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Abstract

Filtering techniques are essential to efficiently
look for a solution in a constraint network (CN).
However, for a long time it has been considered
that to efficiently reduce the search space, the best
choice is the limited local consistency achieved by
forward checking [15, 17]. However, more recent
works [18, 4, 16] show that maintaining arc consis-
tency (which is a more pruningful local consistency)
during search outperforms forward checking on hard
and large constraint networks. In this paper, we show
that maintaining a local consistency stronger than
arc consistency during search can be advantageous.
According to the comparison of the local consisten-
cies more pruningful than arc consistency that can be
used on large CNs in [9], Max-restricted path consis-
tency (Max-RPC, [7]) is one of the most promising
local consistencies. We propose a new local consis-
tency, called Max-RPCEn, that is stronger than Max-
RPC and that has almost the same cpu time require-
ments.

1 Introduction

Finding a solution in a constraint network (CN)
involves looking for an assignment of values for the
problem variables so that all the constraints are si-
multaneously satisfied. This task is NP-hard, and to
avoid a combinatorial explosion, the search space has
to be reduced by filtering techniques, which remove
some local inconsistencies. Obviously, a given local
consistency can advantageously be maintained dur-
ing search only if it requires less cpu time to de-
tect that a branch of the search tree does not lead
to any solution than a search algorithm to explore
this branch. For a long time, the only practicable
local consistency was arc consistency (AC, namely
2-consistency or (1, 1)-consistency in the formalism

of [11]). Indeed, higher levels of k-consistency, such
as path consistency (k=3), are so expensive that they
can be used only on very small CNs. In the last three
years, new local consistencies have been proposed
and a comparison of those that can be used on large
CNs have been done in [9]. The conclusion of this
comparison is that Max-RPC [7] is one of the most
worthwhile local consistencies. Experiments show
also that the cpu time required to enforce the local
consistencies more pruningful than Max-RPC, such
as neighborhood inverse consistency [13] and single-
ton consistencies [6], is not of the same order of mag-
nitude. In this paper we show that Max-RPC is not
the limit we have to do not exceed to guarantee a rea-
sonable cpu time. We propose a new local consis-
tency called Max-RPCEn that is significantly more
pruningful than Max-RPC while requiring almost no
additional cpu time.

2 Definitions and notations

A network of binary constraints P = (X, D, C)
is defined by a set X = {i, j, ...} of n variables,
each taking value in its respective finite domain D;,
Dj, ... elements of D and a set C of e binary con-
straints. d is the size of the largest domain. A binary
constraint Cj; is a subset of the Cartesian product
D; x D; that denotes the compatible pairs of values
for i and j. We note C;;(a, b) = true to specify
that ((i, a), (4, b)) € C;;. We then say that (j, b)
is a support for (i, a) on C;;. Checking whether a
pair of value is allowed by a constraint is called a
constraint check. With each CN we associate a con-
straint graph in which nodes represent variables and
arcs connect pairs of variables that are constrained
explicitly. c¢ is the number of 3-cliques in the con-
straint graph. The neighborhood of i is the set of
variables linked to ¢ in the constraint graph. An in-
stantiation of a set of variables S is a set of value as-
signments {I; }jes, one for each variable belonging
to Sst.Vj €S, I; €D;. Aninstantiation I of S



satisfies a constraint C; if {¢,j} € S or Cy;(1;, I;)
is true. An instantiation is consistent if it satisfies
all the constraints. A pair of values ((i, a), (J, b))
is path consistent if for all k € X st. j#k# i#j,
this pair of values can be extended to a consistent in-
stantiation of {i, j, k}. Checking whether a pair of
values is path consistent is called a path consistency
check. (j, b) is a path consistent support for (i, a)
if (a,b) € C;; and ((i, a), (j, b)) is path consistent.
A solution of P = (X, D, C) is a consistent instan-
tiation of X'. A value (i, a) is consistent (or com-
pletable [12]) if there is a solution I such that I; = a,
and a CN is consistent if it has at least one solution.

