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t. The general intra
tability of the 
onstraint satisfa
tion prob-lem has motivated the study of restri
tions on this problem that permitpolynomial-time solvability. One major line of work has fo
used on stru
-tural restri
tions, whi
h arise from restri
ting the intera
tion among 
on-straint s
opes. In this paper, we engage in a mathemati
al investigation ofgeneralized hypertree width, a stru
tural measure that has up to re
entlyeluded study. We obtain a number of 
omputational results, in
luding asimple proof of the tra
tability of CSP instan
es having bounded gener-alized hypertree width.1 Introdu
tionThe 
onstraint satisfa
tion problem (CSP) is widely a
knowledged as a 
onve-nient framework for modelling sear
h problems. Instan
es of the CSP arise ina variety of domains, in
luding arti�
ial intelligen
e, database theory, algebra,propositional logi
, and graph theory. An instan
e of the CSP 
onsists of a setof 
onstraints on a set of variables; the question is to determine if there is anassignment to the variables satisfying all of the 
onstraints. Alternatively, theCSP 
an be 
ast as the fundamental algebrai
 problem of de
iding, given tworelational stru
tures A and B, whether or not there is a homomorphism fromA to B. In this formalization, ea
h relation of A 
ontains the tuples of variablesthat are 
onstrained together, whi
h are often 
alled the 
onstraint s
opes, andthe 
orresponding relation of B 
ontains the allowable tuples of values that thevariable tuples may take.It is well-known that the CSP, in its general formulation, is NP-
omplete; thisgeneral intra
tability has motivated a large and ri
h body of resear
h aimed atidentifying and understanding restri
ted 
ases of the CSP that are polynomial-time tra
table. The restri
tions that have been studied 
an, by and large, bepla
ed into one of two 
ategories, whi
h{due to the homomorphism formulationof the CSP{have be
ome known as left-hand side restri
tions and right-handside restri
tions. From a high level view, left-hand side restri
tions, also knownas stru
tural restri
tions, arise from prespe
ifying a 
lass of relational stru
turesA from whi
h the left-hand side stru
ture A must 
ome, while right-hand side



restri
tions arise from prespe
ifying a 
lass of relational stru
tures B from whi
hthe right-hand side stru
ture B must 
ome. As this paper is 
on
erned prin
i-pally with stru
tural restri
tions, we will not say more about right-hand siderestri
tions than that their systemati
 study has origins in a 
lassi
 theorem ofS
haefer [21℄, and that re
ent years have seen some ex
iting results on them (forinstan
e [4, 5℄).The stru
tural restri
tions studied in the literature 
an all be phrased asrestri
tions on the hypergraph H(A) naturally arising from the left-hand siderelational stru
ture A, namely, the hypergraph H(A) with an edge fa1; : : : ; akgfor ea
h tuple (a1; : : : ; ak) of A. Let us brie
y review some of the relevant resultsthat have been obtained on stru
tural tra
tability. The tra
tability of left-handside relational stru
tures having bounded treewidth was shown in the 
onstraintsatisfa
tion literature by De
hter and Pearl [9℄ and Freuder [10℄.1 Later, Dalmauet al. [8℄ building on ideas of Kolaitis and Vardi [19, 20℄ gave a 
onsisten
y-stylealgorithm for de
iding the bounded treewidth CSP. For our present purposes, itis worth highlighting that although the notion of bounded treewidth is de�ned interms of tree de
ompositions, whi
h 
an be 
omputed eÆ
iently (under boundedtreewidth), the algorithm given by Dalmau et al. [8℄ does not 
ompute anyform of tree de
omposition. Dalmau et al. also identi�ed a natural expansionof stru
tures having bounded treewidth that is tra
table{namely, the stru
tureshomomorphi
ally equivalent to those having bounded treewidth. The optimalityof this latter result, in the 
ase of bounded arity, was demonstrated by Grohe[15℄, who proved{roughly speaking{that if the tuples of A are of bounded arityand A gives rise to a tra
table 
ase of the CSP, then it must fall into the naturalexpansion identi�ed by Dalmau et al. [8℄.A number of papers, in
luding [17, 16, 13, 14, 11, 7℄, have studied restri
tionsthat 
an be applied to relational stru
tures of unbounded arity. (Note that any
lass of relational stru
tures of unbounded arity 
annot have bounded treewidth.)In a survey [13℄, Gottlob et al. show that the restri
tion of bounded hypertreewidth [11℄ is the most powerful stru
tural restri
tion for the CSP in that everyother stru
tural restri
tion studied in the literature is subsumed by it. Sin
e thiswork [11, 13℄, whether or not there is a more general stru
tural restri
tion thanbounded hypertree width that ensures tra
tability, has been a tantalizing openquestion.In this paper, we study generalized hypertree width, a stru
tural measure forhypergraphs de�ned in [12℄ that is a natural variation of hypertree width; we
all this measure 
overwidth. Coverwidth is trivially upper-bounded by hyper-tree width, and so any 
lass of hypergraphs having bounded hypertree widthhas bounded 
overwidth. We de�ne a 
ombinatorial pebble game that 
an beplayed on any CSP instan
e, and demonstrate that this game is intimately linkedto 
overwidth (Theorem 13). Overall, the investigation we perform takes signi�-
ant inspiration from methods, 
on
epts, and ideas developed by Kolaitis, Vardi,1 One way to de�ne what we mean by treewidth here is the treewidth of the graphobtained from H(A) by drawing an edge between any two verti
es that are in thesame hyperedge.



