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This paper presents CHOCO, a Constraint Programming (CP) library, developed 

within the OCRE project, as the kernel of a platform for CP research in 

combinatorial optimization. CHOCO features the standard utilities of a CP 

System, such as propagation events, data structures implementing domains, 

filtering algorithms or support for tree search. CHOCO has been implemented 

with two specific additional requirements in mind. First, the software 

architecture is modular in order to easily support extensions; second, the 

management of propagation events has been thoroughly optimised.  

The paper reviews some of CHOCO’s main design decisions, presents the 

software architecture and discusses the policy for managing and scheduling 

propagation events: we show how the standard policy from arc consistency can 

be specialized in the cases of arithmetic and global constraints. 

1. Introduction 

CHOCO is a library implementing basic primitives for constraint programming : 

domain management, constraint propagation, as well as global and local search 

procedures. CHOCO serves as the kernel of  a broader project, OCRE1 intended to 

building a common software platform for CP among several research teams (in 

French, O.C.R.E. is an acronym for Constraint Tool for Research and Education). It 

is a joint  project between Ecole des Mines de Nantes, ONERA Centre de Toulouse, 

Université de Montpellier LIRMM, INRA and Bouygues e-lab. It started from the fact 

that each participant often conducted experiments with CP algorithms and models, but 

took little advantage of the work conducted in the other teams, for lack of a common 

software  platform. OCRE provides every participant with the ability to easily 

compare, combine and experiment with algorithms and methods proposed by other 

researchers. This academic platform targets research and education; CHOCO is its 

ground layer, and is available as free software2. Such a ground position induces a few 

requirements on CHOCO, which has to be: 

− Small and Simple, so that everyone working in OCRE can understand and extend 

it, and so that it may be used for teaching purposes. 

− Efficient, so that it will not penalize OCRE algorithms by any run-time overhead. 

                                                           
1 www.emn.fr/dept_info/recherche/equipes/contraintes/ocre/public/Welcome.html  
2 covered by the General Public Licence from the Free Software Foundation 
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− Generic, so that further OCRE components, for instance, extending the scope to, 

say, other constraint domains, can be compatible with the CHOCO kernel. The right 

balance between being generic and being efficient has to be found. 

There is actually no new functionality in CHOCO, compared to the usual CP tools (no 

glorious global constraint, no new consistency algorithm, no new search paradigm) : 

CHOCO simply features the set of CP utilities that one has to go through when 

implementing a new constraint system from scratch. Indeed, an implementer starting 

such a CP system project for experimenting with an algorithm must not only code 

many utilities that have nothing to do with the targeted algorithm, he is also left with 

very little help from the literature, as implementation has rather been a disregarded 

topic in the CP research community. For these two reasons, we find it worthwhile to 

present the general design decisions that one is faced with while implementing a CP 

system. This paper should thus be read as a practical implementation report and we 

hope that it will be helpful for other researchers. A future paper will present 

comparisons and figures to evaluate some of the design decisions against 

implementation alternatives. 

The paper is organized as follows. Section 2 presents a few basic design decisions that 

oriented the implementation. Section 3 quickly reviews the object oriented 

architecture and discusses the role of a few abstract classes. Section 4 is the main 

contribution: we present the policy for scheduling propagation events. It is an 

adaptation of standard rules from arc consistency algorithms, based on few practical 

considerations. 

2. Design decisions 

2.1 User interface 

The first major design decision concerning the construction of a CP system is the 

choice between a library and an autonomous system. Ilog Solver belongs to the first 

class, while OPL Studio, Oz or CHIP belong to the latter. Building a library eases the 

task of application integration within computer environments (GUI, databases, etc.), 

while implementing a full fledged system generally yields more elegant problem 

statements, raising the abstraction level from programming languages to modelling 

languages. 

CHOCO is a library, for the sake of ease of integration. Moreover, it is written in 

CLAIRE [Caseau, Laburthe 1996], a programming language3 designed for expressing 

complex discrete algorithms in an elegant manner. As any CLAIRE library, CHOCO 

may either be used as is (as CLAIRE source code) or it can be compiled into a C++ 

library or a Java library. Therefore, CHOCO features some of the advantages of both 

solutions: CHOCO can be used as a CLAIRE source library with the CLAIRE interpreter 

for rapid and elegant prototyping of the application (the combination of CLAIRE and 

CHOCO approaches the level of a modelling language such as OPL). Afterwards, 

during deployment, the programmer can use the CLAIRE compiler to generate Java (or 

C++) code from her application and from the CHOCO library: the integration within an 

                                                           
3 see http://www.ens.fr/~caseau/claire.html or http://www.clairelanguage.com  
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existing information system is almost as easy as with any Java (or C++) source 

library. Throughout this paper, all examples will be given in CLAIRE code. 

