Constrained Decision Diagrams

Kenil C.K. Cheng and Roland H.C. Yap
National University of Singapore
3 Science Drive 2, Singapore
{chengchi,ryap@comp.nus.edu.sg

Abstract

A generaln-ary constraint is usually represented explicitly
as a set of its solution tuples, which may need exponential
space. In this paper, we introduce a new representation for
generaln-ary constraints callec€Constrained Decision Di-
agram (CDD). CDD generalizes BDD-style representations
and the main feature is that it combines constraint reason-
ing/consistency techniques with a compact data structure. We
present an application of CDD for recording all solutions of
a conjunction of constraints. Instead of an explicit represen-
tation, we can implicitly encode the solutions by means of
constraint propagation. Our experiments confirm the scala-
bility and demonstrate that CDDs can drastically reduce the
space needed over explicit and ZBDD representations.

Introduction

site approach is to use an explicit representation wheee dat
structures are used to compress the solution set direetly, i
suffix or prefix sharing. These might not be practical when
the solution set is huge (since its explicit) or difficult tune-
press.

In this paper, we introduce a new representation for so-
lution sets and generalary constraints, called Constrained
Decision Diagram (CDD). CDD is a hybrid which combines
the strengths of implicit and explicit approaches. On the on
hand, it can be explicit and generalizes BDD-style repre-
sentations. It is also implicit, combining constraint r@as
ing/consistency techniques with a compact data structure.

Binary decision diagram (BDD) (Bryant 1986) is the state
of the art representation for propositional logic, and CAD.
Unlike BDD which only allows propositional variables (i.e.
the only available constraints are= 1 andz = 0), a CDD

Many real-life combinatorial problems such as scheduling can use arbitrary constraints. We show how CDDs can be
can be modeled as a constraint satisfaction problem (CSP). used to represent all solutions of a CSP where space savings
Despite the vast improvements on search strategies and con-come because of the implicit representation and use of con-
sistency algorithms for binary and specific constraints, re straint propagation. Our experiments show that CDDs can
atively less efforts have been put into issues with general give 1-2 orders of magnitude space savings over explicit and

n-ary constraints. In particular, this paper looks at thaéss
of efficient representations of the solution space. Thimis i
portant when we want to record all solutions to a CSP or as
efficient representations ef-ary constraints which can be
used with consistency algorithms.

An efficient representation of all solutions is useful for
some applications. For example, a configuration system
may be interactive where real-time response is necessary. S
finding the solutions of the CSP in advance and filtering that
against the user’s requirements is more efficient than solv-
ing from scratch. In this paper, we are interested in efficien

ZBDDs (Okuno, Minato, & Isozaki 1998) representations.
We remark that for large solution spaces, memory usage can
be the primary consideration.

Preliminaries

A constraint satisfaction problenfCSP) is a tripleP =
(X,D,C), whereX = {z1,...,z,} is a set ofvariables
D = {D,,...,D,} is a set ofdomains andC is a set
of constraintd Each variabler; can only take values from
its domain D;, which is a set of integers. Aaluation

and compact representations which can be used to represent iS @ mapping of variables to integer values, written as

solution spaces during search. Moreover, we show how var-
ious local consistencies and the constraint solver can be ex
ploited in the representation to get more compactness.

To represent the solutions of a CSP or a genefaly con-
straint compactly, one approach is an implicit represenat
using a symbolic relation, e.g. a logical formula involving
arithmetic. While the implicit form can be very compact,
they can be difficult expensive to use and discover, espe-
cially when constraints are dynamically created. The oppo-

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

21— dy,...,x, — dp}. Letwars be the function that
returns the set of (free) variables appearing in a constrain
or valuation. Ak-ary constraintc € C on an ordered set
of k distinct variables, sometimes written g1, . . ., zx),
is a subset of the Cartesian produizt x --- x Dy, that re-
stricts the values the variablesdrcan take simultaneously.
A valuationd satisfiesc, a.k.a. asolutionof ¢, if and only
if 6 € c. Solving a CSP requires finding a value for each
variable from its domain so that all constraints are satisfie

In this paper we use the terms “a set of constraints” and “a
conjunction of constraints” interchangeably.