and 
oauthors [19, 20, 8, 2℄ that link together CSP 
onsisten
y algorithms, theexistential k-pebble games of Kolaitis and Vardi [18℄, and bounded treewidth.Using the pebble game perspe
tive, we are able to derive a number of 
om-putational results. One is that the stru
tural restri
tion of bounded 
overwidthimplies polynomial-time tra
tability; this result generalizes the tra
tability ofbounded hypertree width. It has been independently shown by Adler et al. thatthe hypertree width of a hypergraph is linearly related to the 
overwidth [1℄.This result 
an be used in 
onjun
tion with the tra
tability of bounded hyper-tree width to derive the tra
tability of bounded 
overwidth. However, we believeour proof of bounded 
overwidth tra
tability to be simpler than the known proofof bounded hypertree width tra
tability [11℄, even though our proof is of a moregeneral result.To des
ribe our results in greater detail, it will be useful to identify two
omputational problems that every form of stru
tural restri
tion gives rise to:a promise problem, and a no-promise problem. In both problems, the goal isto identify all CSP instan
es obeying the stru
tural restri
tion as either sat-is�able or unsatis�able. In the promise problem, the input is a CSP instan
ethat is guaranteed to obey the stru
tural restri
tion, whereas in the no-promiseproblem, the input is an arbitrary CSP instan
e, and an algorithm may, on aninstan
e not obeying the stru
tural restri
tion, de
line to identify the instan
eas satis�able or unsatis�able. Of 
ourse, CSPs arising in pra
ti
e do not 
omewith guarantees that they obey stru
tural restri
tions, and hen
e an algorithmsolving the no-promise problem is 
learly the more desirable. Noti
e that, forany stru
tural restri
tion having a polynomial-time solvable promise problem, ifit is possible to solve the identi�
ation problem of de
iding whether or not an in-stan
e obeys the restri
tion, in polynomial time, then the no-promise problem isalso polynomial-time solvable. For bounded hypertree width, both the identi�
a-tion problem and the no-promise problem are polynomial-time solvable. In fa
t,the survey by Gottlob et al. [13℄ only 
onsiders stru
tural restri
tions for whi
hthe identi�
ation problem is polynomial-time solvable, and thus only 
onsid-ers stru
tural restri
tions for whi
h the no-promise problem is polynomial-timesolvable.One of our main theorems (Theorem 20) is that the promise problem forbounded 
overwidth is polynomial-time tra
table, via a general 
onsisten
y-likealgorithm. In parti
ular, we show that, on an instan
e having bounded 
ov-erwidth, our algorithm dete
ts an in
onsisten
y if and only if the instan
e isunsatis�able. Our algorithm, like the 
onsisten
y algorithm of Dalmau et al.[8℄ for bounded treewidth, 
an be applied to any CSP instan
e to obtain amore 
onstrained instan
e; our algorithm does not need nor 
ompute any formof de
omposition, even though the notion of 
overwidth is de�ned in terms ofde
ompositions!We then give a simple algorithm for the no-promise problem for bounded
overwidth (Theorem 21) that employs the 
onsisten
y-like algorithm for thepromise problem. The algorithm's behavior is reminis
ent of self-redu
ibility ar-guments in 
omputational 
omplexity theory, and on an instan
e of bounded




overwidth, the algorithm is guaranteed to either report a satisfying assign-ment or that the instan
e is unsatis�able. We believe that this result suggestsan expansion of the view of stru
tural tra
tability advan
ed in the Gottlob etal. survey [13℄, sin
e we are able to give a polynomial-time algorithm for thebounded 
overwidth no-promise problem without expli
itly showing that thereis a polynomial-time algorithm for the bounded 
overwidth identi�
ation prob-lem.Returning to the promise problem, we then show that the tra
tability ofstru
tures with bounded 
overwidth 
an be generalized to yield the tra
tabilityof stru
tures homomorphi
ally equivalent to those having bounded 
overwidth(Theorem 22). This expansion of bounded 
overwidth tra
tability is analogousto the expansion of bounded treewidth tra
tability 
arried out in [8℄.We emphasize that none of the algorithms in this paper need or 
ompute anytype of de
omposition, even though all of the stru
tural restri
tions that theyaddress are de�ned in terms of de
ompositions.In the full version of this paper, we use the developed theory as well as ideasin [6℄ to de�ne a tra
table 
lass of quanti�ed 
onstraint satisfa
tion problemsbased on 
overwidth.De�nitions. In this paper, we formalize the CSP as a relational homomorphismproblem. We review the relevant de�nitions that will be used. A relational sig-nature is a �nite set of relation symbols, ea
h of whi
h has an asso
iated arity. Arelational stru
ture A (over signature �) 
onsists of a universe A and a relationRA over A for ea
h relation symbol R (of �), su
h that the arity of RA mat
hesthe arity asso
iated to R. We refer to the elements of the universe of a relationalstru
ture A as A-elements. When A is a relational stru
ture over � and R isany relation symbol of �, the elements of RA are 
alled A-tuples. Throughoutthis paper, we assume that all relational stru
tures under dis
ussion have a �niteuniverse. We use boldfa
e letters A;B; : : : to denote relational stru
tures.A homomorphism from a relational stru
ture A to another relational stru
-ture B is a mapping h from the universe of A to the universe of B su
h thatfor every relation symbol R and every tuple (a1; : : : ; ak) 2 RA, it holds that(h(a1); : : : ; h(ak)) 2 RB. (Here, k denotes the arity of R.) The 
onstraint sat-isfa
tion problem (CSP) is to de
ide, given an ordered pair A;B of relationalstru
tures, whether or not there is a homomorphism from the �rst stru
ture, A,to the se
ond, B. A homomorphism from A to B in an instan
e A;B of the CSPis also 
alled a satisfying assignment, and when a satisfying assignment exists,we will say that the instan
e is satis�able.2 CoverwidthThis se
tion de�nes the stru
tural measure of hypergraph 
omplexity that we 
all
overwidth. As we have mentioned, 
overwidth is equal to generalized hypertreewidth, whi
h was de�ned in [12℄. We begin by de�ning the notion of hypergraph.



