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Abstract—In this paper, we introduce for the qualitative
constraint networks (QCNs) a new consistency: the partial ⋄-
consistency. The partial ⋄-consistency, similarly to the partial
path-consistency, considers triangles of a graph and corre-
sponds to the ⋄-consistency restricted to these triangles. We
show that for the pre-convex QCNs of the Interval Algebra
(IA), the partial ⋄-consistency with respect to a triangulation
of the graph of constraints is sufficient to decide the consistency
problem. From this result, we propose an algorithm allowing
to solve QCNs of IA. The experiments that we have conducted
show the interest of this algorithm to solve the consistency
problem of the QCNs of IA.

I. INTRODUCTION

A qualitative constraint calculus introduces particular el-
ements to represent the temporal entities of the system and
a finite set of base relations over these entities. Each base
relation corresponds to a particular configuration between
the entities. Typically, qualitative constraint networks (QCN)
are used to express information on a global temporal con-
figuration. Each constraint of a QCN represents a set of
acceptable qualitative configurations between some temporal
entities and is defined by a set of base relations.

Given a QCN, the main problem is to determine whether
the QCN is consistent. In general case, this problem is
NP-complete. Despite it, this problem can be decided in
polynomial time for particular classes of relations as the
class of pre-convex relations of IA [7, 9]. An algorithm to
solve effectively the consistency problem of a QCN has been
proposed by Nebel [8]. It consists in a backtrack search
using the method of the closure under weak composition
as filtering method for removing some inconsistent base
relations. Moreover, at each step of search, instead of
splitting a constraint into base relations, a constraint is split
into relations belonging to a tractable class. It allows to
reduce the branching factor of the search tree.
QCNs are complete in the sense where between each pair of
variables is defined a constraint by a relation of the calculus.
When all possible configurations are allowed between two
variables, the universal relation denoted by Ψ is used. The
relation Ψ contains all base relations of the calculus. During
search, filtering can remove some base relations from a
constraint initially defined by the relation Ψ. In [5], Condotta
et al. show that we do not need to select such a constraint
for splitting during a search based on the Nebel’s algorithm.
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Figure 1. The base relations of IA (BIA).

In this paper, we show that the filtering with the method
of closure under weak composition can be just realized on
a subset of triangles of variables. For this, we follow the
line of reasoning in [3] in which the partial path-consistency
(PPC) is proposed. They show that PPC solves convex CSP
for which constraint graphs are triangulated. In the paper,
we show that we have a similar result for the pre-convex
relations of IA.

II. PRELIMINARIES

A qualitative calculus considers a finite set of (binary)
relations B, called base relations, over a domain D repre-
senting the temporal entities. In this paper, we are mainly
concerned by the particular qualitative calculus called the
Interval Algebra (IA), also called as Allen’s calculus [1]. IA
considers the intervals of the line to represent the temporal
entities. The domain of IA is defined by DIA = {(x−, x+) ∈
Q×Q | x− < x+}. The base relations of IA correspond to
the set BIA = {eq, p, pi, m, mi, o, oi, s, si, d, di, f, fi}. The
elements of BIA represent all possible orderings between the
four bounds of two intervals on the line. In Figure 1 are
illustrated these base relations.
A complex relation, also called relation, is an union of base
relations. It is customary to represent a relation by the set of
the base relations which compose it. Hence, the set 2B which
will represent the set of relations of a qualitative calculus
based on the set of base relations B. Given two elements
x, y ∈ D and a base relation b ∈ B (resp. a relation r ∈ 2B,
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x b y (resp. x r y) will denote the fact that x and y satisfies
b (resp. a base relation of r).
The usual set-theoretic operations union (∪), intersection (∩)
are defined on 2B. The set 2B is also equipped with the
converse operation (−1) and the weak composition operation
(⋄). For a relation r ∈ 2B, the converse relation of a relation
r is the union of the converse relations of its base relations:
r−1 = {b−1|b ∈ r}. The weak composition operation of
two relations r, s ∈ 2B is defined by: a ⋄ b = {c ∈ B :
∃x, y, z ∈ D with x a z, z b y and x c y}, with a, b ∈ B;
r ⋄ s =

