Experiments in Constraint-Based
Automated Scene Generation

Simon Colton

Department of Computing, Imperial College, London, UK
sgc@doc.ic.ac.uk

Abstract. We investigate the question of automatic scene construction
for visual arts applications. We have implemented a system which can
automatically infer a user’s intentions from a partially formed scene,
express the inferences as constraints, and then use these to complete the
scene. We provide some initial experimental results with the system in
order to compare two approaches to constraint-based scene construction.
This leads on to a discussion about handing over increasingly meta-level
responsibility when building computationally creative systems.

Keywords: scene generation, constraint solving, visual arts

1 Introduction

We have for some time been building an automated painter called The Painting
Fool (www.thepaintingfool.com), which we hope will one day be accepted as
a creative artist in its own right. We initially concentrated on automating vari-
ous non-photorealistic rendering processes including segmenting and abstracting
images, and the simulation of the look and usage of various natural media such
as pencils, paints and pastels. Recently, however, we have investigated more
cognitive, higher level issues related to painting. Firstly, we set up an expert
system which can choose a painting style appropriate to an emotional keyword
describing an image of a person’s face. For instance, given the keyword ‘sadness’,
The Painting Fool would choose to use a palette of muted colours and simulate
pastels and pencils, in an attempt to heighten the melancholy expressed in the
final painting. The painting style chosen in response to the keyword ‘happiness’
is very different. Moreover, we combined The Painting Fool with a vision system
able to detect the emotion of a sitter for a portrait [5].

We have also addressed the question of getting The Painting Fool to invent
its own scenes for painting. We have so far concentrated on constructing scenes
with multiple similar objects arranged in some intelligent fashion. Paintings of
such scenes are very common, for instance fields of flowers were very popular
subject matter to the Impressionists. In [3], we implemented an evolutionary
approach to the construction of such scenes, and we further used the HR system
[2] so that the combined system both invented a fitness function and evolved
a scene which maximised the fitness, with some surprising results. While this
approach was successful, it had the drawback that to describe a new type of scene
required defining a weighted sum of correlations over the elements in the scenes.
In addition, certain constraints on the scene could not easily be guaranteed.

Partial scene #1 Partial scene #2

. Completed scene #2

Completed scene #1 II I I |III I I

Fig. 1. Inspiring Scenes. In partial scene 1, three disjoint rectangles are arranged so
that the tops, centres and bottoms are collinear, their widths and hues are equal, but
both their brightness and saturation increase from left to right. In partial scene 2, three
disjoint rectangles are arranged so that their tops are collinear and the rectangles with
bases nearer the top of the scene are slimmer, shorter and less saturated than those
with bases nearer the bottom of the scene.

We look here at an alternative approach to scene construction which attempts
to address these drawbacks. In section 2 we describe how our system is able to
induce a constraint satisfaction problem (CSP) from a partial scene supplied by
a user. We also describe two ways in which the CSP can be used to generate
scenes that contain elements adhering to the constraints exhibited in the partial
scene. In section 3, we describe some initial experimental results from using the
system. The work presented here has some overlap with the automatic derivation
of designs from sketches [8]; diagrammatic reasoning [7]; geometric modelling via
constraint solving [6] and scene understanding in machine vision applications
[10]. However, our main inspiration has been Cohen’s AARON program [9].
Much of the perceived creativity of AARON comes from the fact that it paints
imagined scenes. In section 4, we describe some differences between the system
we are building and AARON, and we use this as a springboard to discuss the
requirement of handing over increasingly meta-level responsibility when building
creative systems.

2 Constraint Based Scene Generation

We restrict ourselves to scenes which contain just rectangles of different loca-
tions, shapes, sizes and colours such as those in figure 1. These constructions are
minimal, and can be considered placeholders for elements of a scene which will
be painted. For instance, the rectangles in completed scene 2 of figure 1 could

be replaced by images of tree trunks and painted to produce a woodland scene
similar to that in Klimt’s Beechwood Forest painting of 1903. It is certainly
possible to evolve such scenes using the methods described in [3], so there is a
degree of overlap with our previous evolutionary approach. However, unless the
evolved scene completely maximised the fitness function, which is unlikely, there
would be no guarantee that certain constraints required by the user would be
upheld in the completed scene. For instance, having one rectangle fully or par-
tially occlude another in scene 2 might ruin the aesthetic of the woodland scene.
As described in section 5, we see the constraint approach and the evolutionary
approach as complementing each other, and we envisage an overall system which
is able to use these and other methods to generate sub-scenes in much larger,
more complex scenes.

