
Constrained Decision Diagrams

Kenil C.K. Cheng and Roland H.C. Yap
National University of Singapore

3 Science Drive 2, Singapore
{chengchi,ryap}@comp.nus.edu.sg

Abstract

A generaln-ary constraint is usually represented explicitly
as a set of its solution tuples, which may need exponential
space. In this paper, we introduce a new representation for
generaln-ary constraints calledConstrained Decision Di-
agram (CDD). CDD generalizes BDD-style representations
and the main feature is that it combines constraint reason-
ing/consistency techniques with a compact data structure. We
present an application of CDD for recording all solutions of
a conjunction of constraints. Instead of an explicit represen-
tation, we can implicitly encode the solutions by means of
constraint propagation. Our experiments confirm the scala-
bility and demonstrate that CDDs can drastically reduce the
space needed over explicit and ZBDD representations.

Introduction
Many real-life combinatorial problems such as scheduling
can be modeled as a constraint satisfaction problem (CSP).
Despite the vast improvements on search strategies and con-
sistency algorithms for binary and specific constraints, rel-
atively less efforts have been put into issues with general
n-ary constraints. In particular, this paper looks at the issue
of efficient representations of the solution space. This is im-
portant when we want to record all solutions to a CSP or as
efficient representations ofn-ary constraints which can be
used with consistency algorithms.

An efficient representation of all solutions is useful for
some applications. For example, a configuration system
may be interactive where real-time response is necessary. So
finding the solutions of the CSP in advance and filtering that
against the user’s requirements is more efficient than solv-
ing from scratch. In this paper, we are interested in efficient
and compact representations which can be used to represent
solution spaces during search. Moreover, we show how var-
ious local consistencies and the constraint solver can be ex-
ploited in the representation to get more compactness.

To represent the solutions of a CSP or a generaln-ary con-
straint compactly, one approach is an implicit representation
using a symbolic relation, e.g. a logical formula involving
arithmetic. While the implicit form can be very compact,
they can be difficult expensive to use and discover, espe-
cially when constraints are dynamically created. The oppo-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

site approach is to use an explicit representation where data
structures are used to compress the solution set directly, i.e.
suffix or prefix sharing. These might not be practical when
the solution set is huge (since its explicit) or difficult to com-
press.

In this paper, we introduce a new representation for so-
lution sets and generaln-ary constraints, called Constrained
Decision Diagram (CDD). CDD is a hybrid which combines
the strengths of implicit and explicit approaches. On the one
hand, it can be explicit and generalizes BDD-style repre-
sentations. It is also implicit, combining constraint reason-
ing/consistency techniques with a compact data structure.

Binary decision diagram (BDD) (Bryant 1986) is the state
of the art representation for propositional logic, and CAD.
Unlike BDD which only allows propositional variables (i.e.
the only available constraints arex = 1 andx = 0), a CDD
can use arbitrary constraints. We show how CDDs can be
used to represent all solutions of a CSP where space savings
come because of the implicit representation and use of con-
straint propagation. Our experiments show that CDDs can
give 1-2 orders of magnitude space savings over explicit and
ZBDDs (Okuno, Minato, & Isozaki 1998) representations.
We remark that for large solution spaces, memory usage can
be the primary consideration.

Preliminaries
A constraint satisfaction problem(CSP) is a tripleP =
〈X,D, C〉, whereX = {x1, . . . , xn} is a set ofvariables,
D = {D1, . . . ,Dn} is a set ofdomains, and C is a set
of constraints1 Each variablexi can only take values from
its domainDi, which is a set of integers. Avaluation
θ is a mapping of variables to integer values, written as
{x1 7→ d1, . . . , xn 7→ dn}. Let vars be the function that
returns the set of (free) variables appearing in a constraint
or valuation. Ak-ary constraintc ∈ C on an ordered set
of k distinct variables, sometimes written asc(x1, . . . , xk),
is a subset of the Cartesian productD1 × · · · × Dk that re-
stricts the values the variables inc can take simultaneously.
A valuationθ satisfiesc, a.k.a. asolutionof c, if and only
if θ ∈ c. Solving a CSP requires finding a value for each
variable from its domain so that all constraints are satisfied.

