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Abstract. Bundling of the values of variables in a Constraint Satisfac-
tion Problem (CSP) as the search proceeds is an abstraction mechanism
that yields a compact representation of the solution space. We have pre-
viously established that, in spite of the effort of recomputing the bundles,
dynamic bundling is never less effective than static bundling and non-
bundling search strategies. Objections were raised that bundling mech-
anisms (whether static or dynamic) are too costly and not worthwhile
when one is not seeking all solutions to the CSP. In this paper, we dispel
these doubts and empirically show that (1) dynamic bundling remains
superior in this context, (2) it does not require a full lookahead strategy,
and (3) it dramatically reduces the cost of solving problems at the phase
transition while yielding a bundle of multiple, robust solutions.

1 Introduction

Many problems in engineering, computer science, and management are naturally
modeled as Constraint Satisfaction Problems (CSPs), which is, in general, NP-
complete. Backtrack search remains the ultimate mechanism for solving such
problems. One important mechanism for enhancing the performance of search is
the exploitation of symmetries in the problem or a particular instance of it. From
a practical perspective, the exploitation of symmetry can be used both to reduce
the size of the search space and, more importantly, to represent the solution space
in a compact manner by identifying families of qualitatively equivalent solutions,
as we argued which is useful in practical applications [6].

In this paper we study the following two issues: (1) the combination of the
dynamic computation of symmetries during search with the currently most pop-
ular lookahead strategy, and (2) the effect of symmetry detection on the presence
and severity of the phase-transition phenomenon believed to be inherent to NP-
complete problems. Our results are two fold. First, in accordance with [11], we
dispel the growing myth that the aggressive lookahead strategy known as Main-
taining Arc Consistency (MAC) [17] is always beneficial. Second, we establish
that the dynamic detection and exploitation of symmetries during search, which
results in multiple robust solutions, does not impede the performance of search
but is actually a cost-effective tool for dramatically reducing the cost peak at the
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phase transition, possibly the most critical phenomenon challenging the efficient
processing of combinatorial problems in practice.

2 Background and motivation

Glaisher [13], Brown et al. [3], Fillmore and Williamson [9], Puget [16] and Ell-
man [8] proposed to exploit declared symmetries among values in the problem
to improve the performance of search. The first four papers considered exact
symmetries only, and the latter proposed to include also necessary and sufficient
approximations of symmetry relations. Freuder [10] introduced a classification of
various types of symmetry, which he called interchangeability. While all prior ap-
proaches focused on declared symmetry relations, Freuder proposed an efficient
algorithm that discovers an exact but local form of interchangeability, neighbor-
hood interchangeability (NI). NI partitions the domain of a given variable into
a set of equivalence classes of values. Haselböck [14] simplified NI into a weaker
form that we call neighborhood interchangeability according to one constraint
(NIC). Further, he showed how to exploit NIC advantageously during backtrack
search by generating solution bundles . Every solution bundle is a set of robust
solutions [12]: Any value for a variable can be safely replaced by another value
for the variable taken from the same domain bundle without altering the as-
signments of the remaining variables. Since the strategy devised by Haselböck
computes domain partitions in a pre-processing step prior to search, we call this
strategy static bundling and denote it NIC-FC. We proposed [7] a weak form of
NI, namely neighborhood partial interchangeability (NPI) that can be controlled
to compute interchangeability anywhere between, and including, NI and NIC ,
see Fig. 1. In [1, 2] we proposed to recompute NPI relations dynamically during

NI NPI
[Haselboeck’93][Freuder’91] [Choueiry & Noubir’98]
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Fig. 1. Three types of neighborhood interchangeability.

search yielding a new type of interchangeability we called dynamic neighbor-
hood partial interchangeability (DNPI). We call this dynamic bundling and the
search strategy DNPI-FC. While restricting our investigations to forward check-
ing (FC) as a lookahead strategy during search, we established the superiority
of dynamic bundling (DNPI-FC) over both static bundling (NIC-FC) and non-
bundling search (FC) in terms of the criteria that assess the search effort and the
‘compaction’ of the solution space. These theoretical results hold when looking
for all solutions and using a static variable ordering.

