
Beyond Hypertree Width: DeompositionMethods Without DeompositionsHubie Chen and V��tor DalmauDepartament de TenologiaUniversitat Pompeu FabraBarelona, Spainfhubie.hen,vitor.dalmaug�upf.eduAbstrat. The general intratability of the onstraint satisfation prob-lem has motivated the study of restritions on this problem that permitpolynomial-time solvability. One major line of work has foused on stru-tural restritions, whih arise from restriting the interation among on-straint sopes. In this paper, we engage in a mathematial investigation ofgeneralized hypertree width, a strutural measure that has up to reentlyeluded study. We obtain a number of omputational results, inluding asimple proof of the tratability of CSP instanes having bounded gener-alized hypertree width.1 IntrodutionThe onstraint satisfation problem (CSP) is widely aknowledged as a onve-nient framework for modelling searh problems. Instanes of the CSP arise ina variety of domains, inluding arti�ial intelligene, database theory, algebra,propositional logi, and graph theory. An instane of the CSP onsists of a setof onstraints on a set of variables; the question is to determine if there is anassignment to the variables satisfying all of the onstraints. Alternatively, theCSP an be ast as the fundamental algebrai problem of deiding, given tworelational strutures A and B, whether or not there is a homomorphism fromA to B. In this formalization, eah relation of A ontains the tuples of variablesthat are onstrained together, whih are often alled the onstraint sopes, andthe orresponding relation of B ontains the allowable tuples of values that thevariable tuples may take.It is well-known that the CSP, in its general formulation, is NP-omplete; thisgeneral intratability has motivated a large and rih body of researh aimed atidentifying and understanding restrited ases of the CSP that are polynomial-time tratable. The restritions that have been studied an, by and large, beplaed into one of two ategories, whih{due to the homomorphism formulationof the CSP{have beome known as left-hand side restritions and right-handside restritions. From a high level view, left-hand side restritions, also knownas strutural restritions, arise from prespeifying a lass of relational struturesA from whih the left-hand side struture A must ome, while right-hand side



restritions arise from prespeifying a lass of relational strutures B from whihthe right-hand side struture B must ome. As this paper is onerned prini-pally with strutural restritions, we will not say more about right-hand siderestritions than that their systemati study has origins in a lassi theorem ofShaefer [21℄, and that reent years have seen some exiting results on them (forinstane [4, 5℄).The strutural restritions studied in the literature an all be phrased asrestritions on the hypergraph H(A) naturally arising from the left-hand siderelational struture A, namely, the hypergraph H(A) with an edge fa1; : : : ; akgfor eah tuple (a1; : : : ; ak) of A. Let us briey review some of the relevant resultsthat have been obtained on strutural tratability. The tratability of left-handside relational strutures having bounded treewidth was shown in the onstraintsatisfation literature by Dehter and Pearl [9℄ and Freuder [10℄.1 Later, Dalmauet al. [8℄ building on ideas of Kolaitis and Vardi [19, 20℄ gave a onsisteny-stylealgorithm for deiding the bounded treewidth CSP. For our present purposes, itis worth highlighting that although the notion of bounded treewidth is de�ned interms of tree deompositions, whih an be omputed eÆiently (under boundedtreewidth), the algorithm given by Dalmau et al. [8℄ does not ompute anyform of tree deomposition. Dalmau et al. also identi�ed a natural expansionof strutures having bounded treewidth that is tratable{namely, the strutureshomomorphially equivalent to those having bounded treewidth. The optimalityof this latter result, in the ase of bounded arity, was demonstrated by Grohe[15℄, who proved{roughly speaking{that if the tuples of A are of bounded arityand A gives rise to a tratable ase of the CSP, then it must fall into the naturalexpansion identi�ed by Dalmau et al. [8℄.A number of papers, inluding [17, 16, 13, 14, 11, 7℄, have studied restritionsthat an be applied to relational strutures of unbounded arity. (Note that anylass of relational strutures of unbounded arity annot have bounded treewidth.)In a survey [13℄, Gottlob et al. show that the restrition of bounded hypertreewidth [11℄ is the most powerful strutural restrition for the CSP in that everyother strutural restrition studied in the literature is subsumed by it. Sine thiswork [11, 13℄, whether or not there is a more general strutural restrition thanbounded hypertree width that ensures tratability, has been a tantalizing openquestion.In this paper, we study generalized hypertree width, a strutural measure forhypergraphs de�ned in [12℄ that is a natural variation of hypertree width; weall this measure overwidth. Coverwidth is trivially upper-bounded by hyper-tree width, and so any lass of hypergraphs having bounded hypertree widthhas bounded overwidth. We de�ne a ombinatorial pebble game that an beplayed on any CSP instane, and demonstrate that this game is intimately linkedto overwidth (Theorem 13). Overall, the investigation we perform takes signi�-ant inspiration from methods, onepts, and ideas developed by Kolaitis, Vardi,1 One way to de�ne what we mean by treewidth here is the treewidth of the graphobtained from H(A) by drawing an edge between any two verties that are in thesame hyperedge.