1In this paper we use the terms “a set of constraints” and “a
conjunction of constraints” interchangeably.

AAAI-05 / 366

LetΓ be a set of constraints. Two constraintsc1 andc2 are
equivalent w.r.t.Γ, denoted byc1 ≡Γ c2, if and only if for
any valuationθ, we haveθ ∈ (Γ∧c1) ⇐⇒ θ ∈ (Γ∧c2). In
particular, whenΓ is true, c1 andc2 areequivalent, written
asc1 ≡ c2, if and only if they define the same relation.

Constrained Decision Diagrams
A constrained decision diagram(CDD) G = 〈Γ, G〉 con-
sists of a set of constraintsΓ (namedCDD constraints) and
a rooted, directed acyclic graph (DAG)G = (V ∪ T,E)
(namedCDD graph). We call a nodev ∈ V ∪ T a CDD
node(or simply node). The0-terminal(0 ∈ T) represents
false and the1-terminal (1 ∈ T) representstrue. G has
at least one terminal. Every non-terminal nodev ∈ V con-
nects to a subset of nodesU ⊆ V ∪ T − {v}. Eachu ∈ U
is asuccessorof v, i.e., there exists a directed edgevu ∈ E
from v to u. A non-terminal nodev denotes a non-empty
set{(c1, u1), . . . , (cm, um)}. Eachbranch(cj , uj) consists
of a constraintcj(x1, . . . , xk) and a successoruj of v. Fig-
ure 1 gives the graphical representation ofv. Each outgoing

v

Γ

· · ·

· · ·c1 cm

u1 um

Figure 1: Graphical representation of a CDD nodev

arrow fromcj points to the corresponding successoruj of
v. If G = 〈Γ, G〉 is a CDD andv is the root node ofG we
will explicitly draw an incoming arrow tov and label it with
Γ. Hereafter, when we say “a CDD rooted at a nodev”, we
actually mean its CDD graph is rooted atv.

A CDD G = 〈Γ, G〉 rooted at a CDD nodev represents
the constraintΓ ∧ [[v]] where

[[v]] ≡







true : v = 1

false : v = 0
∨m

j=1
(cj ∧ [[uj]]) : v =

⋃m

j=1
{(cj , uj)}

Let Γ be a set of constraints. In an abuse of notation,
we define two CDD nodesu andv areequivalent w.r.t.Γ,
written asu ≡Γ v, if and only if [[u]] ≡Γ [[v]].

Example 1 Figure 2 shows a CDDG = 〈Γ, G〉. Let c11 ≡

v1

v2 v3

v4

1

x1 ≤ 5 x1 ∈ {7, 9}

x2 < x1 x3 < x1

x2 + x3 > x4

Γ ≡ x2 6= x3

Figure 2: A CDD

x1 ≤ 5, c12 ≡ x1 ∈ {7, 9}, c2 ≡ x2 < x1, c3 ≡ x3 < x1

andc4 ≡ x2 + x3 > x4. The constraint represented byG is

Γ ∧ [[v1]]
≡ Γ ∧ (c11 ∧ [[v2]]) ∨ (c12 ∧ [[v3]])
≡ Γ ∧ (c11 ∧ c2 ∧ [[v4]]) ∨ (c12 ∧ c3 ∧ [[v4]])
≡ Γ ∧ (c11 ∧ c2 ∧ c4 ∧ [[1]]) ∨ (c12 ∧ c3 ∧ c4 ∧ [[1]])
≡ Γ ∧ ((c11 ∧ c2) ∨ (c12 ∧ c3)) ∧ c4.