The second design decision that we had to make was to decide what an application 

using CHOCO should look like. A small example with three variables and three 

constraints is displayed below.  
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Figure 1: a sample of CHOCO code 

Three important decisions are illustrated on this small example: 

− Encapsulate all information in a Problem object, rather than global structures. 

Doing so supports the definition of several Problem’s across a single session, 

which is useful for comparing models or solving a sequence of instances. 

− Use operators (+,>,…) for defining arithmetic constraints. Since operators may not 

be redefined in Java; stating arithmetic constraint is less convenient in Java than in 

CLAIRE or C++. This is the main API difference between the CLAIRE and Java 

versions of  CHOCO; the remainder of the API is identical. 

− Clearly separate modelling (defining variable and stating constraints) from 

problem solving (propagation and search). Doing so has two advantages. On the 

one hand, it leaves the possibility to the user to edit a set of constraints, for 

instance, in order to apply simplification rules, before any propagation is 

performed. On the other hand, this allows the user to state all the constraints before 

performing heavy propagation, instead of performing it after each constraint 

addition.  

2.2 Tree search 

Concerning search trees, two important implementation decisions were made : 

1. keep the computation in a non-distributed environment. For the sake of simplicity, 

the execution of a program yields only one process and does not use threads.  

2. use a trailing stack for implementing backtrack [Aggoun, Beldiceanu 1991]. Each 

time a backtrackable data structure x (say the lower bound field of a domain 

variable) is updated from value a  to value b, we store the reference to x and the 

former value a in a stack, before performing the assignment x := b. Upon 

backtracking, we pop the pairs from this stack and restore the original assignments 

x := a. This choice is motivated by memory usage (the alternative would be to 

copy the whole state at each node of the tree). Moreover, the trailing mechanism 

comes with the standard CLAIRE language: as soon as a field f is declared as 

“backtrackable”, all updates to f are automatically performed with a copy of the old 

value on the trailing stack. 
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2.3 A simple object model 

We now introduce the entity-relationship model on which CHOCO is based. 

Problems, domain variables, domains and constraints are modelled as objects: each 

type of variable (over integers, reals, trees, …) is implemented by a class inheriting 

from AbstractVar, each type of constraint (x >= y, x <> y, linear combinations, 

boolean combinations, constraints as n-tuples of feasible values, etc.) is implemented 

by a class inheriting from AbstractConstraint. The constraint network is modelled as a 

set of links between constraints and variables. Each constraint object contains its 

variables in some fields; each domain variable features a field with the list of 

constraints that it is involved in. Up to now, CHOCO is limited to integer valued 

variables; however, the architecture has been designed to easily support extensions.  

The basic step of propagation consists in waking up all constraints linked to a 

variable, each time the domain of that variable is modified. Since the set of available 

constraint classes can be extended, we do not know a priori the type of constraints 

linked to a variable and the list of constraints attached to a variable is a heterogeneous 

list containing any descendents from AbstractConstraint. Therefore, a generic 

(virtual) method is called on all the constraints. Each constraint class provides an 

actual implementation of this propagation method. 

The use of virtual methods (the notion of polymorphic functions in object languages) 

is at the very heart of CP systems. They offer a homogeneous framework for 

integrating constraints which supports a modular organization of the code [Puget 92]. 

Firstly, constraints can be implemented separately for two reasons: they can be 

propagated independently and in any order, by calling a virtual propagation method 

and secondly, constraints only need information on the state of their own variables (at 

least, in the case of local consistency algorithms).  

The choice of such a software architecture with virtual methods and dynamic 

dispatching has two impacts on the source code: 

− The notion of constraint can be defined as an abstract data type with an interface: a 

constraint is a data structure that implements a set of virtual methods for 

propagation. 

