
Resolution and Constraint Satisfaction

David G. Mitchell

Simon Fraser University
Burnaby, Canada

Abstract. We study two resolution-like refutation systems for finite-
domain constraint satisfaction problems, and the efficiency of these and
of common CSP algorithms. By comparing the relative strength of these
systems, we show that for instances with domain size d, backtracking
with 2-way branching is super-polynomially more powerful than back-
tracking with d-way branching. We compare these systems with propo-
sitional resolution, and show that every family of CNF formulas which
are hard for propositional resolution induces families of CSP instances
that are hard for most of the standard CSP algorithms in the literature.

1 Introduction

Algorithms for constraint satisfaction problems (CSPs) are generally described
in terms of a scheme which may be instantiated in many ways. For example, the
usual backtracking algorithm does not prescribe how to choose which variable
to branch on, leaving this detail up to implementers. Experimental studies of
algorithms examine the relative performance of implementations with particu-
lar choices for these details, and on particular benchmark instances. Another
approach is to consider the fundamental strengths or limitations of such algo-
rithms. Here we study the relative power of various techniques measured by how
efficiently they can refute a given unsatisfiable instance in the best circumstance
— that is, with optimal strategies. We consider a number of standard CSP algo-
rithms, and also two resolution-like proof systems which are useful for modeling
the reasoning used in these algorithms.

Since refutations are the basis for our study, formally we restrict our atten-
tion to unsatisfiable instances, but our study is equally motivated by performance
on satisfiable instances. For satisfiable instances backtracking with an optimal
branching strategy will find a solution without backtracks. However, any poly-
time computable branching strategy will make incorrect choices, necessitating
showing unsatisfiability of restricted instances during search. Indeed, the only
way a backtracking algorithm can generate a large search tree is if it does so
while showing unsatisfiability in this sense.

We begin by recalling a familiar example from propositional logic. Consider a
set φ of propositional clauses φ (henceforth simply called a formula). The lines of
a resolution derivation from φ are clauses, and the resolution inference rule allows
adding the line A∨B if we already have the lines A∨ x and B ∨ x. A resolution
derivation of the empty clause from φ is called a resolution refutation of φ. There

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

2

is a refutation of φ if and only if φ is unsatisfiable. A derivation is tree-like if any
derived line is used at most once to derive further lines. The smallest tree-like
resolution refutation of a formula is of the same size as the search tree constructed
by the backtracking algorithm (i.e., DLL) for SAT under an optimal branching
strategy. Since there are formulas which have short refutations but no short
tree-like refutations, we know that there are formulas which can be efficiently
proven unsatisfiable by some algorithm, but require exponential time for DLL
algorithms. The most effective current SAT solvers enhance DLL with “conflict
clause learning”, which provides more power than tree-like resolution but less
power than un-restricted resolution. See [5] for initial steps in characterizing just
how much power is gained.

1.1 CSP Refutations

Perhaps the most natural way to adapt the resolution idea to CSPs is to gen-
eralize the intuition of “exhausting the domain” of a variable. This leads to a
system we call Nogood Resolution (NG-RES for short), because the lines of
a refutation in this system are nogoods. A nogood for a CSP instance I is a
disjunction of the form (xi1 ̸= ai1 ∨ xi2 ̸= ai2 ∨ . . .), where each xi is a variable
and each ai a value from the domain. If the domain is {1, . . . , d}, then from a
collection of nogoods {(x ̸= 1 ∨ X1), (x ̸= 2 ∨ X2), . . . (x ̸= d ∨ Xd)}, we may
soundly infer (X1 ∨X2 ∨ . . .∨Xd), since every possible value for x is included in
one of the disjunctions. For CSP instance I we take as axioms the set of nogoods
corresponding to the partial assignments explicitly forbidden by constraints of
I, and there is an NG-RES derivation of the empty nogood from these if and
only if I is unsatisfiable. NG-RES is equivalent to a system introduced in [1]
and a special case of a general family of systems studied in [15].

NG-RES corresponds naturally to the usual backtracking algorithm for
CSPs, which we denote BT. To solve instance I, BT selects a variable x with
domain D = {1, . . . , d}, and for each a ∈ D recursively tries to satisfy I restricted
by setting x = a. Clearly I is unsatisfiable if and only if all d recursive calls fail.
Now, consider a BT search tree T for unsatisfiable instance I, and label each
leaf of T with a nogood that is in the axioms for I. Recursively label the internal
nodes with derived nogoods, by labeling each node N with the result of applying
the NG-RES derivation rule to the collection of nogoods labeling the children
of N. A simple induction shows that the root of T is labeled with the empty
nogood if and only if I is unsatisfiable. Moreover, the minimum number of lines
in a tree-like NG-RES refutation of I is exactly the number of recursive calls
made by BT under an optimal branching strategy.

We can compare the relative power of both algorithms and refutation proof
systems in a uniform way as follows. For any two proof systems A and B , we
say that A dominates B if for every instance I the smallest A-proof of I is
no larger than the smallest B-proof of I. We may also regard algorithms as
proof systems as follows. For any complete CSP algorithm A and unsatisfiable
instance I, we view a trace of the execution of A on input I as an A-proof that

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

3

I is unsatisfiable. Thus, we may say that BT dominates tree-like NG-RES,
and vice versa — as refutation systems they have equivalent power.