⋃
a∈r,b∈s{a ⋄ b}, with r, s ∈ 2B. Among

the relations of 2B, Ψ denotes the particular relation that
contains all the base relations of B. A class of relations
C is a subset of 2B which contains the relation Ψ, all of
the singleton relations of 2B, and which is closed under
converse, intersection and weak composition. Given r ∈ 2B

and a class C, the smallest relation of C which contains
r is denoted by C(r) and is called the closure of r in
C. Now, we introduce some particular classes of IA: the
set of the convex relations and the set of the pre-convex
relations (also called ORD-Horn relations in [9]). Ligozat
[6] arranges the base relations of IA in a partial order which
defines a lattice (BIA,≤). To define pre-convex relations,
Ligozat attributes a dimension to each base relation of
IA. Intuitively, this dimension corresponds to 2 minus the
number of equalities of bounds of two intervals satisfying the
base relation considered. Hence, the dimension of the base
relations p, pi, o, oi, d, di is 2, this one of the base relations
m, mi, s, si, f, fi is 1, and the dimension of eq is 0. The
dimension of a relation r ∈ 2BIA is the maximal dimension
of its base relations. A pre-convex relation is a relation of IA
such that its closure w.r.t. the class of the convex relations
does not contain a new base relation with a dimension equals
or greater than its dimension.

A Qualitative Constraint Network (QCN) is a pair com-
posed of a set of variables and a set of constraints defined
in the following way:

Definition 1: A QCN is a pair (V, C) where:
• V = {v0, . . . , vn−1} is a set of n variables representing
temporal entities,
• C is a map associating a relation C(vi, vj) ∈ 2B with each
pair of variables (vi, vj) ∈ V ×V . C is such that C(vi, vi) ⊆
{Id} and C(vi, vj) = C(vj , vi)

−1
for all vi, vj ∈ V .

In the sequel, we will also denote C(vi, vj) by N [vi, vj ].
Given a QCN N = (V, C), a partial instantiation of N
on V ′ ⊆ V is a map s from V ′ to D. A partial solution
of N on V ′ ⊆ V is a partial instantiation on V ′ such
that (s(vi), s(vj)) satisfies C(vi, vj) for all vi, vj ∈ V ′.
A solution of N is a partial solution of N on V . N is
consistent if, and only if, there exists a solution of N .
N is trivially inconsistent when there exist two variables
v, v′ ∈ V such that N [v, v′] = ∅. N is globally consistent
if, and only if, each partial solution of N can be extended to

a solution of N . The projection of the QCN N to V ′ with
V ′ ⊆ V , denoted by NV ′ , is the QCN (V ′, Cproj) with
Cproj the restriction of C to the set V ′. A subQCN N ′ of
N is a QCN (V, C′) such that C′(vi, vj) ⊆ C(vi, vj), for
all vi, vj ∈ V . Let N 1 and N 2 be two QCNs defined on the
same set of variables V . We denote by N 1∪N 2 the unique
QCN N 3 defined on V by N 3[v, v′] = N 1[v, v′]∪N 2[v, v′]
for all v, v′ ∈ V . Given a class of relations C, the closure of
N w.r.t. C, denoted by C(N ), is the QCN N ′ defined on V
by N ′[v, v′] = C(N [v, v′]) for all v, v′ ∈ V . A QCN N is
⋄-consistent (we will say also closed by weak composition)
if, and only if, C(vi, vj) ⊆ C(vi, vk) ⋄ C(vk, vj) for all
vi, vj , vk ∈ V . The weak composition closure of the QCN
N , denoted by ⋄(N ) is the largest (for ⊆) ⋄-consistent
subQCN of N .

