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ABSTRACT

Recently, efficient algorithms have been proposed to achieve arc- and path-consistency in
constraint networks. For example, for arc-consistency, there are linear time algorithms
(in the size of the problem) which are efficient in practice (e.g. AC-6 and AC-T). The best
path-consistency algorithm proposed is PC-{5|E} which is a natural generalization of
AC-6 to path-consistency. While its theoretical complexity is the best, experimentations
show clearly that it is not very efficient in practice. In this paper, we propose two
algorithms, one for arc-comsistency, AC-8, and the second for path-consistency, PC-
8. These algorithms are based on the same principle: to exploit minimal supports as
AC-6 and PC-{5[6} do, but without recording them. While for AC-8, this approach
is of limited interest, we show that for path-consistency, this new approach allows to
outperform significantly existing algorithms.

Keywords: Constraint Satisfaction, CSPs, Arc-Consistency, Path-Consistency, Con-
straint Propagation.

* A preliminary version of this work has been presented at the International Conference on Tools
with Artificial Intelligence IEEE-ICTAI'96 [1].
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1. Introduction

The (finite) Constraint Satisfaction Problem (CSP) formalization has been a pro-
ductive tool with Artificial Intelligence and related areas. Both within the frame-
work of Constraint Programming and CSPs, the techniques of preprocessing phase
based on filtering algorithms were shown to be very important for the search phase.
In particular, two filtering methods have been studied, these methods exploit two
properties of local consistency: arc-consistency and path-consistency. Concern-
ing arc-consistency methods, there is a linear time algorithm (AC-6 of Bessiére [2])
which is efficient in practice [3]. So, arc-consistency can be considered now as a basic
tool in the fields of Constraint Programming and Constraint Reasonning. Neverthe-
less, for some application, the filtering corresponding to arc-consistency is limited
because it is less powerfull than filtering associated to path-consistency. The best
path-consistency algorithm proposed is PC-{5|6} (for PC-5 of [4] [5] and PC-6 of
[6] {7]), 2 natural generalization of AC-6 to path-consistency. Its time complexity is
0(n®d®) and its space complexity is O(n*d®), where n is the number of variables and
d is the size of domains. Unfortunately, we have remarked that PC-{5|6}, though it
is widely better than PC-4 [8] [9], is not very efficient in practice, specialy for those
classes of problems that require a large space to be run. So, it seems that a such
filtering cannot be used in practical applications or to be integrated as a basic tool
in constraint solvers [10]. A possible way to avoid this problem is in defining new
properties of consistency between arc- and path-consistency (see {11} or [12]). In
this paper, we consider a different way, trying to optimize path-consistency filtering,
proposing a new algorithm.

One of the conclusion of [7] indicates a way to optimize path-consistency filter-
ings: to make a compromise between time and space in order to find a new algorithm
with real practical efficiency. The algorithm we present in this paper, called PC-8,
seems to be able to realize this goal. We relaxed the constraint of time complexity
to limit space complexity. PC-8 deals with the notion of supports, but contrary to
PC-{5|6}, PC-8 does not record supports. While for each pair of compatible values,
PC-{5|6} records n — 2 minimal supports, PC-8 only looks for supports when 1t
is necessary. So, space complexity of PC-8 is only O(n®d). As a consequence, the
time complexity of PC-8 is worse than the one of PC-{5|6} since it is O(n®d?).
Nevertheless, the simplicity of the algorithm and its data structures induce a re-
ally better practical efficiency for PC-8. Moreover, when the size of domains is a
constant for the considered application (it is possible for real life problems), PC-8
becomes optimal in time complexity, O(n®), and in space, O(n?).

The principle used in PC-8 can be applied to arc-consistency. So, we introduce a
new algorithm achieving arc-consistency, called AC-8. Its space complexity is O(n}
while its time complexity is O(ed®) where e is the number of constraints.