De�nition 1. A hypergraph is an ordered pair (V;E) 
onsisting of a vertexset V and a hyperedge set E. The elements of E are 
alled hyperedges; ea
hhyperedge is a subset of V .Basi
 to the measure of 
overwidth is the notion of a tree de
omposition.De�nition 2. A tree de
omposition of a hypergraph (V;E) is a pair(T = (I; F ); fXigi2I) where{ T = (I; F ) is a tree, and{ ea
h Xi (with i 2 I) is 
alled a bag and is a subset of V ,su
h that the following 
onditions hold:1. V = [i2IXi.2. For all hyperedges e 2 E, there exists i 2 I with e � Xi.3. For all v 2 V , the verti
es Tv = fi 2 I : v 2 Xig form a 
onne
ted subtreeof T .Tree de
ompositions are generally applied to graphs, and in the 
ontext ofgraphs, the measure of treewidth has been heavily studied. The treewidth of agraph G is the minimum of the quantity maxi2I jXij � 1 over all tree de
om-positions of G. In other words, a tree de
omposition is measured based on itslargest bag, and the treewidth is then de�ned based on the \lowest 
ost" treede
omposition.The measure of 
overwidth is also based on the notion of tree de
omposition.In 
overwidth, a tree de
omposition is also measured based on its \largest" bag;however, the measure applied to a bag is the number of hyperedges needed to
over it, 
alled here the weight.De�nition 3. A k-union over a hypergraph H (with k � 0) is a union e1[ : : :[ek of k edges e1; : : : ; ek of H.The empty set is 
onsidered to be the unique 0-union over a hypergraph.De�nition 4. Let H = (V;E) be a hypergraph. The weight of a subset X � Vis the smallest integer k � 0 su
h that X \ ([e2Ee) is 
ontained in a k-unionover H.Wemeasure a tree de
omposition a

ording to its heaviest bag, and de�ne the
overwidth of a hypergraph a

ording to the lightest-weight tree de
omposition.De�nition 5. The weight of a tree de
omposition of H is the maximum weightover all of its bags.De�nition 6. The 
overwidth of a hypergraph H is the minimum weight overall tree de
ompositions of H.



It is straightforward to verify that the 
overwidth of a hypergraph is equalto the generalized hypertree width of a hypergraph [12℄. Sin
e the generalizedhypertree width of a hypergraph is always less than or equal to its hypertreewidth, 
overwidth is at least as strong as hypertree width in that results onbounded 
overwidth imply results on bounded hypertree width.There is another formulation of tree de
ompositions that is often wieldy, seefor instan
e [3℄.De�nition 7. A s
heme of a hypergraph H = (V;E) is a graph (V; F ) su
h that{ (V; F ) has a perfe
t elimination ordering, that is, an ordering v1; : : : ; vn ofits verti
es su
h that for all i < j < k, if (vi; vk) and (vj ; vk) are edges in F ,then (vi; vj) is also an edge in F , and{ the verti
es of every hyperedge of E indu
e a 
lique in (V; F ).It is well known that the property of having a perfe
t elimination orderingis equivalent to being 
hordal. The following proposition is also well-known.Proposition 8. Let H be a hypergraph. For every tree de
omposition of H,there exists a s
heme su
h that ea
h 
lique of the s
heme is 
ontained in a bagof the tree de
omposition. Likewise, for every s
heme of H, there exists a treede
omposition su
h that ea
h bag of the tree de
omposition is 
ontained in a
lique of the s
heme.Let us de�ne the weight of a s
heme (of a hypergraph H) to be the maximumweight (with respe
t to H) over all of its 
liques. The following proposition isimmediate from Proposition 8 and the de�nition of 
overwidth, and 
an be takenas an alternative de�nition of 
overwidth.Proposition 9. The 
overwidth of a hypergraph H is equal to the minimumweight over all s
hemes of H.We now de�ne the hypergraph asso
iated to a relational stru
ture. Roughlyspeaking, this hypergraph is obtained by \forgetting" the ordering of the A-tuples.De�nition 10. Let A be a relational stru
ture. The hypergraph asso
iated to Ais denoted by H(A); the vertex set of H(A) is the universe of A, and for ea
hA-tuple (a1; : : : ; ak), there is an edge fa1; : : : ; akg in H(A).We will often impli
itly pass from a relational stru
ture to its asso
iatedhypergraph, that is, we simply write A in pla
e of H(A). In parti
ular, we willspeak of k-unions over a relational stru
ture A.3 Existential k-Cover GamesWe now de�ne a 
lass of pebble games for studying the measure of 
overwidth.These games are parameterized by an integer k � 1, and are 
alled existential