AAAI-05 / 366

LetT be a set of constraints. Two constraiatg@ndc, are
equivalent w.r.t.I', denoted by, =r ¢, if and only if for
any valuatiory, we haved € (I'Ac;) <= 6 € (T'Aca). In
particular, wherl" is true, ¢; ande, areequivalentwritten
asc; = cq, if and only if they define the same relation.

Constrained Decision Diagrams

A constrained decision diagraffCDD) G = (I', G) con-
sists of a set of constrainis(namedCDD constraint} and
a rooted, directed acyclic graph (DAGY = (V U T, E)
(namedCDD graph. We call a nodes € V U T aCDD
node(or simplynodd. TheO-terminal(0 € T) represents
false and thel-terminal (1 € T') represent$rue. G has
at least one terminal. Every non-terminal nade V' con-
nects to a subset of nodésC V UT — {v}. Eachu € U
is asuccessoof v, i.e., there exists a directed edge € £
from v to u. A non-terminal nodey denotes a non-empty
set{(c1,u1), ..., (¢m,um)}. Eachbranch(c;,u;) consists
of a constraint;(z1, ..., zx) and a successat; of v. Fig-
ure 1 gives the graphical representationnoEach outgoing

\r
.
ul ... um

Figure 1: Graphical representation of a CDD naede

arrow frome; points to the corresponding succesagrof
v. If G = (T',G) is a CDD andv is the root node ot we
will explicitly draw an incoming arrow t@ and label it with
I". Hereafter, when we say “a CDD rooted at a notieve
actually mean its CDD graph is rooteduat

A CDD G = (I, G) rooted at a CDD node represents
the constraini” A [v] where

true v=1
[v] =< false v=20
Viti(ep Alw]) v = UL {(eg,uy)}

Let I" be a set of constraints. In an abuse of notation,
we define two CDD nodes andv areequivalent w.r.t.T,
written asu =r v, if and only if [u] =r [v].

Example 1 Figure 2 shows a CD = (I', GG). Letcy; =

FELE2§£$3
U1‘LB1§5 ‘1716{7,9}‘

U2‘$2<£IZ1‘ ‘IE3<SL’1‘U3

w[or o >

Figure 2: A CDD

21 <B,c1a =21 €{7,9},ca =22 < 1,3 =23 < 11
andc, = x5 + x3 > x4. The constraint represented Byis
I'A [[’Ul]]
I'A (Cll AN HUQ]]) \Y (012 A [[Ugﬂ)
I'A (611 N ca A [[U4]]) V (012 Aes N [[’U4]])
I'A (011 ANca ANeg N [[1]) V (612 Acg N\ceg N\ [[1]])
= I'A ((611 AN CQ) \ (612 A 03)) N cy.

A CDD g = (I',G) rooted at the CDD node =
{(c1,u1),. .., (Cm,un)}isreducedfand only if each CDD
graphG’; rooted atu; is either a terminal or reduced, and

ciNc; =r false Q)
ui Fr o uj 2
forall 1 <i < j < m. Inthis paper, we are only interested
in reduced CDDs.

Example 2 A box constraint collection (BCC) (Cheng, Lee,
& Stuckey 2003)

n

\/(Ci A 7\ a;; < x; < byj)

i=1 j=1
whereq;; andb;; are integers, is a (non-reduced) COB=
(true, G) whose roov = {(c1, u11), - - -, (Cn, un1)} @and all

other nodemij = {(aij <z < bij,’ui]‘_‘_l)}.

Example 3 A multi-valued decision diagram (MDD) (Srini-
vasanet al. 1990) over variablesty,...,z, is a CDD
M = (true,G) in which every CDD node is of the form
{(zx = d,u) : d € Dy} whereDy, is the domain ofz;
and u is the corresponding successor. In particular, if all
variables have a Boolean domaff, 1}, the MDD reduces
to a binary decision diagram (BDD) (Bryant 1986).

