
Michel Rueher (Ed.)

 123

LN
CS

 9
89

2

22nd International Conference, CP 2016
Toulouse, France, September 5–9, 2016
Proceedings

Principles and Practice
of Constraint Programming

Lecture Notes in Computer Science 9892
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Michel Rueher (Ed.)

Principles and Practice
of Constraint Programming
22nd International Conference, CP 2016
Toulouse, France, September 5–9, 2016
Proceedings

123

Editor
Michel Rueher
University of Nice Sophia Antipolis
Sophia Antipolis
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44952-4 ISBN 978-3-319-44953-1 (eBook)
DOI 10.1007/978-3-319-44953-1

Library of Congress Control Number: 2016948782

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the 22nd International Conference on the
Principles and Practice of Constraint Programming (CP 2016), which was held in
Toulouse, France, during September 5–9, 2016. Detailed information about the con-
ference is available at http://cp2016.a4cp.org.

The CP conference is the annual international conference on constraint program-
ming. It is concerned with all aspects of computing with constraints, including theory,
algorithms, environments, languages, models, systems, and applications such as
decision making, resource allocation, scheduling, configuration, and planning. The CP
community is very keen to ensure it remains open to interdisciplinary research at the
intersection between constraint programming and related fields. Hence, in addition to
the usual technical and application tracks, the CP 2016 conference featured the fol-
lowing new thematic tracks: “Computational Sustainability”, “CP and Biology”,
“Preferences, Social Choice and Optimization”, and “Testing and Verification”. Each
track had a specific sub-committee to ensure that specialist reviewers from the relevant
domains vetted papers in the respective tracks. CP 2016 also introduced a challenge
based on a realistic industrial-grade optimization problem.

For the purpose of the conference’s scientific programming, we invited submissions
to all tracks, and we received 154 submissions, including 17 submissions for the
“Journal-First and Sister Conferences Paper” track. The review process for CP 2016
relied on a multi-tier approach involving one senior Program Committee, dedicated
regular Program Committees for all tracks, along with a set of additional reviewers
recruited by Program Committee members. Authors submitted either long or short
papers. All submissions were assigned to a senior Program Committee member and
three members of the relevant track Program Committee. Authors were given an
opportunity to respond to reviews before a detailed discussion was undertaken at the
level of the Program Committees, overseen by the program chair, the senior Program
Committee member, and the track chairs. The “Journal-First and Sister Conferences”
track gives an opportunity to discuss important results in the area of constraint pro-
gramming that appeared recently in relevant journals and sister conferences. Submis-
sions were evaluated by a separate Program Committee for relevance and significance.
A meeting of the senior Program Committee was held at Banff –with participation by
video conference– at the end of May, chaired by the program chair, where the reviews,
author feedback, and discussions on every paper were revisited in detail. The result of
this was that the acceptance rate for the technical track was a little under 45%. The
senior Program Committee awarded the Best Conference Paper Prize to Krishnamurthy
Dvijotham, Pascal Van Hentenryck, Michael Chertkov, Sidhant Misra, and Marc
Vuffray for “Graphical Models for Optimal Power Flow”, the Distinguished Confer-
ence Paper Prize to David Manlove, Iain McBride, and James Trimble for “Almost-
Stable Matchings in the Hospitals/Residents Problem with Couples”, the Best Student
Paper Prize to Clément Carbonnel for “The Dichotomy for Conservative Constraint

http://cp2016.a4cp.org

Satisfaction Is Polynomially Decidable”, and the Distinguished Student Paper Prize to
Kyle E.C. Booth, Goldie Nejat, and J. Christopher Beck for “A Constraint Program-
ming Approach to Multi-Robot Task Allocation and Scheduling in Retirement
Homes”. The program chair, the journal publication fast track chair, Willem-Jan van
Hoeve, and the Constraints journal editor-in-chief, Michela Milano, also invited four
papers from the technical and application tracks for direct publication in that journal.
These were presented at the conference like any other paper and they appear in the
proceedings as a one-page abstract.

The conference program featured four invited talks by Pascal Van Hentenryck,
David Manlove, Andrey Rybalchenko, and Zico Kolter. This volume includes
one-page abstracts of their talks. The conference also featured four tutorials and six
satellite workshops, whose topics are listed in this volume. The conference also fea-
tured four tutorials and five satellite workshops, whose topics are listed in this volume.
The Doctoral Program gave PhD students an opportunity to present their work to more
senior researchers, to meet with an assigned mentor for advice on their research and
early career, to attend special tutorials, and to interact with one another.

I am grateful to many people who made this conference such a success. First of all,
to the authors who provided excellent material to select from. Then to the members
of the Program Committees and additional reviewers who worked hard to provide
constructive, high-quality reviews, to members of the senior Program Committee who
helped me ensure that each paper was adequately discussed, wrote meta-reviews for
their assigned papers, and participated in live remote deliberations — for some, quite
early or late in the day. Of course there is a whole team standing with me, who chaired
various aspects of the conference: Thomas Schiex (Conference Chair), Laurent Michel
(Application Track Chair), Carla Gomes, Michela Milano and Christine Solnon
(Computational Sustainability Track Chairs), Agostino Dovier and Alessandro Dal
Palù (CP and Biology Track Chairs), Charlotte Truchet (Music Track Chair), Andreas
Podelski and Arnaud Gotlieb (Testing and Verification Track Track Chair), Michela
Milano (Published Journal and Sister Conferences Paper Track Chair), Willem-Jan van
Hoeve (Journal Publication Fast-Track Chair), Pierre Flener (Workshop and Tutorial
Chair), Pierre Schaus (ACP Challenge Chair), Tias Guns and Laura Climen (Doctoral
Program Chairs), Helmut Simonis (Industry Outreach Chair), and Louis Martin
Rousseau (Publicity Chair).

The conference would not have been possible without the great job done by all the
people involved in the local organization: Lotte Berghman, Paul Gaborit, Simon de
Givry, Emmanuel Hebrard, Élise Vareilles, Matthias Zytnicki, Alain Pérault, Fabienne
Ayrignac, Marie-José Huguet, David Allouche, Nathalie Julliand, George Katsirelos,
Pierre Lopez, Alain Haït, Frédéric Maris, Cédric Pralet, Gérard Verfaillie, Nicolas
Barnier, Frédéric Messine, and Vincent Vidal. We also want to thank the institutions
that supported them during the organization: the Toulouse Business School (for hosting
us too), the “École nationale supérieure des mines d’Albi-Carmaux” (also for website
hosting and management), the National Institute for Agronomical Research (INRA –

MIAT), the National Center for Scientific Research (CNRS – LAAS), the National
Applied Sciences Institute (INSA Toulouse), the Higher Institute for Aeronautics and
Space (ISAE), the Toulouse Computing Research Institute (IRIT – Toulouse Univer-
sity), the National Office for Aerospace Research and Studies (ONERA), the Civil

VI Preface

Aviation National School (ENAC) and the Toulouse National Polytechnic Institute
(INP Toulouse – ENSEEIHT). Thank you for your dedication!

I acknowledge and thank our sponsors for their generous support: they include, at
the time of this writing, the Artificial Intelligence Journal Division (AIJD) of IJCAI, the
French National Institute for Agronomical Research (INRA), Microsoft Research, the
French National Center for Scientific Research (CNRS – INS2I), Google, Toulouse
Business School, IBM, Cadence, Siemens, Data 61 (CSIRO), Toulouse University,
Springer, the Molecular Bioinformatics GdR (GdR BIM, specifically for the Con-
straints and Biology track), the Toulouse Computing Science Institute, the French
National Office for Aerospace Research and Studies, the Institute for Computational
Sustainability, the European Association for Artificial Intelligence (EurAI), the
Swedish Institute of Computer Science, the French Society for Operations Research
and Assisted Decision Making (ROADEF), N-Side, Cosling (a young startup), Cosytec
and LocalSolver (Innovation24, another startup). We finally want to thank the Occi-
tanie Region, the Toulouse Métropole, for their forthcoming support.

July 2016 Michel Rueher

Preface VII

Tutorials and Workshops

Tutorials

Topics in Computational Sustainability

Carla Gomes Cornell University, USA

Constraint Programming in Music

Charlotte Truchet University of Nantes, France

Social Choice

Francesca Rossi University of Padova, Italy

Automated Program Analysis and Verification

Andreas Podelski University of Freiburg, Germany

Workshops

Configuration

Élise Vareilles Mines Albi, France
Lars Hvam Technical University of Denmark, Denmark
Cipriano Forza University of Padova, Italy
Caroline Becke PROS Toulouse, France

Constraint Programming and Artificial Intelligence

Eugene C. Freuder University College Cork, Ireland

CP Meets Verification

Sébastien Bardin François Bobot and Nikolai Kosmatov (CEA LIST,
France)

Constraint Modelling and Reformulation (ModRef 2016)

Steve Prestwich University College Cork, Ireland

Constraint-Based Methods for Bioinformatics (WCB’16)

Alessandro Dal Palù University of Parma, Italy
Agostino Dovier University of Udine, Italy
Simon de Givry INRA – MIAT, France

Conference Organization

Program Chair

Michel Rueher University of Nice Sophia Antipolis, France

Conference Chair

Thomas Schiex INRA Toulouse, France

Application Track Chair

Laurent Michel University of Connecticut, USA

Computational Sustainability Track Chairs

Carla Gomes Cornell University, Ithaca, USA
Michela Milano University of Bologna, Italy
Christine Solnon INSA de Lyon, France

CP and Biology Track Chairs

Agostino Dovier University of Udine, Italy
Alessandro Dal Palù University of Parma, Italy

Music Track Chair

Charlotte Truchet University of Nantes, France

Preferences, Social Choice, and Optimization Track Chairs

Francesca Rossi University of Padova, Italy
Toby Walsh NICTA, Australia

Testing and Verification Track Chairs

Andreas Podelski University of Freiburg, Germany
Arnaud Gotlieb Simula Research Laboratory, Norway

Published Journal Track Chair

Michela Milano University of Bologna, Italy

Journal Publication Fast-Track Chair

Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University,
USA

ACP Challenge Chair

Pierre Schaus UC Louvain, Belgium

Doctoral Program Chairs

Tias Guns KU Leuven, Belgium
Laura Climent Insight Centre for Data Analytics, Ireland

Workshop and Tutorial Chair

Pierre Flener Uppsala University, Sweden

Industry Outreach Chair

Helmut Simonis Insight Centre for Data Analytics, UCC, Ireland

Publicity Chair

Louis-Martin Rousseau École Polytechnique de Montréal, Canada

Senior Program Committee

Agostino Dovier University of Udine, Italy
Pascal van Hentenryck University of Michigan, USA
Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University,

USA
Carla Gomes Cornell University, Ithaca, USA
Laurent Michel University of Connecticut, USA
Michela Milano University of Bologna, Italy
Nina Narodytska Samsung Research America, USA
Andreas Podelski University of Freiburg, Germany
Francesca Rossi University of Padova, Italy
Thomas Schiex INRA Toulouse, France
Christine Solnon INSA de Lyon, France
Charlotte Truchet University of Nantes, France
Toby Walsh NICTA, Australia

XII Conference Organization

Technical Track Program Committee

Carlos Ansótegui Universitat de Lleida, Spain
Fahiem Bacchus University of Toronto, Canada
Roman Bartak Charles University in Prague, Czech Republic
Chris Beck University of Toronto, Canada
Nicolas Beldiceanu École des Mines de Nantes, France
David Bergman University of Connecticut, USA
Christian Bessiere CNRS – University of Montpellier, France
Mats Carlsson SICS, Sweden
David Cohen Royal Holloway, University of London, UK
Yves Deville UC Louvain, Belgium
Bistra Dilkina Georgia Institute of Technology, USA
Carmen Gervet University of Montpellier, France
Arnaud Gotlieb Simula Research Laboratory, Norway
Youssef Hamadi Algorithmic Trading, UK
Emmanuel Hebrard LAAS-CNRS, France
John Hooker Carnegie Mellon University, USA
Hiroshi Hosobe Hosei University, Japan
Peter Jeavons University of Oxford, UK
George Katsirelos INRA Toulouse, France
Yahia Lebbah University of Oran, Algeria
Christophe Lecoutre University of Artois, France
Jimmy Lee The Chinese University of Hong Kong, SAR China
Michele Lombardi University of Bologna, Italy
Inês Lynce Tecnico University of Lisbon, Portugal
Amnon Meisels Ben-Gurion University of the Negev, Israel
Pedro Meseguer IIIA, University of Barcelona, Spain
Claude Michel University of Nice Sophia Antipolis, France
Ian Miguel The University of St. Andrews, UK
Barry O’Sullivan 4C University College Cork, Ireland
Justin Pearson Uppsala University, Sweden
Laurent Perron Google, France
Gilles Pesant École Polytechnique de Montréal, Canada
Justyna Petke University College London, UK
Andrea Rendl University of Klagenfurt, Austria
Pierre Schaus UCLouvain, Belgium
Christian Schulte KTH Royal Institute of Technology, Sweden
Peter Stuckey University of Melbourne, Australia
Michael Trick Carnegie Mellon University, USA
Roland Yap National University of Singapore, Singapore
Stanislav Zivny University of Oxford, UK

Conference Organization XIII

Application Track Program Committee

Laurent Michel University of Connecticut, USA
Helmut Simonis 4C, Ireland
Louis-Martin Rousseau École Polytechnique de Montréal, Canada
Pierre Schaus UC Louvain, Belgium
Michele Lombardi University of Bologna, Italy
Philip Kilby NICTA and the Australian National University, Australia
Pascal Van Hentenryck University of Michigan, USA
Hadrien Cambazard G-SCOP, Grenoble INP, CNRS, University Joseph

Fourier, France
Andrea Lodi Polytechnique Montréal, Canada
Chris Beck University of Toronto, Canada
Barry O’Sullivan 4C, University College Cork, Ireland, Ireland
Claude Michel I3S - (University of Nice/CNRS), France
Michela Milano DEIS University of Bologna, Italy
Paul Shaw IBM, France
Simon De Givry INRA – UBIA, France

Computational Sustainability Track Program Committee

Romain Billot LICIT, IFSTTAR, France
Bistra Dilkina Georgia Institute of Technology, USA
Agostino Dovier University of Udine, Italy
Serge Fenet LIRIS, University Lyon 1, France
Michele Lombardi DISI, University of Bologna, Italy
Barry O’Sullivan University College Cork, Ireland
Emmanuel Prados Inria, France
Francesca Rossi University of Padova, Italy
Louis-Martin Rousseau École Polytechnique de Montreal, Canada
Helmut Simonis Insight Centre for Data Analytics, Ireland
Christine Solnon LIRIS, INSA Lyon, France
Charlotte Truchet LINA, University de Nantes, France
Pascal Van Hentenryck University of Michigan, USA
Willem-Jan Van Hoeve Carnegie Mellon University, USA

CP and Biology Track Program Committee

Agostino Dovier University of Udine, Italy
Alessandro Dal Palù University of Parma, Italy
Rolf Backofen Albert Ludwigs University of Freiburg, Germany
Pedro Barahona Universidade Nova de Lisboa, Portugal
Alexander Bockmayr Freie Universität Berlin, Germany
Mats Carlsson SICS, Sweden
Simon De Givry INRA – UBIA, France
François Fages Inria Paris-Rocquencourt, France

XIV Conference Organization

Ines Lynce INESC-ID/IST, University of Lisbon, Portugal
Enrico Pontelli New Mexico State University, USA
Sebastian Will University of Leipzig, Germany
Sylvain Soliman Inria Paris-Rocquencourt, France
Nigel Martin Birkbeck, University of London, UK
Alberto Policriti University of Udine, Italy

Music Track Track Program Committee

Truchet Charlotte University of Nantes, France
Assayag Gérard IRCAM, France
Herremans Dorien Queen Mary University of London, UK
Pearson Justin Uppsala University, Sweden
Rueda Camilo Universidad Javeriana, Colombia
Sandred Örjan University of Manitoba, Canada

Preferences, Social Choice, and Optimization Track Committee

Haris Aziz Data61/University of New South Wales, Australia
Fahiem Bacchus University of Toronto, Canada
Peter Biró Hungarian Academy of Sciences, Hungaria
Piotr Faliszewski AGH University of Science and Technology, Poland
Umberto Grandi University of Toulouse, France
Philip Kilby NICTA and the Australian National University, Australia
Jerome Lang University of Paris-Dauphine, France
David Manlove University of Glasgow, Scotland, UK
Nick Mattei Data61/NICTA and University of New South Wales,

Australia
Nicolas Maudet Pierre et Marie Curie University, France
Amnon Meisels Ben-Gurion University of the Negev, Israel
Nina Narodytska Samsung Research America, USA
Maria Silvia Pini University of Padova, Italy
Patrick Prosser University of Glasgow, Scotland, UK
Jorg Rothe University of Düsseldorf, Germany
Paul Shaw IBM, France
Brent Venable Tulane University, USA

Testing and Verification Track Committee

Andreas Podelski University of Freiburg, Germany
Arnaud Gotlieb Simula Research Laboratory, Norway
Catherine Dubois ENSIIE-CEDRIC, France
Mats Carlsson SICS, Sweden
Daniel Le Berre CNRS - Université d’Artois, France
Nadjib Lazaar UM2-LIRMM, France
Giorgio Delzanno Università di Genova, Italy

Conference Organization XV

Justin Pearson Uppsala University, Sweden
Pierre Flener Uppsala University, Sweden
Parosh Aziz Abdulla Uppsala University, Sweden
Sebastien Bardin CEA LIST, France
Harald Sondergaard University of Melbourne, Australia
Peter J. Stuckey University of Melbourne, Australia
Joxan Jaffar National University of Singapore, Singapore
Eyal Bin IBM, Israel
Cédric Pralet ONERA, France
Justyna Petke University College London, UK
Morten Mossige ABB Robotics, Norway

Additional Reviewers

Özgür Akgün
Martin Aleksandrov
Goldsztejn Alexandre
Noureddine Aribi
Gilles Audemard
Rehan Abdul Aziz
Johannes

Gerhardus Benade
Nikolaj Bjorner
Alessio Bonfietti
Nicolas Bonifas
Andrea Borghesi
Eric Bourreau
Valentina Cacchiani
Clément Carbonnel
Roberto

Castaneda Lozano
Raffaele Cipriano
Andre Augusto Cire
Martin Cooper
Allegra De Filippo
Cyrille Dejemeppe
Stefano Di Alesio
Sylvain Ducomman
Ferdinando Fioretto
Steven Gay

Ian Gent
Grigori German
Phillippe Grangier
Gabriel Hjort Blindell
Vinasétan Ratheil Houndji
Marie-José Huguet
Peter Jeavons
Chris Jefferson
Elias Khalil
Ryo Kimura
Lars Kotthoff
Ludwig Krippahl
Arnaud Lallouet
Ronan Le Bras
Jan Leike
Olivier Lhomme
Xavier Lorca
Samir Loudni
Vasco Manquinho
Paolo Marin
Ruben Martins
Valentin

Mayer-Eichberger
Ciaran McCreesh
Michele Monaci
Pedro T. Monteiro

Margaux Nattaf
Peter Nightingale
Carlos Olarte
Alexandre Papadopoulos
Anastasia Paparrizou
Marie Pelleau
Quentin Plazar
Gerhard Rauchecker
Camilo Rocha
Olivier Roussel
Andrew Edward Santosa
Andreas Schutt
Thiago Serra
Mohamed Siala
Sebastien Tabary
Guido Tack
Navid Talebanfard
Miguel Terra-Neves
Cyril Terrioux
Gilles Trombettoni
Sascha Van Cauwelaert
Wei Xia
Neng-Fa Zhou
Zichen Zhu

XVI Conference Organization

Invited Talks

Horn Constraints for Software
Verification and Synthesis

Andrey Rybalchenko

Microsoft Research
rybal@microsoft.com

Abstract. We will show how Horn constraints can be used to describe verifi-
cation and synthesis problems, and how such constraints can be solved effi-
ciently. In particular we will demonstrate how cardinality operators help to
reason about quantitative properties and carry out counting-based correctness
arguments, which are useful for the verification of information flow properties
and parametrized systems.

Optimizing Preferences and Social Welfare
in Healthcare-Related Matching Problems

David F. Manlove

School of Computing Science, Sir Alwyn Williams Building,
University of Glasgow, Glasgow G12 8QQ, UK

david.manlove@glasgow.ac.uk

Abstract. Matching problems typically involve assigning agents to commodi-
ties, possibly on the basis of ordinal preferences or other metrics. These prob-
lems have large-scale applications to centralized matching schemes in many
countries and contexts. For example, such schemes are used for the annual
allocation of junior doctors to hospitals in the USA, Canada and Japan, for
higher education admission in China, Hungary and Turkey, and for placing
military cadets to branches in the USA.

In this talk I will describe the matching problems featuring in two centralized schemes
in the UK that have involved collaborations between the National Health Service and
the University of Glasgow. One of these dealt with the allocation of junior doctors to
Scottish hospitals (as part of the Scottish Foundation Allocation Scheme, running from
1999–2012), and the other is concerned with finding kidney exchanges among
incompatible donor-patient pairs across the UK (under the auspices of the National
Living Donor Kidney Sharing Schemes, in operation since 2007).

The case of junior doctor allocation can be modelled by the Hospitals/Residents
problem, where we seek a stable matching. Although the classical problem in its
simplest form is solvable in polynomial time, when couples apply jointly in pairs, and
when preference lists may include ties, as could occur in the Scottish application, the
problem of finding a stable matching becomes NP-hard.

For kidney exchange, the problem can be modelled via cycle packing in a directed
graph, where cycles cannot exceed a given fixed length k. We seek a vertex-disjoint
collection of cycles that covers as many vertices as possible, in order to maximise the
number of potential transplants – again this problem is NP-hard even if k = 3, as in the
UK application.

In each case I will describe the applications, present the underlying algorithmic
problems, and outline how integer and constraint programming techniques have been
used to tackle these NP-hard problems over the years. I will then give an overview of
computational results arising from executions on real data connected with the associ-
ated matching schemes in recent years.

Supported by Engineering and Physical Sciences Research Council grants EP/K503903/1,
EP/K010042/1 and EP/N508792/1.

Evidence-Based Optimization of Complex
Infrastructures

Pascal Van Hentenryck

University of Michigan
pvanhent@umich.edu

Abstract. For the first time in the history of humankind, we are accumulating
data sets of unprecedented scale and accuracy about physical infrastructures,
natural phenomena, man-made processes, and human behavior. These devel-
opments, together with progress in high-performance computing, predictive
models, and operations research, offer novel opportunities for optimizing
complex infrastructures holistically. We present some exciting projects in evi-
dence-based optimization and highlight some challenges and opportunities for
constraint programming in this space.

Optimization and Control in the Smart Grid
and Beyond

Zico Kolter

School of Computer Science at Carnegie Mellon University
zkolter@cs.cmu.edu

Abstract. The world’s electrical energy system is transforming, evolving from a
“top-down” purely physics-driven process to a digital, interconnected system
with bidirectional control. This new electrical grid, broadly referred to as the
smart grid, offers many opportunities for advanced optimization and AI tech-
niques to play a transformational role. This talk will highlight some general
themes and optimization problems that arise frequently in these settings, and
also discuss some of our work on general stochastic control approaches in these
settings. I will then close by discussing some broad themes in general-purpose
optimization, inspired by the smart grid setting, but with general applicability to
a wide range of problems.

Contents

Technical Track

Exploiting Short Supports for Improved Encoding of Arbitrary Constraints
into SAT . 3

Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel,
and Peter Nightingale

Systematic Derivation of Bounds and Glue Constraints
for Time-Series Constraints . 13

Ekaterina Arafailova, Nicolas Beldiceanu, Mats Carlsson,
Pierre Flener, María Andreína Francisco Rodríguez, Justin Pearson,
and Helmut Simonis

An Adaptive Parallel SAT Solver . 30
Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski,
and Sébastien Tabary

Improved Linearization of Constraint Programming Models 49
Gleb Belov, Peter J. Stuckey, Guido Tack, and Mark Wallace

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving. 66
Jeremias Berg and Matti Järvisalo

Multiobjective Optimization by Decision Diagrams 86
David Bergman and Andre A. Cire

Dependency Schemes in QBF Calculi: Semantics and Soundness 96
Olaf Beyersdorff and Joshua Blinkhorn

The Multirate Resource Constraint . 113
Alessio Bonfietti, Alessandro Zanarini, Michele Lombardi,
and Michela Milano

The Dichotomy for Conservative Constraint Satisfaction
is Polynomially Decidable . 130

Clément Carbonnel

Propagation via Kernelization: The Vertex Cover Constraint. 147
Clément Carbonnel and Emmanuel Hebrard

Breaking Symmetries in Graphs: The Nauty Way . 157
Michael Codish, Graeme Gange, Avraham Itzhakov,
and Peter J. Stuckey

http://dx.doi.org/10.1007/978-3-319-44953-1_1
http://dx.doi.org/10.1007/978-3-319-44953-1_1
http://dx.doi.org/10.1007/978-3-319-44953-1_2
http://dx.doi.org/10.1007/978-3-319-44953-1_2
http://dx.doi.org/10.1007/978-3-319-44953-1_3
http://dx.doi.org/10.1007/978-3-319-44953-1_4
http://dx.doi.org/10.1007/978-3-319-44953-1_5
http://dx.doi.org/10.1007/978-3-319-44953-1_6
http://dx.doi.org/10.1007/978-3-319-44953-1_7
http://dx.doi.org/10.1007/978-3-319-44953-1_8
http://dx.doi.org/10.1007/978-3-319-44953-1_9
http://dx.doi.org/10.1007/978-3-319-44953-1_9
http://dx.doi.org/10.1007/978-3-319-44953-1_10
http://dx.doi.org/10.1007/978-3-319-44953-1_11

Extending Broken Triangles and Enhanced Value-Merging. 173
Martin C. Cooper, Achref El Mouelhi, and Cyril Terrioux

A Bounded Path Propagator on Directed Graphs . 189
Diego de Uña, Graeme Gange, Peter Schachte, and Peter J. Stuckey

Compact-Table: Efficiently Filtering Table Constraints with Reversible
Sparse Bit-Sets . 207

Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre,
Guillaume Perez, Laurent Perron, Jean-Charles Régin,
and Pierre Schaus

Interval Constraints with Learning: Application to Air Traffic Control 224
Thibaut Feydy and Peter J. Stuckey

Backdoors to Tractable Valued CSP . 233
Robert Ganian, M.S. Ramanujan, and Stefan Szeider

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 251
Jack Goffinet and Raghuram Ramanujan

A New Approach to Checking the Dynamic Consistency of Conditional
Simple Temporal Networks . 268

Luke Hunsberger and Roberto Posenato

On Finding Minimum Satisfying Assignments . 287
Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva

Towards a Dynamic Decomposition of CSPs with Separators
of Bounded Size . 298

Philippe Jégou, Hanan Kanso, and Cyril Terrioux

Constraint Programming for Strictly Convex Integer
Quadratically-Constrained Problems. 316

Wen-Yang Ku and J. Christopher Beck

A Global Constraint for Closed Frequent Pattern Mining 333
Nadjib Lazaar, Yahia Lebbah, Samir Loudni, Mehdi Maamar,
Valentin Lemière, Christian Bessiere, and Patrice Boizumault

Clique and Constraint Models for Maximum Common (Connected)
Subgraph Problems . 350

Ciaran McCreesh, Samba Ndojh Ndiaye, Patrick Prosser,
and Christine Solnon

Tightening McCormick Relaxations for Nonlinear Programs via Dynamic
Multivariate Partitioning. 369

Harsha Nagarajan, Mowen Lu, Emre Yamangil, and Russell Bent

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-44953-1_12
http://dx.doi.org/10.1007/978-3-319-44953-1_13
http://dx.doi.org/10.1007/978-3-319-44953-1_14
http://dx.doi.org/10.1007/978-3-319-44953-1_14
http://dx.doi.org/10.1007/978-3-319-44953-1_15
http://dx.doi.org/10.1007/978-3-319-44953-1_16
http://dx.doi.org/10.1007/978-3-319-44953-1_17
http://dx.doi.org/10.1007/978-3-319-44953-1_18
http://dx.doi.org/10.1007/978-3-319-44953-1_18
http://dx.doi.org/10.1007/978-3-319-44953-1_19
http://dx.doi.org/10.1007/978-3-319-44953-1_20
http://dx.doi.org/10.1007/978-3-319-44953-1_20
http://dx.doi.org/10.1007/978-3-319-44953-1_21
http://dx.doi.org/10.1007/978-3-319-44953-1_21
http://dx.doi.org/10.1007/978-3-319-44953-1_22
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1007/978-3-319-44953-1_24
http://dx.doi.org/10.1007/978-3-319-44953-1_24

Parallel Strategies Selection . 388
Anthony Palmieri, Jean-Charles Régin, and Pierre Schaus

Learning Parameters for the Sequence Constraint from Solutions 405
Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper,
and Jason Sweeney

The PPSZ Algorithm for Constraint Satisfaction Problems on More
Than Two Colors . 421

Timon Hertli, Isabelle Hurbain, Sebastian Millius, Robin A. Moser,
Dominik Scheder, and May Szedlák

Explaining Producer/Consumer Constraints. 438
Andreas Schutt and Peter J. Stuckey

Learning from Learning Solvers . 455
Maxim Shishmarev, Christopher Mears, Guido Tack,
and Maria Garcia de la Banda

On Incremental Core-Guided MaxSAT Solving. 473
Xujie Si, Xin Zhang, Vasco Manquinho, Mikoláš Janota, Alexey Ignatiev,
and Mayur Naik

Modelling and Solving Multi-mode Resource-Constrained
Project Scheduling . 483

Ria Szeredi and Andreas Schutt

A Nearly Exact Propagation Algorithm for Energetic Reasoning
in Oðn2 log nÞ . 493

Alexander Tesch

Efficient Filtering for the Unary Resource with Family-Based
Transition Times . 520

Sascha Van Cauwelaert, Cyrille Dejemeppe, Jean-Noël Monette,
and Pierre Schaus

Application Track

A Constraint Programming Approach to Multi-Robot Task Allocation
and Scheduling in Retirement Homes . 539

Kyle E.C. Booth, Goldie Nejat, and J. Christopher Beck

Optimal Performance Tuning in Real-Time Systems Using Multi-objective
Constrained Optimization . 556

Stefano Di Alesio

SABIO: An Implementation of MIP and CP for Interactive Soccer Queries . . . 575
Robinson Duque, Juan Francisco Díaz, and Alejandro Arbelaez

Contents XXV

http://dx.doi.org/10.1007/978-3-319-44953-1_25
http://dx.doi.org/10.1007/978-3-319-44953-1_26
http://dx.doi.org/10.1007/978-3-319-44953-1_27
http://dx.doi.org/10.1007/978-3-319-44953-1_27
http://dx.doi.org/10.1007/978-3-319-44953-1_28
http://dx.doi.org/10.1007/978-3-319-44953-1_29
http://dx.doi.org/10.1007/978-3-319-44953-1_30
http://dx.doi.org/10.1007/978-3-319-44953-1_31
http://dx.doi.org/10.1007/978-3-319-44953-1_31
http://dx.doi.org/10.1007/978-3-319-44953-1_32
http://dx.doi.org/10.1007/978-3-319-44953-1_32
http://dx.doi.org/10.1007/978-3-319-44953-1_33
http://dx.doi.org/10.1007/978-3-319-44953-1_33
http://dx.doi.org/10.1007/978-3-319-44953-1_34
http://dx.doi.org/10.1007/978-3-319-44953-1_34
http://dx.doi.org/10.1007/978-3-319-44953-1_35
http://dx.doi.org/10.1007/978-3-319-44953-1_35
http://dx.doi.org/10.1007/978-3-319-44953-1_36

Constraint Programming Models for Chosen Key Differential Cryptanalysis 584
David Gerault, Marine Minier, and Christine Solnon

Solving a Supply-Delivery Scheduling Problem with Constraint
Programming . 602

Katherine Giles and Willem-Jan van Hoeve

Four-Bar Linkage Synthesis Using Non-convex Optimization 618
Vincent Goulet, Wei Li, Hyunmin Cheong, Francesco Iorio,
and Claude-Guy Quimper

Using Constraint Programming for the Urban Transit Crew
Rescheduling Problem . 636

Xavier Lorca, Charles Prud’homme, Aurélien Questel,
and Benoît Rottembourg

Optimizing Shortwave Radio Broadcast Resource Allocation
via Pseudo-Boolean Constraint Solving and Local Search 650

Feifei Ma, Xin Gao, Minghao Yin, Linjie Pan, Jiwei Jin, Hai Liu,
and Jian Zhang

Availability Optimization in Cloud-Based In-Memory Data Grids 666
Samir Sebbah, Claire Bagley, Mike Colena, and Serdar Kadioglu

Computational Sustainability Track

Online HVAC-Aware Occupancy Scheduling with Adaptive
Temperature Control . 683

BoonPing Lim, Hassan Hijazi, Sylvie Thiébaux,
and Menkes van den Briel

Behavior Identification in Two-Stage Games for Incentivizing Citizen
Science Exploration. 701

Yexiang Xue, Ian Davies, Daniel Fink, Christopher Wood,
and Carla P. Gomes

CP and Biology Track

Constraining Redundancy to Improve Protein Docking 721
Ludwig Krippahl and Pedro Barahona

Guaranteed Weighted Counting for Affinity Computation:
Beyond Determinism and Structure . 733

Clément Viricel, David Simoncini, Sophie Barbe, and Thomas Schiex

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-44953-1_37
http://dx.doi.org/10.1007/978-3-319-44953-1_38
http://dx.doi.org/10.1007/978-3-319-44953-1_38
http://dx.doi.org/10.1007/978-3-319-44953-1_39
http://dx.doi.org/10.1007/978-3-319-44953-1_40
http://dx.doi.org/10.1007/978-3-319-44953-1_40
http://dx.doi.org/10.1007/978-3-319-44953-1_41
http://dx.doi.org/10.1007/978-3-319-44953-1_41
http://dx.doi.org/10.1007/978-3-319-44953-1_42
http://dx.doi.org/10.1007/978-3-319-44953-1_43
http://dx.doi.org/10.1007/978-3-319-44953-1_43
http://dx.doi.org/10.1007/978-3-319-44953-1_44
http://dx.doi.org/10.1007/978-3-319-44953-1_44
http://dx.doi.org/10.1007/978-3-319-44953-1_45
http://dx.doi.org/10.1007/978-3-319-44953-1_46
http://dx.doi.org/10.1007/978-3-319-44953-1_46

Music Track

Finding Alternative Musical Scales . 753
J.N. Hooker

Assisted Lead Sheet Composition Using FlowComposer 769
Alexandre Papadopoulos, Pierre Roy, and François Pachet

Enforcing Structure on Temporal Sequences: The Allen Constraint 786
Pierre Roy, Guillaume Perez, Jean-Charles Régin,
Alexandre Papadopoulos, François Pachet, and Marco Marchini

Constraint Programming Approach to the Problem of Generating Milton
Babbitt’s All-Partition Arrays . 802

Tsubasa Tanaka, Brian Bemman, and David Meredith

Preference, Social Choice and Optimization Track

A Dynamic Programming-Based MCMC Framework for Solving DCOPs
with GPUs . 813

Ferdinando Fioretto, William Yeoh, and Enrico Pontelli

Morphing Between Stable Matching Problems . 832
Ciaran McCreesh, Patrick Prosser, and James Trimble

Testing and Verification Track

Using Graph-Based CSP to Solve the Address Translation Problem. 843
Merav Aharoni, Yael Ben-Haim, Shai Doron, Anatoly Koyfman,
Elena Tsanko, and Michael Veksler

Finding Unsatisfiable Cores of a Set of Polynomials Using the Gröbner
Basis Algorithm . 859

Xiaojun Sun, Irina Ilioaea, Priyank Kalla, and Florian Enescu

The Power of Propagation: When GAC Is Enough 877
David A. Cohen and Peter G. Jeavons

Constraint Programming for Planning Test Campaigns
of Telecommunication Satellites . 879

Emmanuel Hebrard, Marie-José Huguet, Daniel Veysseire,
Ludivine Boche Sauvan, and Bertrand Cabon

Graphical Models for Optimal Power Flow . 880
Krishnamurthy Dvijotham, Pascal Van Hentenryck, Michael Cherkov,
Sidhant Misra, and Marc Vuffray

Contents XXVII

http://dx.doi.org/10.1007/978-3-319-44953-1_47
http://dx.doi.org/10.1007/978-3-319-44953-1_48
http://dx.doi.org/10.1007/978-3-319-44953-1_49
http://dx.doi.org/10.1007/978-3-319-44953-1_50
http://dx.doi.org/10.1007/978-3-319-44953-1_50
http://dx.doi.org/10.1007/978-3-319-44953-1_51
http://dx.doi.org/10.1007/978-3-319-44953-1_51
http://dx.doi.org/10.1007/978-3-319-44953-1_52
http://dx.doi.org/10.1007/978-3-319-44953-1_53
http://dx.doi.org/10.1007/978-3-319-44953-1_54
http://dx.doi.org/10.1007/978-3-319-44953-1_54
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1

“Almost-Stable” Matchings in the Hospitals/Residents Problem with
Couples . 882

David F. Manlove, Iain McBride, and James Trimble

Mixed-Integer and Constraint Programming Techniques for Mobile Robot
Task Planning. 883

Kyle E.C. Booth, Tony T. Tran, Goldie Nejat, and J. Christopher Beck

The Power of Arc Consistency for CSPs Defined
by Partially-Ordered Forbidden Patterns . 884

Martin C. Cooper and Stanislav Živný

DASH: Dynamic Approach for Switching Heuristics 886
Giovanni Di Liberto, Serdar Kadioglu, Kevin Leo, and Yuri Malitsky

AHP Based Portfolio Selection with Risk Preference Modeling. 887
Cristinca Fulga

STR3: A Path-Optimal Filtering Algorithm for Table Constraints 888
Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland H.C. Yap

Boosting Symmetry Breaking During Search in Constraint Programming 889
Jimmy H.M. Lee and Zichen Zhu

Enhancing Partial Symmetry Breaking in Constraint Programming 891
Jimmy H.M. Lee and Zichen Zhu

Decomposition of the Factor Encoding for CSPs. 893
Chavalit Likitvivatanavong, Wei Xia, and Roland H.C. Yap

Tightness of LP Relaxations for Almost Balanced Models 894
Adrian Weller, Mark Rowland, and David Sontag

Author Index . 897

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1
http://dx.doi.org/10.1007/978-3-319-44953-1

Technical Track

Exploiting Short Supports for Improved
Encoding of Arbitrary Constraints into SAT

Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel,
and Peter Nightingale(B)

School of Computer Science, University of St Andrews, St Andrews, UK
{ozgur.akgun,ian.gent,caj21,ijm,pwn1}@st-andrews.ac.uk

Abstract. Encoding to SAT and applying a highly efficient modern
SAT solver is an increasingly popular method of solving finite-domain
constraint problems. In this paper we study encodings of arbitrary con-
straints where unit propagation on the encoding provides strong reason-
ing. Specifically, unit propagation on the encoding simulates generalised
arc consistency on the original constraint. To create compact and effi-
cient encodings we use the concept of short support. Short support has
been successfully applied to create efficient propagation algorithms for
arbitrary constraints. A short support of a constraint is similar to a sat-
isfying tuple however a short support is not required to assign every
variable in scope. Some variables are left free to take any value. In some
cases a short support representation is smaller than the table of satis-
fying tuples by an exponential factor. We present two encodings based
on short supports and evaluate them on a set of benchmark problems,
demonstrating a substantial improvement over the state of the art.

1 Introduction

We address the problem of encoding constraint problems into SAT. This is an
important step because it allows us to leverage the rich modelling languages
available in constraints such as MiniZinc [26] and Essence Prime [20]. We have
previously shown that the constraint modelling tool Savile Row [17] can be
used to translate constraint problems directly to SAT, exploiting automated
modelling techniques such as common subexpression elimination [21].We add to
the important and growing literature on modelling of constraints in SAT [6].
Most study has been devoted to constraints such as linear constraints including
the special case of cardinality constraints [1,2,8,24].

In this paper we show that we can improve SAT models of table constraints
by exploiting short supports. Table constraints are vital in constraint modelling
as they allow arbitrary constraints to be expressed. Table constraints can be
expressed in SAT in such a way as to ensure that unit propagation in the SAT
encoding performs reasoning equivalent to that done by generalised arc consis-
tency (GAC) in the constraint problem [3]. A short support of a constraint is
similar to a satisfying tuple, but a short support is not required to assign every

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-44953-1 1

4 Ö. Akgün et al.

variable: some variables are left free to take any value. Where it is possible,
exploiting short supports has proved to improve efficiency of GAC propagation
[12,19]. We show that Bacchus’s encoding of table constraints into SAT can
be adapted to exploit short supports. This can lead to much smaller encodings
and faster propagation, while still obtaining GAC. We present two encodings
for table constraints with short supports into SAT. We get the advantages of
modern SAT solvers automatically, such as generating explanations of failure
and learning.

Short supports represent one method of compressing table constraints, and
other methods have been proposed: MDDs [7], C-tuples [13] and their generali-
sation [22], and Smart Tables [14]. Uniquely, short supports allow us to directly
improve the encoding of Bacchus without introducing any complications to it.

2 Preliminaries

The Propositional Satisfiability Problem (SAT) is to find an assignment to a set
of Boolean variables so as to satisfy a given Boolean formula, typically expressed
in conjunctive normal form [5]. SAT has many important applications, such
as hardware design and verification, planning, and combinatorial design [15].
Powerful, robust solvers have been developed for SAT employing techniques
such as conflict-driven learning, watched literals, restarts and dynamic heuristics
for backtracking solvers [16], and sophisticated incomplete techniques such as
stochastic local search [23].

A constraint satisfaction problem (CSP) is defined as a set of variables X, a
function that maps each variable to its domain, D : X → 2Z where each domain
is a finite set, and a set of constraints C. A constraint c ∈ C is a relation over
a subset of the variables X. The scope of a constraint c, named scope(c), is the
set of variables that c constrains. During a systematic search for a solution to
a CSP, values are progressively removed from the domains D. Therefore, we
distinguish between the initial domains and the current domains. The function
D refers to the current domains and Ds to the initial domains. A literal is a
variable-value pair (written x #→ v). A literal x #→ v is valid if v ∈ D(x). The
size of the largest initial domain is d. For a constraint c we use r for the size
of scope(c). A constraint c is Generalised Arc Consistent (GAC) if and only if
there exists a full-length support containing every valid literal of every variable
in scope(c). GAC is established by identifying all literals x #→ v for which no full-
length support exists and removing v from the domain of x. We consider only
algorithms for establishing GAC in this paper. A full-length support of constraint
c is a set of literals containing exactly one literal for each variable in scope(c),
such that c is satisfied by the assignment represented by these literals.

A short support is a support containing at most one literal for each vari-
able in scope(c). As a motivating example for short supports, consider the lexi-
cographic ordering constraint ≤lex on tuples. We can often know this is true
just based on examining a small number of the variables in the constraint.
Consider ⟨x1, x2, x3⟩ ≤lex ⟨x4, x5, x6⟩ where variables x1, . . . x6 each have ini-
tial domain Ds = {1, 2, 3}. A full-length support is necessarily size 6: e.g.

Exploiting Short Supports for Encoding into SAT 5

{x1 #→ 2, x2 #→ 2, x2 #→ 2, x4 #→ 2, x5 #→ 2, x6 #→ 2} is a correct full-length
support since ⟨2, 2, 2⟩ ≤lex ⟨2, 2, 2⟩. In contrast, the set {x1 #→ 1, x4 #→ 2} is a
correct short support even though it contains only two of the six variables: it
is necessarily true that ⟨1, ∗, ∗⟩ ≤lex ⟨2, ∗, ∗⟩, whatever replaces the stars. Short
supports can be of variable lengths as needed. For example, the short support
{x1 #→ 2, x2 #→ 2, x4 #→ 2, x5 #→ 3} is a correct short support of size 4, but no
literal can be removed from it without leaving at least one extension to a set of
literals breaking the constraint. Following [19] we formally define short support
as follows.

Definition 1 [Short support]. A short support S for constraint c and domains
Ds is a set of literals x #→ v such that x ∈ scope(c), x #→ v is valid w.r.t Ds,
x occurs only once in S, and every superset of S that contains one valid (w.r.t
Ds) literal for each variable in scope(c) is a full-length support.1

Note from the definition that any full-length support is also a short support.
In the example the set {x1 #→ 2, x2 #→ 2, x2 #→ 2, x4 #→ 2, x5 #→ 2, x6 #→ 2} is a
short support and indeed no literal can be omitted to give another short support.
In some cases even an empty set can be a short support. Suppose we change the
motivating example so that Ds(x1) = {0} and other domains are unchanged. All
valid assignments satisfy the lexicographic constraint since the only value of x1

is 0 and ⟨0, ∗, ∗⟩ ≤lex ⟨∗, ∗, ∗⟩, so the empty set is a correct short support.

3 Encoding Table Constraints into SAT

Our encoding of constraint problems into SAT follows that which we have pre-
viously used and reported on [21]. When encoding a CSP variable, Savile Row
provides SAT literals for facts about the variable: [x = a], [x ̸= a], [x ≤ a]
and [x > a] for a CSP variable x and value a. On all benchmarks used here,
CSP variables are encoded in two ways. A variable with domain size 2 is rep-
resented with a single SAT variable. For variables with larger domains we have
one SAT variable representing [x = a] for each value a ∈ Ds(x), and one SAT
variable for each [x ≤ a] except [x ≤ max(Ds(x))] that would always be true.
Also, [x = max(Ds(x))] ↔ ¬[x ≤ max(Ds(x)) − 1] saving one more SAT vari-
able. If we have a literal, e.g. [x ≤ a], where a ̸∈ Ds(x), then the literal is
mapped as appropriate to True, False or an equivalent literal, e.g. [x ≤ b] for
b = max({i ∈ Ds(x)|i < a}). The encoding has 2|Ds(x)| − 2 SAT variables and
consistency among them is maintained by the following clause set (sometimes
called the ladder encoding [10]).

∀a ∈ Ds(x). [x = a] ↔ ([x ≤ a] ∧ ¬[x ≤ a+ 1]) ∧ [x ≤ a − 1] → [x ≤ a]

1 The set of short supports depends on the domains Ds. We always use the initial
domains. Elsewhere, short supports are generated using the current domains D but
these sets are not necessarily short supports after backtracking [18,19]. A support
of either type is valid iff all literals in it are valid.

6 Ö. Akgün et al.

The only constraint we consider in this paper is the table constraint. This
can be used to encode arbitrary constraints extensionally. The table constraint is
very important in constraint programming, for constraints where no convenient
expression in terms of simpler constraints is available. Suppose we have a con-
straint C on variables x1 . . . xr represented as a table of satisfying tuples, each
of which is valid w.r.t. initial domains. Bacchus presented an encoding of table
constraints [3]. Each satisfying tuple τi (where i ∈ {1 . . .m}) is represented with
an auxiliary SAT variable ti. The first clause set ensures that each ti becomes
false when the tuple τi becomes invalid (i.e. a value in τi has been removed).

∀i ∈ {1 . . .m}. ∀j ∈ {1 . . . r}. ([xj = τi[j]] ∨ ¬ti)
The second clause set states that each domain value of variables x1 . . . xr

must be supported by a valid tuple.

∀i ∈ {1 . . . r}. ∀a ∈ D(xi). ([xi ̸= a] ∨
∨

tj where τj [i] = a)

Unit propagation (UP) applied to these clauses firstly removes from consid-
eration any invalid tuple τi by setting ti to false, then removes any domain value
a of variable xi (by setting [xi ̸= a]) where no remaining tuples support the
value. Thus UP (re-)establishes GAC. Bacchus observed that the encoding has
size O(mr) which is linear in the size of the table representation of the constraint
and applying UP has the same time complexity as a generic GAC propagator.

4 Short Support Encodings of Arbitrary Constraints

The idea of short support has already been successfully applied in constraint
propagators [12,18,19]. Short support is defined above (Definition 1). Our con-
tribution here is to exploit short supports in a new encoding that is smaller and
more efficient than the Bacchus encoding while keeping the property that unit
propagation establishes GAC. We assume that we already have a short support
set for the constraint we wish to encode. It is often straightforward to construct
a short support set for a constraint. Otherwise, an automated approach may
be used such as the Greedy-Compress algorithm [12] that takes the table of
full-length supporting tuples and compresses them to a short support set. It
is possible that no short supports are available: in this case our encoding will
provide neither harm nor benefit as it is equivalent to the Bacchus encoding.

The encoding for constraint C on variables x1 . . . xr is as follows. Each short
support σi (i ∈ {1 . . .m}) is represented with an auxiliary SAT variable si. The
first clause set ensures that si is false when σi contains a literal that is invalid.

∀i ∈ {1 . . .m}. ∀(xj #→ a) ∈ σi. ([xj = a] ∨ ¬si)
The second clause set states that each literal (xi #→ a) of variables x1 . . . xr

must be supported by a valid short support, either explicitly (where the short
support simply contains (xi #→ a)) or implicitly (where the short support con-
tains no literal of the variable xi, meaning xi may take any value).

Exploiting Short Supports for Encoding into SAT 7

∀i ∈ {1 . . . r}. ∀a ∈ Ds(xi).
([xi ̸= a] ∨

∨
sj where (xi #→ a) ∈ σj or ∀b.(xi #→ b) /∈ σj)

The two clause sets are sufficient for unit propagation to establish GAC on
the constraint: the first clause set removes from consideration any short support
that is invalid by setting the relevant si to false, and the second prunes any values
that have no remaining short supports of either type (explicit or implicit).

This encoding has the property that the auxiliary variables si may not be
uniquely determined when all SAT variables representing CSP variables have
been assigned. This occurs when more than one short support is valid w.r.t. the
CSP assignment. In this case at least one of the corresponding si must be true,
but otherwise their values float freely. The free variables may cause additional
search, and would cause a problem if we wished to count solutions. We obtain a
second encoding without this issue by including the following additional clause
set, which sets an si variable to true when all literals in σi are set true.

∀i ∈ {1 . . .m}.
(∨

[xj ̸= a] where (xj #→ a) ∈ σi

)
∨ si

Compared to the full-length table encoding, the short support encoding has
fewer auxiliary variables, each representing a smaller conjunction of literals of
the primary SAT variables. This is likely to be beneficial for conflict learning,
facilitating more general and reusable explanations for conflicts.

We will refer to the short support encoding without the optional clause set
as ShortTableSAT, and with the optional clause set as ShortTableSAT+.

5 Experimental Evaluation

To show the potential benefit of encoding using short supports, we evaluated
our encodings of them on a number of problem classes. These are not intended
to be an exhaustive or representative sample of possible problems, but a set of
instances where short supports are available and thus show the potential benefit
of our encodings. The instances we study are drawn from three general categories.

5.1 Case Study 1: Rectangle Packing
The rectangle packing problem [25] (with parameters n, width and height) con-
sists of packing all squares from size 1 × 1 to n × n into the rectangle of size
width × height . This is modelled as follows: we have variables x1 . . . xn and
y1 . . . yn, where (xi, yi) represents the Cartesian coordinates of the lower-left
corner of the i × i square. Domains of xi variables are {0 . . .width − i}, and for
yi variables are {0 . . . height − i}. The only type of constraint is non-overlap of
squares i and j: (xi + i ≤ xj) ∨ (xj + j ≤ xi) ∨ (yi + i ≤ yj) ∨ (yj + j ≤ yi).
The domains of xn and yn are reduced to break flip symmetries [25]. The short
supports of the non-overlap constraints are all of length two. Each short sup-
port satisfies one of the four disjuncts, thus satisfying the constraint. In a given
instance, each constraint has a distinct short supports table because the con-
stants i and j differ.

8 Ö. Akgün et al.

We compared the full length table encoding to both short table encodings
on a set of instances taken from Jefferson and Nightingale [12] in addition to
some generated ones. We generated two sets of instances: some small instances
for all combinations of values for n ∈ {2 . . . 6}, width ∈ {10, 15, 20, 25}, and
height ∈ {10, 15, 20, 25}; and some larger instances for all combinations of values
for n ∈ {2, 4 . . . 30}, width ∈ {20, 25, 30, 35}, and height ∈ {20, 25, 30, 35}. For
both of these sets we only kept those instances where width < height and also
filtered out those which were trivially unsatisfiable due to area constraints.

5.2 Case Study 2: The Oscillating Life Problem and Variants
Thereof

We consider the problem of maximum density oscillators (repeating patterns) in
John Conway’s Game of Life. We consider this and three variants. Immigration
has two alive states. When a cell becomes alive, it takes the state of the majority
of the 3 neighbouring live cells that caused it to become alive. Otherwise the
rules of Immigration are the same as those of Life. Quadlife has four alive states.
When a cell becomes alive, it takes the state of the majority of the 3 neighbouring
live cells which caused it to become alive, unless all 3 neighbours have different
colours in which case it takes the colour which none of its neighbours have. Apart
from this the rules are the same as Life. Finally Brian’s Brain has three states:
dead, alive and dying. If a cell is dead and has exactly two alive (not dying)
neighbours, it will become alive, otherwise it remains dead. If a cell is alive, it
becomes dying after one time step. If a cell is dying, it becomes dead after one
time step. We use an n × n grid with t time steps, for all pairs of values (n, t)
where n ∈ {3 . . . 7} and t ∈ {2 . . . 6}, giving 25 instances.

We use the problem and constraint model as described by Gent et al. [9].
For all four problems, we make one change: we minimise the occurrences of the
value 0 (dead) in all layers. For Immigration, Quadlife and Brian’s Brain we also
add extra domain values for each additional state. For each cell and each time
step, a single constraint links the cell and its eight neighbours to the same cell in
the next time step. Therefore the constraints have arity 10. Short supports arise
from sums in the rules, e.g. a live cell with more than three live neighbours will
die: if the current cell is alive, any four neighbours are alive, and the next cell is
dead then the constraint is satisfied and we have a short support of length 6.

5.3 Case Study 3: The Antichain Problem
The antichain problem is to find a set of multisets under some conditions [11].
Representing a multiset as a vector of integers (giving the cardinality of each
possible value), we find a set of size n of vectors of length l, containing integers
from the set {0 . . . d−1}. For each pair of vectors v1, v2, there must exist an index
i where v1[i] < v2[i] and a second index j where v1[j] > v2[j]. The problem is
modelled with a two-dimensional matrix A with size n by l. Each pair of vectors
is linked by a single constraint capturing both the < and > requirements, with
scope size 2l. The constraint linking any two vectors has short supports of length
four. We compared the full length table encoding to both short table encodings
on a set of 50 instances that includes all instances used by Jefferson et al. [11].

Exploiting Short Supports for Encoding into SAT 9

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

S
ol

ve
r

T
im

e

Instances

Long vs Short supports for the Rectangle Packing Problem

LongTableSAT
ShortTableSAT

ShortTableSAT+

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

S
ol

ve
r

T
im

e

Instances

Long vs Short supports for the Antichain Problem

LongTableSAT
ShortTableSAT

ShortTableSAT+

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

S
ol

ve
r

T
im

e

Instances

Long vs Short supports for the Life Problems

LongTableSAT
ShortTableSAT

ShortTableSAT+

Fig. 1. Solver run times for the six problem classes

10 Ö. Akgün et al.

5.4 Experimental Results

For a SAT solver we used the SAT’14 Competition version of Lingeling [4]
(version ayv 86bf266b9332599f1b876e28a02fe8427aeaa2db). Each instance was
solved 5 times, with random seeds changing from 1 to 5. We report the median
of the five runtimes reported by Lingeling. Experiments were performed with
32 processes in parallel on a 32-core AMD Opteron 6272 at 2.1GHz with 256
GB RAM. We set a limit of 1 h for each Lingeling process. Results are in Fig. 1.
The x axis shows instances, ordered by increasing run time of ShortTableSAT+.
Each position on the x axis represents the same instance within a plot. The y
axis shows run time in seconds of Lingeling. Run time of the Savile Row trans-
lation process is ignored, except that nothing is plotted if Savile Row overran
its time or space limit. We do plot (in red) the points where Lingeling reported
that it reached its time limit. In some cases Lingeling reported reaching the time
limit but also reported a time substantially less or greater than 1 h. We simply
plotted the time Lingeling reported using a red point.

For the packing problem (Fig. 1, top), we see that we benefit greatly from use
of short supports. There are many instances where LongTableSAT is unable to
solve the instance, but both short table encodings are. On most other instances
both short support methods are at least one and often several orders of magni-
tude faster. There is no clear preference between the two short encodings, with
both methods faster on some instances, although ShortTableSAT+ is typically
faster on the instances which can be solved fastest. We see in the antichain
problem (Fig. 1, middle) that again short supports provide improved search per-
formance compared to LongTableSAT, by orders of magnitude. In this case it
seems that ShortTableSAT is the better of the two short table encodings. For the
Life, Immigration, Brian’s Brain and Quadlife problem classes (Fig. 1, bottom),
we see that short supports do improve search but to a much lesser degree than
in the previous cases. There are a small number of cases where LongTableSAT
beats one of the short methods. However, using short tables is still much faster
in most cases.

Our results show that the use of short supports in a SAT encoding can greatly
improve solving performance over the use of full length table constraints.

6 Conclusions

Encoding to SAT and solving with a modern CDCL SAT solver is a very effective
way to solve difficult finite-domain constraint problems. We have studied the
encoding of table constraints, and proposed two new encodings based on the
idea of short supports. These improve upon an existing encoding in both size and
solving efficiency. In our experiments, the new encoding is consistently faster,
frequently by over 10 times and in some cases by over 1000 times.

Acknowledgements. We would like to thank the EPSRC for funding this work
through grants EP/H004092/1, EP/K015745/1, and EP/M003728/1. In addition, Dr
Jefferson is funded by a Royal Society University Research Fellowship.