k-
over games. They are based on the existential k-pebble games de�ned byKolaitis and Vardi and used to study 
onstraint satisfa
tion [18, 20℄. The pebblegame that we use is de�ned as follows. The game is played between two players,the Spoiler and the Dupli
ator, on a pair of relational stru
tures A;B that arede�ned over the same signature. Game play pro
eeds in rounds, and in ea
hround one of the following o

urs:1. The Spoiler pla
es a pebble on an A-element a. In this 
ase, the Dupli
atormust respond by pla
ing a 
orresponding pebble, denoted by h(a), on aB-element.2. The Spoiler removes a pebble from an A-element a. In this 
ase, the 
orre-sponding pebble h(a) on B is removed.When game play begins, there are no pebbles on any A-elements, nor on anyB-elements, and so the �rst round is of the �rst type. Both of the players havean unlimited supply of pebbles. However, when pla
ing a new pebble, the Spoilermust obey the restri
tion that the weight of the elements on whi
h the Spoilerhas pebbles must be bounded by k. (Here, by \weight" we are using De�nition 4.)We assume that the Spoiler never pla
es two pebbles on the same A-element, sothat h is a partial fun
tion (as opposed to a relation). The Dupli
ator wins thegame if he 
an always ensure that h is a proje
tive homomorphism from A toB; otherwise, the Spoiler wins. A proje
tive homomorphism (from A to B) is apartial fun
tion h from the universe of A to the universe of B su
h that for anyrelation symbol R and any tuple (a1; : : : ; ak) 2 RA of A, there exists a tuple(b1; : : : ; bk) 2 RB where h(ai) = bi for all ai on whi
h h is de�ned.We now formalize the notion of a winning strategy for the Dupli
ator in theexistential k-
over game. Note that when h is a partial fun
tion, we use dom(h)to denote the domain of h.De�nition 11. A winning strategy for the Dupli
ator in the existential k-
overgame on relational stru
tures A;B is a non-empty set H of proje
tive homo-morphisms (from A to B) having the following two properties.1. (the \forth" property) For every h 2 H and A-element a =2 dom(h), ifdom(h) [ fag has weight � k, then there exists a proje
tive homomorphismh0 2 H extending h with dom(h0) = dom(h) [ fag.2. The set H is 
losed under subfun
tions, that is, if h 2 H and h extends h0,then h0 2 H.As we mentioned, the de�nition of this game is based on the existential k-pebble game introdu
ed by Kolaitis and Vardi [18, 20℄. In the existential k-pebblegame, the number of pebbles that the Spoiler may use is bounded by k, and theDupli
ator need only must ensure that h is a partial homomorphism. A 
loserelationship between this game and bounded treewidth has been identi�ed [2℄.Theorem 12. [2℄ Let A and B be relational stru
tures. For all k � 2, thefollowing are equivalent.