Domination is a very strong but brittle property. We may easily find two proof
systems are of essentially the same power but neither dominates the other. As a
more robust measure, we say that A p-simulates B if we can always transform a
B-proof of an instance I into a A-proof of I in polynomial time. As an example
consider negative resolution, the restriction of propositional resolution in which,
at each application of the resolution rule, one of the two clauses used must
be negative (i.e., contain no positive literals). Certainly unrestricted resolution
can p-simulate negative resolution, as every negative resolution refutation is
also an unrestricted refutation. However, negative resolution cannot p-simulate
unrestricted resolution. In particular, Goerdt [13] showed that there is an infinite
family of formulas which have polynomially sized resolution refutations, but no
negative refutations of size less than nΩ(logn). We will later make us of these
same instances in analyzing CSP algorithms.

The algorithms we will consider are backtracking-based algorithms, including
the use of the following standard techniques: forward checking (FC), conflict-
directed backtracking (CBJ), arc-consistency filtering (AC), k-consistency en-
forcement (K-CON) and nogood learning. We denote combinations of tech-
niques with +, for example BT+FC denotes backtracking with forward check-
ing. In general, by this notation we mean any complete algorithm definable by the
given combination of methods. For example, by BT+AC, we denote the class of
algorithms which amount to backtracking plus any use of arc-consistency filter-
ing. Thus, BT which does not do any arc-consistency, and the algorithm MAC
which is BT modified by doing complete arc consistency processing at every
search node, are both included in BT+AC. BT+CBJ included backtrack-
ing plus any amount of back-jumping. The class of nogood learning schemes
we capture is all restrictions of the general scheme described in [19], and called
“backjump learning” in [12]. Here we denote this class Backjump Nogood Learn-
ing (BNL), and BT+BNL constitutes backtracking algorithms which use any
strategy for storing “backjump nogoods”. These are just the nogoods in the
NG-RES refutation corresponding to BT as described above, which are also
used in backjumping.

Baker [1] observes informally that (in our terminology) NG-RES dominates
BT, BT+CBJ, and dynamic backtracking (DBT). Here we extend Baker’s
observations, showing that:

1. Tree-like NG-RES also dominates BT+FC and BT+CBJ.
2. NG-RES dominates, in addition to those algorithms that tree-like NG-RES

dominates, the algorithms BT+AC, BT+BNL and BT+K-CON. In fact
it dominates any combination of these.

The first point illustrates that FC and CBJ add no additional power to BT,
in that everything they accomplish can be done by a good enough branching
strategy. FC is a simple but useful mechanism to enforce certain properties of
in the branching strategy. CBJ amounts to using a partial tree-search to decide

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

4

which variable to branch on next, and then remembering the results of that
search so that one branch does not have to be explored a second time. The
second point gives us a method to characterize limitations of these methods,
in that they can never refute an instance using fewer steps than an optimal
NG-RES prover.

The main result in [1] implies that BT, BT+CBJ and DBT cannot p-
simulate NG-RES . In particular, an infinite family of instances {In} is exhib-
ited for which there are NG-RES proofs of size polynomial in n, but no BT,
BT+CBJ or DBT proofs of size less than nΩ(log n), where n the number of
variables. The instances {In} can be solved in polytime by algorithms which are
efficient on instances with bounded induced width (or tree-width) [1], such as
adaptive consistency [11] or BT with full backjump nogood learning [12].

Here, we exhibit an infinite family of instances MPHn, that are hard for all
the algorithms discussed so far, but are efficiently solved by making a “small”
modification to the backtracking algorithm.

1.2 2-Way vs K-way Branching

Most papers in the CSP literature on backtracking algorithms consider the ver-
sion described above (BT), which might be described as backtracking with d-way
branching, where d denotes the domain size. Another version, available in many
commercial solvers such as Ilog and Eclipse, we call backtracking with 2-way
branching, here be denoted 2BT. In 2BT we have mutable domains for vari-
ables. To solve I, a variable x and a value a in the current domain of x are
selected, and two recursive calls are made. The first is to solve I with x set to
a, and the second with the value a removed from the domain of x. Clearly I is
unsatisfiable if and only if both modified instances are unsatisfiable.

There are intuitive arguments in favour of both versions. The argument for
superiority of 2-way branching is that, in the process of finding that there is no
solution to I with x = a, we may have acquired information indicating that the
best way to solve I is to branch on some variable other then x, rather than trying
other values for x. The argument for preferring k-way branching is roughly that
a priori it has a smaller space to search. If n is the number of variables, then
k-way backtracking requires time at most O(dn). Allowing 2-way branching is
essentially equivalent to transforming the CSP instance to a SAT instance with
dn variables, wherein the only obvious upper bound is 2dn >> dn.