Exploiting Short Supports for Encoding into SAT 11

References

1. Ab́ıo, I., Mayer-Eichberger, V., Stuckey, P.J.: Encoding linear constraints with
implication chains to CNF. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
3–11. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23219-5 1

2. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011). doi:10.
1007/s10601-010-9105-0

3. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 133–147. Springer, Heidelberg (2007)

4. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013.
In: Proceedings of SAT Competition, pp. 51–52 (2013)

5. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
Press, Amsterdam (2009)

6. Brain, M., Hadarean, L., Kroening, D., Martins, R.: Automatic generation of prop-
agation complete SAT encodings. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 536–556. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 26

7. Cheng, K.C.K., Yap, R.H.C.: An MDD-based generalized arc consistency algorithm
for positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

8. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006). http://jsat.ewi.tudelft.nl/content/volume2/JSAT2 1 Een.pdf

9. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Generating special-purpose
stateless propagators for arbitrary constraints. In: Cohen, D. (ed.) CP 2010. LNCS,
vol. 6308, pp. 206–220. Springer, Heidelberg (2010)

10. Gent, I.P., Nightingale, P.: A new encoding of alldifferent into SAT. In: Proceedings
3rd International Workshop on Modelling and Reformulating Constraint Satisfac-
tion Problems (ModRef 2004), pp. 95–110 (2004)

11. Jefferson, C., Moore, N., Nightingale, P., Petrie, K.E.: Implementing logical con-
nectives in constraint programming. Artif. Intell. 174, 1407–1429 (2010)

12. Jefferson, C., Nightingale, P.: Extending simple tabular reduction with short sup-
ports. In: Proceedings of 23rd International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 573–579 (2013)

13. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Proceedings of the CP 2007, pp. 379–393 (2007)

14. Mairy, J.-B., Deville, Y., Lecoutre, C.: The smart table constraint. In: Michel, L.
(ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 271–287. Springer, Heidelberg (2015)

15. Marques-Silva, J.: Practical applications of boolean satisfiability. In: 9th Interna-
tional Workshop on Discrete Event Systems (WODES 2008), pp. 74–80 (2008)

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535. ACM (2001)

17. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically
improving constraint models in savile row through associative-commutative com-
mon subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656,
pp. 590–605. Springer, Heidelberg (2014)

18. Nightingale, P., Gent, I.P., Jefferson, C., Miguel, I.: Exploiting short supports for
generalised arc consistency for arbitrary constraints. In: Proceedings of the IJCAI
2011, pp. 623–628 (2011)

http://dx.doi.org/10.1007/978-3-319-23219-5_1
http://dx.doi.org/10.1007/s10601-010-9105-0
http://dx.doi.org/10.1007/s10601-010-9105-0
http://dx.doi.org/10.1007/978-3-662-49122-5_26
http://dx.doi.org/10.1007/978-3-662-49122-5_26
http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_1_Een.pdf

12 Ö. Akgün et al.

19. Nightingale, P., Gent, I.P., Jefferson, C., Miguel, I.: Short and long supports for
constraint propagation. J. Artif. Intell. Res. 46, 1–45 (2013)

20. Nightingale, P., Rendl, A.: Essence’ description (2016). arXiv:1601.02865 [cs.AI]
21. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding

of constraint problems through common subexpression elimination in savile row.
In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330–340. Springer, Heidelberg
(2015)

22. Régin, J.: Improving the expressiveness of table constraints. In: The 10th Inter-
national Workshop on Constraint Modelling and Reformulation (ModRef 2011)
(2011)

23. Shang, Y., Wah, B.W.: A discrete Lagrangian-based global-search method for solv-
ing satisfiability problems. J. Glob. Optimi. 12(1), 61–99 (1998)

24. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality con-
straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74970-7 35

25. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Proceedings
of the CP 2008, pp. 52–66 (2008)

26. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013)

http://arxiv.org/abs/1601.02865
http://dx.doi.org/10.1007/978-3-540-74970-7_35

Systematic Derivation of Bounds and Glue
Constraints for Time-Series Constraints

Ekaterina Arafailova1(B), Nicolas Beldiceanu1, Mats Carlsson2, Pierre Flener3,
María Andreína Francisco Rodríguez3, Justin Pearson3, and Helmut Simonis4

1 TASC (CNRS/Inria), Mines Nantes, 44307 Nantes, France
{Ekaterina.Arafailova,Nicolas.Beldiceanu}@mines-nantes.fr

2 SICS, P.O. Box 1263, 164 29 Kista, Sweden
Mats.Carlsson@sics.se

3 Department of Information Technology, Uppsala University,
751 05 Uppsala, Sweden

{Pierre.Flener,Maria.Andreina.Francisco,Justin.Pearson}@it.uu.se
4 Insight Centre for Data Analytics, University College Cork, Cork, Ireland

Helmut.Simonis@insight-centre.org

Abstract. Integer time series are often subject to constraints on the
aggregation of the integer features of all occurrences of some pattern
within the series. For example, the number of inflexions may be con-
strained, or the sum of the peak maxima, or the minimum of the peak
widths. It is currently unknown how to maintain domain consistency
efficiently on such constraints. We propose parametric ways of system-
atically deriving glue constraints, which are a particular kind of implied
constraints, as well as aggregation bounds that can be added to the
decomposition of time-series constraints [5]. We evaluate the beneficial
propagation impact of the derived implied constraints and bounds, both
alone and together.

1 Introduction

A time series is here a sequence of integers, corresponding to measurements taken
over a time interval. Time series are common in many application areas, such
as the output of electric power stations over multiple days [8], or the manpower
required in a call-centre [3].

We showed in [5] that many constraints γ(⟨X1, . . . , Xn⟩, N) on an unknown
time series X = ⟨X1, . . . , Xn⟩ of given length n can be specified by a triple
⟨σ, f, g⟩, where σ is a regular expression over the alphabet Σ = {‘<’, ‘=’, ‘>’}

We thank the anonymous referees for their helpful comments. The authors in Nantes
are supported by the EU H2020 programme under grant 640954 for project GRACe-
FUL and by the Gaspard-Monge programme. The authors in Uppsala are sup-
ported by the Swedish Research Council (VR) under grants 2011-6133 and 2012-
4908. The last author is supported by Science Foundation Ireland (SFI) under
grant SFI/10/IN.1/I3032; the Insight Centre for Data Analytics is supported by
SFI under grant SFI/12/RC/2289.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 13–29, 2016.
DOI: 10.1007/978-3-319-44953-1_2

14 E. Arafailova et al.

(we assume the reader is familiar with regular expressions and automata [12]),
while f ∈ {max, min, one, surface, width} is called a feature, and g ∈
{Max, Min, Sum} is called an aggregator. Let the sequence S = ⟨S1, . . . , Sn−1⟩,
called the signature and containing signature variables, be linked to X via
the signature constraints (Xi < Xi+1 ⇔ Si = ‘<’) ∧ (Xi = Xi+1 ⇔ Si =
‘=’)∧ (Xi > Xi+1 ⇔ Si = ‘>’) for all i ∈ [1, n−1]. A σ-pattern is a sub-series of
X that corresponds to a maximal occurrence of σ within S. Integer variable N
is constrained to be the aggregation, computed using g, of the list of values of
feature f for all σ-patterns in X. A set of 20 regular expressions is considered.
We name a time-series constraint specified by ⟨σ, f, g⟩ as g_f_σ.

Example 1. The time series X = ⟨4, 4, 0, 0, 2, 4, 4, 7, 4, 0, 0, 2, 2, 2, 2, 2, 2, 0⟩ has
the signature S = ‘=>=<<=<>>=<=====>’. Consider the regular expres-
sion Peak = ‘<(<|=)*(>|=)*>’: a Peak-pattern, called a peak, within a time
series corresponds, except for its first and last elements, to a maximal occur-
rence of Peak in the signature, and the width feature value of a peak is its
number of elements. The time series X contains two peaks, namely ⟨2, 4, 4, 7, 4⟩
and ⟨2, 2, 2, 2, 2, 2⟩, visible the wayX is plotted in Fig. 1, of widths 5 and 6 respec-
tively, hence the minimal-width peak, obtained by using the aggregator Min, has
width N = 5: the underlying constraint is named min_width_peak. ⊓(

4 4

0 0

2

4 4

7

4

0 0

2 2 2 2 2 2

05 6

Fig. 1. min_width_peak(5, ⟨4, 4, 0, 0, 2, 4, 4, 7, 4, 0, 0, 2, 2, 2, 2, 2, 2, 0⟩)

After recalling in Sect. 2 further required background material on time-series
constraints g_f_σ(⟨X1, . . . , Xn⟩, N), the contributions of this paper are ways
of systematically deriving parametric implied constraints and bounds:
– We show in Sect. 3 how to derive systematically implied constraints, parame-

terised by aggregator g and feature f , for any regular expression σ.
– We give in Sect. 4 a methodology for systematically deriving bounds, para-

metrised by σ, on the variable N , for any pair of g and f , and then we
demonstrate our methodology on the case when g = Max and f = min.

– We evaluate in Sect. 5 the beneficial propagation impact of the derived implied
constraints and bounds, both alone and together.

In Sect. 6, we conclude and discuss other related work. The implied constraints
and bounds for all time-series constraints are in [2].

Systematic Derivation of Bounds and Glue Constraints 15

2 Background: Automata for Time-Series Constraints

In [5], we showed how to synthesise a deterministic finite automaton, enriched
with accumulators [7], from any triple ⟨σ, f, g⟩ that specifies a time-series con-
straint. We now discuss the required background concepts using an example,
namely the regular expression Peak = ‘<(<|=)*(>|=)*>’ of Example 1.

Fig. 2. Synthesised automaton for any g_f_Peak constraint

The synthesised automaton for any g_f_peak constraint is in Fig. 2. It
returns the aggregation, using g, of the values of feature f for all Peak-patterns
corresponding to the occurrences of Peak within an input word over the alpha-
bet Σ = {‘<’, ‘=’, ‘>’}. The start state is k, annotated within braces by the
initialisation of three accumulators: at any moment, accumulator c stores the
feature value of the current Peak-pattern while d stores the feature value of a
potential part of a Peak-pattern, and r stores the aggregated result for the fea-
ture values of the already encountered Peak-patterns. A transition is depicted
by an arrow between two states and is annotated by a consumed alphabet sym-
bol and, within braces, an accumulator update. The constants and operators
appearing in the accumulator initialisation and updates are listed in Table 1;
the binary operators φf and φg are used with arbitrary arity throughout this
paper, in order to reduce the amount of parentheses. All states are accepting, an
accepting state being marked by a double circle. Hence this automaton accepts
the language Σ∗, but accepted words may be distinguished by the value of the
returned expression, given within a box linked to all states. Note that the size
of this automaton does not depend on the length of the input word.

In [7], we showed how to use an automaton with accumulators in order to
decompose a constraint such as g_f_peak(⟨X1, . . . , Xn⟩, N) into signature con-
straints, linking ⟨X1, . . . , Xn⟩ to introduced signature variables ⟨S1, . . . , Sn−1⟩,
as well as arithmetic and table constraints, linking ⟨S1, . . . , Sn−1⟩ and N to

16 E. Arafailova et al.

Table 1. (Left) Features: identity, minimum, and maximum values; operators φf and δif
recursively define the feature value vu of a time series ⟨Xℓ, . . . , Xu⟩ by vℓ = φf (idf , δ

ℓ
f)

and vi = φf (vi−1, δ
i
f) for i > ℓ, where δif is the contribution of Xi to vu. (Right)

Aggregators: operators and identity values relative to a feature f .

f f minf maxf φf δif

one 1 1 1 1 1
width 0 0 +∞ + 1
surface 0 −∞ +∞ + Xi

max −∞ −∞ +∞ max Xi

min +∞ −∞ +∞ min Xi

g φg
f
g

Max max minf

Min min maxf

Sum + 0

introduced state variables Qi and tuples ⟨Ci,Di, Ri⟩ of accumulator variables,
respectively denoting the automaton state and accumulator values ⟨c, d, r⟩ after
consuming Si. It is still unknown how to maintain domain consistency efficiently
in general on this decomposition (see [7] for an analysis), hence implied con-
straints can help achieve more propagation, as we already showed in [6,11].

3 Glue Constraints for Time-Series Constraints

In [6] we derived an implied constraint, called a glue constraint, that can be
added to the decomposition of a constraint specified by an automaton with accu-
mulators: the derivation was ad hoc in most cases. In this paper, we introduce
parametric glue constraints and show that they can be derived automatically for
time-series constraints, which we introduced a year later in [5].

Example 2. We can explain the key insight using Example 1. The reverse of
its time series X is X ′ = ⟨0, 2, 2, 2, 2, 2, 2, 0, 0, 4, 7, 4, 4, 2, 0, 0, 4, 4⟩ and has the
signature Smir = ‘<=====>=<<>=>>=<=’, which we will call the mir-
ror of the original signature S. The automaton of Fig. 2 returns the same
value whether it consumes a signature or its mirror: the peaks of X are the
reverses of the peaks of X ′ and the aggregation of their feature values is the
same because all the operators φf and φg are commutative. We have this prop-
erty for 19 of the 20 regular expressions in [5]. The idea now is to derive an
implied constraint, which we will call a glue constraint, between the three accu-
mulator triples of such an automaton after it has consumed (i) a signature w,
(ii) a prefix w1 of w, and (iii) the mirror of the corresponding suffix w2 of w.
For instance, let us split S into the prefix P = ‘=>=<<=<’ and the suf-
fix T = ‘>>=<=====>’, which has the mirror Tmir = ‘<=====>=<<’.
If we instantiate the automaton A of Fig. 2 for the min_width_peak con-
straint, that is with f = width and g = Min, then A has the accumulator
triples ⟨c, d, r⟩ = ⟨6, 0, 5⟩ after consuming S, and ⟨c1, d1, r1⟩ = ⟨+∞, 3,+∞⟩
after consuming P , and ⟨c2, d2, r2⟩ = ⟨+∞, 1, 6⟩ after consuming Tmir. The value
φg(r, c) = min(5, 6) = 5 returned by A on S can also be computed using the

Systematic Derivation of Bounds and Glue Constraints 17

formula φg(r1, r2,φf (d1, d2, δif)), that is min(+∞, 6, 3 + 1 + 1). That formula
computes the minimum width of the following three peaks:
– the minimum-width peak corresponding to P , which actually has no occur-

rence of Peak = ‘<(<|=)*(>|=)*>’, hence r1 = idf = +∞;
– the minimum-width peak corresponding to Tmir, whose only occurrence of

Peak gives width r2 = 6;
– the peak that is created by concatenating the following two potential peaks:

• the potential occurrence of Peak at the end of P , giving width d1 = 3;
• the potential occurrence of Peak at the end of Tmir, giving d2 = 1; note

that if we feed T rather than Tmir to A, then ⟨c2, d2, r2⟩ = ⟨6, 0,+∞⟩
and d2 reflects information about the end of T , rather than its beginning,
hence the created peak is missed;

but the contribution δif = 1 (with i = |P |+ 1) is required to compensate for
the fact that d1 + d2 = 4 under-measures the width 5 of the created peak. ⊓(

We now formalise this insight, and add scenarios other than creation.

Definition 1 (mirror). The mirror of a language L over Σ = {‘<’, ‘=’, ‘>’},
denoted by Lmir, consists of the mirrors of all the words in L, where the mirror
of a word or regular expression has the reverse order of its symbols and has all
occurrences of the symbol ‘<’ flipped into ‘>’ and vice versa.

We denote by L(σ) the regular language defined by a regular expression σ.

Definition 2 (state language). Let q be a state of an automaton A. The
language accepted by q, denoted by Lq, is the regular language accepted when q
is made to be the only accepting state of A.

Example 3 Consider the automaton in Fig. 2. We have Lk = L((>|=)*), Lℓ =
Σ∗L(<(<|=)*), and Lm = Σ∗L(Peak)L(=*), where Peak = ‘<(<|=)*(>|=)*>’
is the regular expression for peaks. Standard algorithms of automata theory [12]
can be used to compute state languages: we use the FAdo tool [1] to do so, as well
as to check the language equalities stated in the following three examples. ⊓(

We concatenate two words by writing them side by side, with an implicit infix
concatenation operator between them. The concatenation L1L2 of two languages
L1 and L2 is the language of all words w1w2 where w1 ∈ L1 and w2 ∈ L2.

Definition 3 (extension). We say that the concatenation L1L2 extends a reg-
ular expression σ if and only if for any non-empty words w1 ∈ L1 and w2 ∈ L2

there exist a non-empty suffix s of w1 and a non-empty prefix p of w2 such that
sp ∈ L(σ) and either s starts with the last occurrence of σ in w1, where we say
that L1L2 extends the last σ in L1, or p ends with the first occurrence of σ
in w2, where we say that L1L2 extends the first σ in L2, or both.

Example 4. Consider the regular expression Peak = ‘<(<|=)*(>|=)*>’. Every
word w1 in L1 = Σ∗L(Peak)L(=*) has a suffix in L(Peak)L(=*). Every word w2

in L2 = L((>|=)*>)Σ∗ has a prefix p in L((>|=)*>). The concatenation sp is

18 E. Arafailova et al.

in L(Peak)L(=*)L((>|=)*>), which is a subset of L(Peak), hence L1L2 extends
the last Peak in L1. Note that p cannot end with any occurrence of Peak, hence
L1L2 does not extend any Peak in L2. ⊓(

Definition 4 (creation). We say that the concatenation L1L2 creates a regular
expression σ if and only if for any non-empty words w1 ∈ L1 and w2 ∈ L2,
there exist a non-empty suffix s of w1 and a non-empty prefix p of w2 such that
sp ∈ L(σ) but neither does s start with an occurrence of σ in w1 nor does p end
with an occurrence of σ in w2.

Example 5. Consider again the regular expression Peak = ‘<(<|=)*(>|=)*>’.
Every word w3 in L3 = Σ∗L(<(<|=)*), such as P of Example 2, has a suffix in
L(<(<|=)*). Every word w4 in L4 = L((>|=)*>)Σ∗, such as Tmir of Example 2,
has a prefix in L((>|=)*>). The concatenation is in L(<(<|=)*(>|=)*>),
which is equal to L(Peak). However, neither can start with an occurrence of
Peak nor can end with an occurrence of Peak: hence L3L4 does not extend
Peak, but instead creates Peak. ⊓(

We now give the glue constraint for a time-series constraint specified
by ⟨σ, f, g⟩: it is specific to regular expression σ but generic in f and g. Let
an automaton A for σ reach state

−→
Q and accumulator values ⟨−→C ,

−→
D,

−→
R ⟩ on a

prefix of a word w, as well as state
←−
Q and accumulator values ⟨←−C ,

←−
D,

←−
R ⟩ on

the mirror of the corresponding suffix of w. The value N returned by A on the
entire word w is constrained by N = φg(

−→
R,

←−
R,Γ), where Γ is called the glue

expression and is defined as follows:
1. if L−→

Q
Lmir←−

Q
extends σ, then:

(a) if L−→
Q
Lmir←−

Q
extends both the last σ in L−→

Q
and the first σ in Lmir←−

Q
, then

Γ = φf (
−→
C ,

←−
C ,

−→
D,

←−
D, δif);

(b) if L−→
Q
Lmir←−

Q
extends only the last σ in L−→

Q
, then Γ = φf (

−→
C ,

−→
D,

←−
D, δif);

(c) if L−→
Q
Lmir←−

Q
extends only the first σ in Lmir←−

Q
, then Γ = φf (

←−
C ,

−→
D,

←−
D, δif);

2. if L−→
Q
Lmir←−

Q
creates σ, then Γ = φf (

−→
D,

←−
D, δif);

3. if L−→
Q
Lmir←−

Q
neither creates nor extends σ, then Γ = φg(

−→
C ,

←−
C).

Note that these rules are exhaustive and mutually exclusive, because the final
conditions of extension and creation are negations of each other.

Example 6. Consider the regular expression Peak = ‘<(<|=)*(>|=)*>’, the
automaton A in Fig. 2, and the languages in Example 3 for the states of A.
– Consider

−→
Q = m and

←−
Q = ℓ: by Example 4, for L1 = Lm and L2 = Lmir

ℓ , we
know that L−→

Q
Lmir←−

Q
extends only the last Peak in Lm, so rule 1b applies.

– Consider
−→
Q = ℓ and

←−
Q = ℓ: by Example 5, for L3 = Lℓ and L4 = Lmir

ℓ , we
know that LℓLmir

ℓ creates Peak, so rule 2 applies.

Systematic Derivation of Bounds and Glue Constraints 19

Table 2. Glue expressions for any g_f_peak constraint. A row index refers to the
state of the automaton A in Fig. 2 reached for the prefix, and a column index refers to
the state of A reached for the mirror of the corresponding suffix.

– Consider
−→
Q = m and

←−
Q = m: we have that Lm = Σ∗L(Peak)L(=*) and

Lmir
m = L(=*)L(Peak)Σ∗; note that there does not exist a non-empty suffix

of any word in Lm that, concatenated with a non-empty prefix of any word
in Lmir

m , can form a word in L(Peak), so rule 3 applies.
The other six pairs ⟨−→Q,

←−
Q⟩ of states are handled similarly. All nine glue expres-

sions are presented in matrix form in Table 2. ⊓(

We derived glue constraints for the covered 19 regular expressions: they can
be shown to be correct. We establish their propagation impact in Sect. 5.

In the next section, in order to exploit glue constraints better, we provide
bounds on their main variables, namely the results of aggregating feature values
on a time series, on a prefix thereof, and on the corresponding suffix thereof.

4 Bounds for Time-Series Constraints

We derive bounds on N for any time-series constraint g_f_σ(⟨X1, . . . , Xn⟩, N)
from a few general formulae and the structure of ground time series that give
extreme values of N . The bounds are valid regardless of the domain choice,
but their sharpness is guaranteed only if all the Xi are over the same interval
domain [a, b]. A bound is sharp if it equals N for at least one ground time series.

For each regular expression, there exists a necessary condition, based on the
domains and number of the Xi, for it to occur at least once within the signature.

Example 7. An Inflexion-pattern, called an inflexion, within a time series X =
⟨X1, . . . , Xn⟩ corresponds, except for its first and last elements, to a maximal
occurrence of the regular expression Inflexion = ‘(<(<|=)*>)|(>(>|=)*<)’ in
the signature of X. The necessary condition for having at least one inflexion in
X is b > a ∧ n ≥ 3, where [a, b] is the smallest interval containing the union of
the domains of the Xi. Figure 3a gives an example of inflexion. ⊓(

In Sect. 4.1, we describe a systematic methodology for deriving sharp bounds
on N for any time-series constraint g_f_σ(⟨X1, . . . , Xn⟩, N), under the assump-
tions that all the Xi have the same interval domain and, without loss of general-
ity, that the underlying necessary condition holds. In Sect. 4.2, we illustrate the
methodology on one family of constraints.

20 E. Arafailova et al.

1
2

1

(a) (b) (c)

1
2

1
2

1
2

1
2

1
2 2 2 2 2 2

1

Fig. 3. (a): A time series with an inflexion of shortest width, namely one. (b): A time
series with six inflexions. (c): A time series with one inflexion.

4.1 Methodology

For any time-series constraint g_f_σ(⟨X1, . . . , Xn⟩, N), our aim is to derive
formulae for lower and upper bounds on N , parametrised only by n and the
domain bounds of the Xi. We define a time-series structure that depends only
on g and f , in order to build an optimal time series for the upper (resp. lower)
bound, defined as a ground time series where N is equal to that upper (resp.
lower) bound. We use the following non-mutually-exclusive properties, which
were derived manually, all occurrences of ‘maximal’ and ‘minimal’ being over all
time series of length n over [a, b]:
– Property I holds if the number of σ-patterns is maximal.
– Property IIup(resp. IIlow) holds if there is at least one σ-pattern whose length

is maximal (resp. minimal).
– Property IIIupmax (resp. IIIlowmax) holds if there is at least one σ-pattern and the

absolute difference between b (resp. a) and its maximum is minimal.
– Property IIIupmin (resp. IIIlowmin) holds if there is at least one σ-pattern and the

absolute difference between b (resp. a) and its minimum is minimal.
– Property IV holds if there is no σ-pattern.
– Property Vup

max (resp. Vlow
max) holds if the time series is among those where the

sum of the absolute differences between b (resp. a) and the maxima of the
σ-patterns is minimal, and the number of σ-patterns is maximal.

– Property Vup
min (resp. Vlow

min) holds if the time series is among those where the
sum of the absolute differences between b (resp. a) and the minima of the
σ-patterns is minimal, and furthermore the number of σ-patterns is maximal.

– Property VIupmax (resp. VIlowmax) holds if the time series is among those where
the number of σ-patterns is maximal, and the sum of the absolute differences
between b (resp. a) and the maxima of the σ-patterns is minimal.

– Property VIupmin (resp. VIlowmin) holds if the time series is among those where the
number of σ-patterns is maximal, and furthermore the sum of the absolute
differences between b (resp. a) and the minima of the σ-patterns is minimal.

– Property VIIup (resp. VIIlow) holds if there is at least one σ-pattern of maxi-
mal length among those with only non-negative (resp. non-positive) elements
and the sum of the absolute differences between b (resp. a) and all elements
of such a σ-pattern is minimal.

– Property VIIIup (resp. VIIIlow) holds if there is at least one σ-pattern of
minimal length and the sum of the absolute differences between b (resp. a)
and all elements of such a σ-pattern is minimal.

Systematic Derivation of Bounds and Glue Constraints 21

Table 3. Properties of optimal time series, for feature f and aggregator g.

bound g\f max min one surface width

upper Max IIIupmax IIIupmin VIIup;VIIIup IIup

lower Min IIIlowmax IIIlowmin VIIlow;VIIIlow IIlow

upper Sum IV;Vup
max;VIupmax IV;Vup

min;VIupmin I IV;VIIup;VIIIup I;IIup

lower Sum IV;Vlow
max;VIlowmax IV;Vlow

min;VIlowmin IV;VIIlow;VIIIlow

Twelve constraints have a more involved optimal time-series structure that
is not described in this paper for space reasons. The formulae for these twelve
constraints take time linear in n to evaluate, whereas the formulae for the con-
straints covered by the given methodology take constant time to evaluate.

Table 3 gives for each feature/aggregator pair the set of properties of optimal
time series. An optimal time series for a property P is a ground time series for
g_f_σ(⟨X1, . . . , Xn⟩, N) where N takes the largest (resp. smallest) value for all
ground time series possessing P . If there are several properties for an ⟨f, g⟩ pair,
then we first need to identify an optimal time series for each of those properties.
An optimal time series for some property is an optimal time series if it has the
maximal (resp. minimal) value of N among the set of optimal time series for
every property for ⟨f, g⟩.

Example 8. Consider n = 8 time-series variables over the integer interval [1, 2].
– Consider sum_one_inflexion(⟨X1, . . . , X8⟩, N), which constrains N to be

the number of inflexions in ⟨X1, . . . , X8⟩. For an upper bound on N , the time
series in Fig. 3b is optimal, with N = 6 inflexions, and has Property I.

– Consider max_min_inflexion(⟨X1, . . . , X8⟩, N), which constrains N to be
the maximum of the minima of all inflexions in ⟨X1, . . . , X8⟩. For an upper
bound on N , the time series in Figs. 3b and c are optimal, both with N =
2, and have Property IIIupmin as both have inflexions whose minima have an
absolute difference with b = 2 that is 0, hence their minima are b.

– Consider max_surface_inflexion(⟨X1, . . . , X8⟩, N), which constrains N
to be the maximum of the sums of the elements of all inflexions in
⟨X1, . . . , X8⟩. By Table 3, for an upper bound on N , there exists an optimal
time series for Property VIIup or Property VIIIup or both. The time series
in Fig. 3c is optimal for Property VIIup, with N = 12: there is an inflexion
of maximal length, namely 6, among those with only non-negative elements,
and all elements of this inflexion have an absolute difference with b = 2 that is
minimal, namely 0. The time series in Fig. 3b is optimal for Property VIIIup,
with N = 2: there is an inflexion of minimal length, namely 1, whose elements
all have an absolute difference with b = 2 that is minimal, namely 0. Hence
the upper bound is the maximum of these two values of N , that is 12. ⊓(

22 E. Arafailova et al.

4.2 Bounds for Constraints that Only Have Property IIIupmin

We consider constraints that only have Property IIIupmin, that is with g = Max
and f = min according to Table 3. This pair of feature/aggregator makes sense
for 18 of the 20 regular expressions in [5]. Our goal is to derive an upper bound
on the maximum of the minima of all σ-patterns in a time series, where σ is any
of those regular expressions. According to Property IIIupmin, in an optimal time
series, there is at least one σ-pattern whose minimum is maximal: we use such
a σ-pattern to derive this upper bound. For brevity, we do not derive a lower
bound, because it is almost always possible to have no σ-patterns at all and the
lower bound is then equal to the identity value of g, namely −∞ by Table 1.

Example 9. We can explain the key ideas using Fig. 3b. Consider Inflexion =
‘(<(<|=)*>)|(>(>|=)*<)’ and time series over an integer interval [a, b]. Our
goal is to maximise the maximum of the minima of all inflexions in the time
series: in other words, the difference between b and the minimum of some inflex-
ion should be minimal. The time series t = ⟨1, 2, 1, 2, 1, 2, 1, 2⟩ in Fig. 3b contains
two types of inflexions: the first (resp. second) type corresponds to the signa-
ture ‘<>’ (resp. ‘><’); the inflexions are highlighted in grey. Assume the domain
is [−1,+2]: the minima of the three ‘<>’-type inflexions equal the domain upper
bound, namely b = 2, hence the difference with b is 0; the minima of the three
‘><’-type inflexions equal 1, that is b−1, hence the difference with b is 1. Hence
the smallest difference between b and the minima of the inflexions of t equals 0.
Regardless of the value of b, we can always construct a time series with some
inflexion that contains b, provided the necessary condition of Example 7 holds. If
we now consider the domain [−1,+5], then every element of t can be increased by
three, giving t′ = ⟨4, 5, 4, 5, 4, 5, 4, 5⟩, which has the same signature as t. As for t,
the minima of all ‘<>’-type inflexions equal the domain upper bound, namely
b = 5, and the minima of all ‘><’-type inflexions equal 4, that is b−1. Hence the
smallest difference between b and the minima of the inflexions of t′ also equals 0.
We have shown that the smallest difference between b and the minimum of every
inflexion does not depend on b, due to the signature being ground. We need to
compute the minimum, denoted by ∆Inflexion, of these smallest differences for
any signature in L(Inflexion). The sharp upper bound on N for the constraint
max_min_inflexion(⟨X1, . . . , Xn⟩, N) equals b − ∆Inflexion. ⊓(

We now formalise these ideas.

Computing the Bounds. Consider a max_min_σ(⟨X1, . . . , Xn⟩, N) time-
series constraint where all the Xi are over the same interval domain [a, b]. With-
out loss of generality, for determining an upper bound on N , it suffices to restrict
our focus on time series containing just one σ-pattern, because the result of a
Max-aggregation is any of its occurrences of the largest value, whereas smaller
values are absorbed. Let Tω denote the set of ground time series over [a, b] whose
signature is ω ∈ L(σ). For any t in Tω, let t↓ω denote the index set of the σ-
pattern in t. We want to derive a formula that can be used to evaluate in constant

Systematic Derivation of Bounds and Glue Constraints 23

time the upper bound u = maxω∈L(σ) maxt∈Tω mini∈t↓ω ti, which is equal to the
wanted upper bound on N under the stated focus restriction. Since u depends
also on a and b, its direct computation would not take constant time, because
every |Tω| depends on a and b. In order to compute u in constant time, we refor-
mulate it as an arithmetic expression on b and a parameter that only depends
on σ, using the following transformations:

u = b − (b − u) = b − (b − max
ω∈L(σ)

max
t∈Tω

min
i∈t↓ω

ti)

= b − min
ω∈L(σ)

(b − max
t∈Tω

min
i∈t↓ω

ti)

= b − min
ω∈L(σ)

min
t∈Tω

(b − min
i∈t↓ω

ti) (1)

The value of ∆ω = mint∈Tω (b−mini∈t↓ω ti), called the shift of signature ω, does
not depend on a and b: every time series t in Tω that gives this minimum must
contain b, which can thus be replaced by max t; otherwise, every element of t
could be incremented by at least 1, as shown in Example 9, thus reducing the
minimal value of b−mini∈t↓ω ti and contradicting the optimal choice of t. Hence
∆σ = minω∈L(σ) ∆ω, called the shift of regular expression σ, does not depend
on a and b either. The upper bound u on N then is b − ∆σ by (1). In order to
compute ∆σ, we need to compute ∆ω for each signature ω ∈ L(σ).

We compute each ∆ω as follows, for a ground signature ω = ⟨S1, . . . , Sℓ⟩
linked to a time series X = ⟨X1, . . . , Xℓ+1⟩ by signature constraints. First, we
rewrite ∆ω as follows:

∆ω = min
t∈Tω

(b − min
i∈t↓ω

ti) = min
t∈Tω

max
i∈t↓ω

(b − ti) (2)

Let ∆t
i denote b − ti. Note that ∆t

i ≥ 0 because we assume ti ≤ b. Hence a
time series that minimises the sum of the ∆t

i also minimises each ∆t
i, and thus

the maximum of the ∆t
i. So a tuple ⟨∆t

1, . . . ,∆t
ℓ+1⟩ that is minimal for the sum∑

i∈[1,ℓ+1] ∆
t
i is also minimal for maxi∈t↓ω ∆t

i and we can solve the following
minimisation problem:

minimise
ℓ+1∑

i=1

∆i

subject to ∆i ≥ 0 ∀i ∈ [1, ℓ + 1] (3)
if Si = ‘<’ then ∆i > ∆i+1 ∀i ∈ [1, ℓ] (4)
if Si = ‘=’ then ∆i = ∆i+1 ∀i ∈ [1, ℓ] (5)
if Si = ‘>’ then ∆i < ∆i+1 ∀i ∈ [1, ℓ] (6)

∆i ∈ Z ∀i ∈ [1, ℓ + 1]

The semantics of variable ∆i, called the shift of variable Xi, with i ∈ [1, ℓ+1],
is b−Xi. For example, if Si = ‘>’, meaning Xi > Xi+1, then b−Xi < b−Xi+1,
hence ∆i < ∆i+1. Depending on the value of each Si, which is assumed ground,
we post only one of the constraints (4), (5), or (6) for each pair ⟨∆i,∆i+1⟩.

24 E. Arafailova et al.

Note that ∆t
i corresponds to ∆i = b − Xi when Xi = ti: hence constraint (3).

Therefore, in an optimal solution ∆∗ = ⟨∆∗
1, . . . ,∆∗

ℓ+1⟩, the value of ∆∗
i is the

minimal shift of Xi. Hence ∆∗ is also an optimal solution to the right-hand side
of (2), and so we have ∆ω = maxi∈X↓ω ∆∗

i . Note that the optimal value of the
optimisation problem itself is irrelevant.

Since ∆ω does not depend on a and b, it can be computed once and for all
for any signature ω. Hence it does not matter how much time the minimisation
problems take to solve. We show further that the number of minimisation prob-
lems and their numbers of variables and constraints can be bounded by very
small constants.

Example 10. Consider Inflexion = ‘(<(<|=)*>)|(>(>|=)*<)’ and the sig-
nature ω = ⟨S1, S2⟩ = ⟨‘<’, ‘>’⟩ ∈ L(Inflexion), linked to the time series
⟨X1,X2,X3⟩. We solve the following minimisation problem to compute ∆ω:

minimise ∆1 + ∆2 + ∆3

subject to ∆i ≥ 0 ∀i ∈ [1, 3]
∆1 > ∆2

∆2 < ∆3

∆i ∈ Z ∀i ∈ [1, 3]

The unique optimal solution is ⟨∆∗
1,∆∗

2,∆∗
3⟩ = ⟨1, 0, 1⟩. The inflexion that cor-

responds to ⟨S1, S2⟩ is ⟨X2⟩, as exemplified in Fig. 3a, thus ∆ω = maxi∈{2} ∆∗
i =

∆∗
2 = 0: this inflexion contains a single element, which can be made to coincide

with the domain upper bound. Figure 3a gives an example of such an inflexion
within a time series of three variables with 2 as domain upper bound. ⊓(

We now state a condition when the computed upper bound is sharp.

Theorem 1. Consider a time-series constraint max_min_σ(⟨X1, . . . , Xn⟩, N)
where all the Xi are over the same integer interval [a, b]. If at least one word ω
in L(σ) with ∆σ = ∆ω may occur in the signature of ⟨X1, . . . , Xn⟩, then the
upper bound b − ∆σ on N is sharp.

Proof. Suppose there exists a word ω that satisfies the stated assumption. Hence
there exists a ground time series with an occurrence of ω in its signature: the
value of N on such a time series equals b − ∆ω, so the bound b − ∆σ on N is
sharp because ∆σ = ∆ω. ⊓(

For any regular expression σ in [5] and any time series X over some inter-
val, the assumption of Theorem 1 holds if the necessary condition (such as in
Example 7) for having at least one occurrence of σ in the signature of X is met.

Accelerating the Computation of the Shift of a Regular Expression.
For some regular expressions, we do not need to minimise over the entire lan-
guage L(σ) when computing ∆σ = minω∈L(σ) ∆ω. Consider the case when there

Systematic Derivation of Bounds and Glue Constraints 25

exists a word ω in L(σ)min, which is the set of the shortest words of L(σ), such
that the following equality holds:

∆σ = ∆ω (7)

We can then replace L(σ) with L(σ)min in the definition of ∆σ. This is the case
for all σ in [5], and, additionally, we have

∣∣L(σ)min
∣∣ ≤ 2. Hence computing ∆σ

requires solving at most two optimisation problems over at most four variables.

Example 11. Since Inflexion = ‘(<(<|=)*>)|(>(>|=)*<)’ contains one dis-
junction at the highest level, every word in L(Inflexion) belongs to either L1 =
L(‘<(<|=)*>’) or L2 = L(‘>(>|=)*<’). Hence L(Inflexion)min is the union
of the two sets Lmin

1 = {‘<>’} and Lmin
2 = {‘><’}. Consider the word ‘<<>’

in L1 obtained from the word ‘<>’ in Lmin
1 by inserting just one ‘<’. In order

to obtain the minimisation problem for computing ∆<<>, we modify the one
of Example 10 for ∆<> = 0 by introducing the new variable ∆4 and replacing
the comparison constraints by the following ones:

∆1 > ∆2 ∧ ∆2 > ∆3 ∧ ∆3 < ∆4

The unique optimal solution is ⟨2, 1, 0, 1⟩, giving ∆<<> = 1 > ∆<>. Similarly,
for the word ‘<=>’ obtained from ‘<>’ by inserting just one ‘=’, we have
∆<=> = ∆<>. Using these base cases, one can prove by induction that the
shift of any word in L1 longer than ‘<>’ is at least ∆<>. Applying the same
reasoning for the language L2, we obtain ∆ω ≥ ∆>< = 1 for all words ω in L2.
Hence ∆Inflexion = min(∆<>,∆><) = min(0, 1) = 0 and equality (7) holds, so
we can replace L(Inflexion) by L(Inflexion)min in the definition of ∆σ. ⊓(

5 Evaluation

We evaluate the impact of the methods introduced in the previous sections on
both execution time and the number of backtracks (failures) for all the 200
time-series constraints for which the glue constraint exists.

In our first experiment, we consider a single g_f_σ(⟨X1,X2, . . . , Xn⟩, N)
constraint for which we first enumerate N and then either find solutions by
assigning the Xi or prove infeasibility of the chosen N . For each constraint,
we compare four variants of Automaton, which just states the constraint, using
the automaton of [3]: Glue adds to Automaton the glue constraints of Sect. 3
for all prefixes and corresponding reversed suffixes, which can be done [6] by
just posing one additional constraint, namely g_f_σmir(⟨Xn, . . . , X2,X1⟩, N);
Bounds adds to Automaton the bound restrictions of Sect. 4; Bounds+Glue uses
both the glue constraints and the bounds; and Combined adds to Bounds+Glue
the bounds for each prefix and corresponding reversed suffix.

In Fig. 4, we show results for two problems that are small enough to perform
all computations for Automaton and all variants within a reasonable time. In
the first problem (first row of plots), we use time series of length 10 over the

26 E. Arafailova et al.

 1

 10

 102

 103

 104

 105

 106

 107

 1 10 102 103 104 105 106 107

1x /10 /100
/1000

V
ar

ia
nt

s
[B

ac
kt

ra
ck

s]

Automaton [Backtracks]

Backtracks: 10 variables, domain [1,5], first solution or infeasibility

Bounds
Glue

Bounds+Glue
Combined

 1

 10

 102

 103

 104

 105

 1 10 102 104 105

1x /2 /5 /10 /100
/1000

2x

5x

V
ar

ia
nt

s
[m

s]

 103

Automaton [ms]

Time: 10 variables, domain [1,5], first solution or infeasibility

Bounds
 Glue

 Bounds+Glue
Combined

 1

 10

 102

 103

 104

 105

 106

 1 10 102 104 105 106

1x /10 /100
/1000

V
ar

ia
nt

s
[B

ac
kt

ra
ck

s]

 103

Automaton [Backtracks]

Backtracks: 8 variables, domain [1,5], all solutions

Bounds
Glue

Bounds+Glue
Combined

 103

 104

 103 104

1x

2x

5x

/2 /5

V
ar

ia
nt

s
[m

s]

Automaton [ms]

Time: 8 variables, domain [1,5], all solutions

Bounds
 Glue

 Bounds+Glue
Combined

Fig. 4. Comparing backtrack count and runtime for Automaton and its variants for
the first solution (length 10) and all solutions (length 8).

domain [1, 5], and find, for each value ofN , the first solution or prove infeasibility.
This would be typical for satisfaction or optimisation problems, where one has to
detect infeasibility quickly. Our static search routine enumerates the time-series
variables Xi from left to right, starting with the smallest value in the domain.
In the case of the initial domains being of the same size, this heuristic typically
works best. In the second problem (second row of plots), we consider time series
of length 8 over the domain [1, 5], and find all solutions for each value of N .
This allows us to verify that no solutions are incorrectly eliminated by any of
the variants, and provides a worst-case scenario exploring the complete search
tree. Results for the backtrack count are on the left, results for the execution
time on the right. We use log scales on both axes, replacing a zero value by one
in order to allow plotting. All experiments were run with SICStus Prolog 4.2.3
on a 2011 MacBook Pro 2.2GHz quadcore Intel Core i7-950 machine with 6MB
cache and 16GB memory using a single core.

We see that Bounds and Glue on their own bring good reductions of the
search space, but their combinations Bounds+Glue and Combined in many cases
reduce the number of backtracks by more than three orders of magnitude. Indeed,
for many constraints, finding the first solution requires no backtracks. On the
other hand, there are a few constraints for which the number of backtracks is not
reduced significantly. These are constraints for which values of N in the middle
of the domain are infeasible, but this is not detected by any of our variants.

The time for finding the first solution or proving infeasibility is also signifi-
cantly reduced by the combinations Bounds+Glue and Combined, even though

Systematic Derivation of Bounds and Glue Constraints 27

the glue constraints require two time-series constraints. When finding all solu-
tions, this overhead shows in the total time taken for the three variants using the
glue constraints. The bounds on their own reduce the time for many constraints,
but rarely by more than a factor of ten.

In our second experiment, shown in Fig. 5, we want to see whether the Com-
bined variant is scalable. For this, we increase the length of the time series from 10
to 120 over the domain [1, 5]. We enumerate all possible values of N and find
a first solution or prove infeasibility. For each time-series constraint and value
of N , we impose a timeout of 20 s, and we do not consider the constraint if there
is a timeout on some value of N . We plot the percentage of all constraints for
which the average runtime is less than or equal to the value on the horizon-
tal axis. For small time values, there are some quantisation effects due to the
SICStus time resolution of 10ms.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 c

on
st

ra
in

ts
 s

ol
ve

d

Time [ms]

Scalability

Automaton, length 10
length 20
length 40

Combined, length 10
length 20
length 40
length 60
length 80
length 100
length 120

Fig. 5. Scalability results comparing time for Automaton and Combined on problems
of increasing length.

For length 10, we find solutions for all values of N within the timeout, and our
plots for Automaton (dashed) and Combined (solid) reach 100%, but the average
time of Combined is much smaller. For Automaton, the percentage of constraints
that are solved within the timeout drops to less than 20% for length 20, and
less than 10% for length 40. For Combined, we solve over 75% of all constraints
within the time limit, even for lengths 100 and 120.

The constraints that are not solved by Combined use the feature surface or
the aggregator Sum. The worst performance is observed for constraints combining
both surface and Sum. This is not surprising, as we know that achieving domain
consistency for many of those constraints is NP-hard (encoding of subset-sum).

28 E. Arafailova et al.

6 Conclusion

For the time-series constraints in [5], specified by a triple ⟨σ, f, g⟩, we showed
in [3] how to generate simplified automata and linear implied constraints.
Here, we further enhance the propagation of time-series constraints by a
systematic generation of bounds and glue constraints. Rather than finding
bounds and glue constraints for each time-series constraint independently, we
introduce the concepts of parametric bounds and parametric glue constraints.
Our approach differs from existing ones, which design dedicated propagation
algorithms [4,14] and reformulations [9,10] for specific constraints, or propose
generic approaches [13,15] that do not focus on the combinatorial aspect of a
constraint.

References

1. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007). The FAdo
tool is available at http://fado.dcc.fc.up.pt/

2. Arafailova, E., Beldiceanu, N., Carlsson, M., Douence, R., Flener, P., Fran-
cisco Rodríguez, M.A., Pearson, J., Simonis, H.: Global constraint catalog, vol-
ume ii: time-series constraints. Technical report, Computing Research Repository
(forthcoming). http://arxiv.org

3. Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodríguez,
M.A., Pearson, J., Simonis, H.: Time-series constraints: improvements and appli-
cation in CP and MIP contexts. In: Quimper, C.-G., Cavallo, M. (eds.) CPAIOR
2016. LNCS, vol. 9676, pp. 18–34. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33954-2_2

4. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the
non-overlapping rectangles constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol.
2239, pp. 377–391. Springer, Heidelberg (2001)

5. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22–40 (2016). Journal fast track of CP 2015: summary on p. 723 of LNCS 9255,
Springer (2015)

6. Beldiceanu, N., Carlsson, M., Flener, P., Rodríguez, M.A.F., Pearson, J.: Linking
prefixes and suffixes for constraints encoded using automata with accumulators. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 142–157. Springer, Heidelberg
(2014)

7. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004)

8. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solu-
tions for the EDF unit commitment problem with the ModelSeeker. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013)

9. Bessiére, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.:
Reformulating global constraints: the Slide and Regular constraints. In: Miguel,
I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer,
Heidelberg (2007)

http://fado.dcc.fc.up.pt/
http://arxiv.org
http://dx.doi.org/10.1007/978-3-319-33954-2_2
http://dx.doi.org/10.1007/978-3-319-33954-2_2

Systematic Derivation of Bounds and Glue Constraints 29

10. Bessiére, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Decom-
position of the NValue constraint. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308,
pp. 114–128. Springer, Heidelberg (2010)

11. Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Implied constraints for Automa-
ton constraints. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) GCAI 2015.
EasyChair Proceedings in Computing, vol. 36, pp. 113–126 (2015)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2007)

13. Monette, J.-N., Flener, P., Pearson, J.: Towards solver-independent propagators.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 544–560. Springer, Heidelberg
(2012)

14. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Hayes-
Roth, B., Korf, R.E. (eds.) AAAI 1994, pp. 362–367. AAAI Press (1994)

15. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and evalua-
tion of the constraint language cc (FD). Technical report CS-93-02, Brown Univer-
sity, Providence, USA, January 1993. Revised version in Journal of Logic Program-
ming 37(1–3), 293–316 (1998). Based on the unpublished manuscript Constraint
Processing in cc (FD) (1991)

An Adaptive Parallel SAT Solver

Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski(B),
and Sébastien Tabary

Univ. Lille-Nord de France, CRIL/CNRS UMR 8188, Lens, France
{gilles.audemard,jean-marie.lagniez,nicolas.szczepanski,

sebastien.tabary}@cril.fr

Abstract. We present and evaluate AmPharoS, a new parallel SAT
solver based on the divide and conquer paradigm. This solver, designed to
work on a great number of cores, runs workers on sub-formulas restricted
to cubes. In addition to classical clause sharing, it also exchange extra
information associated to the cubes. Furthermore, we propose a new
criterion to dynamically adapt both the amount of shared clauses and
the number of cubes. Experiments show that, in general, AmPharoS
correctly adjusts its strategy to the nature of the problem. Thus, we
show that our new parallel approach works well and opens a broad range
of possibilities to boost parallel SAT solver performances.

1 Introduction

Papers dealing with SAT solvers usually begin by recalling the tremendous
progress achieved on problems coming from industry. Recent results are indeed
very impressive, and a large number of industrial problems are nowadays solved
using a reduction to SAT instead of ad-hoc solvers [11,35,40]. However, playing
the devil’s advocate, one can observe that progress has slowed down noticeably.
It has become harder and harder to improve solvers dramatically. Furthermore,
SAT suffers from its own success, since formulas to solve are more and more
difficult.

At the same time, cloud computing is changing the landscape of computing
science: it is now possible to request a virtually unlimited number of computing
units that can be used within a few seconds. However, as it was pointed out dur-
ing the last competition [37], parallel SAT solvers are not well scalable. Indeed,
the winner of the parallel SAT track chose to only use half of the available cores.
Thus, to benefit from the huge number of computing units, as in a cloud context,
one must design new solvers architectures.

In the case of SAT solving, solvers can be divided into two categories. First
and foremost, portfolio based approaches [1,8,13,23,24,36] run different strate-
gies/heuristics concurrently, each on the whole formula. While computing the
processes exchange information (generally in the form of learnt clauses) to help
each other [1,7,23,24]. The second category of solvers uses the well known

Authors were partially supported by the “SATAS” ANR-15-CE40-0017.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 30–48, 2016.
DOI: 10.1007/978-3-319-44953-1 3

An Adaptive Parallel SAT Solver 31

divided and conquer paradigm [2,15,16,25,26,39,41,42]. In such solvers, the
search space is divided into sub-spaces, which are successively sent to SAT solvers
running on different processors, so called workers. In general, each time a solver
finishes its job (while the others are still working), a load balancing strategy
is invoked, which dynamically transfers sub-spaces to this idle worker [15,16].
The sub-spaces can be defined using the guiding path concept [42], generated
statically, i.e., before the search [25,39], or dynamically, i.e., during the search
process [2,26,41]. As in portfolio solvers, learnt clauses can also be shared [18].

Even though the winners of the parallel track of the last SAT competitions
are based on the portfolio paradigm, solvers based on the divide and conquer
approach become increasingly more efficient (Treengeling [12] a solver based
on this paradigm was ranked second in the last competition). It is in this context
that we propose AmPharoS, a new parallel SAT solver, which follows the divide
and conquer approach. Our long term objective is to develop a SAT solver for
the cloud and this paper is a first step in this direction. In our approach, the
formula is partitioned using cubes (as in [41]). One process, named manager, is
dedicated to managing these cubes. Then, solvers work on the formulas induced
by those cubes. In contrast to other divide and conquer approaches, several solver
may work on the same sub-problem and they can stop working before finding a
solution or a contradiction. The latter is to avoid solvers being stuck on instances
that turn out to be too hard for them. In that case, the solver asks the manager
for another sub-problem. This sub-problem can either originate from an existing
cube or from refining the current sub-problem. In our approach, the solvers select
by themselves the dynamically generated cubes they try to solve. Additionally,
two types of learnt clauses are shared: the classical shared clauses and others
that are dependent on the cubes.

Since our goal is to solve SAT with a great number of computing units,
it is important to propose a parallel architecture which adapts its strategy to
the number of workers and the nature of the problem. To this end, we propose
an approach which uses an adaptive algorithm that adjusts simultaneously and
dynamically the number of clauses that are shared and the number of new cubes.
This is possible thanks to a new measure that estimates if the search process has
to be intensified or diversified. As we demonstrate in experiments, this measure
works well and aligns with the stated goal. We show that when the search space
needs to be diversified (resp. intensified), the proposed measure detects that the
number of cubes must be increased (resp. decreased) and the number of shared
clauses decreased (resp. increased).

2 Preliminaries

Due to lack of space, we assume the reader to be familiar with the essentials of
propositional logic and SAT solving. Let us just recall some aspects of CDCL
SAT solvers [30,32]. CDCL solving is a branching search process, where at each
step a literal is selected for branching. Usually, the variable is picked w.r.t. the
VSIDS heuristic [32] and its value is taken in a vector, called polarity vector,

32 G. Audemard et al.

in which the previous value assigned to the variable is stored [34]. Afterwards,
Boolean constraint propagation is performed. When a literal and its opposite
are propagated, a conflict is reached, a clause is learnt from this conflict [30] and
a backjump is executed. These operations are repeated until a solution is found
or the empty clause is derived.

CDCL SAT solvers can be enhanced by considering restart strategies [20]
and deletion policies for learnt clauses [3,6,19]. Among the measures proposed
to identify the relevant clauses, the literal blocked distance measure (in short
LBD) [6] is one of the most efficient. The clause’s LBD corresponds to the number
of different levels involved in a given learnt clause. Then, as experimentally
shown by the authors of [6], clauses with smaller LBD should be considered
more relevant.

It is well known that for several applications it is necessary to solve many
similar instances [5,9,17]. To make solvers more effective in such a context, it is
particularly useful to use assumptions to keep track of learnt clauses during the
whole search. A set of assumptions is defined as a set of literals that are assumed
to be true [17]. This set can be viewed as a cube, i.e. a conjunction of literals
(in the remainder of this paper, we denote cubes using square brackets, also
we sometimes identify cubes with the formulas they imply), and the search is
restricted to this cube. If during the search process, one needs to flip the assign-
ment of one of these assumptions to false, the problem is unsatisfiable under the
initial assumptions. In such a situation, it is possible to recursively traverse the
implication graph to extract a clause that explains the reason of the conflict.
Even if this problem seems close to the classical SAT problem, a special track of
the last SAT competition has been dedicated to this issue [37] and several exist-
ing studies attempt to improve SAT solvers to deal with assumptions [4,28,33].

3 Tree Management

The performance of divide and conquer approaches depends on both, the quality
of the search space splitting, and how the sub-spaces are assigned to the solvers.

Even if AmPharoS is a divide and conquer based solver, it is important to
stress that, contrary to [38], it does not use the work stealing strategy. In our case,
the division is done in a classical way as in [2,16]. More precisely, our approach
generates guiding paths, restricted to cubes, that cover all the search space. This
way, the outcome of the division is a tree where nodes are variables and the left
(resp. right) edge corresponds to the assignment of the variable to true (resp.
false). Then, solvers operate on leaves (represented by the symbol nil) and solve
(under assumptions) the initial formula restricted to a cube which corresponds
to the path from the root to the related leaf. Figure 1a shows an example of a tree
containing three open leaves (cubes [x1,¬x2, x4], [x1,¬x2,¬x4] and [¬x1,¬x3]),
two closed branches (already proven unsatisfiable) and four solvers (S1 . . . S4)
working on these leaves.

As we will see in Sect. 3.2, in our architecture, solvers can work on the same
cube (as solvers S1 and S2 in Fig. 1a) and can stop working before finding a solu-
tion or a contradiction. In AmPharoS, each time a solver shares information or

An Adaptive Parallel SAT Solver 33

asks to solve a new cube, it communicates with a dedicated worker, called man-
ager. Its main mission is to manage the cubes and the communication between
the solvers (here CDCL solvers). Thus, when a solver decides to stop solving
a given cube (without having solved the instance), it can ask the manager to
enlarge this one (see Sect. 3.3). Another situation where a solver stops, is once
a branch is proved to be unsatisfiable. In this case, a message informs the man-
ager and the tree is updated in consequence (see Sect. 3.4). In both cases, when
a solver stops it goes through the tree and starts solving a new cube (potentially
the same, see Sect. 3.2). The end of the solving process finally occurs either when
a cube is proved to be satisfiable or when the tree is proved to be unsatisfiable.

This section describes the overall picture of our solver. First, in Sect. 3.1, the
way the tree is initialized is presented. Then, the transmission and extension
processes are respectively explained in Sects. 3.2 and 3.3. Finally a tree pruning
rule is introduced in Sect. 3.4.

3.1 Initialization

At the beginning of the search process, we initialize the workers. This step is
required to setup the activity (related to vsids heuristic [32]), the polarity of
variables and to create the root of the tree. To this end, all solvers try to solve the
whole formula concurrently until a given amount of conflicts is reached (10,000
in our implementation). Note that this corresponds to solve an empty cube. In
order to avoid performing the same search, the first descent of each solver (i.e. the
choice of the variables and their polarity on the first branch) is randomized.
Then, in the same manner as [31], the first solver reaching the maximum number
of conflicts communicates its best variable with respect to the vsids heuristic to
the manager. This variable becomes the root of the tree. Consequently, the tree
only contains two leaves, i.e. cubes are restricted to a single literal (a variable
and its opposite). Regarding Fig. 1a, the selected variable was x1 and the set of
initial cubes was {[x1], [¬x1]}.

3.2 Transmission

As already mentioned, a solver may stop the search before solving its instance.
This situation occurs when it cannot solve the sub-problem associated to the
cube with a number of conflicts less than a certain limit (10,000 in our implemen-
tation). The solver then contacts the manager in order to select a potentially
new cube to solve. The originality of our method is that a solver selects by itself
one cube among all unsolved ones in the tree (corresponding to nil leaves).

Figure 1 shows a diagram sequence (Fig. 1b) that illustrates the exchanged
messages when the solver S4 requests a new cube from the manager’s tree
(Fig. 1a).

A first message (go-root) is sent by the solver to ask for the root of the
tree. It receives x1. Then, at each step of the cube selection, the solver asks for
the children of the previously received variable (with message give-children).
The answer is composed of two triplets: one for each polarity of the current

34 G. Audemard et al.

x1

x2

⊥

NIL NIL

x4

x3

⊥ NIL

S1 S2

S3

S4

(a) Current tree

GO-LEFT x1

((x2,2,2) , (x3,1,1))
GIVE-CHILDREN

x1

GO-ROOT

GO-RIGHT ¬x2

(⊥ , (x4,2,2))
GIVE-CHILDREN

GO-RIGHT ¬x4

((NIL,1,2) , (NIL,1,0))
GIVE-CHILDREN

Manager Solver S4

(b) Sequence diagram

Fig. 1. Schematic overview of how the solver S4 and the manager interact to select
a cube in the current tree represented (a) (a plain (resp. dotted) line means that the
variable is assigned to true (resp. false)). On the sequence diagram, in (b), we can see
that seven messages are exchanged between the manager and the solver before S4

starts to solve the sub-problem induced by [x1,¬x2,¬x4]. The path selectioned by S4

is represented with black lines in the left picture.

node. Each triplet is composed of the child variable, the number of available
leaves (nil nodes) and the number of solvers working on these leaves, in that
order. Considering Fig. 1b, the first message returns the triplet (x2, 2, 2) for the
positive polarity of x1 (the left branch contains two leaves and two solvers (S1

and S2)) and (x3, 1, 1) for the negative one.
The solver decides to go down either on the left (assigning positively the cur-

rent variable) or on the right (assigning negatively the current variable) branch
according to the values returned in these triplets. By default, it selects the branch
where the number of working solvers is lower than the number of leaves. The
idea is to cover the most of cubes and to dispatch solvers all over the tree. If
this condition is true or false for both branches, the solver selects the branch
according to its polarity vector [34]. Note that in this implementation, we do not
know if some cubes do not contain solvers. After selecting its branch, the solver
informs the manager (with messages go-left or go-right) and assigns the
related literals using assumptions.