This paper is organized as following. Section 2 recalls some definitions and
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notations on CSPs, and then presents the principles of constraint propagation based
on supports for arc-consistency and path-consistency, i.e. for algorithms AC-4, AC-
6, PC-4 and PC-{5|6}. Sections 3 and 4 describe respectively AC-8 and PC-8 while
section 5 presents experimental results about the comparison between AC-3, AC-4,
AC-6 and AC-8, and then between PC-2, PC-{5|6} and PC-8 on random CSPs.

2. Preliminaries

Definition 1 A binary CSP is defined by (X, D,C, R), where X is a set of n vari-
ables {z1,...zn} and D is a set of n finite domains {Dh,...Dn} such that D; is
the set of the possible values for variable z;. C is a set of e binary constraints where
each C;; € C is a constraint between the variables z; and x; defined by its associated
relation Ri;. So, R is a set of e relations, o binary relation R;; between variables
z; and z;, being a subset of the Cartesian product of their domain that defines the
allowed pairs of values for x; and z; (i.e Ri; C D; x Dj).

For the networks of interest here, we require that (b,a) € Rji < (a, b) € Ryj.
The fact that (a,b) € R;; will be denoted by H;; (a,b) is true. If there is no constraint
between the variables z; and z;, we consider the universal relation R;; = D; x Dj.
A CSP may be represented by a constraint graph (X,C) in the form of a network
in which nodes represent variables and arcs connect variables that appear in the
same constraint. An instantiation of the variables in X is an n-tuple (v1,v2,...,Un)
representing an assignement of x; € X towv;. A consistent instantiation of a network -
is an instantiation of the variables such that the constraints between variables are
satisfied, Le Vi, j:1<i<j<n,Ci €C=> R;j(vi,vj). A consistent instantiation
is also called a solution. For a given CSP, the problem is either to know if there
exists any solution or to find one solution or all solutions. The decision problem
is known to be NP-complete. Since CSPs are NP-Complete, many techniques have
been defined to restrict the size of search space. For example, preprocessing methods
based on network consistency algorithms are of great interest in the field of CSPs.
These algorithms are based on consistency properties like arc-consistency or path-
consistency. We recall below their definitions. ‘

Definition 2 A domain D; of D is arc-consistent iff, Ya € D;,Vz; € X such
that Ci; € C, there exists b € D; such that Rij(a,b). A CSP is arc-consistenl iff
VYD; € D,D; # 0 and D; is arc-consistent.

Definition 3 A pair of variables {z;,x;} is path-consistent iff ¥(a,b) € R;i;,Vzi €
X, there ezists ¢ € Dy such that Ry (a,c) and R;r(b,c). A CSP is path-consistent
iff ¥z;,z; € X the pair {z;,z;} is path-consistent.

While filterings based on arc-consistency remove values from domains if they
do not satisfy arc-consistency, filterings based on path-consistency remove pairs of
values from relations if they do not satisfy path-consistency. So, if a constraint is
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not defined between a pair of variables, the universal relation is then considered.
As a consequence, the constraint graph can be completed in such cases. Differ-
ent algorithms achieving arc-consistency or path-consistency in constraint networks
have been proposed. For arc-consistency, these algorithms are AC-1 [13], AC-3
[14], AC-4 [8], AC-5 [15], AC-6 [2] and AC-7 [3], and for path-consistency, these
algorithms are PC-1 [16], PC-2 [14], PC-4 [§] [9], PC-5 [4] [5], PC-6 [6] [7]. Note
that PC-5 and PC-6 correspond to the same algorithm which has been proposed
independently by their authors; so, in the sequel, these algorithms will be denoted
PC-{5/6}. In Table 1. and Table 2., we recall their time and space complexities.
Note that here, space complexity is related to the size of additionnal data-structures
induced by algorithms to run. This remark is important since the size of the prob--
lem for path-consistency is in the worst case O(n*d*) because all the constraints
must be represented, that is 0O(n?), and the size of space required for representing
a constraint is O(d?).