− The constraint system can be described, from an operational point of view, in terms 

of events and agents: during propagation, each time a variable domain is shrunk 

(an event on that variable), the constraints involving that variable are waken (just 

as agents or as demons) and, in turn, they may generate new events (filtering out 

some values from domains). This framework is well adapted for solvers 

implementing forms of local consistency (arc consistency or weaker notions), and 

not for forms of consistency involving several constraints at a time. The only 

notions of strong consistency are implemented as global (n-ary) constraints. 

2.4 A reactive system with events  

The subtlety of CP algorithms and systems often resides in the efficient 

management of propagation events. The standard CSP formalism of constraints as 

tuples of values (without semantic) considers uniform events (value removals). Works 

in the CLP literature provide  specific propagation algorithms from the constraint 

semantics: for instance, they derive updates on the bounds of the domains for 

arithmetic constraints. 
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In the CSP literature, the mechanism for waking up a constraint consists in computing 

an arc-consistent state after one or several value removals: there is thus only one 

filtering procedure and the global propagation loop is directed by constraints. In the 

CLP literature, the filtering algorithm is specialized along several propagation paths 

and the global propagation loop is directed by the domain reductions.  

Thus, a general tool, supporting both spirits must manage various types of 

propagation events and offer the user the possibility to parameterize the control over 

propagation. 

CHOCO manages four types of events and offers several modes for waking up 

constraints. By default, all events are used and the waking mode has been empirically 

selected for each type of constraints. However, the system can be controlled by the 

user who can decide to select simpler frameworks (basic AC-4, considering only 

bound events, removal of some optimisations, etc.) 

CHOCO considers the following propagation events for finite domain variables:  

− ����������� : the domain lower bound for some variable  �  is increased from 	  to 
��  
− 
�� ������� : the domain upper bound for some variable  �  is decreased from 	  to 
 , 

− ������������������� � : the domain of some variable  �  is reduced to { 
�� ,,

− ��������� �! : the value 
  is removed from the domain of some variable  � . 
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Figure 2: CHOCO ‘s architecture in terms of agents and events. 

The figure above illustrates the message passing activity between variable and 

constraints: events are generated on variables, which inform their constraints (calling 

awakeOn…() functions). Constraints react to the events and in turn, generate new 

events (calling updateOn…() functions).  and As displayed on the figure above, each 

time a propagation event occurs, the domain of the variable is updated appropriately 

and all constraints connected to that variable react to the event. 

3. Software architecture 

This section rapidly presents the software architecture of CHOCO with its class 

hierarchy and the generic services associated to each class. The current object 

hierarchy of CHOCO currently features around 30 classes. Inheritance is used to share 

services across two different implementations of a same notion: one way of 
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controlling propagation consists in creating subclasses of variables and constraints 

and redefining their own propagation management functions. 

A few of them are abstract classes (with no instances) who implement abstract data 

types. They are worth mentioning because they amount to the low-level interface of a 

constraint programming system. 

 

 

AbstractVar AbstractDomain

CompositeConstraint

BoolConstraint

AbstractConstraint 

IntConstraint IntVar IntDomain

object

 

Figure 3: CHOCO‘s class hierarchy 

Among these abstract classes: 

• The AbstractVar class is the root class for all domain variables. It implements links 

to all constraints in which the variable is involved as well as information indicating 

how the variable occurs in the constraints. For instance, when x.constraints[i]=c 

and x.indices[i]=3, then c is the i
th

 constraint in which x occurs and x is the third 

variable in c (see figure 4). 
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Figure 4: Encoding of the network in the fields of variable and constraint objects 

• The AbstractDomain class is the root class for all domain data structures. It 

implements methods for removing values and for testing whether values are 

present or not in the domain. 

• The AbstractConstraint class is the root class for all constraints. All classes 

inheriting from it implement : 
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− an indexed access to its variables. For instance binary constraints will 

implement two fields v1 and v2 with references to their two variables.  

− a reference for finding back the constraint among all constraints linked to one of 

the variables. For instance, binary constraints implement two fields idx1 and 

idx2 such that c.v1.constraints[c.idx1] = c. The idx1 field thus contains the 

index of c back among all constraints associated to its first variable (see figure 

4). 

− a feasibility check (to be called when all variables are instantiated). 

