A Disjunctive Decomposition Scheme
for Discrete Constraint Satisfaction Problems
Using Complete No-Good Sets

Berthe Y. CHOUEIRY and Guevara NOUBIR
Industrial Computing Laboratory
Department of Computer Science

Swiss Federal Institute of Technology in Lausanne (EPFL)
{choueiry|noubir}@Qdi.epfl.ch

Abstract

In this paper, we introduce a new digjunctive decomposition scheme
for discrete constraint satisfaction problems (CSPs). This strategy is ba-
sed on first identifying complete no-goods in a graph derived from the
microstructure of the CSP, then using these no-goods to decompose the
initial CSP into subproblems that exclude these no-goods. This decom-
position produces a partition of the solution space and is guaranteed to
keep all solutions while reducing the total number of possibilities to be
considered. We describe the strategy, study its properties, and identify
the number of possibilities that are excluded at any decomposition step.
We describe a practical application to which this strategy can be efficien-
tly applied and compare our technique to some decomposition methods
reported in the literature.

1 Introduction

Many important applications, such as scheduling, resource allocation, vision,
and query processing in data bases, can be modeled as a discrete Constraint
Satisfaction Problem (CSP). The strategies for solving this problem are mainly
variations around backtrack search. Backtrack search can be understood as
an iterative decomposition of the initial problem space into a disjunction of
subproblems obtained by partitioning the domain of one variable at a time. One
advantage of disjunctive decomposition strategies is that they can be efficiently
implemented in parallel: the resulting subproblems need not communicate and
thus can be distributed among a number of processing units.

In [4], Freuder and Hubbe describe a general control schema for disjun-
ctive decomposition of a CSP and show how previous resolution strategies (e.g.,
backtrack, forward checking, network consistency) can be formulated as instan-
ces of this schema. In [9], Jégou introduces yet another decomposition scheme
based on using the characteristics of a graph structure called the microstructure

of the CSP.

In this paper, after introducing some basic definitions, we introduce a new
decomposition scheme also based on exploiting the microstructure but in a
different way than proposed by Jégou. More specifically, we define the comple-
mentary microstructure of a CSP, which is a subgraph of the complement of
its microstructure, and identify sets of complete no-goods as cliques of this
subgraph. We then use these complete no-goods to induce subproblems of the
original CSP that contain none of these no-goods. In this manner, we can
eliminate very early on, during decomposition, subproblems that only contain
non-consistent combinations (i.e., no solutions). We discuss the properties of
the resulting decomposition and give an exact evaluation of the number of pos-
sibilities excluded. Then we identify the problem of resource allocation as one
practical application to which our strategy can be efficiently applied. Finally,
we compare our approach to the ones described in the literature, such as orde-
red search, IDC (Inferred Disjunctive Constraint [3]), FOF (Factor Out Failure
[5]), VAD (Value Assignment Delay Heuristic [2]), and the strategy proposed
by Jégou [9].

2 Definitions

A constraint satisfaction problem (CSP) is defined by P = (V,D,C); where
V= {V1,Vy,...,V,} is the set of variables, D = {Dvy,, Dy,, ..., Dy, } the set of
values (or domains) associated with the variables, and C is the set of constraints
that apply to the variables. A constraint C'y; v, applicable to two variables V;
and V; restricts the combination of values that the variables can be assigned
at the same time and thus defines a relation Ry, v, C Dy, x Dy, which is the
set of tuples allowed by Cv;v,. When the relation is exactly the Cartesian
product of the variable domains (i.e., Ry, v, = Dy, x Dy,), the corresponding
constraint is said to be universal. To solve a CSP is to assign one value to
each variable such that all constraints are simultaneously satisfied. The size of
a CSP is the number of all possible combinations and is equal to [Ty.cy [Dv;]-
A CSP is commonly represented by a constraint graph in which the variables
are represented by nodes, the domains by node labels, and the constraints by
edges that link the relevant nodes. Universal constraints are omitted from the
constraint graph.