In addition to the guarantee of certain constraints holding, in order to rapidly
train The Painting Fool with numerous scenes, another requirement we specified
was that the user would train the scene generator visually. In practice, this
means that the user moves and changes rectangles on screen until the constraints
he/she wishes to be upheld are present in their partial scene. Then, the system
infers various constraints and asks the user to discard any which are present
but not desired (and allows the user to pre-empt this by turning off certain
constraint deriving processes). In subsection 2.1, we describe how the constraints
are derived and represented in the syntax of the CLPFD constraint solver [1],
and in subsection 2.2, we describe how we introduce randomness to the scene
description. The user dictates how many rectangles are needed to complete the
scene, and to achieve this, the system uses the derived constraints to generate
and solve either a single constraint satisfaction problem (CSP), or multiple CSPs,
as described in subsection 2.3. In either case, the variables in the CSP relate to
the x and y coordinates of each rectangle, along with their height, width, hue,
saturation and brightness. The constraints relate the variables either of one
rectangle (a unary constraint) or of two rectangles (a binary constraint). The
ability to derive a specification for a scene further advances the work presented
in [3], where the user had to explicitly specify a fitness function, or relied on
the HR system to invent one. We plan to implement the ability to interpret the
observed constraints as a fitness function, so that the evolutionary approach can
also be driven by user supplied examples.

2.1 Deriving Constraints

We originally intended to use a descriptive machine learning system such as HR
[2] to form a theory about the partial scene, and then mine the theory for po-
tential constraints. However, we found that the kinds of constraints that need to
be expressed are relatively simple, so theory formation was not needed. Instead,
we wrote methods able to derive (a) constraints on the domains of variables
(b) constraints expressing collinearity properties (c¢) constraints expressing gen-
eral relationships between variables defining single rectangles and (d) constraints
expressing relational properties between pairs of rectangles, as described below.

Domain restrictions

Any properties true of all the rectangles in a partial scene can be used to narrow
down the domain of the variables. For instance, in partial scene 1 of figure 1, all
the rectangles have the same width and hue. This can be expressed in a CLPFD
constraint program by simply substituting the variable with the constant value.
In addition, the system allows the user to constrain the values of variables to be
within the bounds of those present in the partial scene. For instance, the heights
of the rectangles in completed scene 2 of figure 1 are between the heights of the
largest and smallest rectangles of partial scene 2, as the user specified this.

Collinearity constraints

The system looks at every triple of rectangles and checks for rough (i.e., within
a radius of 20 pixels) collinearity of their centre points and eight points around
their edges. For any line covering the same points on a triple of rectangles,
it checks whether all the rectangles in the partial scene are similarly roughly
collinear and if so, expresses this as a constraint. Any lines which are sufficiently
similar to another are discarded, in order to keep the number of collinearity
constraints down. In our early experiments, we found that having points fit
exactly on lines often over-constrained the CSP. Hence, we relaxed the derived
constraint to state that the y-coordinate is within 150 pixels of the line. Note
that the scenes are of size 1000 by 1000 pixels, and — in line with standard
graphics practice — the y-coordinate in scenes increases from top to bottom. As
an example, in partial scene 1 of figure 1, the top left point of the three rectangles
is (66,391), (94,383) and (122,373) respectively from left to right. The system
calculates the line between the first two points using the standard equation

(y—uy1) = % (x —21). In order to keep the variables of the constraints whole

numbers, the equation is multiplied throughout by (x2—x1). In our example, the
line is therefore expressed as 28(y —391) = (—8)(z —66) = 8z +28y — 11476 = 0.
The system then checks whether the third point is within a distance of 20 pixels
from that line. As this is true in our example, the system generates a constraint
which dictates that the y-coordinate of the top left hand corner of each rectangle
in the scene should be within 150 pixels of this line. The unary constraint in this
case is expressed in CLPFD syntax as follows:

unary_constraint(line0,S) :-
get_x(S,X), get_y(S,Y),
(Xx8) + (Y*28) - 11476 #> -150, (X*8) + (Yx28) - 11476 #< 150.