3 Our study and expectations

There has been a misconception that the cost of bundling in general and that of
dynamic bundling in particular require too much overhead when one is only look-
ing for a first solution. Indeed, the following two erroneous impressions prevailed:
(1) when looking for a first solution, bundling–whether static or dynamic–is not
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worth the effort, and (2) all the more reason, dynamic bundling is an overkill.
We showed empirically1 that the above stated superiority of dynamic bundling
holds almost always in practice when looking for one solution and under various
ordering heuristics [2]. For lack of space, we cite here only a few of the ones we
investigated: (1) Static ordering (SLD): Variables are ordered statically before
search according to the least domain heuristic. (2) Dynamic variable ordering
(DLD): Variables are ordered dynamically during search according to the same
heuristic. And (3) Dynamic variable-value ordering: In the context of bundling,
a value is in fact a bundle. For this purpose, we proposed a new strategy, Least
Domain-Max Bundle [2] (LD-MB) that chooses, dynamically during search, the
variable of smallest domain (as in DLD) and, for this variable, the largest bundle
in its domain. This heuristic2 proved to be superior to other heuristics [5].

The surprising performance of dynamic bundling is explained by the fact that,
while bundling partial solutions, it also factors out the no-goods, thus effectively
pruning the search space. The two questions below remained unanswered:

1. How well does dynamic bundling combine with the most aggressive and
popular, lookahead strategy MAC?

2. How does dynamic bundling affect the spike of the problem-solving cost at
the phase transition identified in [4] and extensively studied in [15]? The
cost and behavior of bundling on the cross-over point (i.e., critical area of
the order parameter [4]) is the ultimate for its practical utility.

We concentrate on finding the first solution (bundle) where we expect the cost
of bundling to hinder seriously the performance of search. To answer these ques-
tions, we conduct the experiments summarized below:

Question Values reported Ordering

Dynamic bundling: MAC vs. FC Ratio of DNPI-MAC to DNPI-FC SLD, DLD, LD-MB, Fig. 3

Effects of bundling
on the phase transition

DNPI-FC, DNPI-MAC
NIC-FC, (non-bundling) FC

SLD, Fig. 4
DLD, Fig. 5
LD-MB, Fig. 6

Below, we discuss the context of these two questions and list our expectations.
Then, in Section 4, we present our experiments, provide a list of observations
that summarize our findings, and finally discuss these results in detail.

3.1 Lookahead strategies

Sabin and Freuder [17] introduced a procedure to Maintain Arc Consistency
(MAC), and advised to use this full-lookahead strategy instead of the popular
partial-lookahead strategy known as forward checking (FC). While FC propa-
gates the effects of a variable assignment to connected future variables, MAC
propagates these effects over the entire remaining (future) constraint network.
This stronger filtering of MAC has the potential to be particularly advantageous

1 Under a wide variety of testing conditions and for problems in which we finely
controlled the amount of interchangeability embedded in a given problem instance.

2 Note that for finding all solutions LD-MB collapses to DLD.



4

when coupled with dynamic bundling. We call this new search strategy DNPI-
MAC. A similar study was independently conducted by Silaghi et al. in [18], who
coupled MAC with the Cross Product Representation (CPR)3. They consider
two different implementations of MAC, and show that they are comparable. They
test only CPR and only MAC omitting (1) whether or not MAC is beneficial
and (2) a comparison of CPR with static and non-bundling search strategies.
We seek to quantify the value of adding MAC to dynamic bundling.

We first study dynamic bundling in combination with MAC and with FC
under various ordering heuristics. In Section 3.2 we further compare them (i.e.,
DNPI-MAC and DNPI-FC) to non-bundling and static bundling strategies with
the goal of studying their behavior at the phase transition. We anticipate that
the integration of DNPI and MAC will fulfill the expectations discussed below.

Expectation 1. Since MAC performs a stronger pruning than FC, DNPI-MAC
should not visit more nodes than DNPI-FC does.

Indeed any value that is pruned by MAC and not pruned by FC is an additional
node that FC examines. Further, it is guaranteed to fail and it results in extra
useless work for the FC search strategy. We suspect that Expectation 1 could
stand as a theorem under static ordering. It is supported by strong empirical
evidence in Section 4.2, Fig. 3 and Observation 2, which relate average values
over a pool of 6040 random problems. However, a careful examination of the
results uncovered a single exception that we have not yet resolved.

Expectation 2. DNPI-MAC should generate larger bundles than DNPI-FC and
every bundle of DNPI-FC should be a subset of a bundle of DNPI-MAC under
the same static variable ordering. The following expression should hold:

SB(FC) ≥ SB(NIC-FC) ≥ SB(DNPI-FC) ≥ SB(DNPI-MAC) (1)

where SB is the number of solution bundles found. When finding only the first
solution, Equation (1) suggests a statement about the First Bundle Size (FBS)
(when SB is small, bundles are large). Thus we anticipate the following:

FBS(FC) ≤ FBS(NIC-FC) ≤ FBS(DNPI-FC) ≤ FBS(DNPI-MAC) (2)

Expectation 3. Because of the above, we are tempted to infer that DNPI-MAC
should be computationally cheaper than DNPI-FC and perform better bundling.