In this document, we restrict our study to discrete binary CSPs: each do-
main Dy, is a finite set of discrete values and each constraint applies to two
variables.

The microstructure [9] of a CSP P = (V,D,C), denoted u(P), is the graph
G(V,E) where V = {(Vi,v)[(Vi€e V) A (v € Dv,)} and E = {ew, vy, (v,w) | (v €
Dy,) A(w e Dy;) At # j) A ((v,w) € Ry, v;)}. Informally stated, u(P) is the
graph whose vertices are variable-value pairs for all variables and whose edges
link variable-value pairs of distinct variables that are consistent with respect to
the constraint applicable to the variables (allowed tuple).

We define the complementary microstructure of a CSP P = (V,D,C), deno-
ted co-pu(P), to be the graph G(V, F') where V = {(V;,v) | (Vi € V) A (v € Dy,)}
and E = {ew,), v, [(v € D) A(w € Dy,) A (i # j) A ((v,0) € Ry, v,)}

Informally stated, it is the graph of non compatible tuples. Obviously, co-
w(P) = u(P) — {edges among pairs corresponding to the same variable}, where
G denotes the complement of graph (. Figure 1 shows a simple example of a
CSP and its associated microstructure and co-microstructure.

Vi R - S _

* > b\x/ S S \

2,8)(v2,c), |(V3,b)(V3,c)) ((v27a)(V2 c)) (V3 c)(V3, b))

7777777777777777 -

Figure 1: A simple example P, p(P), and co-u(P).

A no-good is a set of variable-value pairs that are not consistent. Note
that it is sufficient that any two pairs in this set be not compatible for the
whole set to be a no-good. A minimal no-good is a no-good set of which no
subset is a no-good. Note that for binary CSPs a minimal no-good set has
exactly two elements. We define a complete no-good (CNG) set to be a no-
good set of which any non-singleton subset is a no-good set. Note that it
is not straightforward to define what is a mazimal CNG-set since applying
consistency checking techniques to the CSP may uncover new inconsistencies
and thus increase the size of a given CNG-set.

A conjunctive decomposition [4] “breaks the problem into subproblems such
that all the subproblems must be solved, and the solutions must fit together
properly, for the original problem to be solved”.

A disjunctive decomposition [4] of a CSP P is a set of subproblems {P;}, each
of which is induced from P by restricting the domain of one or more variables
(and accordingly updating the constraints). The decomposition is required to
satisfy the following properties [4]:

o Consistency. Any pair of values from a pair of instantiated variables is
consistent.

o Simplification. Each of the {P;} has fewer possibilities or more instan-
tiated variables than P.

o Semi-completeness. If there is a solution to P, then there will be a solution
to at least one of the {P;}.

3 Decomposition

Jégou introduced the microstructure and showed how it can be exploited to
decompose a CSP (see Section 5.3). The microstructure elicits the variable-
value pairs that are allowed by the constraints. In our approach, we are
motivated by the fact that the ‘root’ of the problem is the existence of non-
compatible variable-value pairs, which creates an interaction among the va-
riables that may lead to inconsistencies. Indeed, if no variable-value pairs in
the co-microstructure were connected, then the computational problem of a

CSP simply disappears as all combinations of values for variables are allowed.
Consequently, we resolve to studying the co-microstructure, which elicits the
‘causes’ of interaction among the variables.

3.1 Basic principle

In the co-microstructure of a binary CSP, it is easy to see that any two adjacent
variable-value pairs constitute a minimal no-good set. Moreover, it is also
easy to show that any clique in this graph constitutes a complete no-good
set. By definition, any two variable-value pairs of a complete no-good set are
inconsistent, they cannot possibly appear in the same solution to the CSP. So,
any induced subproblem needs to contain no more than one variable-value pair'
of a complete no-good set. Our strategy exploits the complete no-good sets of
the co-microstructure. Thus, it is called co-microstructure based decomposition
and denoted co-uBD. Qur idea is to decompose the initial CSP into subproblems
such that each resulting subproblem contains exactly one variable-value pair of
a complete no-good set, plus one subproblem that contains none.