A CDD G = 〈Γ, G〉 rooted at the CDD nodev =
{(c1, u1), . . . , (cm, um)} is reducedif and only if each CDD
graphG′

j rooted atuj is either a terminal or reduced, and

ci ∧ cj ≡Γ false (1)

ui 6≡Γ uj (2)

for all 1 ≤ i < j ≤ m. In this paper, we are only interested
in reduced CDDs.

Example 2 A box constraint collection (BCC) (Cheng, Lee,
& Stuckey 2003)

n
∨

i=1

(ci ∧
m
∧

j=1

aij ≤ xi ≤ bij)

whereaij andbij are integers, is a (non-reduced) CDDB =
〈true,G〉 whose rootv = {(c1, u11), . . . , (cn, un1)} and all
other nodesuij = {(aij ≤ xi ≤ bij , uij+1)}.

Example 3 A multi-valued decision diagram (MDD) (Srini-
vasanet al. 1990) over variablesx1, . . . , xn is a CDD
M = 〈true,G〉 in which every CDD nodev is of the form
{(xk = d, u) : d ∈ Dk} whereDk is the domain ofxk

and u is the corresponding successor. In particular, if all
variables have a Boolean domain{0, 1}, the MDD reduces
to a binary decision diagram (BDD) (Bryant 1986).

Given a fixed variable ordering, a multi-valued function is
uniquely represented by a MDD. This strong property makes
equivalence checking of two MDDs efficient, which is crit-
ical for their traditional use. For CDD, however, as a repre-
sentation for generaln-ary constraints, we argue flexibility
(e.g. being able to make use of global constraints at ease) is
more important, while keeping a canonical form is optional.

Example 4 Consider a CSPP with three variablesx1, x2

and x3. All variables have a domain{1, 2, 3}. The con-
straint is that the variables must take distinct values, i.e.,
C = {x1 6= x2, x2 6= x3, x1 6= x3}. Figure 3 depicts
three possible CDDs forC. The left one (a) is a MDD rep-
resentation. The integerd in a node means the valuation
xi 7→ d. We draw out-going edges to the 0-terminal as
dashed arrows. The middle one (b) shows a CDD based
on a set of disequality constraintsxi 6= xj . The right
one (c) gives a CDD with just one all-different constraint
all distinct(x1, x2, x3). Notice the compactness a
CDD could achieve by representing solutions implicitly.

Representing Solutions with CDD
We can use a CDD to represent all solutions of a CSP. In-
stead of a direct compression on the solution set, a CDD
is an implicit representation using constraint propagation.
Adding the CDD as an implied constraint to the original
CSP, a deep backtrack-free search for solutions is guaran-
teed. The next example gives the overall picture.

AAAI-05 / 367

1 2 3

1 2 3

1 2 3 1 2 3

1 2 31 2 31 2 3

x1

x2x2x2

x3x3x3

1 0 1

x2 6= x1

x3 6= x1 ∧ x3 6= x2

1

all distinct(x1, x2, x3)

(a) (b) (c)

Figure 3: Three different CDDs forx1 6= x2∧x1 6= x3∧x2 6= x3. (a) A MDD-like representation, all solutions are maintained
explicitly. (b) A CDD with disequality constraints inside nodes. (c) A CDD with a singleall distinct(x1, x2, x3).

x1, x2 ∈ {1, 2, 3}

× ×

×

x1 7→ 1 x1 7→ 2
x1 7→ 3

x2 7→ 1

x2 7→ 2

x2 7→ 2

x2 7→ 3

x2 7→ 3

x2 7→ 3

a
b

x2 ∈ {3}
x2 ∈ {1, 2, 3}

x2 ∈ {2, 3}

x1 7→ 1, x2 7→ 3 x1 7→ 2, x2 7→ 1 x1 7→ 2, x2 7→ 2

x1 ∈ {1} x1 ∈ {2}

x2 ∈ {1, 2}

C

1

x1 ∈ {1, 2}

C

1

(a) (b) (c)