− a satisfaction test, returning true, false or unknown, to test whether a constraint 

is surely satisfied, surely violated or may be anything, given the current status of 

the domains. 

− a service for connecting and disconnecting a constraint from the network. 

Constraints are connected to the network right after being posted to the problem; 

they are disconnected as soon as they become satisfied. 

− a service for transforming a constraint into its converse logical condition. This is 

used by Boolean combinations; global constraints which are too heavy to be 

combined by Boolean operators return an error when asked their converse 

constraint. 

• The CompositeConstraint class is the root class for all constraints which are made 

up from several smaller constraints (such as Boolean combinations). It implements 

services for giving a unique global index to each occurrence of a variable in one of 

the subconstraints. 

• The BoolConstraint class is a subclass of CompositeConstraint implementing 

Boolean combinations. 

• The IntVar class is the class for all finite domain variables. It implements the 

following functions for generating the four kinds of events: 

− updateInf(v:IntVar, x:integer, i:integer) increases the lower bound of variable 
�

 

to �  and creates an ���������	�  event, generated by 
�

’s i
th

 constraint. 

− updateSup(v:IntVar, x:integer, i:integer) decreases the upper bound of variable 
�

 to �  and creates a 
�����
����  event, generated by 
�

’s i
th

 constraint. 

− removeVal(v:IntVar, x:integer, i:integer) removes the value �  from the domain 

of variable 
�

 and creates a �������������  event generated by 
�

’s i
th

 constraint. 

− instantiate(v:IntVar, x:integer, i:integer) instantiates the variable 
�

 with value �  

and creates an ����
����������������  event generated by 
�

’s i
th

 constraint. 

• The IntDomain class is the root class for all implementations of finite domains. It 

implements the following services: 

− counting the number of values stored,  

− removing a value, 

− computing/updating the lower/upper bounds of the domain, 

− iterating all values contained in the domain. 

• The IntConstraint class is the root class for constraints that involve only finite 

domain variables. All classes XXConstraint inheriting from IntConstraint must 

implement a reaction to all four events, with the following methods (for some 

constraints, these four methods may call the same code): 

− awakeOnInf(c:XXConstraint,i:integer) for the propagation of constraint �  upon 

���������	� (v) caused by v’s i
th

 constraint. 
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− awakeOnSup(c:XXConstraint,i:integer) for the propagation of constraint 
�
 upon 

����������	
(v) caused by v’s i

th
 constraint. 

− awakeOnInst(c:XXConstraint,i:integer) for the propagation of constraint 
�
 upon 


�����
�����
�
���
��
(v) caused by v’s i

th
 constraint. 

− awakeOnRem(c:XXConstraint,i:integer,x:integer) for the propagation of 

constraint 
�
 upon �

�����������
(v,x) caused by v’s i

th
 constraint. 

4. Scheduling propagation events 

We have introduced in section 2 the four kinds of propagation events. The 

�����
����

 

and 
����������	

 events actually correspond to a set of smaller �
�����������

 events. For 

instance, when the domain lower bound of v is raised from 2 to 4, we can either 

generate the event 

�����
����

(v,4) or the set of events { �
�����������

(v,2), �
�����������

(v,3)}. 

The first case is more concise (one event instead of two), but less precise than the two 

other ones (the former value of the domain lower bound of v is forgotten). 

Such events are introduced because some constraints are performed through bound 

consistency. In such cases, the propagation of one constraint yields improved bounds 

on variables but does not “make holes” into the domain by removing values in the 

middle of it. Therefore it is sufficient to reason only on bounds. It is thus a 

specialization over the arc consistency procedure [Mackworth 1977]. 

The remainder of this section will discuss issues linked to propagation event 

management. More precisely, we shall present the general event life-cycle, discuss 

scheduling policies (priorities, delays), optimization in queue management and 

finally, a notion of event abstraction for global constraints. 

4.1. Life and death of propagation events 

All events have the same lifecycle: they are first generated, then, the domain of the 

variable is modified, then, they are stored in an event queue, and finally, they are 

popped and the corresponding constraints may be waken.  

Such an information flow translates into a programming pattern: below, we take the 

example of the 

�����
����

(v,x) event, (the three other events have the same life cycle) 

and we detail the cascade of the involved function calls. 

• updateInf(v,x,idx)  % the function generating the event. 