It is easy to check that any strategy for k-way branching can be simulated
by a 2-way branching strategy with no loss of efficiency. But can any 2-way
branching strategy be efficiently simulated by some k-way strategy? We show
that, at least when we allow enhanced versions involving some learning strategy
the answer is no. In particular, we exhibit an infinite family of instances MPHn

with the following properties:

1. MPHn has no NG-RES refutations of size smaller than nΩ(logn).
2. The k-way branching algorithm BT, with optimal branching strategy, and

optimal use of FC, AC, BCJ, K-CON, and BNL cannot solve MPHn in
fewer than nΩ(logn) steps.

Berthe Choueiry

5

3. The 2-way branching algorithm 2BT, with a simple branching strategy, AC,
and a simple and efficient BNL strategy, can solve MPHn in time O(n3).

Item 1 is obtained by showing that negative resolution efficiently simulates
NG-RES , and applying Goerdt’s result [13] that there are formulas MPHPn

which have no short negative refutations, but have short general refutations. Our
CSP family is chosen so the CNF encoding of MPHn is identical to MPHn,
and the claim follows. Item 2 follows from 1 plus NG-RES simulations of the
algorithms. For item 3, we exhibit such an algorthim.

1.3 C-RES and Hard Instances

If NG-RES cannot model the reasoning of CSP algorithms using 2-way branch-
ing, then we need a stronger proof system to do so. Such a system was suggested
to us by de Kleer’s study [10] showing a connection between CSP local con-
sistency methods and propositional resolution. We call this system “Constraint
Resolution”, or C-RES for short. For a CSP instance I, we let the axioms be
the clauses of a CNF formula CNF(I) encoding I, sometimes called the direct
encoding of I [22]. A line in a C-RES proof of I is a clause over the variables
of CNF(I), and indeed a C-RES refutation is just a resolution refutation of
CNF(I). This system has been used or studied in [16, 17, 2, 3, 18]. In [16], it
was shown that C-RES dominates BT, BT+FC, BT+AC, BT+k-CON,
BT+BNL and DBT. In a little more detail:

1. Tree-like C-RES dominates both versions of backtracking, including those
enhanced by FC, AC, and CBJ. Tree-like C-RES p-simulates any algo-
rithm dominated or p-simulated by tree-like NG-RES .

2. C-RES dominates all algorithms dominated by tree-like C-RES , and all
of these with the addition of BNL and K-CON.

We will show that C-RES p-simulates NG-RES ; we have already pointed out
that NG-RES cannot p-simulate C-RES . It is natural to ask what the rela-
tionship is between our versions of CSP resolution and propositional resolution.
Not surprisingly, under natural translations between problem spaces C-RES is
of essentially the same power as propositional resolution. This can be shown by
simple simulation arguments.

There is a large and varied collection of instance families which are hard for
both C-RES and NG-RES , in the sense that the smallest refutations of these
instances are of exponential size. These instances must also require exponential
time for the algorithms we consider. Hard instances based on simple pigeon-hole
formulas were addressed in [16], and typical random CSP instances were shown
hard in [17, 18, 23]. Random instances of k-colouring were shown hard in [2]. The
simulations between C-RES and RES show that, corresponding to any family
of k-CNF formulas which require exponential-sized resolution refutations, there
is a k-ary boolean CSP family and also a binary CSP family with domain size k
that require exponential-sized C-RES and NG-RES refutation.

Berthe Choueiry

6

1.4 Outline

The remainder is organized as follows. Section 2 provides definitions and gives
an efficient C-RES simulation of NG-RES . Section 3 gives the separations be-
tween NG-RES and C-RES , and between BT and 2BT. Section 4 discusses
simulations between propositional resolution and C-RES and construction of
hard instances for resolution-based CSP algorithms. Section 5 Gives NG-RES
simulations of CSP algorithms. Finally, Section 6 briefly discusses some impli-
cations and future work.

2 Preliminaries

A CSP instance I is a tuple I = ⟨X, D, C⟩. X is a set of variables, D a set
of domains, one for each variable in X . We will consider only the case where
all variables have the same domain, and call that domain D. This restriction
is purely a matter of convenience, and has no bearing on our results. C =
{C1, C2, . . . , Cm} is a set of constraints, where each Ci = ⟨Si, Ri⟩ is a pair in
which Si is a tuple of variables from X , and Ri is relation over D of arity |Si|.
That is, Ri ⊂ D|Si|. Since we can denote the set of variables of I by vars(I) or
even vars(C), we usually leave X implicit (i.e., we write I = ⟨D, C⟩).

Let I = ⟨D, C⟩ be a CSP instance. An assignment α for I is a function
α : vars(C) → D mapping each variable to a domain value. A partial assignment
is an assignment which may be undefined at some variables: we denote that α is
undefined at x by α(x) = ⊥. If α is an assignment and S = ⟨x1, . . . , xk⟩ a tuple
of variables, then we write α(S) to denote ⟨α(x1), . . . , α(xk)⟩. An assignment
α for I satisfies a constraint ⟨S, R⟩ if α is defined at every variable in S, and
α(S) ∈ R, and satisfies I if it satisfies every constraint in C. Assignment α
violates a constraint C = ⟨S, R⟩ if α is defined at every variable in S, and
α(S) ̸∈ R.