3.2 Phase transition

Cheeseman et al. [4] presented empirical evidence of the existence of a phase
transition phenomenon in the cost of solving NP-complete problems when vary-
ing an order parameter. In particular, they showed that the location of the phase
transition and its steepness increase with the size of the problem4, thus yielding

3 Silaghi et al. erroneously claim that CPR was proposed as DNPI. We showed in-
dependently that CPR and DNPI yield the same bundling while DNPI visits fewer
nodes. The difference is polynomially bounded, as suggested by a reviewer.

4 Problems in P do not in general contain a phase transition, or if they do, the cost
at the transition bounded and is not affected by an increase of problem size [4].
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a new characterization of this important class of problems. We now examine the
effect of bundling (statically and dynamically) on the phase transition. Because
problems at the cross-over point are acknowledged to be probabilistically the
most difficult to solve, determining the performance of our algorithms in this re-
gion is important. So far, we have not found a scenario where dynamic bundling
is any hindrance to the performance of search, both for all solutions and for one
solution. It is further aided by dynamic variable ordering, but not by MAC as
discussed in Observations 2 and 3. In these experiments with the phase transi-
tion, we prepare the most adverse situation that we know of for our algorithms.
However, given the ability of dynamic bundling in pruning ‘bundled’ no-goods,
we anticipate the following:

Expectation 4. Dynamic bundling will significantly reduce the steepness of the
phase transition, that is, the problems in the phase transition will be easier to
solve with dynamic bundling.

4 Experiments

In this section, we examine the above expectations through empirical tests. We
used the random generator for binary CSPs described in [2]. This generator
allows us to control the level of interchangeability embedded in an instance of
a CSP by controlling the number of equivalence classes of values induced by
every constraint on the domain of one of the variables in its scope. We call this
number the induced domain fragmentation IDF. Fig. 2 shows a constraint C

with an IDF=3. For each measurement point, we generated 20 instances with

V1 c
{1, 2, 3, 4, 5}

V2

{  1,  3,  4,   2,  5   }

1
2
3
4
5

1   1   0   0   1

1   1   0   0   1
1   1   0   0   1

1   0   0   1   1

1   1   1   1   1

1   2   3   4   5
V2

V1

Fig. 2. Left: Constraint as a binary matrix. Right: Domain of V1 partitioned by C.

the following characteristics: number of variables n = 20; domain size a = 10;
induced domain fragmentation IDF = [2, a] by a step of 1; tightness (ratio of
number of allowed tuples over that of all possible tuples) of any constraint t =
[0.15, 0.85] with a step of 0.05; and constraint probability (ratio of the number
of constraints in the CSP over that of all possible constraints) p= 0.5 and 1.0.

In order to reduce the duration of our experiments to a reasonable value, we
chose to make all problems arc-consistent (AC-3) before search begins. This is
done uniformly in all experiments and for all strategies and does not affect the
quality of our conclusions. We compute, at each data point, both the average and
the median values of the following evaluation criteria: number of nodes visited
(NV); number of constraint checks (CC); CPU time in msec with a clock resolution
of 10 msec; and size of the first bundle found (FBS). The horizontal axis denotes
various tightness values t= 0.15 · 0.4. Problems beyond t = 0.4 were determined
unsolvable by the preprocessing step and thus required no search. We notice
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that the average and median curves almost always have the same shapes (except
for one case discussed below). Our experiments yield a number of observations
summarized in Section 4.1 and discussed in detail in Sections 4.2 and 4.3.

4.1 List of observations

We first state a general observation (Observation 1), then observations regarding
the effect of lookahead strategies (Observations 2 to 5) and finally observations
about the effect on the phase transition (Observations 6 to 16).

Observation 1. The curves for constraint checks (CC) and CPU time are often
similar in shape and differ from that for NV, suggesting that constraint checks
dominate the computational cost in our implementation.

Observation 2. DNPI-MAC always visits fewer nodes (NV) than DNPI-FC, in
confirmation of Expectation 1.5

Observation 3. DNPI-MAC in general requires more constraint checks (CC)

than DNPI-FC. This effect always holds under dynamic orderings (DLD and
LD-MB) where DNPI-MAC performs particularly poorly.