Thus, in our example of Fig. 1, the solver S4 assigns x1 (the root) posi-
tively using its polarity (as the condition previously mentioned is false for both
branches). Since the branch related to x2 is already proven unsatisfiable, S4 does
not have other alternatives to setting the literal x2 to false. Finally, it has to
set x4 to false since the previous condition holds. Arriving at a leaf, the solver
starts to solve the cube [x1,¬x2,¬, x4].

3.3 Extension

Initially, the tree contains only one variable and then two cubes to solve
(see Sect. 3.1). To divide the original formula into subproblems, we propose to

An Adaptive Parallel SAT Solver 35

dynamically extend the tree during the search. Recall that we do not use the
work stealing strategy.

One associates to each leaf an integer variable β representing the presumed
difficulty of a subproblem (cube). Each time a solver cancels its search on a
given cube (associated with a leaf of the tree), the variable β of this leaf is
incremented. Then, a large value of β expresses that a cube is potentially hard
to solve. Note that a solver can increase several times the same variable β. When
a solver stops its search and requests a new cube, the manager increments the
value β associated to the leaf on which the solver was working. When the β value
of a leaf is greater or equal than the number of open leaves (i.e. nil leaves) times
an extension factor fe then the tree is expanded on the given leaf.1

The extension is done in the following way. The last solver increasing the
variable β returns its best boolean variable w.r.t. to vsids heuristic and two
new leaves are created, extending the related cube. The β values of the two
leaves are initialized to 0. Taking into account the number of open leaves, the
more unsolved cubes the tree contains, the less extensions are performed. In
this way and contrary to Cube And Conquer [41], our approach does not create
too many cubes, regardless of the number of cubes already proven unsatisfiable.
Since a leaf can contain many solvers, note that after extension, some solvers
can work on a node that is not a leaf.

x1

x2

⊥

NIL NIL

x4

x3

⊥ NIL

S1 S2

S3

S4

β = 2β = 2

β = 2

(a) Extension requested by the solver S3

x1

x2

⊥

NIL NIL

x4

x3

⊥ x5

NIL NIL
S1 S2 S4

β = 2β = 2
β = 0β = 0

(b) Extension accepted by the MANAGER

Fig. 2. The left picture represents the tree before the S3’s extension request was
accepted. Since the value of β associated to the node satisfied the extension crite-
rion, the manager accepts this extension and modified the left tree to obtain the right
one. (Color figure online)

Figure 2 shows an example of an extension. The tree (the same as in Fig. 1)
contains 3 open leaves and some solvers work on these leaves. When, solver S3

stop working on cube [¬x1,¬x3] the associated β (in red) is incremented and
becomes 3. The condition allowing an extension holds (we suppose that fe is
equal to one) and thus extension is performed. Solver S3 that is responsible
for the extension provides its best variable (x5) to the manager and the cube
[¬x1,¬x3] is expanded with the variable x5 generating two new cubes. Note that
the (red) β value initiator of this extension becomes useless since its associated
1 We will discuss about the definition of the extension factor in Sect. 5.2.

36 G. Audemard et al.

node is not a leaf anymore. Solver S3 is now free to ask the manager a new
cube to solve (see Sect. 3.2). Furthermore, in the next step, no matter which
solver ask for extension, it will not be performed since the number of leaves is
now equal to 4 (we suppose here that fe remains unchanged and is still equal
to 1).

3.4 Pruning

Because each sub-problem is solved under assumptions, when a cube is proved
to be unsatisfiable, the solver (from which unsatisfiability is proved) computes
a conflict clause (which is the negation of a subset of the literal assumptions).
This information is transfered to the manager which is able to compute a cutoff
level in the tree search. The tree is simplified in consequence. Let us remark that
a solver can directly prove the global unsatisfiability of the problem when the
computed conflict clause is empty.

Moreover, if both children of a node are unsatisfiable then this node also
becomes unsatisfiable. In that case, the node can be safely removed and the
unsatisfiability is directly associated to the edge of its parent. Of course, this
process is recursively applied until each node has at least one non-unsatisfiable
child.

4 Clause Exchange

In this section, we discuss the two ways of exchanging information in our solver
AmPharoS. We first explain how the clauses learnt by a solver are shared with
the others and then we present an original approach to sharing local unit literals
by taking advantage of our tree.

4.1 Classical Clause Sharing

It is well known that clause sharing noticeably improves the performance of
parallel SAT solvers [24]. In our framework, solvers also share learnt clauses.
However, contrary to the classical behavior where the clauses are directly shared
between workers, for us information passes through the manager.

Clause sharing from the solver side. Once a solver reaches a threshold of
conflicts (500 in our implementation), it communicates with the manager to
send and/or receive a set of clauses. Clauses to be sent are saved in a buffer
which is cleared after each communication with the manager. Good clauses
with respect to initial LBD (less or equal to 2) are directly added to the buffer.
Other clauses are also added, as in [7], if they participate in the conflict analysis.
However, because we cannot share as many clauses as Syrup, only clauses which
obtain a dynamic LBD less or equals to 2 before being used twice in the conflict
analysis procedure are shared.

An Adaptive Parallel SAT Solver 37

In order to deal with imported clauses, solvers manage three buffers: standby,
purgatory and learnt. Received clauses are stored in standby. In this buffer,
clauses are not attached to the solver [3]. Every 4,000 conflicts, clauses are
reviewed: they can be transfered from a buffer to another, or be definitively
deleted or kept in the current buffer. A clause from the standby buffer can
be transfered to the purgatory buffer. Contrary to the standby buffer, clauses
in the purgatory are attached to the solver and then participate to the unit
propagation process. We discuss the criterion allowing a clause to be moved
from standby to purgatoryin Sect. 5.2. In the same manner, a clause from the
purgatory can be transfered to the third buffer learnt when it is used at least
once in the conflict analysis process. The temporary buffer purgatory is used to
limit the impact of new clauses on the learnt strategy reduction. The reduction
strategy used to clean these two additional buffers depends on a counter asso-
ciated with each clause. The counter is incremented each time the associated
clause remains in the same buffer. If the counter reaches a threshold (14 in our
implementation), the clause is deleted. Note that the counter is reset each time
a clause is moved from one buffer to another.
Clause sharing from the manager side. manager collects learnt clauses
from every solver and manages them. Learnt clauses are stored in a queue and
the manager periodically checks if they are subsumed or not. In practice, a
single core is dedicated to the manager. Thus, processing all clauses in the
queue at once can be time consuming and can block communications between
manager and solvers. To avoid this situation, manager checks subsumption
by batches of 1,000 clauses each. manager stores the learnt clauses that are not
subsumed in a database and sends them each time a solver requests them. Of
course, sent clauses are those that have not been already sent to the solver and
that are not coming from it.

4.2 Assumptive Unit Literals

A second way of exchanging information in our approach is transferring unit
literals (which are propagated under some assumptive literals) between solvers
and the manager. In the following, we present where these literals originate
from and how they are exchanged and managed.

Assumptive unit literals from the solver side. Let us first recall that each
solver works under an assumption A (this assumption can be empty) representing
the cube to solve. When a literal ℓ /∈ A is propagated thanks to a sub-assumption
A′ ⊆ A, this information can be spread to the manager in order to be broad-
casted to other solvers. More precisely, the solver communicates to the manager
that ℓ can be propagated with A′. From the other side, when a solver selects a
branch (i.e. a literal ℓ′) during cube transmission, it also receives the set of unit
literals associated with ℓ′ that can be propagated. Thus, the transmission of a
cube (see Sect. 3.2) contains these additional messages. Hence, manager takes
care of a decorated tree containing guiding paths and the set of unit literals that

38 G. Audemard et al.

x1

x2

⊥

NIL NIL

x4

x3

⊥ NIL

u1 ¬u2

¬u3 ¬u4 ¬u4

u6

u5

u7

S4

(a) S4 gives ¬u2 ¬u4 u5 to MANAGER

x1

x2

⊥

NIL NIL

x4

x3

⊥ NIL

u1 ¬u2 ¬u4

¬u3 u5

u6 u7

(b) Unit literals management

Fig. 3. The left picture represents a decorated tree with the additional literals (in red)
given by S4. These additional literals are pull up, using the unsat (pull up u5) and
identical literals (pull up u4) rules, to obtain the right tree. (Color figure online)

have to be propagated at each branch. Figure 3a shows an example of such a tree.
When solver S4 asks for a branch, it starts by recovering the set of unit literals
{u1}. It also propagates ¬u2 (in red) giving this information to the manager.
It selects the branch x1 and then, retrieves the literal ¬u3 to propagate. In the
same way, it also propagates ¬u4, providing such assumptive unit literal to the
manager and so on.

As we will see in the experiments later, assumptive literals are very impor-
tant. They are special clauses that clearly reduce the search space of a given
branch. Consequently, the fact that a literal ℓ can be propagated from A′ is
taken into account in the solver by adding, in a dedicated database (this data-
base is different from the aforementioned learnt buffer and is never cleaned
up), a clause built with the negation of A′ and the literal ℓ′. Remark that when
A′ = ∅ the literal ℓ′ is unit and is added to the unit literals of the solver.
Assumptive unit literals from the manager side. When the manager
learns that a literal can be propagated from a subset of literals coming from an
assumption, this information is communicated during cube’s transmission and
can be added in the last branch of the node associated with this sub-assumption.
From this decorated tree, one can pull up unit literals from a branch to higher
branches. This situation occurs either when a branch is proved unsatisfiable or
when both branches of a node contain the same literal [29] (as highlighted Fig. 3).
In the first case, all the literals of the non-unsatisfiable branch are pulled up to
the father branch (as literal u5). In the second case, only literals occurring in
both branches are transmitted to the father branch (this is the case for literal
¬u4). This process loops recursively until a fix point is reached. Remark that
when no father branch exists (occurring when literals are moved from branches
of the root node) then these literals are proved unit.

An Adaptive Parallel SAT Solver 39

5 The Intensifcation/Diversification Dilemma

When several solvers run concurrently on a problem, they can perform redun-
dant work. Identifying such a situation, it would be beneficial to modify the
solvers’ strategies in order to diversify the search. Nevertheless, due to clause
sharing between solvers, exploring too different search spaces is also a handicap.
Thus, in some situation focusing several solvers on the same part is required
(intensification).

This paradigm, called intensification/diversification dilemma, has already
been studied in the context of portfolio-based parallel SAT solvers. This issue can
be addressed either statically, by using several solvers with orthogonal strate-
gies [1,24,36], or dynamically, by modifying the solvers’ strategies during the
search. However, deciding when a solver must intensify or diversify its search is
not easy and only few publications tried to deal with this problem [21,22]. Thus,
in [21], a master/slave architecture is proposed, where masters try to solve the
original problem (ensuring diversification), whereas slaves intensify their mas-
ter’s strategy. In [22], a measure to estimate the degree of redundancy between
two solvers is presented. It considers that two solvers are closed when they have
approximately the same polarity vector. The diversification process consists in
modifying the way the phase of the next decisions is realized.

To the best of our knowledge, no criterion has been established to identify
that several solvers execute redundant work except the measure based on the
polarity mentioned before [22]. Unfortunately, this criterion is not applicable
with many solvers (this measure has been initially proposed for a portfolio of
four solvers). That is why a more scalable criterion is required.

5.1 Evaluating the Degree of Redundancy

We propose to measure the degree of redundancy by taking into account how
many clauses that are shared between solvers are redundant. We use a list to
store from the beginning the number of received clauses (str) and a second to
store the number of kept clauses (stk). Kept clauses are those which have not
been removed during the subsumption process. Each time a solver comes back to
the manager (every 1,000 conflicts in our implementation), it shares its clauses.
The number of received (resp. kept) clauses since the beginning is pushed to str
(resp. stk) by the manager.

The redundancy shared clauses measure, in short rscm, is defined for a step
t w.r.t. a sliding window of size m (20,000 in our experiments) as the ratio
between the number of clauses received during the last t − m updates of str
and the number of clauses kept during the same time. More precisely, we have
∀j < 0, str[j] = stk[j] = 0:

rscmt =
str[t] − str[t − m]
stk[t] − stk[t − m]

, if stk[t] − stk[t − m] ̸= 0

rscmt = str[t] − str[t − m], otherwise
(1)

40 G. Audemard et al.

First, note that when several solvers work on the same part of the search
space, there is a high likelihood that learnt clauses by the different solvers are
redundant. This means that the number of subsumed clauses is important and
therefore the rscm value is high. Conversely, when solvers are sparsed in the
search space, there is a high probability that shared clauses are not redundant
and then the rscm value tends to be low. Consequently, a small value of the
rscm indicates that the solver needs to intensify the search, whereas a high
value signifies that the solvers have to diversify their search space.

5.2 Intensification/Diversification Mechanisms Based
on the rscm Measure

It is possible to control in several ways how solvers explore the search space
(shared clauses, solvers’ heuristics, . . .). In AmPharoS, we choose to solve the
intensification/diversification dilemma by controlling two criteria: the way the
tree is extended (see Sect. 3.3) and the number of clauses which are transferred
from the standby to the purgatory buffers (see Sect. 4.1). Thus, for us, diver-
sifying (resp. intensifying) the search consists in increasing (resp. decreasing)
these two parameters. Before introducing them, let us a summarize:

Few subsumed Clauses (rscm is low) Many subsumed clauses (rscm is high)
Reduce extension Favour extension
Increase the number of imported clauses Limit the number of imported clauses

Intensification Diversification

Extension guiding by the rscm. First, let us remark that each path from
the root to a leaf represents a unique set of literals that splits the search space
in a deterministic way. Thus, the bigger the tree, the higher the probability to
run two solvers in totally different sub-problems. To control the tree grows, we
define the extension factor fe introduced in the Sect. 3.3 in the following way:

fet =
1, 000
rscmt

3
(2)

Let us recall that this extension factor is used to define the threshold of
misses that a cube can encounter before an extension is accepted. Hence, the
smaller (resp. bigger) the rscmt value is, the bigger (resp. smaller) the fe value
is and then the slower (faster) the tree extension is. Note that the cubic factor
allows to decrease fe rapidly while fe is bounded (by 1,000) since when fe is
high solvers run in concurrently and the tree is never updated. To prevent the
tree from growing too quickly, we also bound the minimum value that fe can
take by 10.
Condition to move from the standby to the purgatory. When a clause
is received by a solver it is possible that it is subsumed by a clause already
present. This becomes highly probable when almost all shared clauses are found
to be subsumed during the clause subsumption process. Thus, it seems natural

An Adaptive Parallel SAT Solver 41

that the number of accepted clauses (i.e. the number of clauses transferred from
the standby to the purgatory) increases (resp. decreases) when the rscm value
decreases (resp. increases).

As already mentioned (Sect. 4.1), in AmPharoS the clauses freshly received
are not directly attached to the solver. Thus, it is important to choose a clause
selection criterion independant from the activation of clauses. To control the
amount of clauses moved from the standby to the purgatory we use the notion
of psm introduced in [3] and already used in the portfolio based SAT solver
PeneLoPe [1]. Recall that the psm of a clause represents the number of literals
which are assigned to true by the polarity vector. Thus, a clause can be scored
even if it is not used by the solver.

Then, in order to increase/decrease the number of clauses attached (and then
transferred) in the purgatory, a criterion based on both the psm and rscm
values is proposed. This criterion is motivated by the observation from [3] that
the clauses with a small psm value have a great potential to enter in conflict or
be used during the search. Thus, a clause will be authorized to move from the
standby buffer to the purgatory buffer when its psm value is less or equals than
⌊psmmax

rscmt
⌋, where psmmax corresponds to the psm maximum limit accepted (set

to 6 in our experiments). Consequently, clauses with a psm value of zero will
be systematically accepted whatever the value of rscm. Whereas, clauses with a
high psm value will be accepted if and only if they are probably not subsumed.

6 Experiments

We now evaluateAmPharoS on the 100 benchmarks from the SAT-RACE 2015,
parallel track [37]. During the last competition 53 (resp. 33) instances have been
proved satisfiable (resp. unsatisfiable) by at least one solver and 14 instances
remained unsolved. All experimentations have been conducted on 2 Dell R910
with 4 Intel Xeon X7550. Each node has 32 cores, a gigabit ethernet controller
and 256GB of RAM. Time limit was set to 1, 200 s per test (wall clock time).
Then, for experiments executed with 64 cores, we use two different computers.
All log files and additional pictures are available in http://www.cril.univ-artois.
fr/ampharos/.

6.1 Communication Management

Since in AmPharoS a lot of messages have to be exchanged between the
manager and solvers, the management of the communications has to be very
effective. Thus, we have opted for the open source Message Passing Interface
implementation (Open MPI) to manage the communication on a low level. The
bottleneck imposed by the fact that the manager has to all at once compute
the subsumed clauses and communicate with the solvers, was a major problem.
To avoid that solvers wait too long without work, a round robin architecture
with non-blocking listening of solvers was put in place. Moreover, because the
subsumption process can be time consuming, the clauses received to be checked

http://www.cril.univ-artois.fr/ampharos/
http://www.cril.univ-artois.fr/ampharos/

42 G. Audemard et al.

are not treated at once (in our implementation packet of 1,000 clauses are con-
sidered). Thus, the manager communicates with a solver, then checks a set
of clauses, and so on, until the time limit is reached or the problem is proved
satisfiable/unsatisfiable.

6.2 Setup

AmPharoS is a modular framework that allows to add easily new types of
solvers. For these experiments three sequential SAT solvers have been used:
Glucose [6], Minisat [17] and MinisatPsm [3]. Only a couple small changes
have been implemented in these solvers. In order to manage the interactions with
the manager, all solvers implement a C++ interface. This interface grouped
communication routines and methods used to deal with standby and purgatory
buffers. The core of solvers has also been modified in order to avoid resetting
everything at each call to SAT solver (restart, learnt deletion policies, . . .).
Moreover, as for the version of Glucose presented in [4], when a solver restarts
it does not go to decision level 0 but to the level of the last assumption. The
clauses moved from the purgatory to the learnt buffer are simply incorporated
into the learnt clauses database as if they were learnt by solvers themselves.

6.3 Results

The experimental evaluation is divided into four parts. First, we evaluate the
different ingredients of AmPharoS. Then, we study the scalability of our solver.
Finally, we compare AmPharoS to the state-of-the-art and study the impact of
the rscm measure.

On the impact of each component. The benefit of the three optional compo-
nents (tree decomposition (Tree), clauses (C) and unit literals exchange (UL))
of AmPharoS has been studied experimentally. To this end, several versions
of AmPharoS have been executed on 64 cores. These experiments, reported in
Fig. 4, show gradual improvements when each of these options was taken into
account in a cumulative way. From the Fig. (4a) and the cactus plot (b) several
observations can be made.

First, Fig. 4a shows that whatever the combination of options is used,
AmPharoS is more efficient when the tree decomposition is used (Tree sets
to true in the first column). The versions working on the initial problem in a
competitive way, which could be regarded as portfolio parallel SAT solvers (with
(C) or without (none) clause sharing), solve systematically less instances than
the others running on sub-problem obtained from cubes. This shows the impor-
tance of how AmPharoS solves the intensification/diversification dilemma using
a tree decomposition.

Second, results show the importance of exchanging information between
solvers. AmPharoS that does not exchange information systematically solved
less problems than the others which share clauses or unit literals. When we

An Adaptive Parallel SAT Solver 43

Tree Exchanges SAT UNS Total

Yes C + UL 49 25 74
Yes C 47 21 68
Yes UL 47 18 65
Yes None 41 15 56
No C 43 6 49
No None 44 6 50

(a) Overview table

0

200

400

600

800

1000

1200

20 30 40 50 60 70

 No Tree + C
No Tree + None

0

200

400

600

800

1000

1200

20 30 40 50 60 70

None
C

UL
 C + UL

(b) Number of instances solved w.r.t. the time

Fig. 4. Comparing several versions of AmPharoS on 64 cores. (a) gives the results of
each version in term of solved instances. The columns represent, in that order, the fact
that the tree decomposition is activated (yes/no), the kind of information exchanged
(clauses (C) or/and unit literal (UL)), the number of SAT/UNSAT instances solved.
(b) shows the number of solved instances (x-axis) w.r.t. the time (y-axis).

separately compare the two exchange options (C and UL), we observe that shar-
ing clauses allows (as expected) to improve the solver on unsatisfiable problems.
However, as pointed out in Fig. 4b, activating this option makes the solver slower
on easy problems (solved with less than 600 s). This can be explained by the fact
that the communication engendered to share clauses and manage them is signif-
icant and slows down the solvers on ‘easy’ problems.

Finally, as highlighted by these experiments, there is a synergy between the
exchange options. Even if clause sharing drastically reduces the solver perfor-
mance on easy benchmarks, combining this component with the unit literals
allows one to deliver the most significant improvement in terms of number of
successfully solved instances. From now, AmPharoS is reported as the version
using all components.

0

200

400

600

800

1000

1200

20 30 40 50 60 70

8 cores
16 cores
32 cores

0

200

400

600

800

1000

1200

20 30 40 50 60 70

64 cores (2x32)
64 cores (8x8)

Fig. 5. Number of instances solved

Scalability evaluation. To evaluate the
scalability of AmPharoS we run it on 8,
16, 32 and 64 cores. Figure 5 gives the num-
ber of solved instances w.r.t. the time by the
different versions of AmPharoS. It clearly
demonstrates that our approach is highly
scalable. The version running on 64 cores
solves 49 SAT and 25 UNSAT benchmarks,
that is 15%, 45% and 70% more benchmarks
than the one running on 32 (44 SAT and 20
UNSAT), 16 (36 SAT and 15 UNSAT) and 8
(33 SAT and 11 UNSAT) cores, respectively.
In order to show the efficiency of our approach with more computers linked
over the network, we also ran it with 64 cores using 8 computers with 8 cores
each (see the curve 8× 8 on Fig. 5.). This version solves 46 SAT and 24 UNSAT

44 G. Audemard et al.

benchmarks. Since we restrict the number of messages, we obtain similar results.
Differences can be explain by the indeterminism of our approach.
AmPharoS versus the state-of-the-art. In order to evaluate AmPharoS
with respect to existing work, we choose to compare our approach with the three
best solvers of the last SAT competition that ran in the parallel track. These
solvers are (in their rank order): Syrup [7], Treengeling and Plingeling [12].
Because they do not run with MPI, and we have no processor with 64 cores, we
execute them on 32 cores. We also compare our solver on 64 cores with the work
stealing parallel SAT solver Dolius [2] and the portfolio solver HordeSAT [8]
(Fig. 6 reports results obtained).

Let us first consider the experiments launched on 32 cores. As reported in
Fig. 6a, AmPharoS solves more instances than the other solvers. It is the best
solver on the satisfiable benchmarks and solves the same number of unsatisfiable
problems as Treengeling (which is also a divide and conquer based method).
Comparing to Syrup and Plingeling, we can see that our solver significantly
outperforms both on satisfiable problems but it is less efficient on unsatisfiable
ones. This can be partially explained by the fact that AmPharoS essentially
solves the unsatisfiable problems by totally refuting the tree (i.e. by closing
all branches). Consequently, it seems that on 32 cores we do not have enough
workers to achieve this goal within the time limit. When considering the running
time of the solvers, reported in Fig. 6b, we can observe that AmPharoS is faster
than Treengeling and Plingeling but it is slower than Syrup. This can be
explained by the fact that Syrup solves several unsatisfiable problems in short
time (the 6s family for instance). If we consider the experiments run on 64 cores,
we can see that our approach is highly competitive. AmPharoS is significantly
better than Dolius and HordeSAT. Moreover, it is important to notice that
during the competition Syrup (the winner of the parallel track) only used 32
cores instead of the 64 cores available. Consequently, it is possible to conclude
that AmPharoS is more efficient than both Treengeling and Plingeling on
64 cores. More importantly, as reported in Fig. 6b, AmPharoS is very effective
since it solves more instances and faster.

Solver #thr. SAT UNS Total
AMPHAROS 32 44 20 64
SYRUP 32 36 26 62
TREENGELING 32 38 20 58
PLINGELING 32 31 26 57

AMPHAROS 64 49 25 74
HORDESAT 64 33 24 57
DOLIUS 64 33 17 50

(a) Overview table

0

200

400

600

800

1000

1200

20 30 40 50 60 70
0

200

400

600

800

1000

1200

20 30 40 50 60 70

 HordeSAT64
Dolius64

ampharos64

(b) Number of solved instances w.r.t. the time

Fig. 6. Comparing AmPharoS versus the state-of-the-art parallel solver. (a) gives
results of each solver in term of solved instances w.r.t. the number of threads (#thr.).

An Adaptive Parallel SAT Solver 45

Table 1. This table presents the obtained results on a representative set of benchmarks.
Each line corresponds to an instance, with its satisfiability, identified by the leftmost
column. The next four columns give the WC time (reported in seconds) to solve the
instance w.r.t. the value of rscm (static (set to 1, 3, 5 and 10) or dynamic (D)). The
rightmost reports stastictics on the value obtained by the dynamic computation of
rscm.

Benchmarks information Time w.r.t. rscm rscm Statistics

Name Sol. 1 3 5 10 D Min Max Avg Med

hitag2-10-60-0-65 UNS 563 173 120 127 304 1.20 2.36 2.11 2.28

jgiraldezlevy.109 UNS 544 243 214 154 260 1.60 4.32 3.76 4.12

minandmaxor128 UNS 788 IN IN IN 972 1.09 1.37 1.25 1.23

jgiraldezlevy.33 SAT 776 339 386 169 288 1.63 4.58 3.32 3.82

56bits-12.dimacs SAT 114 168 180 395 101 1.25 1.60 1.43 1.46

004-80-8 SAT 248 412 16 264 110 1.41 4.64 3.10 3.09

Let us stress that none of these solvers are deterministic. To be fair, we ran
all solvers just once and report the obtained results (as it was done in SAT
competition 2015).
Impact of the rscm value. To conclude this section, we evaluate the impact
of the rscm value on our solver’s performance. To this end, we selected a repre-
sentative set of benchmarks and ran four versions of AmPharoS with different
values of rscm (1, 3, 5 and 10) and compared them with the dynamically chosen
value. Let us recall that rscm has an impact on both the tree extension and the
amount of exchanged clauses. Moreover, as mentioned in Sect. 5.2, the extend-
ing factor fe is fixed to 10 when rscm > 3

√
100. Thus, the difference between

rscm = 5 and rscm = 10 is only the amount of shared clauses. Table 1 shows
that these instances do not have the same comportment with respect to the
rscm value. Some problems need to extend more (jgiraldezlevy) and others
need to extend less and exchange more (minandmaxor128). It is also important
to note some benchmarks are unpredictable (004-80-8). As regards the dynamic
adjustment, we observe that it is in average often close to the best value.

7 Conclusion

We proposed a new parallel SAT solver, designed to work on many cores, based
on the divide and conquer paradigm. Our solver allows two kinds of clause shar-
ing, the classical one and one more linked to the division of the initial formula.
Furthermore, we proposed to measure the degree of redundancy of the search
by counting the number of subsumed shared clauses. With this measure, we
are able to adjust dynamically the search, resulting in a new way of controlling
the dilemma of intensification/diversification of the search. Experiments show
promising results. Our main objective is to deploy a SAT solver among the cloud.
Thus, this paper is a first step towards this goal and leads to many perspectives.

46 G. Audemard et al.

We plan to run our solver on a cloud architecture using grid computing. For that,
we plan to run several manager’s in parallel letting solvers go from a manager
to another one. For that, we need to choose more carefully variables used for
the division. Many possibilities arise like the notion of blocked literals recently
used for SAT solving [14,27]. Finally, we also need to improve performances on
unsatisfiable instances by paying more attention on shared clauses.

References

1. Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C.: Revisiting
clause exchange in parallel SAT solving. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 200–213. Springer, Heidelberg (2012)

2. Audemard, G., Hoessen, B., Jabbour, S., Piette, C.: An effective distributed d&c
approach for the satisfiability problem. In: 22nd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing, PDP 2014, Torino,
Italy, pp. 183–187, 12–14 February 2014

3. Audemard, G., Lagniez, J.-M., Mazure, B., Säıs, L.: On freezing and reactivating
learnt clauses. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
188–200. Springer, Heidelberg (2011)

4. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013)

5. Audemard, G., Lagniez, J.-M., Simon, L.: Just-in-time compilation of knowledge
bases. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, IJCAI 2013, Beijing, China, 3–9 August 2013

6. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence,
IJCAI 2009, Pasadena, California, USA, pp. 399–404, 11–17 July 2009

7. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer,
Heidelberg (2014)

8. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M. (ed.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24318-4 12

9. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

11. Biere, A.: Bounded model checking. In: Biere et al. [10], Chap. 14, vol. 185, pp.
455–481, February 2009

12. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition 2013.
In: Proceedings of SAT Competition 2013, p. 51 (2013)

13. Biere, A.: Yet another local search solver and lingeling and friends entering the sat
competition 2014. In: Proceedings of SAT Competition (2014)

14. Chen, J.: Minisat bcd and abcdsat: solvers based on blocked clause decomposition.
In: SAT RACE 2015 Solvers Description (2015)

http://dx.doi.org/10.1007/978-3-319-24318-4_12

An Adaptive Parallel SAT Solver 47

15. Chrabakh, W., Wolski, R.: The gridsat portal: a grid web-based portal for solving
satisfiability problems using the national cyberinfrastructure. Concurrency Com-
put. Pract. Exp. 19(6), 795–808 (2007)

16. Chu, G., Stuckey, P.J., Harwood, A.: Pminisat: a parallelization of minisat 2.0.
Technical report, SAT Race (2008)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

18. Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability solver:
design and implementation. Electron. Notes Theoret. Comput. Sci. 128(3), 75–90
(2005)

19. Goldberg, E., Novikov, Y.: Berkmin: a fast and robust sat-solver. Discrete Appl.
Math. 155(12), 1549–1561 (2007)

20. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: Proceedings of the Fifteenth National Conference on Artificial
Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference,
AAAI 1998, IAAI 1998, Madison, Wisconsin, USA, pp. 431–437, 26–30 July 1998

21. Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification in
parallel SAT solving. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 252–265.
Springer, Heidelberg (2010)

22. Guo, L., Lagniez, J.-M.: Dynamic polarity adjustment in a parallel SAT solver. In:
IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI
2011, Boca Raton, FL, USA, pp. 67–73, 7–9 November 2011

23. Hamadi, Y., Jabbour, S., Sais, L.: Control-based clause sharing in parallel SAT
solving. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI 2009, Pasadena, California, USA, pp. 499–504, 11–17 July 2009

24. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. JSAT 6(4),
245–262 (2009)

25. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012)

26. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning SAT instances for dis-
tributed solving. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol.
6397, pp. 372–386. Springer, Heidelberg (2010)

27. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

28. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292.
Springer, Heidelberg (2013)

29. Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electron.
Notes Discrete Math. 9, 59–80 (2001)

30. Marques-Silva, J., Sakallah, K.: GRASP - a new search algorithm for satisfiability.
In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-
Aided Design, ICCAD 1996, pp. 220–227 (1996)

31. Martins, R., Manquinho, V.M., Lynce, I.: Improving search space splitting for par-
allel SAT solving. In: 22nd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2010, Arras, France, vol. 1, pp. 336–343, 27–29 October 2010

32. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, pp. 530–535. ACM, 18–22 June 2001

48 G. Audemard et al.

33. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012)

34. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

35. Rintanen, J.: Planning and SAT. In: Biere et al. [10], Chap. 15, vol. 185, pp.
483–504, February 2009

36. Roussel, O.: ppfolio. http://www.cril.univ-artois.fr/∼roussel/ppfolio
37. SAT-race (2015). http://baldur.iti.kit.edu/sat-race-2015/
38. Schubert, T., Lewis, M., Becker, B.: Pamiraxt: parallel SAT solving with threads

and message passing. J. Satisfiability Boolean Model. Comput. 6(4), 203–222
(2009)

39. Semenov, A., Zaikin, O.: Using monte carlo method for searching partitionings of
hard variants of boolean satisfiability problem. In: Malyshkin, V. (ed.) PaCT 2015.
LNCS, vol. 9251, pp. 222–230. Springer, Heidelberg (2015)

40. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009)

41. van der Tak, P., Heule, M.J.H., Biere, A.: Concurrent cube-and-conquer. In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 475–476.
Springer, Heidelberg (2012)

42. Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover
and its application to quasigroup problems. J. Symbolic Comput. 21(4), 543–560
(1996)

http://www.cril.univ-artois.fr/~roussel/ppfolio
http://baldur.iti.kit.edu/sat-race-2015/

Improved Linearization of Constraint
Programming Models

Gleb Belov1(B), Peter J. Stuckey2, Guido Tack1, and Mark Wallace1

1 Monash University, Caulfield Campus, Caulfield East, Australia
{gleb.belov,guido.tack,mark.wallace}@monash.edu

2 Data61, CSIRO, University of Melbourne, Parkville, Australia
pstuckey@unimelb.edu.au

Abstract. Constraint Programming (CP) standardizes many special-
ized “global constraints” allowing high-level modelling of combinator-
ial optimization and feasibility problems. Current Mixed-Integer Linear
Programming (MIP) technology lacks both a modelling language and a
solving mechanism based on high-level constraints.

MiniZinc is a solver-independent CP modelling language. The solver
interface works by translating a MiniZinc model into the simpler lan-
guage FlatZinc. A specific solver can provide its own redefinition library
of MiniZinc constraints.

This paper describes improvements to the redefinitions for MIP solvers
and to the compiler front-end. We discuss known and new translation
methods, in particular we introduce a coordinated decomposition for
domain constraints. The redefinition library is tested on the benchmarks
of the MiniZinc Challenges 2012–2015. Experiments show that the two
solving paradigms have rather diverse sets of strengths and weaknesses.
We believe this is an important step for modelling languages. It illustrates
that the high-level approach of recognizing and naming combinatorial
substructure and using this to define a model, common to CP modellers,
is equally applicable to those wishing to use MIP solving technology. It
also makes the goal of solver-independent modelling one step closer. At
least for prototyping, the new front-end frees the modeller from consider-
ing the solving technology, extracting very good performance from MIP
solvers for high-level CP-style MiniZinc models.

Keywords: Combinatorial optimization · High-level modelling · Auto-
matic reformulation ·Lineardecomposition ·Context-aware reformulation

1 Introduction

Constraint Programming (CP) operates in terms of specialized constraints, from
basic ones such as arithmetic, to high-level “global constraints” [3], and their
filtering/explanation algorithms. A solver which handles a model’s high-level
structure in terms of global constraints, can take advantage of this knowledge
in different ways. When the solver does not provide a handler for a certain
constraint, the latter can be expressed by more basic entities.
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 49–65, 2016.
DOI: 10.1007/978-3-319-44953-1 4

50 G. Belov et al.

Current Mixed-Integer Programming (MIP) technology lacks a modelling
language based on global constraints, so that a dedicated MIP modeller has to
hard-code a chosen MIP decomposition of his real problem. Moreover, a MIP
solver might need to reverse-engineer the high-level model information for effi-
ciency [24].

We consider automatic linearization of CP models, producing good quality
MIPs. MiniZinc [21] is a solver-independent Constraint Programming modelling
language. A MiniZinc model is translated into FlatZinc, a low-level language,
and the translation is controlled by a redefinition library. The MiniZinc front-
end is now supported by some 20 solvers, including finite domain solvers, SAT
solvers, Lazy Clause Generation solvers, and even local search solvers [4]. Annual
MiniZinc competitions [27] provide a basis for comparing solvers and exploring
their strengths and weaknesses.

A number of modelling front-ends are available for MIP solvers, including
GAMS [2] and AMPL [10] which focus on general Mathematical Programming.
For combinatorial problems, AMPL supports logical constraints and counters.
A similar functionality is offered by ZIMPL [15]. There are a number of CP
languages offering automatic translation to MIP [1].

Our vision is that MiniZinc becomes an accepted and even widely-used mod-
elling language within the OR community, thus helping to narrow the divide
between OR, CP and SAT researchers, and to simplify prototyping. To this pur-
pose we seek to ensure that pure MIP models, when formulated in MiniZinc,
have similar performance to AMPL and GAMS. This requires no reformulation,
but care needs to be taken in user and solver interfaces. Beyond that, we try
to optimize the MIP-compatible reformulation of CP models to make it flexible
and extensible. This enables the modeller to use the CP style modelling where
combinatorial substructure is captured using global constraints, and obtain good
performance for their problem, using state-of-the-art MIP, CP and SAT solving
technologies on the same models.

In the MiniZinc Challenge [27] MIP solvers have had some success, but MIP
did not appear competitive on most of the Challenge benchmarks. Some models
are inherently more efficient for MIP solving, e.g., assignment problems (see
the example in Sect. 2.2), and problems involving network flow. But we were
suspicious that the relatively poor performance of MIP solvers was an artifact
of a naive transformation of CP models to MIP. By improving linearization we
can see the true potential of MIP solvers on the Challenge benchmarks.

In automatic reformulation, it is up to the modelling system to provide effi-
cient translation for the target solver. To yield efficient transformed models it
is important to ensure that auxiliary variables generated during reformulation
are not unnecessarily duplicated [23]. Cire et al. [7] define an interactive system
that aids automatic detection of equivalent auxiliary variables produced in refor-
mulations of various parts of a model. MiniZinc 2.0 takes a different approach
through user-defined functions [28] which are used to avoid duplication in the
first place.

Improved Linearization of Constraint Programming Models 51

Refalo [23] presents a system for automatic reformulation of global con-
straints into MIPs. He observes that the reformulations are usually standard and
tight. The system supports dynamic reformulation: as more information about
the model becomes available during solving, the reformulation is updated. How-
ever, the implementation is bound to a hybrid of specific CP and MIP solvers.

Among the “basic” non-linear constraints we consider domain constraints,
restricting an integer variable to take values in a specified set, both in static as
well as reified version (i.e., depending on another condition). Such constraints
can appear on their own in a model, or be produced by the decomposition
of other non-linear constraints, such as disjunction, array element access, and
many others. We propose a coordinated decomposition of domain constraints
which takes into account all those of a group of dependent variables.

The next section gives introductory examples. Section 3 discusses general lin-
earization methods, in particular introducing the new domain constraint decom-
position. Experimental results follow.

2 Basics and Redefinition Examples

This section provides an overview of MiniZinc’s redefinition mechanism and some
motivating examples.

2.1 Basics on MiniZinc and Solver-Specific Redefinitions

MiniZinc [28] is a declarative modelling language. It builds constraint structures
using predicates, here is a toy example:
1 predicate small(int: m, var int:y) = -m <= y /\ y <= m;
2 predicate p(int: u, var bool: b, var int: x) =
3 (b <-> small(u,x));
4 constraint p(4,false ,v);

Global constraints [3], such as the well known alldifferent, are also spec-
ified as predicates.

When the model is compiled for a specific solver, the front-end looks for
a solver-specific redefinition of the global constraints used. If none is provided,
MiniZinc has a default decomposition, for example the standard library definition
for alldifferent is:
1 predicate alldifferent(array[int] of var int: x) =
2 forall(i,j in index_set(x) where i < j)
3 (x[i] != x[j]);

However the solver can provide its own redefinition. In particular, it can
forward the predicate call unchanged and use specialized algorithms. The trans-
lated model is converted to the low-level FlatZinc format and can be passed to
the solver, or used directly if the solver is linked in the same executable.

For example, the alldifferent constraint can be redefined in a different
way than given above for a linear solver:

52 G. Belov et al.

1 predicate alldifferent(array [Set1] of var Set2: x) =
2 forall (j in Set2)(sum(i in Set1)(x[i]==j) <= 1);

This redefinition automatically introduces an auxiliary zero-one variable to
encode the assignment of a variable to a value, x[i]==j, see Sect. 3. Note that
this auxiliary variable is re-used whenever this equality is encoded again, see
Sect. 3.1.

The redefinition library for MIP is located in folder share/minizinc/linear
of the MiniZinc distribution. To use this library, the mzn2fzn compiler is called
with options -G linear. In particular, files redefinitions*.mzn re-define the
basic constraints, such as logical connectives and min/max. Most global con-
straints are specified in dedicated files, for example lex less.mzn. If a library
does not provide a header for some global, its default decomposition is taken
from the standard library share/minizinc/std.

2.2 Linearization Example: Assignment Problem

Consider an assignment problem. Its natural CP model is:
1 set of int: WORKER ; % workers
2 set of int: TASK ; % tasks to be assigned to workers
3 array[WORKER ,TASK] of int: value;
4 array[WORKER] of var TASK: task; % which task worked on by each worker
5 include"alldifferent.mzn";
6 constraint alldifferent(task); % each worker works on a different task
7 solve maximize sum(w in WORKER)(value[w,task[w]]);

The natural MIP formulation of the model is the following one:
1 set of int: WORKER ; % workers
2 set of int: TASK ; % tasks to be assigned to workers
3 array[WORKER ,TASK] of int: value;
4 array[WORKER ,TASK] of var 0..1: worker_task;
5 constraint forall(w in WORKER) % one task per worker
6 (sum(t in TASK)(worker_task[w,t]) = 1);
7 constraint forall(t in TASK)
8 (sum(w in WORKER)(worker_task[w,t]) <= 1); % alldifferent
9 solve maximize sum(w in WORKER , t in TASK)(value[w,t] * worker_task[w,t]);

Unsurprisingly the MIP solver is effectively “infinitely” faster than a CP solver
on this problem since the MIP solver will effectively implement a polynomial-
time maximal matching algorithm using the linear integer constraints that arise
in its formulation. The challenge for the automatic linearization is to ensure that
the “natural” CP model above results in the MIP formulation being sent to the
MIP solver, so that we can make use of the insights of combinatorial substructure
without being penalized. This is particularly important when we want to solve
assignment problems with other side constraints.

As explained in Sect. 2.1, our automatic linearization of alldifferent pro-
duces the exact equivalent of its “natural” MIP decomposition. For the objective
function, which accesses element task[w] in each row w of matrix value, the
compiler transforms nested matrix access value[w,task[w]] into a standard
array access represented by the global constraint element [3]. The latter is lin-
earized as follows [13]:

Improved Linearization of Constraint Programming Models 53

1 sum (t in TASK) (value[w,t] * (task[w]==t))

Note that the auxiliary binary variable representing the equality task[i]==j
is re-used, which altogether gives the natural MIP formulation. There will be
some overhead for the (now useless) original task variables. However we have
an instance of a 3D orthogonal packing model where such variables improve
search behavior of IBM ILOG CPLEX 12.6.3 [14].

2.3 Linearization Example: Tour Guide Allocation Problem

An application brought to us by a local company is the tour guide allocation
problem. For a set of planned tours with fixed locations and times, the require-
ment is to minimize the total number of guides needed as well as the travel costs
of the guides between their tours.

Let matrix travel cost contain the travel costs between tours and a 4-
column matrix tour contain start day, duration, start and end location of a
tour in each row. Variable array succ describes the successors of each tour in its
guide’s sequence of tours, as follows:
1 int: tour_ct; % The total number of planned tours
2 set of int: C = 1..4; % Columns of tour data structure
3 int: SDay = 1; int: Dur = 2; int: SLoc = 3; int: ELoc = 4; % Column names
4 array [1.. tour_ct ,C] of int: tour;
5 int: loc_ct; % Number of locations
6 array [1.. loc_ct , 1.. loc_ct] of int: travel_cost;
7 array [1.. tour_ct -1] of var 1.. tour_ct: succ;

The last tour with index tour ct is the END tour with a zero distance to all
other tours’ locations. This ensures that in an optimum no two tours have the
same successor (different from END).

The total travel cost is the sum of the cost of traveling from the end of each
tour to the start of its successor (as recorded by succ):
1 constraint total_travel_cost = sum (t in 1.. tour_ct -1)
2 (travel_cost[tour[t,ELoc],tour[succ[t],SLoc]]);

As in Sect. 2.2, the nested matrix element accesses are simplified by the compiler,
resulting in a linear constraint.

Another array of decision variables is first tour. It tells us how many tour
guides are to be used. It does this by selecting certain tours to be the first tour
on (some) tour guide’s sequence of duties. Then, every tour must have a tour
guide (either it must be a first tour or it must be the successor of another tour):
1 array [1.. tour_ct -1] of var bool: first_tour;
2 constraint forall(t in 1.. tour_ct -1)
3 (first_tour[t] \/
4 (exists (t2 in 1.. tour_ct -1) (t = succ[t2]))
5) ;

Again, decisions t==succ[t2] are converted into auxiliary binary variables,
using either unary decomposition or domain refinement (Sect. 3). These aux-
iliary variables are automatically the same as in the linearization of the travel
cost.

54 G. Belov et al.

Finally, the successor of tour t must have a start date greater than or equal
to the start date of t plus the duration of t:
1 constraint forall(t in 1.. tour_ct -1)
2 (tour[t,SDay]+tour[t,Dur] <= tour[succ[t],SDay]);

The “every tour must have exactly one tour guide” constraint can be made
explicit by a direct MIP-tailored network flow-type formulation as follows:
1 constraint forall(t in 1.. tour_ct -1)
2 (first_tour[t] + sum(t2 in 1.. tour_ct -1)(t = succ[t2]) =

1);

On an example with 25 locations and 41 tours, CP finds only a subopti-
mal solution in observable time. Previously it was necessary to write a different
MiniZinc model to elicit the efficient performance of a network-flow model with a
MIP solver. Now, with automatic linearization, with or without the “every tour
has exactly one tour guide” constraint, IBM ILOG CPLEX 12.6.3 [14] proves an
optimum without branching.

3 Linearization

This section discusses some basic linearization principles, introduces domain
refinement, and discusses decomposition of the most commonly used global con-
straints.

3.1 Linearization Principles

Linearization by “Big-Ms”. The basic linearization method for complex
constraints is the so-called big-M transformation (see e.g. [13,19]). Given a linear
constraint e ≤ 0 in disjunction with a Boolean b, that is e ≤ 0∨ b or equivalently
¬b → e ≤ 0, then if M is the largest possible value linear expression e can take,
this can be expressed using the linear constraint e ≤ Mb.

For example, x ̸= y is equivalent to a disjunction between two inequalities:

x ≥ y + 1 ∨ y ≥ x+ 1 (1)

which can in turn be transformed by introducing a binary variable b into the
conjunction of two implications: b → x ≥ y + 1 and ¬b → y ≥ x+ 1, which can
then be transformed to linear constraints. Assume x and y range over [0, 10] we
can encode the first constraint using the linear constraint y + 1 − x ≤ 11(1 − b)
and the second by x+ 1 − y ≤ 11b.

Linearization of complex constraints consists of breaking them down into
reified linear constraints, and then replacing these with linear constraints using
the big-M method illustrated above, or other methods described in this section.
For space reasons we don’t describe the MIP decompositions of other basic con-
straints, such as logical ones, referring the reader, e.g., to [13,23].

Example 1. Consider the model on the left in Fig. 1. Using “big-M”s, we can lin-
earize the two constraints as shown on the right in the same figure. Its continuous
relaxation allows the solution x==5.5; beta1==beta2==0.75. ⊓(

Improved Linearization of Constraint Programming Models 55

1 var 0..10: x;
2 var bool: beta1;
3 var bool: beta2;
4 constraint beta1 <-> x<=4;
5 constraint beta2 <-> x>=7;

1 x-4 <= 6*(1- beta1)
2 5-x <= 5*beta1
3 7-x <= 7*(1- beta2)
4 x-6 <= 4* beta2

Fig. 1. Example model and its “big-M” linearization

Linearization with Unary Encoding of the Domain. An alternative app-
roach to linearization of complex constaints is to introduce a binary variable bxk
for each value k in the domain D(x) of x [23]. The correspondence between the
binary variables and the original integer variable can be enforced by the linear
constraints

∑
k∈D(x) b

x
k = 1, (2a)

∑
k∈D(x) kb

x
k = x. (2b)

Unary encoding introduces a lot of auxilliary variables, however it is usu-
ally preferred due to its tighter continuous relaxation. There are many con-
straints which are best transformed using these binary variables, including
alldifferent, element (see [23] and Sect. 2.2), inverse, multiplication of vari-
ables, and some others.

Tight Reformulation Using Common Subexpression Elimination. To
achieve a tight MIP model without duplicate variables and constraints, it is
essential that when a constraint on the same variable is transformed using its
unary encoding, the same binaries are used. When the translation is controlled
by a library, this can be achieved automatically through MiniZinc’s mechanism
of user-definable functions [28].

To introduce these binaries, we use the function eq encode(var int: x)
(which was named int2array in [28]), returning an array of 0–1 variables and
imposing linear constraints (2). Now every time this function is invoked on a
variable x, MiniZinc’s common subexpression elimination ensures that the same
binaries are reused, even if the function is embedded in a predicate or another
function.

However there still can be information loss. For example, x ̸= y − 5 or y ̸= x
would be linearized using unary encodings of variables z′ = x − y + 5 and
z′′ = y − x, respectively. The current capabilities of the MiniZinc language do
not allow it to recognize that we could make use of the same unary encoding for
these cases and we tackle this issue together with unified domain refinement in
Sect. 3.2.

Multiplication. In MiniZinc 1.6, the decomposition for FlatZinc predicate
int times constraining z = xy was z = (xymin, . . . , xymax)y−ymin+1, or equiv-
alently, using explicit calls to the global constraint element [3], element

56 G. Belov et al.

(y − ymin + 1, [xymin, . . . , xymax], z), where ymin, ymax are the finite bounds of
y. Note this method will also work when x is real-valued.

In the cases of a small (chosen as 4..20) product domain size |D(x)|× |D(y)|
and no variable domain having the form {0, k}, k ∈ Z \ {0}, experiments proved
that it is advantageous to use the following alternative encoding:

z =
∑

i,j i × j × bxyij , where bxyij = 1 ↔ (bxi = 1 ∧ byj = 1). (3)

If |D(x)| = |D(y)| = 2 and 0 ∈ D(x) ∩ D(y), we apply Boolean conjunction
instead. All these decompositions seem reasonably strong because experimenta-
tion with McCormick envelopes [18] did not show better results.

3.2 Linearization of Domain Constraints

A critical class of constraint for linearization are the so called domain constraints.
Under domain constraint for variable x ∈ Z we understand any of the following:

x ∈ S, (4a)
β ↔ x ∈ S, (4b)

where S ⊂ Z is a finite integer set and β a Boolean variable. (4a) is a static and
(4b) is a reified domain constraint. In FlatZinc they are imposed by predicates
set in(reif).

This class of constraints generalizes some other non-linear constraints, such
as comparisons with a constant: x ̸= a (static and reified, int ne(reif)), x = a
and x ≤ a (reified, int (eq/le) reif). Of the two latter, only reified versions
are non-linear. W.l.o.g., FlatZinc doesn’t consider other comparison operations
as they can be reduced to “≤” by variable substitution.

Moreover, comparisons between two variables x, y ∈ Z can be transformed
to constraints (4a), (4b) by introducing a variable for their difference: z = x−y.
Then, for example, x ̸= y is equivalent to z ̸= 0.

Domain constraints (4a) and (4b) can be straightforwardly linearized using
the unary encoding (2) by the following constraints (5a) and (5b), respectively:

1 =
∑

k∈S bxk, (5a)
β =

∑
k∈S bxk. (5b)

Domain Refinement for Integer Variables. The unary encoding (2) can
introduce a lot of auxilliary variables bxk for x with a big domain D(x) ⊂ Z. We
propose a refined domain structure as follows. Let x ∈ S be a constraint of the
form (4a). Let the following list:

SL(S) = argmin

{
n | S = Z ∩

n⋃

i=1

[li, ui], li, ui ∈ S, i = 1, n

}
(6)

Improved Linearization of Constraint Programming Models 57

be the smallest list of integer-bounded intervals covering S and including no
other integer values. Then, x ∈ S is equivalent to the following system:

∑
i lib̃i ≤ x ≤

∑
i uib̃i, (7a)

∑
i b̃i = 1, (7b)

b̃i ∈ {0, 1}, i = 1, |SL(S)|. (7c)

System (7) generalizes the unary encoding (2). Note that when the full unary
encoding eq encode(x) is already introduced for a given variable x, the MiniZinc
transformation ensures that it is used for the domain constraints instead of the
above. This prevents both systems (2) and (7) from being present in the model.

System (7) can be seen as a disjunction of 1D polyhedra. However we are
not aware of any previous results in line with the unified domain refinement
introduced below.

Unified Domain Refinement. We propose a single domain refinement which
can be used to decompose all the domain constraints on a given variable, as well
as those on dependent variables.

Example 2. (continued from Example 1). For the model of Fig. 1, consider the
following list of intervals:

SL = ([0, 4], [5, 6], [7, 10]),

and the corresponding system (7). Then we can linearize the model by imposing
the following equivalences:

β1 = b̃1, (8a)

β2 = b̃3. (8b)

The solution beta1 = beta2 = 0.75; x == 5.5; of Example 1 is no longer fea-
sible, in the linear relaxation, simply by (7b). ⊓(

W.l.o.g., for a given variable x we have exactly one static domain constraint
(4a) (with S = D(x)) and possibly several reified constraints (4b).

Definition 1. Given an integer variable x and all its domain constraints

x ∈ D(x), (9a)
βj ↔ x ∈ Sj , j ∈ Jx, (9b)

define the unified domain refinement SLx as the list of the isolated intervals of
the set

Sx = SL(D(x)) ∩
⋂

j∈Jx

(SL(Sj) ∪ SL(D(x) \ Sj)) . (10)

58 G. Belov et al.

Note that unary encoding (2) represents a special case of domain refinement,
namely it is equivalent to system (7) based on the degenerate interval list
([lk, uk] | lk = uk = k, k ∈ D(x)).

Theorem 1. For an integer variable x, system (7) based on the interval list
SLx correctly linearizes the static constraint (9a). For each j ∈ Jx, the reified
constraint (9b) is correctly linearized by the following equation:

βj =
∑ {

b̃i | li, ui ∈ Sj , i ∈
{
1, . . . ,

∣∣SLx

∣∣}
}
. (11)

Proof. Note that Sx ∩ Z = D(x), which proves correctness for (9a). The sublist
([li, ui] | li, ui ∈ Sj) of SLx covers all elements of Sj ∩ D(x), proving (11). !

Theorem 2. For an integer variable x with domain constraints (9), the continu-
ous relaxation of the decompositions (7), (11) based on unified domain refinement
SLx as well as that of unary encoding (2), (5b) are equally strong in terms of
the high-level variables (x and βj, j ∈ Jx).

Proof. Given a continuous solution
(
x,βj |j∈Jx , b

x
k|k∈D(x)

)
of unary encoding, it

is easy to see that
(
b̃i =

∑ui

k=li
bxk

)
||SLx|
i=1 fulfills (7) and (11).

Vice versa, given a continuous solution
(
x,βj |j∈Jx , b̃i|

|SLx|
i=1

)
of (7), (11), set

r =
x −

∑
i lib̃i∑

i uib̃i −
∑

i lib̃i
∈ [0, 1].

For each i ∈
{
1, . . . ,

∣∣SLx

∣∣}, if li = ui then set bxli = b̃i, otherwise select (bxk)|
ui
k=li

so that b̃i =
∑ui

k=li
bxk (which provides (2a) and (5b)) and

(
ui∑

k=li

k
bxk
b̃i

− li

)/
(
ui − li

)
= r,

which is in general non-unique. This fulfills (2b):

∑

k∈D(x)

kbxk =
|SLx|∑

i=1

ui∑

k=li

kbxk =
|SLx|∑

i=1

b̃i(r(ui − li) + li) = x. !

We see that unary encoding can have non-unique equivalents for a solution
of unified refinement, leading to symmetries.

Dependent Variables. When there is a set of variables {x1, . . . , xn} that are
pairwise linearly dependent (i.e. ∀1 ≤ i < j ≤ n∃aijbij s.t.xi = aijxj + bij), if
at least one of them has a unary encoding generated by a specialized global, it
can be re-used for the domain constraints of all {xi}. Otherwise, all the domain
constraints on {xi} can be projected onto just one of them, using a single unified
domain refinement.

Improved Linearization of Constraint Programming Models 59

The unification procedure was implemented as a post-processing step in the
MiniZinc compiler v2.0.10 but still controllable from the redefinition library. It
looks for linearly dependent variables in several ways, for example if two vari-
ables are initialized by linear expressions whose non-constant parts are multiples
of each other. This occurs for various auxiliary variables introduced in reformu-
lations.

3.3 Global Constraint Decompositions

The MiniZinc distribution defines default decompositions for over 100 global
constraints. The reformulations described in Sect. 3.2 above ensure that most of
these default decompositions can be directly re-used for MIP, producing tight
linear reformulations of the global constraints, where duplication of auxiliary
variables has been automatically minimised.

For a few constraints where default decomposition is not MIP-efficient,
we have implemented tailored MIP formulations, listed in the directory
share/minizinc/linear of the MiniZinc distribution.

alldifferent, inverse, alldifferent except 0: We have already seen how
alldifferent is linearised using the unary encoding. One can linearise inverse
similarly. The constraint alldifferent except 0 is a simple variation of
alldifferent and much more pleasing than the constraint programming decom-
position:
1 predicate alldifferent_except_0(array [Set1] of var Set2: x) =
2 forall (j in Set2 diff {0})(sum(i in Set1)(x[i]==j) <= 1);

element, table: We have already seen how element is linearised using the unary
encoding. The table constraint table([x1, . . . , xn], T) is encoded by defining
auxiliary 01 variables λi, 1 ≤ i ≤ m for each of the m rows in the table and then
equating xj =

∑m
i=1 λiTij . This is a direct extension of the element encoding,

minus the index element.

cumulative: The global cumulative constraint, limiting the total amount of
a renewable resource available to all tasks at any moment of time, is frequent
in scheduling problems [25]. It can be used to express alldifferent, as in the
ghoulomb.mznbenchmark, andas a redundant constraint in packingproblems [26].

Two forms of reasoning used in the cumulative constraints are reasoning
about the ordering of tasks (“task decomposition”) [25], and reasoning about
the tasks running at each time slot (“time decomposition”) [12].

Transforming the cumulative constraint for MIP can be costly in terms of
both the number of variables and constraints. While the number of variables
resulting from the task decomposition is proportional to the number of tasks
squared, the time decomposition ultimately requires a variable for each task

60 G. Belov et al.

indicating its relation to each time slot, which requires a number of variables
proportional to the product of tasks and time slots.

The time decomposition of cumulative is currently the default in MiniZinc,
and thus was solely used by the previous linearization library. We found that
when the product of the number of time slots and the number of tasks exceeds
a certain parameter (chosen as 2000), it is advantageous to use the task decom-
position of cumulative and not the time decomposition.

circuit and subcircuit: The global constraints circuit and subcircuit
take an argument vector x, where x[i] denotes the successor of node i (or just
i if it is not included in the subcircuit). They ensure that there are no separate
cycles and each node is in exactly (for subcircuit, in at most) one loop.