3 From arc consistency to con-
servative path consistency

Let us recall that a k-consistency algorithm re-
moves the instantiations of length k£ — 1 that cannot be
extended to a consistent instantiation including any
additional k' variable. So, an arc consistency algo-
rithm (k = 2) deletes the values that have not at least
one compatible value (a support) on each constraint.
Higher levels of k-consistency, such as path consis-
tency (PC, k = 3), are so expensive that they can be
used only on very small CNs. A path consistency al-
gorithm has to try to extend all the pairs of values,
even those between two variables that are not linked
by a constraint, to any third variable. Thus, even the
most efficient PC algorithms [5, 19] are prohibitive.
Obviously, enforcing an higher level of k-consistency
is even more expensive. Furthermore, if £ > 2 a
k-consistency algorithm changes the structure of the
network. Indeed, constraints involving k£ — 1 vari-
ables may have to be added to store the deletion of the
(k—1)-inconsistent instantiations. To avoid these im-
portant drawbacks, a restricted path consistency algo-
rithm (RPC, [1]) performs only the most pruningful
path consistency checks, namely those that can di-
rectly lead to the deletion of a value, and it deletes
only values in order to keep unchanged the structure
of the network. In addition to AC, an RPC algorithm
checks the path consistency of the pairs of values
((i, a), (4, b)) such that (j, b) is the only support
for (i, @) in D;. If such a pair of values is path in-
consistent, its deletion would lead to the arc incon-
sistency of (i, a), and thus (i, a) can be removed.
So, these few path consistency checks allow to re-
move more values than arc consistency while leav-
ing unchanged the set of constraints. We can extend
the idea of RPC to remove more values by check-
ing the existence of a path consistent support on a

constraint not only for the values that have only one
support on this constraint as in RPC, but also for the
values having at most £ supports on this constraint
(k-restricted path consistency, k-RPC [7]), or for all
the values, whatever is the number of supports they
have (Max-restricted path consistency). Considering
the pruning efficiency, Max-RPC is an upper bound
for k-RPC and a Max-RPC algorithm removes all the
k-restricted path inconsistent values for all k. How-
ever, we can delete even more values than Max-RPC,
still without adding any constraint in the network.

The limit in terms of pruning efficiency of check-
ing the path consistency of pairs of values while
keeping the structure of the network is conservative
path consistency (CPC). CPC is the restriction of
strong path consistency (a strong PC algorithm en-
forces both arc and path consistency) to the explicit
constraints of the network. If there is no constraint
between two variables ¢ and j, any pair of values
((i, a), (j, b)) is conservative path consistent. If i
and j are linked by a constraint C;; € C, a pair of val-
ues ((7, a), (j, b)) allowed by this constraint is con-
servative path consistent if, and only if, for any third
variable k € X linked to both ¢ and 7, ((¢, a), (j, b))
can be extended to a consistent instantiation includ-
ing k. A constraint network is conservative path con-
sistent iff it is arc consistent and all the pairs of values
allowed by the constraints explicitly present in the
network are conservative path consistent (see Fig. 1).
CPC is more pruningful than Max-RPC (see Section
5) and does not change the structure of the network,
but on complete constraint networks it is as expen-
sive as strong path consistency. Furthermore, in real
applications, a constraint is seldom represented by a
Boolean matrix or a set of compatible pairs of values.
They are often represented by a predicate which has a
particular semantics (#, <, ...). Enforcing CPC leads
to the generation of the Boolean matrix to store the
deletion of the conservative path inconsistent pairs
of values and the semantics of the constraints is lost.
The drawbacks of CPC are too important, and enforc-
ing it is too expensive to be worthwhile. So, in the
following, we study the pruning efficiency of CPC,
but we do not try to know the cpu time required to
achieve it.

To avoid the drawbacks of CPC while removing
more values than an algorithm achieving Max-RPC,
the new filtering algorithm proposed in the next sec-
tion, called Max-RPCEnl1, does not try to check the
conservative path consistency of all the pairs of val-
ues. Max-RPCEnl does not delete any pair of val-
ues and it performs more value deletions than an al-
gorithm achieving Max-RPC only when the enforce-
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A binary CN is (, 7)-consistent iff Vi € X, D; # 0 and any consistent instantiation of 7
variables can be extended to a consistent instantiation including any j additional variables.