Given a fixed variable ordering, a multi-valued function is
uniquely represented by a MDD. This strong property makes
equivalence checking of two MDDs efficient, which is crit-
ical for their traditional use. For CDD, however, as a repre-
sentation for generat-ary constraints, we argue flexibility
(e.g. being able to make use of global constraints at ease) is
more important, while keeping a canonical form is optional.

Example 4 Consider a CSFEP with three variablese,, x4
and z3. All variables have a domait1,2,3}. The con-
straint is that the variables must take distinct values,, i.e
C = {z1 # x9,29 # w3,x1 # x3}. Figure 3 depicts
three possible CDDs fa€. The left one (a) is a MDD rep-
resentation. The integef in a hode means the valuation
x; — d. We draw out-going edges to the O-terminal as
dashed arrows. The middle one (b) shows a CDD based
on a set of disequality constraints; # ;. The right
one (c) gives a CDD with just one all-different constraint
al | distinct(xy,z2,23). Notice the compactness a
CDD could achieve by representing solutions implicitly.

Representing Solutionswith CDD

We can use a CDD to represent all solutions of a CSP. In-
stead of a direct compression on the solution set, a CDD
is an implicit representation using constraint propagatio
Adding the CDD as an implied constraint to the original
CSP, a deep backtrack-free search for solutions is guaran-
teed. The next example gives the overall picture.

AAAI-05 / 367

a1 [2]3] laaf1]2]3] |zaf1]2]3]

\
\

\

3

‘173‘ l\‘ 2\

\
\

N < \

Figure 3: Three different CDDs far; # xo Axy # 3 Ao # x3.

\ \
wal1]2]3)) [ea1]2]3] |

.7327£$1

‘x37éw1/\$37é$2‘

al | di stinct(x1,z2,23)

1]
(b)

©

(a) A MDD-like representation, all solutions are maintin

explicitly. (b) A CDD with disequality constraints insidedes. (c) A CDD with a singlal | _di sti nct (x1,z2,x3) .

(21,2 €{1,2,3)

)

x1— 1

Ny

To +— 3

xr1— 2

@;IHLJ;QH?,J [@lexngJ [@:1!—>2,1’2|—>2J X
(@)

i

‘J}l S {1}‘ xr1 € {2}‘

C

(22 € {1,2}] |z € {1,2}]

(©

X

(b)

Figure 4: LetP = ({z1,22},{{1,2,3},{1,2,3}},C) be a CSP with three solutiods;; — 1,22 — 3}, {x1 — 2,29 — 1}
and{z; — 2,22 — 2}. (a) A depth-first backtracking search trBdor P. A round rectangular node represents a search state.
A double-edged round rectangular node represents a Solstiide (i.e.true). A cross () indicates a dead-end (i.¢alse).
A transition from a search state to another is shown as atdtexige labeled with the corresponding valuatipp- d. (b) A

CDD g, that represent$’. (c) A CDD G, that “approximatesT.

Example5 Let P = (X,D,C) be a CSP whereX =
{z1,22} and D, = Dy = {1,2,3}. We assume that there
are some constraints so thatP has three solution$z; —
1,29 — 3}, {xl — 2,To —].} and {1'1 — 2,To — 2}
Figure 4(a) depicts the depth-first backtracking searcle tre
T for P. We will explain how to “compressT’ into a CDD.
First, we look at node:. After we have assigned 1 tq,

the domain oft, is reduced to the singleton sg3}. Thus,

we can determine the first solution by posing the constraint
x1 = 1. Constraint propagation will do the rest. Next, con-
sider the situation if we have assigned 2:t0 At nodeb, we

can assigne, with either 1 or 2, each corresponds to a so-
lution of P. Howeverz, — 3 leads to a dead-end. We can
represent the two solutions and exclude the dead-end with
the constraintr; = 2 A zo € {1,2} There is no solution
for the branchz; — 3. To summarize, adding the implied
constraint

(x1=1)V (z1 =2Az € {1,2})

to C we can find the solutions without backtracking. The
corresponding CDOY; is shown in Figure 4(b).