The previous linearization library had no special translation for them, re-
sulting in the usage of standard decompositions. As an example, for subcircuit
they involved ordering constraints of the type

(⟨ordering condition⟩) -> order[x[i]] = order[i] + 1

where auxiliary variable order[i] is the order of node i in the subcircuit,
starting from the least-index node. The order of excluded nodes is not con-
strained. Expression order[x[i]] is a variable subscript (flattened as predicate
array var int element) and hard to linearize efficiently.

These globals are now encoded as variants of the Miller-Tucker-Zemlin formu-
lation [20]. Interestingly, in an experiment with the lifted MTZ cuts of Desrochers
and Laporte [9], we observed inferior behaviour when we tested them using IBM
ILOG CPLEX 12.6.1 [14].

regular: Probably the most difficult global constraint for the previous lineariza-
tion library is regular. It requires that the sequence of values in the control vec-
tor x satisfies a deterministic finite automation defined by the acceptable states
vector a and a transition function d mapping the current state and the control
value into the next state: a[i+1] = d[a[i], x[i]]. The default decomposition
just uses the latter prescription directly, resulting in a series of element’s.

Specialized propagation algorithms for regular, cf. [8], construct the graph of
achievable/feasible states for each step, called layered graph. Its nodes correspond
to the unary encodings of the state variables a[i] for each step i: node (i, k)
means a[i]==k, and arcs denote the transitions between the nodes of the con-
secutive steps (layers). A network-flow approach in [8] uses such a graph, imple-
mented by an external procedure, and formulates the network-flow constraints
in a MIP-typical way, namely with binary variables λ(i,k1),(i+1,k2) ∈ {0, 1} for
the flow on each arc ((i, k1), (i+ 1, k2)).

We implemented this reformulation in MiniZinc, iteratively tightening the
domains of the state variables a[i] and introducing the above-mentioned arc
flow variables.

Improved Linearization of Constraint Programming Models 61

4 Experiment

To validate the MIP reformulations described above, we tested them on leading
commercial and free MIP solvers, and compared them with the best solvers based
on results from the MiniZinc Challenge.

As test instances we used 400 instances from MiniZinc Challenges 2012–2015.
Naturally these instances are advantageous for the solvers proven on the very
same test set!

The MIP solvers we tested were:

– commercial solver Gurobi 6.5.1 [11],
– commercial solver IBM ILOG CPLEX 12.6.3 [14],
– free solver COIN-OR Branch-and-Cut (CBC) 2.9.8 [17].

We tested the MIP solvers each under three configurations: default (with all
linearization approaches), “no DR” (without domain refinement, Sect. 3.2), and
“old” (with the old linearization library fromMiniZinc 1.6 however supplemented
with MIP-tailored globals alldifferent, table, and inverse, Sects. 2 and 3).
The multi-pass compilation of models suggested in [16] was not considered as it
currently fails on 15 instances.

The best solvers from the MiniZinc Challenge we used for comparison were:

– Opturion CPX [22], overall official winner of the Challenges 2013 and 2015,
– Chuffed [5,6], not prize-eligible in the Challenge.

For these solvers we used the search strategy specified by the model.
All solvers were executed sequentially (1 thread) on an Intel i7-4771 CPU @

3.50GHz with a memory limit of 12GB per process. MiniZinc 2.0.131 was used
to flatten the models. The actual FlatZinc-to-solver interfaces are going to be
released as part of the upcoming MiniZinc 2.1. Solving time was limited to 5min
total CPU time per method/instance. Flattening time was not limited.

In Table 1 we report the following data for each solver and configuration: the
number of optimal (opt), feasible but not optimal (feas), satisfied (sat), proven
infeasible (inf), not flattened (nofzn), failed (fail) (solver crashed or did not stop
normally in 500 s), and other cases (other) — where none of the previous results
were achieved. i.e., the solver ran without finding feasible solutions and did not
crash.

1. Note from Table 1 that sometimes the MiniZinc-to-FlatZinc compilation can-
not produce a working model (columns nofzn and fail). For MIP, the main
causes were the globals cumulative, regular and table involving variables
with large domains, leading to huge decompositions and thus to big MIP
models where MIP solvers run out of memory or just stop responding. The
same happens to the CP solvers when they don’t handle a global constraint
directly and it has to be decomposed, in this case cumulative with variable
durations and resource demands in 2 instances of mznc2013/fjsp.

1 minizinc.org.

62 G. Belov et al.

Table 1. Comparison of solvers and configurations

Solver+config opt feas sat inf nofzn fail other

Gurobi 160 113 48 3 5 1 70

Gurobi, noDR 157 115 45 2 5 2 74

Gurobi, old 133 118 28 5 16 4 96

CPLEX 139 121 46 2 5 1 86

CPLEX, noDR 141 124 47 3 5 0 80

CPLEX, old 124 118 26 4 16 2 110

CBC 86 82 24 2 5 32 169

CBC, noDR 78 69 20 1 5 40 187

CBC, old 61 58 8 1 16 51 205

Chuffed 157 142 54 5 2 0 40

Opturion CPX 130 159 37 5 2 0 67

2. The linear solvers successfully find and prove optimality - Gurobi beats both
Chuffed and Opturion CPX in terms of number of optimal solutions.

3. The new domain refinement is definitely beneficial to Gurobi and more so for
CBC, while strangely it is disadvantageous for CPLEX. We believe it may
interfere with some presolve simplifications in CPLEX.

Even the free MIP solver CBC, with helpful support from its developers, now
runs bug-free and gives results on nearly half the instances. Moreover, as revealed
in Table 2 CBC sometimes succeeds where the Challenge solvers fail.

In Table 2 we present pairwise set difference analysis for the solvers’ best
configurations. For each comparison of two solvers/configurations, we report the
following numbers: Oopt is the number of cases where only that solver proved
optimality (and the other solver had at best feasibility); Ofea is the number
of cases where only that solver found a feasible solution (and the other none);
Oinf is the similar value for infeasible cases; Bpri and Bdua are the numbers of
instances for each solver when it has found a better primal/dual bound if both
had one, respectively.

Gurobi outperforms Chuffed on over 100 instances, and even CBC outper-
forms Chuffed on over 50 instances. The differences between the MIP solvers
and the Challenge solvers are particularly evident on proofs of optimality and
feasibility (Oopt and Ofea). In this comparison, CBC outperforms Chuffed on
30 instances, while CPX only outperforms Chuffed on 8 instances.

What emerges from these tests is that, now that the linearization of CP
models has been improved, MIP shows complementary strengths in contrast
with the Challenge solvers. Given a new MiniZinc model it makes sense to try
evaluating it with different classes of solvers, including MIP.

Improved Linearization of Constraint Programming Models 63

Table 2. Comparison of difference sets

Solver+config Oopt Ofea Oinf Bpri Bdua

Gurobi vs Chuffed

Gurobi 52 22 0 41 -

Chuffed 49 45 2 23 -

CPLEX(noDR) vs Chuffed

CPLEX(noDR) 40 19 0 42 -

Chuffed 56 50 2 29 -

CBC vs Chuffed

CBC 21 9 0 25 -

Chuffed 92 112 3 24 -

Gurobi best cfg vs CPLEX best cfg

Gurobi 21 19 0 46 98

CPLEX(noDR) 3 14 0 33 31

Chuffed vs Opturion CPX

Chuffed 30 26 0 49 -

CPX 3 5 0 37 -

The work that has been done ensuring the behaviour of CBC is sound can
also pay off by enabling constraint programmers to have immediate access to a
free MIP solver adding an additional weapon to the CP modeller’s armoury.

5 Conclusion

The results show that MIP solvers are highly competitive with CP solvers on
MiniZinc benchmarks, which are, for the most part, written with CP solvers
in mind. This is good news since it validates the constraint programming view
of modelling: that the model should be written in the highest level possible,
and it should be up to tools to map this to a suitable form for the solver if
needed (of course the CP perspective is that the preferred mapping would be to
a global propagator, but also MIP solvers might start providing global constraint
handlers). This is also a challenge to CP since it illustrates that MIP solvers can
be used out of the box to tackle problems that we often consider are suited to the
CP solving technology. Of course there is a place for both CP and MIP solving
technology, and one of the aims of a solver-independent modelling language is to
avoid users committing early to the wrong technology. Better linearization makes
MiniZinc a more attractive modelling language for the general OR community,
which may then make them more aware of the CP view of modelling and solving.

There is plenty of scope for further improvement of automatic linearization
of MiniZinc models. Issues that we plan to investigate are: better continuous

64 G. Belov et al.

relaxations of nonlinear expressions, avoiding symmetry creation in decomposi-
tions, providing a declarative interface to domain refinement to allow the user
to control the process using annotations.

References

1. A list of constraint languages (2016). http://www.csplib.org/Languages/
2. Andrei, N.: Introduction to GAMS Technology. Nonlinear Optimization Applica-

tions Using the GAMS Technology. Springer Optimization and Its Applications,
vol. 81, pp. 9–23. Springer, New York (2013)

3. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
past, present and future. Constraints 12(1), 21–62 (2007)

4. Björdal, G., Monette, J.-N., Flener, P., Pearson, J.: A constraint-based local search
backend for MiniZinc. Constraints 20(3), 325–345 (2015)

5. Chu, G.: Improving combinatorial optimization - extended abstract. In: Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence IJCAI
2013, Beijing, China, pp. 3116–3120 (2013)

6. Chu, G.: Constraint Programming solver Chuffed (2016). https://github.com/
geoffchu/chuffed. Accessed 16 Mar 2016

7. Cire, A.A., Hooker, J.N., Yunes, T.: Modeling with metaconstraints and semantic
typing of variables. INFORMS JoC 28(1), 1–13 (2016)

8. Côté, M.-C., Gendron, B., Rousseau, L.-M.: Modeling the regular constraint with
integer programming. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007.
LNCS, vol. 4510, pp. 29–43. Springer, Heidelberg (2007)

9. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Oper. Res. Lett. 10(1), 27–36 (1991)

10. Fourer, R., Gay, D.M.: Extending an algebraic modeling language to support con-
straint programming. INFORMS J. Comput. 14(4), 322–344 (2002)

11. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual Version 6.5. Hous-
ton, Texas: Gurobi Optimization (2016)

12. Hardin, J.R., Nemhauser, G.L., Savelsbergh, M.W.P.: Strong valid inequalities for
the resource-constrained scheduling problem with uniform resource requirements.
Discrete Optim. 5(1), 19–35 (2008)

13. Hooker, J.N.: Integrated Methods for Optimization. International Series in Oper-
ations Research & Management Science, vol. 170. Springer, US (2012)

14. IBM Software. IBM ILOG CPLEX optimizer. Data sheet, IBM Corporation (2014)
15. Koch, T.: Rapid mathematical prototyping. Ph.d. thesis, Technische Universität

Berlin (2004)
16. Leo, K., Tack, G.: Multi-pass high-level presolving. In: International Joint Confer-

ence on Artificial Intelligence (IJCAI) (2015)
17. Linderoth, J., Ralphs, T.: Noncommercial software for mixed-integer linear pro-

gramming. Technical report, Lehigh University (2004)
18. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-

grams: Part I - convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

19. McKinnon, K., Williams, H.: Constructing integer programming models by the
predicate calculus. Ann. Oper. Res. 21, 227–245 (1989)

20. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7(4), 326–329 (1960)

http://www.csplib.org/Languages/
https://github.com/geoffchu/chuffed
https://github.com/geoffchu/chuffed

Improved Linearization of Constraint Programming Models 65

21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Mini-
Zinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

22. Opturion Pty Ltd. Opturion CPX user’s guide: version 1.0.2 (2013)
23. Refalo, P.: Linear formulation of constraint programming models and hybrid

solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer,
Heidelberg (2000)

24. Salvagnin, D.: Detecting semantic groups in MIP models. In: Quimper, C.-G.,
Cavallo, M. (eds.) CPAIOR 2016. LNCS, vol. 9676, pp. 329–341. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33954-2 24

25. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

26. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69–84. Springer, Heidelberg (2011)

27. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Con-
straints 15(3), 307–316 (2010)

28. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-33954-2_24

Impact of SAT-Based Preprocessing
on Core-Guided MaxSAT Solving

Jeremias Berg(B) and Matti Järvisalo

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Helsinki, Finland

jeremias.berg@cs.helsinki.fi

Abstract. We present a formal analysis of the impact of Boolean sat-
isfiability (SAT) based preprocessing techniques on core-guided solvers
for the constraint optimization paradigm of maximum satisfiability
(MaxSAT). We analyze the behavior of two solver abstractions of the
core-guided approaches. We show that SAT-based preprocessing has no
effect on the best-case number of iterations required by the solvers. This
implies that, with respect to best-case performance, the potential bene-
fits of applying SAT-based preprocessing in conjunction with core-guided
MaxSAT solvers are in principle solely a result of speeding up the individ-
ual SAT solver calls made during MaxSAT search. We also show that, in
contrast to best-case performance, SAT-based preprocessing can improve
the worst-case performance of core-guided approaches to MaxSAT.

1 Introduction

Real-world applications [1–18] of maximum satisfiability (MaxSAT) [19–21], the
optimization counterpart of the famous Boolean satisfiability problem (SAT)
[22,23], are increasing in numbers as recent breakthroughs in MaxSAT solvers
[24–32] are making MaxSAT more and more competitive as a constraint opti-
mization paradigm.

A great majority of state-of-the-art MaxSAT solvers for solving optimiza-
tion problems from the real world are core-guided [20,21], heavily relying on
the power of SAT solvers as very effective means of proving unsatisfiability of
subsets of soft constraints, or unsat cores, in an iterative fashion towards an
optimal solution. Thus new breakthroughs in techniques for speeding up SAT
solvers also have the potential of directly speeding up MaxSAT solvers further.
One particularly fruitful line of research on speeding up SAT solvers has been
the development of effective preprocessing techniques [33–35], applied most typ-
ically before search, as well as most recently also as inprocessing [34], i.e., during
SAT search. Compared to SAT, preprocessing for MaxSAT has seen some but
arguably less progress so far [26,30,36–39]. Recently, ways of employing pre-
processing techniques developed for pure SAT in the context of MaxSAT have

Work supported by Academy of Finland, grants 251170 COIN, 276412, 284591; and
DoCS Doctoral School in Computer Science at the University of Helsinki.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 66–85, 2016.
DOI: 10.1007/978-3-319-44953-1 5

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 67

been explored [26,30,40]. However, the impact of SAT-based preprocessing for
MaxSAT solving seems to often be somewhat more modest than in the context
of SAT solving [26,30,40]. The exact reasons for this difference are currently
unclear; specifically, we are not aware of studies towards fundamental under-
standing on the potential of SAT-based preprocessing in the context of MaxSAT.

In this paper, we aim at providing further understanding on the potential
of SAT-based preprocessing techniques in speeding up modern MaxSAT solvers.
More specifically, we formally analyze the impact of SAT-based preprocessing
techniques on the best-case and worst-case behavior of core-guided MaxSAT
solvers [41–43]. As the basis of our analysis, we focus on two abstractions of
MaxSAT solvers which together cover a number of modern core-guided MaxSAT
solvers [25,30,42]. As the formal metric, we focus on the impact of SAT-based
preprocessing on the best-case and worst-case number of iterations, which—
although not the only possible metric—is a natural choice of metric applied in
the literature for analyzing iterative SAT-based approaches in various problem
settings [41–45] and which has also been subjected to some extent to empirical
analysis for understanding specific MaxSAT solving approaches [46].

As the main contributions, considering best-case performance of the abstract
core-guided solvers, we show that SAT-based preprocessing has no effect on the
number of iterations required by the solvers. In fact, this is true regardless of
assumptions on the type of cores (guaranteed-minimal or not) the underlying
SAT solver (unsat core extractor) provides to the MaxSAT solvers; thus our
analysis also sheds light on the impact of core minimization on the performance
of the abstract core-guided solvers. Essentially, our results imply that, in terms
of best-case performance—assuming optimal search heuristics—the potential
benefits of applying SAT-based preprocessing in conjunction with core-guided
MaxSAT solvers are solely a result of speeding up the individual SAT solver calls
made during MaxSAT search. Furthermore, contrasting the results for best-case
behavior, we also show that SAT-based preprocessing does, in cases, improve
worst-case performance of core-guided MaxSAT solvers (without ever having a
negative effect on the worst-case number of iterations).

This paper is organized as follows. After preliminaries on MaxSAT and SAT-
based preprocessing for MaxSAT (Sect. 2), we detail abstractions of core-guided
MaxSAT solvers we focus on (Sect. 3). Before detailed proofs of our results (pro-
vided in Sects. 5 and 6), we present a detailed overview of the main contributions
(Sect. 4).

2 Preliminaries

Maximum satisfiability. For every Boolean variable x there are two literals:
the positive literal x and the negative literal ¬x. A clause C is a disjunction
of literals, and a CNF formula F is a conjunction of clauses. When convenient,
we treat a clause as a set of literals and a CNF formula as a set of clauses. We
denote by Var(F) the set of variables appearing in F . A truth assignment is
a function τ : Var(F) → {0, 1}. A clause C is satisfied by τ if τ(l) = 1 for a

68 J. Berg and M. Järvisalo

positive literal or τ(l) = 0 for a negative literal l ∈ C. A CNF formula F is
satisfied by τ if τ satisfies all clauses C ∈ F . A formula F is satisfiable if there
is a truth assignment that satisfies it, otherwise it is unsatisfiable.

A (weighted partial) MaxSAT instance F = (Fh, Fs, w) consists of two CNF
formulas, Fh (hard clauses) and Fs (soft clauses), together with a function
w : Fs → N assigning a positive weight w(C) to each C ∈ Fs. If w(C) = 1
for all C ∈ Fs, the instance is unweighted. An (unsatisfiable) core of a MaxSAT
instance F is a subset κ ⊆ Fs such that κ∧Fh is unsatisfiable. A core is minimal
(a MUS) if no κs ⊂ κ is a core of F . We denote the set of all MUSes of F by
mus(F). For a subset S ⊆ Fs and clause C ∈ S, C is necessary for S if Fh ∧ S
is unsatisfiable and Fh ∧ (S \ {C}) is satisfiable.

An assignment τ that satisfies Fh is a solution to a MaxSAT instance F .
For a solution τ , let cost(F, τ) =

∑
C∈Fs

w(C) · (1−τ(C)), i.e., the sum of
the weights of soft clauses in F not satisfied by τ . A solution τ is optimal if
cost(F, τ) ≤ cost(F, τ ′) for every solution τ ′; we denote the cost of F , i.e., the
value cost(F, τ) for optimal solutions τ , by cost(F). Given a MaxSAT instance
F , the MaxSAT problem asks to find an optimal solution to F .

SAT-Based Preprocessing for MaxSAT. Preprocessing is today an integral
part of SAT solving [33,34]. Consisting of applying a combination of satisfiability-
preserving simplification (or rewriting) rules on the input CNF formula F to
obtain a preprocessed CNF formula pre(F), a central aim of preprocessing is to
speed up the runtime of a SAT solver so that the combined preprocessing time
and solving time on pre(F) is shorter than the runtime of the solver on F . Sev-
eral preprocessing techniques for SAT have been proposed. In this work we will
focus on bounded variable elimination, subsumption elimination, self-subsuming
resolution, and blocked clause elimination, as perhaps the most common pre-
processing techniques in modern SAT solving.

Resolution. Given two clauses C = C1 ∨ l and D = D1 ∨ ¬l of F , the resolution
rule states that the clause C ◃▹l D = C1∨D1, called the resolvent, can be inferred
by resolving on the literal l. This is lifted to two sets Sl ⊆ F and S¬l ⊆ F of
clauses that contain the literal l and ¬l, respectively, by Sl ◃▹l S¬l = {C ◃▹l D |
C ∈ Sl,D ∈ S¬l, and C ◃▹l D is not a tautology}.

Bounded Variable Elimination (BVE) [33]. For a variable x ∈ Var(F), denote
by Fx (F¬x) the clauses of F containing the literal x (¬x). If |Fx ◃▹x F¬x| ≤
|Fx ∪ F¬x|, the BVE rule allows converting the formula F to (F \ (Fx ∪ F¬x))∪
(Fx ◃▹x F¬x).

Subsumption Elimination (SE). A clause C ∈ F subsumes another clause D ∈ F
if C ⊆ D. The SE rule allows for removing subsumed clauses from F .

Self-Subsuming Resolution (SSR). Given two clauses C,D ∈ F s.t. C = C1 ∨ l,
D = D1∨¬l for a literal l andD1 ⊆ C1, the SSR rule allows for replacing C by C1.

Blocked Clause Elimination (BCE) [47]. A clause C ∈ F is blocked if it contains
a literal l ∈ C s.t C ◃▹l D is a tautology for all D ∈ F¬l. BCE allows removing
blocked clauses from F .

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 69

Example 1. Consider the CNF formula
F = {(x∨ y), (¬t∨¬z), (¬z ∨ y), (¬y ∨ z), (z ∨ t), (x), (y ∨ t), (z ∨ t∨ x)}. Due to
the clause (x), SE allows for removing (x ∨ y) and (z ∨ t ∨ x). After this, using
BVE to eliminate z, results in the formula pre(F) = {(¬t ∨ ¬y), (t ∨ y), (x)}.

As shown in [26], many important SAT preprocessing techniques, including
BVE, SE, and SSR, cannot be used directly on MaxSAT instances. However,
a correct lifting on these techniques for MaxSAT is enabled by the so-called
labelled CNF (LCNF) framework [26,48]. The LCNF framework enables correct
applications of SAT-based preprocessing techniques on a MaxSAT instance F =
(Fh, Fs, w) using the procedure outlined in Fig. 1. Each soft clause C ∈ Fs is
augmented with a fresh label variable lC (Step 1). Then SAT preprocessing is
applied on the CNF formula Fh ∪ F a

s (Step 2). To ensure correctness in terms
of MaxSAT, the preprocessor needs to be restricted from resolving on any of
the label variables. The hard clauses of pre(F) are the clauses output by the
SAT preprocessor on Fh ∪F a

s (Step 3). The soft clauses of pre(F) contain a unit
negation of each label variable that has not been eliminated by preprocessing;
the weight function wP assigns to each (¬lC) the same weight as was assigned
to C by w (Step 4). Finally, the procedure returns the preprocessed instance
pre(F) = (pre(F)h, pre(F)s, wP) (Step 5). The soft clauses of pre(F) are all unit
soft clauses (¬lC) where the variable lC was added to some soft clause C ∈ Fs of
the original instance F in Step 1. Due to BVE, the variable lC might appear in
more than one hard clause of pre(F) and there might be literals that have been
eliminated entirely from the formula during preprocessing.

1. F a
s = {(C ∨ lC) | C ∈ Fs, lC is a fresh variable}.

2. Run VE, SSR, SE, and BCE on Fh ∪ F a
s until fixpoint to obtain pre (F)h.

3. pre (F)s = {(¬lC) | ∃C′ ∈ pre (F)h, lC ∈ C′}.
4. wP ((¬lC)) = w(C) for all (¬lC) ∈ pre (F)s.
5. Return pre (F) = (pre (F)h, pre (F)s, w

P) .

Fig. 1. Applying SAT-based preprocessing to MaxSAT instance F = (Fh, Fs, w).

Example 2. Let F = (Fh, Fs) be an unweighted MaxSAT instance with
Fh = {(x ∨ y), (z), (z ∨ t)} and Fs = {(¬x), (¬y), (¬t)}. Augmenting the soft
clauses with the label variables l1, l2, and l3 to form F a

s = {(¬x ∨ l1), (¬y ∨
l2), (¬t ∨ l3)}, and applying SAT-based preprocessing (BVE and SE) results in
the instance pre(F) with pre(F)h = {(l1 ∨ l2), (z)} and pre(F)s = {(¬l1), (¬l2)}.
Notice that preprocessing eliminates the label l3.

Correctness of SAT-based preprocessing for MaxSAT is summarized as fol-
lows [26].

Theorem 1 ([26]). Let F be a MaxSAT instance and pre(F) the instance result-
ing from preprocessing F according to the procedure in Fig. 1. The following

70 J. Berg and M. Järvisalo

hold: (i) cost(F) = cost(pre(F)); (ii) any optimal solution to pre(F) restricted
to Var(F) is an optimal solution to F ; and (iii) {C1, . . . , Cn} ∈ mus(F) iff
{(¬lC1), . . . , (¬lCn)} ∈ mus(pre(F)).

3 Core-Guided MaxSAT Algorithms

In this section we detail the two abstractions of MaxSAT algorithms we analyze
in this work: CG and HS. Both are examples of so-called core-guided MaxSAT
solvers, one of the most successful current MaxSAT solving approaches with
several variants, e.g. [28,31,42,49–52]. CG (Fig. 2 left) is the same abstrac-
tion as studied in [53]. CG works by iteratively calling a SAT solver to extract
unsatisfiable cores and ruling out each of the found cores by exploiting cardi-
nality constraints. HS (Fig. 2 right) follows the implicit hitting set approach to
MaxSAT [54,55], iteratively using a SAT solver to extract unsatisfiable cores,
and an exact minimum-cost hitting set algorithm to compute hitting sets over
the found cores.

In more detail, at each iteration i, CG checks the satisfiability of a working
formula F i

w, which initially contains all clauses in the input formula, using a SAT
solver. If F i

w is satisfiable, CG returns the satisfying assignment τ returned by the
SAT solver restricted onto the variables of F . Otherwise, the SAT solver returns
a core κi of F i

w. Finally, CG forms the next working formula F i+1
w by processing

the core κi. The exact method in which CG processes κi is left abstract. Follow-
ing [53], we consider algorithms that extend soft clauses with blocking variables
and impose hard linear (in)equalities over the blocking variables. More precisely,
CG is allowed to modify the soft clauses C ∈ F i

s by two operations: Relax(C)
and Clone(C,w).

CG:
F 1
w ← Fh ∪ Fs

for i=1. . . do
(result, κ, τ) ← SATSOLVE(F i

w)
if result=”satisfiable” then

return τ // optimal solution
else

// SAT solver returned unsat core
F i
w = (F i

w \ κ)
F i+1
w ← PROCESS(F i

w,κ)
end

end

HS:
K ← ∅ // set of found unsat cores of F
Fw ← (Fh ∪ Fs)
while true do

H ← MINCOSTHITTINGSET(K)
Fw ← Fh ∪ (Fs \H)
(result, κ, τ) ← SATSOLVE(Fw)
if result=”satisfiable” then

return τ // optimal solution
else

// SAT solver returned unsat core
K ← K ∪ {κ}

end
end

Fig. 2. Abstractions of MaxSAT solvers: CG (left) and HS (right), given a MaxSAT
instance F = (Fh, Fs, w) as input.

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 71

– Relax(C) allows replacing C by C ∨ b where b is a new blocking variable not
appearing anywhere else in the formula.

– Clone(C,w) allows adding a soft duplicate C ′ of C to the formula and relaxing
C ′ by calling Relax(C ′). The (relaxed) clone C ′ is assigned weight w, and w
is subtracted from the weight of C (C is discarded once it has weight 0).

In addition to these operations, CG is also allowed to add hard linear
(in)equalities (cardinality, or more precisely, pseudo-Boolean, constraints) over
the blocking variables. Given a cardinality constraint

∑
wi ·xi ◦K over variables

xi, constants wi, and ◦ ∈ {=, <,≤}, we denote by CNF(
∑

wi · xi ◦ K) a CNF
encoding of such a constraint. Following most core-guided MaxSAT algorithm
implementations, we place two important restrictions on how CG can process the
cores it encounters. First, the cardinality constraints are not allowed to mention
any of the variables in the initial formula F . Second, if the algorithm extracts n
cores during solving an instance F , and wi

m is the smallest weight over all clauses
in the ith core extracted, the optimum cost of F is cost(F) =

∑n
i=1 w

i
m. A con-

crete example of an algorithm fitting the CG model is the WPM1 algorithm [50],
concurrently proposed as WMSU1 [51], as an extension of the classical Fu-Malik
algorithm [49] to weighted MaxSAT. Given a core κi, WPM1 first computes wi

m.
Then it calls Clone(Ci, wi

m) for each Ci ∈ κi and adds an exactly-one constraint
over the blocking variables added during the cloning operation.

HS is a hybrid algorithm, instantiated in [25,55], that uses a SAT solver for
core extraction from a working formula Fw, initially all clauses of the working
formula. Given a collection K of extracted cores, HS uses an exact algorithm (an
integer programming solver in practice) to find a minimum-cost hitting set hs
over K. The working formula is then updated to contain all clauses of F except
for the soft clauses in hs, and the SAT solver invoked again. If the working
formula is satisfiable, the satisfying assignment obtained is an optimal solution
to F . Otherwise another core is obtained and the search continues with hitting
set computation.

4 Overview of Results

In this section we give an overview of the main contributions of this paper. The
algorithm-dependent formal proofs are provided after this overview in Sects. 5
and 6.

We start by first defining the metric with respect to which we perform the for-
mal analysis. The definition, intuitively matching with the number of iterations
made by the abstract MaxSAT solvers considered, relies on the concept of core
traces. Informally, a core trace T is a finite sequence of MaxSAT cores match-
ing a possible execution of a core-guided MaxSAT solver. More formally, given
a MaxSAT instance F and A ∈ {CG,HS}, a sequence (κ1, . . . ,κn) of cores is an
A core trace on F if there exists an execution of A on F such that (i) the core
extracted by A at iteration i is κi; and (ii) A terminates after having encountered
all cores in the sequence (i.e., the (n+1)th SAT solver call is satisfiable). For a core

72 J. Berg and M. Järvisalo

trace T , we denote by |T | the number of cores in T , i.e., the length of T . Whenever
appropriate, we refer to A core traces on F simply as A traces on F .

As the metric under analysis, we consider both the minimum and maximum
length over all possible A traces for different choices of A. More specifically, for
A ∈ {CG,HS}, we analyze the relative minimum and maximum lengths of core
traces for the following variants of A.

– Apre: A applied after SAT-based preprocessing (recall Fig. 1).
– Amus: A using a SAT solver that is guaranteed to return a MUS when invoked

on an unsatisfiable formula (notice that an Amus trace contains only MUSes).
– Amus

pre : Amus applied after SAT-based preprocessing.

For a MaxSAT instance F , we denote by minlen(A, F) and maxlen(A, F) the
minimum and maximum length A traces on F , respectively, or in other words,
the best-case and worst-case number of iterations required by A for solving F .

A

Amus

Apre

Amus
pre

Observation 1
Proposition 2,

Proposition 6
Observation 2,

Proposition 5

Observation 2,

Proposition 5

Corollary 2,

Corollary 5

Corollary 2,

Corollary 5

Observation 1
Proposition 2,

Proposition 6

Fig. 3. Best-case performance in the number of iterations of A ∈ {CG,HS}. Here
X → Y iff minlen(X,F) ≤ minlen(Y, F) for all instances F .

Results. We provide a full characterization of the effect of preprocessing on the
maximum and minimum length of core traces on F . The results on the best-case
performance (minimum lengths of core traces) are summarized in Fig. 3 for A ∈
{CG,HS}. In the figure, an edgeX → Y indicates that, for any MaxSAT instance
F , the shortest X core trace on F is at most as long as the shortest Y core trace
on F . Analogously, our results for the worst-case performance (maximum lengths
of core traces) are summarized in Fig. 4. Here the edge X → Y indicates that, for
any MaxSAT instance F , the longest X core trace on F is at most as long as the
longest Y core trace on F ;X ! Y indicates thatX → Y does not hold. In words,
we will provide in the following sections detailed proofs for the fact that SAT-
based preprocessing cannot lower the minimum number of iterations required
by CG or HS. For some intuition, we will show that for A ∈ {CG,HS}, one of
the shortest A core traces on any MaxSAT instance F is also a Amus trace, and
that preprocessing cannot alter the MUS structure nor the Amus traces on F .

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 73

A

Amus

Apre

Amus
pre

Observation 1
Proposition 3,

Proposition 9

Observation 2

Proposition 5

Observation 2

Proposition 5

Observation 3,

Proposition 7

Proposition 3,

Proposition 8

Observation 1
Proposition 4,

Proposition 9

Fig. 4. Worst-case performance in the number of iterations of A ∈ {CG,HS}. Here
X → Y iff maxlen(X,F) ≤ maxlen(Y, F) for all F , and X ! Y indicates that X → Y
does not hold.

In contrast, we will also show that preprocessing can improve the worst-case
performance of both of the algorithms. Intuitively, this is due to the fact that
preprocessing can remove soft clauses that are not members of any MUSes of
F and hence do not contribute to the unsatisfiability of F , but still might force
either algorithm to iterate unnecessarily many times.

We proceed now throughout Sects. 5 and 6 by providing formal proofs for
all of the results summarized in Figs. 3 and 4. Before the more involved proofs,
we start with an algorithm-independent observation and an auxiliary result that
makes the remaining proofs simpler by allowing us to assume MaxSAT instances
to have a specific form without loss of generality.

Observation 1. For A ∈ {CG,HS} and any MaxSAT instance F , any Amus

trace on F is also an A trace on F . Hence maxlen(Amus, F) ≤ maxlen(A, F) and
minlen(Amus, F) ≥ minlen(A, F).

Finally, in the remaining proofs, we will use the fact that Theorem 1 guar-
antees that SAT-based preprocessing does not affect the set of MUSes of F in
terms of of the mapping (¬lC) → C between the soft clauses of pre(F) and F .
In order to avoid explicitly referring to this mapping in every proof, we will
employ a technical observation from [40]. More specifically, we will assume for
the remaining part of this paper that the soft clauses C ∈ Fs of each MaxSAT
instance F have already been augmented with label variables lC to form the
hard clause C ∨ lC and the soft clause (¬lC). In other words, we will assume
that all soft clauses of F are unit negative literals (¬lC) with the variable lC not
appearing negatively in any other clause and only appearing positively among
the hard clauses. Under this assumption, the literals appearing in the soft clauses
of F can be reused as label variables while preprocessing [40], thus removing the
need of adding any new variables. Hence pre(F)s ⊆ Fs, and Theorem 1 can be
simplified.

74 J. Berg and M. Järvisalo

Corollary 1 (of Theorem 1). Let F be a MaxSAT instance and pre(F) the
instance resulting after preprocessing F . Then mus(F) = mus(pre(F)).

Most importantly, our assumption on the form of MaxSAT instances does not
affect core traces. A proof for this auxiliary result is provided in Appendix A.

Proposition 1. Let F = (Fh, Fs, w) be a MaxSAT instance, and FP = (Fh ∪F a
s ,

FP
s , wP) the MaxSAT instance with F a

s = {C ∨ lC | C ∈ Fs, lC is a fresh
variable}, FP

s = {(¬lC) | C ∈ Fs}, and wP ((¬lC)) = w(C). The following
observations hold.

1. cost(F) = cost(FP), and the optimal solutions of F are the same as the
optimal solutions of FP restricted to Var(F).

2. For A ∈ {HS,CG}, there is a one-to-one mapping between the A core traces
on F and FP of equal length.

5 Impact of Preprocessing on HS

We continue with formal proofs of our main results for HS. An essential intuition
for these proofs is that HS only extracts cores of the original instance. In other
words, an HS core trace on any F only contains cores of the original instance F .

We first analyze best-case performance. The first observation shows that
preprocessing does not affect the lengths of HS MUS traces in a significant way.

Observation 2.
For any MaxSAT instance F , minlen(HSmus, F) = minlen(HS mus

pre , F).

Proof. (Sketch) By Corollary 1 we obtain κ ∈ mus(F) iff κ ∈ mus(pre(F)). The
fact that an HSmus trace on F only contains MUSes of F implies that T is an
HSmus trace on F iff it is an HSmus

pre trace on F . ⊓-

Next we show that executions of HSmus are always shortest executions of HS.

Proposition 2.
For any MaxSAT instance F , minlen(HS, F) ≥ minlen(HS mus, F) and
minlen(HSpre, F) ≥ minlen(HSmus

pre , F).

Proof. We will show that minlen(HS, F) ≥ minlen(HSmus, F) for any F , and
thus minlen(HSpre, F) ≥ minlen(HSmus

pre , F) as well. Let T = (κ1, . . . ,κn) be an
arbitrary HS core trace on F . Let hs∗ be a minimum-cost hitting set over
{κ1, . . . ,κn} for which F \hs∗ is satisfiable. The statement follows by construct-
ing an HSmus trace Tm on F s.t. |Tm| ≤ |T |. As each κi ∈ T is a core of F , all
contain at least one MUS m ⊆ κi. Consider the set M of at most n MUSes of F
constructed as follows. (1) Let M1 = {m1}, where m1 is any MUS contained in
κ1; (2) let Mi = Mi−1 ∪ {mi}, where mi ⊆ κi is a MUS such that mi /∈ Mi−1

if any exist, else let Mi = Mi−1. We obtain Mn = M of size |M| = k ≤ n such
that each m ∈ M is a subset of some κi ∈ T .

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 75

We show that M can be ordered to form an HSmus trace on F of length at
most k, since if a minimum-cost hitting set hs over any proper subset Ms ⊂ M
hits all m ∈ M, then hs∗ is also a minimum-cost hitting set over Ms, and HSmus

can terminate. As F \hs∗ is satisfiable, hs∗ is also a hitting set over M and over
Ms. Furthermore, as each m ∈ M is a subset of some κi ∈ T and each κi ∈ T
contains a MUS in M, hs∗ is a minimum-cost hitting set of M. Finally, as hs
is a hitting set over M the cost of hs is not less than the cost of hs∗. Hence hs∗

is a minimum-cost hitting set of Ms, so the hitting set computation could have
returned hs∗, thus allowing HSmus to terminate. ⊓-

A simple corollary is that shortest executions of HS and HSpre are of equal
length.

Corollary 2. For any MaxSAT instance F , minlen(HS, F) = minlen(HSpre, F).

Proof.
Observation 1 and Proposition 2 establishminlen(HS, F) = minlen(HSmus, F) and
minlen(HSpre, F) = minlen(HSmus

pre , F). Together with Observation 2 this implies
minlen(HS, F) = minlen(HSmus, F) = minlen(HSmus

pre , F) = minlen(HSpre, F). ⊓-

We move on to the worst-case results. Corollary 1 can be used to show that
valid executions of HSpre are also valid executions of HS on any MaxSAT instance.

Observation 3.
For any MaxSAT instance F , maxlen(HSpre, F) ≤ maxlen(HS, F).

Proof. As pre(F)s ⊆ Fs and any MUS of pre(F) is a MUS of F , any core of
pre(F) is a core of F . ⊓-

Finally for this section, we prove the three X ! Y edges in Fig. 4 for HS. For
this, we need as a witness a family of MaxSAT instances F (n) and a X core
trace T on F (n) s.t. |T | > maxlen(Y, F (n)).

Proposition 3.
There is a family of MaxSAT instances F (n) with O(n) soft clauses s.t.
maxlen(HS, F (n)) ≥ n and maxlen(HSmus, F (n)) = maxlen(HSpre, F (n)) = 1.

Proof. Fix n and let F (n)h = {(x ∨ y)} ∪ {(x ∨ y ∨ zi) | i = 1, . . . , n} and
F (n)s = {(¬x), (¬y)} ∪ {(¬zi) | i = 1, . . . , n} with w((¬x)) = w((¬y)) = n and
w((¬zi)) = 1 for all i. Now cost(F (n)) = n and mus(F (n)) = {{(¬x), (¬y)}},
explaining why maxlen(HSmus, F (n)) = 1. A linear-length HS core trace on
F (n) is (κ1, . . . ,κn), where κi = {(¬x), (¬y), (¬zi)}. HS cannot terminate
before extracting all n cores. To see this, consider an earlier iteration i < n.
The weight of the hitting set {(¬zj) | j = 1, . . . , i} over Ki = {κ1, . . . ,κi}
is i < n = w((¬x)) = w((¬y)) and as such any minimum-cost hitting set
over Ki can not contain (¬x) or (¬y), preventing HS from terminating. Hence
maxlen(HS, F (n)) ≥ n.

76 J. Berg and M. Järvisalo

However, due to the clause (x ∨ y), SE allows the removal of the clause
(x ∨ y ∨ zi) for all i. Hence pre(F (n)) has pre(F (n))h = {(x ∨ y)} and
pre(F (n))s = {(¬x), (¬y)}. The only core of pre(F (n)) is {(¬x), (¬y)}, and thus
maxlen(HSpre, F (n)) = 1. ⊓-

Proposition 4. For any n, there is a family of MaxSAT instances F (n) with
O(n) soft clauses s.t. maxlen(HSpre, F (n)) ≥ n and maxlen(HSmus

pre , F) = 1.

Proof. Fix n and let

F (n)h = {(x1,2 ∨ x1,3 ∨ ¬x2,3), (E ∨ x2,3)} ∪ (1)
n+3⋃

i=4

{(x1,2 ∨ x2,i ∨ ¬x1,i), (x1,i ∨ x1,3 ∨ ¬x3,i), (x3,i ∨ x2,i ∨ ¬x2,3)} ∪ (2)

{(xT,x ∨ xx,y ∨ ¬xT,y), (xT,x ∨ xT,y ∨ ¬xx,y) | 1 ≤ x, y ≤ n+ 3} (3)

and F (n)s = {(¬x1,2), (¬x1,3), (¬E)} ∪ {(¬x2,i) | i = 4, . . . , n + 3} with
w((¬x1,2)) = w((¬x1,3)) = w((¬E)) = n and w((¬x2,i)) = 1 for all i.
The hard clauses on row 3 are included in order to prevent preprocessing
from simplifying F (n) in any way. Intuitively, F (n) encodes hard transitiv-
ity constraints over an undirected graph with each node having degree at
least 4. Hence pre(F (n)) = F (n) at it suffices to show maxlen(HS, F (n)) ≥ n
and maxlen(HSmus, F) = 1. Both arguments are similar to Proposition 3. As
mus(F (n)) = {{(¬x1,2), (¬x1,3), (¬E)}}, it follows that maxlen(HSmus, F) = 1. A
linear-length HS core trace on F (n) is (κ1, . . . ,κn), where κi = {(¬x1,2), (¬x1,3),
(¬E), (¬x2,i+3)}. ⊓-

6 Impact of Preprocessing on CG

We start the analysis for CG by linking CG core traces with optimum cost.

Observation 4. Let T = (κ1, . . . ,κn) be a CG or CGmus core trace on a
MaxSAT instance F , and wi = min{w(Ci) | Ci ∈ κi}. The cost of F is
cost(F) =

∑n
i=1 w

i.

An important corollary of Observation 4 is that no proper subsequence of a CG
or CGmus core trace on F can in itself be a CG or CGmus trace on F .

The proofs on CG, in contrast to HS, need to consider the fact that the ith
core κi in a CG core trace on F is not a core of F , but rather, of the working
formula F i instead. Following this, a relationship between the cores of F i and
the cores of F was derived in [53]. After necessary definitions and restatement
of the result of [53], we will prove an analogous result regarding the relationship
between the MUSes of F i and F , which proves useful for obtaining our main
results for CG.

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 77

6.1 Cores and MUSes of Working Formulas of CG

We follow here definitions from [53]. Let F be a MaxSAT instance and F i the
working formula of CG on iteration i when invoked on F . Let cardi be the set
of all cardinality constraints added to F by CG during iterations 1, . . . , i. Thus
the hard clauses of F i are F i

h = Fh ∪ cardi. We denote by soln(cardi) the
set of truth assignments satisfying cardi and not assigning any of the variables
in F . Given any τ : Var(F) → {0, 1} and α ∈ soln(cardi), (τ :α) is the truth
assignment over the variables of F i that assigns all variables of F according to
τ and the rest according to α; (τ :α) is well-defined as the auxiliary cardinality
constraints are not allowed to mention variables in F . For any β ∈ soln(cardi)
and Si ⊆ F i

s , the reduction of Si wrt β, Si|β is obtained by (1) removing from
Si all clauses satisfied by β; (2) removing from each remaining clause Ci ∈ Si

all blocking variables, i.e., all literals falsified by β; and (3) setting the weights
of each Ci ∈ Si back to their original weights in F (removing duplicates). The
restriction R(Ci) ∈ Fs of a soft clause Ci ∈ F i

s is obtained by (1) removing
all added blocking variables from Ci; (2) removing all clones of Ci from the
instance; and (3) setting the weight of Ci back to its original weight in F .
Restriction is lifted to a set Si ⊆ F i

s by R(Si) = {R(Ci) | Ci ∈ Si}. Notice that
Si|β ⊆ R(Si) ⊆ Fs. With these definitions we can now restate a central result
from [53].

Theorem 2 (Adapted from [53]).
A set κi ⊆ F i

s is a core of F i iff κi|β is a core of F for all β ∈ soln(cardi).

We will now prove an analogous characterization of the MUSes of F i.

Theorem 3. A set M i ⊆ F i
s is a MUS of F i iff there is a collection Υ ⊆

mus(F) s.t.

1. R(M i) =
⋃

M∈Υ M ;
2. for each M ∈ Υ, there is an α ∈ soln(cardi) s.t. M ⊆ M i|α and M ′ ̸⊆ M i|α

for all other M ′ ∈ Υ; and
3. for each α ∈ soln(cardi), there is an M ∈ Υ s.t. M ⊆ M i|α.

Note that condition 3 is equivalent to the requirement of Theorem 2 for the set
M i being a core of F i, since M i|α ⊆ R(M i) and M i|α should be unsatisfiable
for all α.

Before proving Theorem 3, consider the following example for more intuition.

Example 3. Consider the unweighted MaxSAT instance F = (Fh, Fs) with
Fh = {(x1 ∨ x2 ∨ x3), (x3 ∨ x4 ∨ x5), (x5 ∨ x6 ∨ x7), (x8)} and Fs =
∪8
i=1{(¬xi)}. Invoke WPM1 [50] on F and assume that it first processes

the core {(¬x3), (¬x4), (¬x5)}. Afterwards the working formula F 2 is F 2
h =

Fh ∪ {CNF(r1 + r2 + r3 = 1)} and F 2
s = {(¬x1), (¬x2), (¬x3 ∨ r1), (¬x4 ∨

r2), (¬x5 ∨ r3), (¬x6), (¬x7)(¬x8)}. Now card2 = {CNF(r1 + r2 + r3 =

78 J. Berg and M. Järvisalo

1)} and the set soln(card2) contains three assignments αi, i = 1, . . . , 3,
assigning ri to 1 and the others to 0. By Theorem 2, the set κ2 =
{(¬x1), (¬x2), (¬x3 ∨ r1), (¬x5 ∨ r3), (¬x6), (¬x7)} is a core of F 2 as each
κ2|αi is a core of F . For example, κ2|α1 = {(¬x1), (¬x2), (¬x5), (¬x6), (¬x7)}.
In order to use Theorem 3 to show that κ2 is also a MUS of F 2, note
that R(κ2) = {(¬x1), (¬x2), (¬x3), (¬x5), (¬x6), (¬x7)} = {(¬x1), (¬x2), (¬x3)} ∪
{(¬x5), (¬x6), (¬x7)}, where {(¬x1), (¬x2), (¬x3)} and {(¬x5), (¬x6), (¬x7)} are
MUSes of F . Condition 2 of Theorem 3 follows since the only MUS in κ2|α3 is
{(¬x1), (¬x2), (¬x3)} and the only MUS in κ2|α1 is {(¬x5), (¬x6), (¬x7)}.

Next we prove Theorem 3. We begin by some lemmas. Assume for each of
them that CG is invoked on an instance F and that F i is the working formula
on iteration i.

Lemma 1. Let M i be a MUS of F i and Ci ∈ M i. There is an α ∈ soln(cardi)
s.t. R(Ci) is necessary for M i|α.

Proof. By Theorem 2, M i|α′ is a core of F for all α′ ∈ soln(cardi). Hence
it suffices to show that M i|α \ R(Ci) is not a core for some α. Consider the
assignment (τ :α) satisfying F i

h∧(M i\{Ci}), guaranteed to exist as M i is a MUS
of F i. Now τ satisfies Fh ∧ (M i \ {Ci})|α = Fh ∧ (M i|α \R(Ci)) as required. ⊓-

Corollary 3. For any MUS M i of F i, R(M i) ⊆
⋃
mus(F).

Corollary 4. For any MUS M i of F i, there is an irreducible Υ ⊆ mus(F)s.t.
R(M i) =

⋃
M∈Υ M.

Proof. Take Υ as the smallest collection of MUSes of F for which R(M i) ⊆⋃
M∈Υ M ; by Corollary 3 such a collection exists. We claim that

⋃
M∈Υ M ⊆

R(M i), from which irreducibility follows directly by minimality of Υ. Fix an
arbitrary Ce ∈ M in some M ∈ Υ. By minimality of Υ, there is a clause Ci ∈ M i

for which the only MUS of Υ containing R(Ci) is M . By Lemma 1, there exists
a β for which R(Ci) is necessary for M i|β . As M i|β ⊆ R(M i) ⊆

⋃
M∈Υ M and

the only MUS in Υ containing R(Ci) is M , we have Ce ∈ M ⊆ M i|β ⊆ R(M i),
establishing Ce ∈ R(M i) and

⋃
M∈Υ M ⊆ R(M i). ⊓-

We are now ready to prove Theorem 3.

Proof (of Theorem 3). A collection Υ ⊆ mus(F) satisfying condition 1 exists
by Corollary 4. For condition 2, we use the fact that the set Υ is irreducible.
Let M ∈ Υ be arbitrary. Similarly to the proof of Corollary 4, we can find a
Ci ∈ M i ∈ Υ and α ∈ soln(cardi) s.t R(Ci) /∈ M ′ for any other M ′ ∈ Υ and
R(Ci) is necessary for M i|α, implying that the only MUS in M i|α is M . Finally,
condition 3 follows from M i being a core of F i and Theorem 2.

What remains is to show that subset M i ⊆ F i
s satisfying conditions 1–3 is

a MUS of F i. By condition 3 and Theorem 2, M i is a core of F i. Hence we
only need to show that it is minimally unsatisfiable, i.e., F i

h ∧ (M i \ {Ci}) is
satisfiable for all Ci ∈ M i. Fix Ci ∈ M i and let Υ be the collection of MUSes of

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 79

F for which R(M i) =
⋃

M∈Υ M. Consider any MUS MC ∈ Υ s.t. R(Ci) ∈ MC .
By condition 2, there is an α ∈ soln(cardi) for which the only MUS (of F) in
M i|α ⊆ R(M i) is MC . For such α, Fh ∧ M i|α \ {R(Ci)} is satisfied by some τ .
Hence (τ :α) satisfies Fh ∧ cardi ∧ (M i \ {Ci}) = F i

h ∧ (M i \ {Ci}). ⊓-

Finally, we note that each condition in Theorem 3 is necessary.

Example 4. Consider again the MaxSAT instance F from Example 3. The set
{(¬x1), (¬x2), (¬x3 ∨ r1)} is an example of a non-MUS of F 1 satisfying condi-
tions 1–2 and the set {(¬x1), (¬x2), (¬x3 ∨ r1), (¬x5 ∨ r3), (¬x6), (¬x7), (¬x8)}
is an example of a non-MUS of F 1 satisfying conditions 1 and 3.

6.2 Results on Core Trace Lengths

We proceed with proofs on the number of iterations for CG. With respect to
best-case, preprocessing does not affect the lengths of CGmus traces significantly.

Proposition 5.
For any MaxSAT instance F , minlen(CGmus, F) = minlen(CGmus

pre , F).

Proof. We show that a Tm = (m1, . . . ,mn) is a CGmus trace on F iff it is a CGmus
pre

trace on F . We prove the left-to-right direction, the other is similar. We will show
that there is an execution of CGmus

pre on F for which the ith MUS extracted is mi

and which terminates only after extracting all MUSes of Tm. The termination
follows from no proper subset of a CGmus trace being a core trace in itself.

We show that each mi is a MUS of pre(F)i by induction. By Corollary 1,
m1 is a MUS of pre(F). Assume that CGmus has extracted and processed the
MUSes (m1, . . . ,mi−1) from pre(F) and consider the ith iteration. As mi is a
MUS of F i, by Theorem 3 there is an Υ ⊆ mus(F) s.t. R(mi) = ∪m∈Υm.
For mi ∈ mus(pre(F)i), we show that Υ satisfies the conditions of Theorem 3
in pre(F) as well. By Corollary 1, each m ∈ Υ is a MUS of pre(F). For the
other two conditions, note that by induction, the set of cardinality constraints
cardi

p added to pre(F) after processing the MUSes m1, . . . ,mi−1 is the same as
the set cardi added to F after processing the same sequence of MUSes. Hence
α ∈ soln(cardi

p) iff α ∈ soln(cardi), which implies the two other conditions of
Theorem 3. ⊓-

Next we show that some shortest execution of CG is also an execution of
CGmus.

Proposition 6.
For any MaxSAT instance F , minlen(CGmus, F) ≤ minlen(CG, F) and
minlen(CGmus

pre , F) ≤ minlen(CGpre, F).

Proof. (Sketch) We prove minlen(CGmus, F) ≤ minlen(CG, F); the same proof
works for minlen(CGmus

pre , F) ≤ minlen(CGpre, F) as well. Let T = (κ1, . . . ,κn)
be a CG trace on F . We construct a CGmus trace Tm = (m1, . . . ,mk) on F of

80 J. Berg and M. Järvisalo

at most the same length recursively. For intuition, on each iteration i CGmus

processes a subset of the clauses CG would have processed on the ith iteration
of the execution corresponding to T . Hence, if cardi

m and cardi are the set of
cardinality constraints added to F by the ith iteration on the execution corre-
sponding to Tm and T , respectively, then any α ∈ soln(cardi

m) can be extended
to a solution to cardi by assigning the remaining variables to 0.

Let m1 be an MUS of F contained in κ1. Assume that CGmus has extracted
the MUSesmj for j = 1, . . . , i−1 s.t eachmj ⊆ κj . Consider the ith iteration and
the current working formula F i

m. As κi is a core of F i, the ith working formula
on the execution corresponding to T , by Theorem 2 κi|β is a core of F for all
β ∈ soln(cardi). Hence κi|β is also a core of F for all β ∈ cardi

m. Applying
Theorem 2 gives that κi is a core of F i

m. Hence it also contains a MUS mi of F i
m.

For termination of CGmus, note that minCi∈κi{w(Ci)} ≤ minCi∈mi{w(Ci)} for
every i. Since

∑n
i=1 minCi∈κi{w(Ci)} = cost(F), termination of CGmus occurs

at the latest after n iterations on the execution corresponding Tm. ⊓-

Finally, we show that the shortest executions of CG and CGpre are of the same
length.

Corollary 5. For any MaxSAT instance F , minlen(CG, F) = minlen(CGpre, F).

Proof. Proposition 6 andObservation 1 implyminlen(CG, F) = minlen(CGmus, F)
andminlen(CGmus

pre , F) = minlen(CGpre, F). Together with Proposition 5 we obtain
minlen(CG, F) = minlen(CGmus, F) = minlen(CGmus

pre , F) = minlen(CGpre, F). ⊓-

We move on to worst-case results for CG. We begin by showing that valid exe-
cutions of CGpre are also valid executions of CG.

Proposition 7.
For any MaxSAT instance F , maxlen(CG, F) ≥ maxlen(CGpre, F).

Proof. We show that a CGpre trace T = (κ1, . . . ,κn) on F is also a CG trace
on F . The termination of CG only after n iterations follows from the cost-
preserving properties of preprocessing and Observation 4. We show that each κi

is a valid core of F i by induction. The case i = 1 follows from pre(F)s ⊆ Fs

and Corollary 1. Assume next that all κj for j < i have been cores of F j and
consider κi. By Theorem 2, κi|β is a core of pre(F) for all β ∈ soln(cardi

p), where
cardi

p is the set of cardinality constraints added to pre(F) after processing cores
κ1, . . . ,κi−1. By induction, this set is exactly the same as set of cardinality
constraints cardi added to F after processing the same cores. As any core of
pre(F) is a core of F , it follows that κi|β is a core of F for all β ∈ soln(cardi).
We conclude that κi is a core of F i. ⊓-

Finally, two families of instances witness the ! edges in Fig. 4 for CG.

Proposition 8.
There is a family of MaxSAT instances F (n) with O(n) soft clauses s.t.
maxlen(CG, F (n)) ≥ n and maxlen(CGmus, F (n)) = maxlen(CGpre, F (n)) = 1.

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 81

Proof. (Sketch) Consider again the instance F (n) constructed in the proof of
Proposition 3. We showed that maxlen(HSmus, F) = maxlen(HSpre, F) = 1.
This also holds for CG. A linear-length CG core trace (κ1, . . . ,κn), on F
can be constructed iteratively as follows: κ1 = {(¬x), (¬y), (¬z1)} and κi =
{(¬x)ci−1, (¬y)ci−1, (¬zi)} where (¬x)ci−1 and (¬y)ci−1 are duplicates of the orig-
inal clauses added on iteration i − 1. The existence of such duplicates for all n
iterations follows from w((¬x)) = w((¬y)) = n and w((¬zi)) = 1. The termi-
nation of CG after the nth iteration follows from Observation 4 as the smallest
weight among the clauses in each κi is 1. ⊓-

Proposition 9. There is a family of MaxSAT instances F (n) with O(n) soft
clauses s.t. maxlen(CGpre, F (n)) ≥ n and maxlen(CGmus

pre , F) = 1.

Proof. (Sketch) F (n) is the same as for HS and the proof follows Proposition 4.
A linear-length CG core trace can be constructed similarly to Proposition 8 by
replacing clauses in the linear-length HS trace from Proposition 4 with duplicates
of original clauses where required. ⊓-

7 Conclusions

We formally analyzed the effect of SAT-based preprocessing, as well as core
minimization, on the performance of core-guided MaxSAT solvers. As a main
result, we showed that SAT-based preprocessing has no effect on the best-case
number of iterations required by the solvers but can improve on the worst-
case. In terms of best-case performance, the potential benefits of applying SAT-
based preprocessing in conjunction with core-guided MaxSAT solvers are thus in
principle—assuming optimal search heuristics—solely in speeding up individual
SAT solver calls made during MaxSAT search. Simultaneously, our analysis also
revealed an analogous result on the impact of core minimization in core-guided
MaxSAT solvers. Our results motivate further work on developing MaxSAT-
specific preprocessing techniques capable of affecting the MaxSAT algorithms
on a more general level. In contrast, SAT-based preprocessing does in cases have
a positive effect on the worst-case number of iterations. Of independent interest,
we established a formal characterization of how the underlying MUS structure
is altered by iterative revisions performed by CG solvers on MaxSAT instances
(Theorem 3), thus sharpening the main results of [53].

Appendix

A Proof of Proposition 1

(1) If an optimal solution τ to F assigns τ(C) = 0, then an optimal solution
τP to FP has to assign FP (lC) = 1. Similarly, if τ(C) = 1, then τP can assign
τP (lC) = 0.