A domain D; is arc consistent iff, Va € D;, Vje X st. C;; € C, there exists b € D; s.t.
Cij(a, b). A CN is arc consistent ((1,1)-consistent) iff VD; € D, D; # 0 and D, is arc
consistent.

A pair of variables (i, j) is path consistent iff V(a, b) € Cj;, Vk € X, there exists ¢ € Dy, s.t.
Cik(a, c) and Cj (b, ¢). A CN is path consistent ((2,1)-consistent) iff Vi, j € X, (i, j) is path
consistent.

A binary CN is strongly path consistent iff it is node consistent, arc consistent and path
consistent.

A binary CN is restricted path consistent iff

Vie X, D; is a non empty arc consistent domain and,

V(i, a) € D,Yj€X s.t. (i, a) has only one support b in D;,

for all k£ € X linked to both ¢ and j,

dce Dy, st. Ci(a, ¢) ACg (b, ¢).

A binary CN is max restricted path consistent iff

Vie X, D; is a non empty arc consistent domain and,

V(i, a) € D, for all j € X linked to i,

dbe Dj s.t. C5(a,b) and for all k € X' linked to both 4 and j,

dee Dy st. Cip (a, C) ACi (b, C).
A pair of values ((i, a), (]j, b)) such that there is no constraint C;; € C is conservative path
consistent. If 3C;; € C, a pair of values ((i, a), (j, b)) is conservative path consistent iff
Cij(a, b) and Yk € X linked to both ¢ and j, 3¢ € Dy, s.t. Cix(a, ¢) ACji(b, ¢). A constraint
C;; € C is conservative path consistent iff all the pairs of values ((i, a), (j, b)) s.t. Cij(a, b)
are conservative path consistent. A CN is conservative path consistent iftV(i, a) € D, (i, a)
is arc consistent and VC;; € C, C;; is conservative path consistent.

Figure 1. The mentioned local consistencies

ment of Max-RPC allows it to detect some conserva-
tive path inconsistent values.

4 Max-RPCEnl

4.1 Bases of the algorithm

Max-RPCEn1 is an improvement on Max-RPCl1.
Max-RPCl1 is based on the idea of AC6 [2] which is a
very efficient arc consistency algorithm but that does
not use the bidirectionality of the constraints, namely
the property that a value (i, a) is a support of an-
other value (j, b) if and only if (4, b) is a support for
(i, a). Like AC7 [3], Max-RPCEnl uses this prop-
erty of the constraints to infer the existence, or the
non-existence of supports. This substantially reduces
the number of constraint checks and the cpu time re-
quired to enforce the local consistency on most of
the CNs. Since all the constraints of a CN are bidi-
rectional, if we find that a value (j, b) is a support
for (i, a), we can infer that (i, a) is a support for
(4, b). Furthermore, if we have found that (i, a) is
not compatible with any value lower than b in Dy, it
is useless to check whether (i, a) is compatible with
(4, b'") (with ' < b) when we look for a support for
(j, b') in D;. Taking advantage of the bidirectional-
ity to achieve Max-RPC leads to even more savings
than during the enforcement of AC. Indeed, (j, b) is a

path consistent support for (i, a) if and only if (j, b)
is a path consistent support for (i, a). So, the bidi-
rectionality of the constraints allows not only avoids
some constraint checks, but also some path consis-
tency checks.

The second improvement of Max-RPCEnl on
Max-RPCI1 is an enhancement of the pruning effi-
ciency. We say that a pair of values ((i, a), (j, b)) is
valid path consistent if for all the 3-cliques {i, j, k}
of the constraint graph there exists a value ¢ € Dy,
compatible with both (i, a) and (j, b) such that
Max-RPCEn1 has not found the conservative path in-
consistency of ((i, a), (k, ¢)) or ((j, b), (k, ¢)).
A value (j, b) is a valid path consistent support
for (i, a) if (j, b) is compatible with (i, a) and
((z, a), (j, b)) is valid path consistent. The values
deleted by Max-RPCEnl1 are those that do not have
any valid path consistent support on a constraint. So,
Max-RPCEnl removes the Max-restricted path in-
consistent values and some of the conservative path
inconsistent values. The data structure that allows
Max-RPCEn1 to detect the conservative path incon-
sistency of some pairs of values is the array of coun-
ters M. M;j, = b if there is no valid path consis-
tent support of (i, a) in D; lower than b. To know
whether a pair of value ((i, a), (j, b)) allowed by a
constraint C;; is path consistent w.r.t. a third variable
k linked to both 7 and j, we have to look for a value
¢ € Dy that is compatible with (i, a) and (4, b).