When constraint checks, and not nodes visited, dominate computation cost,
DNPI-FC performs better than DNPI-MAC. Thus, contrary to Expectation 3,
the advantage in fewer nodes visited does not translate into saved time, yielding:

Observation 4. Either because of its high cost in CPU time (which, in our
implementation, seems to reflect more the effort spent on checking constraints
than that spent on visiting nodes), or because the advantages of DNPI-MAC in
terms of NV does not balance out the loss for constraint checks, DNPI-MAC is
more costly than DNPI-FC. This tendency is aggravated under dynamic order-
ings where the performance of MAC further deteriorates.

Observation 5. The solution bundle found by DNPI-MAC is in general not
significantly larger than that found by FC and does not justify the additional
computational cost.

Observation 6. The magnitude and steepness of the phase transition increases
proportionally with p, in accordance with the experiments reported in [15].

Observation 7. Although dynamic bundling does not completely eliminate the
phase transition, it dramatically reduces it.

Observation 8. DLD orderings are generally less expensive than SLD orderings
for all search strategies and yield larger bundles.

Observation 9. DLD orderings are also generally less expensive than LD-MB for
dynamic bundling but similar for static bundling. However, LD-MB orderings pro-
duce larger bundles.

Observation 10. LD-MB orderings are generally less expensive than SLD order-
ings for all search strategies and yield larger bundles.
5 This observation holds for the average values reported in our graphs of Fig. 3, how-

ever we detected a single anomaly as mentioned in Section 3.1.
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Observation 11. The bundle sizes of all bundling strategies are comparable,
thus their respective advantages are better compared using other criteria.

Observation 12. DNPI-MAC is effective in reducing the nodes visited (NV) at
the phase transition.

Observation 13. DNPI-MAC does not significantly reduce the overall cost at
the phase transition.

Observation 14. In static orderings, the reduction of the phase transition due
to the use of MAC seems to be more significant than that due to the use of
dynamic bundling.6

Observation 15. Static bundling (NIC) is expensive in general and we identify
no argument to justify using it in practice. Further, under dynamic orderings,
its high cost extends beyond the critical area of the phase transition to the point
of almost concealing the spike.7

Observation 16. In dynamic orderings, DNPI-FC is a clear ‘champion’ among
all strategies with regard to cost (i.e., constraint checks and CPU time).

4.2 Data analysis: MAC vs. FC

As stated above, we report the results for finding one solution bundle. Fig. 3
shows the ratio of the values of the evaluation criteria for MAC versus FC under
dynamic bundling and for the three ordering heuristics SLD (�), DLD (2), LD-MB
(×). For values above 1, the value of DNPI-MAC is higher than the value of FC,
and vice versa. Below we discuss each row:

Nodes visited (row 1): The value of the ratio is consistently below 1 across
ordering strategies, IDF values, and p values. This indicates that MAC always
visits fewer nodes than FC and supports Observation 2. Note that this effect
becomes more pronounced as the constraint probability increases from 0.5 (left
column) to 1.0 (right column) and as tightness increases (shown by the downward
slope of the lines).

Constraint checks (row 2): The non-null values (except for a few black di-
amonds that we discuss below) are all above 1, indicating that FC is superior
to MAC (Observation 3). Now let’s look at the few cases where DNPI-MAC
outperforms DNPI-FC (ratio < 1). This sometimes happens, almost exclusively
under the static ordering SLD (�). It happens for: (1) p=0.5, t is large, and for
all values of IDF, and (2) p=1.0 and IDF is small. This provides an interesting
result, because DNPI-MAC is sensitive to IDF where DNPI-FC is insensitive
(specifically, when constraint probability is high). As IDF increases, we see that
DNPI-MAC loses the edge it had when more interchangeability was present.
Note also that when using dynamic variable ordering such as DLD (2) or LD-MB
(×), DNPI-FC is a clear winner over DNPI-MAC. When we use dynamic vari-
able ordering, DNPI-MAC checks from 3 to 13 times as many constraints as

6 We stress that this effect is reversed in dynamic orderings.
7 The high cost of NIC in the zone of ‘easy’ of problems is linked to the overhead of

pre-computing interchangeability prior to search while many solutions exist.
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Fig. 3. Comparing MAC and FC in the context of DNPI.
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DNPI-FC. This supports Observation 3 and is a clear indication of an expense
in MAC that is not compensated by dynamic bundling.

CPU time (row 3): The advantage of DNPI-FC over DNPI-MAC noted in
the constraint checks is reinforced by the CPU time data. Thus the use of DNPI-
MAC (except for a few cases, mostly in SLD) is detrimental to the performance
of search despite the savings of nodes visited (Observation 4).