82 J. Berg and M. Järvisalo

(2) We sketch the conversion of an A core trace TP = (κ1
P , . . . ,κ

n
P) on FP into

a core trace T = (κ1, . . . ,κn) on F , the other direction is similar. For A = HS,
every κi

P is a core of FP . The corresponding core trace of F is obtained by
exchanging each κi

P = {(¬lCi) | i = 1, . . . , n} with κi = {Ci | i = 1, . . . , n}. Now
κi
P is a core of FP iff κi is a core of F . To see this, note that if κi is not a core of F ,

then it can be satisfied by some assignment τ . The same τ extended by setting all
lCi variables to 0 to satisfies both κi

P and the hard clauses {C1∨lC1 , . . . , Cn∨lCn}.
Hence κi

P is not a core of FP either. A similar argument shows the other direction.
Finally the termination of HS after n iterations follows by a similar argument
showing that F \ hs is satisfiable for some hs = {C1, . . . , Ci} iff FP \ hsP is
satisfiable for hsP = {(¬lC1), . . . , (¬lCi)}. Hence the trace T = (κ1, . . . ,κn) is a
HS trace on F of the same length as TP .

For A = CG the argument is similar but inductive. To form a CG trace T on
F , every occurrence of a (¬lCi) in a clause Ci ∈ κi

P is replaced by Ci to form a
core κi of F i. For i > 0, each such Ci may have been augmented with blocking
variables, i.e., Ci = (¬lCi ∨

∨
b) for some set of blocking variables. However, the

substitution (¬lCi ∨
∨
b) → Ci ∨

∨
b is still valid as, by induction, if CG adds∨

b to (¬lCi) on the execution corresponding to TP , then it also adds
∨
b to Ci

on the execution corresponding to T . ⊓-

References

1. Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: Proceedings of
the AAAI, pp. 682–687. AAAI Press/The MIT Press (2002)

2. Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.P.: Spatial and temporal
design debug using partial MaxSAT. In: Proceedings of the 19th ACM Great Lakes
Symposium on VLSI, pp. 345–350. ACM (2009)

3. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated design debug-
ging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 29(11), 1804–1817 (2010)

4. Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J.P., Rapicault, P.: Solving
linux upgradeability problems using boolean optimization. In: Proceedings of the
LoCoCo, EPTCS, vol. 29, pp. 11–22 (2010)

5. Lynce, I., Marques-Silva, J.: Restoring CSP satisfiability with MaxSAT. Fundam.
Inform. 107(2–3), 249–266 (2011)

6. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using max-
imum satisfiability and backbones. In: Proceedings of the FMCAD, pp. 63–66.
FMCAD Inc. (2011)

7. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the PLDI, pp. 437–446. ACM (2011)

8. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer,
Heidelberg (2013)

9. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satis-
fiability. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 941–956. Springer,
Heidelberg (2012)

10. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Pro-
ceedings of the AAAI. AAAI Press (2012)

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 83

11. Ansótegui, C., Izquierdo, I., Manyà, F., Torres-Jiménez, J.: A Max-SAT-based
approach to constructing optimal covering arrays. In: Proceedings of the CCIA,
Frontiers in Artificial Intelligence and Applications, vol. 256, pp. 51–59. IOS Press
(2013)

12. Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in pack-
age management systems. In: Proceedings of the ICSE, pp. 745–755. ACM (2014)

13. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian
networks via maximum satisfiability. In: Proceedings of the AISTATS, JMLR
Workshop and Conference Proceedings, vol. 33, pp. 86–95 (2014). www.JMLR.
org

14. Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using
maximum satisfiability reasoning. In: Proceedings of the ECAI, Frontiers in Arti-
ficial Intelligence and Applications, vol. 263, pp. 303–308. IOS Press (2014)

15. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an eval-
uation. In: Proceedings of the ICTAI, pp. 328–335. IEEE Computer Society (2014)

16. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Proceedings of the IJCAI, pp. 1966–
1972. AAAI Press (2015)

17. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artificial Intelligence (2015, in press)

18. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for
extension enforcement in abstract argumentation. In: Proceedings of the AAAI.
AAAI Press (2016)

19. Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfia-
bility, pp. 613–631. IOS Press (2009)

20. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

21. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

22. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
STOC, pp. 151–158. ACM (1971)

23. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability:
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

24. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver. J. Satisfiability Boolean Model. Comput. 8(1/2), 95–100 (2012)

25. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013)

26. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for maxsat.
In: Middeldorp, A., Voronkov, A., McMillan, K. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013)

27. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular maxsat solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Heidelberg (2014)

28. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the AAAI, pp. 2717–2723. AAAI Press (2014)

29. Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction
sets. In: Proceedings of the IJCAI, pp. 246–252. AAAI Press (2015)

www.JMLR.org
www.JMLR.org

84 J. Berg and M. Järvisalo

30. Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based pre-
processing for MaxSAT. In: Proceedings of the IJCAI, pp. 239–245. AAAI Press
(2015)

31. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Heidelberg (2014)

32. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes,
C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer,
Heidelberg (2013)

33. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

34. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Miller, D., Sattler,
U., Gramlich, B. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

35. Lagniez, J.M., Marquis, P.: Preprocessing for propositional model counting. In:
Proceedings of the AAAI, pp. 2688–2694. AAAI Press (2014)

36. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures
in Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480.
Springer, Heidelberg (2009)

37. Argelich, J., Li, C.-M., Manyà, F.: A preprocessor for Max-SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 15–20. Springer,
Heidelberg (2008)

38. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9),
606–618 (2007)

39. Heras, F., Marques-Silva, J.: Read-once resolution for unsatisfiability-based Max-
SAT algorithms. In: Proceedings of the IJCAI, pp. 572–577. AAAI Press (2011)

40. Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for maxsat pre-
processing. In: Proceedings of the ICTAI, pp. 813–820. IEEE (2015)

41. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36(3), 490–509 (1988)

42. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of the AAAI. AAAI Press (2011)

43. Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Pro-
gression in maximum satisfiability. In: ECAI 2014, pp. 453–458. IOS Press (2014)

44. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and sim-
ple oracle queries (2015). CoRR abs/1505.02371

45. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell. 233, 73–83 (2016)

46. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-
based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)

47. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010)

48. Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extrac-
tion. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 108–123. Springer, Heidelberg (2013)

49. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving 85

50. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

51. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009)

52. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Heidelberg (2014)

53. Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analy-
sis. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer,
Heidelberg (2014)

54. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013)

55. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In:
Creignou, N., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-40970-2 34

http://dx.doi.org/10.1007/978-3-319-40970-2_34

Multiobjective Optimization
by Decision Diagrams

David Bergman1(B) and Andre A. Cire2

1 Department of Operations and Information Management,
University of Connecticut, Mansfield, USA

david.bergman@business.uconn.edu
2 Department of Management, University of Toronto Scarborough, Toronto, Canada

acire@utsc.utoronto.ca

Abstract. In this paper we present a technique for solving multiobjec-
tive discrete optimization problems using decision diagrams. The pro-
posed methodology is related to an algorithm designed for multiobjective
optimization for dynamic programming, except utilizing decision diagram
theory to reduce the state space, which can lead to orders of magnitude
performance gains over existing algorithms. The decision diagram-based
technique is applied to knapsack, set covering, and set partitioning prob-
lems, exhibiting improvements over state-of-the-art general-purpose mul-
tiobjective optimization algorithms.

Keywords: Decision diagrams · Multiobjective optimization · Multi-
criteria decision making · Multicriteria shortest path

1 Introduction

Automated decision making, by its very nature, requires the consideration of
a multitude of objectives. Multiobjective optimization, also known as multi-
objective programming, vector optimization, multi-criteria optimization, multi-
attribute optimization or Pareto optimization, has a rich history, dating back to
the emergence of rigorous mathematical programming [21]. Several books have
been written on the topic [11,14,28], and many in-depth surveys [12,13,15,34,37].

The present paper concerns multiobjective discrete optimization problems
(MODO), where the variables of the problem are discrete and the number of
objectives is p ≥ 2. An efficient solution to a MODO is one in which there is
no other solution that improves, simultaneously, on each of the objectives. The
vector corresponding to the objectives of an efficient solution is called a nondom-
inated solution. The set of efficient solutions is known as the efficient set and the
set of all nondominated solution is known as the nondominated set. The goal of
a MODO, for the purposes of this paper, is to enumerate the nondominated set.

Perhaps the most commonly studied technique for identifying all nondomi-
nated solutions for MODOs is the ϵ-constraint method [18], having well-known
properties for more than two objectives [11]. The ϵ-constraint method was first
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 86–95, 2016.
DOI: 10.1007/978-3-319-44953-1 6

Multiobjective Optimization by Decision Diagrams 87

used by Laumanns et al. [24], where an adaptive search over weighted objectives
was proposed. Özlen et al. [27,29] and Kirlik and Sayın [23] provide algorithmic
improvements and are the basis for the comparison in the computational results
presented in this paper. Other utilized scalarization techniques include Benson’s
method [3] (a combination of the weight-sum technique and the ϵ-constraint
method) and the augmented weighted Chebychev method [32]. The main draw-
back of these techniques is that a discrete optimization problem, often NP-hard
in practice, must be solved several times so as to enumerate the necessary scalar-
izations, leading to the bottleneck of their procedures.

In this paper, we propose an alternative method that creates a single binary
decision diagram (BDD) [1,9,10,25] which represents all feasible solutions to the
problem as a directed acyclic graph, and then employs multicriteria shortest path
problem (MSP) algorithms to enumerate the nondominated set. This technique
therefore transforms the problem into that of (1) finding the exact BDD for the
constraint set of the MODO, and (2) using MSP algorithms to find the set of
nondominated solutions.

The utilization of decision diagrams in optimization is recent and focusses on
the use of BDDs for a variety of purposes [5]. In this research stream, top-down
compilation methods for set covering problems [6,7] and set packing problems
[4,6] have been investigated, along with methods for creating BDDs for knap-
sack problems [2]. On the other hand, published articles on MSP are abundant.
Research on MSP started in the 1970s [19,35] and has typically concentrated
on two objectives (see Raith and Ehrgott [30] for details). A survey on exact
methods for the MSP is provided by Garroppo et al. [17].

Our methodology is primarily based on the work by Loui [26], who proposes
a multidimensional labeling technique for dynamic programming (DP) models
with stochastic or multidimensional weights. Such techniques have been con-
sidered in several papers [30] and are known in the DP community (see, e.g.,
Bertsekas [8], Sect. 2.3.4), often being applied to multiobjective knapsack algo-
rithms, as by Figueira et al. [31]. Nonetheless, labeling algorithms are typically
prohibitive in practice due to the curse of dimensionality of DP models, as the
state space often grows too quickly in practice.

BDDs are closely related to dynamic programming and, as in DPs, they also
reduce discrete optimization to shortest path problems. However, it has been
shown that the state-space associated with a BDD can be much more compact
than that of a similar DP model [20], which is key to our methodology. Our
major contribution, hence, is the introduction of a MSP labeling algorithms for
decision diagrams. This yields an alternative, simple method for enumerating the
nondominated set of a multiobjective problem. The technique is applicable to
a number of discrete optimization problems, and our numerical study indicates
that it can be orders of magnitude faster than state-of-the-art techniques.

2 Multiobjective Discrete Optimization

A MODO M is specified by a set of p objective functions f j : Rn → R,
for j = 1, . . . , p, and a feasible set X . In this paper it is assumed that

88 D. Bergman and A.A. Cire

each objective function is additively separable or, more simply, linear, so that
f j(x) =

∑n
i=1 c

j
ixi. The feasible set X is discrete — this paper will focus on

binary optimization problems so that X ⊆ Bn, although the techniques are eas-
ily generalizable. Each x ∈ X is said to be a feasible solution.

Let f be the set of objective functions f : Rn → Rp (assumed to be maximized
unless otherwise specified). Each solution x ∈ X is mapped through the function
f into a corresponding objective vector y = f(x) ∈ Rp. The set of objective
vectors Y = {f(x) : x ∈ X} resulting from feasible solutions is the objective
space. A solution x∗ is called an efficient solution if there exists no other feasible
solution x′ such that, for all j, f j(x′) ≥ f j(x∗) with f j′

(x′) > f j′
(x∗) for some

j′. For an efficient solution x∗ the vector f(x∗) is referred to as a nondominated
solution. The efficient set, denoted by XE, is the set of all efficient solutions and
its image, denoted by YN = {y : y = f(x) for some x ∈ XE}, is the nondominated
set. The (typical) goal of MODO and the focus of this paper is to obtain YN.

3 Binary Decision Diagrams

A binary decision diagrams BDD B = (n,U,A, ℓ, d) is a layered-acyclic digraph
composed of node set U and arcs A. The mapping ℓ : U → {1, 2, . . . , n + 1}
partitions the nodes into n+1 layers Li := {u ∈ U : ℓ(u) = i}, i = 1, 2, . . . , n+1.
Layers L1 and Ln+1 have cardinality one, with the single nodes in these layers
denoted by root r and terminal t, respectively. Each arc a ∈ A leaves a tail
node t(a) and enters a head node h(a), where t(a), h(a) ∈ U . It is assumed that
ℓ (h(a)) = ℓ (t(a)) + 1, so that each arc connects nodes in adjacent layers. Also,
each node u has at most one out-directed arc a with arc-domain d ∈ {0, 1}. An
arc leaving node u is denoted by a0(u) if d = 0 and by a1(u) otherwise. The width
of a layer is w(Li) := |Li|, and the width of B is w(B) := maxi∈{1,...,n+1} w(Li).
Finally, the size of a BDD is |U |.

A BDD represents a set of binary vectors in the following way. Each arc-
specified path p = (a1, a2, . . . , ak) represents the vector x(p) = (d(a1), d(a2), . . . ,
d(ak)) . Any path from r to t thereby corresponds to a vector in Bn. Let P(B)
be the set of arc-specified paths from r to t. Define Sol(B) as the set of binary
vectors (called solutions) corresponding to arc-specified r − t paths:

Sol(B) = {x(p) ∈ Bn : p ∈ P(B)}.

BDDs can be used to represent the feasible set of a MODO M through
relating Sol(B) with the set of feasible solutions X of M. BDD B is said to be
an exact BDD for M if Sol(B) = X .

Fix u, v ∈ U for which ℓ(u) < ℓ(v). Let Bu,v be the BDD obtained by
removing from B any nodes and arcs that do not lie on any directed path from
u to v. A BDD is said to be reduced if for all i = 1, . . . , n and any two nodes
u, u′ ∈ Li, the BDDs Bu,t and Bu′,t are such that Sol(Bu,t) ̸= Sol(Bu′,t).

It is well-known that for any set of solutions X , with a specified ordering of the
variables given, there is a unique reduced BDD [9]. The reduction of a BDD can
be performed efficiently by a simple bottom-up O(|U | log(|U |)) algorithm [36].

Multiobjective Optimization by Decision Diagrams 89

It often has dramatic effects on the size of the BDD and the calculation of the
nondominated set.

Suppose X̃ ⊆ B4 is given by the following set of solutions

X̃ ={(0, 0, 0, 0)(0, 0, 0, 1)(0, 0, 1, 0)(0, 1, 0, 0)(0, 1, 0, 1)(0, 1, 1, 0)
(1, 0, 0, 0)(1, 0, 0, 1)(1, 0, 1, 0)(1, 1, 0, 0)(1, 1, 1, 0)}

Consider the BDD B̃, depicted in Fig. 1. Dashed/solid arcs correspond to arcs
with arc-domain 0/1. B̃ is an exact BDD for X̃ — each path from r to t corre-
sponds to a solution in X̃ and vice versa so that Sol(B̃) = X̃ .

We refer the reader to the work by Bergman et al. [5] for BDD compilation
procedures for general optimization problems.

Fig. 1. Exact BDD for X̃

4 Determining the Nondominated Set

In this section we propose a technique which generalizes previous works on single-
objective optimization problems using BDDs [5]. Namely, suppose a MODO M
has one objective function (i.e., p = 1) with f1(x) =

∑n
i=1 c

1
ixi, and assume

X is represented by a BDD B. To optimize f1, we associate an arc-value v(a)
with each arc a ∈ Li, i = 1, . . . , n, where v(a) = c1i if d(a) = 1, and v(a) = 0
otherwise. Any longest r to t path p with respect to v yields an optimal solution
x(p), with the corresponding optimal value equal to the length of the path.

Let M be a MODO with p ≥ 2. Given an exact BDD B for X , we apply
Algorithm1 to determine YN. The algorithm traverses B in a top-down fashion
and associates a state s with each node u, representing the set of nondominated
solutions in Rℓ(u)−1 contained in Br,u; at the end of the execution, s(t) = YN.

The algorithms initializes s(u) for each node u ∈ U\{r} to ∅, and initializes
s(r) to {0} (the p-dimensional vector with 0s in each coordinate). Having set
the states of each node in Li the algorithm proceeds to determine the states
for the nodes in Li+1. For each node in Li and each arc directed out of u,

90 D. Bergman and A.A. Cire

Algorithm 1. Find YN for MODO M
1: procedure FindNDS(M, B) ◃ X is the feasible set for M and
2: objectives f j , j = 1, . . . , p
3: for all u ∈ U do
4: s(u) ← ∅
5: s(r) ← {0} ◃ 0 is the p-dimensional 0 vector
6: for i = 1, . . . , n do
7: for all u ∈ Li do
8: if a0(u) exists then
9: for all s′ ∈ s(u) do

10: if s′ is not dominated in s (h(a0(u))) then
11: s (h(a0(u))) ← s (h(a0(u))) ∪ s′

12: for all s′′ ∈ s (h(a0(u))) dominated by s′ do
13: s (h(a0(u))) ← s (h(a0(u))) \{s′′}
14: if a1(u) exists then
15: for all s′ ∈ s(u) do
16: Increase state values of s′ by cji , for each j = 1, . . . , p
17: if s′ is not dominated in s (h(a1(u))) then
18: s (h(a1(u))) ← s (h(a1(u))) ∪ s′

19: for all s′′ ∈ s (h(a1(u))) dominated by s′ do
20: s (h(a1(u))) ← s (h(a1(u))) \{s′′}
21: return s(t)

the algorithm checks whether or not a nondominated solution will arise from
extending solutions ending at u with the arc domain of the arc.

For each layer Li, if the arc under consideration is a 0-arc, then any non-
dominated solution will not be affected by setting xi = 0. Therefore, each non-
dominated solution in s(u) is considered as a possible nondominated solution in
s(h(a)). If it is nondominated, the solution is added to s(h(a)), and otherwise
omitted. The process is analogous for the case of a 1-arc, except that any poten-
tial nondominated solution will have its objective value increased by cji for each
j = 1, . . . , p. Finally, if a solution s′ is added to the state of a node, we must
verify if any solutions s′′ in that same state are now dominated by s′, removing
them if that is the case.

Suppose, for example, that a MODO M′ is specified with X̃ defined as above
and 2 objective functions, f1(x) = 2x1 + 5x2 + x3 + 7x4, f2(x) = 4x1 + x2 +
4x3+4x4. Figure 1 shows the result of applying Algorithm1 to the BDD in Fig. 1.
Each node u is labeled with a set of vectors in the objective space. Those marked
with a ! compose s(u) and those marked with a × are those candidates for s(u)
that are determined to be dominated by some solution in s(u). As a concrete
example, consider the node u marked with the three vectors (0, 0), (5, 1) and
(2, 4). (0, 0) is first added to s(u) because of the zero-arc directed at u from
the node immediately above it. Then, when the one-arc from that same node
is considered, it generates the vector (0, 0) + (5, 1) = (5, 1), eliminating (0, 0)
because (5, 1) dominates it. Then, the zero-arc from the right-most node on the

Multiobjective Optimization by Decision Diagrams 91

previous layer is examined, generating vector (2, 4) + (0, 0) = (2, 4). The set
{(5, 1), (2, 4)} is a collection of vectors, none of which dominate any other, and
so (2, 4) is added to s(u). At the conclusion of the algorithm, t is labeled with
s(t) = {(12, 5), (9, 8), (8, 9)}, the set YN for M′. The proof of correctness of
Algorithm1 follows immediately, e.g., from the results of Figueira et al. [31] and
Loui [26].

5 Numerical Study

In this section we evaluate the empirical performance of the proposed multi-
objective methodology on three classical optimization problems: knapsack, set
covering, and set packing. Our key performance metric is the time to enumer-
ate the complete set of nondominated solutions. We compare our approach with
another general-purpose MODO solver developed by Kirlik and Sayın [23], an
ϵ-constraint scalarization method which is currently regarded as one of the state
of the art approaches for MODOs. We note in passing that we have also inves-
tigated other MODO solvers, such as the one proposed by Özlen et al. [29], but
the method by Kirlik and Sayın was the best performing and numerically stable
method across all solvers tested in our empirical setting.

The experiments ran on an Intel(R) Xeon(R) CPU E5-2640 v3 at 2.60GHz
with 128GB RAM. The BDD method was implemented in C++ and compiled
with GCC 4.8.4. Our source code and all tested instances are available at http://
www.andrew.cmu.edu/user/vanhoeve/mdd/. The source code for the technique
by Kirlik and Sayın was downloaded from http://home.ku.edu.tr/∼moolibrary/
and linked with ILOG CPLEX 12.6.3 [22]. A time limit of 3,600 s was allotted
in all cases.

Multicriteria Knapsack. Given n items, a capacity W > 0, and for each item i a
weight wi > 0 and p profits v1i , v2i , . . . , v

p
i > 0, the multicriteria knapsack problem

(MKP) is: max
{∑n

i=1 v
j
i xi, j = 1, . . . , p :

∑n
i=1 wixi ≤ W, x ∈ {0, 1}n

}
.

We generated random MKP instances following the procedure by Kirlik and
Sayın [23]. The values vji and wi were drawn uniformly at random from the set
{1, . . . , 1000}, and W = ⌈0.5

∑n
i=1 wi⌉. Due to the growth of the nondominated

set, for p = 3, we considered n = {10, . . . , 100}; for p = 4, n ∈ {10, . . . , 70}; for
p = 5, 6, and 7, n ∈ {20, 30, 40}. We generated 10 instances per pair (n, p).

Table 1 presents the average cardinalities of the nondominated sets (|YN|)
and average solution times (within solved instances) for p = 3, 4, 5, where Kirlik
and BDD denotes the method by Kirlik and Sayın [23] and the BDD technique,
respectively. Figure 2(a) depicts a scatter plot comparing solution times for all
instances, where the size of a point is proportional to n. The BDD method is
substantially faster and more robust than Kirlik, in particular when p is large.
In all cases, the time to create the BDD is only 5% of the total BDD time,
and therefore the bottleneck is the computation of Algorithm1. Finally, Fig. 2(b)
depicts a scatter plot comparing solution times of reduced and nonreduced BDDs
for n ∈ {40, 50, 60} and p = 4, emphasizing the importance of reducing the

http://www.andrew.cmu.edu/user/vanhoeve/mdd/
http://www.andrew.cmu.edu/user/vanhoeve/mdd/
http://home.ku.edu.tr/~moolibrary/

92 D. Bergman and A.A. Cire

Table 1. Average solution times (in seconds) for knapsack problems for p = 3, 4, 5.
Number in parentheses indicate instances unsolved within the time limit (out of 10).

p = 3 p = 4 p = 5

n |YN| Kirlik BDD |YN| Kirlik BDD |YN| Kirlik BDD

10 9 0.10 0.01 14 0.28 0.01 22 0.04 0.01

20 37 0.85 0.03 79 7.22 0.04 241 1,319.48(7) 0.04

30 113 4.95 0.17 397 466.40(1) 0.26 972 (10) 0.47

40 370 24.71 0.95 1,278 217.38(9) 2.39 4,943 (10) 18.06

50 598 50.47 3.64 3,374 (10) 27.87

60 1,080 120.21 12.52 6,624 (10) 166.34

70 1,325 154.50 32.69 14,696 (10) 1,164

80 2,575 454.46 120

90 3,847 912.47 350

100 4,248 1,070(1) 551(1)

number of nodes of the BDD before performing Algorithm1 (which, on average,
take less than a second on all tested cases). This saves approximately a half of
an order of magnitude on the total computation time.

Multicriteria Set Covering and Set Packing. Let A be a 0–1 m × n constraint
matrix, and let c1, . . . , cp be the p cost vectors inRn. Themulticriteria set covering
problem (MSCP) is defined as min

{
(cj)Tx, j = 1, . . . , p : Ax ≥ 1, x ∈ {0, 1}n

}
.

The multicriteria set packing problem (MSPP) is similar to the MSCP and is

(a) Solution times. (b) Reduced and non-reduced.

Fig. 2. (a) Solution time comparison between Kirlik and BDD (in logarithmic scale),
and (b) Solution times for reduced and non-reduced BDDs for the MKP.

Multiobjective Optimization by Decision Diagrams 93

written as max
{
(cj)Tx, j = 1, . . . , p : Ax ≤ 1, x ∈ {0, 1}n

}
. The multiobjective

variants pose a considerably more difficult challenge [16].
We performed experiments on random instances generated as in Stidsen

et al. [33]. Specifically, we considered n ∈ {100, 150}, m = n/5, and in our
case we fixed 10 variables per constraint, i.e., for every k = 1, . . . ,m, 10 ele-
ments of the k-th row of A were chosen to be equal to one uniformly at random.
10 instances were created per pair (n, p). The objective coefficients were gener-
ated as they were for the MKP. The reduced BDDs for the MSPP and MSCP
were compiled according to Bergman et al. [5,7].

Table 2 presents the average cardinalities of the nondominated sets and the
average solution times. As before, BDD is substantially faster and more robust
than Kirlik, especially as the number of objective function increases. The BDDs
performed particularly well for set packing problems, since they are typically
much more compact when compared to the BDD representing MSCPs instances.
The time to compile the BDDs was also less than 5% of the total BDD time, as
in the MKP case.

Table 2. Average solution times (in seconds) for MSCPs and MSPPs problems. Num-
ber in parentheses indicate instances unsolved within the time limit (out of 10).

Set Covering (MSCP) Set Packing (MSPP)

n p |YN| Kirlik BDD |YN| Kirlik BDD

100 3 117 5.91 5.46 164 5.61 5.07

4 428 282.19 7.03 551.10 321.64 5.12

5 1,171 82.79(9) 7.87 1,211.90 (10) 5.35

150 3 305 23.99 110.50 336.00 12.81 8.37

4 1,178 1,228.18(2) 248.44(2) 4,557 3,025.52(8) 22.24

5 4,711 (10) 329.49(5) 9,213 (10) 49.18

6 Conclusions

This paper proposes an algorithm for solving general multiobjective discrete
optimization problems using decision diagrams. We utilize decision diagrams to
represent, exactly, the feasible set of the problem, and then uses a multicrite-
ria shortest path algorithm for finding the set of nondominated solutions. The
algorithm is applied to three classical discrete optimization problems, and com-
putational methods indicate that the proposed method is superior to a state-of-
the-art multiobjective technique, often providing orders of magnitude speedups.

Acknowledgements. This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), Discovery Grant.

94 D. Bergman and A.A. Cire

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516
(1978)

2. Behle, M.: On threshold BDDs and the optimal variable ordering problem. J.
Comb. Optim. 16(2), 107–118 (2007)

3. Benson, H.P.: Existence of efficient solutions for vector maximization problems. J.
Optim. Theory Appl. 26(4), 569–580 (1978)

4. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012)

5. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

6. Bergman, D., Cire, A.A., Jan van Hoeve, W.-J., Yunes, T.H.: BDD-based heuristics
for binary optimization. J. Heuristics 20(2), 211–234 (2014)

7. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

8. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn. Athena
Scientific, Belmont (2000)

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. C–35, 677–691 (1986)

10. Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Comput. Surv. 24, 293–318 (1992)

11. Chankong, V., Haines, Y.Y.: Multiobjective Decision Making: Theory and Method-
ology. Elsevier Science, New York (1983)

12. Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective
optimization. Ann. Oper. Res. 154(1), 29–50 (2007)

13. Coello, C.A.: An updated survey of GA-based multiobjective optimization tech-
niques. ACM Comput. Surv. 32(2), 109–143 (2000)

14. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons Inc., New York (2001)

15. Ehrgott, M.: A discussion of scalarization techniques for multiple objective integer
programming. Ann. Oper. Res. 147(1), 343–360 (2006)

16. Florios, K., Mavrotas, G.: Generation of the exact pareto set in multi-objective
traveling salesman and set covering problems. Appl. Math. Comput. 237, 1–19
(2014)

17. Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained opti-
mal path computation: exact and approximate algorithms. Comput. Netw. 54(17),
3081–3107 (2010)

18. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Trans.
Syst. Man Cybern. 1(3), 296–297 (1971)

19. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple
Criteria Decision Making Theory and Application. Lecture Notes in Economics
and Mathematical Systems, vol. 177, pp. 109–127. Springer, Heidelberg (1980)

20. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C.,
Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer,
Heidelberg (2013)

Multiobjective Optimization by Decision Diagrams 95

21. Hwang, C.-L., Masud, A.S.M.: Multiple Objective Decision Making Methods and
Applications: A State-of-the-art Survey. Lecture Notes in Economics and Mathe-
matical Systems, vol. 164. Springer, Heidelberg (1979)

22. IBM ILOG: Cplex optimization studio 12.6.3 user manual (2016)
23. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of

multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488
(2014)

24. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation
scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper.
Res. 169(3), 932–942 (2006)

25. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38, 985–999 (1959)

26. Loui, R.P.: Optimal paths in graphs with stochastic or multidimensional weights.
Commun. ACM 26(9), 670–676 (1983)

27. Özlen, M., Azizoǧlu, M.: Multi-objective integer programming: a general approach
for generating all non-dominated solutions. Eur. J. Oper. Res. 199(1), 25–35 (2009)

28. Miettinen,K.:NonlinearMultiobjectiveOptimization.KluwerAcademicPublishers,
Boston (1999)

29. Özlen, M., Burton, B.A., MacRae, C.A.G.: Multi-objective integer programming:
an improved recursive algorithm. J. Optim. Theory Appl. 160(2), 470–482 (2013)

30. Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest
path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)

31. Figueira, J.R., Tavares, G., Wiecek, M.M.: Labeling algorithms for multiple objec-
tive integer knapsack problems. Comput. Oper. Res. 37(4), 700–711 (2010)

32. Steuer, R.E., Choo, E.-U.: An interactive weighted Tchebycheff procedure for mul-
tiple objective programming. Math. Program. 26(3), 326–344 (1983)

33. Stidsen, T., Andersen, K.A., Dammann, B.: A branch and bound algorithm for a
class of biobjective mixed integer programs. Manage. Sci. 60(4), 1009–1032 (2014)

34. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a
survey. J. Multi-Criteria Decis. Anal. 3(2), 83–104 (1994)

35. Vincke, P.: Problemes multicriteres. Cahiers Centre Etudes Recherche Opera-
tionnelle 16, 425–439 (1974)

36. Wegener, I.: Branching programs and binary decision diagrams: theory and applica-
tions. In: SIAM Monograph Discrete Mathematics Applications. Society for Indus-
trial and Applied Mathematics (2000)

37. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjec-
tive evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput.
1(1), 32–49 (2011)

Dependency Schemes in QBF Calculi:
Semantics and Soundness

Olaf Beyersdorff and Joshua Blinkhorn(B)

School of Computing, University of Leeds, Leeds, UK
{o.beyersdorff,scjlb}@leeds.ac.uk

Abstract. We study the parametrisation of QBF resolution calculi by
dependency schemes. One of the main problems in this area is to under-
stand for which dependency schemes the resulting calculi are sound.
Towards this end we propose a semantic framework for variable inde-
pendence based on ‘exhibition’ by QBF models, and use it to express
a property of dependency schemes called full exhibition that is known
to be sufficient for soundness in Q-resolution. Introducing a generalised
form of the long-distance resolution rule, we propose a complete para-
metrisation of classical long-distance Q-resolution, and show that full
exhibition remains sufficient for soundness. We demonstrate that our
approach applies to the current research frontiers by proving that the
reflexive resolution path dependency scheme is fully exhibited.

1 Introduction

The excellent success of SAT solvers in the realm of propositional Boolean formu-
lae has motivated much interest in the corresponding search problem for quanti-
fied Boolean formulae (QBF). The greater expressiveness of QBF, afforded by its
PSPACE-completeness [22], presents novel challenges in solving, and the array
of emerging techniques is motivating a wealth of research in the closely-related
field of proof complexity [3–8,11–13,24].

There is a natural correspondence between QBF practice and proof theory;
when a solver concludes the falsity of an instance, the trace can be interpreted as
a formal refutation. Understanding the refutational proof system that underpins
a particular solving method, and thereby accounts for its correctness, motivates
the proof-theoretic study of specific calculi. Recent work has led to a complete
understanding of the relative strength of resolution-based QBF systems [3,6],
including Q-resolution (Q-Res) [14], universal Q-resolution (QU-Res) [24], and
long-distance Q-resolution (LD-Q-Res) [1].

Implemented in the state-of-the-art solver DepQBF [15,16], one of the recent
and exciting developments in QBF solving has seen the introduction of depen-
dency schemes: algorithms that gather information on variable independence by
prior appeal to the syntactic form of an instance. The quantifier prefix of a QBF
(in prenex normal form) imposes a total order on the variables; due to the nesting
of quantifier scopes, the value of a Boolean variable z can be dependent upon the

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 96–112, 2016.
DOI: 10.1007/978-3-319-44953-1 7

Dependency Schemes in QBF Calculi: Semantics and Soundness 97

variables to its left in the prefix. Naturally, this entails some restrictions on solv-
ing methods, and on the rules of the related formal systems. In general, however,
z does not necessarily depend on all of the variables to its left. By identifiying
variable independence, a dependency scheme attempts to replace the linear order
of the prefix with a partial order, which more accurately reflects the dependency
structure of the formula. This approach allows some sets of instances to be solved
more effeciently, despite the compuational overhead incurred in computing the
dependency scheme [15].

Independence itself is presented as a semantic concept [15,17]. The truth of
a QBF Φ is witnessed by a Skolem-function model, a set of Boolean functions
{fx} that produce a proposition tautology when substituted for the existential
variables. The arguments to fx are the universal variables Ux left of x in the
quantifier prefix, but it may occur that some circuit computes fx without using
u ∈ Ux as an input. In this case we say that x is independent of u – and a dual
notion for false QBFs provides for independence of universals on existentials –
even though the Skolem-function model is in general not unique.

This lack of uniqueness has consequences for soundness in QBF calculi. The
impact of a dependency scheme in the proof system is to allow some logical
steps which previously were prohibited; specifically, the ∀-reduction rule of Q-Res
receives greater reign. This motivated the proposal of Q(D)-Res by Slivovsky and
Szeider [21], a parametrisation of the classical calculus by dependency schemes.
Some schemes that were previously put forward in the literature, such as the tri-
angle [18] and resolution path [23] dependency schemes, have proved too aggres-
sive for soundness in Q(D)-Res, admitting refutations of true QBFs. The reflexive
resolution path dependency scheme [21] is currently the strongest known scheme
for which Q(D)-Res is sound, a result which was proved by means of a difficult
transformation of a Q(D)-Res refutation into a Q-Res refutation [21].

What is currently absent in the literature is a deeper understanding of sound-
ness based on classification of dependency schemes; moreover, the lack of gen-
eral methods may frustrate future developments. It is natural to propose the
parametrisation by dependency schemes of stronger QBF calculi, of the other
CDCL-based QBF resolution systems and QBF Frege [4], whereupon methods
for proving soundness based on properties of dependency schemes will carry over.
In this paper we demonstrate that semantic notions of independence are indeed
equipped for this; our contributions are summarized below.

1. New QBF Calculi Parametrised by Dependency Schemes. We extend
the parametrisation by dependency schemes to all the CDCL-based resolu-
tion calculi for QBF: with the new long-distance calculus LD-Q(D)-Res, with
universal resolution QU(D)-Res, and with their combination LQU(D)-Res. Our
new long-distance calculus presents the greatest challenge. Of the two inference
rules employed classically, parametrisation of ∀-reduction can be lifted straight
from Q(D)-Res; here we investigate the additional effects of parametrising the
long-distance resolution rule as well, by relaxing the conditions under which
so-called ‘merged literals’ can be introduced. Progressing from Q-resolution,

98 O. Beyersdorff and J. Blinkhorn

we demonstrate that variable independence and merging have a more subtle
interaction; in LD-Q(D)-Res, we must supplant merged literals with annotated
literals, which record existential pivots to prevent unsound ∀-reduction steps.

2. A Semantic Framework for Independence and Soundness. We unify
some existing approaches in the literature towards a more fruitful understanding
of the interplay between Q-resolution and dependency schemes. Building on the
work of Samer [17] and Lonsing [15] we propose a semantic framework for variable
independence. Central to the framework is a property of dependency schemes
called full exhibition, which was shown to be sufficient for soundness in Q(D)-Res
by Slivovsky [20]. We further the potential of this approach to show that full
exhibition is sufficient for soundness in all the dependency calculi we introduce.
To that end, we handle the semantic obstacles of long-distance resolution by
incorporating techniques from strategy extraction due to Balabanov et al. [2].

3. Demonstrating Full Exhibition. We conclude by proving Slivovsky’s con-
jecture [20, p. 37] that the reflexive resolution path dependency scheme Drrs

is fully exhibited. Currently, Drrs is arguably the most important dependency
scheme, capable of revealing more cases of independence than any other tractable
scheme known to be sound for Q(D)-Res. As such, we show that everything cur-
rently known about soundness in this setting can be explained by full exhibition.
On the technical level, the result is obtained by an algorithmic transformation of
an arbitrary model for a true QBF Φ into a model that exhibits all the required
independencies. We therefore reveal the possibility for QBF solving to implement
long-distance techniques fully parametrised by Drrs, or any other fully exhibited
scheme.

Organisation of the Paper. After providing the necessary fundamentals in
Sect. 2, we present our semantic framework based on ‘exhibition’ in Sect. 3. In
Sect. 4, we present the new long-distance calculus and corresponding soundness
results, while Sect. 5 covers the proof that Drrs is fully-exhibited. Finally, some
conclusions are offered in Sect. 6.

2 Preliminaries

Quantified Boolean Formulas. A Quantified Boolean Formula (QBF) Φ over
a set V = {z1, . . . , zn} of n variables is a formula in quantified Boolean logic with
variables ranging over {0, 1}. We consider only formulas in prenex conjunctive
normal form (PCNF), denoted Φ = Q .φ, in which all variables are quantified
either existentially or universally in the quantifier prefix Q = Q1z1 · · · Qnzn,
Qi ∈ {∃,∀} for i ∈ [n], and φ is a propositional conjunctive normal form (CNF)
formula called the matrix. A CNF matrix is a conjunction of clauses, each clause
is a disjunction of literals, and a literal is a variable or its negation. Whenever
convenient, we refer to a clause as a set of literals and to a matrix as a set of

Dependency Schemes in QBF Calculi: Semantics and Soundness 99

r

¬u1

x1

¬u2

¬x2

u2

x2

u1

x1

¬u2

¬x2

u2

¬x2

Fig. 1. An assignment tree T for a PCNF ∀u1∃x1∀u2∃x2 . φ, with arbitrary matrix φ.

clauses. We typically write x for existential variables, u and v for universals,
and z for either. We denote the sets of existentially and universally quantified
variables of Φ by V∃ = {zi ∈ V | Qi = ∃} and V∀ = {zi ∈ V | Qi = ∀}
respectively. The prefix Q imposes a linear ordering <Φ on the variables of Φ,
such that zi <Φ zj holds whenever i < j, in which case we say that zj is right of
zi, or that zi is left of zj . The sets of variables right and left of z are denoted
RΦ(z) = {z′ ∈ V | z <Φ z′} and LΦ(z) = {z′ ∈ V | z′ <Φ z}.

Assignment Trees and Models. Assignment trees for PCNFs were first intro-
duced in [19]. We represent an assignment tree formally as a set of paths. Let Φ
be a PCNF over variables V = {z1, . . . , zn} and let V∀ = {u1, . . . , uk}. A path
is a set of literals P = {l1, . . . , ln} with var(li) = zi for all i ∈ [n], and we write
P [zi] = li. A set of paths T is well-formed for Φ iff (1) for all u ∈ V∀ and for
all P,Q ∈ T , if P [v] = Q[v] for all v ∈ LΦ(u) ∩ V∀, then P [x] = Q[x] for each
x ∈ LΦ(u)∩V∃, and (2) for each set of literals U = {l1, . . . , lk} with var(li) = ui

for i ∈ [k], there is a unique path P ∈ T with U ⊆ P . A set of paths that is
well-formed for Φ is an assignment tree for Φ. We also use P to denote the total
assignment P : V → {⊤,⊥} given by P (zi) = ⊥ if li = ¬zi and P (zi) = ⊤
if li = zi, and extend this notation to literals with P (¬zi) = ¬P (zi), where
⊤ = ¬⊥ and vice versa. An assignment tree for Φ is a model for Φ, typically
denoted M , iff P (C) = ⊤ for all paths P ∈ T and all clauses C ∈ φ, where
P (C) = ⊤ iff P (l) = ⊤ for some l ∈ C. A PCNF which has a model is true,
otherwise it is false. An assignment tree is depicted as a tree with root r, as
shown in Fig. 1.

Dependency Schemes. The trivial dependency scheme Dtrv is a mapping
which associates each PCNF Φ = Q1z1 · · · Qnzn .φ over variables V to the trivial
dependency relation Dtrv

Φ = {(zi, zj) | i < j and Qi ̸= Qj}. A proto-dependency
scheme1 D is a function that maps each PCNF Φ to a binary relation DΦ ⊆ Dtrv

Φ
called the dependency relation. If (zi, zj) ∈ DΦ, then (zi, zj) is a D-dependency

1 The term ‘dependency scheme’ was first introduced to denote a subset of proto-
dependency schemes with a more technical definition [18]; for consistency with the
literature we will use ‘proto-dependency scheme’ in technical portions of this paper.

100 O. Beyersdorff and J. Blinkhorn

and zj is a D-dependent of zi, otherwise zj is D-independent of zi. A proto-
dependency scheme D′ is said to be at least as general as another D if D′

Φ ⊆ DΦ

for all PCNFs Φ, and is strictly more general if the inclusion is strict for some
formula. For a PCNF Φ over variables V and u ∈ V∀, we write D̄Φ(u) = {(u, x) |
x ∈ V∃ and (u, x) /∈ DΦ}.

QBF Resolution Calculi. We give a brief overview of four resolution-based
CDCL QBF calculi – see [6] for a more detailed survey. Their formal definitions
are presented in Sects. 3 and 4 as special cases of the corresponding ‘dependency’
systems. A refutational QBF calculus is sound iff the empty clause cannot be
derived from any true formula.

Q-resolution (Q-Res) introduced in [14] is the standard refutational calculus
for PCNF. In addition to resolution over existential pivots with non-tautologous
resolvents, the calculus has a universal reduction rule which allows a clause C to
be derived from C ∪ {u}, where u is a universal literal and all existential literals
in C are left of u. QU-resolution (QU-Res) [24] is a natural extension of Q-Res
that allows universal resolution pivots.

Long-distance resolution, which was introduced in [25] and formalised as
the calculus LD-Q-Res [1], allows tautologous resolvents under certain condi-
tions, using the special merged literal u∗ to represent the tautology {u,¬u}.
The resulting system is exponentially stronger than Q-Res [12]. Finally, the cal-
culus LQU-Res [3] combines naturally the features of QU-Res and LD-Q-Res,
allowing merged literals and resolution over universal pivots.

3 Dependency Schemes, Q-resolution and Semantics

3.1 Dependency Schemes and Q-resolution

It is natural to try to strengthen a classical QBF calculus using a dependency
scheme, and the starting point for the ‘dependency version’ is the identification
of the trivial dependency relation in the rules of a calculus. Restrictions are
inevitably imposed by the linear ordering of the quantifier prefix. Dependency
calculi can relax these restrictions, replacing the implicit reference to Dtrv with
an explicit reference to a more general dependency scheme D.

Figure 2 recalls the rules of Q(D)-Res, the dependency version of Q-Res, intro-
duced in [21] to account for the behaviour of the QDPLL-based solver DepQBF
[9,15]. In Q-Res, the universal reduction rule allows a universal u to be dropped
from a clause C containing only existential variables left of u. By comparison,
Q(D)-Res allows u to be dropped whenever C contains no D-dependents of u.
Note that Q-Res and Q(Dtrv)-Res are identical. Whether or not Q(D)-Res is
sound depends on the strength of the dependency scheme. For example, in [21]
it is shown that Q(D)-Res is sound for Drrs, but unsound for the strictly more
general scheme Dres.

It is natural to extend Q(D)-Res by allowing resolution over universal pivots.
The resulting new system QU(D)-Res, also presented in Fig. 2, is the dependency
version of QU-Res.

Dependency Schemes in QBF Calculi: Semantics and Soundness 101

(Axiom)
C C is a clause in the matrix of Φ.

D ∪ {lu}
(∀-Red)

D

Literal lu is universal . If l ∈ D and
var(l) = v , then (u, v) /∈ DΦ.

C1 ∪ {v} C2 ∪ {¬v}
(Res)

C1 ∪ C2

If l ∈ C1, then ¬l /∈ C2. In Q(D)-Res,
variable v is existential; in QU(D)-
Res, v is existential or universal.

Fig. 2. The rules of Q(D)-Res [21] and QU(D)-Res

3.2 A Semantic Framework for Independence

We reformulate the definition of independence in terms of assignment trees from
[15,17]; we feel our notation is better suited to the aims of the current work.
We first introduce the new idea of complementary paths in an assignment tree,
whose universal literals differ for exactly one variable.

Definition 1 (Complementary path). Let Φ be a QBF over variables V ,
let U be a non-tautologous set of literals such that var(U) = V∀, let T be an
assignment tree for Φ and let P ∈ T be the unique path such that U ⊆ P .
Then, for any u ∈ V∀, Pu ∈ T is the unique path such that U ′ ⊆ Pu, where
U ′ = (U \ {l}) ∪ {¬l}, l ∈ U and var(l) = u.

It is fortunate that, throughout this paper, we need only consider the dependence
of existentials on universals. This simplification, seen in the definition below, is
the result of our dealing exclusively with refutational calculi, the rules of which
remain unaffected by the (in)dependence of universals on existentials.

Definition 2 (Independence of existentials from universals [15,17]).
Let Φ be a true QBF over variables V and let u ∈ V∀, x ∈ V∃. We say that x is
independent of u in Φ if there exists a model M for Φ in which P (x) = Pu(x)
for all paths P ∈ M . For such a model M we write M ≺ (u, x), and we say that
M exhibits the independence of x from u in Φ.

Remark 3. It is not necessary for us to consider false QBFs in Definition 2, since,
by definition, a false formula has no models. For a false formula, the condition for
independence is satisfied vacuously, confirming our intuition that no existential
variable can be dependent on any universal in such a formula.

As noted in [21], Definition 2 alone is too weak for soundness in Q(D)-Res. The
problem lies in the possibility for different models to exhibit different indepen-
dencies, which are then used together in the same refutation. It is therefore
natural to seek a model which exhibits all the independencies that may be used
in a refutation.

102 O. Beyersdorff and J. Blinkhorn

Definition 4 (Fully exhibited dependency scheme). Let D be a proto-
dependency scheme. We say that D is fully exhibited iff for each true PCNF Φ
there is a model M for Φ such that M ≺ (u, x) for each pair (u, x) /∈ DΦ, with
u ∈ V∀ and x ∈ V∃.

In [20], it was proved that Q(D)-Res is sound for fully exhibited2 D, and this
was combined with the fact that the standard dependency scheme Dstd is fully
exhibited (attributed to [10]). In the next section, we show that this approach
scales up to the dependency versions of stronger QBF calculi.

4 Dependency Schemes and Long-Distance Q-resolution

In this section, we introduce the new long-distance calculi LD-Q(D)-Res and
LQU(D)-Res, the respective dependency versions of LD-Q-Res and LQU-Res.

Long-distance Q-resolution was formalised as a calculus [1] to account for
solving techniques due to [25]. The resulting system is exponentially stronger
than Q-Res [12]. The salient feature of the system is that tautological clauses are
allowed under certain conditions. Specifically, resolving clauses C1 and C2 over
an existential pivot x, a ‘merged literal’ u∗ appears in the resolvent clause C if
¬u ∈ C1, u ∈ C2 and x <Φ u. In successive resolution steps, a merged literal
u∗ may be merged again with another merged literal u∗, or with non-merged
literals u and ¬u, provided that the existential pivot is left of u. Both merged
and non-merged literals may be dropped from a clause by ∀-reduction under the
usual conditions.

Whereas the parametrisation of ∀-reduction can be lifted directly from
Q(D)-Res, parametrisation of long-distance resolution, which relaxes the con-
ditions under which merging is allowed, presents a novel challenge.

4.1 Defining LD-Q(D)-Res and LQU(D)-Res

Although the method of generalising the reference to the trivial dependency
scheme remains, more care must be taken when defining LD-Q(D)-Res. Para-
metrising long-distance resolution means relaxing the conditions under which
merging may take place, which in turn entails some new notation. Replacing
x <Φ u with the condition (u, x) /∈ DΦ in the dependency version, one must
annotate merged literals with the corresponding pivot set X, producing an anno-
tated literal uX ∈ C, where X consists of all the existential variables over which
u has been merged in the derivation of the clause C. Annotations are needed to
keep track of the pivot sets to prevent unsound ∀-reduction steps – we explain
this in greater detail shortly.

The rules of LD-Q(D)-Res are given in Fig. 3. We observe that LD-Q(Dtrv)-Res
is precisely the classical long-distance calculus LD-Q-Res, except that the
merged literals of the latter are annotated. Since the dependency conditions
of LD-Q(D)-Res are identical to the classical long-distance conditions if D is
2 Full exhibition is treated equivalently, as a property of models.

Dependency Schemes in QBF Calculi: Semantics and Soundness 103

Dtrv, replacing all annotated literals uX in an LD-Q(Dtrv)-Res refutation with
merged literals u∗ produces an LD-Q-Res refutation, and vice versa – replac-
ing all merged literals u∗ in an LD-Q-Res refutation with annotated literals uX

produces an LD-Q(Dtrv)-Res refutation. Similarly as for Q(D)-Res, it is natural
to extend LD-Q(D)-Res by allowing resolution over universal pivots. The result-
ing new system LQU(D)-Res, also given in Fig. 3, is the dependency version of
LQU-Res.

(Axiom)
C C is a clause in the matrix of Φ.

D ∪ {uX}
(∀-Red)

D

Varaible u is universal. If l ∈ D and
var(l) = z, then (u, z) /∈ DΦ, and if

l = zX
′

then (u, x) /∈ DΦ for all x ∈
X ′. If X = ∅ then literal uX is either
u or ¬u.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2), then l1 = l2 is not annotated.
var(U1) = var(U2) ⊆ V∀, and (x, u) /∈ DΦ for each u ∈ var(U1). If for
u1 ∈ U1, u2 ∈ U2, var(u1) = var(u2) = u, then u1 = ¬u2, or at least one
of u1, u2 is annotated. U is defined as {uX | u ∈ var(U1)}, where X is
the union of {x} with any annotations on u in U1 ∪ U2. In LD-Q(D)-Res
var(x) is existential. In LQU(D)-Res, var(x) is existential or universal.

Fig. 3. The rules of LD-Q(D)-Res

The purpose of annotating literals is to prevent unsound ∀-reduction steps,
by checking that the pivot sets in the clause are D-independent of the reduced
universal variable. Annotations were never necessary in LD-Q-Res; the fact that
a merged literal u∗ in the clause is always right of its corresponding existential
pivots is enough to ensure soundness. However, in LD-Q(D)-Res, we must explic-
itly forbid ∀-reduction of v ∈ C if any x ∈ X is not D-independent of v, for
any annotation X in the clause C. The following example shows that allowing v
to be reduced under such conditions is unsound in general for a fully-exhibited
proto-dependency scheme D.

Example 5. Take the true QBF Ψ = ∀u∃x1∀v∃x2∃x3 .φ with the matrix φ ={
{u, x2,¬x3}, {¬u,¬x2,¬x3}, {x1, v, x3}, {¬x1,¬v, x3}

}
and the proto-depende-

ncy scheme D′
Φ = {(u, x1), (v, x2), (u, x3), (v, x3)} if Φ = Ψ , and D′

Φ = Dtrv
Φ

otherwise. First observe that D′ is fully exhibited; Fig. 4 depicts a model M for
Ψ which exhibits the independence of x2 on u.

104 O. Beyersdorff and J. Blinkhorn

r

¬u

¬x1

¬v

x2

x3

v

¬x2

¬x3

u

x1

¬v

x2

¬x3

v

¬x2

x3

Fig. 4. A model M for Ψ for which M ≺ (u, x2).

However, if we allow variable v to be reduced alongside the annotated literal
u{x2}, noting that x2 is not D′-independent of v, we obtain the following refu-
tation of Ψ .

{u, x2,¬x3} {¬u,¬x2,¬x3}
{u{x2},¬x3}

{x1, v, x3} {¬x1,¬v, x3}
{v{x1}, x3}

{u{x2}, v{x1}}
{u{x2}}

⊥

4.2 Soundness of LD-Q(D)-Res and LQU(D)-Res

In this subsection, we prove that LD-Q(D)-Res is sound for a fully exhibited
D, and our method entails the following evaluation of annotated literals under
assignment. We define annotated literal functions, which are based on the ‘phase
functions’ and ‘effective literals’ introduced by Balabanov et al. [2].

Informally, it is demonstrated in [2] that any assignment σ to the existential
variables ‘induces’ the phase of a merged literal u∗ in an LD-Q-Res refutation of a
PCNF Φ, such that for the purpose of strategy extraction it may be interpreted
as either non-merged literal u or ¬u. In a given model M for Φ, every path
P contains a particular assignment to the existential variables. Therefore, for
any annotated literal uX in some LD-Q(D)-Res derivation from Φ, we can use
the phase function to associate a non-annotated literal u or ¬u with P . This
allow us to evaluate annotated literals, and the nature of the phase function
ensures that the rules of LD-Q(D)-Res are logically correct for each path in
a fully exhibiting model. For a given annotated literal, our annotated literal
function uses the same method as Balabanov et al. to identify the correct phase
induced by some existential assignment. However, since we are not concerned
with strategy extraction, we are able to simplify the construction considerably
compared to [2]3. For that reason, we proceed as follows.

3 We can prove what we need to from the definition of such functions; we need not
represent them explicitly as circuits as in [2].

Dependency Schemes in QBF Calculi: Semantics and Soundness 105

As a starting point, consider the following resolution step in an LD-Q-Res
refutation of a QBF Φ = Q .φ over variables V , where var(lu) = u ∈ V∀ and
x ∈ V∃.

C1 ∪ {x} ∪ {lu} C2 ∪ {¬x} ∪ {¬lu}
C1 ∪ C2 ∪ {u∗}

Let M be any model for the conjunction of the antecedent clauses prefixed by
Q, and let P ∈ M . For any universal v which is right of u, we must have
x <Φ u <Φ v; therefore P (x) = Pv(x), meaning that at least one of C1 ∪ {u}
and C2 ∪ {¬u} is satisfied by both P and Pv. In either case we can then choose
a single literal u or ¬u for u∗ such that C1 ∪ C2 ∪ {u∗} is satisfied by both P
and Pv.

Generalising, let M be a model for Φ. We observe that any resolution step
producing u∗ from complementary literals gives rise to a well-defined function
f∗
u : M → {u,¬u}, with rule

f∗
u(P) =

{
lu if P (x) = ⊥ ,

¬lu if P (x) = ⊤ .

We observe two features of such a definition. First, f∗
u simply reads the truth

value of P (x), selects the antecedent clause in which the pivot variable x is
falsified, and takes the universal literal from that clause. In this way, any path
P ∈ M made to satisfy C1 ∪ C2 ∪ f∗

u(P). Second, if v is any universal right of
u, then P (x) = Pv(x); hence v satisfies the complementary property f∗

u(P) =
f∗
u(Pv) for all P ∈ M .

Moreover, the above discussion does not consider ‘successive merging’. Mov-
ing forward to the annotated literals of LD-Q(D)-Res, we therefore present a
recursive definition based on the preceeding discussion.

Definition 6 (Annotated literal function). Let uX ∈ U be a literal intro-
duced by merging universal literals l1 ∈ U1 and l2 ∈ U2 in a resolution step

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
C1 ∪ C2 ∪ U

of an LD-Q(D)-Res refutation of a formula Φ. Let X1,X2 be the resolution sets
of l1, l2 respectively, and let M be a model for Φ. Then the annotated literal
function fX

u : M → {u,¬u} for M is given by

fX
u (P) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1 if P (x) = ⊥ and X1 = ∅ ,
fX1
u (P) if P (x) = ⊥ and X1 ̸= ∅ ,
l2 if P (x) = ⊤ and X2 = ∅ ,
fX2
u (P) if P (x) = ⊤ and X2 ̸= ∅ ,

where X = X1 ∪ X2 ∪ {x}.

106 O. Beyersdorff and J. Blinkhorn

The following lemma states that the complementary property holds for anno-
tated literal functions.

Lemma 7. Let Φ be a QBF over variables V , let u, v ∈ V∀, let X ⊆ V∃ and let
M be a model for Φ for which M ≺ (v, x) for all x ∈ X. Then any annotated
literal function fX

u for M satisfies fX
u (P) = fX

u (Pv) for all paths P ∈ T .

Proof. The lemma follows from the observation that, throughout the recursive
definition of the annotated literal function fX

u , complementary paths P and Pv

always map to the same case, since P (x) = Pv(x) for all x ∈ X and for all
P ∈ M . ⊓.

Evaluation of Annotated Literals. We defined annotated literal functions
for a model M specifically so that any P ∈ M satisfying both antecedents of
a resolution step also satisfies the resolvent. For that reason, we define uX to
have the same truth value as the concrete literal fX

u (P) when evaluated under α,
the assignment represented by path P ; that is, we define (uX)|α = (fX

u (P))|α.
Representing assignments by paths, this would be written P (uX) = P (fX

u (P)).
The expression P (fX

u (P)) is always well-defined because fX
u can be computed

for any given model M , so fX
u (P) is a well-defined non-annotated literal, which

can then be evaluated under P in the usual way. We are now in a position to
prove the following theorem.

Theorem 8. Let D be a fully exhibited proto-dependency scheme. Then
LD-Q(D)-Res is sound.