A (CSP) literal is an expression x = a, where x is a variable and a a domain
element. We often write an assignment as a set of literals, i.e., α = {x = a, y = b}
is the assignment with α(x) = a, α(y) = b and α(z) = ⊥ for z different from
x, y. We can then write α ⊂ β to indicate that β is defined at all variables α is,
and possibly others. If α is an assignment for which α(x) = ⊥, then α; x = a is
the assignment such that α; x = a(y) = α(y) for y ̸= x, and α; x = a(x) = a.

2.1 Propositional Resolution and Proof Complexity

A literal is a propositional variable or its negation; A clause is a set of literals,
written as a comma-separated sequence of literals within parentheses. A formula
is a set of clauses. For a formula φ, we write vars(φ) for the set of variables
appearing in φ. A truth assignment τ for φ is a function τ : vars(φ) → {t, f}.
For simplicity, we extend τ to negative literals so for x ∈ vars(φ), τ(x) = t ↔
τ(x) = f . Assignment τ satisfies clause C if τ(p) = t for at least one literal in
C, and satisfies φ if is satisfies every clause of φ.

7

The propositional resolution rule allows us to infer a clause (X, Y), where X
and Y denote arbitrary sets of literals, from two clauses (X, x) and (Y, x). We
say that we resolve (X, x) and (Y, x), on x, and that (X, Y) is the resolvent. A
resolution derivation of a clause C from a set of clauses φ is a sequence C0, . . . Cm

of clauses, where each clause Ci is either an element of φ or is derived by the
resolution rule from two clauses Cj , Ck, for j, k < i, and Cm = C. The derivation
is of length or size m. A resolution derivation of the empty clause (denoted !)
from φ is called a resolution refutation of φ. We will denote this proof system by
RES . RES is a sound and complete refutation system, meaning that there is
a refutation of a formula φ if and only if φ is unsatisfiable. We will use “proof”
and “refutation” interchangeably.

For any RES derivation π, the graph of π is the directed acyclic graph (DAG)
Gπ

def= ⟨V, E⟩ where V is the set of clauses of π and E is the set of ordered pairs
(u, v) from V such that v is derived in π by resolving u with w, for some w in V .
We will extend these notions to the other proof systems we use in the natural
way. The restriction of proof system P to proofs whose graphs are trees is called
tree-like P .

Intuitively, a proof is a string which can be efficiently inspected, after which
the reader is convinced of some proposition. Adapting the formalization of a
proof system from [9], we formally define a refutation system P for a CSP to be
a poly-time function P whose range is the set of unsatisfiable CSP instances. A
string π such that P(π) = I is a P-proof of I. An algorithm which computes
the function P is a verifier for the proof system. For any proof system P , we
define the P-complexity of an instance I to be the minimum size of any P -proof
of I, which we denote by P(φ).

We may associate to any complete CSP algorithm A a refutation system A,
where the trace of A on unsatisfiable instance I is a A-proof of I. We say that a
proof system A dominates proof system B if for every instance I, A(I) ≤ B(I).
We say that proof system A p-simulates proof system B if there is a polynomial-
time computable function f such that for every unsatisfiable instance I and every
A-proof π of I, f(π) is a B-proof of I.

2.2 Nogood Resolution

A nogood is a set of CSP literals in which no variable occurs in two literals.
Note there is a 1-1 correspondence between partial assignments and nogoods.
For clarity, we write η(α) for a nogood, where α is an assignment. The initial
nogoods of an instance I = ⟨D, C⟩ is the set

Init(I) = {η(α) : ⟨S, R⟩ ∈ CI and S = vars(α) and α(S) ̸∈ R}

8

The nogood resolution rule allows the following inference of a nogood from a
set of nogoods, provided that the domain of x is {1, 2, . . . d}:

η(x=1, N1)
η(x=2, N2)

...
η(x=d, Nk)

x ∈ {1, . . . , d}
η(N1, N2, . . .Nk)

A nogood derivation of a nogood N from a set of nogoods Γ for instance I with
domain A = {1, 2, . . . d}, is a sequence of nogoods, N0, . . . Nm, where each nogood
Ni is either an element of Γ or is derived by the nogood resolution rule from a set
of nogoods Ni1 , Ni2 , . . . , Nik , where each ij < i, and Nm = N . The derivation is
of length or size m. A nogood resolution refutation of I is a nogood resolution
derivation of the empty nogood η() = ! from the set of initial nogoods of I.
We denote the nogood resolution system by NG-RES . NG-RES is a sound
and complete refutation system. That is, I has an NG-RES refutation if and
only if I is unsatisfiable. Often, we will identify a CSP instance I with its set
of initial nogoods Init(I), together with its domain. We will henceforth always
assume the domain is D = [d] = {1, . . . , d}.