and oauthors [19, 20, 8, 2℄ that link together CSP onsisteny algorithms, theexistential k-pebble games of Kolaitis and Vardi [18℄, and bounded treewidth.Using the pebble game perspetive, we are able to derive a number of om-putational results. One is that the strutural restrition of bounded overwidthimplies polynomial-time tratability; this result generalizes the tratability ofbounded hypertree width. It has been independently shown by Adler et al. thatthe hypertree width of a hypergraph is linearly related to the overwidth [1℄.This result an be used in onjuntion with the tratability of bounded hyper-tree width to derive the tratability of bounded overwidth. However, we believeour proof of bounded overwidth tratability to be simpler than the known proofof bounded hypertree width tratability [11℄, even though our proof is of a moregeneral result.To desribe our results in greater detail, it will be useful to identify twoomputational problems that every form of strutural restrition gives rise to:a promise problem, and a no-promise problem. In both problems, the goal isto identify all CSP instanes obeying the strutural restrition as either sat-is�able or unsatis�able. In the promise problem, the input is a CSP instanethat is guaranteed to obey the strutural restrition, whereas in the no-promiseproblem, the input is an arbitrary CSP instane, and an algorithm may, on aninstane not obeying the strutural restrition, deline to identify the instaneas satis�able or unsatis�able. Of ourse, CSPs arising in pratie do not omewith guarantees that they obey strutural restritions, and hene an algorithmsolving the no-promise problem is learly the more desirable. Notie that, forany strutural restrition having a polynomial-time solvable promise problem, ifit is possible to solve the identi�ation problem of deiding whether or not an in-stane obeys the restrition, in polynomial time, then the no-promise problem isalso polynomial-time solvable. For bounded hypertree width, both the identi�a-tion problem and the no-promise problem are polynomial-time solvable. In fat,the survey by Gottlob et al. [13℄ only onsiders strutural restritions for whihthe identi�ation problem is polynomial-time solvable, and thus only onsid-ers strutural restritions for whih the no-promise problem is polynomial-timesolvable.One of our main theorems (Theorem 20) is that the promise problem forbounded overwidth is polynomial-time tratable, via a general onsisteny-likealgorithm. In partiular, we show that, on an instane having bounded ov-erwidth, our algorithm detets an inonsisteny if and only if the instane isunsatis�able. Our algorithm, like the onsisteny algorithm of Dalmau et al.[8℄ for bounded treewidth, an be applied to any CSP instane to obtain amore onstrained instane; our algorithm does not need nor ompute any formof deomposition, even though the notion of overwidth is de�ned in terms ofdeompositions!We then give a simple algorithm for the no-promise problem for boundedoverwidth (Theorem 21) that employs the onsisteny-like algorithm for thepromise problem. The algorithm's behavior is reminisent of self-reduibility ar-guments in omputational omplexity theory, and on an instane of bounded



overwidth, the algorithm is guaranteed to either report a satisfying assign-ment or that the instane is unsatis�able. We believe that this result suggestsan expansion of the view of strutural tratability advaned in the Gottlob etal. survey [13℄, sine we are able to give a polynomial-time algorithm for thebounded overwidth no-promise problem without expliitly showing that thereis a polynomial-time algorithm for the bounded overwidth identi�ation prob-lem.Returning to the promise problem, we then show that the tratability ofstrutures with bounded overwidth an be generalized to yield the tratabilityof strutures homomorphially equivalent to those having bounded overwidth(Theorem 22). This expansion of bounded overwidth tratability is analogousto the expansion of bounded treewidth tratability arried out in [8℄.We emphasize that none of the algorithms in this paper need or ompute anytype of deomposition, even though all of the strutural restritions that theyaddress are de�ned in terms of deompositions.In the full version of this paper, we use the developed theory as well as ideasin [6℄ to de�ne a tratable lass of quanti�ed onstraint satisfation problemsbased on overwidth.De�nitions. In this paper, we formalize the CSP as a relational homomorphismproblem. We review the relevant de�nitions that will be used. A relational sig-nature is a �nite set of relation symbols, eah of whih has an assoiated arity. Arelational struture A (over signature �) onsists of a universe A and a relationRA over A for eah relation symbol R (of �), suh that the arity of RA mathesthe arity assoiated to R. We refer to the elements of the universe of a relationalstruture A as A-elements. When A is a relational struture over � and R isany relation symbol of �, the elements of RA are alled A-tuples. Throughoutthis paper, we assume that all relational strutures under disussion have a �niteuniverse. We use boldfae letters A;B; : : : to denote relational strutures.A homomorphism from a relational struture A to another relational stru-ture B is a mapping h from the universe of A to the universe of B suh thatfor every relation symbol R and every tuple (a1; : : : ; ak) 2 RA, it holds that(h(a1); : : : ; h(ak)) 2 RB. (Here, k denotes the arity of R.) The onstraint sat-isfation problem (CSP) is to deide, given an ordered pair A;B of relationalstrutures, whether or not there is a homomorphism from the �rst struture, A,to the seond, B. A homomorphism from A to B in an instane A;B of the CSPis also alled a satisfying assignment, and when a satisfying assignment exists,we will say that the instane is satis�able.2 CoverwidthThis setion de�nes the strutural measure of hypergraph omplexity that we alloverwidth. As we have mentioned, overwidth is equal to generalized hypertreewidth, whih was de�ned in [12℄. We begin by de�ning the notion of hypergraph.