Table 1. Complexity of arc-consistency algorithms

Algorithm | Time Space
AC-1 O(ned”) | O(e + nd)
AC-3 O(ed®) | O(e + nd)
AC-4 Ofed”) O(ed”)
AC-5 Ofed?) | O(e + nd}
AC-6 Oled®) | Oled)

Table 2. Complexity of path-consistency algorithms

Algorithm | Time Space
PC-1 Om*d®) | O(n’d?)
PC-2 O(n°d®) | O(n’)
PC-4 O(n*d®) | O(n’d?)

PC-15/6} | O(n’d®) | O(n’d’)

Efficient algorithms for arc-consistency and path-consistency propagation are
based on the notion of supports: AC-4 and AC-6 for arc-consistency, PC-4 and
PC-{5|6} for path-consistency. The notion of support in constraint propagation
has been introduced and exploited efficiently by Mohr and Henderson in [8]. This
principle has been optimized by Bessiére for AC-6, by introducing the notion of
minimal support. Below, we formalize these notions. '

Definition 4 For arc-consistency, a support for a value a € D; w.r.t. a constraint
Cij is o value b € D; compatible with a, i.e. such that R;;(a,b) is true. Given an
arbitrary ordering of the values in each domain, the minimal support for a value
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a € Dy wr.i. a constraint Cy;, is the first support b € D; w.r.t. the considered
ordering of values in D;.

This notion can be generalized to path-consistency:

Definition 5 For path-consistency, a support for a pair of values (a,b) € Rij is a
value ¢ € Dy such that the relations R;(a,c) and R (b,c) hold. The value ¢ € Dy
is the minimal support for the pair of values (a,b) € Ry; if ¢ is the first support of
{a,b) in Dy w.r.t. the considered ordering of values in Dy.

Algorithms which are based on (minimal) supports are build on the same scheme.
After a first phase related to the initializations, that is the initialization of data
structures related to supports, and the deletion of trivially inconsistent values (for
arc-consistency) or pair of values (for path-consistency), the second phase processes
the propagation. This propagation is driven by the list of deleted values (or pair
of values) which have not yet been propagated; we call that list Lisi-D. When all
deleted objects have been propagated, the algorithm stops. The scheme of these
algorithms is given below.

Algorithm CONSISTENCY;
begin
Initialization;
while List-D # () do begin { propagation}
Choose an object é in List-D,
Propagate(d)
end
end;

The purpose of the primitive Propagate(§) is to find new values (or pair of values)
to be deleted and to verify that other values (or pair of values) remain consistent.
If § represents the last support for a value (or pair of values), this value (or pair
of values) is then deleted and inserted in the list of propagations List-D. So the
property which is maintained during the propagation is that a value (or a pair of
values) is consistent, or is inconsistent and has already been propagated, or has not
vet been propagated but then appears in the list List-D.

Note that the number of supports for arc-consistency is O(ed?) while it is
O(n®d®) for path-consistency. This fact explains the worst-case space complex-
ity of AC-4 and PC-4 since these algorithms need to represent all the supports.
In [2], Bessiére has proposed an optimization of AC-4, the algorithm AC-6. While
AC-4 needs to represent all supports for all values, AC-6 considers only one sup-
port by value w.r.t. each constraint. AC-6 considers ordered domains and then it
considers minimal support w.r.t. orderings in domains. So the number of supports
to be recorded is then bounded by Ofed).
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This approach has been generalized to path consistency resulting the algorithm
pPC-{5/6} [6] (4] [7] [5]. As a consequence, Space complexity for PC-{5|6} is lim-
ited to O(n®d?), that is the number of minimal supports while its time complex-
ity is O(n3d®) as for PC-4. Nevertheless, to obtain a such complexity time, PC-
{5|6} needs to use particular data structures that allow to be theoretically optimal
(double-linked lists, crossed references). Unfortunately, the managment of these
data structures reduce its practical efficiency (see section Experiments in the last
part of this paper). As a consequence, PC-{5|6} seems practicable only for small
CSPs. Consider for example n = 128 and d = 8; required space to run PC-{5|6}
will be 227 =2 13 x 10°® space units.