Proof. Let Φ = Q .φ be a QBF over variables V , suppose that π = {C1, . . . , Cl}
is a LD-Q(D)-Res refutation of Φ, and let

φi =

{
φ if i = 0 ,
φ ∧ C1 ∧ · · · ∧ Ci otherwise ,

for i = 1, . . . , l. Since D is fully exhibited, if Φ is true there exists a model M for
Φ for which M ≺ D̄rrs

Φ (u) for all u ∈ V∃. We prove by induction on i that if Φ is
true, M is a model for Q .φi, so Q .φi is true. Hence at step i = l, we deduce
that Φ = Q .φl is true, a clear contradiction since φl contains the empty clause
Cl. Since Q .φ = Q .φ0, if Φ is true then M is a model for Q .φ0, thus the base
case i = 0 is established. We only need confirm that if M is a model for Q .φi,
then M is a model for Q .φi+1, for i ∈ [l − 1].

Suppose that Ci+1 = C1∪C2∪U is the resolvent of clauses Cj = C1∪U1∪{x}
and Ck = C2 ∪ U2 ∪ {¬x} for j, k < i + 1, and let P be an arbitrary path in
M . By the inductive hypothesis, P satisfies Cj and Ck. Assume without loss
of generality that P (x) = ⊥. Then P satisfies C1 ∪ U1. If P satisfies C1 then
P satisfies Ci+1. Otherwise, P (lu) = ⊤ for some (annotated or non-annotated)
literal lu ∈ U1 with var(lu) = u. The recursive definition of the annotated literal
function ensures that P (lu) = ⊤ ⇒ P (uX) = ⊤ for some annotated literal
uX ∈ U , and so P satisfies Ci+1. Therefore M is a model for Q .φi+1.

Dependency Schemes in QBF Calculi: Semantics and Soundness 107

On the other hand, suppose that Ci+1 was obtained from Cj , j < i + 1,
by ∀-reduction on a non-annotated universal literal u. Then Ci+1 = Cj\{lu},
where var(lu) = u, (u, x) /∈ DΦ for all x ∈ Cj ∩ V∃ and for all x ∈ X, where
X is the union of the resolution sets of all universal literals in Cj . Suppose
that there exists some path P in M which satisfies Cj but falsifies Ci+1. Let
z ∈ Ci+1; then P (z) = ⊥, and since M ≺Φ (u, x) for all (u, x) /∈ DΦ, we
have Pu(z) = P (z) = ⊥ whenever z is a non-annotated literal. On the other
hand, suppose that z = vX , where v ̸= u; then, since M ≺Φ (u, x) for all
x ∈ X, Lemma 7 gives fX

v (P) = fX
v (Pu) = lv with var(lv) = v, which implies

Pu(vX) = P (vX) = ⊥. Also, since P (u) = ⊤, we have Pu(u) = ⊥, and we
deduce that Pu(Cj) = ⊥, contradicting that M is a model for Q.φi. It follows
that P satisfies Ci+1, and that M is a model for Q .φi+1.

The same argument applies to an annotated literal uX . Since M ≺Φ (u, x)
for all x ∈ X, the special case of Lemma 7 with v = u gives fX

u (P) = fX
u (Pu),

hence P (uX) = ⊤ implies Pu(uX) = ⊥. This completes the proof. ⊓.

Since the proof of Theorem 8 makes no use of the fact that the pivot is
existential, it also shows the soundness of LQU(D)-Res, the ‘dependency version’
of LQU-Res, for any fully exhibited D.

Theorem 9. Let D be a fully exhibited proto-dependency scheme. Then
LQU(D)-Res is sound.

Also, since LQU(D)-Res clearly simulates QU(D)-Res simply by disallowing long-
distance resolution steps, we obtain same result for QU(D)-Res.

Theorem 10. Let D be a fully exhibited proto-dependency scheme. Then
QU(D)-Res is sound.

Theorems 8, 9 and 10 together constitute the generalisation to all the CDCL
QBF calculi of Slivovsky’s result [20] that Q(D)-Res is sound for fully exhibited
D. Whereas full exhibition is a sufficient condition for each calculus, it is not a
necessary condition for any of them, witnessed by the following counter example.

Example 11. Consider the formula Ψ = ∀u1∀u2∃x1∃x2 .ψ with matrix

ψ =
{
{u1, x1,¬x2}1, {u1,¬x1, x2}2, {¬u1, u2, x1,¬x2}3, {¬u1, u2,¬x1, x2}4,
{¬u1,¬u2, x1, x2}5, {¬u1,¬u2,¬x1,¬x2}6

}
,

and the dependency scheme D′ defined by D′(Φ) = {(u1, x1), (u2, x2)} if Φ = Ψ
and D′(Φ) = Dtrv(Φ) otherwise. It can be verified that Ψ is true, but there is no
model for Ψ which exhibits both independencies (u1, x2) and (u2, x1) simulta-
neously, and hence D′ is not fully exhibited. However, there is no LQU(D′)-Res
refutation of Ψ . One may resolve clauses 1 and 3 over u1 to obtain {u2, x1,¬x2},
and resolve over clauses 2 and 4 to obtain {u2,¬x1, x2}. Beyond these two steps,
no more LQU(D)-Res steps can be made.

108 O. Beyersdorff and J. Blinkhorn

5 Demonstrating Full Exhibition

In this section, we demonstrate that the reflexive resolution path depen-
dency scheme Drrs [21] is fully exhibited, thereby proving the conjecture of
Slivovsky [20, p. 37]. This result provides a better understanding of soundness
in Q-resolution with dependency shemes; since Drrs is the most general scheme
known to be sound in Q(D)-Res, what is already known about soundness for
that calculus can subsequently be explained entirely by full exhibition.

The scheme Drrs uses the notion of ‘resolution paths’ introduced in [23],
which define connections through the matrix with respect to a particular set of
variables. For convenience, we represent the connections used in Drrs as a binary
relation CΦ.

Definition 12. Let Φ = Q .φ be a PCNF over variables V and let l, l′ be literals
such that (var(l), var(l′)) ∈ Dtrv

Φ . Then (l, l′) ∈ CΦ iff there is a sequence of
clauses C1, . . . , Cn ∈ φ and a sequence of literals l1, . . . , ln−1 ∈ V∃ ∩ RΦ(var(l))
such that li ∈ Ci, ¬li ∈ Ci+1 and var(li) ̸= var(li+1) for i ∈ [n − 1].

Definition 13 (Reflexive resolution path dependency scheme [21]). The
reflexive resolution path dependency scheme Drrs maps each PCNF Φ to the
dependency relation

Drrs
Φ = {(z1, z2) ∈ Dtrv

Φ | (z1, z2), (¬z1,¬z2) /∈ CΦ or (z1,¬z2), (¬z1, z2) /∈ CΦ} .

The proof is obtained by showing that an arbitrary model for a true PCNF
can be transformed to exhibit all the required independencies. We begin by
defining an operation refu(P), which reforms a model path P based on the
assignments of its complementary path with respect to a given universal variable
u. We then prove that the resulting path does not falsify any clauses. For the
remainder of this section, we extend the notion of exhibition of independence
from pairs to sets of pairs; if S = {(z1, z′

1), . . . , (zn, z′
n)} we take M ≺ S to mean

M ≺ (zi, z′
i) for i ∈ [n].

Definition 14 (Reformed path). Let M be a model for a PCNF Φ over
variables V , let P ∈ M , let u ∈ V∀ and put lu = P [u]. The reformed path
refu(P) of P with respect to u is given by

refu(P)[z] =

{
Pu[z] if z ∈ V∃, Pu[z] = lz, and (¬lu,¬lz) /∈ CΦ ,

P [z] otherwise .

Lemma 15. Let M be a model for a PCNF Φ = Q .φ over variables V , let
P ∈ M and let u ∈ V∀. Then refu(P)(C) = ⊤ for all C ∈ φ.

Proof. Towards a contradiction, suppose that refu(P)(C) = ⊥ for some C ∈ φ,
and assume without loss of generality that refu(P)[u] = ¬u and Pu[u] = u. Since
M is a model for Φ and P ∈ M , there is an existential literal l ∈ C for which
P [var(l)] = l but refu(P)[var(l)] = ¬l, so by Definition 14 we have Pu[var(l)] = ¬l

Dependency Schemes in QBF Calculi: Semantics and Soundness 109

and (u, l) /∈ CΦ. The latter implies that (u,¬l′) /∈ CΦ for all existential literals l′ ∈
C such that l′ ̸= l. Hence, by Definition 14, if Pu[var(l′)] = l′, then refu[var(l′)] =
l′; but refu[var(l′)] = ¬l′, so we must have Pu[var(l′)] = ¬l′. It follows that Pu

falsifies all existential literals in C. Since refu(P) and Pu agree on all universal
variables except u, and literal u = P [u] /∈ C (because (u, l) /∈ CΦ), Pu also falsifies
all universal literals in C. Therefore Pu(C) = ⊥, contradicting the premise that
M is a model for Φ. ⊓.

We proceed to define refu(M), the extension of the reformation operation
from paths to models, in which all pairs of complementary paths P and Pu in
some model M are reformed. The resulting model enjoys the useful properties
stated in the subsequent lemma.

Definition 16 (Reformed model). Let M be a model for a PCNF Φ over
variables V , let u ∈ V∀, let G = {P ∈ M | P [u] = ¬u} and let M ′ = (M \G)∪Ĝ,
where Ĝ = {refu(P) | P ∈ G}. Then the reformed model of M with respect
to u is refu(M) = (M ′ \ G′) ∪ Ĝ′, where G′ = {P ∈ M ′ | P [u] = u} and
Ĝ′ = {refu(P) | P ∈ G′}.

Lemma 17. Let M be a model for a PCNF Φ over variables V , and let u ∈ V .
Then

(a) refu(M) is a model for Φ,
(b) refu(M) ≺ D̄rrs

Φ (u), and
(c) if M ≺ (u′, x), with u′ ∈ V∀ and (u′, u) ∈ RΦ, then refu(M) ≺ (u, x).

Proof. Let M ′ be defined as in Definition 16, and use the alias M ′′ = refu(M).
Let P ∈ M such that P [u] = ¬u and let U be the set of universal literals in P .
We denote by P ′ ∈ M ′ and P ′′ ∈ M ′′ the unique paths with U ⊆ P ′ and
U ⊆ P ′′. Observe that, by Definition 16, P ′′ = P ′ = refu(P), P ′′

u = refu(P ′
u) and

P ′
u = Pu.

(a) We prove that M ′ is a model for Φ. By Lemma 15, every path in M ′ satis-
fies φ. To show that M ′ is well-formed for Φ, let v ∈ V∀, let U ′ = LΦ(v)∩V∀
and let S′ ∈ M ′ such that S′[v′] = P ′[v′] for all v′ ∈ U ′. Let x ∈ V∃ such
that x ∈ Lφ(v), and let S ∈ M such that S′ = refu(S). Since M is well-
formed and Su[v′] = Pu[v′] for all v′ ∈ U ′, we must have Su[x] = Pu[x] for all
x ∈ V∃ ∩LΦ(v). Then S′[x] = P ′[x] by Definition 14. By construction, every
universal assignment defines a unique path in M ′, so M ′ is well-formed for
Φ. A similar argument shows that M ′′ is a model for Φ.

(b) Let x ∈ V∃ such that (u, x) /∈ Drrs
Φ . It is sufficient to show that P ′′[x] = P ′′

u [x]
follows from Definition 14; to do this we consider two cases. (1) Suppose
that P [x] = Pu[x] = lx. Then P ′[x] = P ′

u[x] = lx and P ′′[x] = P ′′
u [x] = lx.

(2) Suppose instead that P [x] = lx and Pu[x] = ¬lx. Since (u, x) /∈ Drrs
Φ ,

we must have either (u, lx) /∈ CΦ or (¬u,¬lx) /∈ CΦ. If (u, lx) /∈ CΦ, we have
both P ′[x] = P ′

u[x] = ¬lx and P ′′[x] = P ′′
u [x] = ¬lx. On the other hand, if

(u, lx) ∈ CΦ, P ′[x] = lx and P ′
u[x] = ¬lx, whereupon (¬u,¬lx) /∈ CΦ yields

P ′′[x] = P ′′
u [x] = lx.

110 O. Beyersdorff and J. Blinkhorn

(c) Suppose that M ≺ (u′, x), with u′ ∈ V∀ and (u′, u) ∈ RΦ, and put Q = Pu′ .
Similarly as for the path P above, let Uu′ be the set of universal literals in Q,
and denote by Q′ ∈ M ′ and Q′′ ∈ M ′′ the unique paths such that Uu′ ⊆ Q′

and Uu′ ⊆ Q′′. Observe that, again by Definition 16, Q′′ = Q′ = refu(Q),
Q′′

u = refu(Q′
u) and Q′

u = Qu. Since we assume P [u] = ¬u, to deduce
M ′′ ≺ (u′, x) we must show that P ′′[x] = Q′′

u[x] and that P ′′
u [x] = Q′′

u[x].
The observation that P [x] = Q[x] and Pu[x] = Qu[x], in combination
with Definition 16, leads easily to the result. Firstly, this guarantees that
refu(P)[x] = refu(Q)[x], that is P ′[x] = Q′[x], therefore P ′′[x] = Q′′[x]. Sec-
ondly, using P ′[x] = Q′[x], it also guarantees that refu(P ′

u)[x] = refu(Q′
u)[x],

that is P ′′
u [x] = Q′′

u[x]. ⊓.

The main result of this section follows quickly.

Theorem 18. Drrs is fully exhibited.

Proof. Let M0 be a model for a PCNF Φ over variables V , let V∀ = {u1, . . . , un}
with ui <Φ ui+1 for i ∈ [n − 1], and let Mi+1 = refui(Mi) for i ∈ [n − 1]. We
claim that Mn is a model for Φ such that Mn ≺ D̄rrs

Φ (u) for all u ∈ V∀.
By induction on i ∈ [n], we prove that Mi is a model for Φ such that Mi ≺⋃i

j=1 D̄rrs
Φ (uj), and hence at step i = n we prove the claim and the theorem.

For the base case i = 1, observe that M1 is model for Φ by Lemma 17(a), and
that M1 ≺ D̄rrs

Φ (u1) by Lemma 17(b). For the inductive step, let i ∈ [n − 1]
and suppose that Mi is a model for Φ and that Mi ≺

⋃i
j=1 D̄rrs

Φ (uj). Then
Mi+1 = refui(Mi) is a model for Φ by Lemma 17(a), Mi+1 ≺

⋃i
j=1 D̄rrs

Φ (uj)
by Lemma 17(c), and Mi+1 ≺ D̄rrs

Φ (ui+1) by Lemma 17(b). Therefore Mi+1 ≺⋃i+1
j=1 D̄rrs

Φ (uj). ⊓.

Our concluding result now follows immediately from Theorems 8, 9 and 10.

Corollary 19. QU(Drrs)-Res, LD-Q(Drrs)-Res and LQU(Drrs)-Res are sound.

6 Conclusions and Open Problems

As we have shown, the parametrisation by dependency schemes can be extended
to all four CDCL QBF calculi, and the property of full exhibition – which is
possessed by the reflexive resolution path dependency scheme – is sufficient for
soundness in each case. Showing by counterexample that full-exhibition is not
a necessary condition, our work leads naturally to the open problem of finding
a characterisation for soundness in this setting. Another interesting question
concerns proof complexity. The practical motivation to incorporate schemes into
QBF solvers suggests that the use of suitable dependencies will shorten proofs.
While it is not difficult to construct artificial schemes that yield a speed-up on
specific formulas, the real question would be to understand the proof complexity
impact of natural schemes like Drrs.

Acknowledgments. This research was supported by grant no. 48138 from the John
Templeton Foundation and EPSRC grant EP/L024233/1.

Dependency Schemes in QBF Calculi: Semantics and Soundness 111

References

1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

2. Balabanov, V., Jiang, J.R., Janota, M., Widl, M.: Efficient extraction of QBF
(counter)models from long-distance resolution proofs. In: Conference on Artificial
Intelligence (AAAI), pp. 3694–3701 (2015)

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Heidelberg (2014)

4. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof
systems. In: Proceedings of the ACM Conference on Innovations in Theoretical
Computer Science (ITCS 2016), pp. 249–260. ACM (2016)

5. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)

6. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: International Symposium on Theoretical Aspects of Computer Science
(STACS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp.
76–89 (2015)

7. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF
resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015)

8. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF
resolution is not simple. In: Proceedings of the Symposium on Theoretical Aspects
of Computer Science (STACS 2016) (2016)

9. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp.
158–171. Springer, Heidelberg (2010)

10. Bubeck, U.: Model-based Transformations for Quantified Boolean Formulas. Ph.D.
thesis (2010)

11. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)

12. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer,
Heidelberg (2013)

13. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theorical Comput. Sci. 577, 25–42 (2015)

14. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

15. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler University (2012)

16. Lonsing, F., Egly, U.: Incrementally computing minimal unsatisfiable cores of QBFs
via a clause group solver API. In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol.
9340, pp. 191–198. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 14

17. Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, I., Veith, H.,
Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 512–527. Springer,
Heidelberg (2008)

http://dx.doi.org/10.1007/978-3-319-24318-4_14

112 O. Beyersdorff and J. Blinkhorn

18. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

19. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: International Conference on
Principles and Practice of Constraint Programming (CP), pp. 578–592 (2005)

20. Slivovsky, F.: Structure in #SAT and QBF. Ph.D. thesis, Vienna University of
Technology (2015)

21. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
TCS 612, 83–101 (2016)

22. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Annual Symposium on Theory of Computing, pp. 1–9. ACM
(1973)

23. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer,
Heidelberg (2011)

24. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer,
Heidelberg (2012)

25. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiabil-
ity solver. In: International Conference on Computer-aided Design (ICCAD), pp.
442–449 (2002)

The Multirate Resource Constraint

Alessio Bonfietti1(B), Alessandro Zanarini2, Michele Lombardi1,
and Michela Milano1

1 DISI, University of Bologna, Bologna, Italy
{alessio.bonfietti,michela.milano,michele.lombardi2}@unibo.it

2 ABB Corporate Research Center, Baden, Switzerland
alessandro.zanarini@ch.abb.com

Abstract. Many real world cyclic scheduling problems involve applica-
tions that need to be repeated with different periodicity. For example,
multirate control systems present multiple control loops that are orga-
nized hierarchically: the higher-level loop responds to the slower system
dynamics and typically its period can be a few orders of magnitude longer
than the lowest level. Cyclic scheduling problems can be cast into classi-
cal RCPSP instances via a technique called unfolding [4,6], which causes
graph expansion. In the case of multirate applications, this expansion can
be significantly large. In this context, finding a high-quality allocation
and schedule could be very challenging. In this paper, we propose a new
Multirate Resource Constraint, modeling unary resources, that avoids
graph expansion by exploiting the multirate nature of the schedule in its
filtering algorithm. In an experimentation on synthetic and real-world
instances, we show that our method drastically outperforms approaches
based on state-of-the-art unfolding and constraint based scheduling.

1 Introduction

The increasing number of functionalities delivered in advanced control solutions
employed in different domains (e.g. process automation, automotive industry and
so on) requires more and more hardware resources in order to compute optimal
control strategies to feed to the controlled system. The number of functional
blocks forming such advanced control solutions can be in the order of thousands
or ten of thousands and they are organized in hierarchical feedback loops. The
higher levels (or outer loop) provide supervisory control functions for high-level
management and the setpoints for the lower levels; the middle levels feature
direct process control of the plant or system actuators; the lower levels (or inner
loop) typically present the fail-safe, protection and safety functions ensuring that
the plant remains within specifications avoiding possibly irreversible responses.
All the levels run periodically: the inner loops have the highest priority and
very short periods (in order to respond to the fast dynamics of the system) and
the outer loops have the lowest priority and much longer periods (in order to
address the slower dynamics of the system). Such approach is typically referred
to as multirate control system.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 113–129, 2016.
DOI: 10.1007/978-3-319-44953-1 8

114 A. Bonfietti et al.

In the recent past, the embedded hardware running the control solutions
offered a single CPU on which all the control loops were executed. Nowadays,
control companies are introducing additional computational power under the
form of multi-core CPUs (or system-on-a-chip presenting also FPGA or DSPs).
The control engineer is therefore facing new challenges as he needs to master not
only the control technologies and underlying mathematical algorithms, but also
the deployment of the control solutions on multiple - possibly heterogeneous -
computational resources. Optimizing the allocation and scheduling of the control
functions on multi-core heterogeneous hardware becomes key for leveraging the
power offered by such hardware architectures (see for example [7,12,16–18]).

From an optimization viewpoint, the challenge of the resource allocation and
multirate periodic scheduling problem resides on the fact that the longest con-
trol loop period may easily be two or three orders of magnitude longer than the
shortest period. Consequently, tackling the problem as a whole can be compu-
tationally very demanding.

The contribution of this paper is twofold: we present a constraint program-
ming model for the multirate periodic scheduling problems and we introduce
a new global constraint - the multirate resource constraint - that captures the
specific sub-structure of multirate systems. The paper is organized as follows:
Sect. 2 formalizes the problem; in Sect. 3 we present the model employed to solve
the problem; in Sect. 4 we introduce the novel multirate cumulative constraint
and the related filtering algorithm; Sect. 5 shows the experimental results and
finally conclusions are drawn in Sect. 6.

2 Problem Description

The problem at hand consists of a resource allocation and multirate periodic
scheduling on r unary resources, where r ∈ R. For the rest of the paper, we will
refer to the control feedback loops as applications.

A set of m periodic applications A : {a0, . . . , am−1} is given. Each application
ai has a priority value, corresponding to the index i (where i = 0 stands for
the highest priority and i = m − 1 for the lowest), and fixed period λi. Each
application ai+1 has a period λi+1 multiple of the period λi of the application ai.
Formally, λi+1 = η ·λi for some η ∈ N+. The application with the lowest priority
has the longest period, which is called the reference period and is noted as λmax.
The application with the highest priority has the shortest period, which is called
the base period. Since different applications can have periods of different lengths,
two applications may execute a different number of times within the same time
window. Each execution of an activity is called repetition. Considering λmax as
the time window, an application ai will have rep(ai) = λmax

λi
repetitions.

Each application ai is composed by a different set of activities Vi :
{xi0, ..., xin−1}; V is the set of all activities V = ∪i=0,...,m−1Vi. Note that each
application has its own number of activities. In the most general case, the dura-
tion of an xij can be allocation-dependent, i.e. it may vary depending on which
resource r it is assigned to. In this work each activity xij has a fixed duration

The Multirate Resource Constraint 115

d(xijr) for each resource r ∈ R. We assume that there are no transition times
between two activities running on the same resource and we discard the com-
munication overhead of two activities running on two different resources. Please
note that the multirate resource constraint introduced in Sect. 4 can be easily
extended to account both for allocation-dependent activity durations and tran-
sition times. Finally, activities within the same application can be subject to a
set of precedence constraints where xiq ≺ xik indicates that activity q must finish
before activity k starts. We assume that there are no precedence constraints
across different applications. Finally, the objective is to minimize the lexico-
graphic composition of all the application makespans, i.e. to minimize first the
makespan of a0, followed by a1 and so on.

3 Constraint Model and Search Strategy

Each activity xij is modeled with a set of |R| (i.e. one for each resource r ∈ R)
conditional interval variables sijr : [0,λi−d(xijr)], where sijr and sijr are the lower
and the upper bound, respectively. The variable sijr models the j-th activity of
the i-th application if executed on resource r. The conditional interval variables,
introduced in [8,9], can easily model activities that can execute on a set of
alternative resources with different execution times. Each conditional interval
variable has an execution status ex(sijr), which is equal to 1 if the variable is
executed, or equal to 0 if the variable is non-executed. The concept of execution
status is strictly related to the allocation of an activity on a resource r. We can
therefore model the allocation with the following constraint which states that
each activity must be executed on a single resource:

∑

r∈R

ex(sijr) = 1 ∀i ∈ A and ∀j ∈ Vi (1)

In the paper, the notation sijr will be used to refer both to the interval variable
and to its associated start time. The set of the interval variables for the activities
of the application ai is Si : {si0,r, ..., sin−1,r} ∀r ∈ R, while S is the set of all the
interval variables, i.e. S =

⋃
i Si ∀ 0 ≤ i < m. An interval variable is bound if a

decision has been taken, namely its start time value and execution status have
been fixed; otherwise the variable is called free (or unbound).

Note that the applications are periodic, therefore we can focus only on the
start time s of the activities belonging to the first repetition; all the execution
times of the remaining repetitions can be derived by shifting the first one by ω
times the period. Therefore the start time of first and the ω-th repetition are:

start(xij , 0) = sijr and start(xij ,ω) = sijr + ω · λi

The precedence constraints between activities are modeled through classical
temporal constraints where the start time of the sink activity cannot be lower
than the end time of the source activity. If (xij , xij′) is a precedence from xij to
xij′ we model the constraint as follows:

sijr + d(xijr) ≤ sij′r′ ∀r, r′ ∈ R (2)

116 A. Bonfietti et al.

The limited resource capacities are handled with the Multirate Resource
Constraint (MRC). Its definition and propagation algorithm are described in
Sect. 4. It is indeed possible to use traditional resource constraints (e.g. both
unary [15] and cumulative [13]), but only at the price of modeling each repetition
of each activity via a distinct variable. By exploiting the intrinsic periodicity of
the problem and taking advantage of modular arithmetic, the MRC constraint
allows us to model all the repetitions with a single variable.

The objective is to minimize the makespan of each application (considering
the first repetition), where MKi = max(sijr + d(xijr)) is the makespan of the
application ai; namely it is the distance between the greatest end time and the
initial value 0. Since one of the restrictions imposed by the problem is that the
execution of an activity of a high priority application cannot be delayed for the
execution of an activity of a lower priority application, we decided to decompose
the problem into a sequence of optimization subproblems. Each subproblem is
solved to optimality and consists of the minimization of the makespan of a sin-
gle application. The subproblems are solved in order of application priority (i.e.
from the smallest period to the largest one). Note that the model of the i-th
subproblem has to include the variables of the previously solved subproblems
(i.e. with i′ < i). The activities of the applications of each solved subproblem
are crucial for the resource constraint filtering and are modeled through initially
bound start time variables. If a traditional resource constraint is used, each of
those activities has to be replicated several times, depending on the multiplying
factor between the periods. As the experiments highlight, this causes an explo-
sion in the model size and, as a consequence, in the number of variables that
a resource constraint must handle. Conversely, by using the Multirate Resource
Constraint our approach requires only the first execution of each activity, dras-
tically reducing the size of the model.

3.1 The Search

We have developed an ad-hoc search strategy, called precedence search.
The strategy aim is to avoid the choice of activities whose predecessors have

not yet been scheduled. This is done by carrying out a preliminary search in the
list of activities to be scheduled, and populating a list called ready, with only the
activities that, if scheduled, do not violate the precedence constraints. In other
words, the list is populated with activities whose predecessors have already been
scheduled. The choice of the activity is then carried out by selecting the one that
appears on top of the ready list (in FIFO order).

The algorithm then attempts to schedule the activity by choosing, between
its interval variables (one for each resource), the one that can be executed with
the lowest earliest start time, assigning it to its minimum value. On backtrack,
the activity is postponed, i.e. marked as non selectable until its earliest start
time is modified by propagation. This is analogous to what is done in the clas-
sical schedule-or-postpone strategy for the RCPSP [10] and can be done since
we enforce resource restrictions by means of the Multirate Resource Constraint
(which filters on the lower bounds).

The Multirate Resource Constraint 117

4 The Multirate Resource Constraint

The Multirate Resource Constraint MRC has the following signature:

MRC([sijr], [d(x
i
jr)], [λi], [Vi])

where [sijr] is a vector of (conditional) interval variables, [dijr] is the vector of
corresponding durations, [λi] and [Vi] are the period and the set of activities for
application i. In the rest of the paper, as the constraint models a single resource,
we refer to the variables and the durations as sij and d(xi

j), respectively.
The aim of the filtering algorithm is to update the Earliest Start Time (EST)

of each interval variable by eliminating time points where the available resource
capacity is not sufficient. Similarly to timetable filtering [1], ou algorithm prunes
the EST so that it corresponds the first time point where there is no conflict with
the compulsory parts of other activities. Note that this is weaker then Bound
Consistency, which would be NP-hard to enforce for the MRC as it is the case
for the classical cumulative constraint.

An activity xij has a compulsory part if and only if there exists a time span
where the activity is necessarily executing. This happens if the latest start time
(i.e. LST) of a start time variable is smaller than its earliest end time (i.e. EET),
where the EET is the earliest start time summed with the activity duration:
EST i

j + d(xi
j) > LST i

j .
In the first subsection we define some concepts and some operators used

in the algorithm itself. Then we presents the main rules and the steps of the
algorithm. We conclude the section with an example. In the rest of this section
we suppose that we are filtering on the variable sij modeling the activity xij of the
application ai on the resource of the constraint; we call it the selected variable.

4.1 Definitions

Here we present some definitions used in the rest of the section.

Definition 1. Let t be a time point, ∆(t) is the set of applications having a
period ending at time t, formally:

∆(t) = { ai | t mod λi = 0}

We can now define the modularization of a variable1.

Definition 2. The modularization mk(sij) w.r.t. period λk is defined on the
bounds of the variable sij as follows:

mk(s
i
j) = sij mod λk

mk(sij) = sij mod λk

1 In the whole paper we assume that the durations and the periods are positive values.

118 A. Bonfietti et al.

Note that if the duration of an activity xij is longer or equal than the period
of another application ak (i.e. d(xij) ≥ λk), no activities of the application ak can
be scheduled since they would conflict with xij , and the constraint is infeasible.

Classical and modular resource constraints (such as [3] and [5], respectively)
run their filtering algorithms on a time window coinciding with the horizon of the
schedule, in our case the reference period λmax. The key idea of our algorithm is
to exploit the potential of the periodicity, focusing on time windows of increasing
size and considering subsets of activities.

Definition 3. Given a selected variable xij, we define Λk as the resource pro-
file over the period λk (with k ≤ i) accounting for the compulsory parts of the
following activities:

Vk if k < i (3)
⋃

k′=i,...,m−1

Vk′ if k = i (4)

The algorithm processes the profile Λk by increasing k (therefore with increas-
ing period size) up to Λi, the level of the application of the selected activity xij
(k = 0, .., i). Each resource profile Λk with k < i accounts only for the compul-
sory parts of activities Vk.

When Λi is considered, activities belonging to applications with longer period
(k > i) may not appear within the first repetition of xij and yet conflict with
subsequent repetitions of xij . Therefore, they should be taken into account in a
modularized manner (see Definition 2) with the respect to the period λi of the
application ai. In other words, while the algorithm is performing filtering on sij ,
it has to avoid that a start time t′ is considered feasible for an activity xi

j if there
exists an activity xk′

j′ , belonging to an application having a longer period (i.e.
k′ > i), whose execution is in conflict with the ω-th repetition of the activity
xi
j . Formally if at least one of the following conditions is verified there exists a

conflict:

sij + ω · λi ≤ sk
′

j′ < sij + d(xij) + ω · λi, ∀ω ∈ N+ (5)

sij + ω · λi < sk
′

j′ + d(xk
′

j′) ≤ sij + d(xij) + ω · λi, ∀ω ∈ N+ (6)

sij + ω · λi ≥ sk
′

j′ AND sk
′

j′ + d(xk
′

j′) ≥ sij + d(xij) + ω · λi, ∀ω ∈ N+ (7)

Consider as example Fig. 1. The schedule depicts a state of the profile of
a resource during search. The problem is composed by three applications with

Fig. 1. Example with a partial solution. (Color figure online)

The Multirate Resource Constraint 119

different periods denoted by colors and numbers. Suppose that we are filtering
on a variable s1j of the Orange(1) application (having period λ1 = 10) and that
the variable has execution time 1. The first feasible start time could erroneously
considered to be 2, in fact there is a time window of length 1 between the
first executing activity and the next one. Unfortunately an activity s2j′ of the
Yellow(2) application, which has longer period (i.e. λ2 = 20), is scheduled at
time 12 (i.e. s2j′ = 12). This conflict is identified by both conditions (5) and (7),
where sk

′

j′ is s2j′ , the activity of the Yellow(2) application, and sij is the selected
activity s1j (and ω = 1). In fact, if the activity s1j would be scheduled at 2 (i.e.
s1j = 2) during its second repetition it would conflict with s2j′ since s1j + λ1 =
2 + 10 = 12 (recall that λ1 = 10).

We can now define a feasibility function used in the filtering algorithm.

Definition 4. Let feas(sij , k, t) be a function that checks if an activity xi
j can

be scheduled at time t.

feas(sij , k, t) =< [true | false], π > whereπ ≥ t

The function returns a pair composed by a boolean value and a time instant. The
boolean is true iff t is feasible when considering resource profiles Λ0, . . . ,Λk. If
the boolean is false, the time instant π corresponds to the maximum end time
between all the activities conflicting with xi

j (i.e. the first feasible start time).

The function feas(sij , k, t) checks the feasibility of t in each period λk′ with
k′ ≤ k; this can be done efficiently by computing t mod λk and checking if the
modularized time instant overlaps with a compulsory part in Λk′ . As explained
above, if k = i, the function considers Λi by modularizing the compulsory parts
of activities belonging to applications with longer period (k′ > i).

In the worst case this function has to check n̄ − 1 activities (n̄ is the total
number of the activities) hence its asymptotic computational complexity isO(n̄).

Let O = {o0, .., om−1} be a set storing a value for each application ai; these
values are referred to as offsets.

Definition 5. The offset oi = [0..λi] is a value representing the minimum fea-
sible start time considering the resource conflicts arising from resource profiles
Λ0, . . . ,Λi.

Intuitively it represents the minimum feasible start time within each period:
oi = 2 means that in each repetition ω of application ai, no activity can be
scheduled before the instant 2+ω·λi. Note also that the offsets are non-decreasing
(oi+1 ≥ oi) as the set of activities considered in level i is a subset of the activities
in level i+ 1 (

⋃
0≤k≤i ak ⊆

⋃
0≤k≤i+1 ak).

4.2 Algorithm Rules

Let σ be a time value (also referred to as sweeping-line in the literature [11]) used
to compute the minimum feasible start time for the selected activity (i.e. xi

j).

120 A. Bonfietti et al.

In the following we illustrate the rules used in the filtering algorithm in order to
update the sweeping line σ and the offsets O. The algorithm leverages three rules
declaring how to update the offsets and σ, how to recognize an infeasibility, and
how to exploit the periodicity for jumping over large time windows with proven
resource conflicts.

Rule 1. Suppose the algorithm is considering level k, if the feasibility function
returns a failure then the offset ok and the sweeping line σ are updated to the
time value returned by the feasibility function. Formally:

feas(sij , k, t) =< false, π > ⇒ σ = ok = π (8)

Intuitively this rule states that if the selected activity cannot be scheduled
at time t, then time π should be considered next as it coincides with the latest
end time of the conflicting activities. Please note that Rule 1 is superseded by
Rule 3 in the specific case the latter applies.

Rule 2. If an offset is greater or equal to its relative period, the algorithm fails.

ok ≥ λk ⇒ fail, ∀k | ak ∈ A (9)

If for the current activity there is no feasible space in level Λk, and this is due to
conflicts with activities of applications having index k′ ≤ k, there will be no space
at all, since the conflicts will be replicated periodically. Before defining the third
rule, we explain how it intuitively works with an example. Consider Fig. 2 which
is also used as example in Sect. 4.4. Suppose that we are filtering on an activity
s2j with duration 2 of the Yellow(2) application (we recall that each application
is depicted with a color and a number and has a different period). Suppose now
that the algorithm has already found that before t = 7 there is no feasible space,
and that this is due to conflicts with activities of the Red(0) and the Orange(1)
applications (which have shorter periods w.r.t. the Yellow(2) one). The already
scheduled Yellow(2) activity at time t = 7 prevents the selected activity x2j to
be scheduled. So the algorithm should, in principle, proceed, step by step, up to
instant t = 17 in order to find a feasible time window. The algorithm can exploit
the application periodicity and, as the first 7 instants of time of the period of the
Orange(1) application contain conflicts, whenever the search crosses the end of
the Orange(1) period (i.e. λ1 = 10), it can jump directly to instant 10+ 7 = 17.
Formally:

Rule 3. If an activity xi
j cannot be scheduled within a period ending at t the

sweeping line σ can be shifted forward to the maximum between:

Fig. 2. Example with a partial solution. (Color figure online)

The Multirate Resource Constraint 121

– t+ omax, where omax is the greatest offset of all the applications in ∆(t)
– the time π computed by the feasibility function.

if feas(sij , k̂,σ) =< false, π > and π ≥ t ∀ k̂ ≤ i (10)

⇒ σ = max(π, t+ omax) (11)
where omax = max({ok′ | k′ ∈ ∆(t)})

As a consequence the offset is updated: oi = σ.

Proof. From Definition 5 we recall that the offset defines, for each application ai,
the minimum feasible time instant. Its value is updated anytime the feasibility
function returns a failure (see Rule 2).

Let t = ω ·λk be a time instant coinciding with the end time of the period of
some applications. ∆(t) is the set of these applications. If their period is ending
at t, t+1 is the first time instant of a new repetition of each application of ∆(t).
We also know by definition that the first oi-th time instants of each repetition
of the period of the application ai are infeasible. Focusing only on the offsets,
we can therefore affirm that the longest infeasible time window starting at time
t corresponds to the biggest offset between the ones related to the applications
of ∆(t). Since oi+1 ≥ oi and λi+1 ≥ λi, the biggest offset corresponds to the
application of ∆(t) having the longest period.

From Definition 4, the feasibility function returns a time value π correspond-
ing to the maximum end time between all the activities conflicting with the
selected activity. We can therefore declare that the longest infeasible time win-
dow is the maximum between the value π computed by the function feas() and
the biggest offset of the applications of ∆(t).

4.3 Algorithm Steps

The filtering algorithm executes for each free start time variable. These variables
are stored in a queue ordered by application (increasing order of the indices).
The pseudo-code of the algorithm is in Algorithm 1.

Initially we set (lines 2-3):

σ = sij

and oi = 0 ∀i | ai ∈ A

As stated before, the algorithm proceeds focusing on one level at timewith increas-
ing size order (line 4). The starting value for the offset is the σ value (line 5), which
represents the minimum time where the infeasibility has not been proved. In other
words, the selected activity cannot be scheduled before σ. At line 6 the algorithm
starts searching for a feasibility window. For each time t, starting from the initial
value σ and up to the end of the current level k (i.e. λk), the algorithm checks the
feasibility.

122 A. Bonfietti et al.

Algorithm 1. Consistency - Start Time Filtering Algorithm
Data: Let sijbe a free start time variable of the application ai

1 begin
// Initialization

2 σ ← sij ;

3 oi ← 0 ∀i | ai ∈ A;
4 for k = 0; k ≤ i; k = k + 1 do

// For each level with no greater period
5 ok ← σ;
6 for t = σ; t < λk; t = t + 1 do
7 Let < β,φ > be a pair <[true|false], time> storing the result of feas();

8 < β,π >← feas(sij , k, t);

9 if β is true then
// Setting the new lowerbound

10 sij ≥ σ;

11 break;

12 else
// t is not feasible

13 if π ≥ λk then
14 fail();

15 Let < δ, k′, t′ > be a triple storing the result of findPeriod();
16 < δ, k′, t′ >← findPeriod(t,π);
17 if δ is true then
18 t ← max(π, t′ + ok′);

19 else
20 t ← π;

21 ok ← t;
22 σ ← t;

If t is feasible, the lower bound of the variable is updated and the algorithm
proceeds to another level k+1 or it ends if k = i (lines 9-11). On the other side,
if t is not feasible, the algorithm applies the three rules.

At the beginning the Rule 2 is evaluated (lines 13-14). If the minimum feasible
time π is not lower than the current period λk it means that there is no space
for the activity and the constraint fails.

Then we have to check if the computed time π has crossed the end of some
periods (line 16). The function findPeriod(t, t′) returns a triple <[true|false], k,
time>, where the first element states if between t and t′ (with t ≤ t′) there
exists the end of at least a period, the second element is the index of the appli-
cation with the longest period ending in the analyzed time window, and the
third element is the period end time. Exploiting the modular algebra this is
asymptotically done in O(m), where m = |A|. If the function returns a success
the algorithm applies Rule 3 (lines 17-18) otherwise it executes the Rule 1 (line
19-20). At the end the offset and the σ values are updated.

4.4 Example

In this section we apply the filtering algorithm to the example depicted in Fig. 3.
The schedule (A) shows a partial solution. We have 4 Applications: Red(0),

The Multirate Resource Constraint 123

Orange(1), Yellow(2) and Green(3) with periods 5,10,20 and 80 respectively. We
are filtering on s20 : [0..18] : a yellow(2) activity with duration 2. The algorithm
initially sets σ = 0 and o = {0, 0, 0, 0}.

Fig. 3. Example with a partial solution (A) and the representation of three levels
(0),(1),(2) as (B), (C), and (D), respectively. (Color figure online)

The method focuses on the resource profiles Λ0,Λ1, and Λ2 depicted in Fig. 3
(B), (C), and (D) respectively. Note that in the schedule (A), at time 20, there’s
an activity of the application Green(3) which has a period longer than the Yel-
low(2) one. This activity is modularized and folded back at time 0 in the profile
(D) (20 mod λ2). The algorithm starts by processing Λ0 and checking whether
σ is feasible for the activity xi

j :

feas(sij , 0, 0) =< false, 2 >

The result means that time 0 is infeasible, and that there exists at least a conflict-
ing activity executing up to time 2 (the first Red(0) activity executing 1 → 2).
The system therefore updates σ and the relative offset value (following Rule 1):

σ = 2 o = {2, 0, 0, 0}

The algorithm reiterates on the feasibility check with the new σ:

feas(sij , 0, 2) =< true, 2 >

and it finds that time 2 is feasible w.r.t. the resource profile Λ0. The algorithm
therefore proceeds with the resource profile Λ1 starting at time σ = 2.

feas(sij , 1, 2) =< false, 4 >

As an Orange(1) activity scheduled at 2 is conflicting, the function returns false.
The method then applies Rule (1) and updates σ and the offset value:

σ = 4 o = {2, 4, 0, 0}

A new feasibility check iteration returns a new conflict:

feas(sij , 1, 4) =< false, 5 >

124 A. Bonfietti et al.

by checking in decreasing order the profiles Λ1 and Λ0, the activity Red(0)
scheduled at 4 is found as conflicting. As the new π = 5 is equal to λ0, Rule (3) is
applied: σ = max (λ0 + o0, 5) = max (5 + 2, 5) = 7. In fact, the second repetition
of the application Red(0) will cause infeasibility up to time 7. The relative offset
value and σ are then updated accordingly:

σ = 7 o = {2, 7, 0, 0}

A further feasibility check returns a positive outcome for time 7 w.r.t. resource
profile Λ1 and Λ0:

feas(sij , 1, 7) =< true, 7 >

therefore the algorithm starts processing Λ2 after updating the sweeping-line
σ = 7. The feasibility function finds an activity of the Yellow(2) application
executing in 7 → 8 as conflicting:

feas(sij , 2, 7) =< false, 8 >

consequently the filtering algorithm updates σ and the offset value:

σ = 8 o = {2, 7, 8, 0}

Time 8 is again infeasible:

feas(sij , 2, 8) =< false, 10 >

due to the second repetition of a Red(0) activity. The time instant 10 coincides
with the end time of two periods, namely the second repetition of the Red(0)
application (i.e. 2 · λ0) and the first repetition of the Orange(1) one (i.e. 1 · λ1).
Therefore, Rule (3) is applied again. The longest between the two periods is the
Orange(1) one, hence its offset is used to updated the sweeping line:

σ = max (1 · λ1 + o1, 10) = max (10 + 7, 10) = 17 o2 = 17

Note that the algorithm was able to forward the sweeping-line by a time win-
dow of length 9 which is proved to contain conflicting parts and no space for
scheduling. The feasibility function at time 17 returns a success: the algorithm
stops and the domain of sij is modified in [17..18].

Fig. 4. Partial Solution representing an infeasible situation. (Color figure online)

Suppose now that an activity (with duration 1) of the application Yellow(2)
is scheduled at 17 (see the schedule in Fig. 4). In this case the feasibility function
at time 17 would have failed:

feas(sij , 2, 17) =< false, 18 >

The Multirate Resource Constraint 125

because of the newly placed Yellow(2) activity. The function would have failed
also at time 18 (due to the fourth repetition of a Red(0) activity) and the
sweeping-line and offsets would have been updated as follows:

σ = 20 o = {2, 9, 20, 0}

and, since o2 = 20 ≥ λ2 = 20, the filtering algorithm would have failed (following
Rule (2)).

5 Experimental Results

The aim of the experimental section is to show that the proposed algorithm
is efficient and scalable and outperforms both state of the art approaches and
industrial solutions. The solver and the constraint have been implemented using
the or-tools framework, supported and developed by Google [14]. The exper-
iments can be structured into two parts: the former considers various sets of
synthetic but realistic instances, the latter considers two industrial instances.
The synthetic instances were built by means of an internally developed genera-
tor2, designed to produce instances with realistic structure and parameters. Our
generation algorithm builds application graphs which are connected, consistent,
and cycle-free. A user specifies in a configuration file the instance parameters.
In this work we have generated instances with two different graph structures:
(1) graphs with a sequential structure, with few long chains, and (2) graphs with
a more parallel form.

The Multirate Resource Constraint (referred to as M in the tables) is com-
pared with two different resource constraints: the former (labelled T&E) is a
combination of the Time Table and the Edge Finder resource constraints, while
the latter (labelled DJ) is the Disjunctive resource constraint (see [2] for an
overview of these algorithms). All the algorithms achieve the same filtering but
substantially different performance on unary resources. For all the approaches
we used the same ad-hoc search strategy, described in Sect. 3.1.

All the experiments presented are for problems with two resources, since the
real-world instances are defined for two CPU cores. We also performed tests with
more resources (i.e. 4 and 8), but they did not add much information since the
overall trend was (scaled but) similar.

Synthetic Benchmarks. The experiments on synthetic benchmarks have been
organized: the aim of the first experimental evaluation is to show the perfor-
mance of the Multirate Resource Constraint in instances where (almost) all the
approaches find the optimal solution within the time limit3 (300 s). The second
2 The generator and the synthetic instances solved in this work can be found at
https://github.com/alessioBonfietti/Multirate-Resource-Constraint-Repo.

3 The time limit value refers to the limit we use for the subproblem of the last appli-
cation (the hardest). The previous subproblems were solved with a time limit halved
at each step (e.g. if we have three applications, the limits would be 75,150,300,
respectively).

https://github.com/alessioBonfietti/Multirate-Resource-Constraint-Repo

126 A. Bonfietti et al.

part includes more challenging instances, highlighting the performance of the
approach in terms of time and solution quality. We have generated various sets
of instances with 2,3, and 4 applications. Each set is characterized by (1) the
number of applications, (2) the period multiplying factor, and (3) the graph
structure of the instances (e.g. a set with 2 applications, factor 4, and parallel
structure will be denoted as (2,4)par.). The performance are presented as the
arithmetic average of the gaps of two metrics, where the gap is computed as
follows: Gap = 100 ∗ X−M

X (where M is the value of the MRC approach and X is
the value of the other one).

Table 1. Small synthetic instances results

Mem Gap (%) Tot.Time Gap(%) Opt.Sol.Time (ms)

Set Struct. Avg.# Act. M vs. T&E M vs. DJ M vs. T&E M vs. DJ M T&E DJ

(2,2) ser. 10.28 1.47% 0.72% 62.00% 62.00% 0.00 0.32 0.34

par. 10.64 0.65% 0.94% 60.17% 60.18% 0.02 0.62 0.62

(2,4) ser. 19.96 1.84% 1.52% 89.23% 89.21% 0.86 8.46 8.40

par. 21.76 3.01% 1.32% 73.21% 73.90% 28.90 64.68 66.00

(3,2) ser. 31.22 3.36% 4.92% 92.42% 92.48% 0.26 4.00 4.08

par. 25.12 5.04% 3.03% 88.18% 88.06% 0.24 4.34 4.44

(4,2) ser. 56.74 6.16% 9.01% 94.71% 94.74% 47.84 173.56 197.94

par. 56.18 10.23% 7.23% 88.52% 88.47% 96.61 419.28 475.87

Table 1 reports the results of the first experimental part. Each line corre-
sponds to a set of 50 instances. The fourth and the fifth columns present the aver-
age memory consumption gap while the sixth and the seventh report the average
total time gap (the total time includes the optimality proof). The columns from
8 to 10 show the average time spent finding the optimal solution (without the
proof time). The third column reports the average number of activities. The per-
formance of the proposed method increases as the instance size grows. The last
line refers to the hardest experimental set of Table 1. Our approach requires up to
10% less memory, computes the optimal solution with a speed up of over 4x and
closes the search in nearly 10% of the time. Note that our approach found and
prove always the optimal solution in time, while both T&E and DJ where not
able to prove the optimality in 4 instances (in the (4,2)par set). Figure 5 shows
the performance profiles of the three approaches in the hardest sets (i.e.(4,2)ser
and (4,2)par) of the first experimental part. Both graphics represent the per-
centage (y-axes) of optimal solutions found over time (x-axes). In the (4,2)ser
set every approach concludes the search in less then 75 s, but note that we close
the 88% of the instances before 0.1 s (while T&E closes only the 30% of the
instances and DJ the 32%). In the (4,2)par, both T&E and DJ close only the
92% of the instances within the timelimit (300 s) while we close the 98% of the
instances before 75 s.

Table 2 reports the results of the second part of the synthetic experiments.
The table reports the time gap spent in finding the first solution (which is

The Multirate Resource Constraint 127

Fig. 5. Performance profiles of sets (4,2)seq. and (4,2)par.

obviously the same for all the approaches) and the solution value gap w.r.t.
another approach called BaseLine. This approach is actually used in the indus-
trial context when working with challenging instances. It consists in forcing all
the activities of an application to be allocated on the same resource. The search
is therefore very fast, but the solution lacks of quality. As reported in Table 2,
our approach takes less then 1% of the time w.r.t. T&E and DJ to find the first
feasible solution solving challenging instances.

Table 2. Big synthetic instances results

1st Sol.Time Gap (%) Sol. Gap (%)

Set Struct. Avg.# Act. M vs T&E M vs DJ vs BaseLine

(3,10) ser. 525.13 99.172% 99.179% 57.66%

par. 544.40 99.301% 99.304% 57.50%

(4,6) ser. 1578.80 99.030% 99.030% 30.25%

par. 1419.93 99.408% 99.410% 43.23%

Industrial Benchmarks. The real world instances come from the automation
control system industry and were provided by ABB. Both instances are composed
by three applications. The first instance, labelled Real1, consists of a 2353 activ-
ities and has been solved with a timelimit of 300 s. The second instance, labelled
Real2, consists of 177646 activities and has been solved with a time limit of 2 h
(i.e.7200 s). Table 3 reports some details of the instances (in the upper part) and
the results of the experiments (in the bottom part). We recall that our approach,
thanks to the multirate resource constraint, considers only a single repetition of
each application, while any classical approach have to model each repetition as
a variable. Hence, the MRC model of the Real2 instance consists of only 205

128 A. Bonfietti et al.

interval variables, while both T&E and DJ models have 177646 variables. As a
consequence our approach has a memory consumption less than 3% w.r.t. to
T&E and DJ and is able to find a solution in 159ms, four orders of magnitude
faster than T&E and DJ, which need 1827 and 2468 s, respectively. This has a
huge impact over the search space explored, where the MRC approach within
the time limit solved over 38millions of branches, while T&E and DJ 2278 and
1522, respectively.

Table 3. Industrial instances and results

Real1 Real2

App 0
Period(µ-sec) 325000 50000
Act. Number 10 87

App 1
Period(µ-sec) 1950000 2000000
Act. Number 332 72

App 2
Period(µ-sec) 11700000 100000000
Act. Number 1 46

Total Act. Number 2353 177646

Metric M T&E DJ M T&E DJ

Sol.Time(ms) 5 521 496 159 1827187 2468504
Sol. 7 7 7 9 9 8

Mem (MB) 14.9 27.4 29.2 34.4 1258.3 1253.8
N branches 2 2 2 38484544 2278 1522

Sol.Gap vs Base(%) 50.85% 50.85% 50.85% 11.1% 11.1% 11.1%

6 Concluding Remarks

In this work we have presented a Constraint Programming approach for the
multirate periodic scheduling problems. Key for the efficiency of the method is
the ad-hoc search strategy and the multirate resource constraint which lever-
ages on the modular algebra to enforce resource restrictions on the activities
of the periodic applications. In the proposed algorithm the requirements and
the resources are considered unary. We plan to investigate how to extend the
algorithm considering cumulative resources.

Acknowledgements. We would like to show our gratitude to William Aeby for his
assistance in extracting the industrial instances.

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Constrains-Based Scheduling: Applying
Constraint Programming to Scheduling. Springer, New York (2001)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Springer,
New York (2001)

3. Beldiceanu, N., Carlsson, M., Thiel, S.: Sweep synchronization as a global propa-
gation mechanism. Comput. Oper. Res. 33(10), 2835–2851 (2006)

4. Shuvra, S., Bhattacharyya, S.S.: Embedded Multiprocessors - Scheduling and Syn-
chronization. Signal Processing and Communications, 2nd edn. CRC Press, Boca
Raton (2009)

The Multirate Resource Constraint 129

5. Bonfietti, A., Lombardi, M., Benini, L., Milano, M.: Cross cyclic resource-
constrained scheduling solver. Artif. Intell. 206, 25–52 (2014)

6. Bonfietti, A., Lombardi, M., Milano, M.: De-cycling cyclic scheduling problems. In:
Twenty-Third International Conference on Automated Planning and Scheduling
(2013)

7. de Dinechin, B.D., Kordon, A.M.: Converging to periodic schedules for cyclic
scheduling problems with resources and deadlines. Comput. Oper. Res. 51, 227–236
(2014)

8. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proceedings
of the Twenty-First International Florida Artificial Intelligence Research Society
Conference, May 15–17, 2008, Coconut Grove, Florida, USA, pp. 555–560 (2008)

9. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: Reasoning with conditional time-
intervals. part II: an algebraical model for resources. In: Proceedings of the Twenty-
Second International Florida Artificial Intelligence Research Society Conference,
May 19–21, 2009, Sanibel Island, Florida, USA (2009)

10. Le Pape, C., Couronné, P., Vergamini, D., Gosselin, V.: Time-versus-capacity com-
promises in project scheduling. AISB QUARTERLY, p. 19 (1995)

11. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm. In: Proceed-
ings of CP, pp. 439–454 (2012)

12. Li, Y., Wolf, W.: Hierarchical scheduling and allocation of multirate systems on
heterogeneous multiprocessors. In: Proceedings of ED&TC, pp. 134–139 (1997)

13. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling.
INFORMS J. Comput. 20(1), 143–153 (2008)

14. Google ortools. https://developers.google.com/optimization/
15. Vilim, P.: O(n log n) filtering algorithms for unary resource constraint. In: Pro-

ceedings of CPAIOR, pp. 335–347 (2004)
16. Yi, Y., Milward, M., Khawam, S., Nousias, L., Arslan, T.: Automatic synthesis

and scheduling of multirate DSP algorithms. In: Proceedings of ASP-DAC, pp.
635–638 (2005)

17. Zhu, X.-Y., Basten, T., Geilen, M., Stuijk, S.: Efficient retiming of multirate DSP
algorithms. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 31(6), 831–844
(2012)

18. Zhu, X.-Y., Geilen, M., Basten, T., Stuijk, S.: Static rate-optimal scheduling of
multirate DSP algorithms via retiming and unfolding. In: 2012 IEEE 18th Real
Time and Embedded Technology and Applications Symposium, pp. 109–118. IEEE,
April 2012

https://developers.google.com/optimization/

The Dichotomy for Conservative Constraint
Satisfaction is Polynomially Decidable

Clément Carbonnel1,2(B)

1 CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France
carbonnel@laas.fr

2 University of Toulouse, INP Toulouse, LAAS, 31400 Toulouse, France

Abstract. Given a fixed constraint language Γ , the conservative CSP
over Γ (denoted by c-CSP(Γ)) is a variant of CSP(Γ) where the domain
of each variable can be restricted arbitrarily. In [5] a dichotomy has been
proven for conservative CSP: for every fixed language Γ , c-CSP(Γ) is
either in P or NP-complete. However, the characterization of conserva-
tively tractable languages is of algebraic nature and the recognition algo-
rithm provided in [5] is super-exponential in the domain size. The main
contribution of this paper is a polynomial-time algorithm that, given
a constraint language Γ as input, decides if c-CSP(Γ) is tractable. In
addition, if Γ is proven tractable the algorithm also outputs its coloured
graph, which contains valuable information on the structure of Γ .

1 Introduction

The Constraint Satisfaction Problem (CSP) is a powerful framework for solving
combinatorial problems, with many applications in artificial intelligence. A CSP
instance is a set of variables, a set of values (the domain) and a set of constraints,
which are relations imposed on a subset of variables. The goal is to assign to
each variable a domain value in such a way that all constraints are satisfied. This
problem is NP-complete in general.

A very active and fruitful research topic is the non-uniform CSP, in which
a set of relations Γ is fixed and every constraint must be a relation from Γ .
For instance, if Γ contains only binary Boolean relations then CSP(Γ) is equiv-
alent to 2-SAT and hence polynomially solvable, but if all ternary clauses are
allowed the problem becomes NP-complete. The Feder-Vardi Dichotomy Con-
jecture states that for every finite Γ , CSP(Γ) is either in P or NP-complete [10]
(hence missing all the NP-intermediate complexity classes predicted by Ladner’s
Theorem [15]).

While this conjecture is still open, a major milestone was reached with
the characterization of all tractable conservative constraint languages, that is,
languages that contain every possible unary relation over their domain [5].
Conservativity is a very natural property since it corresponds to the languages
that allow arbitrary restrictions of variables domains, a widely used feature in

Supported by ANR Project ANR-10-BLAN-0210.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 130–146, 2016.
DOI: 10.1007/978-3-319-44953-1 9

The Dichotomy for Conservative Constraint Satisfaction 131

practical constraint solving. It also includes as a particular case the well-studied
problem List H-Colouring for a fixed digraph H.

Now that the criterion for the tractability of conservative languages has been
established, an important question that arises is the complexity of deciding if a
given conservative language is tractable. An algorithm that decides this criterion
efficiently could be used for example as a preprocessing operation in general-
purpose constraint solvers, and prompt the use of a dedicated algorithm instead
of backtracking search if the instance is over a conservative tractable language.

This meta-problem can be phrased in two slightly different ways. The first
would take the whole language Γ as input and ask if CSP(Γ) is tractable. How-
ever, conservative languages always contain a number of unary relations that
is exponential in the domain size, which inflates greatly the input size for the
meta-problem without adding any computational difficulty. A more interesting
question would take as input a language Γ and ask if c-CSP(Γ) is tractable,
where c-CSP(Γ) allows all unary relations in addition to Γ (this is the conserva-
tive CSP over Γ). Designing a polynomial-time algorithm for this meta-problem
is more challenging, but it would perform much better as a structural analysis
tool for preprocessing CSP instances.