procedure Maxz — RPCEn1();

1 DeletionList < 0; InitList < (;
2 forall (i, a) € D do

3 SPO « 0

4 forall Cij € Cdo

5 Sija < 0; Ms;4 < nil;

g InitList « InitList U {[(,
8
9

) a)l};
forall C;; € Cs.t.z < jdo
Common|[Cj;] < 0;
forall ;. € C do
10 if 3C;1, € C then
11 Common[C;;] < Common|[C;;] U {k}

12 Common[C};] < Common[Cy;];
13 while IniList # () or Deletwanst # (0 do

14 if Deletion List # () then

15 choose and delete (i, a) from DeletionList;

}g PropagDeletion i, a, DeletionList);

18 choose and delete [(, j), a] from InitList;

19 if (i, a) € D and not
HasAValzdPCSupport(z a, 7) then

20 remove(D;, a);

21 DeletionList « DeletionList U{(%, a)};

procedure PropagDeletion(j,b, in out DeletionList);
1 while S;;, # 0 do

2 choose and delete (i, a) from S;;

3 ifa € D; and not HasAV alidPC Support(i,a, j) then
4 remove(D;,a);

5 DeletionList < DeletionList U {(i,a)};

6 while S # 0 do

7 choose and delete ((i,a), (k, c)) from Sﬁc;

8 ifa € D;and c € Dy, and a € Sg;. then

9 b« b;

10 if IsV’alzdPathConsistent(i, a, k, ¢, j, b') then

1 SEC — SESU{((G, a), (k, o))}:

12 else

13 remove ¢ from Si;.;

14 if ¢ € S;k, then

15 remove c from S;;,

16 if not HasAValzdPCSupport(k ¢, ) then
17 remove(Dy, c);

18 DeletionList < DeletionListU{(k, ¢)};
19 if not Has AV alidPC Support(i, a, k) then

20 remove(D;, a);

21 DeletionList < DeletionList U {(3, a)};

function Has AV alid PC Support(i, a, j)
1 while S;;, # 0 do

2 b« first(Sija)

3 if b ¢ D; then remove b from S,
4 else Sj;;, < Sj; U {a}; return true;
g Mijq + next(DJ, Ml]a),
7

8

9

: boolean;

while M;;, # cod
if (a > MJzM”a ) and (Cij (a, Mija)) then
ValidPC <« true;
forall k € Common|[C;;] while ValidPC do

10 nil;

11 lf IsValzdPathConszs—

12 tent(i, a, j, Mija, k, c) then CS[k] + c;

13 else Valid PC false;

14 if ValidPC then

15 SJZMz]a A SJZMija U{a};

16 forall k € Common[Cij] do

17 Skgs[k] — Sk(‘S[k U{((la a): (.7: Mija))}
18 return {rue;

19 M;iq + ne:vt(D] yMija);
20 return fzalse

function IsValidPathConsistent(i, a, j, b, k,in out ¢) :
boolean;
if (Mzka = M;kp) then

if Mlka € b then

Mlka, return true;

else ¢ < max(c, Mira);
else ¢ <— max(c, Mipa, Mjkp)s
if ¢ Dy, then ¢ < next(Dy, c);
while ¢ # oo do

if (@ > Mpic) A (b > Myje) A (Cir(a, ©))

A(Cjg (b, c)) then return true;

¢ < next(Dy, c);

10 return false;

O~JN N AW —

el

Figure 2. Max-RPCEn1.