For some classes of relations, such as the class of the
pre-convex relations of IA, the consistency problem of a
QCN can be decided by enforcing ⋄-consistency. Hence,
a ⋄-consistent pre-convex QCN with no empty constraint
is a consistent QCN [9, 7]. The class of convex relations
admits a stronger property: each ⋄-consistent convex QCN
non trivially inconsistent is globally consistent [2]. The ⋄-
consistent pre-convex QCNs non trivially inconsistent ad-
mits a property close of the global consistency. Indeed,
in [7] Ligozat considers particular instantiations that we
will call maximal instantiations and which are defined as
follows: a partial solution of maximal dimension is a solution
satisfying for every pair of variables a base relation of
maximal dimension with regard to the dimensions of the
base relations belonging to the constraint. Ligozat proved
that a maximal partial solution can always be extended to
a maximal solution. This property has been used to prove
some propositions introduced in this paper.

In a natural way we define the constraint graph of a QCN
N = (V, C), by the undirected graph G(N ) = (V, E) with
(v, v′) ∈ E if, and only if, N [v, v′] ̸= Ψ and v ̸= v′.
Given two graphs G = (V, E) and G′ = (V ′, E′), G is a
subgraph of G′, denoted by G ⊆ G′, if, and only if, V ⊆
V ′ and E ⊆ E′. A graph G = (V, E) is a triangulated
graph if, and only if, each of its cycles of length strictly
greater than 3 has a chord. For a graph G = (V, E), a
perfect elimination ordering is an ordering of the vertices
V such that, for each vertex v ∈ V , v and the neighbors
of v that occur after v in the order form a clique of G.
More formally, an ordering of G will be defined by a one-
to-one map α which associates to each i ∈ {0, . . . , |V |− 1}
a vertex αi belonging to V . By denoting by, αi the set of
vertices {αi} ∪ {αj ∈ V : (αi, αj) ∈ E and j ∈ {i +
1, . . . , |V |− 1}}, α is a perfect elimination ordering if, and
only if, αi is a clique of G for each i ∈ {0, . . . , |V |−1}. In
the sequel, a perfect elimination ordering α of G = (V, E)
will be sometimes denoted by the sequence [α0, . . . , α|V |−1].
A graph G is a triangulated graph, if, and only if, G admits
a perfect elimination ordering.
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III. PARTIAL ⋄-CONSISTENCY AND CONSISTENCY

In the framework of discrete CSPs, partial path consis-
tency (PPC) corresponds to the path consistency restricted
to triangles belonging to a graph. In a similar way, we define
the partial ⋄-consistency of a QCN w.r.t. a graph as the ⋄-
consistency restricted to triangles of this graph:

Definition 2: Let N = (V, C) be a QCN and a graph
G = (V, E). N is ⋄-consistent with respect to G, denoted
by ⋄G-consistent, if, and only if, for every vi, vj , vk ∈ V such
{(vi, vj), (vi, vk), (vk, vj)} ⊆ E, we have Cij ⊆ Cik ⋄Ckj .

Proposition 1: Given a QCN N = (V, C) and a graph
G = (V, E), we have: (1) There exists a QCN, denoted by
⋄
G(N ) corresponding to the greatest (w.r.t. ⊆) ⋄G-consistent
subQCN of N ; (2) ⋄G(N ) is an equivalent subQCN of N ;
(3) ⋄G(⋄G(N )) =⋄G (N ). (4) Given a QCN N ′, if N ′ ⊆ N
then ⋄G(N ′) ⊆⋄G (N ).

We have following properties concerning the ⋄G-consistency
for a graph G:

Proposition 2: Let N = (V, C) a QCN, G = (V, E)
a graph and a class of relations C. We have, if N is
⋄
G-consistent then C(N ) is ⋄G-consistent.

Proposition 3: Let N = (V, C) be a QCN and a triangu-
lated graph G = (V, E) such that N is a ⋄G-consistent QCN
and G(N ) ⊆ G. Given α a perfect elimination ordering of
G, for each i ∈ {0, . . . , |V | − 1} we have Nαi

which is a
⋄-consistent QCN.