Note that S represents the rectangle to be constrained and get_x and get_y are
able to to determine the x and y coordinate variables of the rectangle. There are
similar predicates available for the height, width and colour variables.

Intra-rectangle relational constraints

At present, we have only one intra-rectangle relational constraint, which relates
the height and width of the rectangles, so that the rectangles produced as solu-
tions to the CSP have similar shapes. For example, in partial scene 2 of figure
1, the height to width ratio of the rectangles is between 1:5.16 and 1:7.71. To
produce the completed scene, the user chose the option of constraining the pro-

portions of all rectangles in the scene to be within these ratios. This constraint
was expressed in CLPFD syntax as:

unary_constraint (height_width_ratio_min_max_516_771,5) :-
get_height(S,H), get_width(S,W), H100 #= H * 100,
(W * 516) #< H100, (W * 771) #> H100.

Inter-rectangle relational constraints

The system is also able to notice global relationships between the variables of
pairs of rectangles. To do this, it first calculates various properties of each rect-
angle which supplement their defining properties. For each property P, it then
calculates the sets: Rip—y = {(r1,72) : P(r1) = P(r2)}, Rip<y = {(r1,72) :
P(r1) < P(r2)} and R(p~y = {(r1,72) : P(r1) > P(r2)}. Then, each instance of
a subset relationship between these sets gives rise to a constraint. For instance,
in partial scene 2 of figure 1, the following subset relationship was determined by
the system: R(pottommost—y,<) S R(width,<)- That is, the system induced the hy-
pothesis that if rectangle r; has a base that is higher in the scene than rectangle
ro, then 71 also has less width than r5. Remembering again that y-coordinates
increase from top to bottom, this binary constraint is expressed as follows:

binary_constraint (bottom_above_implies_less_width,S1,S2) :-
get_y(S1,Y1), get_y(S2,Y2), get_height(S1,H1), get_height(S2,H2),
Bottoml #= Y1 + H1, Bottom2 #= Y2 + H2,
get_width(S1,W1), get_width(S2,W2),
(Bottoml #< Bottom2) #=> (W1 #< W2).

Note that constraints of this type are enabled by CLPFD’s ability to post propo-
sitional constraints. The system found other such propositional constraints in
partial scene 2, including the constraints that thinner rectangles are shorter and
less saturated (and vice-versa). Note also that the system is able to detect global
disjointness in a scene and derive an appropriate binary constraint for each pair
of rectangles. It also determines the minimum amount of padding around each
shape in the partial scene, and imposes this in the disjointness constraint, so
that rectangles in the completed scene have similar padding.

2.2 Introducing Randomness

Unfortunately, the solutions to the kind of constraint problems which are gener-
ated tend to be fairly formulaic. For instance, the first scene presented in figure 2
is a valid solution to the constraints derived from partial scene 1 of figure 1. We
see that the introduction of rectangles of the same shape, size and colour satisfies
the constraints. In order to try to introduce more variety, such as that present
in completed scene 2 of figure 1, we first experimented with an all-different con-
straint scheme and a constraint scheme which imposed a minimum difference
between variables. However, we found that the former didn’t introduce enough
variety, and the latter tended to over-constrain the CSP. In addition, we also de-
cided that for certain partial scenes, the user should be able to generate multiple

WL

Fig. 2. Four completed scenes satisfying the constraints derived from partial scene 1 of
figure 1. The first has no randomness imposed; the second has a random x-coordinate
imposed and the final two have random x-coordinate, height and saturation imposed.

different scenes using the CSP. For these reasons, we allowed the user to specify
that certain variables should have a random value ordering in the CSP search.
As an example, to achieve the kinds of woodland scenes we desired from partial
scene 2, we specified that the system should impose random value orderings on
the height, saturation and x-coordinate of each rectangle. The completed scenes
in figure 2 demonstrate the difference in visual variety achievable when the ran-
domisation of variables is imposed. As described in section 3, we experimented
to see whether reducing the domain of random values increased solving speed.

