results of these experiments (Debruyne, 1999)

show that Quick has better cpu time performances than MAC on large and hard randomly

generated CNs that are relatively sparse. More interestingly, Quick has a more impor-

227



Debruyne & Bessi

�

ere

tant stability than MAC (the cpu time performances of Quick have a very low standard

deviation). It would be very interesting to propose e�cient algorithms that maintain the

local consistencies studied in this paper and to compare these algorithms. Such a study

would allow us to know whether during search, the more advantageous local consistencies

remain RPC and Max-RPC as during a preprocessing step. First results on the e�ect of

maintaining SAC during search are given in (Prosser, Stergiou, & Walsh, 2000).

7. Conclusion

In this paper we extended the idea of restricted path consistency to k-RPC and Max-

RPC, which are more pruningful local consistencies. We proposed a new class of local

consistencies called singleton consistencies. We studied these new local consistencies and

the other local consistencies that alike can be used on large CNs while removing more values

than arc consistency. We showed some relations between them and we compared both

theoretically and experimentally their pruning and time e�ciencies. The most pruningful

are neighborhood inverse consistency and singleton restricted path consistency. However,

SRPC is expensive in time and the exponential worst case time complexity of NIC makes it

unusable on dense CNs. If we are looking for a local consistency that would advantageously

be maintained during search, RPC and Max RPC seem to be the most promising local

consistencies. Indeed, they are relatively inexpensive and far more pruningful than arc

consistency.
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