Figure 4: LetP = 〈{x1, x2}, {{1, 2, 3}, {1, 2, 3}}, C〉 be a CSP with three solutions{x1 7→ 1, x2 7→ 3}, {x1 7→ 2, x2 7→ 1}
and{x1 7→ 2, x2 7→ 2}. (a) A depth-first backtracking search treeT for P. A round rectangular node represents a search state.
A double-edged round rectangular node represents a solution state (i.e.true). A cross (×) indicates a dead-end (i.e.false).
A transition from a search state to another is shown as a directed edge labeled with the corresponding valuationxi 7→ d. (b) A
CDD G1 that representsT . (c) A CDDG2 that “approximates”T .

Example 5 Let P = 〈X,D, C〉 be a CSP whereX =
{x1, x2} andD1 = D2 = {1, 2, 3}. We assume that there
are some constraintsC so thatP has three solutions{x1 7→
1, x2 7→ 3}, {x1 7→ 2, x2 7→ 1} and{x1 7→ 2, x2 7→ 2}.
Figure 4(a) depicts the depth-first backtracking search tree
T for P. We will explain how to “compress”T into a CDD.
First, we look at nodea. After we have assigned 1 tox1,
the domain ofx2 is reduced to the singleton set{3}. Thus,
we can determine the first solution by posing the constraint
x1 = 1. Constraint propagation will do the rest. Next, con-
sider the situation if we have assigned 2 tox1. At nodeb, we
can assignx2 with either 1 or 2, each corresponds to a so-
lution ofP. However,x2 7→ 3 leads to a dead-end. We can
represent the two solutions and exclude the dead-end with
the constraintx1 = 2 ∧ x2 ∈ {1, 2} There is no solution
for the branchx1 7→ 3. To summarize, adding the implied
constraint

(x1 = 1) ∨ (x1 = 2 ∧ x2 ∈ {1, 2})

to C we can find the solutions without backtracking. The
corresponding CDDG1 is shown in Figure 4(b).

Very often, we can obtain a smaller CDD if we “assume”
the constraints achieve a higher level of consistency than

they actually do. For instance, consider nodeb again, if we
enforce singleton consistency (Debruyne & Bessière 1997)
onD2, the domain ofx2, we can immediately remove 3 from
D2. Since then every value inD2 contributes to a solution of
P, a simpler constraintx1 = 2 is enough to represent these
two solutions. Figure 4(c) gives the corresponding CDDG2.
Note that it only has one node, whileG1 has two. Of course,
as the original constraints do not achieve singleton consis-
tency,G2 contains some shallow2 dead-ends, hence we say
it only “approximates”T .

This example shows the use of constraint propagation and
approximating the search tree could reduce the amount of
explicit information needed for representing solutions. We
are ready present ourcddFindall algorithm. Taking a
CSPP = 〈X,D, C〉 as input, it compiles the solutions ofP
into a CDDG = 〈C, G〉. Each CDD nodev is of the form
{(xk ∈ r1, u1), . . . , (xk ∈ rm, um)} wherer1, . . . , rm ⊂
Dk are pairwise disjoint (so as to satisfy Property (1) of a
reduced CDD). Consequently,{r1, . . . , rm} is a partition of

2We say a valuationxi 7→ d leads to a shallow (deep) dead-
end if this dead-end can(not) be detected by enforcing singleton
consistency on the domain ofxi.