{ There is a winning strategy for the Dupli
ator in the existential k-pebblegame on A;B.{ For all relational stru
tures T of treewidth < k, if there is a homomorphismfrom T to A, then there is a homomorphism from T to B.We have the following analog of Theorem 12.Theorem 13. Let A and B be relational stru
tures. For all k � 1, the followingare equivalent.{ There is a winning strategy for the Dupli
ator in the k-
over game on A;B.{ For all relational stru
tures T of 
overwidth � k, if there is a homomorphismfrom T to A, then there is a homomorphism from T to B.Proof. ()) Let H be a winning strategy for the Dupli
ator in the k-
overgame on A and B, let T be any stru
ture of 
overwidth � k, let f be anyhomomorphism from T to A, let G = (T; F ) be a s
heme for T of weight � k,and let v1; : : : ; vn be a perfe
t elimination ordering of G.We shall 
onstru
t a sequen
e of partial mappings g0; : : : ; gn from T to Bsu
h that for ea
h i:1. dom(gi) = fv1; : : : ; vig, and2. for every 
lique L � fv1; : : : ; vig in G, there exists a proje
tive homomor-phism h 2 H with domain f(L) in the winning strategy of the Dupli
ator,su
h that for every v 2 L, h(f(v)) = gi(v).We de�ne g0 to be the partial fun
tion with empty domain. For every i � 0,the partial mapping gi+1 is obtained by extending gi in the following way. Asv1; : : : ; vn is a perfe
t elimination ordering, the setL = fvi+1g [ fvj : j < i+ 1; (vj ; vi+1) 2 Fgis a 
lique of G. De�ne L0 as Lnfvi+1g. By the indu
tion hypothesis, there existsh 2 H su
h that for every v 2 L0, h(f(v)) = gi(v). Let us 
onsider two 
ases.If f(vi+1) = f(vj) for some vj 2 L0 then we set gi+1(vi+1) to be gi(vj). Notethat in this 
ase property (2) is satis�ed, as every 
lique in G 
ontaining vi+1 is
ontained in L and h serves as a 
erti�
ate. (For any 
lique not 
ontaining vi+1,we use the indu
tion hypothesis.)Otherwise, that is, if f(vi+1) 6= f(vj) for all vj 2 L0, we do the following.First, sin
e the weight of L is bounded above by k and f de�nes an homomor-phism from T to A then the weight of f(L) is also bounded by k. Observe thatf(L) = dom(h) [ ff(vi+1)g. By the forth property of winning strategy thereexists an extension h0 2 H of h that is de�ned over vi+1. We set gi+1(vi+1) tobe h0(f(vi+1)). Note that h0 
erti�es that property (2) is satis�ed for very 
lique
ontaining vi+1; again, any 
lique not 
ontaining vi+1 is 
overed by the indu
tionhypothesis.Finally, let us prove that gn indeed de�nes an homomorphism from T to B.Let R be any relation symbol and let (t1; : : : ; tl) be any relation in RT. We want



to show that (gn(t1); : : : ; gn(tl)) belongs to RB. Sin
e G is an s
heme for T,ft1; : : : ; tlg 
onstitutes a 
lique of G. By property (2) there exists h 2 H su
hthat h(f(ti)) = g(ti) for all i. Observing that as f is an homomorphism fromT to A, we 
an have that (f(t1); : : : ; f(tl)) belongs to RA. Finally, as h is aproje
tive homomorphism from A to B, the tuple (h(f(t1)); : : : ; h(f(tl))) mustbe in B.(() We shall 
onstru
t a winning strategy H for the Dupli
ator. We needa few de�nitons. Fix a sequen
e a1; : : : ; am of elements of A. A valid tuple fora1; : : : ; am is any tuple (T; G; v1; : : : ; vm; f) where T is a relational stru
ture,G is an s
heme of weight k for T, fv1; : : : ; vmg is a 
lique of G, and f is anhomomorphism from T; v1; : : : ; vm to A; a1; : : : ; am. (By a homomorphism fromT; v1; : : : ; vm to A; a1; : : : ; am, we mean a homomorphism from T to A thatmaps vi to ai for all i.) By S(T; G; v1; : : : ; vm; f) we denote the set of all map-pings h with domain fa1; : : : ; amg su
h that there is an homomorphism fromT; v1; : : : ; vm to B; h(a1); : : : ; h(am). We are now in a situation to de�ne H . H
ontains for every subset a1; : : : ; am of weight at most k, every partial mappingh that is 
ontained in all S(T; G; v1; : : : ; vm; f) where (T; G; v1; : : : ; vm; f) is avalid tuple for a1; : : : ; am.Let us show that H is indeed a winning strategy. First, observe that His nonempty, as it 
ontains the partial fun
tion with empty domain. Se
ond,let us show that H 
ontains only proje
tive homomorphisms. Indeed, let hbe any mapping in H with domain a1; : : : ; am, let R be any relation symboland let (
1; : : : ; 
l) be any tuple in RA. Let us de�ne T to be the substru
-ture (not ne
essarily indu
ed) of A with universe fa1; : : : ; ak; 
1; : : : ; 
lg 
on-taining only the tuple (
1; : : : ; 
l) in RT. It is easy to verify that the graphG = (fa1; : : : ; ak; 
1; : : : ; 
lg; F ) where F = f(ai; aj) : i 6= jg [ f(
i; 
j) : i 6= jgis an s
heme of T of weight � k. Consequently, (T; G; a1; : : : ; am; id) is a validtuple for a1; : : : ; am and therefore there exists an homomorphism g from T toB, and hen
e satisfying (g(
1); : : : ; g(
l)) 2 RB, su
h that g(ai) = h(ai) for alli = 1; : : : k.To show that H is 
losed under subfun
tions is rather easy. Indeed, let h0 beany mapping in H with domain a1 : : : ; am. We shall see that the restri
tion h ofh0 to fa1; : : : ; am�1g is also in H . Let (T; G; v1; : : : ; vm�1; f) be any valid tuplefor a1; : : : ; ak�1. We 
onstru
t a valid tuple (T0; G0; v1; : : : ; vm; f 0) for a1; : : : ; amin the following way: vm is a new (not in the universe of T) element, T0 is thestru
ture obtained from T by adding vm to the universe of T and keeping thesame relations, f 0 is the extension of f in whi
h vm is map to am, and G0 is thes
heme of T obtained by adding to G an edge (vj ; vm) for every j = 1; : : : ;m�1.Sin
e (T0; G0; v1; : : : ; vm; f 0) is a valid tuple for a1; : : : ; am and h0 2 H , thereexists an homomorphism g0 from T0; v1; : : : ; vm to B; h0(a1); : : : ; h0(am). Observethen that the restri
tion g of g0 to fa1; : : : ; am�1g de�nes then an homomorphismfrom T; v1; : : : ; vm�1 to B; h(a1); : : : ; h(m1).Finally, we shall show that H has the forth property. The proof relies inthe following easy properties of the valid tuples. Let a1; : : : ; am be elements ofA and let (T1; G1; v1; : : : ; vm; f1) and let (T2; G2; v1; : : : ; vm; f2) be valid tuples