This decomposition is carried out as follows. Let {(Vi,v1),(Va,v2), ...,
(Vi,vi)} be a complete no-good set of size k. The decomposition generates
(k 4+ 1) subproblems P;. In each subproblem P;, the domains of the variables
in V are reduced as follows.

H Subproblem ‘ Variable index ‘ Domain H
r=1 Dy, +— {v;}
Pi<i<k (1<z<k)A(z#1)| Dy, «— Dy, — {v,}
k+1<z<n Dy, «— Dy,
Pk+1 1<z < k DVI — DVI — {Dm}
k+1<z<n Dy, «— Dy,

This process is illustrated in Fig. 2.

Initial Problem

V1 D,,
V2 DV2
| |
\)k bw
Vk+1 ka+1
| |
vo D,
Subproblem P1 Subproblem Pk Subproblem Pk+1
V1 {vi} Vi D, —{v} V1 D, . —{v}
Vi
\/‘2 I\sz —{vg V2 P:; —{va \/‘2 PV; —{va3}
|
| | | | |
x::1 gw—{vk VK v Vk D, -
| + [Vet V‘k+1 I\:)Vk” V‘k+1 [\)Vk”
| |
Vvn D, Vn an Vn ‘Vn

Figure 2: Disjunction decomposition based on a complete no-good of size k.

!'We say that a problem contains a given variable-value pair when such a pair is a vertex
in the co-microstructure corresponding to the problem.

3.2 Properties

According to the decomposition strategy described above, any generated sub-
problem contains at most one variable-value pair of a given CNG-set. So, all
subproblems that contain two or more pairs are pruned out. Consequently,
given a binary CSP P = (V,D,(C), if n is the total number of variables, if k is
the size of the complete no-good set 5, and assuming that all the variables have
the same domain size d (YV; € V,|Dy,| = d), we have the following relations?.

The number of all possibilities of P is:
Size(P) = d". (1)
The total number of possibilities in the generated subproblems P; is:
Size({P;}) = k(d — 1)!=1a"=F 4 (d — 1)Fa*. (2)

The number of possibilities that are ruled out by decomposing according to §
is:

Gain(co—pBD(S5)) = zk:(f)(d _ 1)k—idn_k

= (H-(2) (3)

Our decomposition strategy prunes out only possibilities that are necessarily
inconsistent and is guaranteed to keep all consistent solutions. The generated
subproblems determine a partition of the solutions of the initial problem.

In addition to the basic properties listed in Section 2, Freuder and Hubbe
[4] identify the following desirable properties of a decomposition strategy:

o Completeness. Any solution to P will be a solution to at least one of the
{Pil}.
o Non-redundancy. Any possibility for P appears in at most one of the

{Pi}.

o Reducibility. The sum of the sizes of the {P;} may be less than the size
of P (i.e., there are problems P for which at least one possibility does not
appear in any of the {P;}).

It is easy to show® that the decomposition strategy described in Section 3.1 is
consistent, simplifying, semi-complete, complete, non-redundant, and reducible.

*When the domains have different sizes, the Expressions (1) and (2) respectively be-
. . n k
come: Size(P) = HV,GV |Dv;| and Size({P:}) = imkg1 | Dv,| x [Zizl ngjgk,néz’ |Dv,| +
k
[Tic, (IDvi| = 1)1

The proofs are straightforward and are not reported in this paper for lack of space.

3.3 Discussion

When the size of the CNG-set chosen for decomposition is equal to 2, co-uBD
reduces into a particular form of forward-checking in which binary constraints
applicable to a given variable-value pair are treated individually. For non-binary
CSPs, one can apply this technique to the dual CSP, which is binary, obtained
as described in [12].