Example 1. Let G be a graph with vertices {a, b, c} and edges {(a, b), (b, c), (a, c)},
and let R ̸= be the binary relation on {1, 2} such that let R̸=(x, y) ⇔ x ̸= y. Let
I be the CSP instance I = ⟨{1, 2}, ⟨⟨a, b⟩, R̸=⟩, ⟨⟨b, c⟩, R̸=⟩, ⟨⟨a, c⟩, R̸=⟩⟩. G is
2-colourable if and only if I is satisfiable. The set of initial nogoods of I is
{η(a = 1, b = 1), η(a = 1, c = 1), η(b = 1, c = 1), η(a = 2, b = 2), η(a = 2, c =
2), η(b = 2, c = 2)} and the following tree-like NG-RES refutation of I demon-
strates that G is not 2-colourable.

η(b = 1, a = 1)
η(b = 2, c = 2)
η(a = 1, c = 2)

η(b = 1, c = 1)
η(b = 2, a = 2)
η(a = 2, c = 1)

!!!!
η(a = 1, c = 2)
η(a = 2, c = 2)

η(c = 2)

!!!!
η(a = 1, c = 1)
η(a = 2, c = 1)

η(c = 1)
✏✏✏✏✏

η(c = 1)
!!!!!!!

η(c = 2)
η()

2.3 C-RES

For any CSP instance I = ⟨D, C⟩, we define the associated formula CNF(I) as
follows. For each CSP variable x ∈ vars(I) we have d propositional variables, one
for each value x may take. We write x :a for the propositional variable intended to
assert that CSP variable x is assigned value a. For each CSP variable x, CNF(I)

9

has a domain clause asserting that x must take some value from A. For each
constraint C = ⟨S, R⟩ of I, and each partial assignment α defined at exactly the
variables in S, if α violates C then CNF(I) has a conflict clause which forbids
the corresponding assignment. There is a one-to-one correspondence between
the conflict clauses in CNF(I) and the initial nogoods of I. So the propositional
formula associated with I is

CNF(I) = {{v :a : a ∈ D} : v ∈ vars(I)} ∪ {{x :a : x = a ∈ α} : η(α) ∈ Init(I)}

CNF(I) is satisfiable if and only if I is satisfiable. Remark: It is natural to
add clauses that enforce that a CSP variable be given at most one value, as well
as those that say it need at least one. The presence of these clauses has no effect
on our results, so we leave them out for simplicity.

We define a constraint resolution refutation (C-RES refutation) for any CSP
instance I to be a propositional resolution (RES) refutation of the formula
CNF(I). Soundness and refutational completeness of C-RES follow from the
soundness and completeness of RES , together with the correctness of CNF(I).

2.4 Negative C-RES simulation of NG-RES

Here we show how to efficiently simulate NG-RES with C-RES as follows.

Proposition 1. For any n-variable CSP instance I with domain D,

C-RES(I) ≤ |D|NG-RES(I) + n.

Proof. Let π be an NG-RES refutation of I. Define a mapping "# from nogoods
to clauses such that, for any nogood N ,

(x=a) ∈ N ⇐⇒ x :a ∈ "N#.

Construct a C-RES refutation of I (i.e., a propositional resolution refutation
of CNF(I)) as follows. First, modify π by replacing each nogood N of π with
"N#. Then, for each inference step, which now looks like this;

(x :a1, X1)
(x :a2, X2)

...
(x :ak, Xk)

(X1, X2 . . . , Xk)

re-arrange the clauses together with the domain clause (x :a1, x :a2, . . . , x :ak),
to obtain the resolution derivation of Figure 1. The new construction is clearly a
propositional resolution refutation, and since each leaf is an element of CNF(I),
it is a C-RES refutation of I. Moreover, it is a negative resolution refutation,
since the clauses corresponding to nogoods are all negative clauses. For each
derived nogood N in π, the new refutation has |D| derived clauses. There must
also be one occurrence of each of the n domain clauses, giving the stated size
bound.

10

(x :a1, x :a2, . . . , x :ak) (x :a1, X1)

(x :a2, . . . , x :ak, X1) (x :a2, X2)

(x :a3, . . . , X1, X2)

. . .

(x :ak, X1, . . . , Xk−1) (x :ak, Xk)

(X1, X2 . . . , Xk)

Fig. 1. C-RES simulation of an NG-RES step

3 Separating K-Way and 2-Way Branching

Theorem 1. There is an infinite family of CSP instances MPHn, one for each
integer n, such that

1. C-RES(MPHn) = O(n3),
2. NG-RES(MPHn) = nΩ(log n).

We construct the family MPHn as follows. Fix n ∈ N so that m = ⌊log2 n⌋ is
even. Let the domain be D = [m] = {1, . . .m}. The variable set is vars(MPHn)=
{x0, x1, . . . , xn−1}. Define Rm,r = {⟨x, y⟩ : x, y ∈ [m], with x, y not both r}.
The constraint set of MPHn is

CMPHn =
⋃

r∈[m]

⎧
⎨

⎩⟨⟨xi, xj⟩, Rm,r⟩ :
k ∈ {b2r : 0 ≤ b < n/(2r)},
k ≤ i < k + 2r−1,
k + 2r−1 ≤ j < k + 2r

⎫
⎬

⎭

These instances are, more intuitively, as follows: We have n variables, each with
domain of size m = log2 n. Variables x1, x2 may not both have value 1, x3 and x4

may not both be 1, x5 and x6 may not both be 1, etc. If any variable in {x1, x2}
has value 2, then no variable in {x3, x4} may have value 2, and similarly for the
pairs of sets {x5, x6}, {x7, x8}, etc. For value 3, the constraints are on pairs of
sets of 4 variables, and so on. Finally, if any variable in {x1, . . . , xn/2} has value
m, then no variable in {x(n/2)+1, . . . , xn} may, and vice versa.