2.3 Using the CSP to Build Scenes

To recap, with our system, the user changes the shape, colour and location of
a set of rectangles on screen, so that the partial scene exhibits the kinds of
relationships they wish to see in the full scene. The system then induces certain
constraints and the user can deselect any which are not there by design. Finally,
the user chooses the number of additional rectangles, r, they wish to add, and
the system is employed to complete the scene. We have experimented with two
different ways to use the CLPFD solver to generate completed scenes. Firstly,
we looked at trying to solve the scene generation problem in one pass. That is,
a single CSP which contains variables for the shape, location and colour of r
rectangles is written and solved. We impose a restart limit, which is useful when
generating scenes with a random element. Secondly, we looked at a sequential
approach where a constraint satisfaction problem is generated with variables for
a single rectangle. This is solved and the rectangle is added to the scene, then the
process iterates until the required number of rectangles are present. We impose a
back-tracking parameter b: if a search for rectangle number n fails b times, then
rectangle numbers n — 1 and n — 2 are removed from the scene, and the search
starts again. When generating scenes with a random element, we found that
over-constrainedness occurred when two rectangles with very similar values for
the same variable were sequentially added to a scene. We further found that the
scheme of removing both was more successful than removing just one of them,
hence the reason for removing both rectangle n — 1 and n — 2.

3 Experimental Results

Our first set of experiments were designed to determine the fastest way to con-
struct a completed scene from partial scene 1 of figure 1. We looked at both the
one pass and the sequential approach, with the times taken to construct scenes
with between 10 and 20 rectangles presented in figure 3. We see that, while the
one-pass approach is faster for the addition of smaller numbers of rectangles, its
solving time drastically increases when sixteen rectangles are required. Indeed,
we found that constructing scenes with seventeen rectangles caused a memory
problem which we have not yet overcome. In contrast, the sequential approach
seems able to cope in a linear fashion with increasing numbers of rectangles,
because it only has to solve a CSP for one rectangle at a time.

18 4 157
14 o las
"ﬂ,/l's.z
= 12 93
LA Lz
g 0 1O o0l
E 0 5z onepass
2 g SE s ™ — seguartial
'.E 3
4
& 55
o
4 I]
z
WLl 12 13 14 15 16 1F 18 18 20
number of rectangles

Fig. 3. Solving times for partial scene 1 for the one pass and sequential approaches.

Secondly, working with the constraints derived from partial scene 2 from
figure 1, we experimented with various setups to determine the fastest way to
construct a scene with twelve rectangles. In contrast to the first scene, scene 2
requires the x-coordinate, height and saturation variables to have a random value
ordering, to achieve the desired visual variety. We experimented with different
percentages for the size of the random variable domain, for instance, using a
17% random domain setting for a variable with integer domain d; to d,, means
that a list of 0.17 % (d,, — d1) values randomly chosen between d; and d,, without
repetition becomes the value ordering for the variable. Using various settings for
the backtracking search parameter and this domain percentage, we found that
best time with the sequential approach was around 18 seconds. In contrast, we
achieved much lower times for the one-pass approach. We experimented with
various settings for the restart time (rs) and random domain percentage (rdp)
and due to the random nature of the value orderings, for each pair (rdp,rs)
which defined the search setup, we ran the system 10 times and recorded the
average number of times the search was restarted and the average overall search
time. The results are presented in table 1. We see that the lowest average time
over a 10 run session was 2.6 seconds, which was achieved by both (20, 20) and

(15,75) settings. Also, the average time over all the setups is 7.6 seconds, which
is less than half the time taken with the best sequential approach. We also note
that — on average — the random domain percentage which is fastest over all the
restart times is 75%, and on average over all the random domain percentages,
using a restart time of 3 seconds was the fastest.