According to Expression (3), the gain depends on the size of the CNG-set
chosen: the bigger the set, the bigger the gain. Also, if we were to apply
the decomposition strategy iteratively, this choice also reduces the number of
iterations. Consequently, there is a clear advantage of choosing CNG-sets that
are as big as possible, ideally the maximal cliques of the co-microstructure.
However, the problem of finding all maximal cliques in a graph is known to
be NP-complete [10]. This constitutes a limitation to the ‘optimal” application
of our strategy without, however, endangering the basic mechanism. Indeed,
maximal cliques are desired but do not constitute a necessary requirement since
our decomposition can exploit cliques of any sizes. Also, to find a clique of a
fized size k can be done in polynomial time*. Consequently, co-uBD is flexible
with respect to two important points: one can selectively adapt (1) the gain
drawn from the decomposition to the computational effort that one is ready
to perform for finding the cliques and (2) the size of the clique at a given
decomposition step to the number of processors available for parallelization.

In general, we expect this strategy to be more efficient in the case of loose
constraints, which imply a co-microstructure of a relatively small number of
edges. These arguments need to be investigated more deeply and experiments
on randomly generated problems should be run for this purpose.

Note however, that if the co-microstructure of the CSP is a chordal graph,
finding all maximal cliques can be done in linear time of the size of the graph.
Such a possibility is not unrealistic and in Section 4, we report a practical
application that we have modeled as a CSP and which co-microstructure is a
triangulated graph.

4 Application to resource allocation

In our previous work [2], we have studied a resource allocation (RA) problem
that consists of allocating qualified and specialized technicians to a set of pre-
scheduled surgical operations in the surgical unit of a hospital. We defined the
RA problem as follows: “Given a set of tasks with fixed endpoints, and given,
for each task a set of resources that can carry out the task, assign one resource
to each of the tasks such that no resource is assigned to two different tasks at
the same time”.

We represented this problem as a list coloring® problem in interval graphs

* A brute force search has a worst-case time complexity of O(nk), where n is the size of the
graph and k is the size of the clique.

List coloring differs from ordinary graph coloring, also called minimal coloring, in that
the set of colors allowed for each node is restricted, and may be different for each node. In
the literature, list coloring is also called restricted coloring.

and also as a discrete binary CSP with constraints of mutual exclusion. RA is
known to be NP-complete [1]. Fig. 3 shows a simple example of an RA problem,
the corresponding interval graphs and constraint graph. Note that, although

11 {R1.R3} ‘
T2| {R1,R3} }
13 (RLR3 (R2R3} o, Tﬁi\\
T5t {R2,R3} } 16 0&"1& 2
T6! {R2,R4} ‘ X
T7! {R2,R4} }

Time

Figure 3: Left: A simple RA problem. Center: Tts interval graph. Right: Tts constraint
graph.

the interval graph is triangulated [7], the constraint graph is not because the
labels of the nodes in the constraint graph corresponding to two overlapping
intervals can have an empty intersection thus implying a universal constraint
between the nodes.
Fig. 4 shows the complementary microstructure corresponding to this example.

It is easy to show that this graph is necessarily triangulated because of the
underlying interval graph. This graph may actually consist of several non-
connected components, all triangulated. Since co-u(RA) is necessarily triangu-

——
/\(T1,R1) (T1,R3)> ((T4, R3) (T4,

— —

) (7,2 1,)

-~

S = - ~ \/(T7, R2) (T7, R4))
{(13,R1) (13,R3)) ((T5,R3) (15, R2)) —— —— — —

Figure 4: The complementary microstructure of the example shown in Fig. 3.

lated, finding maximal cliques can be done in linear time in the size of the graph
[6]. As a result, the decomposition strategy that we described in Section 3.1
can be efficiently carried out for RA.

5 Relation to previous work

Our approach fits in the very general control schema proposed in [4]. A succinct
comparison to other decomposition methods is shown in Table 5. Below, we
discuss how it resembles and how it differs from some approaches to decompo-
sition reported in the literature.