Very often, we can obtain a smaller CDD if we “assume”
the constraints achieve a higher level of consistency than

they actually do. For instance, consider nddagain, if we
enforce singleton consistency (Debruyne & Be®sil997)
on D, the domain of», we can immediately remove 3 from
D,. Since then every value I, contributes to a solution of
P, a simpler constraink; = 2 is enough to represent these
two solutions. Figure 4(c) gives the corresponding CGD
Note that it only has one node, whilg has two. Of course,
as the original constraints do not achieve singleton consis
tency,G, contains some shallcndead-ends, hence we say
it only “approximates”T.

This example shows the use of constraint propagation and
approximating the search tree could reduce the amount of
explicit information needed for representing solutionse W
are ready present owddFi ndal | algorithm. Taking a
CSPP = (X, D,C) as input, it compiles the solutions &f
into a CDDG = (C,G). Each CDD node is of the form
{(zr € r1,u1),...,(Tk € Tm,um)} Wherery,... 1, C
Dy, are pairwise disjoint (so as to satisfy Property (1) of a
reduced CDD). Consequently;, ..., r,} is a partition of

2\We say a valuation:; — d leads to a shallow (deep) dead-
end if this dead-end can(not) be detected by enforcing singleton
consistency on the domain of.

AAAI-05 / 368

some non-empty subset ;. nkNode (z, S, C) _
/! Global variablel” contains all CDD nodes

cddFi ndal | (X,D,C) begin
begin 7 vi={(zk €ru):d,d er < (d,u),(d,u) €S}
if vars(C) = 0 then /li.e.z — dandzy — d’ point to the same node
return 1 // 1-terminal 8 | If ' € Vst =cwvthen
dse | returnv’
chooser;, € vars(C) else
S =0 9 V=V u{v}
D}, =0 return v
foreach d € D, do end
.= C with all z;, replaced byl
if C" is not locally inconsisterithen Figure 6:nkNode
u:=cddFi ndal | (X,D,C’)
S:=S5U{(d,u)} : : .
L ' =D} U {d} line 8, we check if there already exists a nade= V' such
L thatv andv’ are equivalent w.r.tC. If so, we will reusev’.
if Dj, = 0 then Otherwise, we insert to V' (line 9) and return.
return 0 // O-terminal We are going to present two lemmas which allow efficient
dse equivalence checking and minimization for CDD. They are
v :=nkNode(zx, 5,C U {zx € D}}) generalizations of the reduction rules for MDDs. Because of
| return v ’ the space constraint, proofs are omitted.
- Lemmal Supposer; is variable with domainDy, andT’
end a set of constraints. Let and v be two CDD nodes. If

v ={(zr € Dy, u)} thenv =r w.

Lemma 1 says can be replaced by because, by the
Figure 5 gives the pseudo-codeaddFi ndal | which definition of a CSP, a variable can only take values from

uses singleton consistency (can be extended to other con-its domain. One reason to skip any singleton inconsistent
sistencies). Its skeleton is a depth-first backtrackingcbea valuesSI (line 4 of cddFi ndal |') is that, the chance to
algorithm. The control flow is as follows. If all variables apply this lemma will be higher if these easy-to-detect dead
have been assigned, i.e., a solution has been found, the 1-ends are not explicitly expressed as an extra bramghe
terminal will be returned (line 1). Otherwise, we select an SI,0).
uninstantiated variable,, (line 2). We also initialize two We will formalize the example below into Lemma 2.

empty sets:S will collect branches of a CDD node, ar), Example 6 The left of Figure 7 depicts the scenario when a

will be a singleton consistent domain of. Next, for each CDD nodeu can be “embedded” into another CDD node
valued in the domainD; (line 3) we make new constraints |t is not difficult to verify that

C’ that are equivalent t6 A (z;, = d). If C’ is not incon-

sistent, as determined by the constraint solviais (makes v €{2,5} AN [u] =z € {2,5} A [v].

use of constraint propagation in the existing sojvgine 4) Intuitively speaking we use the domainzoto mask out
we invokecddFi ndal | (recursively) to find a CDD node unwanted branches.