De�nition 1. A hypergraph is an ordered pair (V;E) onsisting of a vertexset V and a hyperedge set E. The elements of E are alled hyperedges; eahhyperedge is a subset of V .Basi to the measure of overwidth is the notion of a tree deomposition.De�nition 2. A tree deomposition of a hypergraph (V;E) is a pair(T = (I; F ); fXigi2I) where{ T = (I; F ) is a tree, and{ eah Xi (with i 2 I) is alled a bag and is a subset of V ,suh that the following onditions hold:1. V = [i2IXi.2. For all hyperedges e 2 E, there exists i 2 I with e � Xi.3. For all v 2 V , the verties Tv = fi 2 I : v 2 Xig form a onneted subtreeof T .Tree deompositions are generally applied to graphs, and in the ontext ofgraphs, the measure of treewidth has been heavily studied. The treewidth of agraph G is the minimum of the quantity maxi2I jXij � 1 over all tree deom-positions of G. In other words, a tree deomposition is measured based on itslargest bag, and the treewidth is then de�ned based on the \lowest ost" treedeomposition.The measure of overwidth is also based on the notion of tree deomposition.In overwidth, a tree deomposition is also measured based on its \largest" bag;however, the measure applied to a bag is the number of hyperedges needed toover it, alled here the weight.De�nition 3. A k-union over a hypergraph H (with k � 0) is a union e1[ : : :[ek of k edges e1; : : : ; ek of H.The empty set is onsidered to be the unique 0-union over a hypergraph.De�nition 4. Let H = (V;E) be a hypergraph. The weight of a subset X � Vis the smallest integer k � 0 suh that X \ ([e2Ee) is ontained in a k-unionover H.Wemeasure a tree deomposition aording to its heaviest bag, and de�ne theoverwidth of a hypergraph aording to the lightest-weight tree deomposition.De�nition 5. The weight of a tree deomposition of H is the maximum weightover all of its bags.De�nition 6. The overwidth of a hypergraph H is the minimum weight overall tree deompositions of H.



It is straightforward to verify that the overwidth of a hypergraph is equalto the generalized hypertree width of a hypergraph [12℄. Sine the generalizedhypertree width of a hypergraph is always less than or equal to its hypertreewidth, overwidth is at least as strong as hypertree width in that results onbounded overwidth imply results on bounded hypertree width.There is another formulation of tree deompositions that is often wieldy, seefor instane [3℄.De�nition 7. A sheme of a hypergraph H = (V;E) is a graph (V; F ) suh that{ (V; F ) has a perfet elimination ordering, that is, an ordering v1; : : : ; vn ofits verties suh that for all i < j < k, if (vi; vk) and (vj ; vk) are edges in F ,then (vi; vj) is also an edge in F , and{ the verties of every hyperedge of E indue a lique in (V; F ).It is well known that the property of having a perfet elimination orderingis equivalent to being hordal. The following proposition is also well-known.Proposition 8. Let H be a hypergraph. For every tree deomposition of H,there exists a sheme suh that eah lique of the sheme is ontained in a bagof the tree deomposition. Likewise, for every sheme of H, there exists a treedeomposition suh that eah bag of the tree deomposition is ontained in alique of the sheme.Let us de�ne the weight of a sheme (of a hypergraph H) to be the maximumweight (with respet to H) over all of its liques. The following proposition isimmediate from Proposition 8 and the de�nition of overwidth, and an be takenas an alternative de�nition of overwidth.Proposition 9. The overwidth of a hypergraph H is