5.1 Ordered search

It is legitimate to draw a parallel between the variable and value ordering
heuristics in an ordered backtrack search and the problem of ‘managing the

BT FC NC BT-CPR IDC pBD co-uBD
Consistency NV, Vv Vv Vv Vv
Simplification VRV ARRV/ V4 V4 V4 4
Semi-completeness | / \/ +/ V4 V4 V4 V4
Completeness VRV ARRV/ V4 x V4 V4
Non-redundancy VRV ARRV/ V4 V4 x V4
Reducibility x NARRV/ V4 V4 X V4

V/ =yes X = N0

BT = Backtrack [4]. IDC = Inferred Disjunctive Constraint [3]
FC = Forward Checking [4]. uBD = Microstructure Based Decomposition [9].

NC = Network Consistency [11, 4]. co-uBD = co-Microstructure Based Decomposition.

BT-CPR = Backtrack with Cartesian Product Representation [8, 4].

Table 1: A concise comparison of the properties of the main decomposition
strategies.

agenda’® of a decomposition schema (i.e., which subproblem to decompose first,
which no-good set to choose first). Contrary to the commonly adopted ‘wisdom’
of first choosing the least constrained value for a variable, our approach shows
how choosing ‘completely constrained’ values yields an interesting pruning of
the problem space. Experiments on random problems and real-world data still
need to be carried out for drawing empirical evidence.

5.2 VAD-based conjunctive decomposition

In [2], we introduced a decomposition strategy, based on the Value Assignment
Delay heuristic (VAD), for solving resource allocation (RA) problems as defined
in Section 4. The VAD acts by iteratively ‘hiding’ the most constrained values
in RA thus gradually ‘removing’ the links in the constraint graph. Eventually,
the initial problem is separated into subproblems, that are either independently
solved or used to localize and characterize conflicts. The strategies advocated
in the VAD and co-pBD can be contrasted as follows.

1. The decomposition generated by the VAD is conjunctive while co-uBD is
disjunctive.

2. In order to identify the values that are most constrained, the VAD uses
a cumulative curve over time of the contention of each value. Because
of the interval graph structure underlying the RA problem, this choice is
exactly the same as identifying maximal cliques in co-u(RA).

3. Since the VAD chooses to ‘hide’ the most solicited set of values, it explo-
res the subproblem denoted Pyiq in Section 3.1 (see also Fig. 2). The
remaining alternatives (i.e., Py, Po, ..., Pi) are partially explored by the
conflict resolution procedure that complements the VAD.

An agenda [4] is a heap that keeps track of the subproblems in the leaves of a tree hierarchy
created by an iterative application of a given decomposition technique.

4. Finally, we think that the CNG-sets can be used to generalize to appli-
cation of the VAD7 to general CSPs in order to define new conjunctive
decomposition strategies. Indeed, when the values involved in a CNG-set
are ‘hidden’ from the domains of the variables involved, the correspon-
ding edges in the co-microstructure are deleted. When this operation
is applied iteratively, the constraint graph may eventually break down to
non-connected components, which constitute the subproblems of the conj-
unctive decomposition. We believe that interesting strategies of problem
solving and conflict localization can be developed based on this generali-
zation of the application of the VAD to general CSPs.

5.3 Microstructure-based decomposition

Jégou [9] indicated that any maximal clique of size m in the microstructure
of a CSP of n variables is a solution to the CSP. Because the identification
of the maximal cliques is a difficult task, he advised to first triangulate the
microstructure (which can be done in linear time) before identifying the ma-
ximal cliques (which can be efficiently carried out after triangulation). The
triangulation procedure may add edges to the microstructure and the addi-
tional edges may appear in the identified maximal cliques. Because these edges
correspond to non-consistent tuples, the maximal cliques are compared against
the initial CSP and used to induce subproblems that are a reduction of the
initial problem. Thus, the decomposition strategy (uBD) proposed by Jégou
exhibits the following properties. It is consistent, simplifying, semi-complete,
and complete, but it is redundant and non-reducible. The main distinctions
between uBD and co-uBD can be summarized as follows:

1. The goal pursued by Jégou is to find solutions to the CSP by identifying
the maximal cliques in pu(P). The necessity to decompose the CSP results
from the difficulty of finding these cliques. In uBD, decomposition is
not pursued for its own sake or for the sake of eliminating inconsistent
solutions. Thus, uBD and co-uBD appear to appeal to decomposition for
fundamentally distinct reasons.