for a1; : : : ; am su
h that T1 \ T2 = fv1; : : : ; vmg, let T be T1 [ T2 (that is, thestru
ture T whose universe is the union of the universes of T1 and T2, and inwhi
h RT = RT1 [ RT2 for all relation symbols R), G = G1 [ G2 and let fbe the mapping from the universe T of T to B that sets a to f1(a) if a 2 T1and to f2(a) if a 2 T2 (observe that f1 and f2 
oin
ide over fv1; : : : ; vmg). Then(T; G; v1; : : : ; vm; f) is a valid tuple for a1; : : : ; am. We 
all (T; G; v1; : : : ; vm; f),the union of (T1; G1; v1; : : : ; vm; f1) and (T2; G2; v1; : : : ; vm; f2). Furthermore,S(T; G; v1; : : : ; vm; f) � S(T1; G1; v1; : : : ; vm; f1) \ S(T2; G2; v1; : : : ; vm; f2) (infa
t, this is an equality, although we do not need the equality in our proof).Let h be any mapping in H , let fa1; : : : ; am�1g be its domain, and let am beany element in the universe of A su
h that fa1; : : : ; amg has weight � k. Let usassume, towards a 
ontradi
tion, that there is not extension h0 of h in H. Thenthere exists a �nite 
olle
tion f(Ti; Gi; v1; : : : ; vm; fi) : i 2 Ig of valid tuplesfor a1; : : : ; am su
h that the interse
tion Ti2I S(Ti; Gi; v1; : : : ; vm; fi) does not
ontain any extension of h. We 
an rename the elements of the universes so thatfor every di�erent i; j 2 I we have that Ti \ Tj = fv1; : : : ; vmg.Let (T; G; v1; : : : ; vm; f) be the union of (Ti; Gi; v1; : : : ; vm; fi), i 2 I , whi
his a valid tuple for a1; : : : ; am. Sin
eS(T; G; v1; : : : ; vm; f) �\i2I S(Ti; Gi; v1; : : : ; vm; fi)we 
an 
on
lude that S(T; G; v1; : : : ; vm; f) does not 
ontain any extension of h.To �nish the proof, it is only ne
essary to observe that (T; G; v1; : : : ; vm�1; f) isa valid tuple for a1; : : : ; am�1 and sin
e S(T; G; v1; : : : ; vm; f) does not 
ontainany extension of h, S(T; G; v1; : : : ; vm�1; f) 
annot 
ontain h, in 
ontradi
tionwith h 2 H . utTheorem 13 
an be easily applied to show that in an instan
e A;B of theCSP, if the left-hand side stru
ture has 
overwidth bounded by k, then de
idingif there is a homomorphism from A to B is equivalent to de
iding the existen
eof a Dupli
ator winning strategy in the existential k-
over game.Theorem 14. Let A be a relational stru
ture having 
overwidth � k, and let Bbe an arbitrary relational stru
ture. There is a winning strategy for the Dupli
atorin the k-
over game on A;B if and only if there is a homomorphism from A toB. We will use this theorem in the next se
tion to develop tra
tability results.Although we use Theorem 13 to derive this theorem, we would like to emphasizethat the full power of Theorem 13 is not needed to derive it, as pointed out inthe proof.Proof. If there is a homomorphism from A to B, the Dupli
ator 
an win byalways setting pebbles a

ording the homomorphism. The other dire
tion is im-mediate from Theorem 13 (note that we only need the forward impli
ation andT = A). ut