    % idx is the cause of the event 

• updateInf(v,x)  % the function performing the update on v 

• updateInf(v.bucket,x) % the function performing the update on 

   %  additional domain representations for v 

  % stored in v.bucket 

• postUpdateInf(v,idx)  % the function posting the event in a queue 

• doAwakeOnInf(c’,j)  % later, when the event is popped from the  

    % queue, all constraints c’ linked to v are 

   % asked to react to the event    

 

A few issues can be highlighted on this programming pattern:  
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− In the first call (ternary updateInf), the third argument is the index of the constraint 

c which raised the event among all constraints linked to v. Passing this index as 

parameter allows the engine to only wake up constraints c’ different from c in the 

last call (see section 4.4) 

− At run-time, the flow can stop at the second call to updateInf, if the 
�����������

 event 

does not add information to the current status of domains. This is the case when the 

current domain lower bound is at least as high as the newly inferred one. 

− Domains may be represented by several data structures (such as bit-vectors, linked 

lists, interval trees, and so on) in addition to both bounds. In this case, the third call 

to updateInf performs the updates on such data structures. Such data structures may 

also implement explanations [Jussien, Debruyne, Boizumault 00] 

− After the event has been stored (postUpdateInf), it is retrieved from the collection 

of pending events and all constraints involving the variable from the event are 

waken (doAwakeOnInf). Waking a constraint can mean either propagating it (in 

which case, there is one such propagation per event, à la CLP), or setting a flag on 

the marked constraint, such that, after all pending events have been treated, all 

touched constraints can be propagated (à la CSP: a constraint directed propagation 

loop). Thus, the programming pattern supports both style of propagation: either 

constraint-directed or event-directed. 

− The propagation mechanism takes place only once all updates have been 

performed on the domain. Thus, if the event is delayed; its immediate 

consequences (on the domain on v) are taken into account before its induced 

consequences (through propagation). Performing the updates on the domain as 

early as possible is a means to increase the speed of convergence in the 

computation of the propagation fix point [Apt 97].  

This pattern has been described on the 
�����������

 event; it also applies to the three other 

kind of events. Note also that such a programming pattern (event generation, storage, 

retrieval and constraint iteration for reaction to the event) would also apply to events 

on other value domains (for constraints over trees, Booleans, sets, and so on). 

In CHOCO, the data structures for storing events can be redefined by the user. We will 

show in the next sections that this pattern is generic and can be parameterized in order 

to support the implementation of various mechanisms such as: 

− a standard AC-4 mechanism where propagation takes place in a constraint directed 

loop (instead of an event directed loop) 

− an optimized algorithm for domain bound updates 

− a layered architecture for global constraints 

− and specific procedures that the user may add 

4.2 Propagation event scheduling policies 

The propagation phase can be described as the exploration of a graph of 

consequences, where each node is an event and an arc corresponds to the inference 

work performed by the propagation of a constraint: propagation of a constraint is 

triggered by an event and may, in turn, create several new propagation events.  Such 

an inference graph may feature cycles in case there are several deduction paths to 

come to a same conclusion. There are (at least) two possibilities for exploring such a 

graph: depth first search (DFS) and breadth first search (BFS).  
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− DFS corresponds to a preemptive propagation of the children events: if event e1 

generates event e2, then event e2 is immediately propagated without waiting for 

the completion of propagation of e1. This is easily implemented with a stack of 

events; 

− BFS corresponds to a propagation of events by “generations”. If event e1 generates 

events e2, e3 and e4, we wait for e1 to be fully propagated before propagating its 

offspring (e2,e3,e4). This amounts a kind of “propagation by generations”: 

propagating the root events first, then, their children, then their grand-children, and 

so on. 

There is no clear argument for choosing one strategy against the other. It seems a 

good idea to apply DFS when an important event is raised (in order to explore 

immediately its consequences), while BFS supports a more fair way of waking up 

events. Moreover, in some tricky cases, the consequence tree can have very deep 

branches. An example of such a situation is displayed on the figure 5: 
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Figure 5: how many steps for discovering an infeasible problem ? 