However, even if such a value c exists, a CPC algo-
rithm can delete ((¢, a), (j, b)) if ((i, a), (k, ¢))

r ((j, b), (k, ¢)) is conservative path inconsistent.
If a support ¢ € Dy, of (i, a) is lower than M;x,
or if a < Mk then ((¢, a), (k, ¢)) is conserva-
tive path inconsistent. This is the property used by
Max-RPCEn1 to detect some conservative path in-
consistent pairs of values. Therefore, a pair of values
((i, a), (j, b)) is valid path consistent if for all the
3-cliques {7, j, k} of the constraint graph there ex-
ists a value ¢ € D}, compatible with both (i, a) and
(4, b) such that (¢ > Miga) A (¢ > Mjgp) A (a >
Mpic) N (b > Myje).

4.2 The Algorithm

The data structures of Max-RPCEnl1 are:
e cach initial domain is considered as the inte-
ger range 1..|D;|. The current domain is repre-
sented by a table of booleans. We use the fol-

Figure 3. The functions of Max-RPCEn1.

lowing constant time functions and procedures
to handle the current domain:

— next(D;, nil) returns the smallest value
of D; if D; # ( and oo otherwise.
next(D;, a) with a # nil returns the
smallest value in D; greater than a if a is
not the greatest value of D;, and oo oth-
erwise.

— remove(D;,
from D;.

e A value a is in Sj; if (4, a) is currently sup-
ported by (7, b) i.e. b is the current valid path
consistent support of (i, a) on C;;. In other
words, Sj;p is the set of the values that may no
longer have a valid path consistent support in
D; if we delete (j, b). Sjs is the set of the val-
ues (i, a) suchthat a € Sj;, for some C;; € C.
If Sjiv # 0, first(S;jip) returns the first value
in Sj; and oo otherwise.

a) removes the value a

e To take advantage of the bidirectionality of
the constraints and to detect the conservative
path inconsistency of some pairs of values,
Max-RPCEnl uses the array M. M;;, = b
if Vo' € Dj st. b < b, (j, b) is not
a valid path consistent support for (i, a),
namely (4, b') is not compatible with (i, a),
((i, a), (j, b)) is path inconsistent, or Max-



RPCEnl has found the conservative path in-
consistency of ((i, a), (4, b')).

o If ((4, a), (j, b)) € SF and (a € D; A D €
Dj), b is the current valid path consistent sup-
port of (i, a) in D; and (k, c) is currently
supporting ((7, a), (j, b)), ie. (k, ¢) is
such that (Cix(a, ¢) A Cjx(b, ¢)) and Max-
RPCEn1 has not found that ((¢, a), (k, ¢)) or
((4, b), (k, c)) are conservative path incon-
sistent. So, SFC is the set of the pairs of val-
ues that may be no longer valid path consistent
w.rt. k if we delete (k, c).

o Common]|Cj;] is the set of the variables k that
are linked to both ¢ and j, i.e. the variables
k such that {i, j, k} is a 3-clique in the con-
straint graph.

e An arc-value pair [(i, j), a] is in InitList if
Max-RPCENI has not yet checked whether
(i, a) has a valid path consistent support in
D;. A value (j, b) is in DeletionList if b has
been removed from D; but this deletion has
not been propagated yet.

For each arc-value pair [(4, j), a] Max-RPCEnl
(see Fig.  2) uses the function HasAValid-
PC Support (Fig. 3) to know whether (7, a) has a
valid path consistent support on C;;. This function
tries first (lines 1 to 4) to infer a valid path consis-
tent support looking for an undeleted value in S;j,,
i.e. in the list of the values supported by (i, a) on
Cy;. If no valid path consistent support can be in-
ferred, Max-RPCEn1 goes on with its search looking
for the smallest valid path consistent support in D;.
The array M allows to reduce the number of con-
straint checks performed. HasAV alidPC Support
does not check (j, M;j,) (see line 5) because it is
not a valid path consistent support for (¢, a). Indeed,
if it is the first time that HasAV alid PC' Support is
called for the pair arc value [(4, j), a], Mjjo = nil,
otherwise HasAV AlidPC Support has been called
by PropagDeletion (Fig. 2) because the current
valid path consistent support of (i, a) on C;; has
been deleted and (j, M;j,) is no longer in D;. Fur-
thermore, by definition of Mj;,, there is no valid path
consistent support of (¢, a) in D; lower than M;j,.
So,if (7, a) has a valid path consistent support in D;,
it is greater than M;;,. Furthermore,if b € D; is a
valid path consistent support for (i, a), a > Mz
since if a < M (4, a) is not a valid path consistent
support for (j, b) andif a = Mj;5, b would have been
found in S;j,. IsValidPathConsistent (Fig. 3) is
used to know whether a pair of values ((7, a), (j, b))
is valid path consistent w.r.t. a third variable k. This