u for the sub-problen{X, D, C’), add the paifd, u) to 53,

Figure 5:cddFi ndal |

and insertd to D). If D), = 0 (line 5) when the iteration ~ Merging can occur more often if the domain of a variable
is over, the O-terminal will be returned as the constrathts IS tight, say, singleton consistent. In fact, when thereas n
are unsatisfiable. OtherwisekNode is called (line 6) to ~ CDD constraint, such as in BDD or MDD, the domains of

find a CDD nodev for the current (sub)-problem. (The rea- (uninstantiated) vana_lbles_are invariant along any difiéer
sons for posings, € D), namely to make the domain of paths, and thus only identical sub-graphs can merge.
xy, smaller or singleton consistent, will become clear when Lemma2 Suppos& = (T, G) is a CDD rooted at. Let
we discuss the reduction rules for CDD.) Finally we return ' be a CDD node and;, a variable with domairDy,. If for
v. The execution ofddFi ndal | stops after traversingthe every(xz;, € r,u) € v there existdx;, € ', ') € v’ such
entire search tree. thatu = v’ andr = Dy N7/, we havey =r v'.

Figure 6 shows the pseudo-codendfNode. The global .
: P i Let G be the CDD graph returned lyddFi ndal | for
variableV' maintains a set of all existing CDD nodes. At the CSPP — (X,D,C). Clearly, the CDDG — (C,G)

line 7, an intermediate CDD nodls created in such a way satisfies Property (1). It also satisfies Property (2) of a re-

that for everyd € r, z; — d leads to the same successor ; . : :
Next, in order to satisfy Property (2) of a reduced CDD, at 9uced CDD ifmkNode finds equivalent CDD nodes in a
static order, say, a new node is always appended to the end

*Theoretically it is unnecessary to keé, u) whenu is the of a list V', andnmkNode always returns fronl” the first
0O-terminal, i.e. a CDD needs not explicitly state # d. This, equivalent node. Finally, we show the correctness of our
however, simplifies the implementation and our presentation. cddFi ndal | algorithm:

AAAI-05 / 369

z € {2,5} z € {2,5,8,9}

\x €{2,5} \x €1{2,5,8,9}

x € {2}|w € {5}‘

2 e {2}z e {58} [se{9}|v

’x € {2}|w € {5,8} |fE € {9}‘ v

XK 4

Gy Go GS

Figure 7: Merging two CDD nodes (left) into a single one (tjgh

Theorem1l Given a CSP P (X,D,C), the
cddFi ndal | algorithm returns a CDD grapld: such that
the CDDG = (C, G) is reduced and preserves all solutions
of P, i.e.C A [v] = C, wherev is the root node of.

Corollary 1 Given a CSPP (X,D,C) as input,
cddFi ndal | produces a CDD grapld- such that, a solu-
tion of P can be obtained from the reduced COD= (C, G)
by doing a deep backtrack-free traversal from the roozof
to the 1-terminal, in the presence of the constratts [v],
wherew is the root node of5.

Experimental Results
We have implemented a prototypeaddFi ndal | in SIC-

BC (AC) means the no-attack constraints achieve bounds
(arc) consistency. The columns under “CDD+BC/AC” show
the time ¢ seconds) and the total memony: (MB) used

by cddFi ndal | to find all solutions and save them into a
CDD withnn nodes. To measure the compactness of a CDD
independent of the implementation details, which removes
the overhead of dynamic clauses, we use the compression

ratio
N-S
nn
Namely, the ratio of the number of cells in a (virtual) ta-
ble that stores all the solutions to the number nodes of the
CDD. Time, memory use ang- are reported up to 1 deci-
mal place. BotH abel i ng andcddFi ndal | use static

cr =

Stus Prolog 3.12.0. Our prototype represents CDD nodes as|exicographical variable and value ordering.

dynamic clauses for ease of implementation. This effeets th

Firstly, regardless the consistency the no-attack con-

efficiency as the number of CDD nodes increases. This is not straints achievesddFi ndal | uses significantly less mem-

|mportant since we focus on the scalability of CDD in terms
of its size and memory used. Experiments were run on a
PC running Windows XP, with a P4 2.6GHz CPU and 1 GB
physical memory. Due to the lack of space, we only present
the results on theV-queens problem. Finding a compact
representation for all the solutions of thequeens problem
is challenging for two reasons. First, its permutation reatu
implies compression methods by just suffix or prefix shar-
ing on the solution set, such as to use a trie or a MDD, are
doomed to failuré. Second, its number of solutions grows
exponentially withV, which makes scalability critical.