Size of first bundle (row 4): Finally, we look at the bottom row of Fig. 3
to check whether or not the additional propagation effort of MAC benefits the
size of the bundle found (Observation 5). We see that, and in accordance with
Expectation 2, DNPI-MAC does generate slightly larger bundles than DNPI-FC.
For p=0.5, the bundle comparisons huddle mostly just above 1. This means that
the bundle sizes are comparable, with DNPI-MAC generally producing bundles
that are just a little bit larger. We note two extreme behaviors:

1. At IDF=2, t=0.40, the bundle produced by DNPI-MAC is fifteen times larger
than that of DNPI-FC (�). Additionally, this much larger bundle took less
time to find. This demonstrates and justifies the advantage of DNPI-MAC.
Note however that this extent of divergence between DNPI-MAC and DNPI-
FC does not hold when IDF> 2. Indeed, for p=1.0, the bundles of DNPI-
MAC are never more than three times larger than those of DNPI-FC, but
are frequently smaller (especially under dynamic variable ordering).

2. At IDF=4 and t=0.15, the bundle produced by DNPI-MAC is smaller than
that of DNPI-FC (�). This is the only major opposition to our Expectation 2.
(There are other small exceptions, where DNPI-FC produces a bundle that
is 1 or 2 solutions larger than DNPI-MAC’s bundle. We traced all these
exceptions to the non-deterministic value ordering.) We traced this violation
of Expectation 2 to a single problem where DNPI-MAC found a bundle of
size 84 and DNPI-FC found a bundle of size 168. This happens for the single
problem mentioned above, which we cannot yet justify.

Conclusions of the data analysis: The cost of DNPI-MAC is neither system-
atically nor predictably worthwhile, except possibly under SLD ordering. This
tendency becomes even stronger under dynamic orderings DLD and LD-MB.

4.3 Data analysis: Dynamic bundling at the phase transition

These charts are arranged in Fig. 4, 5, and 6 for the ordering heuristics SLD, DLD,
and LD-MB, respectively. Each graph shows four search strategies, namely non-
bundling FC (4), static-bundling NIC-FC (×), dynamic bundling with forward
checking DNPI-FC (�), and dynamic bundling with Maintaining Arc Consis-
tency DNPI-MAC (2). Each figure has two columns: left for p=0.5 and right
for p=1.0. We first state some global observations over the experiments as a
group and across ordering heuristics. Then we examine the data for each of the
three ordering heuristics in this order: SLD, DLD, then LD-MB. In each graph, we
pay particular attention to the relative behavior of the search strategies at the
phase transition, demonstrated here by the presence of a ‘spike’ in nodes visited,
constraint checks and CPU time.
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Global observations: The comparison of the left and right charts in Fig. 4,
5, and 6, confirms the findings in [15] on how the slope and importance of
the phase transition augment with the constraint probability (Observation 6).
The examination of all 24 graphs at the phase transition peak confirms that
dynamic bundling dramatically reduces its magnitude (Observation 7). Finally,
the comparison of graphs for CPU time and bundling power, interpreted as first
bundle size across ordering strategies, shows that DLD is consistently an excellent
ordering unless one is specifically seeking larger bundles at the expense of a slight
increase in cost in which case LD-MB is justified (Observations 8, 9, and 10).

4.3.1 DNPI at phase transition: static ordering

Recall from Observation 4 and Section 4.2 that DNPI-MAC performs best under
SLD ordering. Under dynamic orderings (DLD and LD-MB), it is non-competitive.

Nodes visited (NV) with SLD (row 1): Fig. 4 shows that strategies based on
dynamic bundling (2 and �) expand in general fewer nodes than strategies
based on non-bundling (4) or static bundling (×) (Observation 7). A careful
examination shows that the phase transition is indeed present for DNPI-FC (to
some extent) and for NIC-FC and FC (to a large extent) but seemingly absent
in DNPI-MAC (Observation 12). Recall that MAC almost always visits fewer
nodes than DNPI-FC, which is guaranteed to visit fewer nodes than the others
when finding all solutions . We see here that MAC expands by far the fewest
nodes in the phase transition. It seems to almost not have a phase transition at
all. A closer inspection of the data shows that a phase transition is present, even
in DNPI-MAC, but is 3 to 4 orders of magnitude smaller than the competing
methods. DNPI seems to benefit very much from the pairing with MAC in SLD.
However, this saving on the number of nodes visited does not extend to the CPU
time as noted in Observations 1 and discussed below.