equal to the minimumweight over all shemes of H.We now de�ne the hypergraph assoiated to a relational struture. Roughlyspeaking, this hypergraph is obtained by \forgetting" the ordering of the A-tuples.De�nition 10. Let A be a relational struture. The hypergraph assoiated to Ais denoted by H(A); the vertex set of H(A) is the universe of A, and for eahA-tuple (a1; : : : ; ak), there is an edge fa1; : : : ; akg in H(A).We will often impliitly pass from a relational struture to its assoiatedhypergraph, that is, we simply write A in plae of H(A). In partiular, we willspeak of k-unions over a relational struture A.3 Existential k-Cover GamesWe now de�ne a lass of pebble games for studying the measure of overwidth.These games are parameterized by an integer k � 1, and are alled existential



k-over games. They are based on the existential k-pebble games de�ned byKolaitis and Vardi and used to study onstraint satisfation [18, 20℄. The pebblegame that we use is de�ned as follows. The game is played between two players,the Spoiler and the Dupliator, on a pair of relational strutures A;B that arede�ned over the same signature. Game play proeeds in rounds, and in eahround one of the following ours:1. The Spoiler plaes a pebble on an A-element a. In this ase, the Dupliatormust respond by plaing a orresponding pebble, denoted by h(a), on aB-element.2. The Spoiler removes a pebble from an A-element a. In this ase, the orre-sponding pebble h(a) on B is removed.When game play begins, there are no pebbles on any A-elements, nor on anyB-elements, and so the �rst round is of the �rst type. Both of the players havean unlimited supply of pebbles. However, when plaing a new pebble, the Spoilermust obey the restrition that the weight of the elements on whih the Spoilerhas pebbles must be bounded by k. (Here, by \weight" we are using De�nition 4.)We assume that the Spoiler never plaes two pebbles on the same A-element, sothat h is a partial funtion (as opposed to a relation). The Dupliator wins thegame if he an always ensure that h is a projetive homomorphism from A toB; otherwise, the Spoiler wins. A projetive homomorphism (from A to B) is apartial funtion h from the universe of A to the universe of B suh that for anyrelation symbol R and any tuple (a1; : : : ; ak) 2 RA of A, there exists a tuple(b1; : : : ; bk) 2 RB where h(ai) = bi for all ai on whih h is de�ned.We now formalize the notion of a winning strategy for the Dupliator in theexistential k-over game. Note that when h is a partial funtion, we use dom(h)to denote the domain of h.De�nition 11. A winning strategy for the Dupliator in the existential k-overgame on relational strutures A;B is a non-empty set H of projetive homo-morphisms (from A to B) having the following two properties.1. (the \forth" property) For every h 2 H and A-element a =2 dom(h), ifdom(h) [ fag has weight � k, then there exists a projetive homomorphismh0 2 H extending h with dom(h0) = dom(h) [ fag.2. The set H is losed under subfuntions, that is, if h 2 H and h extends h0,then h0 2 H.As we mentioned, the de�nition of this game is based on the existential k-pebble game introdued by Kolaitis and Vardi [18, 20℄. In the existential k-pebblegame, the number of pebbles that the Spoiler may use is bounded by k, and theDupliator need only must ensure that h is a partial homomorphism. A loserelationship between this game and bounded treewidth has been identi�ed [2℄.Theorem 12. [2℄ Let A and B be relational strutures. For all k � 2, thefollowing are equivalent.