It seems that for arc-consistency, it is hard to optimize theoretical and practical '
efficiency. On the contrary, existing algorithms as PC-2 or PC-{5|6} are not efficient
in practice. The motivation here is to present an algorithm that allows to run path-
consistency in practice, not necessarily with an optimal theoretical time complexity.
PC-8 realizes this goal by making a compromise between time and space complexity
to establish an usable algorithm.

3. Arc-consistency in O(n) space complexity

AC-8 is based on supports but without recording any of them. When a value
a € D; is removed from its domain, AC-8 records the reference of the variable z;,
that is the number i, in the list of propagation now denoted List-AC. Propagations
will be realized w.r.t. variables in this list. Suppose that a variable z; is removed
from the list. Then, all neighbouring variables will be considered, i.e. for all z; € X
such that Cj; € C, and for each value b € D;, AC-8 will ensure that there is a value
a € D; such that Rij(a,b) holds. Unlike AC-6, AC-8 has to start again the search
from the first value of the domains. If no support a of b is found in D;, then
b must be deleted, and the number of the variable, namely j must be inserted
:n List-AC. To ensure that j is not duplicated in List-AC, we must maintain an
array of booleans, denoted Status-AC, recording the status of variables. So, the
data structures used for AC-8 are the list List-AC containing variables which have
lost some values in their domains and not propagated yet, and the boolean table
Status-ACli] that always verifies {i € List-AC < Status-ACli]}. The initialization
phase consists in checking if, for each r; € X such that C;; € C, there exists at
jeast one support per value a € D;. So, if for some variable z;, a has no support
in Dj, it must be deleted and ¢ must be added to the list, updating Status-A Clil.
Three constant time functions are used to handle domains D;:

o First(D;) returns the first value in the domain D,
e Last(D;) returns the last value in the domain D; and
o« N ea:t.v-:ﬂue{a, D;) which returns the successor of ain D;.

These functions are used in the Withoutsupport-AC function which checks if
b € D; has a support in D;. Concerning the propagation phase, AC-8 restarts
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looking for a new support from the first value of the domain. Finally, the scheme of
AC-8 is a classical scheme of propagation as the algorithm CONSISTENCY (which
is defined in section 2): the algorithm stops when the list of propagation becomes
empty, each step corresponding to the prepagation of a deletion:

Function Withoutsupport-AC( i, j: integer; b : values) : boolean;
{ If b € D; has a support a in D, then Withoutsupport-AC returns False,}
{ else Withoutsupport-AC returns True}
var a:values;
begin
a + First{D;);
while a < Last(D;) and not Rij(a,b) do a + Next.value(a, D;);
Withoutsupport-AC + not R;;(a,b)
end; { Withoutsupport-AC}

Procedure Initialization-AC;
begin
List-AC + @;
for i =1 to n do Status-ACli] + False;
fori=1tondo
for j such that C;; € C do for b € D; do
if Withoutsupport-AC(i, j,b) then begin
Dj + Di\{b};
if not Status-AClj] then begin
Append(List-AC,j);
Status-AC[j] + True
end
end
end; { Initialization-AC }

procedure Propagate-AC(in i:integer):
begin
for 7 such that c?':.; €Cdoforbe Dj do
if Withoutsupport-AC(i, j,b) then begin
Dj + Dj\{b};
if not Status-AC[j] then begin
Append(List-AC,j);
Status-AClj] + True
end
end
end; { Propagate-AC }
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Algorithm AC-8;
begin
Initialization-AC;
while List-AC # 0 do begin { propagation}
Choose i in List-AC;
List-AC + List-AC\{i};
Status-ACli] + False;
Propagate-AC(i)
end
end;

The space complexity of AC-8 is bounded by the size of the table Status-AC,
since the maximum size of the list List-AC'is bounded by the number of true values
in this table, that is at most n. So, the space complexity of AC-8 is O(n). Note
that O(n) is the size of the additional space for AC-8 to run since the size of the
data, that is the CSP is bounded by ed®. It is clear that the time complexity of
the initialization step is O(ed?). Concerning the propagation step, since we have at
most nd values that can be deleted, there is at most n X d calls to the procedure
Propagate-AC in which the number of iterations is bounded by n; x d where n; is
the number of neighbouring variables of z; in the constraint graph. The cost of the
function Withoutsupport-AC is bounded by the domain’s size d. Consequently, the
time complexity of one call to the procedure Propagate-AC is bounded by n; x d”.
For all propagations, the total cost is then bounded by T dxnyxd = ed®. So,
the time complexity of AC-8 is O(ed®).