function looks for the smallest value ¢ in Dy, support-
ing ((i, a), (j, b)), namely such that ((¢, a), (k, c))
and ((j, b), (k, c¢)) are allowed pairs of values
not detected conservative path inconsistent by Max-
RPCEnl. If we say that a value ¢ € Dy, supports
the pair of values ((, a), (j, b)) if it is compatible
with both (i, a) and (j, b) and if it is such that (¢ >
Mika)/\(c > Mjkb)/\(a > Mkw)/\(b > Mkjc),then
IsValidPathConsistent(i, a, j, b, k, ¢)looks for
the smallest value ¢ € Dy, supporting ((i, a), (7, b)).
If at the call of this function the parameter c is
not nil, c is the value of Dj, that was supporting
((i, a), (j, b)), and so, no value lower than ¢ in Dy,
supports ((i, a), (4, b)). This allows to never check
a value of Dy, twice to know whether ((i, a), (J, b))
is valid path consistent w.rit. k. If M;1, = M, and
Mira € Dy, IsValidPathConsistent infers that
M;1q supports ((i, a), (j, b)). We could infer a sup-
port of ((i, a), (4, b)) in Dy looking for a value in
(Sika N Sjks N Dy,) but this is not cost effective.

If for all the 3-clique {i, j, k} a value ¢ € Dy
supporting ((z, a), (j, b)) has been found, a is added
in Sj; to store that b is the current valid path con-
sistent support of (i, @) in D;, and ((7, a), (j, b))
is added in S ,I:CC to store that c is currently support-
ing ((¢, a), (j, b)). Obviously, if (i, a) has no
valid path consistent support in Dj, (i, a) is deleted
and Max-RPCEn1 adds this value in DeletionList
to propag its deletion. PropagDeletion propagates
the deletion of the values of DeletionList. For each
value (j, b) in DeletionList, we have to delete all
the values supported by (j, b) (the values of Sjp)
that no longer have any valid path consistent sup-
port in D;. Furthermore, for all the pairs of values
((i, a), (K, ¢)) in SEC (the pairs of values that were
supported by (j, b)), PropagDeletion has to check
whether ((i, a), (k, c)) is still valid path consistent
w.r.t. j. If no supporting value can be found in D;,
(k, c) is no longer a valid path consistent support for
(7, a) and PropagDeletion has to look for another
valid path consistent support for (¢, a) in Dy, to know
whether (i, a) has to be deleted.

4.3 Complexity

To check whether a value a is in Sg;. (line
8 of PropagDeletion) and to remove this value
from Sg;. (line 13) in constant time, we use in
our implementation an array called SupportedBy
such that SupportedBy;y,, is the current valid path
consistent support of (i, a) in Dy, and an array
PtSupportedBy s.t. PtSupportedBy;, points at
the value a in Si;., where c is the current valid path



consistent support of (i, a) in Dy. The space re-
quired by these data structures is in O(ed) and so,
they do not change the worst case space complexity
of Max-RPCEn1 (see below).