Random domain percentage]

Il
[Restart (s)]] 2 I 5 [[10 [1

5 [20 [[25 J[_ 30 [50 [75 [[100 [av. |
2 8.0[20.4][3.5] 9.1 [[2.4]6.3[[1.3]3.4[[1.2]3.1[[L.4] 3.7 [[1.2] 3.1 [[2.0] 5.3 [[1.2]3.1[[1.7] 4.6 [[2.4] 6.2
3 4.0[13.7[|1.5] 4.5 [[1.5]4.5]|1.6]4.8][1.5]4.4[[1.4] 4.0 [[1.4[4.0 |[[1.3] 3.7 [[1.8]5.5]||1.4] 4.0 |[[1.7] 5.3
5 2.7(13.7[[1.9[8.2 [[1.4[4.9[[1.2[3.8[[1.8]7.4[[1.4][4.8 [[1.5] 5.5 |[1.1] 3.2 [[1.4[4.0[[1.8] 7.0 ||1.6] 6.3
10 1.6/11.6||1.2] 4.9 [[1.3]7.6][1.2]5.6][1.3]6.6]|1.4] 7.7 ||1.2] 6.3 |[1.5]10.5][1.4]|6.9|[1.5] 8.8 [[1.4] 7.7
15 1.6]20.2|[1.5[12.5||1.3|8.7||1.3|8.6||1.3|8.9][1.6]14.7||1.4]|11.6]|1.5]11.8||1.0|2.6][1.4[11.5][1.4]|11.1
20 1.2[12.1|[1.0|11.7][1.08.1][1.0|9.9][1.0|2.6][1.0] 6.3 |[1.0] 8.0 |[1.0]13.6][1.0]6.3|[1.0] 8.2 |[1.0] 8.7
av. 3.2[15.3][1.8] 8.5 |[1.5]6.7||1.3]6.0][1.4]5.5||1.4] 6.9 |[1.3] 6.4 |[1.4] 8.0 |[1.3]|4.7||1.5]| 7.4 ||[1.6] 7.6

Table 1. Number of restarts and solving times (in seconds) for the one pass approach.
The best times (of 2.6s) are shown in bold face.

We intend to perform much more experimentation over a larger set of partial
scenes, in order to be more concrete about the best settings for certain scenes.
Our preliminary conclusions are that, for the construction of larger scenes, the
sequential approach is advisable, but for smaller scenes of 15 rectangles or less,
the one-pass approach may be quicker. We cannot yet be conclusive about the
best settings for generating scenes with random aspects, because the two best
settings from table 1 were for relatively large restart times, but on average over
the random domain percentages, lower restart times seem to be more efficient.
Also, as random domain percentages vary, there seems to be no obvious trend
in efficiency, with the exception of 2%, which is clearly too small.

4 Discussion

Recall that our ambition for The Painting Fool is for it to ultimately be taken
seriously as a creative artist in its own right. We believe that to achieve this
will require addressing as many misconceptions in the art world (and society in
general) as it will require the solving of technical problems. In particular, in [4],
we argue that the default position — that machines cannot be creative — can lead
to a vicious circle whereby the value of machine generated art is assessed not in
terms of the artwork itself, but in terms of the (seemingly uncreative) process
which produced it. As a start to breaking this vicious circle, we propose that
the authors of creative software describe how it operates in terms of high level
notions, rather than in terms of its algorithms. In particular, in [4], we suggest
that any software which needs to be considered creative in order for its products
to be assessed favourably should be described in terms of its skill, appreciation
and imagination (which we call the creative tripod). Moreover, we suggest that
the development of creative software could be guided by the creative tripod,
i.e., we determine whether our software needs more behaviours which could be
described as skillful, appreciative or imaginative. For instance, until we worked
with emotion detection software (as described in [5]), we could not describe The

Painting Fool as appreciative, whereas now we can claim that the software has a
greater appreciation of both its subject matter and the way in which its painting
choices can affect the emotional content of its pictures. We are currently working
on implementing behaviours which could be described as imaginative, and we
are concentrating on enabling The Painting Fool to invent novel scenes in a
similar way to the AARON program. The scene generation approach described
here forms part of this programme of work.