Theorem 1, follows with only a little care from the proof of the main result in
[13], where Goerdt defines an infinite family of CNF formulas, denoted MPHPn,
and proves the following.

Theorem 2 (Goerdt [13]). RES(MPHPn) = O(n3), but N-RES(MPHPn) =
nΩ(log n).

Proof. (Theorem 1) The formula CNF(MPHn) associated to our CSP instance
MPHn is identical to the formula MPHPn in [13]. The C-RES simulation
we of NG-RES we give in proving Proposition 1 is a negative derivation, so
it follows that MPHn has no NG-RES refutations of size less than nΩ(log n).
Trivially, MPHn has size O(n3) C-RES refutations.

11

Theorem 3. The family of CSP instances MPHn satisfies

1. MPHn cannot be solved with BT in less than nΩ(log n) time, even with an
optimal branching strategy and optimal use of any or all of FC, AC, CBJ,
K-CON and BNL, but

2. MPHn can be solved in time O(n3) by 2BT, using a simple branching strat-
egy, AC, and a simple and efficient BNL learning scheme.

Proof. Given Theorem 1, the lower bound requires only that NG-RES effi-
ciently simulates the algorithms addressed. We give these simulations in Sec-
tion 5. To show the upper bound, we exhibit such an algorithm.

It is important to understand that AC, for example, does exactly the same
thing when used to enhance BT or 2BT, but learning is fundamentally different.
When learning while executing BT, we construct a nogood from a subset of the
current partial assignment that BT is exploring, which it is now known cannot
be extended to a satisfying assignment. While executing 2BT, the current as-
signment involves both assignments of values to variables and “non-assignments”
of values to variables. Thus, we must learn “generalized nogoods”, in which we
can include both claims of the form xi ̸= ai and claims of the form xj = aj .

The branching strategy for our algorithm is: Select a maximally constrained
value amongst all variables and values, and set if first to maximize the number
of values removed from other domains (that is, in the manner of fail-first). We
assume AC is executed after every assignment made by 2BT. The learning
strategy is: Derive all back-jump clauses but record only those which are of size
one or are strictly positive (whereas standard nogoods are strictly negative).

Let S(n) denote the number of steps executed by the algorithm on MPHn.
At the root, the algorithm chooses value d from some variable. Since the instance
is symmetric with respect to variables, we may assume it is variable x1. We set
x1 = d and then run and arc consistency algorithm, which removes the value d
from the domains of all variables x1+n/2, . . . xn. The value d is now unconstrained
in variables x2, . . . xn/2 (since their only constraints are now satisfied). So, we
are left with an instance of MPHn/2 on variables x1+n/2, . . . xn, which we solve
recursively in time S(n/2). It is not hard to verify that in doing this the algorithm
will learn the positive nogood that expresses (x1+n/2 ∨ . . . ∨ xn).

Now we to search the other branch, beginning by setting x1 ̸= d. The most
constrained values are now d in variables x2, . . . xn/2. (We don’t count learned
nogoods for the branching heuristic, and because x1 ̸= d, each value d for vari-
ables x1+n/2, . . . xn now has one less constraint.) So we now branch on d for some
xi with i ∈ {2, . . . n/2}. After setting xi = d, arc consistency removes d from
the domains of x1+n/2, . . . xn, and falsifies the learned clause. Setting xi ̸= d, we
repeat the same argument for value d of the remaining variables in x2, . . . xn/2,
and eventually obtain an instance of MPHn/2 on variables x1, . . . xn/2. The to-
tal time (including allowing n2 time to compute the branching heuristic), can
be seen to be:

S(n) ≤ 2S(n/1) + O(n2) ≤ O(n3)

12

The algorithm also seems to run in O(n3) time with the slightly more nat-
ural branching strategy: branch the most constraint value of any variable with
smallest domain. However, this version is less amenable to analysis.

4 C-RES vs RES and Hard Instances

The simplest transformation from k-SAT to CSP involves having the same set of
variables, domain size 2, and a suitable k-ary constraint corresponding to each
clause. We call this the direct translation of k-SAT to CSP. When we restrict
the CSPs we consider to those which are the direct translation of CNF formulas,
we find that RES and C-RES have almost the same power.

Proposition 2. If Φ is a set of CNF formulas, and I is the set of CSP instances
that are the direct translation of the instances of Φ to CSP, then

C-RES(I) ≥ RES(Φ).