Bulatov’s characterization of conservative tractable languages is based on the
existence of closure operations (called polymorphisms) that satisfy a certain set
of identities. While the algebraic nature of this criterion makes the meta-problem
delicate to solve, it also shows that the meta-problem is in NP and can be solved
in polynomial time if the domain size is fixed. This hypothesis is however very
strong because there is only a finite number of constraint languages of fixed arity
over a fixed domain. If the domain is not fixed this algorithm becomes super-
exponential, and hence is polynomial for neither flavour of the meta-problem.

The contribution of our paper is twofold:

(i) We present an algorithm that decides the dichotomy for c-CSP in polynomial
time. This is the main result of this paper.

(ii) As a byproduct, we exhibit a general connection between the complexity of
the meta-problem and the existence of a semiuniform algorithm on classes of
conservative languages defined by certain algebraic identities known as linear
strong Mal’tsev conditions. We obtain as a corollary a broad generalization
of the result about conservative Mal’tsev polymorphisms found in [7].

The necessary background for our proofs will be given in Sect. 2. In Sect. 3 we
will then present the proof of the contribution (ii), and in Sect. 4 we will show
how this result can be used to derive an algorithm that decides the dichotomy for
c-CSP in polynomial time. Finally, we will conclude and discuss open problems
in Sect. 5.

2 Preliminaries

2.1 Constraint Satisfaction Problems

An instance of the constraint satisfaction problem (CSP) is a triple (X ,D, C)
where X is a set of variables, D is a finite set of values and C is a set of constraints.

132 C. Carbonnel

A constraint C of arity k is a pair (SC , RC) where RC is a k-ary relation over
D and SC ∈ X k is the scope of C. The goal is to find an assignment φ : X → D
such that for all C = (SC , RC) ∈ C, φ(SC) ∈ RC . In this definition, variables do
not come with individual domains; any variable-specific domain restriction has
to be enforced using a unary constraint.

Given a constraint C = (SC , RC) and X1 ⊆ X , we denote by C[X1] the
projection of C onto the variables in X1 (which is the empty constraint if S
does not contain any variable in X1). The projection of a CSP instance I onto a
subset X1 ⊆ X , denoted by I|X1 , is obtained by projecting every constraint onto
X1 and then removing all variables that do not belong to X1. A partial solution
to I is a solution (i.e. a satisfying assignment) to I|X1 for some subset X1 ⊆ X .
A CSP instance is 1-minimal if each variable x ∈ X has an individual domain
D(x) (represented as a unary constraint) and the projection onto {x} of every
constraint C ∈ C whose scope contains x is exactly D(x). 1-minimality can be
enforced in polynomial time by gradually removing inconsistent tuples from the
constraint relations until a fixed point is reached [16].

Throughout the paper we shall use R(.) and S(.) as operators that return
respectively the relation and the scope of a constraint. A constraint language over
a set D is a set of relations over D, and the constraint language L(I) of a CSP
instance I = (X ,D, C) is the set {R(C) | C ∈ C}. Given a constraint language
Γ over a set D, we denote by Γ the conservative extension of Γ , that is, the
language comprised of Γ plus all possible unary relations over D. Finally, given
a constraint language Γ we denote by CSP(Γ) (resp. c-CSP(Γ)) the restriction
of CSP to instances I such that L(I) ⊆ Γ (resp. L(I) ⊆ Γ).

The algorithms presented in this paper will take constraint languages as
input, and the complexity analysis depends crucially on how relations are
encoded. While practical constraint solvers often represent relations intention-
ally through propagators, we shall always assume that every relation is given as
an explicit list of tuples (a very common assumption in theoretical papers).

2.2 Polymorphisms

Given a constraint language Γ , the complexity of CSP(Γ) is usually studied
through closure operations called polymorphisms. Given an integer k and a con-
straint language Γ over D, a k-ary operation f : Dk → D is a polymorphism of
Γ if for all R ∈ Γ of arity r and t1, . . . , tk ∈ R we have

(f(t1[1], . . . , tk[1]), . . . , f(t1[r], . . . , tk[r])) ∈ R

A polymorphism f is idempotent if ∀x ∈ D, f(x, . . . , x) = x and conserva-
tive if ∀x1, . . . , xk ∈ D, f(x1, . . . , xk) ∈ {x1, . . . , xk}. It is known that given
a constraint language Γ , the complexity of CSP(Γ) is entirely determined by
its polymorphisms [13]. On the other hand, the conservative polymorphisms
of Γ are exactly those that preserve all unary relations, and hence deter-
mine the complexity of c-CSP(Γ). A binary polymorphism f is a semilattice
if ∀x, y, z ∈ D, f(x, x) = x, f(x, y) = f(y, x) and f(f(x, y), z) = f(x, f(y, z)).

The Dichotomy for Conservative Constraint Satisfaction 133

A majority polymorphism is a ternary polymorphism f such that ∀x, y ∈ D,
f(x, x, y) = f(x, y, x) = f(y, x, x) = x and a minority polymorphism is a ternary
polymorphism f such that ∀x, y ∈ D, f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

2.3 Conservative Constraint Satisfaction

In general, if Γ is a conservative language and there exists {a, b} ⊆ D such that
every polymorphism of Γ is a projection when restricted to {a, b} then CSP({R})
is polynomially reducible to CSP(Γ) [14], where

R =

⎛

⎝
a b b
b a b
b b a

⎞

⎠

It follows that CSP(Γ) is NP-complete as CSP({R}) is equivalent to 1-in-3 SAT.
The Dichotomy Theorem for conservative CSP states that the converse is true:
if for every B = {a, b} ⊆ D there exists a polymorphism f such that f|B is
not a projection, then c-CSP(Γ) is polynomial-time. By Post’s lattice [17], the
polymorphism f can be chosen such that f|B is either a majority operation, a
minority operation or a semilattice.

Theorem 1 ([5]). Let Γ be a fixed constraint language over a domain D. If
for every B = {a, b} ⊆ D there exists a conservative polymorphism f such that
f|B is either a majority operation, a minority operation or a semilattice then
c-CSP(Γ) is in P. Otherwise, c-CSP(Γ) is NP-complete.

This theorem provides a way to determine the complexity of c-CSP(Γ), since
we can enumerate all ternary operations over D and list those that are polymor-
phisms of Γ . However, this procedure is super-exponential in time if the domain
is part of the input. Our paper presents a more elaborate, polynomial-time algo-
rithm that does not impose any restriction on Γ .

Three different proofs of Theorem 1 have been published [1,5,6], and two of
them rely heavily on a construction called the coloured graph of Γ and denoted
by GΓ . The definition of GΓ is as follows. The vertex set of GΓ is D, and there
is an edge between any two vertices. Each edge (a, b) is labelled with a colour
following these rules:

– If there exists a polymorphism f such that f|{a,b} is a semilattice, then (a, b)
is red;

– If there exists a polymorphism f such that f|{a,b} is a majority operation and
(a, b) is not red, then (a, b) is yellow;

– If there exists a polymorphism f such that f|{a,b} is a minority operation and
(a, b) is neither red nor yellow, then (a, b) is blue.

Additionally, red edges are directed: we have (a → b) if there exists f such
that f(a, b) = f(b, a) = b. It is possible to have (a ↔ b). By Theorem 1, GΓ

is entirely coloured if and only if c-CSP(Γ) is tractable. The next theorem,
from [5], shows that the tractability of c-CSP(Γ) is always witnessed by three
specific polymorphisms (instead of O(d2) in the original formulation).

134 C. Carbonnel

Theorem 2 (The Three Operations Theorem [5]). Let Γ be a language
such that c-CSP(Γ) is tractable. There exist three conservative polymorphisms
f∗(x, y), g∗(x, y, z) and h∗(x, y, z) such that for every two-element set B ⊆ D:

– f∗
|B is a semilattice operation if B is red and f∗(x, y) = x otherwise;

– g∗
|B is a majority operation if B is yellow, g∗

|B(x, y, z) = x if B is blue and
g∗
|B(x, y, z) = f∗(f∗(x, y), z) if B is red;

– h∗
|B is a minority operation if B is blue, h∗

|B(x, y, z) = x if B is yellow, and
h∗
|B(x, y, z) = f∗(f∗(x, y), z) if B is red.

The original theorem also proves the existence of other polymorphisms, but
we will only use f∗, g∗ and h∗ in our proofs.

2.4 Meta-Problems and Identities

Given a class T of constraint languages, the meta-problem (or metaquestion [8])
for T takes as input a constraint language Γ and asks if Γ ∈ T . In the con-
text of CSP and c-CSP, the class T is often defined as the set of all languages
that admit a combination of polymorphisms satisfying a certain set of identities;
in this case the meta-problem is a polymorphism detection problem. We will be
interested in particular sets of identities called linear strong Mal’tsev conditions.
Given that universal algebra is not the main topic of our paper, we will use a
simplified exposition similar to that found in [8]. A linear identity is an expres-
sion of the form f(x1, . . . , xk) ≈ g(y1, . . . , yc) or f(x1, . . . , xk) ≈ yi where f, g
are operation symbols and x1, . . . , xk, y1, . . . , yc are variables. It is satisfied by
two interpretations for f and g on a domain D if the equality holds for any
assignment to the variables. A strong linear Mal’tsev condition M is a finite set
of linear identities. We say that a set of operations satisfy M if they satisfy every
identity in M. A strong linear Mal’tsev condition is said to be idempotent if it
entails fi(x, . . . , x) ≈ x for all operation symbols fi. For a given linear strong
Mal’tsev condition, the number of operation symbols and their maximum arity
are constant.

Example 1. The set of identities

f(x, x, y) ≈ x

f(x, y, x) ≈ x

f(y, x, x) ≈ x

is the idempotent linear strong Mal’tsev condition that defines majority opera-
tions. On the other hand, recall that semilattices are binary operations f satis-
fying

f(x, x) ≈ x

f(x, y) ≈ f(y, x)
f(x, f(y, z)) ≈ f(f(x, y), z)

The Dichotomy for Conservative Constraint Satisfaction 135

which does not form a linear strong Mal’tsev condition because the identity
enforcing the associativity of f is not linear.

By extension, we say that a constraint language satisfies a linear strong
Mal’tsev conditionM if it has a collection of polymorphisms that satisfyM. The
definability of a class of constraint languages by a linear strong Mal’tsev condi-
tion M is strongly tied up with the meta-problem, because for such classes we
can associate any constraint language Γ with a polynomial-sized CSP instance
whose solutions, if any, are exactly the polymorphisms of Γ satisfying M [8].
We will describe the construction below.

Given a constraint language Γ and an integer k the indicator problem of order
k of Γ , denoted by IPk(Γ), is a CSP instance with one variable xf(d1,...,dk)

for every (d1, . . . , dk) ∈ Dk and one constraint CR∗

f(t1,...,tk) for each R∗ ∈ Γ ,
t1, . . . , tk ∈ R∗. The constraint CR∗

f(t1,...,tk) has R
∗ as relation, and its scope S is

such that for all i ≤ |S|, S[i] = xf(t1[i],...,tk[i]). Going back to the definition of a
polymorphism, it is simple to see that the solutions to IPk(Γ) are exactly the
k-ary polymorphisms of Γ [13].

Now, letM denote a linear strong Mal’tsev condition with symbols f1, . . . , fm
of respective arities a1, . . . , am. We build a CSP instance PM(Γ) that is the
disjoint union of IPa1(Γ), . . . , IPam(Γ). By construction, each solution φ to
PM(Γ) is a collection of polymorphisms (f1, . . . , fm) of Γ . We can force these
polymorphisms to satisfy the identities in M by adding new constraints. If Ei ∈
M is of the form fj(x1, . . . , xaj) ≈ fp(y1, . . . , yap), we add an equality constraint
between the variables xfj(φ(x1),...,φ(xaj))

and xfp(φ(y1),...,φ(yap))
for every possible

assignment φ to {x1, . . . , xaj , y1, . . . , yap}. Otherwise (i.e. if Ei is of the form
fj(x1, . . . , xk) ≈ yi) we can enforce Ei by adding unary constraints. Note that
the language of PM(Γ) is Γ together with possible equalities and unary relations
with a single tuple. This construction will be used frequently throughout the
paper.

2.5 Uniform and Semiuniform Algorithms

Let M denote a strong linear Mal’tsev condition, and let CSP(M) denote the
CSP restricted to instances whose language satisfies M.

Definition 1. A uniform polynomial-time algorithm for M is an algorithm that
solves CSP(M) in polynomial time.

The term “uniform” here refers to the fact that the language is not fixed (as
in the Feder-Vardi Dichotomy conjecture), but may only range over languages
that satisfy M. The existence of a uniform algorithm implies that CSP(Γ) is in
P for every Γ that satisfies M, but the converse is not guaranteed to be true. For
instance, an algorithm for CSP(M) that is exponential only in the domain size
is polynomial for every fixed Γ that satisfies M, but is not uniform. A weaker
notion of uniformity called semiuniformity has been recently introduced in [8],
and will be central to our paper.

136 C. Carbonnel

Definition 2. A semiuniform polynomial-time algorithm for M is an algorithm
that solves CSP(M) in polynomial time provided each instance I is paired with
polymorphisms f1, . . . , fm of L(I) that satisfy M.

Observe that semiuniform algorithms are tied to the identities in M rather
than the class of languages it defines; even if CSP(M1) and CSP(M2) denote
the exact same set of instances, the polymorphisms satisfying M2 can be more
computationally useful than those satisfying M1.

The following observation has been part of the folklore for some time (see
e.g. [2,4]) and has been recently formalized in [8].

Proposition 1 ([8]). Let M be an idempotent strong linear Mal’tsev condition.
If M has a uniform algorithm, then the meta-problem for M is polynomial time.

We give here the proof sketch. The idempotency of M ensures that we have a
uniform algorithm for the search problem (i.e. decide if the instance is satisfiable
and produce a solution if one exists) because idempotent polymorphisms always
preserve assignments to variables, which can be seen as unary relations with a
single tuple. Given a relational structure Γ , to check if Γ satisfies M we build
the instance PM(Γ) as in Sect. 2.4 and invoke the uniform search algorithm.
Since the language of PM(Γ) is Γ plus equalities and unary relations with a
single tuple, L(PM(Γ)) satisfies M if and only if Γ does. If PM(Γ) is satisfiable
then Γ satisfies M and the algorithm must produce a solution (which can be
easily verified), and whenever the algorithm fails to do so we can safely conclude
that Γ does not satisfy M.

There is no intuitive way to make this approach work with semiuniform
algorithms because they will not run unless given an explicit solution to PM(Γ)
beforehand.

3 Semiuniformity in Conservative Constraint Languages

As seen in Sect. 2.5, in the case of idempotent linear strong Mal’tsev conditions
a uniform algorithm implies the tractability of the meta-problem. We will see
that if the problem is to decide if Γ satisfies M (i.e. to decide if Γ has conserva-
tive polymorphisms f1, . . . , fm that satisfy M) then semiuniformity is sufficient.
This implies that, surprisingly, uniformity and semiuniformity are equivalent for
classes of conservative languages definable by a strong linear Mal’tsev condition.

The general strategy to solve the meta-problem assuming a semiuniform algo-
rithm is to cast the meta-problem as a CSP and then compute successively partial
solutions φ1, . . . ,φα of slowly increasing size until a solution to the whole CSP is
obtained. The originality of our approach is that φi+1 is not computed directly
from φi, but by solving a polynomial number of CSP instances whose languages
admit φi as a polymorphism. This algorithm can be seen as a treasure hunt,
where each chest contains the key to open the next one.

Let M be a strong linear Mal’tsev condition with operation symbols
f1, . . . , fm of respective arities a1, . . . , am. Let Γ be a constraint language over

The Dichotomy for Conservative Constraint Satisfaction 137

D and PM(Γ) be the CSP whose solutions are exactly the polymorphisms of Γ
satisfyingM (as described in Sect. 2.4). Recall that for every symbol fi inM and
(d1, . . . , dai) ∈ Dai we have a variable xfi(d1,...,dai)

that dictates how fi should
map d1, . . . , dai , and for every R∗ ∈ Γ and ai tuples t1, . . . , tai ∈ R∗ we have a
constraint CR∗

fi(t1,...,tai)
that forces the tuple fi(t1, . . . , tai) to belong to R∗ (where

fi is the operation on tuples obtained by componentwise application of fi). Our
goal is to decide if Γ satisfies M, which requires the polymorphisms of Γ satisfy-
ingM to be conservative. The solutions to PM(Γ) can easily be guaranteed to be
conservative by adding the unary constraint xfi(d1,...,dai)

∈ {d1, . . . , dai} on each
variable xfi(d1,...,dai)

∈ X . We will denote this new problem by Pc
M(Γ), and each

solution φ to Pc
M(Γ) is a collection (f1, . . . , fm) of conservative polymorphisms

of Γ satisfying M.
We need one more definition. Given a CSP instance I, a consistent restriction

of I is an instance obtained from I by adding new constraints that are either
unary or equalities and then enforcing 1-minimality. We will be interested in
the consistent restrictions of Pc

M(Γ), and we will keep the same notations for
constraints that already existed in Pc

M(Γ). The next lemma is a variation of
([7], Observation 2) adapted to our purpose.

Lemma 1. Let P = (X ,D, C) be a consistent restriction of Pc
M(Γ). Let fi

and fj be operation symbols in M. If CR∗

fi(t1,...,tai)
∈ C and t′

1, . . . , t′
aj

∈
R(CR∗

fi(t1,...,tai)
) then

R(CR∗

fj(t′
1,...,t′

aj
)) ⊆ R(CR∗

fi(t1,...,tai)
)

Proof. Let S = S(CR∗

fi(t1,...,tai)
) and S′ = S(CR∗

fj(t′
1,...,t′

aj
)). Before 1-minimality

was enforced, we had R(CR∗

fi(t1,...,tai)
) = R(CR∗

fj(t′
1,...,t′

aj
)) = R∗. Thus,

after enforcing 1-minimality we have R(CR∗

fi(t1,...,tai)
) = R∗ ∩ (πx∈SD(x))

and R(CR∗

fj(t′
1,...,t′

aj
)) = R∗ ∩ (πx∈S′D(x)). However, since t′

1, . . . , t′
aj

∈

R(CR∗

fi(t1,...,tai)
), the conservativity constraints ensure that for each k,

D(S′[k]) = D(xfj(t′
1[k],...,t′

aj
[k])) ⊆ {t′

1[k], . . . , t
′
aj
[k]} ⊆ D(S[k])

Therefore, R(CR∗

fj(t′
1,...,t′

aj
)) ⊆ R(CR∗

fi(t1,...,tai)
).

Given two sets of variables X1,X2 ⊆ X , we write X1 ▹ X2 if for each symbol
fi in M, ∀x ∈ X2 and t ∈ D(x)ai we have xfi(t) ∈ X1. If X1 ▹ X1, we say that
X1 is closed.

Proposition 2. Let P = (X ,D, C) be a consistent restriction of Pc
M(Γ). If X1

and X2 are subsets of variables such that X1 ▹ X2, then every solution to P|X1

is a collection of polymorphisms of L(P|X2).

138 C. Carbonnel

Proof. Let fi, fj ∈ {f1, . . . , fm} be operation symbols in M. Let R∗ ∈ Γ ,
t1, . . . , tai ∈ R∗, C2 = (S2, R2) ∈ P|X2 be the projection of CR∗

fi(t1,...,tai)

onto X2, and t21, . . . , t2aj
∈ R2. By the nature of projections, there must exist

t′
1, . . . , t′

aj
∈ R(CR∗

fi(t1,...,tai)
) such that t21, . . . , t2aj

is the projection of t′
1, . . . , t′

aj

onto X2. Then, by Lemma 1 we have

R(CR∗

fj(t′
1,...,t′

aj
)) ⊆ R(CR∗

fi(t1,...,tai)
)

and in particular R(CR∗

fj(t′
1,...,t′

aj
)[X2]) ⊆ R(CR∗

fi(t1,...,tai)
[X2]) = R2. Now, note

that because X1 ▹ X2 and P is 1-minimal, every variable xfj(t′
1[k],...,t′

aj
[k]) in the

scope of CR∗

fj(t′
1,...,t′

aj
)[X2] also belongs to X1. We denote this constraint by C1.

Let us summarize what we have: for every symbol fj , every relation R2 ∈
L(P|X2) other than equalities and unary relations (which are preserved by all
conservative polymorphisms) and t21, . . . , t2aj

∈ R2, there is a constraint C1 =
(S1, R1) ∈ P|X1 such that |S1| = |S2|, R1 ⊆ R2 and for every k we have S1[k] =
xfj(t21[k],...,t2aj [k])

. It follows that for every solution (f1, . . . , fm) to P(Γ)|X1 , fj
is also a solution to the indicator problem of order aj of L(P(Γ)|X2) and is
therefore a polymorphism of L(P(Γ)|X2).

Closed sets of variables allow us to turn partial solutions into true polymor-
phisms of a specific constraint language, hence enabling us to make (limited) use
of semiuniform algorithms. A variable of Pc

M(Γ) is a singleton if it is of the form
xfi(v,...,v) for some v ∈ D. The sets of variables corresponding to singletons and
X constitute two closed sets; the next Lemma shows that many intermediate,
regurlarly-spaced closed sets exist in Pc

M(Γ) between these two extremes.

Lemma 2. Let Pc
M(Γ) = (X ,D, C) after applying 1-minimality. There exist

X0 ⊆ . . . ⊆ Xα = X such that X0 is the set of all singleton variables, each Xi is
closed and |Xi+1 −Xi| ≤ maa, where a and m denote respectively the maximum
arity and number of operation symbols in M.

Proof. Let (D1, . . . , Dα) denote an arbitrary ordering of the subsets of D of size
a. We define

X0 = {xfj(vi,...,vi) | fj ∈ M, vi ∈ D}

and for all i ∈ [1..α]

Xi = Xi−1 ∪ {xfj(t) | fj ∈ M, t ∈ (Di)aj}

It is clear that X0 is the set of all singleton variables and for all i,
|Xi+1 − Xi| ≤ m|(Di)a| = maa. It remains to show that each set is closed.
Let k ≥ 1 and suppose that Xk−1 is closed. By induction hypothesis, we only
need to verify that Xk ▹ Xk\Xk−1. Let xfj(v1,...,vaj)

be a variable in Xk\Xk−1.
Because Pc

M(Γ) is 1-minimal, we have D(xfj(v1,...,vaj)
) ⊆ {v1, . . . , vaj} ⊆ Dk.

By construction Xk contains all variables of the form xfc(t) where t ∈ (Dk)ac

The Dichotomy for Conservative Constraint Satisfaction 139

and because D(xfj(v1,...,vaj)
) ⊆ {v1, . . . , vaj} ⊆ Dk it contains in particular all

variables xfc(t) such that t ⊆ D(xfj(v1,...,vaj)
). This implies that Xk ▹ Xk\Xk−1

and concludes the proof.

We now have every necessary tool at our disposal to start solving Pc
M(Γ).

It is straightforward to see that if a subset of variables X ′ is closed in Pc
M(Γ),

then it is closed in every consistent restriction as well.

Proposition 3. If a solution to Pc
M(Γ)|Xi

is known, then a solution to
Pc
M(Γ)|Xi+1 can be found in polynomial time.

Proof. Let (f i
1, . . . , f

i
m) be a solution to Pc

M(Γ)|Xi
. We assume that 1-minimality

has been enforced on Pc
M(Γ). This ensures, in particular, that the domain of

each xfj(t) ∈ Xi+1\Xi contains at most a elements. It follows that Xi+1\Xi

has at most s = amaa

possible assignments φ1, . . . ,φs. For every j ∈ [1..s], we
create a CSP instance Pj that is a copy of Pc

M(Γ) but also includes the con-
straints corresponding to the assignment Xi+1\Xi ← φj(Xi+1\Xi). We enforce
1-minimality on every instance Pj .

Now, observe that each Pj is a consistent restriction of Pc
M(Γ), so Xi is still

closed in Pj . Moreover, every variable x ∈ Xi+1\Xi has domain size 1 in Pj ;
since Xi contains all singleton variables, if follows that in Pj we have Xi ▹ Xi+1.

By Proposition 2, (f i
1, . . . , f

i
m) is a collection of polymorphisms of L(Pj |Xi+1

).
We can then use the semiuniform algorithm to find in polynomial time a solution
to Pj |Xi+1

if one exists by backtracking search (every f i
z is idempotent, so we

can invoke the semiuniform algorithm at each node to ensure that the algorithm
cannot backtrack more than one level). A solution to Pc

M(Γ)|Xi+1 exists if and
only if Pj |Xi+1

has a solution for some j ∈ {1, . . . , s}.

The above proof balances on the fact that every complete instantiation of
the variables in Xi+1\Xi (followed by 1-minimality) yields a residual instance
over a language that admits (f i

1, . . . , f
i
m) as polymorphisms. In other terms,

Pc
M(Γ)|Xi+1 has a backdoor [19] of constant size to (f i

1, . . . , f
i
m).

Theorem 3. Let M be a linear strong Mal’tsev condition that admits a semiu-
niform algorithm. There exists a polynomial-time algorithm that, given as input
a constraint language Γ , decides if Γ satisfies M and produces conservative
polymorphisms of Γ satisfying M if any exist.

Proof. The algorithm starts by building Pc
M(Γ) and computes the sets

X0, . . . , Xα as in Lemma 2. We have a solution to Pc
M(Γ)|X0 for free because

of the conservativity constraints, and we can compute a solution to Pc
M(Γ) by

invoking repeatedly (at most α ≤ |X | ≤ mda times) Proposition 3.

Corollary 1. If M is a linear strong Mal’tsev condition that has a semiuniform
algorithm for conservative languages, then M has also a uniform algorithm for
conservative languages.

140 C. Carbonnel

Proof. The uniform algorithm simply invokes our algorithm to produce the con-
servative polymorphisms satisfying M, and then provides these polymorphisms
to the semiuniform algorithm to solve the CSP instance.

An immediate application of Theorem 3 concerns the detection of conserv-
ative k-edge polymorphisms for a fixed k. A k-edge operation on a set D is a
(k + 1)-ary operation e satisfying

e(x, x, y, y, y, . . . , y, y) ≈ y

e(x, y, x, y, y, . . . , y, y) ≈ y

e(x, y, y, x, y, . . . , y, y) ≈ y

e(x, y, y, y, x, . . . , y, y) ≈ y

. . .

e(x, y, y, y, y, . . . , x, y) ≈ y

e(x, y, y, y, y, . . . , y, x) ≈ y

These identities form a linear strong Mal’tsev condition. The algorithm given
in [12] is semiuniform, but in addition to e it must have access to three other
polymorphisms p, d, s derived from e and satisfying

p(x, y, y) ≈ x

p(x, x, y) ≈ d(x, y)
d(x, d(x, y)) ≈ d(x, y)

s(x, y, y, y, . . . , y, y) ≈ d(y, x)
s(y, x, y, y, . . . , y, y) ≈ y

s(y, y, x, y, . . . , y, y) ≈ y

. . .

s(y, y, y, y, . . . , y, x) ≈ y

The authors provide a method to obtain these three polymorphisms from e that
requires a possibly exponential number of compositions. However, conservative
algebras are much simpler and we can observe that

s(x1, x2, . . . , xk) = e(x2, x1, x2, x3, . . . , xk)
d(x, y) = e(x, y, x, . . . , x)

p(x, y, z) = e(y, d(y, z), x, . . . , x)

satisfy the required identities and are easy to compute. It follows that in the con-
servative case their algorithm is semiuniform even if only a k-edge polymorphism
e is given.

Corollary 2. For every fixed k, the class of constraint languages admitting a
conservative k-edge polymorphism is uniformly tractable and has a polynomially
decidable meta-problem.

The Dichotomy for Conservative Constraint Satisfaction 141

Since conservative 2-edge polymorphisms are Mal’tsev polymorphisms, this
corollary is a broad generalization of the result obtained in [7] concerning con-
servative Mal’tsev polymorphisms.

4 Deciding the Dichotomy

While the criterion for the conservative dichotomy theorem can be stated as a lin-
ear strong Mal’tsev condition [18], none of the algorithms found in the literature
are semiuniform. Still, Theorem 3 gives a uniform algorithm for constraint lan-
guages Γ whose coloured graph contains only yellow and blue edges: if g∗(x, y, z)
and h∗(x, y, z) are the polymorphisms predicted by the Three Operations The-
orem, then m∗(x, y, z) = h∗(g∗(x, y, z), g∗(y, z, x), g∗(z, x, y)) is a generalized
majority-minority polymorphism of Γ (see [9] for a formal definition), which
implies that Γ has a 3-edge polymorphism [3].

Our algorithm will reduce the meta-problem to a polynomial number of CSP
instances over languages with conservative 3-edge polymorphisms using a refined
version of the treasure hunt algorithm and a simple reduction rule. This reduc-
tion rule is specific to indicator problems and allows us to avoid the elabo-
rate machinery presented in [6] to eliminate red edges in CSP instances over a
tractable conservative language.

We start by the reduction rule. Recall that the Three Operations Theorem
predicts that if Γ is tractable then it has a conservative polymorphism f∗ such
that for every 2-element set B, f∗

|B is a semilattice if B is red and f∗
|B(x, y) = x

otherwise.

Proposition 4. If f∗ is known, then for every non-red 2-element subset B of D
it can be decided in polynomial time if there exists a conservative polymorphism
p such that p|B is a majority (resp. minority) operation.

Proof. We are looking for a ternary polymorphism p, so we start by building the
instance IP3c(Γ), which is the indicator problem of order 3 of Γ with conserv-
ativity constraints. For i ∈ {1, 2, 3}, let πi be the solution to IP3c(Γ) given by
πi(xv1,v2,v3) = vi for all v1, v2, v3 ∈ D. These solutions correspond to the three
ternary polymorphisms of Γ that project onto their ith argument. We enforce
1-minimality and apply the algorithm Reduce.

We denote by IP3c
R (Γ) the resulting CSP instance. An important invariant

of this algorithm is that at the end of every iteration of the loop in Reduce, for
every x ∈ X and v ∈ D(x) there exists s ∈ {s1, s2, s3} such that s(x) = v. This is
straightforward, since we only remove v from D(x) if none of s1(x), s2(x), s3(x)
takes value v. It then follows from the loop condition that at the end of Reduce,
no x ∈ X may have a domain that contains a red pair of elements.

We now show that if IP3c(Γ) has a solution that is majority (resp. minority)
on a non-red pair of values B, then so does IP3c

R (Γ). We proceed by induction.
Suppose that at iteration i of the loop of Reduce, a solution pi that is majority
(resp. minority) on B exists. Let Di(x) denote the domain of a variable x at step
i. We set pi+1 = f∗(pi, sj). Because f always projects onto its first argument

142 C. Carbonnel

Algorithm 1. Reduce

s1 ← π1 ;1
s2 ← π2 ;2
s3 ← π3 ;3
while There exist i, j and x ∈ X such that {si(x), sj(x)} is red and4
f∗(si(x), sj(x)) = sj(x) do

s1 ← f∗(s1, sj) ;5
s2 ← f∗(s2, sj) ;6
s3 ← f∗(s3, sj) ;7
for all x ∈ X and v ∈ D(x) s.t. ∀k, sk(x) ̸= v do8

D(x) ← D(x)\v ;9

on non-red pairs, a value v can only be removed from Di(x) at iteration i + 1
if {v, sj(x)} is red and f(v, sj(x)) = sj(x). Therefore, if pi(x) is removed at
iteration i then pi+1(x) = f∗(pi(x), sj(x)) = sj(x), and otherwise pi+1(x) ∈
{pi(x), sj(x)} ⊆ Di+1(x); in any case pi+1(x) ∈ Di+1(x). Furthermore, since B
is not red, pi+1(xf(v1,v2,v3)) = pi(xf(v1,v2,v3)) for all {v1, v2, v3} ⊆ B and we can
conclude that pi+1 is still majority (resp. minority) on B.

Now, we enforce 1-minimality again. We can ensure that every solution is a
majority (resp. minority) polymorphism when restricted to B by assigning the 6
variables concerned by the majority (resp. minority) identity. Since the remaining
instance I is red-free in GΓ , either c-CSP(Γ) is intractable or L(I) admits a 3-
edge polymorphism. We test for the existence of a 3-edge polymorphism using
Theorem 3. If one exists we use the uniform algorithm given by Corollary 2
to decide if a solution exists and otherwise we can conclude that c-CSP(Γ) is
intractable.

With this result in mind, the last challenge is to design a polynomial-time
algorithm that finds a binary polymorphism f∗ that is commutative on as many
2-element subsets as possible, and projects onto its first argument otherwise. We
call such polymorphisms maximally commutative. This can be achieved using a
variant of the algorithm presented in Sect. 3 and the following Lemma.

Lemma 3. Let P = (X ,D, C) denote an 1-minimal instance such that ∀x ∈ X ,
|D(x)| ≤ 2. Suppose that we have a conservative binary polymorphism f of L(P)
and a partition (V1, V2) of the variables such that f(a, b) = f(b, a) = f(D(x))
whenever x ∈ V1, and f projects onto its first argument otherwise. Then, every
variable x ∈ V1 can be assigned to f(D(x)) without altering the satisfiability
of P.

Proof. Let C = (S,R) ∈ C. Let S1 = S ∩ V1, S2 = S ∩ V2 and t ∈ R. We assume
without loss of generality that no variable in S is ground (i.e. has a singleton
domain). If x ∈ S, let t[x] = D(x)\t[x]. Because P is 1-minimal, for every x ∈ S1

The Dichotomy for Conservative Constraint Satisfaction 143

there exists tx ∈ R such that tx[x] = t[x]. Let x1, . . . , xs denote an arbitrary
ordering of S1. Then, let t(0) = t and for i ∈ {1, . . . , s},

t(i) = f(t(i−1), txi)

It is immediate to see that if x ∈ S2, then t(s)[x] = t[x] since f will project onto
its first argument at each interation. On the other hand, if xk ∈ S1 and there
exists j such that t(j)[xk] = f(D(xk)) then t(i)[xk] = f(D(xk)) for all i ≥ j.
This is guaranteed to happen for j ≤ k, as either

– t[xk] = f(D(xk)), in which case it is true for j = 0, or
– t(k−1)[xk] = f(D(xk)), in which case it is true for j = k − 1, or
– t(k−1)[xk] = t[xk] ̸= f(D(xk)), in which case t(k)[xk] = f(t(k−1)[xk],

txk [xk]) = f(t[xk], t[xk]) = f(D(xk)) and thus it is true for j = k.

It follows that t(s) is a tuple or R that coincides with t on S2, and t(s)[x] =
D(f(x)) whenever x ∈ S1. Therefore, assigning each x ∈ S1 to D(f(x)) is always
compatible with any assignment to S2; since this is true for each constraint, it
is true for P as well.

We denote by IP2c(Γ) the CSP instance obtained from IP2(Γ) by adding
the unary constraints enforcing conservativity. We can interpret IP2c(Γ) as the
meta-problem associated with an unconstrained conservative binary operation
symbol f and reuse the definitions and lemmas about closed sets of variables
seen in the last section. In the hierarchy of closed sets given by Lemma 2 applied
to IP2c(Γ), Xi+1 contains the variables of Xi plus two variables xf(a,b), xf(b,a)

for some Bi+1 = {a, b} ⊆ D.

Proposition 5. Suppose that we know a solution fi to IP2c(Γ)|Xi
that is max-

imally commutative if c-CSP(Γ) is tractable. A solution fi+1 to IP2c(Γ)|Xi+1

with the same properties can be found in polynomial time.

Proof. The strategy is similar to the proof of Proposition 3. The two differences
are that we do not have a semiuniform algorithm in general, which can be handled
by Lemma 3, and the fact that we are not interested in any solution but in one
that is maximally commutative.

Observe that if c-CSP(Γ) is tractable and IP2c(Γ)|Xi+1 is 1-minimal, then its
language is conservatively tractable as well and the order-2 conservative indicator
problem of L(IP2c(Γ)|Xi+1) is IP

2c(Γ)|Xi+1 itself plus unconstrained variables
(because Xi+1 is closed). Therefore, by the Three Operations Theorem, a max-
imally commutative solution to IP2c(Γ)|Xi+1 is commutative on some {u, v}
if and only if there is a solution to IP2c(Γ)|Xi+1 that is also commutative on
{u, v}. It follows from this same argument applied to Xi instead of Xi+1 that if
fi is not commutative on some (u, v) ∈ D2 then either c-CSP(Γ) is NP-complete
or Γ has a ternary conservative polymorphism pu,v that is either a majority or
a minority operation on {u, v}.

144 C. Carbonnel

Let Xi+1 = Xi∪{xf(a,b), xf(b,a)}. We have only three assignments to examine
for (xf(a,b), xf(b,a)): (a, a), (b, b) and (a, b). The fourth assignment (b, a) is the
projection onto the second argument, which does not need to be tried since we
are only interested in the maximally commutative solutions to IP2c(Γ)|Xi+1 .
For each of these assignments, we build the CSP instances P1,P2,P3 by adding
the constraints corresponding to the possible assignments to (xf(a,b), xf(b,a)) to
IP2c(Γ) and enforcing 1-minimality.

For every j ∈ {1, 2, 3} and every pair {u, v} of elements in the domain of
Pj
|Xi+1

we create an instance Pj
uv by adding the constraint xf(u,v) = xf(v,u) to

Pj and enforcing 1-minimality. Since the variables inXi+1\Xi are ground in Pj
uv,

Xi is closed and Xi contains all singleton variables, we have Xi+1 ▹ Xi in Pj
uv.

By Proposition 2, fi is a polymorphism of L(Pj
uv |Xi+1

). Now, if a variable x in
Pj
uv |Xi+1

has domain size 2 and fi is commutative on D(x), by Lemma 3 we
can assign x to fi(D(x)) without losing the satisfiability of the instance. Once
this is done, we can enforce 1-minimality again; the polymorphisms pu′,v′ guar-
antee that if c-CSP(Γ) is tractable, the remaining instance has a conservative
generalized majority-minority polymorphism and hence a conservative 3-edge
polymorphism. Using Corollary 2, we can decide if the language of Pj

uv |Xi+1

has a conservative 3-edge polymorphism. If it does not then c-CSP(Γ) is NP-
complete, and otherwise we can decide if a solution exists in polynomial time.

At this point, for every pair (u, v) of elements in the domain of some vari-
able in IP2c(Γ)|Xi+1 we know if a solution to IP2c(Γ)|Xi+1 that is commu-
tative on (u, v) exists, except if (u, v) = (a, b). This problem can be fixed by
checking if any of Pk

|Xi+1
or Pn

|Xi+1
has a solution, where Pk and Pn are the

subproblems corresponding to the assignments (xf(a,b), xf(b,a)) ← (a, a) and
(xf(a,b), xf(b,a)) ← (b, b).

We then add the equality constraint xf(u,v) = xf(v,u) to IP2c(Γ)|Xi+1

for every pair (u, v) (including (a, b) if applicable) such that a solution to
IP2c(Γ)|Xi+1 that is commutative on (u, v) exists. On all other pairs, we know
that fi+1 must project on the first argument, so we can ground the correspond-
ing variables. If c-CSP(Γ) is tractable, then this new CSP instance P has a
solution and it must be maximally commutative. We can solve P by branching
on the possible assignments to (xf(a,b), xf(b,a)) and the usual arguments using
fi, Proposition 2 and Lemma 3.

Theorem 4. There exists a polynomial-time algorithm A that, given in input a
constraint language Γ , decides if c-CSP(Γ) is in P or NP-complete. If c-CSP(Γ)
is in P, then A also returns the coloured graph of Γ .

Proof. We use Proposition 5 to find in polynomial time a conservative polymor-
phism f∗ of Γ that is maximally commutative if c-CSP(Γ) is tractable. If the
algorithm fails, then we know that c-CSP(Γ) is not tractable and the algorithm
stops. Otherwise, we label every pair {a, b} of domain elements with the colour
red if f∗ is commutative on {a, b}, and otherwise we use Proposition 4 to check if
there is a conservative ternary polymorphism that is either majority or minority

The Dichotomy for Conservative Constraint Satisfaction 145

on {a, b}. If a majority polymorphism is found then we label {a, b} with yellow,
else if a minority polymorphism is found then {a, b} is blue, and otherwise we
know that c-CSP(Γ) is NP-complete. The orientation of the red edges can be
easily computed from IP2c(Γ) using Lemma 3 and f∗.

5 Conclusion

We have shown that the dichotomy criterion for conservative CSP can be decided
in true polynomial time, without any assumption on the arity or the domain
size of the input constraint language. This solves an important question on the
complexity of c-CSP among the few that remain. On the way, we have also
proved that classes of conservative constraint languages defined by linear strong
Mal’tsev conditions admitting a semiuniform algorithm always have a tractable
meta-problem. This result is a major step towards a complete classification of
meta-problems in conservative languages and complements nicely the results
of [8].

It is known that Proposition 1 does not hold in general if the linearity
requirement on the Mal’tsev condition is dropped, as semilattices are NP-hard to
detect even in conservative constraint languages despite having a uniform algo-
rithm [11]. The same happens if the idempotency of the Mal’tsev condition is
dropped instead [8]. However, the mystery remains if the requirement for a uni-
form algorithm is loosened since no tractable idempotent strong linear Mal’tsev
condition is known to have a hard meta-problem. This prompts us to ask if our
result on conservative constraint languages can extend to the general case.

Question 1. Does there exist an idempotent strong linear Mal’tsev condition M
that has a semiuniform polynomial-time algorithm but whose meta-problem is
not in P, assuming some likely complexity theoretic conjecture?

A negative answer would imply a uniform algorithm for constraint languages
with a Mal’tsev polymorphism, whose potential existence was discussed in [7].

Finally we believe that our algorithm, by producing the coloured graph in
polynomial time, would be very helpful in the design of a uniform algorithm that
solves every tractable conservative constraint language (should one exist).

Question 2. Does there exist a uniform polynomial-time algorithm for the class
of all tractable conservative constraint languages?

References

1. Barto, L.: The dichotomy for conservative constraint satisfaction problems revis-
ited. In: LICS, pp. 301–310. IEEE Computer Society (2011)

2. Barto, L.: The collapse of the bounded width hierarchy. J. Logic Comput. 26,
923–943 (2015)

3. Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.:
Varieties with few subalgebras of powers. Trans. Am. Math. Soc. 362(3), 1445–1473
(2010)

146 C. Carbonnel

4. Bessière, C., Carbonnel, C., Hébrard, E., Katsirelos, G., Walsh, T.: Detecting and
exploiting subproblem tractability. In: Proceedings of the Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence, pp. 468–474. AAAI Press (2013)

5. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log. 12(4), 24 (2011)

6. Bulatov, A.A.: Conservative constraint satisfaction re-revisited. preprint.
arXiv:1408.3690v1 (2014)

7. Carbonnel, C.: The meta-problem for conservative Mal’tsev constraints. In: Thir-
tieth AAAI Conference on Artificial Intelligence (AAAI 2016), Phoenix, Arizona,
United States, February 2016

8. Chen, H., Larose, B.: Asking the metaquestions in constraint tractability. arXiv
preprint. arXiv:1604.00932 (2016)

9. Dalmau, V.: Generalized majority-minority operations are tractable. Logical Meth-
ods Comput. Sci. 2(4), 1–15 (2006)

10. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

11. Green, M.J., Cohen, D.A.: Domain permutation reduction for constraint satisfac-
tion problems. Artif. Intell. 172(8–9), 1094–1118 (2008)

12. Idziak, P.M., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability
and learnability arising from algebras with few subpowers. In: LICS, pp. 213–224.
IEEE Computer Society (2007)

13. Jeavons, P., Cohen, D.A., Gyssens, M.: Closure properties of constraints. J. ACM
44(4), 527–548 (1997)

14. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theoret.
Comput. Sci. 200, 185–204 (1998)

15. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1),
155–171 (1975)

16. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118
(1977)

17. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic. Annals
Mathematical Studies, vol. 5. Princeton University Press, Princeton (1941)

18. Siggers, M.H.: A strong malcev condition for locally finite varieties omitting the
unary type. Algebra Univers. 64(1–2), 15–20 (2010)

19. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 1173–1178. Morgan Kaufmann, San Fran-
cisco (2003)

http://arxiv.org/abs/1408.3690v1
http://arxiv.org/abs/1604.00932

Propagation via Kernelization:
The Vertex Cover Constraint

Clément Carbonnel(B) and Emmanuel Hebrard

LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France
carbonnel@laas.fr

Abstract. The technique of kernelization consists in extracting, from
an instance of a problem, an essentially equivalent instance whose size
is bounded in a parameter k. Besides being the basis for efficient para-
meterized algorithms, this method also provides a wealth of information
to reason about in the context of constraint programming. We study the
use of kernelization for designing propagators through the example of the
Vertex Cover constraint. Since the classic kernelization rules often corre-
spond to dominance rather than consistency, we introduce the notion of
“loss-less” kernel. While our preliminary experimental results show the
potential of the approach, they also show some of its limits. In partic-
ular, this method is more effective for vertex covers of large and sparse
graphs, as they tend to have, relatively, smaller kernels.

1 Introduction

The fact that there is virtually no restriction on the algorithms used to reason
about each constraint was critical to the success of constraint programming. For
instance, efficient algorithms from matching and flow theory [2,14] were adapted
as propagation algorithms [16,18] and subsequently lead to a number of success-
ful applications. NP-hard constraints, however, are often simply decomposed.
Doing so may significantly hinder the reasoning made possible by the knowl-
edge on the structure of the problem. For instance, finding a support for the
NValue constraint is NP-hard, yet enforcing some incomplete propagation rules
for this constraint has been shown to be an effective approach [5,10], compared
to decomposing it, or enforcing bound consistency [3].

The concept of parameterized complexity is very promising in the context of
propagating NP-hard constraints. A study of the parameterized complexity of
global constraints [4], and of their pertinent parameters, showed that they were
a fertile ground for this technique. For instance, a kernelization of the NValue
constraint was introduced in [12], yielding an FPT consistency algorithm. A
kernel is an equivalent instance of a problem whose size is bounded in a para-
meter k. If a problem has a polynomial-time computable kernel, then it is FPT
since brute-force search on the kernel can be done in time O∗(f(k)) for some
computable function f . Moreover, kernelization techniques can provide useful
information about suboptimal and/or compulsory choices, which can be used to
propagate. In this paper we consider the example of the vertex cover problem,
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 147–156, 2016.
DOI: 10.1007/978-3-319-44953-1 10

148 C. Carbonnel and E. Hebrard

where we want to find a set of at most k vertices S of a graph G = (V,E) such
that every edge of G is incident to at least one vertex in S. This problem is a
long-time favourite of the parameterized complexity community and a number of
different kernelization rules have been proposed, along with very efficient FPT
algorithms (the most recent being the O(1.2738k + k|V |) algorithm by Chen,
Kanj and Xia [7]).

Since the complement of a minimum vertex cover is a maximum indepen-
dent set, a VertexCover constraint can also be used to model variants of the
maximum independent set and maximum clique problems with side constraints
modulo straightforward modeling tweaks. Among these three equivalent prob-
lems, vertex cover offers the greatest variety of pruning techniques and is there-
fore the most natural choice for the definition of a global constraint. Through
this example, we highlight the “triple” value of kernelization in the context of
constraint programming:

First, some kernelization rules are, or can be generalized to, filtering rules.
Since the strongest kernelization techniques rely on dominance they cannot be
used directly for filtering. Therefore, we introduce the notion of loss-less ker-
nelization which preserves all solutions and can thus be used in the context of
constraint propagation. Moreover, we show that we can use a more powerful
form of kernel, the so-called rigid crowns to effectively filter the constraint when
the lower bound on the size of the vertex cover is tight. We discuss the various
kernelization techniques for this problem in Sect. 3.

Second, even when it cannot be used to filter the domain, a kernel can be
sufficiently small to speed up lower bound computation, or to find a “witness
solution” and sometimes an exact lower bound. We also show that such a support
can be used to obtain stronger filtering. We introduce a propagation algorithm
based on these observations in Sect. 4. Along this line, the kernel could also be
used to guide search, either using the witness solution or the dominance relations
on variable assignments.

Third, because a kernel guarantees a size at most f(k) for a parameter k,
one can efficiently estimate the likelihood that these rules will indeed reduce the
instance. We report experimental results on a variant of the vertex cover problem
in Sect. 5. These experiments show that, as expected, kernelization techniques
perform better when the parameter is small. However, we observe that the over-
head is manageable, even in unfavorable cases. Moreover, one could dynamically
choose whether costly methods should be applied by comparing the value of the
parameter k (in our case, the upper bound of the variable standing for the size
of the cover) to the input size.

2 Background and Notations

An undirected graph is an ordered pair G = (V,E) where V is a set of vertices
and E is a set of edges, that is, pairs in V . We denote the neighborhood N(v) =
{u | {v, u} ∈ E} of a vertex v, its closed neighborhood N+(v) = N(v) ∪ {v}
and N(W) =

⋃
v∈W N(v). The subgraph of G = (V,E) induced by a subset of

Propagation via Kernelization: The Vertex Cover Constraint 149

vertices W is denoted G[W] = (W, 2W ∩ E). An independent set is a set I ⊆ V
such that no pair of elements in I is in E. A clique is a set C ⊆ V such that
every pair of elements in C is in E. A clique cover T of a graph G = (V,E) is a
collection of disjoint cliques such that

⋃
C∈T C = V . A matching is a subset of

pairwise disjoint edges. A vertex cover of G is a set S ⊆ V such that every edge
e ∈ E is incident to at least one vertex in S, i.e., S∩e ̸= ∅. The minimum vertex
cover problem consists in finding a vertex cover of minimum size. Its decision
version is NP-complete [11].

The standard algorithm for solving this problem is a simple branch and
bound procedure. There are several bounds that one can use, in this paper we
consider the minimum clique cover of the graph (or, equivalently, a coloring of
its complement). Given a clique cover T of a graph G = (V,E), we know that all
but one vertices in each clique of T must be in any vertex cover of G. Therefore,
|V | − |T | is a lower bound of the size of the minimum vertex cover of G. The
algorithm branches by adding a vertex to the cover (left branch) or adding its
neighborhood to the cover (right branch).

A constraint is a predicate over one or several variables. In this paper we
consider the vertex cover problem as a constraint over two variables: an integer
variable K to represent the bound on the size of the vertex cover, and a set
variable S to represent the cover itself. The former takes integer values in a
domain D(K) which minimum and maximum values are denoted K and K,
respectively. The latter takes its values in the sets that are supersets of a lower
bound S and subsets of an upper bound S. Moreover, the domain of a set variable
is also often constrained by its cardinality given by an integer variable |S|. We
consider a constraint on these two variables and whose predicate is the vertex
cover problem on the graph G = (V,E) given as a parameter:

Definition 1 (VertexCover constraint). VertexCover[G](K,S) ⇐⇒
|S| ≤ K & ∀{v, u} ∈ E, v ∈ S ∨ u ∈ S

A bound support for this constraint is a solution of the VertexCover prob-
lem. Since enforcing bound consistency would entail proving the existence of two
bound supports for each element in S\S and one for the lower bound of K, there
is no polynomial algorithm unless P=NP. In this paper we consider pruning rules
that are not complete with respect to usual notions of consistencies.

3 Kernelization as a Propagation Technique

3.1 Standard Kernelization

A problem is parameterized if each instance x is paired with a nonnegative integer
k, and a parameterized problem is fixed-parameter tractable (FPT) if it can be
solved in time O(|x|O(1)f(k)) for some function f . A kernelization algorithm
takes as input a parameterized instance (x, k) and creates in polynomial time a
parameterized instance (x′, k′) of the same problem, called the kernel, such that

150 C. Carbonnel and E. Hebrard

(i) (x′, k′) is satisfiable if and only if (x, k) is satisfiable;
(ii) |x′| ≤ g(k) for some computable function g, and
(iii) k′ ≤ h(k) for some computable function h.

While this formal definition does not guarantee that the kernel is a subin-
stance of (x, k), in graph theory kernelization algorithms often operate by apply-
ing a succession of dominance rules to eliminate vertices or edges from the graph.
In the case of vertex cover, the simplest dominance rule is the Buss rule: if a
vertex v has at least k + 1 neighbors, then v belongs to every vertex cover of
size at most k; we can therefore remove v from the graph and reduce k by one.
Applying this rule until a fixed point yields an elementary kernel that contains
at most k2 edges and 2k2 non isolated vertices [6]. A more refined kernelization
algorithm works using structures called crowns. A crown of a graph G = (V,E)
is a partition (H,W, I) of V such that

(i) I is an independent set;
(ii) There is no edge between I and H, and
(iii) There is a matching M between W and I of size |W |.

Every vertex cover of G[W ∪ I] has to be of size at least |W | because of the
matching M . Since I is an independent set, taking the vertices of W over those
of I into the vertex cover is always a sound choice: they would cover all the edges
between W and I at minimum cost and as many edges in G[H ∪ W] as possible.
A simple polynomial-time algorithm that finds a crown greedily from a maximal
matching already leaves an instance G[H] with at most 3k vertices [1]. A stronger
method using linear programming yields a (presumably optimal) kernel of size
2k [15].

3.2 Loss-Less Kernelization

The strongest kernelization rules correspond to dominance relations rather than
inconsistencies. However, the Buss rule actually detects inconsistencies, that is,
vertices that must be in the cover. We call this type of rules loss-less as they
do not remove solutions. We can extend this line of reasoning by considering
rules that do not remove solutions close to the optimum: for the VertexCover
constraint, the variable K is likely to be minimized and the situation where all
solutions are close to the optimum will inevitably arise. This can be formalized
in the context of subset minimization problems, which ask for a subset S with
some property π of a given universe U such that |S| ≤ k. In the next definition
we denote by opt the cardinality of a minimum-size solution.

Definition 2. Given an integer z and a subset minimization problem parame-
terized by solution size k, a z-loss-less kernel is a partition (H,F,R, I) of the
universe U where

– F is a set of forced items, included in every solution of size at most opt+z;
– R is a set of restricted items, intersecting with no solution of size at most

opt+z;

Propagation via Kernelization: The Vertex Cover Constraint 151

– H is a residual problem, whose size is bounded by a function in k and
– I is a set of indifferent elements, i.e., if i ∈ I, then φ is a solution of size at

most k − 1 if and only if φ ∪ i is a solution.

An ∞-loss-less kernel is simply said to be loss-less. The Buss kernel is a loss-
less kernel for vertex cover that never puts any vertices in R (F contains vertices
of degree strictly greater than k, and I contains isolated vertices). In the case of
vertex cover, the set R is always empty unless z = 0. Note that loss-free kernels
introduced in the context of backdoors [17] are different since they only preserve
minimal solutions; for subset minimization problems those kernels are called full
kernels [9].

A kernel for vertex cover that preserves all minimum-size solutions has been
introduced in [8]. In our terminology, this corresponds to a 0-loss-less kernel.
Interestingly, this kernelization is based on a special type of crown reduction
but yields a kernel of size 2k (matching the best known bound for standard
kernelization). The idea is to consider only crowns (H,W, I) such that W is the
only minimum-size vertex cover of G[W ∪ I], as for this kind of crown vertices
of W are always a strictly better choice that those of I. Those crowns are said
rigid. The authors present a polynomial-time algorithm that finds the (unique)
rigid crown (H,W, I) such that H is rigid crown free and has size at most 2k.
Their algorithm works as follows. First, build from G = (V,E) the graph BG

with two vertices vl, vr for every v ∈ V and two edges {vl, ur}, {ul, vr} for every
edge {v, u} ∈ E. Compute a maximum matching M of BG (which can be done in
polynomial time via the Hopcroft-Karp algorithm [14]). Then, if D is the set of
all vertices in BG that are reachable from unmatched vertices via M -alternating
paths of even length, a vertex v in G belongs to the independent set I of the
rigid crown if and only if vl and vr belong to D. This algorithm is well suited to
constraint propagation as bipartite matching algorithms based on augmenting
paths are efficient and incremental.

3.3 Witness Pruning

Last, even if the standard kernel uses dominance relations, it can indirectly be
used for pruning. By reducing the size of the problem it often makes it possible
to find an optimal vertex cover relatively efficiently. This vertex cover gives a
valid (and maximal) lower bound. Moreover, given an optimal cover S we can
find inconsistent values by asserting that some vertices must be in any cover of
a given size.

Theorem 1. If S is an optimal vertex cover of G = (V,E) such that there
exists v ∈ S, J ⊆ N(v)\S with N(J) ⊆ N+(v) then any vertex cover of G either
contains v or at least |S|+ |J | − 1 vertices.

Proof. Let k be an upper bound on the size of the vertex cover, v ∈ S be a vertex
in an optimal vertex cover S. Consider J ⊆ N(v) \ S such that N(J) ⊆ N+(v).
Suppose there exists a vertex cover S′ such that |S′| < |S|+ |J |− 1 and v /∈ S′.
S′ must contain every node in N(v) and hence in J . However, we can build a

152 C. Carbonnel and E. Hebrard

vertex cover of size at most |S| − 1 by replacing J by v, since V \ S and thus J
are independent sets. ⊓/

If we can manage to find a minimum vertex cover S, for instance when
the kernel is small enough so that it can be explored exhaustively, Theorem 1
entails a pruning rule. If we find a vertex v ∈ S and a set J ∈ N(v) \ S with
N(J) ⊆ N+(v) and |J | > k − |S| then we know that v must be in all vertex
covers of size ≤ k.

4 A Propagation Algorithm for VertexCover

In this section we give the skeleton of a propagation algorithm for the
VertexCover constraint based on the techniques discussed in Sect. 3.

Algorithm 1. PropagateVertexCover(S,K,G = (V,E),λ,ω)
1 S ← S ∪ N(V \ S);

2 Hr, F r ← BussKernel(G[S \ S]);

3 if ω ̸⊆ S ∨ |ω ∪ S| ≥ K then

4 Hk,W k ← Kernel(Hr);

5 if λ > 0 then ω ← F r ∪ W k∪ VertexCover(Hk,λ);
6 if ω is optimal then K ← |ω| ;

7 else K ← max(K, |F r| + |F k|+LowerBound(Hk)) ;

8 if K = K then

9 Hr, F r, Rr ← RigidKernel(G[S \ S]);

10 S ← S \Rr;

11 else if ω is optimal & K − K ≤ 2 then S, S ← WitnessPruning(G,ω) ;
12 S ← S ∪ F r;

Algorithm 1 takes as input the set variable S standing for the vertex cover,
an integer variable K standing for the cardinality of the vertex cover, and three
parameters: the graph G = (V,E), an integer λ, and a “witness” vertex cover ω
initialised to V .