If one were to find a criticism of AARON [9] as a creative system in its own
right, it would be that Cohen has neither given it any aesthetic preferences of its
own, nor the ability to invent new aesthetic preferences. In this sense, AARON
remains largely an avatar of its author. While this is actually the wish of the pro-
gram’s author [personal communication], a general criticism of software which
we may purport to be creative, is that it never exceeds its training. To combat
this, we advocate the practice of climbing the meta-mountain, whereby once a
creative system exhibits one behaviour, we examine the next creative responsi-
bility that is still held by the human user of the system, and move on to auto-
mate behaviours which take over that responsibility. At each stage, we advocate
implementing the ability to exceed our training with respect to the behaviour
just implemented. For example, for a project with The Painting Fool, which
resulted in the Amelie’s Progress Gallery (see www.thepaintingfool.com), we
implemented a number of different artistic styles (comprising a colour palette,
abstraction level, choice of natural media, paint stroke style, etc.), and used this
to paint numerous portraits of the actress Audrey Tatou. In addition, we gave
The Painting Fool the ability to invent its own artistic styles, by choosing aspects
of the style randomly. While this was simplistic, it was effective: around half of
the 222 portraits in the gallery came from randomly invented styles and the
expert system of artistic styles mentioned above is composed in part with styles
which were randomly generated. As another case study, as previously mentioned
in [3], we employed a machine learning approach to invent fitness functions, and
the resulting system could be perceived as more imaginative, because we were
unsure in advance not only of what the generated scene would look like, but also
what aesthetic (fitness function) the scene would be evolved to maximise. Again,
we can claim that the combined system exceeded our training somewhat.

As with the notion of the creative tripod, the notion of climbing a meta-
mountain provides a useful way of communicating ideas about creative software
to a general audience: in this case, we are describing how we train software
to emulate artistic abilities and exceed their training. However, the notion of
climbing a meta-mountain can also guide the development of creative software.
To this end, we are working to a seven point meta-level implementation scheme,
whereby we add behaviours which simulate (a) making marks on paper (b)
making marks to represent scenes (c) painting scenes stylistically (d) choosing
appropriate styles for scenes (e) inventing scenes (f) inventing scenes for a reason
(g) evolving as an artist. We are currently working on projects which lie around
(e) to (f) in this scheme, and we acknowledge that latter aspects of the scheme
— in particular (g) — are not well defined yet.

5 Conclusions and Further Work

Via an initial implementation and preliminary experiments, we have shown that
constraint-based scene generation is feasible, in particular that partial scenes can
be defined visually and desired relationships can be guaranteed. We ultimately
envisage a scene generation system which uses a combination of case-based, evo-
lutionary, constraint-based and other approaches to allow the most flexibility.
There are serious questions about the generality of the constraint-based ap-
proach, and we may find that it is only appropriate for certain types of scenes.
In addition to the testing of the constraint based approach on many more scene
types, we also plan to implement more constraint derivation methods to enable
the building of more types of scenes. Following our methodology of training the
system and then implementing behaviours which exceed our training, we will
investigate methods to automatically change constraints derived from a partial
scene, and to invent wholly new constraint schemes for the generation of scenes.
As with the combined system presented in [3], we hope that with these addi-
tional abilities, the perception of imaginative behaviour in the system will be
heightened.

Acknowledgements

We would like to thank the anonymous reviewers of this paper, who provided
some very interesting feedback. We would also like to thank the reviewer of [3],
who suggested that scene descriptions could be derived from exemplars, which
led to the work presented here.

References

1. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proc. Prog. Languages: Implementations, Logics, and Programs, 1997.
2. S Colton. Automated Theory Formation in Pure Mathematics. Springer, 2002.
3. S Colton. Automatic invention of fitness functions with application to scene gen-
eration. In Proceedings of the EvoMusArt Workshop, 2008.
4. S Colton. Creativity versus the perception of creativity in computational systems.
In Proceedings of the AAAI Spring Symp. on Creative Intelligent Systems, 2008.
5. S Colton, M Valstar, and M Pantic. Emotionally aware automated portrait paint-
ing. In Proceedings of the 3rd International Conference on Digital Interactive Media
in Entertainment and Arts, 2008.
6. M Dohmen. A survey of constraint satisfaction techniques for geometric modeling.
Computers and Graphics, 19(6):831-845, 1995.
7. M Jamnik. Mathematical Reasoning with Diagrams: From Intuition to Automation.
CSLI Press, 2001.
8. P Jiantao and K Ramani. On visual similarity based 2D drawing retrieval. Journal
of Computer Aided Design, 38(3):249-259, 2006.
9. P McCorduck. AARON’s Code: Meta-Art, Artificial Intelligence, and the Work of
Harold Cohen. W.H. Freeman and Company, 1991.
10. D Waltz. Understanding line drawings of scenes with shadows. In Patrick Winston,
editor, The Psychology of Computer Vision, 1975.