The CSP instances resulting from the direct translation from CNF formulas
all have domain size 2, and have (some significant portion of) constraints of arity
larger than 2. We give a second translation from SAT to CSP, which generates
binary CSP instances with large domain size, and leaves resolution complexity
unaltered. For simplicity, we restrict our attention to k-CNF formulas, in which
every clause has the same number of literals.

For any k-CNF formula φ, we define the binary translation of φ to CSP to
be the instance I constructed as follows. Let n be the number of variables and
m the number of clauses of φ. The domain of I is D = [k] = {1, . . . k}, The
constraint set is constructed as follows. There is a variable xi for each clause
Ci of φ. For each pair of clauses Ci,Cj , such that there is a literal p in Ci and
its negation p in Cj , there is a constraint ⟨⟨xi, xj⟩, Ri,j⟩. The rth value in the
domain of xi is intended to correspond to the rth literal of Ci (under an arbitrary
but fixed ordering). So if p is the rth literal in Ci, and p is the sth literal in Cj ,
then I must have the initial nogood η(xi = r, xj = s). The constraint relations
Ri,j are chosen so that I has the initial nogoods on xi and xj .

Proposition 3. For any k-CNF formula φ, if I is the binary translation of φ
to CSP, then C-RES(I) ≥ RES(φ)

Thus, any set of CNF formulas for which exponential resolution lower bounds
hold translates directly into two sets of CSP instances for which exponential
C-RES and NG-RES lower bounds also hold. There are many examples of
hard formulas in the literature, including [14, 20, 8, 21, 4, 6] among others.

5 Algorithm Simulations

Proposition 4. BT is dominated by tree-like NG-RES.

13

Proposition 5. CBJ is dominated by tree-like NG-RES.

Proof. Execute BT and simultaneously construct a tree-like NG-RES as de-
scribed for BT, but with one subtlety. When assigning values to variable a, exe-
cute the recursive calls for each a ∈ D in some order. After each returns, inspect
the nogood obtained at the corresponding child node. If it does not mention the
branching variable x, make no further recursive calls, label the current node with
that same nogood, and immediately return “unsatisfiable”. If it does mention
x, continue with the next recursive call. If all d recursive calls are made, resolve
together the d nogoods from the children as in BT. An easy induction shows
that the set of variables in the conflict set computed in the usual description of
conflict-directed backjumping is the same as the set of variables in the nogood
derived at that corresponding node.

Proposition 6. BT+BNL is dominated by NG-RES.

Proof. (Sketch) The nogoods constructed by the caching schemes, as just de-
scribed, are exactly those derived according to our scheme for constructing refu-
tations corresponding to BT or CBJ executions, so we execute this nogood
caching strategy merely by adding any chosen derived nogood to the cache.

Proposition 7. FC is dominated by tree-like NG-RES.

Proof. We simulate the domain reductions performed by FC as follows. For each
variable x we maintain an array C(x) = [η1, . . . , ηk]. Initially, each ηi has the
special value ◦. If the algorithm extends assignment α to α; x = a, and as a
result deletes the value b from the domain of variable y, then η(x = a, y = b) is
an initial nogood, and we set C(x)[a] = η(x = a, y = b). (Upon backtracking,
b is returned to the domain for y, and C(x)[a] is reset to ◦.) If the domain of
a variable x becomes empty, then the structure C(x) contains a collection of
nogoods C(x) = [η(x = 1, α1), . . . , η(x = i, αk)] which can be resolved on x
producing η(α1, . . . , αk). It can then return immediately, no matter what the
current branching variable is. At a node where we branch on x, and the domain
of x has been reduced to {1, . . . , r} from {1, . . . , r, . . . , d}, the algorithm branches
only on values 1, . . . r for x. To derive the required nogood for this node, collect
the nogoods returned by the r recursive calls, together with the k − r nogoods
stored in C(x), and then apply the resolution rule.

5.1 k-Consistency

A CSP instance is called k-consistent if every partial assignment to k−1 variables
that does not violate any constraint can be extended to any kth variable without
violating any constraint. Transforming an instance that is not k-consistent into
an equivalent instance that is k-consistent is called k-consistency processing,
or k-consistency enforcement. The “default” algorithm for doing this, which we
denote KC, is as follows. For any assignment α for k − 1 variables, and any kth

variable y, test all assignments that extend α to y. If all violate some constraint,
then α cannot be extended to a satisfying assignment. Modify I by (in our
terms) adding η(α) to its set of initial nogoods.

Berthe Choueiry

Berthe Choueiry

14

Proposition 8. BT+K-CON is dominated by NG-RES.

Proof. If the conditions for k-consistency processing to add the size k−1 nogood
η(α) are satisfied, then α does not violate any initial nogood of I, but there is
some kth variable x with α(x) = ⊥ such that, for every value a ∈ D, the extension
of α to α; x = a violates some initial nogood of I. That is, for every a ∈ D, there
is a initial nogood η(α; x = a). We may resolve all of these conflicts together on
x, obtaining the new nogood η(α), and we are done.

Proposition 9. BT+AC, when arc-consistency if computed by applying the
usual Revise procedure, is dominated by NG-RES.