AAAI-05 / 368

some non-empty subset ofDk.

cddFindall (X,D, C)
begin

1 if vars(C) = ∅ then
return 1 // 1-terminal

else
2 choosexk ∈ vars(C)

S := ∅
D′

k := ∅
3 foreach d ∈ Dk do

C′ := C with all xk replaced byd
4 if C′ is not locally inconsistentthen

u := cddFindall(X,D, C′)
S := S ∪ {〈d, u〉}
D′

k := D′

k ∪ {d}

5 if D′

k = ∅ then
return 0 // 0-terminal

else
6 v := mkNode(xk, S, C ∪ {xk ∈ D′

k})
return v

end

Figure 5:cddFindall

Figure 5 gives the pseudo-code ofcddFindall which
uses singleton consistency (can be extended to other con-
sistencies). Its skeleton is a depth-first backtracking search
algorithm. The control flow is as follows. If all variables
have been assigned, i.e., a solution has been found, the 1-
terminal will be returned (line 1). Otherwise, we select an
uninstantiated variablexk (line 2). We also initialize two
empty sets:S will collect branches of a CDD node, andD′

k

will be a singleton consistent domain ofxk. Next, for each
valued in the domainDk (line 3) we make new constraints
C′ that are equivalent toC ∧ (xk = d). If C′ is not incon-
sistent, as determined by the constraint solver, (this makes
use of constraint propagation in the existing solver) (line 4)
we invokecddFindall (recursively) to find a CDD node
u for the sub-problem〈X,D, C′〉, add the pair(d, u) to S3,
and insertd to D′

k. If D′

k = ∅ (line 5) when the iteration
is over, the 0-terminal will be returned as the constraintsC
are unsatisfiable. Otherwise,mkNode is called (line 6) to
find a CDD nodev for the current (sub)-problem. (The rea-
sons for posingxk ∈ D′

k, namely to make the domain of
xk smaller or singleton consistent, will become clear when
we discuss the reduction rules for CDD.) Finally we return
v. The execution ofcddFindall stops after traversing the
entire search tree.

Figure 6 shows the pseudo-code ofmkNode. The global
variableV maintains a set of all existing CDD nodes. At
line 7, an intermediate CDD nodev is created in such a way
that for everyd ∈ r, xk 7→ d leads to the same successoru.
Next, in order to satisfy Property (2) of a reduced CDD, at

3Theoretically it is unnecessary to keep(d, u) whenu is the
0-terminal, i.e. a CDD needs not explicitly statexk 6= d. This,
however, simplifies the implementation and our presentation.

mkNode (xk, S, C)
// Global variableV contains all CDD nodes
begin

7 v := {(xk ∈ r, u) : d, d′ ∈ r ⇐⇒ 〈d, u〉 , 〈d′, u〉 ∈ S}
// i.e. xk 7→ d andxk 7→ d′ point to the same nodeu

8 if ∃v′ ∈ V s.t.v′ ≡C v then
return v′

else
9 V := V ∪ {v}

return v

end

Figure 6:mkNode

line 8, we check if there already exists a nodev′ ∈ V such
thatv andv′ are equivalent w.r.t.C. If so, we will reusev′.
Otherwise, we insertv to V (line 9) and returnv.

We are going to present two lemmas which allow efficient
equivalence checking and minimization for CDD. They are
generalizations of the reduction rules for MDDs. Because of
the space constraint, proofs are omitted.

Lemma 1 Supposexk is variable with domainDk, andΓ
a set of constraints. Letu and v be two CDD nodes. If
v = {(xk ∈ Dk, u)} thenv ≡Γ u.

Lemma 1 saysv can be replaced byu because, by the
definition of a CSP, a variable can only take values from
its domain. One reason to skip any singleton inconsistent
valuesSI (line 4 of cddFindall) is that, the chance to
apply this lemma will be higher if these easy-to-detect dead-
ends are not explicitly expressed as an extra branch(xk ∈
SI,0).

We will formalize the example below into Lemma 2.

Example 6 The left of Figure 7 depicts the scenario when a
CDD nodeu can be “embedded” into another CDD nodev.
It is not difficult to verify that

x ∈ {2, 5} ∧ [[u]] ≡ x ∈ {2, 5} ∧ [[v]].

Intuitively speaking we use the domain ofx to mask out
unwanted branches.