Proposition 4: Let N = (V, C) be a QCN and a tri-
angulated graph G = (V, E). Given a perfect elimination
ordering α of G, for each i ∈ {0, . . . , n−1}, with n = |V |:

(1) we have
⋃

j∈{i,...,n−1} αj = {αj : j ∈ {i, . . . , n−1}};

(2) if G(N ) ⊆ G then for each j ∈ {i + 1, . . . , |V | − 1}
and for each v ∈ αj \ αi, we have C(αi, v) = Ψ.

Now, we give an important result concerning the pre-convex
QCNs of IA:

Proposition 5: Let N = (V, C) be a non trivially incon-
sistent pre-convex QCN of IA and G = (V, E) a graph
with G(N ) ⊆ G. If G is a triangulated graph and N a
⋄
G-consistent QCN then N is a consistent QCN.

IV. ALGORITHMS

In this section, we give an algorithm to decide the consis-
tency problem of a QCN N of IA by using the class of pre-
convex relations and the ⋄G-consistency with G a triangulated
graph with G(N ) ⊆ G. First, consider the function PWC
(Partial Weak Consistency) which takes as parameters a
QCN N = (V, C), a graph G = (V, E) and possibly an
edge e ∈ E. PWC is very close to the algorithm PPC given
in [3]. Its objective is to compute the closure of N for the
⋄
G-consistency. In the case where the edge e is given, N
is supposed to be ⋄G′ -consistent for G′ = (V, E \ {e}). By
denoting δ the maximal degree of a variable of G, we have

for each (vi, vj) selected at line 5, at most δ variables vk

of V such that vi, vj , vk forms a triangle. It results that the
time complexity of PWC is O(δ.|B|.|E|).

Function PWC(N ,G,e)
in : N = (V, C) a QCN, G = (V, E) a graph, e an

edge of G (possibly null).
output : ⋄G(N )
begin1

if e ̸= null then Q ← {e};2

else Q ← E;3

while Q ̸= ∅ do4

(vi, vj)← Dequeue(Q);5

foreach vk ∈ Q such that6

(vi, vj), (vi, vk), (vk, vj) ∈ E do
relkj ← N [vk, vj ] ∩ (N [vk, vi] ⋄N [vi, vj ]);7

if N [vk, vj ] ̸⊆ relkj then8

Q← Q ∪ {(vk, vj)} ;9

N [vk, vj ]← relkj ; N [vj , vk]← rel−1

kj ;10

relik ← N [vi, vk] ∩ (N [vi, vj ] ⋄N [vj , vk]);11

if N [vi, vk] ̸⊆ relik then12

Q← Q ∪ {(vi, vk)} ;13

N [vi, vk]← relik ; N [vk, vi]← rel−1

ik ;14

return N15

end16

Function Consistency(N ,C)
in : A QCN N = (V, C), C a class of relations .
output : true or false.
begin1

G = (V, E)← Triangulation(G(N ));2

NInit ← N ; N ← PWC(N , G, null) ;3

if N = ⊥ then return false ;4

return ConsistencyAux(N ,G) ;5

end6

Function ConsistencyAux(N ,G)
in : N = (V, C) a QCN, G = (V, E) a graph.
output : true or false.
begin1

Select (v, v′) ∈ E such that C(N [v, v′])) ̸⊆ NInit[v, v′];2

if a such pair does not exist then return true ;3

Split N [v, v′] into sub-relations r1, . . . , rk ∈ C ;4

N ′ ← N ;5

foreach i ∈ 1, . . . , k do6

N [v, v′]← ri; N [v′, v]← r−1

i ;7

N ← PWC(N , G, (v, v′)) ;8

if N = ⊥ then return false ;9

if ConsistencyAux(N , G) then return true ;10

N ← N ′ ;11

return false12

end13

Consider now the main function Consistency which takes
as parameters a QCN N and a class of relations C. At line
2, Consistency computes a triangulated graph G such that
G(N ) ⊆ G. Then, the QCN NInit is defined by the QCN N
given as parameter. Some base relations of N are removed
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by computing ⋄G(N ) (line 3) with PWC. After this operation
N is a ⋄