The small program above is infeasible and the call to propagate will detect a failure, 

but the chain of consequences leading to that failure has a length of 1000. We extract 

below two such inference paths from that tree. The first one has length 1000, while 

the second one is short. In such infeasible cases with deep branches, it is wiser to use 

BFS which will find the shortest path leading to a failure. This will not prevent long 

chains from being explored, but in case there exist several ways of discovering an 

infeasibility, it will first find the shortest one (that of least depth in the tree). 
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CHOCO’s scheduling policy is the following: 

• 
��]�����]2̂

 and _�` ��!�a��  events are stored in a common queue and treated in a first-in 

first-out manner (BFS). 

• 
� �̀b�c 1�d8e  events are in another fifo queue. 

• 
��]
!@��dF]%���@d�� `  events are stored in a stack and treated in a last-in first-out manner 

(DFS). They are thus popped as soon as they are pushed onto the queue. This 

framework gives a higher priority to instantiation compared to bound updates. 

 

Several remarks can be made on the size of the data structures: 
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− the size of the stack for 
���������	�
�������
�

 events is trivially bound by the total 

number n of variables. 

− the size of the fifo queue for both 
�����������

, �
���������

 events can be bound by 2n+1. 

Indeed, Section 4.4 shows how one can avoid having more than one 
�����������

(v) 

and one �
���������

(v) waiting in the queue, for all variables v.  

− the size of the fifo queue variables for �
�����������

 events can unfortunately be very 

large (of the order of magnitude of the sum of the size of all domains). 

4.3 A layered propagation architecture 

Up to now, we have described the event scheduling policy at the variable level: we 

now describe the constraint level. Indeed, once a event variable is popped up from the 

queue, all the constraints in which the variable is involved are waken. When waking 

the constraint, we can either propagate it, or we can record that the constraint was 

touched and delay its propagation.  The former case (immediate propagation) is well 

adapted for small arithmetic constraints while the latter case corresponding to the 

usual CSP consistency algorithms (examine constraints c one by one, and propagate 

those which have been touched until a fix-point is reached) is well adapted for 

constraints without semantics (tuple of values) and global constraints.  

The overall propagation policy mixing variable-based scheduling policies with 

constraint-based scheduling policies is organized into layers: the reaction of 

constraints to events is scheduled in such manner that the quickest reactions are those 

of small constraints on “strong” events (events providing much information), and that 

reactions of “heavy” constraints (constraints with long filtering algorithms) are 

delayed the most. The event architecture contains the following layers: 

• level 0: 
���������	�
�������
�

 events are propagated immediately. 

• level 1: �
�����������

 events are propagated immediately thereafter. 

• level 2: 
�����������

 and �
���������

 events are propagated afterwards, once all 
���������	�
�������
�

 et �
�����������

 events have been fully flushed. 

• level 3: Once all delayed events have been treated, all constraints defined as 

feasible tuples of values are propagated (AC-4). 

• level 4: Once all delayed events have been treated, all linear constraints are 

propagated (using a linear complexity filtering algorithm). 

• level 5: global constraints with sub-quadratic complexity are propagated. For 

instance, this is the level for the complete AllDiff constraint [Régin 94] 

• level 6: global constraints with quadratic complexity are propagated. For instance, 

edge-finding propagation could be placed at that level. 

• level 7: global constraints with higher complexity are propagated. 

In levels 0 to 2, only the small constraints with semantics (such as small arithmetic 

constraints or difference constraints) are propagated, while the other ones are delayed 

for upper levels. This policy amounts to achieving a set of layered fix-points: we only 

treat level i when levels 1 through i-1 have fully come to a fix-point. 

For levels 3 to 7, all (delayed) constraint of the level are iterated and we test whether 

the constraint has been marked or not. A chained list implementation for collecting 

and traversing the set of marked constraints is planned for CHOCO’s next release. 
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4.4 Optimized management of the INCINF/DECSUP event queue 

This section describes a few optimizations on the management of the event queue 

in order to avoid generating redundant events or waking up constraints that will not 

yield new information. 

The constraint queue stores events as triplets (evt, v, idx), where evt is the event 

(
�����������

 or ��	
��
����

), v is the domain variable that has been modified and idx 

represent the cause of the event (the index of the constraint that generated the event 

among all constraints linked to v). In some cases detailed at the end of section 4.4, the 

cause of the event is deliberately forgotten, and idx = 0. 