4 The Algorithmi
 ViewpointThe previous se
tion introdu
ed the existential k-
over game. We showed thatde
iding a CSP instan
e of bounded 
overwidth is equivalent to de
iding if theDupli
ator has a winning strategy in the existential k-
over game. In this se
tion,we show that the latter property{the existen
e of a Dupli
ator winning strategy{
an be de
ided algorithmi
ally in polynomial time. To this end, it will be helpfulto introdu
e the notion of a 
ompa
t winning strategy.De�nition 15. A 
ompa
t winning strategy for the Dupli
ator in the existentialk-
over game on relational stru
tures A;B is a non-empty set H of proje
tivehomomorphisms (from A to B) having the following properties.1. For all h 2 H, dom(h) is a k-union (over A).2. For every h 2 H and for every k-union U (over A), there exists h0 2 H withdom(h0) = U su
h that for every v 2 dom(h) \ dom(h0), h(v) = h0(v).Proposition 16. In the existential k-
over game on a pair of relational stru
-tures A;B, the Dupli
ator has a winning strategy if and only if the Dupli
atorhas a 
ompa
t winning strategy.Proof. Suppose that the Dupli
ator has a winning strategy H . Let C be the set
ontaining all fun
tions h 2 H su
h that dom(h) is a k-union. We 
laim that Cis a 
ompa
t winning strategy. Clearly C satis�es the �rst property of a 
ompa
twinning strategy, so we show that it satis�es the se
ond property. Suppose h 2 Cand let U be a k-union. By the subfun
tion property of a winning strategy, therestri
tion r of h to dom(h) \ U is in H . By repeated appli
ation of the forthproperty, there is an extension e of r that is in H and has domain U , whi
hserves as the desired h0.Now suppose that the Dupli
ator has a 
ompa
t winning strategy C. Let Hbe the 
losure of C under subfun
tions. We 
laim that H is a winning strategy.It suÆ
es to show that H has the forth property. Let h 2 H and suppose thata is an A-element where dom(h) [ fag has weight � k. Let U be a k-unionsu
h that dom(h) [ fag � U . By de�nition of H , there is a fun
tion e 2 Cextending h. Apply the se
ond property of a 
ompa
t winning strategy to e andU to obtain an e0 2 C with domain U su
h that for every v 2 dom(e)\ dom(e0),e(v) = e0(v). Noti
e that dom(h) � dom(e)\ dom(e0). Thus, the restri
tion of e0to dom(h) [ fag is in H and extends h. utWe have just shown that de
iding if there is a winning strategy, in an instan
eof the existential k-
over game, is equivalent to de
iding if there is a 
ompa
twinning strategy. We now use this equivalen
e to give a polynomial-time algo-rithm for de
iding if there is a winning strategy.Theorem 17. For all k � 1, there exists a polynomial-time algorithm that,given a pair of relational stru
tures A;B, de
ides whether or not there is awinning strategy for the Dupli
ator in the existential k-
over game on A;B.



Proof. By Proposition 16, it suÆ
es to give a polynomial-time algorithm thatde
ides if there is a 
ompa
t winning strategy. It is straightforward to developsu
h an algorithm based on the de�nition of 
ompa
t winning strategy. Let H bethe set of all fun
tions h su
h that dom(h) is a k-union (over A) and su
h thath is a proje
tive homomorphism from A to B. Iteratively perform the followinguntil no 
hanges 
an be made to H : for every fun
tion h 2 H and every k-union U , 
he
k to see if there is h0 2 H su
h that the se
ond property (of
ompa
t winning strategy) is satis�ed; if not, remove h from H . Throughout thealgorithm, we have maintained the invariant that any 
ompa
t winning strategymust be a subset of H . Hen
e, if when the algorithm terminates H is empty,then there is no 
ompa
t winning strategy. And if H is non-empty when thealgorithm terminates, H is 
learly a 
ompa
t winning strategy.The number of k-unions (over A) is polynomial in the number of tuples inA. Also, for ea
h k-union U , the number of proje
tive homomorphisms h withdom(h) = U from A to B is polynomial in the number of tuples in B. Hen
e,the size of the original set H is polynomial in the original instan
e. Sin
e in ea
hiteration an element is removed from H , the algorithm terminates in polynomialtime. utThe algorithm we have just des
ribed in the proof of Theorem 17 may appearto be quite spe
ialized. However, we now show that essentially that algorithm
an be viewed as a general inferen
e pro
edure for CSP instan
es in the vein ofexisting 
onsisten
y algorithms. In parti
ular, we give a general algorithm 
alledproje
tive k-
onsisten
y for CSP instan
es that, given a CSP instan
e, performsinferen
e and outputs a more 
onstrained CSP instan
e having exa
tly the samesatisfying assignments as the original. On a CSP instan
e A;B, the algorithmmight dete
t an in
onsisten
y, by whi
h we mean that it dete
ts that there isno homomorphism from A to B. If it does not, then it is guaranteed that thereis a winning strategy for the Dupli
ator.De�nition 18. The proje
tive k-
onsisten
y algorithm takes as input a CSPinstan
e A;B, and 
onsists of the following steps.{ Create a new CSP instan
e A0;B0 as follows. Let the universe of A0 be theuniverse of A, and the universe of B0 be the universe of B. Let the signatureof A0 and B0 
ontain a relation symbol RU for ea
h k-union U over A. Forea
h k-union U , the relation RA0U is de�ned as (u1; : : : ; um), where u1; : : : ; umare exa
tly the elements of U in some order; and RB0U is de�ned as the set ofall tuples (b1; : : : ; bm) su
h that the mapping taking ui ! bi is a proje
tivehomomorphism from A to B.{ Iteratively perform the following until no 
hanges 
an be made: remove anyB0-tuple (b1; : : : ; bm) that is not a proje
tive homomorphism.We say that a B0-tuple (b1; : : : ; bm) 2 RB0U is a proje
tive homomorphism if,letting (u1; : : : ; um) denote the unique element of RA0U , the fun
tion takingui ! bi is a proje
tive homomorphism from A0 to B0.{ Report an in
onsisten
y if there are no B0-tuples remaining.