Constraint checks (CC) with SLD (row 2): At the left column (p=0.5), we
notice that, in general, either FC (4) or NIC-FC (×) performs the most con-
straint checks. In particular, the performance of static bundling (×) is quite
disappointing, see IDF= 7, 9 for p=0.5 (Observation 15). Moreover, DNPI-MAC
performs the fewest constraint checks at every phase transition except when
IDF=10. This illustrates an advantage that justifies the use of MAC. Further,
dynamic bundling remains the winning strategy as stated in Observation 7.

Recall that the ‘traditional’ fear of dynamic bundling is the excessive number
of constraint checks it requires to compute the interchangeability sets. We show
here that, in the most critical region, it is the non-bundling and static bundling
strategies that are actually requiring the most constraint checks. We are now
confident to recommend the use of dynamic bundling in search not only to
output several interchangeable solutions (which is useful in practice and the main
goal of bundling) but moreover to reduce the severity of the phase transition.
This result becomes even more significant under dynamic orderings (see Fig. 5
and 6). In the right column (p=1.0), this tendency is less pronounced and all
strategies seem to perform fairly similarly: none of them consistently performing
fewer or more constraint checks than any other. Nevertheless, the behavior of
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Fig. 4. Bundling with static variable ordering.
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dynamic bundling never deteriorates the performance of search enough to make
it impractical.

CPU time with SLD (row 3): The graphs for CPU time bear quite a resem-
blance with that of constraint checks (Observations 1). However, the distance
between the two dynamic bundling strategies and the two others is more clearly
visible, in favor of dynamic bundling. Indeed, both dynamic bundling strategies
DNPI-FC (�) and DNPI-MAC (2) are well below the other strategies in both
graphs. This is likely thanks to the significant reduction in the number of nodes
visited by these strategies and again supports the use of dynamic bundling to
reduce the steepness of the phase transition. Both Observations 7 and 14 are
supported here. In the left chart (p=0.5), DNPI-MAC (2) usually consumes the
least CPU time. In the right chart (p=1.0), DNPI-MAC consumes more time
than DNPI-FC for high IDF values. This is consistent with the behavior that we
observed for constraint checks.

First bundle size (FBS) with SLD (row 4): We do not report the First Bundle
Size FBS for non-bundling FC, since the solution size is either 1 (when a solution
exists) or 0 (when the problem is unsolvable). In general, we find that the sizes
of the first bundle found are comparable across strategies (Observation 11) with
a few exceptions addressed below. For p=0.5 (left), we see that NIC-FC surpris-
ingly performs the best bundling for low values of IDF (i.e., 2 and 3). When IDF

increases to and beyond 4, dynamic bundling regains its advantage: DNPI-FC
and DNPI-MAC compete for the larger bundle in most cases. However, for p=1.0
(bottom graph), DNPI-MAC nearly always performs the best bundling. Notice
that these bundles are quite small, less than 5 solutions are contained in each.
One exception is worth mentioning here at the right chart when IDF=10 and
t = 0.15: the data point here is off the chart indicating an exceedingly large first
bundle. This is effect is traced to a single instance of the 20 values averaged here
and can traced to a weird, but correct, random problem in which 173 out of 190
constraints are identical.

Conclusions relative to SLD: Under static variable ordering, dynamic bundling,
especially when coupled with MAC in DNPI-MAC, drastically reduced the phase
transition for a CSP, making the most difficult instances easier to solve.

4.3.2 DNPI at phase transition: dynamic variable ordering

In general, search strategies with dynamic variable orderings (i.e., DLD and
LD-MB) almost always perform better than statically ordered search strategies
[2]. In this section we examine DLD and in Section 4.3.3 we will examine LD-MB.
The results are presented in Fig. 5. The comparison of Fig. 5 and 4 shows that in
general DLD indeed performs better that SLD (the CPU time scale decreases al-
most tenfold). Moreover, we see that dynamic variable ordering heuristics have
a stronger effect on some strategies than others. Specifically, it seems to hurt
DNPI-MAC while helping the other strategies. This justifies Observation 4.

Nodes visited (NV) with DLD (row 1): Similar to what we saw for SLD, DNPI-
MAC (2) with DLD clearly visits fewer nodes than any other search strategy
(Observation 12). Further, we see that the other three strategies DNPI-FC (�),
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Fig. 5. Bundling with dynamic variable ordering.
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NIC-FC (×) and FC (4) compete for visiting the most nodes. DNPI-FC per-
forms the worst most frequently as shown in (p=0.5 at IDF = 2, 4, 5, 8 and 9) and
(p=1.0 at IDF = 2, 4, 8 and 10). Fortunately, poor performance in nodes visited
does not otherwise affect the other performance of DNPI-FC, which remains a
champion (Observation 16).