Selecting the constraints to wake up  

When an event (
�����������

, x, i) is popped from the queue, the constraints connected 

to v are iterated in order to react to the event. The simplest way to do so would be to 

iterate over the list x.constraints and call for all k, 1 ≤ k ≤ n (with n = 

size(x.constraints)),  doAwakeOnInf(x.constraints[k], x.indices[k]). The second 

parameter (v.indices[k]) is the index of x in its k
th

 constraint. We add two 

optimizations over this simple iteration, in order to avoid useless wakes: 

1. It is useless to have the very cause of the event react to the event. Therefore, in the 

above loop, one should not consider the value k=i. In order to do so, we replace the 

iteration for k from 1 to n by an iteration from i+1 to n and from 1 to i-1 (note that 

this is still valid in the case i=0, which is our aforementioned convention when the 

cause of the event is ignored). 

2. Other values can be skipped by k during this iteration. A first reason is that some 

constraints will never provide us with new information upon 
�����������

 events to 

some of their variables (the constraint x>y should not be woken upon 
�����������

(x) or 

��	
��
����

(y) events). A second reason is that some constraints that are fully satisfied 

before being fully instantiated (which is the case for x>y when x.inf>y.sup) should 

not be woken. In both cases, we want the iteration to skip the index for k.  

In order to perform this restricted iteration, CHOCO implements a list of pointers (the 

field x.nextConstOnInf for the variable x) containing, for each index i, the index of the 

next constraint that should be woken after constraint  at index i. 

The figure below depicts a situation where x is linked to four constraints Ca, Cb, Cc, 

and Cd, among which only Ca, Cb and Cd are active on the 
�����������

(x) event. 

 

x.constraints Ca Cb Cc Cd

x.nextConstraintOnInf 3  4 1 

 

 

 In this example, when the event (
�����������

, x, 3) occurs, we know that Cc is the cause 

of the event (it is the 3
rd

 constraint on x), and we can perform the iteration starting 

with k=x.nextConstOnInf[3]=4, therefore, asking Cd=x.constraints[4] to react to the 

update of x.inf, then going on with k=x.nextConstOnInf[4]=1, therefore, asking 

Ca=x.constraints[1] to react to the update of x.inf, and stopping the iteration 

thereafter because k=x.nextConstOnInf[1]=3 brings us back to the start of our 

iteration (the index of the cause of the event). 
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Removing redundant events  

When a new event is added to the queue, we check that no similar event is already 

present4 in the queue: indeed, if an event e1=(
�����������

, x, i) is already present in the 

queue, and if we add e2=(
�����������

, x, j), the reaction of the constraints to e2 will be 

virtually redundant with the reactions to e1. Indeed, the reaction to e1 will take place 

after the two updates on the value of x.inf. It is thus useless to react a second time (for 

e2) to the increase of the lower bound of x. Therefore, the second event e2 is not 

added into the queue, since its propagation redundant with that of e1.  

The situation gets trickier when both optimizations (not waking up the cause of an 

event and removing redundant events) are jointly performed. In case the events have 

the same origin (i=j), the redundant event (e2) can be simply forgotten. Otherwise, 

when the events have different origins (i ≠ j), it is no longer correct to apply both 

optimizations, that is to ignore e2 and to react globally to e1 and e2 by waking up all 

constraints linked to x but the i
th

 (which caused e1).  

Instead, in order to dismiss e2 from the queue of pending events, we forget the cause 

of event e1 (replacing i by 0) and iterate all constraints when popping e1:  among 

them, waking up the i
th

 is motivated only by e2, waking up the j
th

 is motivated only by 

e1 and waking up the others is motivated both by e1 and e2. 

4.5 Strenghtening events 

There are a few tricky cases, where events get transformed. This is due to the 

redundant representations of the domain. For instance, suppose that the domain of x is 

{1, 4, 7, 9}: 

− A �
	���
������  event (x ≠ 1) will reduce the domain to {4,7,9}. In the interval 

approximation of the domain of the variable x, this event does not amount to the 

removal of one but several values. Therefore, we could generate a 
�����������

 event 

instead of the �
	���
������  event. 

− An event (x ≥ 8) will reduce the domain to {9}. Therefore, what appeared to be an �����������
 event, by only looking at the interval approximation of the domains should 

be an 
���
��� � ����� � � 	  event, yielding stronger propagation. 