The N-queens problem is to pladé queens on & x N

chess board such that no two queens attack each other. Ourgchieve. FocddFi ndal |,

model involvesN variablesz, ...,z x. Each variable has
a domainD; = {1,...,N}. Avaluationa;i — j means

the queen is placed in theth row and thej-th column.

We useal | _di stinct(zy,...,2y) that enforces gen-
eralized arc consistency, and a no-attack constraint

|=’Ez’—95j| # |i — j

for each pair of variables; andz;. There are two ver-
sions of the no-attack constraints, one achieves bounds con
sistency (BC) and the other achieves arc consistency (AC).
Table 1 summarizes the resultsV is the number of

gueens.S is the number of solutions. The columns under
“findall+BC/AC” show the execution timet(seconds) and
the total memory+ MB) used by the built-in predicates

| abel i ng/ 2 andfi ndal | / 3 to generate and store all
solutions. Note thati ndal | stores the solutions in a list.

“Compressing the 14200 solutions of the 12-queens problem
using WinZip can only reduce its size from 403KB to 81KB.

ory thanfi ndal | , especially whenV is large. For in-
stance, whenV = 14, 119 MB was used byi ndal |,
compared to less than 10 MB lnddFi ndal | . CDD is
also significantly superior to the combinatorial sets repre
sentation using ZBDP (Okuno, Minato, & Isozaki 1998)
where we found that ZBDDs cannot compress the solutions
well. Also, the compression ratio increases wih which
indicates our CDD representation becomes more efficient (in
terms of size) when the solution set grows.

Secondly, let us compare the memory consumed by
cddFi ndal | andfi ndal I when we strengthen the con-
sistency (from BC to AC) that the no-attack constraints
its memory use decreases with
the increase of the level of consistency. In fact, when AC
instead of BC is achieved, the size (number of nodes) of the
CDD (for the sameV) is reduced by about 33% or more.
This is because the search tree shrinks, so does the CDD,
when the consistency becomes stronger. However, the mem-
ory used byf i ndal | is insensitive to the level of consis-
tency. The reason is obvious as the number of solutions is
independent to the consistency the constraints achieve.

Our results justify the scalability of CDD for solutions
recording, and the usefulness of combining constraints and
decision diagrams. CurrentlgddFi ndal | runs slower
thanf i ndal | for larger instances. However, we claim this
is because of the excessive use of dynamic clauses. A better
implementation should improve the runtime.

SWe implemented their proposed operations using the (Z)BDD
package CUDD 2.4.0 (http://visi.colorado.edu/ fabio/CUDDY/). For
N = 12, the ZBDD has 45833 nodes, where each node encodes a
valuationz; — 7. Our PC ran out of memory fav > 12.

AAAI-05 /370

N g findall+BC findall+AC CDD+BC CDD+AC

t m t m t m nn cr t m nn cr
10 724 0.3 2.3 0.3 2.3 04 21 173 41.8 0.3 21 116 62.4
11 2680 1.7 3.6 1.4 3.5 1.8 2.3 564 52.3 14 2.1 389 75.8
12 14200 9.1 8.1 7.4 8.1 98 25 2187 77.9 71 2.3 1445 117.9
13 73712 44.6 21.7) 37.5 21.7]| 59.9 3.6 9462 101.3 415 3.1 6291 152.3
14 | 365596 339.1 119.1| 244.6 119.1}| 496.6 9.0 42877 119.4307.7 6.7 28450 179.9

Table 1: Experimental results on thé-queens problem

Discussion and Related Wor k

In this paper we have proposed a novel representation for
generaln-ary constraints called constrained decision dia-
grams. We have demonstrated its use in maintaining all so-
lutions of a CSP. Our experimental results confirm the scal-
ability and compactness of our new representation.