The cost of the initialization of the data struc-
tures S, STC, M, and InitList (lines 1 to 6 of
Max-RPCEnl) is in O(ed). The time required
to determine the 3-cliques of the constraint graph
(lines 7 to 12) is in O(en). Since HasAValidPC-
Support removes from Sj;, the values that are no
longer in Dj, the test of line 3 is performed at
most O(d) times for each arc-value pair. Further-
more, the value of A;;, (which never decreases)
is increased at each step of the second loop (lines
6 to 19) of HasAValidPCSupport and if M;j,
has reached the last value of D;, M;;, is set to
oo at line 19 to stop the loop. Therefore, for
each arc-value pair [(¢, j), a], and each value
b € Dj, HasAValidPCSupport checks at most
once whether (j, b) is a valid path consistent sup-
port for (i, a). So, Max-RPCEnl checks the
valid path consistency of at most O(ed?) pairs
of values. To know whether a pair of value
((i, a), (4, b)) is valid path consistent, for each
3-clique {i, j, k} in the constraint graph, Max-
RPCEnl calls IsValidPathConsistent to look for
the smallest value ¢ € Dy, supporting ((z, a), (J, b)).
When IsValidPath-Consistent checks the valid
path consistency of ((i, a), (j, b)) w.rt. k, it checks
only the values of D, greater than the previous sup-
port of ((i, a), (j, b)) in Dy,. So, for each support
(4, b) of a value (¢, a), and each 3-clique {3, j, k},a
value of Dy, is checked at most once to know whether
(j, b) is a valid path consistent support for (i, a)
wrt. k. Therefore, the complexity due to the calls
to IsValidPathConsistent is O(cd®) where c is
the number of 3-cliques in the constraint graph, and
the worst case time complexity of Max-RPCEn1 is
O(en + ed® + cd?).

The size of InitList is O(ed) since each arc-
value pair is put in this list once. When a value is
deleted, it is put in DeletionList and it will not be
put in this list any more. So, the worst case space
complexity of DeletionList is O(nd). A value a
is in Sy if (j, b) is the current valid path consis-
tent support of (i, a). Since Max-RPCEnl looks
for only one valid path consistent support for each
value on each constraint, the size of the data struc-
ture S is in O(ed). The data structure M is an array
of O(ed) counters. If a pair ((i, a), (j, b)) is in
SEC, b is the current valid path consistent support
of (i, @) in D, {i, j, k} is a 3-clique, and (k, c)
is currently supporting ((¢, a), (4, b)). The worst

NIC

NN

Strong PC —>CPC Max-RPCEn —> Max-RPC —>k-(fl‘F)‘C —>RPC—>AC

SRPC —>SAC
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ind B are i

A—/—B:Aa w.r.. the stronger relation.

Figure 4. Relations between the men-
tioned local consistencies.

case space complexity of the data structure S is
O(cd) since for each value (i, a) € D and each 3-
clique {4, j, k} there is only one value ¢ € D;, such
that a pair ((i, a), (j, *)) is in SE.C and there is
only one such a pair of values in S{“. Therefore,
the worst case space complexity of Max-RPCEnl is
O(ed + cd).

Consequently, Max-RPCEn1 has the same worst
case time and space complexities as Max-RPCI1.

5 Pruning efficiency

We call Max-restricted path consistency enhanced
(Max-RPCEn) the local consistency achieved by
Max-RPCEnl. Like directional arc consistency
[10], which depends on the variable ordering used,
Max-RPCEn depends on the orderings used to han-
dle the domains, InitList, and DeletionList. In
the following experiments, the arc-value pairs of
InitList are checked in the lexicographic order and
DeletionList is a “Last In, First Out” list. Fig.
4 summarizes the relations between Max-RPCEn,
CPC, AC,RPC, k-RPC, Max-RPC, path inverse con-
sistency (PIC, [13]), neighborhood inverse consis-
tency (NIC, [13]), singleton arc consistency (SAC,
[6]), singleton restricted path consistency (SRPC,
[6]), and strong path consistency (strong PC [5, 19]).
There is an arrow from LC to LC" iff LC is strictly
stronger [6] than LC", namely if on any CN on which
LC holds, LC’ holds too and there is at least one CN
in which LC’ holds and LC does not. A crossed line
between two local consistencies means that they are
not comparable w.r.t. the stronger relation. A proof
of these relations can be found in [8].

The stronger relation does not induce a total order-
ing. Especially, CPC and Max-RPCEn are not com-
parable to SAC, NIC and SRPC wur.t. the stronger
relation. Furthermore, Fig. 4 does not show if a local
consistency is far more pruningful than another or if
it performs only few additional value deletions.