4. Path-consistency in O(n?d) space complexity

Path-consistency algorithm PC-8 is based on the same principles as AC-8 and
appears to be an optimization of PC-7 with better space complexity'. So, like
AC-8, PC-8 is based on supports without recording any of them. When a pair of
values (a,c) is removed from a relation Ri, two 3-tuples will be recorded in the
list of propagations called List-PC: (i,a,k) and (k,e,i). So, propagations will be
realized w.r.t. these 3-tuples. For example, if (i,a,k) is propagated, then for all
values b € D; such that Rij(a,b) holds, the propagation must verify that there
exists ¢ € D which supports (a,b) € Ry;. If no support ¢ of {a,b) is found in
Dy, then (a,b) must be deleted, and two 3-tuples, namely (4,a,j) and (4, b, 1) have
to be inserted in List-PC. Figure Fig. 1 shows this principle. In this figure, the
pair of values (a,c) has been deleted, so the 3-tuple (i,a,k) has been inserted in
List-PC and the function Withoutsupport-PC tries to find the first value ¢’ w.r.t.
the ordering in Dj which supports (a, b) € Rij, that is such that Rjr(a,c') and

! Algorithm PC-7 has been presented during the National Conference on Artificial Intelligence
AAAID'G6 [17]. The space complexity of PC-T is 0(n2d?); the experimental results of PC-7 and
FC-§ are similar.



Efficient Path-Consistency Propagation 129

Rj(b,c') hold. As AC-8, PC-8 has to start again the search from the first value of
the domains.

Dx ]‘ ordering on values

Fig. 1. After the deletion of ({I,C‘,I, the new minimal support of (a, b:l in Dy, is ¢’ since it is the
minimal value in Dy which is consistent with @ and b.

To ensure that a 3-tuple is not duplicated in List-PC, we must maintain an
array of booleans, denoted Status-PC, recording the status of 3-tuples. So, the data
structures used by PC-8 are the list List-PC of 3-tuples corresponding to deleted
pairs of values and not propagated yet, and the boolean table Status-PC that al-
ways verifies {(¢,a,j) € List & Status-PCli,a, j]}. The initialization phase consists
in checking if there exists at least one support ¢ € Dy, ¥z € X per pair of val-
ues (a,b) € Riji # k # j. So, f it is not the case, (a,b) must be deleted and
two 3-tuples, (i,a,j) and (j,b,1), must be added to the list, updating Status-PC.
To handle domains, PC-8 used the three constant time functions used by AC-8,
ie. First(D;), Last(D;) and Nezt_value(a, D;). These functions are used in the
Withoutsupport-PC function which checks if (a,b) € Ri; has a support in D;. Fi-
nally, the scheme of PC-8 is the classical scheme of propagation CONSISTENCY
which is presented in section 2 since propagations stop when the List-PC becomes
empty:

Function Withoutsupport-PC( 1, j, k: integer; a,b : values) : boolean,;
{ If there is a support c of (a,b) € Ry in D.}
{ then Withoutsupport-PC returns False,}
{ else it returns True}
begin

¢ « First(Dg);

while ¢ < Last(Dy) and not (Rix(a,c) and Rji(b,c)) do

¢ « Next_value(e, Di); oo

Withoutsupport-PC + not (Rix(a,c) and Rjk (b,c))

end; { Withoutsupport-PC }
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Procedure Initialization-PC;
begin
List-PC + 0;
fori,j=1ton: i# jdo for a € D; do Status-PCli,a, j] + False;
fori,j,k=1ton:i<j k#i, k#jdofor (a,b) € R;; do
if Withoutsupport-PC(i, 7, k,a,b) then begin
R;;(a,b) « False; R;i(b,a) « False;
if not Status-PCli,a,j] then begin
Append(List-PC, (i,a,7));
Status-PCli, a,j] « True
end;
if not Status-PC[j,b,1] then begin
Append(List-PC, (j,b,1));
Status-PClj,b,i] + True
end
end
end; { Initialization-PC }