Merging can occur more often if the domain of a variable
is tight, say, singleton consistent. In fact, when there is no
CDD constraint, such as in BDD or MDD, the domains of
(uninstantiated) variables are invariant along any different
paths, and thus only identical sub-graphs can merge.

Lemma 2 SupposeG = 〈Γ, G〉 is a CDD rooted atv. Let
v′ be a CDD node andxk a variable with domainDk. If for
every(xk ∈ r, u) ∈ v there exists(xk ∈ r′, u′) ∈ v′ such
thatu = u′ andr = Dk ∩ r′, we havev ≡Γ v′.

Let G be the CDD graph returned bycddFindall for
the CSPP = 〈X,D, C〉. Clearly, the CDDG = 〈C, G〉
satisfies Property (1). It also satisfies Property (2) of a re-
duced CDD ifmkNode finds equivalent CDD nodes in a
static order, say, a new node is always appended to the end
of a list V , andmkNode always returns fromV the first
equivalent node. Finally, we show the correctness of our
cddFindall algorithm:

AAAI-05 / 369

u v

G1 G2 G3

x ∈ {2, 5} x ∈ {2, 5, 8, 9}

x ∈ {2} x ∈ {5} x ∈ {2} x ∈ {5, 8} x ∈ {9} v

G1 G2 G3

x ∈ {2, 5} x ∈ {2, 5, 8, 9}

x ∈ {2} x ∈ {5, 8} x ∈ {9}

Figure 7: Merging two CDD nodes (left) into a single one (right)

Theorem 1 Given a CSP P = 〈X,D, C〉, the
cddFindall algorithm returns a CDD graphG such that
the CDDG = 〈C, G〉 is reduced and preserves all solutions
of P, i.e. C ∧ [[v]] ≡ C, wherev is the root node ofG.

Corollary 1 Given a CSPP = 〈X,D, C〉 as input,
cddFindall produces a CDD graphG such that, a solu-
tion ofP can be obtained from the reduced CDDG = 〈C, G〉
by doing a deep backtrack-free traversal from the root ofG
to the 1-terminal, in the presence of the constraintsC ∧ [[v]],
wherev is the root node ofG.

Experimental Results
We have implemented a prototype ofcddFindall in SIC-
Stus Prolog 3.12.0. Our prototype represents CDD nodes as
dynamic clauses for ease of implementation. This effects the
efficiency as the number of CDD nodes increases. This is not
important since we focus on the scalability of CDD in terms
of its size and memory used. Experiments were run on a
PC running Windows XP, with a P4 2.6GHz CPU and 1 GB
physical memory. Due to the lack of space, we only present
the results on theN -queens problem. Finding a compact
representation for all the solutions of theN -queens problem
is challenging for two reasons. First, its permutation nature
implies compression methods by just suffix or prefix shar-
ing on the solution set, such as to use a trie or a MDD, are
doomed to failure.4 Second, its number of solutions grows
exponentially withN , which makes scalability critical.

TheN -queens problem is to placeN queens on aN ×N
chess board such that no two queens attack each other. Our
model involvesN variablesx1, . . . , xN . Each variable has
a domainDi = {1, . . . , N}. A valuationxi 7→ j means
the queen is placed in thei-th row and thej-th column.
We useall distinct(x1, . . . , xN) that enforces gen-
eralized arc consistency, and a no-attack constraint

|xi − xj | 6= |i − j|

for each pair of variablesxi and xj . There are two ver-
sions of the no-attack constraints, one achieves bounds con-
sistency (BC) and the other achieves arc consistency (AC).

Table 1 summarizes the results.N is the number of
queens.S is the number of solutions. The columns under
“findall+BC/AC” show the execution time (t seconds) and
the total memory (m MB) used by the built-in predicates
labeling/2 andfindall/3 to generate and store all
solutions. Note thatfindall stores the solutions in a list.

4Compressing the 14200 solutions of the 12-queens problem
using WinZip can only reduce its size from 403KB to 81KB.