There are two streams of related work: either to find a
high-level description (say, an arithmetic relation) fram
solution set, e.g. (Apt & Monfroy 1999; Cheng, Lee, &
Stuckey 2003; Dat al. 2002), or to directly compress
the solution set, e.g. (Bait 2001; Hubbe & Freuder 1992;
van der Meer & Andersen 2004; Okuno, Minato, & Isozaki
1998; Weigel & Faltings 1999). We call the former the in-
ductive approach and the latter the compression approach.

The inductive approach usually outputs a (symbolic) rep-
resentation which is compact and efficient to process (by the
constraint solver). However, it requires fairly expengive-
processing on the solution set and compilation of the rep-
resentation into some program codes. Hence, scalability is
a problem and this approach is not suitable to process con-
straints that are generated during CSP solving.

The compression approach, in contrast, retains the set
of solutions in its explicit form, but reduces its size via
compression techniques such as suffix or prefix sharing.
The compression process is incremental and needs no pre-
processing. However, since the number of solutions could be
exponential and sharing might not be very common among
solutions (e.g. for permutation problems), dealing with so
lutions explicitly is sometimes impractical.

One pitfall to both approaches is they treat the solutions of
a CSP or a constraint solely as a set of data, just like there is
no other constraint. In practice, however, a constraimglyar
comes alone. As we have already presented, taking exist-
ing constraints into account is indeed the key to a compact
representation for solution set.

We consider CDD a bridge between the inductive and the
compression approaches. On the one hand, arbitrary con-
straints can be used inside a CDD (node). In fact, by defi-
nition, a CDD interacts with other constraints via consirai
propagation. On the other hand, a CDD, just like MDD and
other BDD variants, can represent individual solution and
be constructed incrementally. Its dual nature makes CDD a
very flexible and powerful representation for constraints.

We would like to point out that, there exists variants of
BDD which use some restricted form constraints. For in-
stance, in difference decision diagram (Mgkgral. 1999)
each node represents a constrairt y + c wherec is some

constant. However, they are tailor-made for specific appli-
cations and do not apply (general) constraint solving.

We plan to implement a more efficient consistency algo-

rithm for generaln-ary constraints (say, GAC) on top of a

CDD. As a compact and efficient representation for a huge
solution set, CDD might also benefit applications such as
(no)-goods learning during search and CSP decomposition.

References

Apt, K., and Monfroy, E. 1999. Automatic generation
of constraint propagation algorithms for small finite do-
mains. InPrinciples and Practice of Constraint Program-
ming 58-72.

Bartak, R. 2001. Filtering algorithms for tabular con-
straints. InCollogium on Implementation of Constraint and
Logic Programming Systems (CICLOR$$8-182.

Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulationlEEE Trans. on Com®35(8):667—
691.

Cheng, C. K,; Lee, J. H. M.; and Stuckey, P. J. 2003. Box
constraint collections for adhoc constraints. Annciples
and Practice of Constraint Programming14—228.

Dao, T.; Lallouet, A.; Legtchenko, A.; and Martin, L. 2002.
Indexical-based solver learning. Rrinciples and Practice
of Constraint Programmings41-555.

Debruyne, R., and Bessie, C. 1997. Some practicable
filtering techniques for the constraint satisfaction pewiol

In IJCAI, 412-417.

Hubbe, P. D., and Freuder, E. C. 1992. An efficient cross
product representation of the constraint satisfactioropro
lem search space. WAAI, 421-427.

Mgiller, J.; Lichtenberg, J.; Andersen, H. R.; and Hulgaard,
H. 1999. Difference decision diagrams. @omp. Sci.
Logic.

Okuno, H.; Minato, S.; and Isozaki, H. 1998. On the prop-
erties of combination set operatiorieformation Process-
ing Letters66:195-199.

Srinivasan, A.; Kam, T.; Malik, S.; and Brayton, R. 1990.
Algorithms for discrete function manipulation. limtl.
Conf. on CAD 92-95.

van der Meer, E., and Andersen, H. R. 2004. Bdd-based
recursive and conditional modular interactive product-con
figuration. INCSPIA Workshopl12—-126.

Weigel, R., and Faltings, B. 1999. Compiling constraint
satisfaction problemsArt. Intell. 115(2):257-287.

AAAI-05/ 371