Constraint checks (CC) with DLD (row 2): The data here discredits NIC-FC
and DNPI-MAC and demonstrates that DNPI-FC is a champion under dynamic
ordering. DNPI-MAC performs quite poorly with dynamic ordering, beginning
with DLD in Fig. 5 and carrying over LD-MB in Fig. 6. In all cases, DNPI-MAC
performs the most constraint checks at the phase transition (Observation 4). In
all cases, DNPI-MAC performs the most constraint checks at the phase tran-
sition (Observation 4). Therefore, we safely conclude that the large amount of
checks performed by DNPI-MAC is due to the addition of MAC and not to dy-
namic bundling. Further, we see that DNPI-FC (�) is quite effective. It clearly
and significantly reduces the phase transition (Observation 7) and, in general,
outperforms the other methods (Observation 16). Interestingly, the strongest
competitor to DNPI-FC is FC (4) itself. Note however that FC gives one solu-
tion while DNPI-FC gives several robust ones. Neither NIC-FC (Observation 15)
nor DNPI-MAC (Observation 4) is worthwhile: they increase the phase transi-
tion rather than decrease it. This justifies our argument in favor of dynamic
bundling and confirms our doubts about the appropriateness of MAC in dy-
namic orderings.

CPU time with DLD (row 3): The charts here amplify the effects discussed
above. The disadvantage of static bundling becomes apparent in the left chart,
for p=0.5 (Observation 15). Though the phase transition is less steep (i.e., the
spike is almost concealed), the overall cost of performing NIC-FC (×) search is
unnecessarily high. This is due to the overhead of finding all NIC interchange-
abilities before beginning search. We can also see that DNPI-MAC (2) continues
to perform poorly (Observation 4). DNPI-MAC is consistently more costly than
DNPI-FC (�) and FC (4) even when not at the phase transition. When p=1.0,
it takes more CPU time than even NIC-FC. Once again, DNPI-FC performs the
best overall (Observation 16). In the right graph (p=1.0), we see that DNPI-FC
(�) reduces the phase transition, and performs best at every phase transition
(Observations 7 and 16).

First bundle size (FBS) with DLD (row 4): Finally, we see that though DNPI-
MAC (2) puts forth much effort, it does not even produce the best bundles.
In reality, NIC-FC (×) performed unexpectedly good bundling, especially where
p=0.5. DNPI-FC (�) also bundles very well; it is even with DNPI-MAC in much
of the left charts, and slightly better for most of the right charts (Observation 11).

Conclusions relative to DLD: Under dynamic variable ordering, DNPI-FC con-
tinues to perform better than non-bundling FC as bundling effectively reduces
the phase transition. Further, the addition of MAC to DNPI is disastrous with
a DLD ordering: it increases the amplitude of the spike of the phase transition
(Observation 4). Similarly, NIC-FC behaves worse than FC overall under this
ordering (though it finds large bundles).
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4.3.3 DNPI at phase transition: dynamic variable-value ordering

The remaining results are shown in Fig. 6. Notice the absence of FC (non-
bundling) search on these graphs. Since LD-MB is a strategy specific to bundling,
a non-bundling search strategy such as FC makes no sense in this context. There-
fore the comparisons drawn here are between the different bundling strategies.
Recall that LD-MB is merely DLD with a bundle ordering enforced since it assigns
to the variable chosen the largest bundle in the partition of its domain. Because
of its similarity to DLD, it often generally performs as well as DLD, but produces
a larger first bundle. Revisiting this strategy, we see that its effect on the phase
transition (when combined with bundling) is also very similar to DLD.

Nodes visited (NV) with LD-MB (row 1): As for the other orderings, DNPI-
MAC (2) visits fewer nodes than any other strategy for both values of p (Obser-
vation 12). As with DLD in Section 4.3.2, we see that DNPI-FC (�) often visits
the most nodes. This may serve as a notice that, when looking for only one so-
lution, if it is expensive to expand nodes but cheap to check constraints (here it
is the opposite), then DNPI-MAC may be an appropriate choice, as highlighted
in Observation 4.