BC (AC) means the no-attack constraints achieve bounds
(arc) consistency. The columns under “CDD+BC/AC” show
the time (t seconds) and the total memory (m MB) used
by cddFindall to find all solutions and save them into a
CDD with nn nodes. To measure the compactness of a CDD
independent of the implementation details, which removes
the overhead of dynamic clauses, we use the compression
ratio

cr =
N · S

nn

Namely, the ratio of the number of cells in a (virtual) ta-
ble that stores all the solutions to the number nodes of the
CDD. Time, memory use andcr are reported up to 1 deci-
mal place. Bothlabeling andcddFindall use static
lexicographical variable and value ordering.

Firstly, regardless the consistency the no-attack con-
straints achieve,cddFindall uses significantly less mem-
ory thanfindall, especially whenN is large. For in-
stance, whenN = 14, 119 MB was used byfindall,
compared to less than 10 MB bycddFindall. CDD is
also significantly superior to the combinatorial sets repre-
sentation using ZBDD5 (Okuno, Minato, & Isozaki 1998)
where we found that ZBDDs cannot compress the solutions
well. Also, the compression ratio increases withN , which
indicates our CDD representation becomes more efficient (in
terms of size) when the solution set grows.

Secondly, let us compare the memory consumed by
cddFindall andfindall when we strengthen the con-
sistency (from BC to AC) that the no-attack constraints
achieve. ForcddFindall, its memory use decreases with
the increase of the level of consistency. In fact, when AC
instead of BC is achieved, the size (number of nodes) of the
CDD (for the sameN) is reduced by about 33% or more.
This is because the search tree shrinks, so does the CDD,
when the consistency becomes stronger. However, the mem-
ory used byfindall is insensitive to the level of consis-
tency. The reason is obvious as the number of solutions is
independent to the consistency the constraints achieve.

Our results justify the scalability of CDD for solutions
recording, and the usefulness of combining constraints and
decision diagrams. Currently,cddFindall runs slower
thanfindall for larger instances. However, we claim this
is because of the excessive use of dynamic clauses. A better
implementation should improve the runtime.

5We implemented their proposed operations using the (Z)BDD
package CUDD 2.4.0 (http://vlsi.colorado.edu/ fabio/CUDD/). For
N = 12, the ZBDD has 45833 nodes, where each node encodes a
valuationxi 7→ j. Our PC ran out of memory forN > 12.

AAAI-05 / 370

findall+BC findall+AC CDD+BC CDD+ACN S
t m t m t m nn cr t m nn cr

10 724 0.3 2.3 0.3 2.3 0.4 2.1 173 41.8 0.3 2.1 116 62.4
11 2680 1.7 3.6 1.4 3.5 1.8 2.3 564 52.3 1.4 2.1 389 75.8
12 14200 9.1 8.1 7.4 8.1 9.8 2.5 2187 77.9 7.1 2.3 1445 117.9
13 73712 44.6 21.7 37.5 21.7 59.9 3.6 9462 101.3 41.5 3.1 6291 152.3
14 365596 339.1 119.1 244.6 119.1 496.6 9.0 42877 119.4 307.7 6.7 28450 179.9

Table 1: Experimental results on theN -queens problem

Discussion and Related Work
In this paper we have proposed a novel representation for
generaln-ary constraints called constrained decision dia-
grams. We have demonstrated its use in maintaining all so-
lutions of a CSP. Our experimental results confirm the scal-
ability and compactness of our new representation.

There are two streams of related work: either to find a
high-level description (say, an arithmetic relation) froma
solution set, e.g. (Apt & Monfroy 1999; Cheng, Lee, &
Stuckey 2003; Daoet al. 2002), or to directly compress
the solution set, e.g. (Barták 2001; Hubbe & Freuder 1992;
van der Meer & Andersen 2004; Okuno, Minato, & Isozaki
1998; Weigel & Faltings 1999). We call the former the in-
ductive approach and the latter the compression approach.