{ There is a winning strategy for the Dupliator in the existential k-pebblegame on A;B.{ For all relational strutures T of treewidth < k, if there is a homomorphismfrom T to A, then there is a homomorphism from T to B.We have the following analog of Theorem 12.Theorem 13. Let A and B be relational strutures. For all k � 1, the followingare equivalent.{ There is a winning strategy for the Dupliator in the k-over game on A;B.{ For all relational strutures T of overwidth � k, if there is a homomorphismfrom T to A, then there is a homomorphism from T to B.Proof. ()) Let H be a winning strategy for the Dupliator in the k-overgame on A and B, let T be any struture of overwidth � k, let f be anyhomomorphism from T to A, let G = (T; F ) be a sheme for T of weight � k,and let v1; : : : ; vn be a perfet elimination ordering of G.We shall onstrut a sequene of partial mappings g0; : : : ; gn from T to Bsuh that for eah i:1. dom(gi) = fv1; : : : ; vig, and2. for every lique L � fv1; : : : ; vig in G, there exists a projetive homomor-phism h 2 H with domain f(L) in the winning strategy of the Dupliator,suh that for every v 2 L, h(f(v)) = gi(v).We de�ne g0 to be the partial funtion with empty domain. For every i � 0,the partial mapping gi+1 is obtained by extending gi in the following way. Asv1; : : : ; vn is a perfet elimination ordering, the setL = fvi+1g [ fvj : j < i+ 1; (vj ; vi+1) 2 Fgis a lique of G. De�ne L0 as Lnfvi+1g. By the indution hypothesis, there existsh 2 H suh that for every v 2 L0, h(f(v)) = gi(v). Let us onsider two ases.If f(vi+1) = f(vj) for some vj 2 L0 then we set gi+1(vi+1) to be gi(vj). Notethat in this ase property (2) is satis�ed, as every lique in G ontaining vi+1 isontained in L and h serves as a erti�ate. (For any lique not ontaining vi+1,we use the indution hypothesis.)Otherwise, that is, if f(vi+1) 6= f(vj) for all vj 2 L0, we do the following.First, sine the weight of L is bounded above by k and f de�nes an homomor-phism from T to A then the weight of f(L) is also bounded by k. Observe thatf(L) = dom(h) [ ff(vi+1)g. By the forth property of winning strategy thereexists an extension h0 2 H of h that is de�ned over vi+1. We set gi+1(vi+1) tobe h0(f(vi+1)). Note that h0 erti�es that property (2) is satis�ed for very liqueontaining vi+1; again, any lique not ontaining vi+1 is overed by the indutionhypothesis.Finally, let us prove that gn indeed de�nes an homomorphism from T to B.Let R be any relation symbol and let (t1; : : : ; tl) be any relation in RT. We want



to show that (gn(t1); : : : ; gn(tl)) belongs to RB. Sine G is an sheme for T,ft1; : : : ; tlg onstitutes a lique of G. By property (2) there exists h 2 H suhthat h(f(ti)) = g(ti) for all i. Observing that as f is an homomorphism fromT to A, we an have that (f(t1); : : : ; f(tl)) belongs to RA. Finally, as h is aprojetive homomorphism from A to B, the tuple (h(f(t1)); : : : ; h(f(tl))) mustbe in B.(() We shall onstrut a winning strategy H for the Dupliator. We needa few de�nitons. Fix a sequene a1; : : : ; am of elements of A. A valid tuple fora1; : : : ; am is any tuple (T; G; v1; : : : ; vm; f) where T is a relational struture,G is an sheme of weight k for T, fv1; : : : ; vmg is a lique of G, and f is anhomomorphism from T; v1; : : : ; vm to A; a1; : : : ; am. (By a homomorphism fromT; v1; : : : ; vm to A; a1; : : : ; am, we mean a homomorphism from T to A thatmaps vi to ai for all i.) By S(T; G; v1; : : : ; vm; f) we denote the set of all map-pings h with domain fa1; : : : ; amg suh that there is an homomorphism fromT; v1; : : : ; vm to B; h(a1); : : : ; h(am). We are now in a situation to de�ne H . Hontains for every subset a1; : : : ; am of weight at most k, every partial mappingh that is ontained in all S(T; G; v1; : : : ; vm; f) where (T; G; v1; : : : ; vm; f) is avalid tuple for a1; : : : ; am.Let us show that H is indeed a winning strategy. First, observe that His nonempty, as it ontains the partial funtion with empty domain. Seond,let us show that H ontains only projetive homomorphisms. Indeed, let hbe any mapping in H with domain a1; : : : ; am, let R be any relation symboland let (1; : : : ; l) be any tuple in RA. Let us de�ne T to be the substru-ture (not neessarily indued) of A with universe fa1; : : : ; ak; 1; : : : ; lg on-taining only the tuple (1; : : : ; l) in RT. It is easy to verify that the graphG = (fa1; : : : ; ak; 1; : : : ; lg; F ) where F = f(ai; aj) : i 6= jg [ f(i; j) : i 6= jgis an sheme of T of weight � k. Consequently, (T; G; a1; : : : ; am; id) is a validtuple for a1; : : : ; am and therefore there exists an homomorphism g from T toB, and hene satisfying (g(1); : : : ; g(l)) 2 RB, suh that g(ai) = h(ai) for alli = 1; : : : k.To show that H is losed under subfuntions is rather easy. Indeed, let h0 beany mapping in H with domain