Procedure Propagate-PC(in i, k:integer;in a: values);
begin '
forj=1to n: j#i,j#kdo
for b € D; such that Rij(a,b) = True do
if Withoutsupport-PC(i, ,k,a,b) then begin
" Rij(a,b) + False; Rji(b,a) + False;
if not Status-PCli,a,j| then begin
Append(List-PC, (i,a,7));
Status-PCli,a,j] ¢+ True
end;
if not Status-PCl[j,b,i] then begin
Append(List-PC, (3,b,1));
Status-PClj, b,i] + True
end
end
end; { Propagate-PC }

Algorithm PC-8;
begin
Initialization-PC;
while List-PC # 0 do begin { propagation}
Choose (i, a,k) in List-PC: List-PC + List-PC \{(i,a,k)};
Status-PCli,a, k] + False;
Propagate-PC(i, k, a)
end
end;
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The space complexity of PC-8 is exactly the size of the table Status-PC, i.e. n’d
since there is at most n2d 3-tuples that can be recorded in the list List-PC because of
the table. So, space complexity is O(n?d). Nevertheless, we must note that the size
of the filtered CSP is bounded by n?d?. So, O(n?d) is clearly the space complexity
for PC-8 to run, without taking into account the the size of the filtered problem. It
is clear that the time complexity of the initialization step is O(n*d®). Concerning
the propagation step, since we have at most n>d” pairs of values that can be deleted,
there is at most n2 x d° calls to the procedure Propagate-PC in which the number
of iterations is bounded by nd. Finally, the cost of the function Withoutsupport-PC
is bounded by the domain’s size d. Consequently, the time complexity of PC-8 is
bounded by O{n2d? x nd x d) = O(n?d*).

Note that if the size of the domains d is a constant of the problem (this is possible
for some applications), the time complexity of PC-8 becomes O(n?) i.e the same as
for PC-4 and PC-{5|6}; so PC-8 complexity is then optimal in space and time.

5. Experiments

In order to validate our results, we have compared experimentally our algorithms
with existing ones. Experiments were performed over randomly generated CSPs
using the random model proposed in [18]. The generator considers four parameters:
the number of variables n, the domain size d, the tightness of the constraints £,
and the constraint graph density cd. The constraint tightness t is the fraction of
the possible pairs that are not allowed by the constraints between two variables:
t=1- '%"{i, The constraint graph density is a value ed varying between 0 and
1 indicating the fraction of the possible constraints beyond the minimum n — 1
(for a connected acyclic graph). Note that if ed = 1, the number of constraints is
(n® — n)/2, which corresponds to a complete constraint graph.

We have chosen two measures of comparison, on the one hand the number of
consistency checks performed by each algorithm, on the other hand the CPU exe-
cution time. Figures provide results in terms of the number of consistency checks
as well as the CPU time which are represented by the y-azis. In all figures, the
z-azis represents the constraints tightness; it varies from 0.1 to 0.9 with a step of
0.05 for arc-consistency and 0.1 for path-consistency algorithms. For each 4-tuples
(n,d,t,cd) i.e. one point over the curves, 20 randomly CSPs were generated. Results
reported so far represent the average over the 20 problems for each of the algorithms.