The inductive approach usually outputs a (symbolic) rep-
resentation which is compact and efficient to process (by the
constraint solver). However, it requires fairly expensivepre-
processing on the solution set and compilation of the rep-
resentation into some program codes. Hence, scalability is
a problem and this approach is not suitable to process con-
straints that are generated during CSP solving.

The compression approach, in contrast, retains the set
of solutions in its explicit form, but reduces its size via
compression techniques such as suffix or prefix sharing.
The compression process is incremental and needs no pre-
processing. However, since the number of solutions could be
exponential and sharing might not be very common among
solutions (e.g. for permutation problems), dealing with so-
lutions explicitly is sometimes impractical.

One pitfall to both approaches is they treat the solutions of
a CSP or a constraint solely as a set of data, just like there is
no other constraint. In practice, however, a constraint rarely
comes alone. As we have already presented, taking exist-
ing constraints into account is indeed the key to a compact
representation for solution set.

We consider CDD a bridge between the inductive and the
compression approaches. On the one hand, arbitrary con-
straints can be used inside a CDD (node). In fact, by defi-
nition, a CDD interacts with other constraints via constraint
propagation. On the other hand, a CDD, just like MDD and
other BDD variants, can represent individual solution and
be constructed incrementally. Its dual nature makes CDD a
very flexible and powerful representation for constraints.

We would like to point out that, there exists variants of
BDD which use some restricted form constraints. For in-
stance, in difference decision diagram (Mølleret al. 1999)
each node represents a constraintx < y + c wherec is some

constant. However, they are tailor-made for specific appli-
cations and do not apply (general) constraint solving.

We plan to implement a more efficient consistency algo-
rithm for generaln-ary constraints (say, GAC) on top of a
CDD. As a compact and efficient representation for a huge
solution set, CDD might also benefit applications such as
(no)-goods learning during search and CSP decomposition.

References
Apt, K., and Monfroy, E. 1999. Automatic generation
of constraint propagation algorithms for small finite do-
mains. InPrinciples and Practice of Constraint Program-
ming, 58–72.
Bart́ak, R. 2001. Filtering algorithms for tabular con-
straints. InColloqium on Implementation of Constraint and
Logic Programming Systems (CICLOPS), 168–182.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation.IEEE Trans. on Comp.35(8):667–
691.
Cheng, C. K.; Lee, J. H. M.; and Stuckey, P. J. 2003. Box
constraint collections for adhoc constraints. InPrinciples
and Practice of Constraint Programming, 214–228.
Dao, T.; Lallouet, A.; Legtchenko, A.; and Martin, L. 2002.
Indexical-based solver learning. InPrinciples and Practice
of Constraint Programming, 541–555.
Debruyne, R., and Bessière, C. 1997. Some practicable
filtering techniques for the constraint satisfaction problem.
In IJCAI, 412–417.
Hubbe, P. D., and Freuder, E. C. 1992. An efficient cross
product representation of the constraint satisfaction prob-
lem search space. InAAAI, 421–427.
Møller, J.; Lichtenberg, J.; Andersen, H. R.; and Hulgaard,
H. 1999. Difference decision diagrams. InComp. Sci.
Logic.
Okuno, H.; Minato, S.; and Isozaki, H. 1998. On the prop-
erties of combination set operations.Information Process-
ing Letters66:195–199.
Srinivasan, A.; Kam, T.; Malik, S.; and Brayton, R. 1990.
Algorithms for discrete function manipulation. InIntl.
Conf. on CAD, 92–95.
van der Meer, E., and Andersen, H. R. 2004. Bdd-based
recursive and conditional modular interactive product con-
figuration. InCSPIA Workshop, 112–126.
Weigel, R., and Faltings, B. 1999. Compiling constraint
satisfaction problems.Art. Intell. 115(2):257–287.

AAAI-05 / 371