Therefore an experimental evaluation has been
done. We used the random uniform CN generator
of [14]. It involves four parameters: n the number
of variables, d the common size of the initial do-
mains, p1 the proportion of constraints in the network
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CNs with n=40 and d=15.

(the density p1=1 corresponds to the complete graph)
and p2 the proportion of forbidden pairs of values
in a constraint (the tightness). The generated prob-
lems have 40 variables and 15 values in each domain.
For each local consistency and each density pl, we
have determined T, (pl), namely the tightness such
that the local consistency finds the inconsistency of
50% of the CNs generated with tightness T (pl)
and density pl. For all the mentioned local consis-
tencies, the value Ty (pl) for any density pl is given
in Fig. 5. We also show these bounds for the variable
completability filtering [12], which removes the val-
ues that do not belong to any solution, and thus is the
strongest filtering we can have when we limit filter-
ing to the domains. Many instances have to be con-
sidered to determine the T,;; bound. This explains
that the generated problems are relatively small.

On sparse random uniform CNs, conservative path
consistency is less prunigful than singleton arc con-
sistency, but on more dense CNs, CPC has a better
pruning efficiency than SAC. These two local con-
sistencies removes almost all the strong path incon-
sistent values. Obviously, on complete CNs, CPC is
strong path consistency. However, even on relatively
sparse CNs, the T},;; bounds of CPC and strong PC
are very close. Compared to Max-RPC, Max-RPCEn
is a substantial enhancement w.r.t. the pruning effi-
ciency.

6 Time efficiency

The same random uniform CN generator is used
to compare the time efficiency. Fig. 6 shows the re-
sults on relatively sparse CNs (p1=5%) having 1000

variables and 20 values in each initial domain, and
Fig. 7 presents performances on complete CNs with
n=100 and d=30. For each tightness, 50 instances
were generated, and Fig. 6 and Fig. 7 show mean
values obtained on a Pentium I1-266 Mhz with 64 Mo
of memory under Linux.

The advantage of using Max-RPCEnl on sparse
CNs is obvious. The bidirectionality allows sub-
tantial constraint check savings and although Max-
RPCEn1 deletes more values than Max-RPCl1, it re-
quires less cpu time. There is “few” 3-cliques in
the constraint graph of these sparse CNs, and Max-
RPC1 and Max-RPCEn1 requires at most 108 sec-
onds (On all the CNs generated with a tightness lower
than 0.69, PC8, the PC algorithm presented in [5], re-
quires more than 68 hours).

120 CPU time (seconds) n=1000, d=30, and density=5%

—&— Max-RPC1
100 —0— Max-RPCEN1

Tightness
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Figure 6. Experimental evaluation on
CNs with n=1000, d=30, and den-
sity=0.05.

On dense CNs, Max-RPCEnl still requires less
constraint checks and list checks than Max-RPC1.
However, there is many 3-cliques in the constraint
graph, and Max-RPCEnl detects the conservative
path inconsistency of many pairs of values. There-
fore, for each value (i, a) and each constraint Cjj,
Max-RPCEn1 checks more values of D; to find a
valid path consistent support for (i, a) than Max-
RPCI to find a path consistent support. So, Max-
RPCEnlI requires more cpu time than Max-RPC1 as
long as it removes only few values. However, the cpu
time performances of Max-RPCEn1 and Max-RPC1
remain of the same order of magnitude, and the im-
provement of the pruning efficiency is significant on
these complete CNss.
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Figure 7. Experimental evaluation on
complete CNs with n=100, and d=20.

7 Conclusion

In this paper, we proposed a new local consistency
called Max-restricted path consistency enhanced that
removes far more values than Max-RPC. An al-
gorithm, called Max-RPCEnl is also proposed to
achieve it. This algorithm has cpu time performances
that remain comparable to those of Max-RPC1, and
it requires less constraint checks. Therefore, while
considering both time and pruning efficiences, Max-
restricted path consistency enhanced is one of the
most insteresting local consistencies.
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