Constraint checks (CC) with LD-MB (row 2): Here we see DNPI-MAC (2)
checks significantly more constraints than either DNPI-FC (�) or NIC-FC (×)
at the phase transition (Observation 4). However, notice that at most points,
especially for a low p (left graph), NIC-FC (×) performs many more constraint
checks than the others, almost concealing the phase transition (Observation 15).
This again is due to the overhead of static interchangeability computation. This
disadvantage is less visible with a high p, where NIC-FC performs more con-
straint checks for very loose problems (t = 0.15), but reduces the phase tran-
sition more effectively than either DNPI-FC or DNPI-MAC. The comparison
of the second rows of Figs. 5 and 6 shows the following. NIC-FC (×) performs
about the same number of constraint checks for LD-MB ordering than for DLD

ordering (i.e., between 100,000 and 200,000 when p=1.0), but DNPI-FC (�) and
DNPI-MAC (2) both perform more constraint checks in LD-MB than in DLD (Ob-
servation 9). This is a disadvantage of the combination of LD-MB with dynamic
bundling. LD-MB requires more backtracking, because the largest bundle in a
variable is often a bundle of no-goods, and will trigger backtracking. This will
require a re-computation of interchangeability, and becomes more costly in gen-
eral. Even when looking for only one solution, it seems that DLD is best suited
to dynamic bundling. Further, the comparison of second rows in Figs. 4 and
6 confirms an obvious expectation of LD-MB ordering being less expensive and
yielding better bundles than static variable ordering SLD (Observation 10).

CPU time with DLD (row 3): The trends we noted in the nodes visited and
constraints checked for LD-MB consistently extend to the CPU time consumed.
We see that both NIC-FC (×) and DNPI-MAC (2) have generally poor perfor-
mance, requiring more time that DNPI-FC (�). This confirms Observations 15,
4, and 16. Also, the comparison of CPU time (third row) with the first two or-
dering heuristics (i.e., SLD in Fig. 4 and DLD in Fig. 5) confirm Observations 10
and 9, respectively.
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Fig. 6. Bundling with dynamic variable-value ordering.
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First bundle size (FBS) with LD-MB (row 4): We see that, based on the size of
the first bundle, no particular bundling strategy can be declared a clear winner.
In general, dynamic bundling is a little stronger than static bundling, with two
exceptions (p=0.5, IDF=2 and p=1.0, IDF=4). As far as lookahead strategies
are concerned, DNPI-MAC and DNPI-FC are comparable and quite competitive
with respect to their bundling capabilities, thus justifying again the power of the
dynamic bundling and the superfluity of MAC (Observation 11). The comparison
across ordering heuristics show that LD-MB yields better bundles than both SLD

(Observation 10) and DLD (Observation 9)
Conclusions relative to LD-MB: It appears clearly that dynamic bundling with-

out MAC, that is DNPI-FC, effectively reduces the phase transition and produces
large bundles across all variable ordering heuristics. Further, we note that, in the
phase transition, DLD seems to be the most effective ordering.

5 Conclusions

Regarding the lookahead strategy to use with dynamic bundling, we establish
that, although MAC visits fewer nodes than FC, it requires in general more con-
straint checks and more CPU time. This is especially true in dynamic variable
ordering (i.e., DLD and LD-MB), where the cost of MAC becomes a serious im-
pediment. In conclusion, unless we are using SLD, DNPI-MAC is not worth the
effort and DNPI-FC should be used instead.

Regarding the phase transition, we prove that dynamic bundling is uniformly
worthwhile by reducing the spike at the cross-over point. This is especially true
for DNPI-FC. DNPI-MAC is a good search strategy to reduce the phase tran-
sition if static ordering must be used, but if dynamic ordering is permitted,
DNPI-FC is much more effective. As a conclusion, the phase transition is best
reduced by DNPI-FC with DLD variable ordering, which has never before been
implemented. These strategies, and their relative rank (1st, 2nd and 3rd) are
summarized in Figure 7.

FC
st1 2nd

[Hubbe & Freuder ’92]
  as CPR

Dynamic (DNPI)

Lookahead

Bundling

Ordering

MAC

3rd

  as CPR
[Silaghi et al. ’99]

Static (NI  )C

LD-MB

[Haselboeck ’93]

DLD

None

Basic

SLD

AdvancedStrategies compared

Fig. 7. A summary of the strategies implemented and tested and the best ranking ones.
All strategies not otherwise marked were proposed by us.
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14. Alois Haselböck. Exploiting Interchangeabilities in Constraint Satisfaction Prob-

lems. In Proc. of the 13 th IJCAI, pages 282–287, Chambéry, France, 1993.
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