2. The former is redundant (the same possibilities may appear in one or more
P;), whereas the subproblems identified by the latter create a partition of
the solution set of the CSP.

3. uBD requires the computation of the maximal cliques of a graph and
directly suffers from the fact that this cannot be efficiently done. Conver-
sely, co-uBD benefits from identifying maximal cliques but can correctly
operate with cliques of any size.

4. Tt is impossible to predict the number of subproblems obtained by uBD
at a given decomposition step, whereas this number can always be deli-
berately chosen in co-uBD.

"The VAD was first introduced for coloring problems (i.e., constraints of mutual exclusion).

5. Tt is impossible to assess the gain obtained by applying uBD, whereas
the gain drawn from applying co-uBD is exactly determined by Expres-
sion (3). Indeed, the subproblems obtained by uBD directly depend on the
algorithm used for triangulation (and thus are uncontrollable); whereas,
in co-uBD, the content and size of each subproblem is exactly determined.

6. We suspect that the complementarity relation that exist between u(P)
and co-u(P) may directly reflect on the effectiveness of applying these
two strategies to CSPs. More specifically, we suspect that pBD may be
more effective on tightly constrained CSPs (few edges in p(P)) whereas
co-uBD may be more effective on loosely constrained CSPs (few edges
in co-p(P)). These claims need further investigations and an empirical
evaluation on random problems.

5.4 Decomposition using IDC

In [3], Freuder introduces a strategy® for decomposing a CSP into disjunctive
subproblems that we describe from the perspective of our approach. The de-
composition is carried out according to all minimal no-good sets in which a
given variable-value pair is involved. The subproblem that contains none of the
variable-value pairs of the no-good sets involved (i.e., subproblem Py4y in our

notation) is ruled out, this can be done while guaranteeing semi-completeness®

but sacrificing completeness!®.

IDC exploits minimal no-good sets whereas co-uBD exploits complete no-
good sets. When the co-p(P) contains no cliques of size equal or bigger to 3,
both strategies become equivalent. IDC can be more efficient than co-uBD
(especially if the co-u(P) is not chordal). However, it cannot be used if one
is seeking all solutions, which is anyway a rather rare requirement. Also, for
a given complete no-good set, IDC may generate more decomposition steps
(thus, more subproblems) than co-uBD, which processes all no-goods of the set
at once.

5.5 Subproblem extraction

In [5], Freuder and Hubbe introduce yet another disjunctive decomposition
scheme based on extracting a given subproblem from the initial CSP. They
argue that one may choose to do so if one knows that the subproblem is not
solvable or if one is not interested in the possibilities that it contains (thus,
the ‘Factor Out Failure’ (FOF) strategy that they propose). The extraction
mechanism can be summarized as follows. Let P, be the subproblem to extract
from the initial CSP P. A current problem P. is initialized to P. Iteratively
for each variable V; of P., two subproblems are generated:

e The first subproblem contains for V; its domain as it appears in P, and
for the other variables their domain specified in P..

8Freuder also describes some variations around this strategy that reduce the size of the
generated subproblems while keeping at least one solution, when the initial CSP has one.

At least one solution is kept.

1%Some consistent solutions are lost.

10

e The second subproblem contains for V; its domain as it appears in P,
of which is subtracted its domain specified in P., and for the other va-
riables their domain specified in P.. P, is reset to this second generated
subproblem.