a1 : : : ; am. We shall see that the restrition h ofh0 to fa1; : : : ; am�1g is also in H . Let (T; G; v1; : : : ; vm�1; f) be any valid tuplefor a1; : : : ; ak�1. We onstrut a valid tuple (T0; G0; v1; : : : ; vm; f 0) for a1; : : : ; amin the following way: vm is a new (not in the universe of T) element, T0 is thestruture obtained from T by adding vm to the universe of T and keeping thesame relations, f 0 is the extension of f in whih vm is map to am, and G0 is thesheme of T obtained by adding to G an edge (vj ; vm) for every j = 1; : : : ;m�1.Sine (T0; G0; v1; : : : ; vm; f 0) is a valid tuple for a1; : : : ; am and h0 2 H , thereexists an homomorphism g0 from T0; v1; : : : ; vm to B; h0(a1); : : : ; h0(am). Observethen that the restrition g of g0 to fa1; : : : ; am�1g de�nes then an homomorphismfrom T; v1; : : : ; vm�1 to B; h(a1); : : : ; h(m1).Finally, we shall show that H has the forth property. The proof relies inthe following easy properties of the valid tuples. Let a1; : : : ; am be elements ofA and let (T1; G1; v1; : : : ; vm; f1) and let (T2; G2; v1; : : : ; vm; f2) be valid tuples



for a1; : : : ; am suh that T1 \ T2 = fv1; : : : ; vmg, let T be T1 [ T2 (that is, thestruture T whose universe is the union of the universes of T1 and T2, and inwhih RT = RT1 [ RT2 for all relation symbols R), G = G1 [ G2 and let fbe the mapping from the universe T of T to B that sets a to f1(a) if a 2 T1and to f2(a) if a 2 T2 (observe that f1 and f2 oinide over fv1; : : : ; vmg). Then(T; G; v1; : : : ; vm; f) is a valid tuple for a1; : : : ; am. We all (T; G; v1; : : : ; vm; f),the union of (T1; G1; v1; : : : ; vm; f1) and (T2; G2; v1; : : : ; vm; f2). Furthermore,S(T; G; v1; : : : ; vm; f) � S(T1; G1; v1; : : : ; vm; f1) \ S(T2; G2; v1; : : : ; vm; f2) (infat, this is an equality, although we do not need the equality in our proof).Let h be any mapping in H , let fa1; : : : ; am�1g be its domain, and let am beany element in the universe of A suh that fa1; : : : ; amg has weight � k. Let usassume, towards a ontradition, that there is not extension h0 of h in H. Thenthere exists a �nite olletion f(Ti; Gi; v1; : : : ; vm; fi) : i 2 Ig of valid tuplesfor a1; : : : ; am suh that the intersetion Ti2I S(Ti; Gi; v1; : : : ; vm; fi) does notontain any extension of h. We an rename the elements of the universes so thatfor every di�erent i; j 2 I we have that Ti \ Tj = fv1; : : : ; vmg.Let (T; G; v1; : : : ; vm; f) be the union of (Ti; Gi; v1; : : : ; vm; fi), i 2 I , whihis a valid tuple for a1; : : : ; am. SineS(T; G; v1; : : : ; vm; f) �\i2I S(Ti; Gi; v1; : : : ; vm; fi)we an onlude that S(T; G; v1; : : : ; vm; f) does not ontain any extension of h.To �nish the proof, it is only neessary to observe that (T; G; v1; : : : ; vm�1; f) isa valid tuple for a1; : : : ; am�1 and sine S(T; G; v1; : : : ; vm; f) does not ontainany extension of h, S(T; G; v1; : : : ; vm�1; f) annot ontain h, in ontraditionwith h 2 H . utTheorem 13 an be easily applied to show that in an instane A;B of theCSP, if the left-hand side struture has overwidth bounded by k, then deidingif there is a homomorphism from A to B is equivalent to deiding the existeneof a Dupliator winning strategy in the existential k-over game.Theorem 14. Let A be a relational struture having overwidth � k, and let Bbe an arbitrary relational struture. There is a winning strategy for the Dupliatorin the k-over game on A;B if and only if there is a homomorphism from A toB. We will use this theorem in the next setion to develop tratability results.Although we use Theorem 13 to derive this theorem, we would like to emphasizethat the full power of Theorem 13 is not needed to derive it, as pointed out inthe proof.Proof. If there is a homomorphism from A to B, the Dupliator an win byalways setting pebbles aording the homomorphism. The other diretion is im-mediate from Theorem 13 (note that we only need the forward impliation andT = A). ut



4 The Algorithmi ViewpointThe previous setion introdued the existential k-over game. We showed thatdeiding a CSP instane of bounded overwidth is equivalent to deiding if theDupliator has a winning strategy in the existential k-over game. In this setion,we show that the latter property{the existene of a Dupliator winning strategy{an be deided algorithmially in polynomial time. To this end, it will be helpfulto introdue the notion of a ompat winning strategy.De�nition 15. A ompat winning strategy for the Dupliator in the existentialk-over game on relational strutures A;B is a non-empty set H of projetivehomomorphisms (from A to B) having the following properties.1. For all h 2 H, dom(h) is a k-union (over A).2. For every h 2 H and for every k-union U (over A), there exists h0 2 H withdom(h0) = U suh that for every v 2 dom(h) \ dom(h0), h(v) = h0(v).Proposition 16. In the