Our AC-8 was compared with different algorithms of arc-consistency, which are
AC-3. AC-4 and AC-6. While we realized experiments on a large number of classes
of CSPs, for lack of place, the experiments presented here were performed on CSPs
with n = 128, d = 8 and ed = 0.4 and with n = 128, d = 16 and cd = 0.5. Note
that for all classes, the results are similar, and so, the results reported here present
a summary of all the results we have observed.
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Figures Fig.2 through Fig.5 report results obtained by the different arc-consistency
algorithms.
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Fig. 5. CPU time (n = 128,d = 16 and ¢d = 0.5)

Looking at the curves which represent these results, we remark that for the num-
ber of consistency checks as measure of efficiency, AC-6 is often the best one. It is
due to the fact that while AC-6 looks for a new support from the next value with
respect to the previous support, both AC-8 and AC-3 restart from the first value
in the domain. By contrast, for the CPU time measure, the behaviour of AC-3 and
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AC-8 are similar and both outperform AC-6 except for the point (128,16,0.65,0.5)
which corresponds to the hardest classe in the figure Fig.5 for which AC-6 has a
better performance. We can explain this by the fact that AC-6 has to memorize
supports and by consequence to handle a complicated data structures while both
AC-8 and AC-3 work with a simple data structures very easy to be treated.

For path-consistency algorithms, PC-8 was compared with PC-2 and PC-{5|6}.
We have chosen these algorithms on account of their time and space complexity.
The choice of PC-2 is motivated by the fact that it has a better space complexity
and it is preferable in practice. Moreover, PC-2’s time complexity is also Q(n3d?).
We have conserved PC-{5|6} to show that its efficiency in practice is lower than that
of PC-8. Here we do not consider PC-4 because it is really inefficient in practice [17].

Figures Fig.6 through Fig.9 present comparisons between PC-2, PC-{5|6} and
PC-8 for a CSPs with n = 32 and d = 8. Here, results taken into account concern
CSPs the graph density of which ed € {0.2,0.5}.
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As for experiments on arc-consistency, we did not reported here all the results,
but the results reported here summarize all the results we have observed.

It is clear that PC-{5|6} realizes the smallest number of consistency checks.
By contrast, PC-8 seems to be the best algorithm for CPU time as a measure of
performance. Figures concerning CPU time show that PC-8 always outperforms
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both PC-2 and PC-{5|6} except for ¢ = 0.1. Also, PC-8 outperform PC-2 for
the number of consistency checks as a measure of efficiency. For the number of
consistency checks, we remark that PC-8 performs as much as PC-{5|6}, this is due
to the fact that PC-8 always restarts from the first value of domains (during the
search for a support).
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In order to better evaluate the efficiency of these algorithms we have performed
experiments on CSPs for which we varied the size of the domains. Two classes of
problems have been tested : the first is with n = 16 and d = 16 while the second
is with n = 10 and d = 25. For these problems we concentrate on the efficiecny
of PC-8 and PC-{5|6}. Moreover, we consider only the execution time as a mea-
sure of performance since for the number of consistency checks, obtained results for
these classes confirm those presented above which is compatible with theoretical
evaluation of the time complexity. We chose to present the problems for which the
behaviour of these algorithms are close. It is a matter of the hardest classes.

Now if we get a look at figure Fig. 10 which presents the execution time of PC-8
and PC-{5/6} for CSPs with graph density equals to 30%. In this figure, curves
PC{5|6}cpu and PC8cpu present the CPU time of PC-{5|6} and PC-8 respecitvely
while curves PC{5/6} and PC8 show the total time consumed by the system and
each of the algorithms. We can remark that for PC-8 these curves are identical
which is not the case for PC-{5|6}.