It is easy to verify that, if the values that are outside the domains specified in
P. belong to a complete no-good set, then this extraction mechanism generates
subproblems of size bigger than the size of those generated by co-uBD (see
the example below). Also, unnecessary intermediate subproblems would need
to be generated. Hence, when CNG-sets can be identified, co-uBD is more
suited than the extraction procedure described above for use in the ‘Factor Out
Failure’ strategy of [5]. Such a situation is illustrated in Fig. 5, where P, is
shown in a dark rectangle and the CNG-set {(V1,a),(V2,a),(Vs,a)} has been
selected for applying co-uBD.

abc
abc
abc
Size=9| a bc ggg
abcl labc abc
abcl labe A
Size =6[/b‘bc
A bo a bc || bc | bc
abcl labc b c a be || be
/q{ bc bc a bc
Size =4 bc bc Size=8 Size=4 Size =4 Size=4 Size=8
bc
%C bc |R

Figure 5: Left: Extraction of subproblem. Right: Decomposition using co-uBD.

6 Conclusions

In this paper, we introduced a new disjunctive decomposition strategy based
on identifying cliques in the complementary microstructure of a CSP. One im-
portant characteristic of this strategy is its flexibility with respect to the choice
the clique size. This flexibility can be exploited in selectively choosing the num-
ber of subproblems to be generated and also the amount of effort required for
finding the cliques. We studied the properties of the strategy and compared it
to those of techniques reported in the literature. We also identified a practical
application for which this strategy can be efficiently applied. One interesting
direction for future research is the exploitation of complete no-good sets for
generating a conjunctive decomposition strategy and for localizing conflicts ap-
plicable to general CSPs, as a generalization of the application of VAD heuristic,
reported in [2], to general CSPs. Future efforts should also be concerned with
doing experimental studies on randomly generated problems in order to chara-
cterize the effectiveness of this approach with respect to CSP parameters (e.g.,
tightness, looseness, density).

11

Acknowledgments

The authors are indebted to Rainer Weigel for various and very helpful discussions and
to the anonymous reviewers for their comments.

References

[1]

[2]

Esther Arkin and Ellen Silverberg. Scheduling Jobs with Fixed Start and End
Times. Discrete Applied Mathematics, 18:1-8, 1987.

Berthe Y. Choueiry and Boi Faltings. A Decomposition Heuristic for Resource
Allocation. In Proc. of the 11" ECAI, pages 585-589, Amsterdam, The Nether-
lands, 1994.

Eugene C. Freuder. Using Inferred Disjunctive Constraints to Decompose Constra-
int Satisfaction Problems. In Proc. of the 13 ' IJCAI, pages 254-260, Chambéry,
France, 1993.

Eugene C. Freuder and Paul D. Hubbe. A Disjunctive Decomposition Control
Schema for Constraint Satisfaction. In Vijay Saraswat and Pascal Van Hentenryck,
editors, Principles and Practice of Constraint Programming, pages 319-335. MIT
Press, Cambridge, MA, 1995.

Eugene C. Freuder and Paul D. Hubbe. Extracting Constraint Satisfaction Sub-
problems. In Proc. of the 14 ' IJCAI, pages 548555, Montreal, Canada, 1995.

F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. STAM J. Comput.,
1(2):180-187, 1972.

Martin C. Golumbic. Algorithmic Aspects of Perfect Graphs. Annals of Discrete
Mathematics, 21:301-323, 1984.

Paul D. Hubbe and Eugene C. Freuder. An Efficient Cross Product Representation
of the Constraint Satisfaction Problem Search Space. In Proc. of AAAI-92, pages
421-427, San Jose, CA, 1989.

Philippe Jégou. Decomposition of Domains Based on the Micro-Structure of
Finite Constraint-Satisfaction Problems. In Proc. of AAAI-93, pages 731-736,
Washington, DC, 1993.

Richard M. Karp. Reducibility among Combinatorial Problems. In E. M. Miller
and J.W. Thatcher, editors, Complezity of Computer Computations, pages 85-103.
Plenum Press, New York, 1972.

Alan K. Mackworth. On Reading Sketch Maps. In Proc. of the 5" ILJCAI, pages
598-606, Cambridge, MA, 1977.

Francesca Rossi, Charles Petrie, and Vasant Dhar. On the Equivalence of Constra-
int Satisfaction Problems. In Proc. of the 9 '» ECAI, pages 550-556, Stockholm,
Sweden, 1990.

12