Theorem 19. For ea
h k � 1, the proje
tive k-
onsisten
y algorithm, given asinput a CSP instan
e A;B:{ runs in polynomial time,{ outputs a CSP instan
e A0;B0 that has the same satisfying assignments asA;B, and{ reports an in
onsisten
y if and only if the Dupli
ator does not have a winningstrategy in the existential k-
over game on A;B.Proof. The �rst property is straightforward to verify. For the se
ond property,observe that, ea
h time a tuple is removed from B0, the set of satisfying assign-ments is preserved. For the third property, observe that, asso
iating B0-tuplesto fun
tions as in De�nition 18, the behavior of the proje
tive k-
onsisten
y al-gorithm is identi
al to the behavior of the algorithm in the proof of Proposition16. utBy using the results presented in this se
tion thus far, it is easy to show thatCSP instan
es of bounded 
overwidth are tra
table. De�ne the 
overwidth of aCSP instan
e A;B to be the 
overwidth of A. Let CSP[
overwidth � k℄ be therestri
tion of the CSP to all instan
es of 
overwidth less than or equal to k.Theorem 20. For all k � 1, the problem CSP[
overwidth � k℄ is de
idable inpolynomial time by the proje
tive k-
onsisten
y algorithm. In parti
ular, on aninstan
e of CSP[
overwidth � k℄, the proje
tive k-
onsisten
y algorithm reportsan in
onsisten
y if and only if the instan
e is not satis�able.Proof. Immediate from Theorem 14 and the third property of Theorem 19. utNote that we 
an derive the tra
tability of CSP instan
es having boundedhypertree width immediately from Theorem 20.Now, given a CSP instan
e that is promised to have bounded 
overwidth,we 
an use proje
tive k-
onsisten
y to de
ide the instan
e (Theorem 20). Thistra
tability result 
an in fa
t be pushed further: we 
an show that there is ageneri
 polynomial-time that, given an arbitrary CSP instan
e, is guaranteedto de
ide instan
es of bounded 
overwidth. Moreover, whenever an instan
e isde
ided to be a \yes" instan
e by the algorithm, a satisfying assignment is 
on-stru
ted.Theorem 21. For all k � 1, there exists a polynomial-time algorithm that,given any CSP instan
e A;B,1. outputs a satisfying assignment for A;B,2. 
orre
tly reports that A;B is unsatis�able, or3. reports \I don't know".The algorithm always performs (1) or (2) on an instan
e of CSP[
overwidth � k℄.



Proof. The algorithm is a simple extension of the proje
tive k-
onsisten
y algo-rithm. First, the algorithm applies the proje
tive k-
onsisten
y algorithm; if anin
onsisten
y is dete
ted, then the algorithm terminates and reports that A;Bis unsatis�able. Otherwise, it initializes V to be the universe A of A, and doesthe following:{ If V is empty, terminate and identify the mapping taking ea
h a 2 A to theB-element in RBa , as a satisfying assignment.{ Pi
k any variable v 2 V .{ Expand the signature of A;B to in
lude another symbol Rv with RAv =f(v)g.{ Try to �nd a B-element b su
h that when RBv is set to f(b)g, no in
onsis-ten
y is dete
ted by the proje
tive k-
onsisten
y algorithm on the expandedinstan
e.� If there is no su
h B-element, terminate and report \I don't know".� Otherwise, set RBv to su
h a B-element, remove v from V , and repeatfrom the �rst step using the expanded instan
e.If the pro
edure terminates from V being empty in the �rst step, the mappingthat is output is straightforwardly veri�ed to be a satisfying assignment.Suppose that the algorithm is given an instan
e of CSP[
overwidth � k℄. Ifit is unsatis�able, then the algorithm reports that the instan
e is unsatis�ableby Theorem 20. So suppose that the instan
e is satis�able. We 
laim that ea
hiteration preserves the satis�ability of the instan
e. Let A;B denote the CSPinstan
e at the beginning of an arbitrary iteration of the algorithm. If no in-
onsisten
y is dete
ted after adding a new relation symbol Rv with RAv = f(v)gand RBv = f(b)g, there must be a satisfying assignment mapping v to b by The-orem 20. Note that adding unary relation symbols to a CSP instan
e does not
hange the 
overwidth of the instan
e. utWe now expand the tra
tability result of Theorem 20, and show the tra
tabil-ity of CSP instan
es that are homomorphi
ally equivalent to instan
es of bounded
overwidth. Formally, let us say that A and A0 are homomorphi
ally equivalentif there is a homomorphism from A to A0 as well as a homomorphism fromA0 to A. Let CSP[H(
overwidth � k)℄ denote the restri
tion of the CSP to in-stan
es A;B where A is homomorphi
ally equivalent to a relational stru
tureof 
overwidth less than or equal to k.Theorem 22. For all k � 1, the problem CSP[H(
overwidth � k)℄ is de
idablein polynomial time by the proje
tive k-
onsisten
y algorithm. In parti
ular, onan instan
e of CSP[H(
overwidth � k)℄, the proje
tive k-
onsisten
y algorithmreports an in
onsisten
y if and only if the instan
e is not satis�able.Referen
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