We recall that the essential difference between PC-{5|6} and PC-8 is in memo-
rizing supports. Figure Fig. 11 shows the CPU time and the total execution time of
PC-{5/6} and PC-8 for the initialization phase. We remark that PC-{5|6} spends
a long time to realize this step. It is due to the fact that PC-{5/6} treats a lists of
supports and spended time during this phase is essentially in handling these lists.
We mention that for CSPs which verify path-consistency, recording supports is time
consuming. Moreover, it will be the case for CSPs for which the path-inconsistency
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can be proven during the initialization step.
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Other experiments were also performed on CSPs with n = 10 and d = 25 which
allow us to study the behaviour of these algorithms for CSPs for which the size of
domains is greater than the number of variables.
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For these classes of problems the behaviour of PC-2 with respect to PC-{5|6}
or PC-8 is similar to its behaviour on the classes studied above. Concernig the
initialization phase for PC-{5|6} and PC-8 we have remarked the same behaviour
as for CSPs with n = d = 16, i.e. PC-{5|6} spends much time in realizing this step.
Figures Fig. 12 through Fig. 15 show some results obtained for these classes.
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We remark that PC-{5|6} outperforms PC-8 in one point in the figure Fig. 14
for CSPs with graph density equals to 70% when the tightness equals to 60%. For
this point (n=10, d=25, t=0.6 and ¢d=0.7}, over the 20 problems three are path-
inconsistent and their path-inconsistencies were been proven during the propagation
phase. In fact for these three CSPs PC-{5|6} was faster than PC-8 in proving path-
inconsistency. Also, PC-{5/6} was better than PC-8 for another point, namely
(n=10,d=25, t=0.6 and ¢d=0.8), but this time with 16 path-inconsistency problems,
the corresponding curve is not presented here. Otherwise, PC-8 often outperforms
PC-{5|6}.
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Fig. 14. CPU time and total time for n = 10, d = 25 and cd = 0.7

Finally, note that PC-8 was also tested for CSPs with n = 64 and d = § for
which the CPU execution time was between 0 and 90 seconds, then for CSPs with
n = 128 and d = 8 for which CPU time was about 800 seconds for some classes of
problems (the hardest ones). For these classes, it was generally impossible to run
PC-2 or PC-{5|6} because of their time consuming.

Observing these experiments, we can conclude that PC-8 seems to be the best
path-consistency filtering algorithm, specially it allows to handle CSPs of large
size while other algorithms failed. Contrary to the theoretical evaluation of time
complexity, the surprise comes from the efficiency of PC-8 versus PC-{5|6} which
could be explained by the time lost by PC-{5|6} in treating the used data structures
which require handling doubly linked lists with crossed references. If a such data
structures lead to an optimal theoretical time complexity, they increase the CPU
time because of the required number of operations for each propagation step, which
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is greater than the one of PC-8. The multiplicative hidden constant of PC-{5|6}
seems to be widely greater than PC-8 one. A contrario, PC-8 depends only on the
lists of modified arcs with some value in their domains, i.e. a 3-tuples of the form
(1, j,a), and another point is that the implementation of PC-8 is very simple. These
different points enable PC-8 to have a remarkable efficiency in time and a weak
memory usage. Finally, this work can be situated in the same spirit as the work of
Wallace which explains the better performance of AC-3 with respect to AC-4 {19].

6. Conclusion

In this paper, we have presented two new algorithms to achieve partial consis-
tency in constraint networks. The first one, called AC-8 achieves arc-consistency
while the second called PC-8 achieves path-consistency. These algorithms are based
on the same principle. Unlike AC-6 or PC-{5|6} which manage minimal supports
in recording them, AC-8 and PC-8 use minimal supports without any recording.

As a consequence, the additive space complexity of AC-8 is O(n) while its time
complexity is O{ed®) as that of AC-3. While the advantage of AC-8 w.r.t. AC-6 is
not clear in practice (it performs more consistency checks than AC-6) and the CPU
time required to run is close to the one of AC-3, the advantage of the principle used
in AC-8, and PC-8, is more clear for path-consistency. Indeed, space complexity

-of PC-8 is O(n?d), that is currently the best space complexity for algorithms to
achieving path-consistency. Nevertheless, time complexity of PC-8 is O(n®d*), that
is slightly more than the one of PC-6 but the simplicity of the algorithm and of
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its data structures allow PC-8 to be really efficient in practice, i.e. the CPU time
required to run is less than that for PC-{5|6}. Moreover, for cases such that the size
of domains is a constant parameter of problems (this fact frequently appears in real
life applications), PC-8 becomes theoretically optimal for time complexity, that is
0(n?) like PC-{5|6}. Finally, experiments being performed on randomly generated
CSPs, it may be interesting to study the behaviour of these algorithms on a real
world problems.
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