existential k-over game on a pair of relational stru-tures A;B, the Dupliator has a winning strategy if and only if the Dupliatorhas a ompat winning strategy.Proof. Suppose that the Dupliator has a winning strategy H . Let C be the setontaining all funtions h 2 H suh that dom(h) is a k-union. We laim that Cis a ompat winning strategy. Clearly C satis�es the �rst property of a ompatwinning strategy, so we show that it satis�es the seond property. Suppose h 2 Cand let U be a k-union. By the subfuntion property of a winning strategy, therestrition r of h to dom(h) \ U is in H . By repeated appliation of the forthproperty, there is an extension e of r that is in H and has domain U , whihserves as the desired h0.Now suppose that the Dupliator has a ompat winning strategy C. Let Hbe the losure of C under subfuntions. We laim that H is a winning strategy.It suÆes to show that H has the forth property. Let h 2 H and suppose thata is an A-element where dom(h) [ fag has weight � k. Let U be a k-unionsuh that dom(h) [ fag � U . By de�nition of H , there is a funtion e 2 Cextending h. Apply the seond property of a ompat winning strategy to e andU to obtain an e0 2 C with domain U suh that for every v 2 dom(e)\ dom(e0),e(v) = e0(v). Notie that dom(h) � dom(e)\ dom(e0). Thus, the restrition of e0to dom(h) [ fag is in H and extends h. utWe have just shown that deiding if there is a winning strategy, in an instaneof the existential k-over game, is equivalent to deiding if there is a ompatwinning strategy. We now use this equivalene to give a polynomial-time algo-rithm for deiding if there is a winning strategy.Theorem 17. For all k � 1, there exists a polynomial-time algorithm that,given a pair of relational strutures A;B, deides whether or not there is awinning strategy for the Dupliator in the existential k-over game on A;B.



Proof. By Proposition 16, it suÆes to give a polynomial-time algorithm thatdeides if there is a ompat winning strategy. It is straightforward to developsuh an algorithm based on the de�nition of ompat winning strategy. Let H bethe set of all funtions h suh that dom(h) is a k-union (over A) and suh thath is a projetive homomorphism from A to B. Iteratively perform the followinguntil no hanges an be made to H : for every funtion h 2 H and every k-union U , hek to see if there is h0 2 H suh that the seond property (ofompat winning strategy) is satis�ed; if not, remove h from H . Throughout thealgorithm, we have maintained the invariant that any ompat winning strategymust be a subset of H . Hene, if when the algorithm terminates H is empty,then there is no ompat winning strategy. And if H is non-empty when thealgorithm terminates, H is learly a ompat winning strategy.The number of k-unions (over A) is polynomial in the number of tuples inA. Also, for eah k-union U , the number of projetive homomorphisms h withdom(h) = U from A to B is polynomial in the number of tuples in B. Hene,the size of the original set H is polynomial in the original instane. Sine in eahiteration an element is removed from H , the algorithm terminates in polynomialtime. utThe algorithm we have just desribed in the proof of Theorem 17 may appearto be quite speialized. However, we now show that essentially that algorithman be viewed as a general inferene proedure for CSP instanes in the vein ofexisting onsisteny algorithms. In partiular, we give a general algorithm alledprojetive k-onsisteny for CSP instanes that, given a CSP instane, performsinferene and outputs a more onstrained CSP instane having exatly the samesatisfying assignments as the original. On a CSP instane A;B, the algorithmmight detet an inonsisteny, by whih we mean that it detets that there isno homomorphism from A to B. If it does not, then it is guaranteed that thereis a winning strategy for the Dupliator.De�nition 18. The projetive k-onsisteny algorithm takes as input a CSPinstane A;B, and onsists of the following steps.{ Create a new CSP instane A0;B0 as follows. Let the universe of A0 be theuniverse of A, and the universe of B0 be the universe of B. Let the signatureof A0 and B0 ontain a relation symbol RU for eah k-union U over A. Foreah k-union U , the relation RA0U is de�ned as (u1; : : : ; um), where u1; : : : ; umare exatly the elements of U in some order; and RB0U is de�ned as the set ofall tuples (b1; : : : ; bm) suh that the mapping taking ui ! bi is a projetivehomomorphism from A to B.{ Iteratively perform the following until no hanges an be made: remove anyB0-tuple (b1; : : : ; bm) that is not a projetive homomorphism.We say that a B0-tuple (b1; : : : ; bm) 2 RB0U is a projetive homomorphism if,letting (u1; : : : ; um) denote the unique element of RA0U , the funtion takingui ! bi is a projetive homomorphism from A0 to B0.{ Report an inonsisteny if there are no B0-tuples remaining.