Proof. Standard AC algorithms are based on repeated application the procedure
called Revise, which takes a pair of variables and a value for the first variable,
and removes that value from the domain of the first variable if there is no support
for (no value consistent with it) it at the second variable. We model domain
deletion done by Revise in essentially the same way we did for FC. If Revise
deletes a value a from the domain of variable x, because there is no support
for it at y, then for every value b in the domain of y there is an initial nogood
η(x = a, y = b). If the domain of y has not been reduced, we can resolve all of
these together to obtain η(x = a), modeling the removal of a from the domain
of x. If the domain of y has have values removed, for example by previous arc-
consistency processing, then for each value that was removed we have a collection
of nogoods “hitting” that value, which were collected at the time it was removed.
We can resolve all of these together to obtain a new nogood excluding x = a.

6 Discussion

The main conclusion about practical CSP algorithms is that, at least when
learning is involved, 2-way branching may be substantially better than d-way
branching, and should never be much worse. Since learning is essential in first-
rate SAT solvers, we expect it will also soon be considered essential in first-rate
CSP solvers. A fair experimental comparison of the two versions of backtrack-
ing is worth carrying out, but is not necessarily easy to design, as it requires
understanding “corresponding” branching strategies.

The most obvious next step in this line of work is to improve the sepa-
ration between NG-RES and C-RES (and thus between the two branching
strategies) from super-polynomial to exponential. Recently the separation be-
tween negative resolution and unrestricted resolution has been improved from
Goerdt’s nlog n to 2n/ log n [7]. The same separation almost certainly holds for
NG-RES and C-RES , but the proof method does not carry over.

References

1. Andrew B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems:
Experimental and Theoretical Results. PhD thesis, University of Oregon, 1995.

15

2. P. Beame, J. Culberson, and D. Mitchell. The resolution complexity of random
graph k-colourability. In preparation.

3. P. Beame, R. Impagliazzo, and A Sabharwal. Resolution complexity of indepen-
dent sets in random graphs. In Proc., 16th Annual Conference on Computational
Complexity (CCC), pages 52–68, June 2001.

4. P. Beame, R. Karp, T. Pitassi, and M. Saks. On the complexity of unsatisfiability
proofs for random k-CNF formulas. In Proc. of the 30 Annual ACM Symp. on the
Theory of Computing (STOC-98), pages 561–571, May 1998.

5. P. Beame, H. Kautz, and A. Sabharwal. Understanding the power of clause learn-
ing. In Proc., Eighteenth Int’l. Joint Conferences on Artificial Intelligence (IJCAI-
03), 2003. To appear.

6. E. Ben-Sasson and A. Wigderson. Short proofs are narrow: Resolution made simple.
In Proc. of the 31st Annual Symp. on the Theory of Computation. (STOC-99),
pages 517–526, May 1999. (Also appears as ECCC report TR99-022).

7. J. Buresh-Oppenheim and T. Pitassi. The complexity of resolution refinements. In
Proc., Eighteenth Annual IEEE Symposium on Logic in Computer Science (LICS-
03), pages 138–147, 2003.

8. V. Chvátal and E. Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, 1988.

9. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems. J. Symbolic Logic, 44(1):23–46, 1979.

10. J. De Kleer. A comparison of ATMS and CSP techniques. In Proc. of the 11th
Int’l. Joint Conf. on A. I. (IJCAI-89), pages 290–296, 1989.

11. R. Dechter. From local to global consistency. Artificial Intelligence, 55:87–107,
1992.

12. D. Frost and R. Dechter. Dead-end driven learning. In Proc., Twelfth Nat. Conf.
on Artificial Intelligence (AAAI-94), pages 294–300, 1994.

13. A. Goerdt. Unrestricted resolution versus N-resolution. Theoretical Computer
Science, 93:159–167, 1992.

14. A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–
308, 1985.

15. O. Kullmann. Upper and lower bounds on the complexity of generalized resolution
and generalized constraint satisfaction problems. Manuscript, 2000.

16. D. G. Mitchell. Hard problems for CSP algorithms. In Proc., 15th Nat. Conf. on
Artificial Intelligence (AAAI-98), pages 398–405, 1998.

17. David G. Mitchell. Resolution complexity of random constraints. Lecture Notes in
Computer Science, LNCS 2470, pages 295–309, 2002.

18. M. Molloy and M. Salavatipour. The resolution complexity of random constraint
satisfaction problems. Submitted.

19. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic csp. In Proc.
of the IJCAI-93/SIGMAN Workshop on Knowledge-based Production Planning,
Scheduling and Control, pages 305–316, August 1993.

20. A. Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
January 1987.

21. A. Urquhart. Resolution proofs of matching principles. Annals of Mathematics
and Artificial Intelligence, 2002. (To appear).

22. T. Walsh. SAT vs CSP. In Proc. of the 6th Int’l. Conference on the Principles and
Practice of Constraint Programming (CP-2000), pages 441–456, 2000.

23. K. Xu and W. Li. Exact phase transitions in random constraint satisfaction prob-
lems. J. of Artificial Intelligence Research, 12:93–103, 2000.

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