G-consistent subQCN of NInit equivalent to N .
If N contains a constraint defined by the empty relation,
the inconsistency of the initial QCN is detected (line 4). In
the contrary case, the recursive function ConsistencyAux is
called with the parameters N and G.
The function ConsistencyAux takes as parameters a QCN N
and a triangulated graph G such that G ⊆ G(N ), N ⊆ NInit

and N must be ⋄G-consistent. The ConsistencyAux searches
a ⋄

G-consistent subQCN of N that its closure with respect
to the class of relations C is a subQCN of NInit.
Proposition 6: Given a QCN N = (V, C) and a class

of relations C. The function Consistency stops, and for a
triangulated graph G = (V, E) with G(N ) ⊆ G returns:
-true in the case where there exists a non trivially incon-
sistent subQCN N ′ of N such that N ′ is ⋄G-consistent and
N ′[v, v′] ∈ C for each (v, v′) ∈ E.
-false in the case where there does not exist a non trivially
inconsistent subQCN N ′ of N such that N ′ is ⋄G-consistent
and N ′[v, v′] = {a} with a ∈ N [v, v′] for each (v, v′) ∈ E.

From this we can assert the following theorem:

Theorem 1: For C the pre-convex class of IA, the function
Consistency decides the consistency problem of the QCNs
of the IA.

V. PRELIMINARY EXPERIMENTAL RESULTS

For experimentation we have focused on QCNs of IA
randomly generated following Model A [8]. For this model,
the generation of QCNs depends on the number of vari-
ables (n), the density of non trivial relations (d) and the
average number of base relations in each constraint (s). The
experimental results realized concern QCN instances from
A(100, d, 6.5) for d varying from 4 to 22 with a step of
0.25. For each series, 100 QCNs is generated and a maximal
solving time of 4 hours is given. The hardest instances are
located in an interval where the density ranges from 8 to
11. This is where a phase transition occurs between under-
constrained instances and over-constrained instances. Our
program called Sparrow written in language C implements
the function Consistency studied in the previous section.
Heuristics concerning selection of constraints during search
is very close than those used in [8]. The triangulation of
graphs is realized by an external program using the Java
library LibTW (http://www.treewidth.com/). The technique
used to triangulate a graph consists in adding extra edges
produced by eliminating vertices one by one. In our exper-
iments we used the GreedyFillIn (GIF) one [4] which aims
to minimize the number of added edges to the graph.

The main objective of our experimentation is to com-
pare the time efficiency of the algorithm Consistency. We
compare our program with GIF triangulation and without
triangulation of graphs. We can notice that the use of GIF
triangulation allows to restrict considerably the number of
pertinent edges and triangles. For example, for a density
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Figure 2. Solving time by Sparrow.

of non trivial relations of 10, we obtain less than 10 % of
useful triangles and less than 40 % of constraints which must
be considered during the search. Concerning the solving
time, we can observe that these gains lead in better one
performance of Sparrow when it uses GIF triangulation.
Remark that for the series d = 10, just GIF triangulation
allows to solve all the instances.

CONCLUSION

In this paper, we introduce the partial ⋄-consistency for
QCNs. We show that for the pre-convex QCNs of IA, the
partial ⋄-consistency with respect to a triangulation of the
graph of constraints is sufficient to decide the consistency
problem. From this result, we give an algorithm to solve
QCNs of IA. A future work consists in using of other
methods of triangulations and compare the behavior of
our algorithm for this different methods. Also, a possible
perspective is to consider the minimal problem of QCNs
and define an algorithm to solve this problem by using the
partial ⋄-consistency.
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