Theorem 19. For eah k � 1, the projetive k-onsisteny algorithm, given asinput a CSP instane A;B:{ runs in polynomial time,{ outputs a CSP instane A0;B0 that has the same satisfying assignments asA;B, and{ reports an inonsisteny if and only if the Dupliator does not have a winningstrategy in the existential k-over game on A;B.Proof. The �rst property is straightforward to verify. For the seond property,observe that, eah time a tuple is removed from B0, the set of satisfying assign-ments is preserved. For the third property, observe that, assoiating B0-tuplesto funtions as in De�nition 18, the behavior of the projetive k-onsisteny al-gorithm is idential to the behavior of the algorithm in the proof of Proposition16. utBy using the results presented in this setion thus far, it is easy to show thatCSP instanes of bounded overwidth are tratable. De�ne the overwidth of aCSP instane A;B to be the overwidth of A. Let CSP[overwidth � k℄ be therestrition of the CSP to all instanes of overwidth less than or equal to k.Theorem 20. For all k � 1, the problem CSP[overwidth � k℄ is deidable inpolynomial time by the projetive k-onsisteny algorithm. In partiular, on aninstane of CSP[overwidth � k℄, the projetive k-onsisteny algorithm reportsan inonsisteny if and only if the instane is not satis�able.Proof. Immediate from Theorem 14 and the third property of Theorem 19. utNote that we an derive the tratability of CSP instanes having boundedhypertree width immediately from Theorem 20.Now, given a CSP instane that is promised to have bounded overwidth,we an use projetive k-onsisteny to deide the instane (Theorem 20). Thistratability result an in fat be pushed further: we an show that there is ageneri polynomial-time that, given an arbitrary CSP instane, is guaranteedto deide instanes of bounded overwidth. Moreover, whenever an instane isdeided to be a \yes" instane by the algorithm, a satisfying assignment is on-struted.Theorem 21. For all k � 1, there exists a polynomial-time algorithm that,given any CSP instane A;B,1. outputs a satisfying assignment for A;B,2. orretly reports that A;B is unsatis�able, or3. reports \I don't know".The algorithm always performs (1) or (2) on an instane of CSP[overwidth � k℄.



Proof. The algorithm is a simple extension of the projetive k-onsisteny algo-rithm. First, the algorithm applies the projetive k-onsisteny algorithm; if aninonsisteny is deteted, then the algorithm terminates and reports that A;Bis unsatis�able. Otherwise, it initializes V to be the universe A of A, and doesthe following:{ If V is empty, terminate and identify the mapping taking eah a 2 A to theB-element in RBa , as a satisfying assignment.{ Pik any variable v 2 V .{ Expand the signature of A;B to inlude another symbol Rv with RAv =f(v)g.{ Try to �nd a B-element b suh that when RBv is set to f(b)g, no inonsis-teny is deteted by the projetive k-onsisteny algorithm on the expandedinstane.� If there is no suh B-element, terminate and report \I don't know".� Otherwise, set RBv to suh a B-element, remove v from V , and repeatfrom the �rst step using the expanded instane.If the proedure terminates from V being empty in the �rst step, the mappingthat is output is straightforwardly veri�ed to be a satisfying assignment.Suppose that the algorithm is given an instane of CSP[overwidth � k℄. Ifit is unsatis�able, then the algorithm reports that the instane is unsatis�ableby Theorem 20. So suppose that the instane is satis�able. We laim that eahiteration preserves the satis�ability of the instane. Let A;B denote the CSPinstane at the beginning of an arbitrary iteration of the algorithm. If no in-onsisteny is deteted after adding a new relation symbol Rv with RAv = f(v)gand RBv = f(b)g, there must be a satisfying assignment mapping v to b by The-orem 20. Note that adding unary relation symbols to a CSP instane does nothange the overwidth of the instane. utWe now expand the tratability result of Theorem 20, and show the tratabil-ity of CSP instanes that are homomorphially equivalent to instanes of boundedoverwidth. Formally, let us say that A and A0 are homomorphially equivalentif there is a homomorphism from A to A0 as well as a homomorphism fromA0 to A. Let CSP[H(overwidth � k)℄ denote the restrition of the CSP to in-stanes A;B where A is homomorphially equivalent to a relational strutureof overwidth less than or equal to k.Theorem 22. For all k � 1, the problem CSP[H(overwidth � k)℄ is deidablein polynomial time by the projetive k-onsisteny algorithm. In partiular, onan instane of CSP[H(overwidth � k)℄, the projetive k-onsisteny algorithmreports an inonsisteny if and only if the instane is not satis�able.Referenes1. Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree-width and relatedhypergraph invariants. In preparation.
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