Therefore, in the flow of function calls presented above, updateInf(x,a,idx) will not 

always generate a call to postUpdateInf(x,idx), but sometimes to postInstantiate(x,j). 

A tricky question is whether, in those cases of event strengthening (transforming an �����������
 event into an 

���
��� � ����� � � 	  event), the idx parameter representing the cause 

of the event generation should be kept. In fact, no. If a constraint generated an update 

x ≥ 8, and if this translates into the instantiation x=9, then that constraint should be 

informed about the additional information. Therefore, we should generate a call to 

postInstantiate(x,idx). We actually rather generate a call to postInstantiate(x,0), thus 

forgetting the cause of the instantiation; indeed, the constraint c=x.constraints[idx] 

that generated the event x ≥ 8 could perform additional inferences if it knew that this 

translated into x=9. Therefore, in the iteration of all constraints on x, c should not be 

skipped. In order to ensure that c will not be skipped (first optimization of section 4.4) 

                                                           
4 In order to know whether e1 is present in the queue, the variable x records in two fields the 

address of events 
�������������

x �  and ��	 ��������� x �  if they are present in the queue. 
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and will be asked to react to the strengthened event x=9, we need to replace the 

second parameter of postInstantiate by 0.  

4.6. Abstracting events 

The last case of event transformation takes place with global constraint 

propagation: instead of strengthening the event with information from state of the 

domain, global constraint forget part of the details of the events, they abstract the 

event in some respect.  

Since the propagation of global constraints is delayed (in the levels 4 and above 

described in section 4.3), global constraints are often asked to react after several 

events have taken place. For the sake of efficiency, if k events have happened since 

the last wake up of the global constraints, there will be less than k procedures calls, 

because the wake up algorithm will consider several of those events at a time, taking a 

gross view of what has changed. Such a way of forgetting the details of the exact 

propagation events is an abstraction mechanism. 

The simplest way of doing so for a global constraint is to abstract all possible events 

into one abstract event (“something has changed”). In this case, the global constraint 

implements only one reaction mechanism, independent from the amount of changes in 

the domains since the last time that the global constraint was woken. This is the actual 

procedure for constraints defined as tuples of values (level 3). 

A slightly more subtle case corresponds to the case of linear constraints where two 

abstract events are considered. Consider the general linear constraint 

0=+−�� cYbXa
j

jj
i

ii  

where all coefficients ai and bj are positive. Let us introduce two bounds: 

csupYbinfXalb
j

jj
i

ii +−= �� ..  

cinfYbsupXaub
j

jj
i

ii +−= �� ..  

There are two propagation rules for such a constraint [Harvey 98]: 

0
00

0
00 ..,

i
ii

i
i

a
lbinfXX

a
ubsupXi −≤≤−∀  

0
00

0
00 ..,

j
jj

j
j

b
ubinfYY

b
lbsupYj −≤≤−∀  

Therefore when any event occurs on variables X and Y, it is sufficient to note whether 

the bound lb or ub has been modified. Therefore all events 
�����������

(Xi), ��	
��
����

(Xi), �����������
(Yj), ��	

��
����
(Yj) are abstracted in two global events: one when lb is improved, 

and one when ub is improved. The propagation loop is very simple: 

• when lb has been improved, all supX i. and all infYj. are updated 

• when ub has been improved, all infX i. and all supYj. are updated 

Each global constraint has its own abstract events. For instance binary matching 

constraints propagated with the Hungarian method [Caseau, Laburthe 97] have two 

different events: whether edges in the optimal matching have been removed and 

whether edges outside this optimal matching have been removed. 
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5. Conclusion 

In this paper, we have introduced CHOCO, a Constraint Programming library and 

we have presented its implementation. There are two contributions in the paper. The 

first contribution is an object-oriented architecture that is modular enough to easily 

support extensions. It defines a notion of internal API dedicated to CP with classes 

and low-level services. It took us some time and a few dead ends to find it, so we 

hope the paper will be of help to future CP system implementers. The second 

contribution is the management of propagation events, a generic framework which 

has been  optimised for handling different kinds of constraints, with or without 

semantics, and with global constraints. To our knowledge, practical propagation event 

management policies applying to small and global constraints have not been 

published yet. This is ongoing work, and a future paper will assess the efficiency of 

some of CHOCO’s implementation options with comparisons and benchmarks. 
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