The pruning in Line 1 is a straightforward application of the definition: the
neighborhood of vertices not in the cover must be in the cover. Then, in Line 2,
we apply the ∞-loss-less kernelization (Buss rule) described in Sect. 3.2 yielding
a pair with a residual graph Hr and a set of nodes F r that must be in the cover.

Next, if Condition 3 fails, there exists a vertex cover (ω∪S) of size strictly less
than K. As a result, the pruning from rigid crowns cannot apply. When the cover
witness is not valid, we compute, in Line 4, a standard kernel with the procedure
Kernel(G) using crowns, as explained in Sect. 3.1. We then use this kernel to
compute, in Line 5, a new witness using the procedure VertexCover(G,λ) which
is the standard brute-force algorithm described in Sect. 2. We stop the procedure

Propagation via Kernelization: The Vertex Cover Constraint 153

when we find a vertex cover whose size is stricly smaller than the current upper
bound, or when the search limit of λ, in number of nodes explored by the branch
&bound procedure, is reached. In the first case, we know that the lower bound
cannot be tight hence the constraint cannot fail nor prune further than the loss-
less kernel. The second stopping condition is simply used to control the amount
of time spent within the brute-force procedure.

If the call to the brute-force procedure was complete, we can conclude that the
witness cover is optimal and therefore a valid lower bound (Line 6). Otherwise,
we simply use the lower bound computed at the root node by VertexCover,
denoted LowerBound in Line 7. If the lower bound is tight, then we can apply
the pruning from rigid crowns as described in Sect. 3.2. Algorithm RigidKernel
returns a tripleHr, F r, Rr of residual, forced and restricted vertices, respectively.
Finally we apply a restriction to pairs of the pruning corresponding to Theorem 1
in Line 11, and apply the pruning on the lower bound of S corresponding to the
forced nodes computed by BussKernel and/or RigidKernel.

5 Experimental Evaluation

We experimentally evaluated our propagation algorithm on the “balanced ver-
tex cover problem”. We want to find a minimum vertex cover which is balanced
according to a partition of the vertices. For instance, the vertex cover may rep-
resent a set of machines to shut down in a network so that all communications
are interrupted. In this case, one might want to avoid shutting down too many
machines of the same type, or same client, or in charge of the same service, etc.
By varying the degree of balance we can control the similarity of the problem
to pure minimum vertex cover. We used a range of graphs from the dimacs
and snap repositories. For each graph G = (V,E), we post a VertexCover
constraint on the set variable ∅ ⊆ S ⊆ V .

Then, we compute (uniformly at random) a balanced 4-partition
{s1, s2, s3, s4} of the vertices and we post the following constraints: max({|si∩S| |
1 ≤ i ≤ 4}) − min({|si ∩ S| | 1 ≤ i ≤ 4}) ≤ b. For each graph instance, we
generated 3 instances for b ∈ {0, 4, 8} denoted “tight”, “medium” and “loose”
respectively. However, the classes p2p and ca- are much too large for these val-
ues to make sense. In this case we used three ratios 0.007, 0.008 and 0.009 of the
number of nodes instead.

We compared 5 methods, all implemented in Mistral [13] and ran on CORE
I7 processors with a time limit of 5min:

Decomposition is a simple decomposition in 2-clauses and a cardinality
constraint. Clique Cover uses only Buss kernelization and the clique cover
lower bound. It corresponds to non-colored lines in Algorithm 1. The witness is
initialised to V and never changes, and Line 4 is replaced by a simple identity
Hk ← Hr. Kernel Pruning uses kernelization, but no witness cover. It corre-
sponds to Algorithm 1 minus the instruction line 11, with λ set to 0. Kernel
& witness uses kernelization, and the witness cover for the lower bound K. It
corresponds to Algorithm 1 minus the instruction line 11, with λ set to 5000.
VertexCover is Algorithm 1 with λ set to 5000.

154 C. Carbonnel and E. Hebrard

Table 1. Comparison of approaches on the “Balanced Vertex Cover” problem.

The results of these experiments are reported in Table 1. Instances are clus-
tered by classes whose cardinality is given in the first column. These classes are
ordered from top to bottom by decreasing ratio of minimum vertex cover size
over number of nodes. We report four values for each class and each method:
‘#s’ is the number of instances of the class that were not solved to optimality,
‘gap’ is the average gap w.r.t. the smallest vertex cover found, ‘cpu’ and ‘#nd’
are mean CPU time in seconds and number of nodes visited, respectively, until
finding the best solution. Notice that CPU times and number of nodes are then

Propagation via Kernelization: The Vertex Cover Constraint 155

only comparable when the objective values (gaps) are equal. We color the tuples
⟨#s, gap, cpu, #nd⟩ that are lexicographically minimum for each class1.

Instances with same value of b are grouped in the same sub-table. The “shift”
of colored cells from left to right when going from top to bottom in each subtable
was to be expected since the kernelization is more effective on instances with
small vertex cover. It should be noted that many instances from the dimacs
repository are extremely adverse to our method as they tend to have very large
vertex covers. On the other hand, kernelization is very effective on large graphs
from snap.

We can also observe another shift of colored cells from left to right when
moving to a subtable to the next. This was also an expected outcome since the
pruning on this constraint becomes more prevalent when the problem is closer
to pure vertex cover.

Last, we can observe that every reasoning step (0-loss-less kernels, lower
bound from the witness and pruning from the witness) improves the overall
results.

6 Conclusion

We have shown that the kernelization techniques can be an effective way to
reason about NP-hard constraints that are fixed parameter tractable. In order
to design a propagation algorithm we introduced the notion of loss-less kernel and
outlined several ways to benefit from a small kernel. Our experimental evaluation
on the VertexCover constraint shows the promise of this approach.

References

1. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures
for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall Inc., Upper Saddle River (1993)

3. Beldiceanu, N.: Pruning for the minimum constraint family and for the number of
distinct values constraint family. In: CP, pp. 211–224 (2001)

4. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: The
parameterized complexity of global constraints. In: AAAI, pp. 235–240 (2008)

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms
for the NValue constraint. Constraints 11(4), 271–293 (2006)

6. Buss, J.F., Goldsmith, J.: Nondeterminism within p∗. SIAM J. Comput. 22(3),
560–572 (1993)

7. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

8. Chleb́ık, M., Chleb́ıková, J.: Crown reductions for the minimum weighted vertex
cover problem. Discrete Appl. Math. 156(3), 292–312 (2008)

1 With a “tolerance” of 1 s and 1 % nodes.

156 C. Carbonnel and E. Hebrard

9. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theor. Comput. Sci. 351(3), 337–350 (2006)

10. Fages, J.-G., Lapègue, T.: Filtering AtMostNValue with difference constraints:
application to the shift minimisation personnel task scheduling problem. In: CP,
pp. 63–79 (2013)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

12. Gaspers, S., Szeider, S.: Kernels for global constraints. In: IJCAI, pp. 540–545
(2011)

13. Hebrard, E.: Mistral, a constraint satisfaction library. In: The Third International
CSP Solver Competition, pp. 31–40 (2008)

14. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

15. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and
algorithms. Math. Program. 8(1), 232–248 (1975)

16. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI,
pp. 362–367 (1994)

17. Samer, M., Szeider, S.: Backdoor trees. In: AAAI, vol. 8, pp. 13–17 (2008)
18. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On global warming: flow-based

soft global constraints. J. Heuristics 12(4–5), 347–373 (2006)

Breaking Symmetries in Graphs:
The Nauty Way

Michael Codish1(B), Graeme Gange2, Avraham Itzhakov1,
and Peter J. Stuckey2,3

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer Sheva, Israel

mcodish@cs.bgu.ac.il
2 Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

3 Data61 CSIRO, Melbourne, Australia

Abstract. Symmetry breaking is an essential component when solving
graph search problems as it restricts the search space to that of canon-
ical representations. There are an abundance of powerful tools, such as
nauty, which apply to find the canonical representation of a given graph
and to test for isomorphisms given a set of graphs. In contrast, for graph
search problems, current symmetry breaking techniques are partial and
solvers unnecessarily explore an abundance of isomorphic parts of the
search space. This paper is novel in that it introduces complete symme-
try breaking for graph search problems by modeling, in terms of con-
straints, the same ideas underlying the algorithm applied in tools like
nauty. Whereas nauty tests given graphs, symmetry breaks restrict the
search space and apply during generation.

1 Introduction

Many problems, particularly in combinatorics, reduce to asking whether some
graph with a given property exists. Such “graph search” or “graph existence”
problems are notoriously difficult, in no small part due to the extremely large
number of symmetries in graphs. General approaches to graph search problems
involve either explicitly enumerating all (non-isomorphic) graphs and checking
each for the given property, or encoding the problem for some general-purpose
discrete satisfiability solver (i.e. SAT, integer programming, constraint program-
ming), which does the enumeration implicitly. In this paper, we are largely con-
cerned with this second approach.

To avoid symmetries in explicit enumeration approaches, ideally one designs
a procedure which generates exactly one graph in each equivalence class. The
classic “orderly generation” approach, due to Read [1], imposes a lexicographic
order over matrix elements and systematically constructs canonical adjacency
matrices of size n+1 from the canonical matrices of size n. For an example, in [2],
the authors address the problem: does there exist a graph with 11 vertices which
has a total magic labeling (TML)? To provide the negative answer the authors
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 157–172, 2016.
DOI: 10.1007/978-3-319-44953-1 11

158 M. Codish et al.

test each one of the 1,018,997,864 canonical graphs with 11 vertices and report
that this task requires 13,595 days of CPU computation. Given that there are
165,091,172,592 canonical graphs with 12 vertices it clear that canonical graph
enumeration based approaches cannot scale.

In contrast, symmetry breaking in SAT or CP [3–6] is done by adding
additional constraints to eliminate non-canonical graphs.1 Existing symmetry-
breaking predicates are typically based on variants of the lexicographic order-
ing [4]. Incomplete symmetry breaks under this ordering are straightforward
and compact, but leave many non-canonical graphs in each equivalence class.
Complete symmetry breaks, on the other hand, are extremely large. Indeed, as
deciding lexicographic canonicity of an adjacency matrix is NP-hard, the exis-
tence of a compact complete symmetry break seems unlikely.

By looking at vertex degrees and related properties, it is often possible to
very quickly conclude that two graphs are not isomorphic. In fact, most non-
isomorphic graphs may be distinguished in this way. It turns out that exploit-
ing structural properties of graphs is critical in testing equivalence or finding
canonical representations, and gave rise to a family of astonishingly effective
isomorphism and canonical labeling tools. Many graph search problems instead
generate candidate solutions, which are then reduced to canonical form using
canonical label-ling tools such as nauty [9], bliss [10], or saucy [11]. This app-
roach can be highly effective since these tools are amazingly efficient, but it
can be overwhelmed by generating enormous numbers of copies of isomorphic
graphs. For example there are 36,028,797,018,963,968 adjacency matrices on 11
vertices which is considerably more than the number of canonical graphs.

Ideally we would like to impose constraints defining the properties of the
graph we are searching for together with a compact constraint on the structural
properties of the graph to eliminate all non-canonical solutions. Then we could
exploit state of the art declarative solvers, to solve graphs problems with arbi-
trary constraints and objective functions without being overwhelmed by sym-
metry in the search.

This paper makes two contributions. First, we introduce a polynomial sized
SAT encoding of a partial symmetry-breaking predicate which exploits structural
information in the style of nauty which eliminates many more non-canonical
graphs than standard lex-based approaches. When combined with lexicographic
symmetry breaking this predicate remains polynomial and breaks even more
symmetries. Second, we illustrate how a technique, first presented in [12], can be
generalized to compute complete symmetry-breaking predicates which enhance
the nauty style structural break. While these predicates could be exponential
in size, we show that they are very small in practice. We present experimental
results to demonstrate the impact of both types of nauty style symmetry breaks:
partial and complete.

The computations throughout the paper are performed using the finite-
domain constraint compiler BEE [13] which compiles constraints to CNF, and

1 We restrict our consideration here to static symmetry breaking, rather than dynamic
approaches such as SBDS [7] or LDSB [8].

Breaking Symmetries in Graphs: The Nauty Way 159

solves it applying an underlying SAT solver. We use Glucose 4.0 [14] and Clasp
3.1.3 [15] as the underlying SAT solvers and specify for each computation which
solver was used. All computations were performed on a cluster of Intel E8400
cores, each clocked at 2 GHz, able to run a total of 790 parallel threads. Each
of the cores in the cluster has computational power comparable to a core on a
standard desktop computer. Each SAT instance is run on a single thread.

In Sect. 2 we present preliminaries on graphs, graph isomorphism, on the
nauty approach to graph isomorphism, and on symmetry breaking in graph
search problems. Section 3 describes a symmetry breaking predicate which
exploits structural information, emulating the nauty algorithm. This section also
presents an experimental evaluation comparing the new symmetry breaks with
other existing techniques. Finally, Sect. 4 concludes.

2 Preliminaries

2.1 Graphs, Permutations, Graph Isomorphism, Canonical Graphs

Throughout this paper we consider finite and simple graphs (undirected with no
self loops). The set of simple graphs on n nodes is denoted Gn. We assume that
the vertex set of a graph, G = (V,E), is V = {1, . . . , n} and represent G by its
n× n adjacency matrix A defined by Ai,j = (1 if (i, j) ∈ E else 0). We write Ai

to denote the ith row of A.
The set of permutations π : {1, . . . , n} → {1, . . . , n} is denoted Sn. For

convenience, we shall use πi,j to denote the permutation swapping i with j that
maps every other element to itself.

For G = (V,E) ∈ Gn and π ∈ Sn, we define π(G) = {V, {(π(u),π(v))|(u, v) ∈
E)}. Permutations act on adjacency matrices in the natural way: If A is the
adjacency matrix of a graph G, then π(A) is the adjacency matrix of π(G)
obtained by simultaneously permuting with π the rows and columns of A.

Two graphs G1, G2 ∈ Gn are isomorphic, denoted G1 ≈ G2, if there exists a
permutation π ∈ Sn such that G1 = π(G2). Sometimes we write G1 ≈π G2 to
emphasize that π is the permutation such that G1 = π(G2). For sets of graphs
H1,H2, we say that H1 ≈ H2 if for every G1 ∈ H1 (likewise in H2) there exists
G2 ∈ H2 (likewise in H1) such that G1 ≈ G2. The equivalence classes of G
modulo ≈ is denoted G≈

n .
It is usual to define the canonical representation of (an equivalence class of)

a graph in terms of some total ordering. A classic choice is the lexicographic
ordering on graphs.

Definition 1 (lex ordering graphs). Let G1, G2 ∈ Gn and let s1, s2 be the
strings obtained by concatenating the rows of the upper triangular parts of their
corresponding adjacency matrices A1, A2 respectively. Then, G1 ≼lex G2 if and
only if s1 ≼lex s2. We also write A1 ≼lex A2.

The canonical representation of a graph, with respect to a given total order,
is then the minimal element of its equivalence class.

160 M. Codish et al.

Definition 2 (canonicity). The canonical representation of a graph G ∈ Gn

with respect to a total ordering ≼ is can≼(G) = min≼
{

π(G)
∣∣π ∈ Sn

}
.

The combination of Definitions 1 and 2 provides a simple notion of canon-
icity defined in terms of lexical ordering of graphs which is often attributed to
Read [1]. However, this definition completely ignores all of the structural infor-
mation present in the graphs. A simple example of structural information is to
focus on the degrees of vertices. Definitions that take advantage of structural
properties of graphs simplify the processes of testing for graph isomorphism and
testing for canonicity.

A structural property of a graph G is one which is invariant under permuta-
tion. In particular, if the property holds for a vertex v of G, then for a permuta-
tion π, it will hold also for π(v) of π(G). For simplicity, we will view a structural
property of G as a mapping µG of graph vertices to integers such that for any
permutation π and vertex v, µG(v) = µπ(G)(π(v)). We often omit the subscript
and write µ. For intuition, consider the structural property of vertex degree
µ = deg where degG(v) is the degree of v in G. For a structural property, µG,
on a graph G with vertices V = {1, . . . , n}, we denote µ̄G = ⟨µG(1), . . . , µG(n)⟩.
Given µ, we introduce a total ordering ≼µ on graphs defined as follows.

Definition 3 (µ ordering graphs). Let µ be a structural property and
G1, G2 ∈ Gn. Then, G1 ≼µ G2 ⇐⇒ (µ̄G1 ≻lex µ̄G2) ∨ ((µ̄G1 = µ̄G2) ∧
(G1 ≼lex G2)).

It follows, from Definitions 2 and 3 that the canonical graph G′ = can≼µ(G)
has the property that µG′ is sorted in decreasing order. Hence, throughout the
paper, when given a structural property µ, we will focus on graphs G such that
µG is sorted in decreasing order. The reason that we take the reverse lexico-
graphic order on the integer vectors in Definition 3 is to be consistent with the
notion of a degree sequence [16]. When µ = deg and G is canonical, then µG is
the degree sequence of G.

Definition 4 (graph partitioning). A partitioning P of (vertex set) V ={
1, . . . , n

}
is a sequence of k disjoint sets ⟨P1, . . . , Pk⟩ such that V = P1 ∪ · · ·∪

Pk. We refer to these sets as parts (rather than partitions) to avoid possible
confusion. We also represent P as a sequence of integer values, P = ⟨p1, . . . , pn⟩
such that 1 ≤ pi ≤ k for 1 ≤ i ≤ n. Here, pi = j means that vertex i is in
part j. So, for 1 ≤ j ≤ k we have Pj =

{
i ∈ V

∣∣pi = j
}
. To remove ambigu-

ity from this representation, we assume that P is the smallest sequence (in the
reverse lexicographic order) defining the given partitioning. We shall use P(i) to
denote the part containing vertex i (that is, pi). When referring to a sequence of
partitionings, Pk shall be used to denote the kth element of the sequence.

The following example illustrates how structural information can be applied
to partition the nodes of a graph. In the example, one can view the degree
sequence of the graph as inducing a partitioning.

Breaking Symmetries in Graphs: The Nauty Way 161

Fig. 1. (a) A graph with partitions induced by degree, and (b) its canonical adjacency
matrix under ≼deg with its degree sequence and binary partitioning to the right.

Example 1. Consider the graph G shown in Fig. 1(a). Discriminating vertices by
degree establishes the partitioning ⟨{v5}, {v1, v2, v3}, {v4}⟩. The canonical graph
candeg(G) will contain these parts in order. Finding the canonical representa-
tion of G requires finding the permutation of {v1, v2, v3} which minimises the
adjacency matrix. The resulting canonical matrix is shown in Fig. 1(b) together
with the corresponding degree sequence. On the right is a binary representation
of the partitioning. A one at row i < n indicates that vertex i+ 1 starts a new
part, and a zero, that it is in the same part. ⊓0

2.2 The Nauty Approach

The dominant approach for constructing canonical representations of graphs is
the nauty algorithm, due to McKay [9,17]. Our approach draws on the design of
this algorithm. The algorithm consists of three phases applied in alternation to
find a canonical representation of a given graph. Taking a very simplified view
of the algorithm, we describe it in terms of two phases. The third phase, called
automorphism detection [9,17], is not detailed in our presentation. First, nauty
partitions the vertices of the graph based on structural information. Then, it
searches for a canonical representation given the partitioning of the first phase.

Phase One. Structural information in nauty: For a given graph,G = (V,E),
The algorithm extracts structural information derived from vertex degrees to
incrementally refine a partitioning of the vertices starting from a single part,
P = ⟨V ⟩. We first introduce the notion of degree by partition.

Definition 5 (degree by partition). Let G = (V,E), V = {1, . . . , n}, P =
⟨P1, . . . , Pk⟩ be a partitioning of V , and v ∈ V . Then, deg(v,P) = ⟨d1, . . . , dk⟩
where di =

∣∣{ u ∈ Pi

∣∣ (u, v) ∈ E
}∣∣ counts the degrees of v into the parts of P.

Algorithm 1 is what happens in the first phase of nauty. In the terminology
of [9,17], the partitioning computed by Algorithm 1 is said to be equitable; and
a partitioning is said to be discrete if every equivalence class is a singleton.

162 M. Codish et al.

Algorithm 1. nauty phase 1: partitioning
1: procedure partition-refinement(G = (V,E))
2: init P = ⟨V ⟩
3: while P ̸= refine(G,P) do
4: P ← refine(G,P)

5: return P

6: procedure refine(G,P)
7: denote P = ⟨P1, P2 . . . Pk⟩
8: for Pi ∈ P do
9: replace Pi by its partitioning ⟨U1, ...Uk⟩ s.t ∀u, v ∈ Pi :
10: u, v ∈ Uj iff degG(u,P) = degG(v,P)

11: return P

Example 2. Recall the graph described in Example 1. The nauty algorithm,
starting with P0 = ⟨{v1, . . . , v5}⟩, first distinguishes vertices by degree, obtain-
ing the partitioning P1 = ⟨{v1, v2, v3}, {v4}, {v5}⟩ as in Example 1. Observe
that deg(v1,P1) = ⟨2, 0, 0⟩ and deg(v2,P1) = deg(v3,P1) = ⟨1, 1, 0⟩. Hence, in
P2 = ⟨{v1}, {v2, v3}, {v4}, {v5}⟩, the vertex v1 is separated from v2 and v3. The
partitioning P2 is equitable – deg(v2,P2) = deg(v3,P2) = ⟨1, 0, 1, 0⟩. ⊓0

v1

v2 v3

v4 v5

v1

v2 v3

v4 v5

(a) (b)

Fig. 2. The graph from Fig. 1 with (a) its partitioning P1 of vertices by degree, and
(b) its refined partitioning P2. The partitioning in (b) is equitable.

Note that the order in which possible refinements are applied will not
affect the composition of the resulting partitioning, but may change the order
of parts. Any such order is acceptable, but it must be uniquely determined.
In the following, we shall assume that at each step i > 0, listing the vari-
ables in Pi from left to right as ⟨vj1 , . . . , vjn⟩ then the sequence of vectors,
deg(vj1 ,Pi−1), . . . , deg(vjn ,Pi−1) is sorted in decreasing lexicographic order.

If the partition Pi−1 is derived from a structural property, then the compo-
sition and order of its parts must be invariant under permutation. So then is
each vector deg(vj ,Pi−1), as permuting vertices within a part has no effect on
the degrees – thus Pi is also structural.

Breaking Symmetries in Graphs: The Nauty Way 163

Phase Two. Searching for a canonical representation: In the following we
denote by P the equitable partitioning resulting from phase one. If P is discrete,
then a canonical labeling of vertices has been established. However, this is rarely
the case. Indeed, for regular graphs all vertices have the same degree, and are
thus indistinguishable. In search for a canonical representation, nauty artificially
selects some vertex in a non-singleton set P ∈ P to be made distinct from the
other vertices of P . However, as these vertices are thus far indistinguishable, this
cannot be done in a label-invariant fashion. So, each vertex in P is tentatively
selected in turn, and a candidate discrete partitioning recursively constructed
for each. The canonical labeling is then the candidate partitioning which yields
the smallest graph under some total ordering.

We do not elaborate on the details of how this search is made as efficient as
possible in nauty as the encodings introduced in this paper will take an alterna-
tive approach to search for a canonical representation given a partitioning P.

2.3 Graph Search Problems and Breaking Symmetry

Graph search problems are about the search for a graph that satisfies certain
properties. We will focus on properties that relate to the structure of the graph
that ignore the particular names of the vertices. So if G is a solution to a graph
search problem, then so is any G′ that is isomorphic to G. More formally, an n-
vertex graph search problem is a predicate, ϕ(A), on an n×nmatrix A of Boolean
variables which is closed under isomorphism. A solution to ϕ(A) is a satisfying
assignment of the conjunction ϕ(A)∧adjn(A) where adjn(A) constrains A to be
an n × n adjacency matrix. In Constraint (1), the left conjuct states that there
are no self loops, and the right conjunct, that the edges are undirected.

adjn(A) =
∧ {

¬Ai,i

∣∣1 ≤ i ≤ n
}

∧
∧ {

Ai,j ↔ Aj,i

∣∣1 ≤ i < j ≤ n
}

(1)

The set of solutions of graph search problem ϕ is denoted sol(ϕ) and to make
the variables explicit we write sol(ϕ(A)). Viewing sol(ϕ) as a set of graphs, note
that sol(true) = Gn. The set sol(ϕ) may include many isomorphic graphs; we
write sol≈(ϕ) to denote the set of solutions modulo graph isomorphism.

Example 3. The n vertex graph search problem ϕtm(n)(G) is about the search for
a Total Magic (TM) graph with n vertices. A graph G = (V,E), with |V | = n and
|E| = m, is TM if there exist a one-to-one labeling λ : V ∪E →

{
1, . . . , n+m

}

and two integer values h, k which satisfy the constraints below. The graph is
modeled as an n×n adjacency matrix A of Boolean variables. The edges are the
unknown, hence m is unknown. The labeling is modeled as a length n vector λV

of integer variables for the vertices, and an n× n matrix λE of integer variables
for the edges. Note that both A and λE are symmetric. Let M = n(n− 1)/2 be
the maximum number of edges. Values in λV are between 1 and n+M . Values
in λE are between 0 and n+M where 0 is the value for “non-edges”: λE

i,j is zero
if and only if Ai,j is false.

Constraint (2) enforces that A is an adjacency matrix, and thatm is the num-
ber of edges in the graph. Constraint (3) enforces that node labels are between

164 M. Codish et al.

1 and n+M , that edge labels are between 0 and n+M and are non-zero if the
edge exists, and λE is symmetric. Constraint (4) enforces that nodes and edges
are labeled differently (the λE

ij with label 0 are non-existing edges), and that the
maximum label used is n+m, hence there is a bijection from vertices and edges
to

{
1, . . . , n+m

}
. We use++ to denote vector concatenation. Constraint (5)

ensures the sum of the labels of each edge and its endpoints is k and the sum of
the labels of each node and its incident edges is h.

adjn(A) ∧ m =
∑

i<j

Aij (2)
∧

1≤i<j≤n

(
(1 < λV

i ≤ n+M) ∧ (0 ≤ λE
ij ≤ n+M)

∧ (λE
ij > 0 ↔ Aij) ∧ (λE

ij = λE
ji)

)
(3)

alldifferent except 0(λV++
[
λE
ij |i < j

]
) ∧ max(λV++λE) = n+m (4)

∧

i<j

Aij → (λV
i + λV

j + λE
ij = k)

∧ ∧

i∈V

(λV
i +

∑

j∈V

λE
ij) = h (5)

There are only 6 TM graphs with up to 9 vertices and there exist no 10–11 vertex
TM graphs [2]. The only known TM graphs, with >11 vertices, are composed
of an odd number of triangles, or of an even number of triangles with a path of
length 2. It is unknown if there exist other TM graphs with >11 vertices. ⊓0

Example 4. Several interesting relaxations of Total Magic graphs weaken the
TM conditions. A graph is TM modulo p [2] if we replace the magic conditions
with equality modulo p, that is replace Eq. (5) by
∧

i<j

Aij → (λV
i + λV

j + λE
ij) ≡ k mod p

∧ ∧

i∈V

(λV
i +

∑

j∈V

λE
ij) ≡ h mod p (5′)

We are often interested in finding graphs which are TM modulo several radices:
p1, p2, . . . , pk. ⊓0

Solutions of a graph search problem are closed under permutations of the
vertices. When solving graph search problems, it is essential to restrict the search
space to break the symmetry between isomorphic solutions. Ideally, we would
like to restrict the space to canonical representations.

Note however that we face a different problem to the methods described in
Sect. 2.2. Canonicalization methods such as nauty take a fixed graphG, and com-
pute some canonical representation can(G). Here, we must find some unknown
graph satisfying ϕ, but wish to restrict our search to canonical representatives –
that is, we wish to only accept graphs satisfying G = can(G).

A symmetry break is a predicate σ(A) which is satisfied by at least one graph
in each isomorphism class; a complete symmetry break is satisfied by exactly one
graph in each equivalence class. A canonizing predicate, with respect to a total
order ≼ on graphs, is satisfied by exactly the set of minimal representations
under ≼. We shall use solσϕ(A) to denote the set of solutions to ϕ(A) which
satisfy the symmetry breaking predicate σ(A).

Example 5. The following is a complete symmetry break, and a canonizing pred-
icate with respect to ≼lex. It constrains A to be minimal with respect to all
permutations of A.

Breaking Symmetries in Graphs: The Nauty Way 165

σclex(A) =
∧

π∈Sn

A ≼lex π(A) (6)

Unfortunately the set Sn is prohibitively large, so this predicate is not at all
practical. ⊓0
Example 6. The following is a partial symmetry break, introduced in [18]. It is
a relaxation of σclex. It constrains A to be minimal with respect to all those
permutations of A which swap a pair of elements.

σplex(A) =
∧

1≤i<j≤n

A ≼lex πi,j(A)

In practice this breaks many symmetries, and is of manageable size, and hence
is often practically useful. ⊓0

In the following let P = ⟨p1, . . . , pn⟩ be an unknown partitioning of the
vertices V = {1, . . . , n} of a graph expressed in terms of integer variables (so,
when pi = pj then vertices i and j are in the same part). We will make use of
the following predicates:

The predicate mono(P) specifies that P, represents a non-increasing sequence
of values.

mono(P) =
n−1∧

i=1

P(i) ≥ P(i+ 1)

The predicate plex(A,P) specifies that an adjacency matrix A is minimal with
respect to permutations that swap pairs of vertices in the same part of P.

plex(A,P) =
∧

1≤i<j≤n

P(i) = P(j) → A ≼lex πi,j(A)

The predicate clex(A,P) specifies that an adjacency matrix A is minimal with
respect to permutations that preserve the partitioning P.

clex(A,P) =
∧

π∈Sn

π(P) = P → A ≼lex π(A) (7)

Note that plex(A,P) and clex(A,P) are not symmetry breaks unless we also
constrain A to have a structural property with the corresponding partitioning P.
We illustrate this in the following example.

Example 7. Consider a structural property µ and a predicate µ(A,P) which
encodes that A is an n × n adjacency matrix (of Boolean variables) and P =
⟨p1, . . . , pn⟩ is a vector of integer variables such that pi = µA(i). For instance,
when µ = deg we have

deg(A,P) =
∧

1≤i≤n

P(i) = ΣAi

The following are respectively partial and complete symmetry breaks:

σplex
µ (A) = ∃P. µ(A,P) ∧ mono(P) ∧ plex(A,P)

σclex
µ (A) = ∃P. µ(A,P) ∧ mono(P) ∧ clex(A,P) ⊓0

166 M. Codish et al.

3 The Nauty Encoding

In this section we describe a SAT encoding to break symmetries in graph search
problems inspired by the way that nauty is applied to map a given graph to a
canonical representation. We introduce a complete symmetry breaking predicate,
σnauty(k), which similar to the nauty algorithm consists of two “phases” and takes
the form:

σnauty(k)(A) = ∃P. σphase1
nauty(k)(A,P) ∧ σphase2

nauty(k)(A,P)

The predicate σphase1
nauty(k)(A,P) accepts pairs consisting of an adjacency matrix A

and a partitioning P such that executing the first phase of the nauty algorithm
with k iterations on A results in the partitioning represented by P, and the vertex
order of A respects that partitioning. It further restricts A applying plex(A,P).
The predicate σ

phase2
nauty(k)(A,P) accepts a pair (A,P) if A is minimal in the class

of graphs isomorphic to A which preserve the structural information in P. The
predicate σnauty(k)(A) accepts canonical adjacency matrices with respect to the
structural information derived in the first phase of the nauty algorithm (k iter-
ations). It is a complete symmetry break.

The essential difference between the encoding, σnauty(k)(A), and the nauty
algorithm presented in Sect. 2.2 is that the nauty algorithm performs on a given
graph where as the encoding, σnauty(k)(A), specifies constraints on an unknown
graph A, restricting solutions for A to be canonical.

A partitioning P is represented as a vector ⟨p1, . . . , pn⟩ of integer variables
such that vertices vi and vj are in the same part if and only if pi = pj . When
P is constrained to be monotone (i < j → P(i) ≤ P(j)) it may alternately
be represented as a vector ∆ of n − 1 of Boolean variables, such that ∆i ↔
P(i) < P(i+1). Then vi and vj are in the same part if and only if ∆i = ∆i+1 =
. . . = ∆j−1. The Boolean representation is more compact and performs better in
our applications. Therefore, the nauty encoding is presented using the Boolean
representation. Under the Boolean encoding, the predicate plex becomes:

plex(A,∆) =
∧

1≤i<j≤n

(
∧

i≤k<j

∆k) → A ≼lex πi,j(A)

3.1 Encoding the First Phase of Nauty

To encode σphase1
nauty(k), we emulate the iterative refinement of partitionings. Let A be

an n×n adjacency matrix and let ∆i be the Boolean representation of the parti-
tioning at step i of the nauty algorithm. We define a predicate refine(∆i, A,∆i+1)
that specifies the partitioning, ∆i+1 at the next step of the algorithm. We then
specify the predicate σphase1

nauty(k) as an iteration of this refinement, starting from
the initial partition ∆0 = ⟨0, . . . , 0⟩.

σphase1
nauty(k)(A,∆) = iteratek(∆0, A,∆) ∧ plex(A,∆)

iteratek (∆, A,∆′) =
{

∃∆′′. refine(∆, A,∆′′) ∧ iteratek−1(∆′′, A,∆′) if k > 0
∆ = ∆′ if k ≤ 0

Breaking Symmetries in Graphs: The Nauty Way 167

As the graph is a “variable” (not given), we do not know in advance how
many iterations are required to reach a fixpoint with respect to the structural
information. However, as each non-trivial refinement must split some equivalence
class, this process must reach a fixpoint after, at most, n iterations.

To facilitate the formal specification of the predicate refine(∆, A,∆′) we first
introduce several “helper” predicates.

The predicate P≤(∆, L): To compute structural information, it will be useful
to identify those vertices appearing in parts up to the part containing some
vertex v. The Boolean matrix L encodes this information.

P≤(∆, L) =
∧

1≤i,j≤n

{
Li,j if j ≤ i
Li,j ↔ Li,j−1 ∧ ¬∆j otherwise

The predicate lex(∆,M): This predicate specifies that the n rows of matrix M
are non-increasing in the lexicographic order following the length n − 1 vector
∆. The intention is that ∆ specifies a partitioning.

lex(∆,M) =
∧

1≤i<n

(¬∆i → Mi ≽lex Mi+1)

The predicate deg(A,∆,M): This predicate defines a relationship between: an
n×n matrix, A, of Boolean variables (representing an unknown graph), a length
n− 1 vector, ∆, of Boolean variables (representing a partitioning of the vertices
in A), and an n×n matrix, M , of integer variables such that Mi,j represents the
number of edges from vertex i to vertices in or before the part number containing
vertex j. The rows of M are ordered lexicographically within each component
of P. The predicate is specified as:

deg(A,∆,M) =
∧

1≤i,j≤n

(
Mi,j =

n∑

k=1

Ai,k ∧ Lj,k

)
∧ lex(∆,M)

The predicate refine(∆, A,∆′): This predicate states that ∆′ is a refinement
of the partitioning ∆ of graph A obtained from a single iteration of partition
refinement. The matrix M represents structural information of the vertices with
respect to the partitioning ∆. Vertices are distinguished in the refinement ∆′:
either because they were already distinguished in ∆, or else because they are
distinguished by the corresponding structural information in M .

refine(∆, A,∆′) =
(

∃M. deg(A,∆,M) ∧
∧

1≤i<n

(∆′
i ↔ ∆i ∨ Mi ≻lex Mi+1)

)

The encoding of predicate σ
phase1
nauty(k) is polynomial in the number of both

clauses and variables. The dominating component of refine is deg, which intro-
duces O(|V |2) order-encoded integer variables whose definitions are sums of
Booleans, which have standard polynomial-size encodings (e.g. [13]).

168 M. Codish et al.

Table 1. Enumerating graphs using σphase1
nauty(k). Column “sat” is Clasp solving time (sec).

n |G≈
n | σ

phase1
nauty(0) == σplex [18] σ

phase1
nauty(1) σ

phase1
nauty(2)

Cls Vars Sat Sols Cls Vars Sat Sols Cls Vars Sat Sols

3 4 2 3 0.00 4 76 21 0.00 4 357 91 0.00 4

4 11 20 10 0.00 11 243 56 0.00 11 1142 279 0.00 11

5 34 70 24 0.00 43 551 110 0.01 34 2618 610 0.01 34

6 156 165 48 0.00 276 1048 192 0.01 158 5113 1165 0.06 156

7 1,044 320 85 0.02 3,158 1765 301 0.06 1,141 8870 1969 0.45 1,048

8 12,346 550 138 0.32 66,595 2741 440 0.59 14,745 14196 3067 6.63 12,642

9 274,668 870 210 12.13 2,587,488 4015 612 12.51 355,294 21422 4504 159.40 284,041

10 12,005,168 1295 304 1035.51 184,192,329 5646 830 819.93 16,255,967 31123 6435 6511.07 12,442,095

Table 1 illustrates the impact of structural information when breaking sym-
metries and enumerating the graphs obtained with n vertices. The column
headed by |G≈

n | indicates the number of non-isomorphic graphs with n vertices.
These numbers correspond to sequence A000088 of the OEIS [19]. The next
columns, in groups of 4, are headed by σphase1

nauty(k) for 0 ≤ k ≤ 2. Each such four-
some details the size of the SAT encoding (number of clauses and variables), sat
solving time (for all solutions in seconds), and the number of solutions found.
When k = 0 there is no structural information and the encoding corresponds to
the one introduced in [18]. When k = 1, the nodes of the graph are partitioned
according to degree information. When k > 0, the symmetry breaks are more
refined than the one introduced in [18]. Notice that as we add structural infor-
mation in the encoding (as k increases), the number of graphs decreases. For
example, when n = 10, using k = 0 there are circa 184million solutions, when
k = 1, circa 16million, and k = 2, circa 12million (close to the true number
|G≈

10|). Note that as we add structural information, the cost of the solving time
increases considerably. In the following we will show how to counter this increase.

Table 2 summarizes an application of symmetry breaking with the first phase
of nauty to search for all TM graphs (modulo 2,3) (see Example 4). The columns,
in groups of 4, are headed by σphase1

nauty(k) for 0 ≤ k ≤ 3. Each such foursome details
the size of the SAT encoding (number of clauses and variables), sat solving time
in seconds unless indicated otherwise, and the number of solutions generated.
The table illustrates the high cost of the nauty encoding: we can solve up to
n = 9, and then only for k = 1. We will come back to resolve this problem below
by decomposing the instances to consider given nauty partitionings.

3.2 Encoding the Second Phase of Nauty

We present a symmetry break predicate, σphase2
nauty(k), which eliminates isomorphic

graphs that have not been ruled out by the first phase predicate, σphase1
nauty(k). In

the second phase of nauty, the graph G is given, and so is the partitioning P,
from its first phase computation. In our case, we seek a predicate that states
that an unknown graph, G, is canonical. The search strategy applied in nauty
is not easily modeled as a propositional formula when G is unknown and so we

Breaking Symmetries in Graphs: The Nauty Way 169

Table 2. TM (modulo 2,3) graphs using σphase1
nauty(k) (48 h timeout using Clasp).

σ
phase1
nauty(0) == σplex [18] σ

phase1
nauty(1) σ

phase1
nauty(2) σ

phase1
nauty(3)

n Cls Vars Sat Sols Cls Vars Sat Sols Cls Vars Sat Sols Cls Vars Sat Sols

3 791 216 0.00 3 852 231 0.00 3 1139 290 0.00 3 1426 349 0.00 3

4 1645 422 0.01 4 1817 459 0.02 4 2702 626 0.02 4 3587 793 0.02 4

5 3024 717 0.16 16 3379 785 0.13 13 5398 1139 0.15 13 7417 1493 0.29 13

6 4973 1105 2.03 60 5606 1219 1.49 39 9574 1896 1.75 39 13542 2573 3.89 39

7 7705 1590 36.06 426 8715 1761 24.27 179 15658 2908 72.60 171 22601 4055 140.68 171

8 11438 2180 6891.22 7087 12936 2419 1795.15 1647 24154 4217 9799.19 1447 35372 6015 15828.39 1430

9 16275 2881 T.O - 18385 3200 39.71 h 36984 35456 5844 T.O - 52527 8488 T.O -

introduce an alternative approach, assuming that the partitioning P, from the
first phase, is given. As a starting point, consider clex(A,P) given as Eq. (7).
This predicate provides a complete symmetry break when combined with σphase1

nauty .
However, its implementation is inefficient as the encoding must consider each of
the permutations in Sn which preserve P, and their number may be huge.

In [12] the authors show that complete symmetry breaks for graph isomor-
phism with n vertices can be obtained using only a small fraction of the required
n! permutations. For example, [12] reports that a complete symmetry break for
n = 10 vertices involves only 7853 permutations whereas the complete symme-
try break σclex(A) introduced as Eq. (6) in Example 5 involves 10! = 3,628,800
permutations. In this paper we enhance the approach of [12] to consider parti-
tionings expressed by encodings of the first stage of the nauty algorithm.

A common approach for improving performance of combinatorial existence
checking is decomposition: splitting the problem into a manageable set of disjoint
subproblems, each of which can (ideally) be solved more easily. We can decom-
pose a graph search problem with respect to the partitioning inferred by σ

phase1
nauty(k).

This results in a decomposition to 2n−1 subproblems, one for each partitioning.
To compute a concise and complete symmetry break for a partitioning P cor-

responding to the first phase σ
phase1
nauty(k) we apply the same approach as advocated

in [12], but restricted to break symmetries on graphs which have the structural
information P after k iterations of the nauty first phase algorithm. This com-
putation is performed by application of Algorithm 2 where we denote: (a) SP

n

the set of permutations that preserve a partitioning P, and (b) for Π ⊆ Sn,
minΠ(G) =

∧ {
G ≼ π(G)

∣∣π ∈ Π
}
.

For a given partitioning P and value k, Algorithm 2 starts with an empty
set of permutations Π and iterates adding permutations as long as the condition
in Line 3 holds. The condition seeks a pair (G,π) such that π(G) ≼ G, where
G ∈ sol(σphase1

nauty(k)(A,P)) and π preserves P. Such a graph violates clex(P, G) and
hence π is added to Π. The implementation performs this check by invoking a
SAT solver, the same as in [12].

We say that Π is redundant if there exists π such that for all G,
minΠ(G) ↔ minΠ\{π}(G). The set computed by the while-loop at Line 3 may
be non-minimal, as an existing permutation may become redundant in view of

170 M. Codish et al.

Algorithm 2. Compute Canonizing Set
1: procedure Compute-Canonizing-Set(P, k)
2: Init: Π = ∅
3: while ∃(G,π) ∈ (sol(σphase1

nauty(k)(A,P)), SP
n) s.t minΠ(G) ∧ π(G) ≺ G do

4: Π = Π ∪ {π}
5: for each π ∈ Π do
6: if ∀G ∈ sol(σphase1

nauty(k)(A,P)): minΠ\{π}(G) ⇒ G ≼ π(G) then

7: Π = Π \ {π}
8: return Π

permutations added later. Thus the algorithm then iterates to remove redundant
permutations applying the for-loop at Line 5.

Table 3 is about computing the permutations to make the nauty partitionings
complete (phase2). For each n (number of vertices), we indicate (“parts”) the
number of partitions. We detail separately the cost of computing the permuta-
tions for the regular partitioning (“regular part”) where degree-based structural
information has no impact. These have the most permutations and are the most
costly to compute. Then for σnauty(1), σnauty(2) and σnauty(3) we detail the number
of permutations and the time to compute them using Algorithm 2. For the num-
ber of permutations we detail x/y where x is the largest number of permutations
computed for a single partitioning, and y is the total number. For the time we
detail x/y where x is the longest time to compute for a single partitioning and
y is the total time.

Notice how the required number of permutations decreases as structural
information is added (k increases). For n = 10 we have 8608 permutations with
k = 1, 3703 with k = 2, and 1497 when k = 3. Recall that without structural
information 7853 permutations were required [12], and computation beyond 10
vertices was not possible. Moreover note that because of the decomposition to
partitionings we require no more than 37 permutations to break all symmetries
on 10 vertices given a partitioning derived from σphase1

nauty(3). The permutations com-
puted here provide complete symmetry breaks for any graph search problem with
up to 12 vertices.

Table 3. Canonizing sets per partitioning. Time in seconds except under the line (for
n = 11, 12) where in hours. Timeout is 48 h using Glucose.

n Parts Regular part σnauty(1) σnauty(2) σnauty(3)
Perms Time Perms Time Perms Time Perms Time

6 32 0 0.22 1/2 0.09/1.73 0/0 0.12/2.60 0/0 0.18/3.87

7 64 2 0.14 5/49 0.25/6.24 1/2 0.24/10.75 0/0 0.37/15.68

8 128 12 1.22 18/330 2.49/35.11 5/93 1.29/62.21 6/40 2.33/82.52

9 256 20 4.54 44/1875 22.38/303.19 13/640 4.16/400.65 14/225 7.88/512.03

10 512 144 447.48 215/8608 750.2/4649.30 51/3703 67.16/3309.17 37/1497 95.83/4576.36

11 1024 346 0.84 1030/44521 8.36/44.9 169/16391 0.22/9.62 171/6718 0.19/12.91

12 2048 a13139 16.32 - T.O 718/77158 3.08/99.44 577/33182 2.22/116.2
a To stay within the time-out, the computation of these permutations omits the removal of redundant
permutations, skipping the for-loop at Line 5 in Algorithm 2.

Breaking Symmetries in Graphs: The Nauty Way 171

Table 4. Enumerating TM (modulo 2,3) graphs using σnauty(k) complete symmetry
breaks. Time in seconds except under the line (for n = 9, 10) where in hours. Column
1 computed with Clasp, column 2,3 computed with Glucose. (120 h timeout).

n σ∗
clex σnauty(1) σnauty(2) sols

Cls Vars Sat Inst. Cls Vars Sat Inst. Cls Vars Sat

3 791 216 0.00 4 346 80 0.00/0.00 4 346 80 0.00/0.00 3

4 1640 421 0.02 11 935 218 0.00/0.02 11 1053 233 0.00/0.02 4

5 3179 748 0.13 31 1783 409 0.01/0.18 33 2163 466 0.01/0.21 13

6 5093 1129 1.03 102 3088 699 0.06/1.52 143 4254 882 0.04/1.92 39

7 8710 1791 14.49 342 4794 1060 1.07/26.19 755 7293 1462 0.33/28.24 171

8 21633 4219 304.20 1213 7091 1524 18.16/766.32 4817 11503 2220 5.87/678.68 1425

9 105030 20632 11.91 4361 10079 2104 0.17/11.73 32883 16863 3140 0.07/12.71 29415

10 1428281 284565 T.O 16016 14466 2925 T.O 223554 23572 4233 114.51/2215.12 1099398

A first attempt to enumerate all TM graphs modulo 2,3 using the complete
symmetry breaks σnauty(k) per partitioning failed. The instances are simply too
hard. To this end, we took a second approach where the encoding for each
partitioning was enhanced with additional information on the degree sequences
of solutions. Namely, the implementation considers for each partition all possible
relevant degree sequences and solve each instance separately.

Table 4 summarizes the results. For each n we detail the results obtained
using the complete symmetry breaks of [12] denoted by σ∗

clex (these symmetry
breaks are equivalent to σclex(A) but are much compact), and then the results
for σnauty(k) with k = 1, 2. Here we detail the total number of instances (on all
partitionings). For time we detail x/y where x is the time for the hardest instance
and y is the total time. The number of solutions is the same as this is, in all
three cases, the number of canonical solutions.

4 Conclusion

This paper presents polynomial-size static symmetry breaking predicates which
encode structural properties in the same way that nauty exploits information
when it maps graphs to their canonical representations. These structural breaks
apply to strengthen existing incomplete symmetry-breaking predicates, and can
be extended into complete symmetry breaks. These structural properties also
yield a natural strategy for problem decomposition. We have described a SAT
encoding for the structural symmetry-breaking predicates, and applied these to
compute compact, complete symmetry breaks for graphs of up to 12 vertices. We
also demonstrated the effectiveness of these structural techniques in accelerating
the enumeration of TM graphs modulo 2, 3. Ongoing work focuses on an encoding
that exploits on richer structural properties than the current focus on vertex
degree. As described in [17], this is expected to improve the situation when
breaking symmetries on regular graphs. We also plan to apply the same technique
to compute sets of permutations with which to break symmetries for a given
graph search problem. We expect to then be able to apply the technique for
larger instances than those we can do now.

172 M. Codish et al.

References

1. Read, R.C.: Every one a winner or how to avoid isomorphism search when cata-
loguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978)

2. Jäger, G., Arnold, F.: SAT and IP based algorithms for magic labeling including a
complete search for total magic labelings. J. Discrete Algorithms 31, 87–103 (2015)

3. Puget, J.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Methodologies for Intelligent Systems, 7th International Symposium, ISMIS
1993, Trondheim, Norway, 15–18 June 1993, Proceedings, pp. 350–361 (1993)

4. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking pred-
icates for search problems. In: Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning (KR 1996), Cambridge,
Massachusetts, USA, 5–8 November 1996, pp. 148–159 (1996)

5. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Discrete Appl. Math. 155(12), 1539–1548 (2007)

6. Walsh, T.: General symmetry breaking constraints. In: Principles and Practice
of Constraint Programming - Cp. 2006, 12th International Conference, Cp. 2006,
Nantes, France, 25–29 September 2006, Proceedings, pp. 650–664 (2006)

7. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn,
W. (ed.) ECAI 2000, Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, Germany, 20–25 August 2000, pp. 599–603. IOS Press (2000)

8. Mears, C., de la Banda, G., Demoen, B., Wallace, M.: Lightweight dynamic sym-
metry breaking. Constraints 19(3), 195–242 (2013)

9. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87
(1981)

10. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Proceedings of the Ninth Workshop on Algorithm Engineering
and Experiments, SIAM, pp. 135–149 (2007)

11. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in
symmetry detection for CNF

12. Itzhakov, A., Codish, M.: Breaking symmetries in graph search with canonizing
sets. Constraints 21, 1–18 (2016)

13. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46,
303–341 (2013)

14. Audemard, G., Simon, L.: Glucose 4.0 SAT Solver. http://www.labri.fr/perso/
lsimon/glucose/

15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

16. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices (in Hungarian).
Mat. Lapok 11, 264–274 (1960). http://www.renyi.hu/∼p erdos/1961-05.pdf

17. McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symbolic Comput.
60, 94–112 (2014)

18. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, IJCAI/AAAI (2013)

19. Sloane, N.J.A. (ed.): The On-Line Encyclopedia of Integer Sequences. https://oeis.
org Accessed April 2016

http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
http://www.renyi.hu/~p_erdos/1961-05.pdf
https://oeis.org
https://oeis.org

Extending Broken Triangles and Enhanced
Value-Merging

Martin C. Cooper1, Achref El Mouelhi2(B), and Cyril Terrioux2

1 IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

2 Aix-Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296, 13397 Marseille, France

{achref.elmouelhi,cyril.terrioux}@lsis.org

Abstract. Broken triangles constitute an important concept not only
for solving constraint satisfaction problems in polynomial time, but also
for variable elimination or domain reduction by merging domain val-
ues. Specifically, for a given variable in a binary arc-consistent CSP, if
no broken triangle occurs on any pair of values, then this variable can
be eliminated while preserving satisfiability. More recently, it has been
shown that even when this rule cannot be applied, it could be possible
that for a given pair of values no broken triangle occurs. In this case, we
can apply a domain-reduction operation which consists in merging these
values while preserving satisfiability.

In this paper we show that under certain conditions, and even if there
are some broken triangles on a pair of values, these values can be merged
without changing the satisfiability of the instance. This allows us to
define a stronger merging operation and a new tractable class of binary
CSP instances. We report experimental trials on benchmark instances.

1 Introduction

Identifying tractable classes constitutes an important research goal in con-
straint programming. The broken-triangle property (BTP) defines a hybrid
tractable class [6,7]. This class has some interesting characteristics, both from
a theoretical and practical viewpoint: it generalises existing language-based
and structural classes and is solved in polynomial time by the algorithm
MAC which is omnipresent in constraint solvers [20]. Besides, many exten-
sions of the broken-triangle property have led to the definition of new tractable
classes [8,10,11,14,18,19]. Local versions of the BTP have also given rise to novel
reduction operations for CSP instances. In particular, in arc-consistent binary
CSP instance, if no broken triangle occurs on any pair of values in the domain
of a variable, then this variable can be eliminated without changing the satis-
fiability of the instance [2]. Even when this variable-elimination rule cannot be
applied, it can nevertheless happen that no broken triangle occurs on a particu-
lar pair of values. In this case, these two values can be merged into a single value
without changing the satisfiability of the instance [5]. This domain-reduction
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 173–188, 2016.
DOI: 10.1007/978-3-319-44953-1 12

174 M.C. Cooper et al.

operation, known as BT-merging, was found to be applicable in diverse bench-
mark domains, although extensive experimental trials would seem to indicate
that it is not useful, in terms of total solving time, as a preprocessing operation
in a general-purpose solver [4].

In the light of these results, in this paper we study a lighter version of BTP-
merging which allows the presence of some broken triangles on the pair of values
to be merged, thus giving rise to a stronger domain-reduction operation.

In the following section we recall basic definitions and notations used in the
rest of the paper. In Sect. 3 we introduce a new generic rule, called m-wBTP,
which allows us to merge two values even in the presence of some broken triangles.
We then show in Sect. 4 that, for sufficiently large m, this rule is maximal. We
go on to show, in Sect. 5, that this merging rule does not allow the elimination
of variables. Nevertheless, in Sect. 6 we show that it does allow us to define a
tractable class. We also compare m-wBTP with certain other generalisations of
BTP, such as k-BTP [8] and WBTP [19]. In Sect. 7 we report experimental trials
to evaluate the practical interest of 1-wBTP-merging.

2 Preliminaries

Constraint satisfaction problems (CSPs [17]) are at the heart of numerous appli-
cations in Artificial Intelligence and Operations Research. In this paper, we study
only binary CSP instances, defined formally as follows:

Definition 1. A binary CSP instance is a triple I = (X,D,C), where X =
{x1, . . . , xn} is a finite set of n variables, D = {D(x1), . . . , D(xn)} is a set of
domains containing at most d values, a domain for each variable, and C is a
set of binary constraints. Each constraint Cij ∈ C is a pair (S(Cij), R(Cij))
with:

• S(Cij) = {xi, xj} ⊆ X, the scope of the constraint,
• R(Cij) ⊆ D(xi) × D(xj), the relation specifying the compatibility of values.

If the constraint Cij is not defined in C, then we consider Cij to be a universal
constraint (i.e. such that R(Cij) = D(xi) × D(xj)).

The interaction between the values of each variable through the relations associ-
ated to constraints can be represented graphically by amicrostructure graph [13].
The vertices of this graph are thus the variable-value pairs (xi, vi) (vi ∈ D(xi))
and the edges are the tuples authorized by the constraints (that is, there is an
edge between the vertices (xi, vi) and (xj , vj) iff (vi, vj) ∈ R(Cij)). Given a
binary instance I, deciding whether I has a solution (an assignment (v1, . . . , vn)
such that ∀i, vi ∈ D(xi) and ∀i ̸= j, (vi, vj) ∈ R(Cij)), is well known to be
NP-complete. However, by imposing some restrictions on the constraint scopes
and/or relations, we can define tractable classes of instances which can be solved
in polynomial time. The BTP (Broken Triangle Property) tractable class, is an
important tractable class since it generalises certain previously known classes

Extending Broken Triangles and Enhanced Value-Merging 175

based exclusively on properties of the constraint scopes or the constraint rela-
tions and has been the inspiration for a new branch of research on tractable
classes of CSPs based on forbidden patterns [1,4,9,11,18]. The Broken Triangle
Property imposes the absence of so-called broken triangles. Formally, BTP is
defined as follows:

Definition 2 (Broken-Triangle Property [6,7]). Let I be a binary CSP
instance with a variable order <. A pair of values v′

k, v
′′
k ∈ D(xk) satisfies BTP

if, for each pair of variables (xi, xj) such that xi < xj < xk, ∀vi ∈ D(xi),
∀vj ∈ D(xj), if (vi, vj) ∈ R(Cij), (vi, v′

k) ∈ R(Cik) and (vj , v′′
k) ∈ R(Cjk), then

either (vi, v′′
k) ∈ R(Cik), or (vj , v′

k) ∈ R(Cjk).
A variable xk satisfies BTP if each pair of values in D(xk) satisfies BTP.

An instance satisfies BTP if all its variables satisfy BTP.

This definition can be represented graphically in the microstructure of I as
shown in Fig. 1. Throughout this paper, we represent an unauthorized assign-
ment (a tuple which violates the constraint) either by a dashed line or by the
absence of a line.

vi

v′′
k

v′
k

vj

xi xk

xj

vi

v′′
k

v′
k

vj

xi xk

xj

)b()a(

Fig. 1. (a) A broken triangle (vi, vj , v
′
k, v

′′
k). (b) The assignments (vi, vj , v

′
k, v

′′
k) do not

form a broken triangle.

In Fig. 1(a), the CSP instance is not BTP relative to the order xi < xj < xk

because the tuples (vj , v′
k) and (vi, v′′

k) are not authorized. In this example,
(vi, vj , v′

k, v
′′
k) constitute a broken triangle on the values v′

k and v′′
k . Because of

this broken triangle, we say that there is a broken triangle on xk relative to
xi and xj . On the other hand, if (vi, v′′

k) ∈ R(Cik) or (vj , v′
k) ∈ R(Cjk), as

illustrated in Fig. 1(b), then the broken-triangle property is satisfied.
We now define the merging of domain values before recalling the merging

operation based on BTP.

Definition 3 [4]. Merging the values v′
k, v

′′
k ∈ D(xk) in a binary CSP instance

I consists of replacing v′
k, v

′′
k in D(xk) by a new value vk which is compatible

with all values which are compatible with at least one of the values v′
k or v′′

k .
A value-merging condition is a polytime-verifiable property such that when
it holds on a pair of values v′

k, v
′′
k ∈ D(xk), the CSP instance obtained after

merging the values v′
k and v′′

k is satisfiable if and only if I was satisfiable.

176 M.C. Cooper et al.

In binary CSP instances, the absence of broken triangles on a pair of values
is a valid value-merging condition [4]. For example, in Fig. 1(b), the values v′

k
and v′′

k are mergeable.

3 Weakly Broken Triangles

The absence of broken triangles on a pair of values allows them to be merged
while preserving satisfiability. In this section, we show that it is possible to merge
certain pairs of values even in the presence of some broken triangles. This idea
was inspired by recent work by Naanaa [19] on a new extension of BTP. We call
our new property m-wBTP: the parameter m defines the number of variables
supporting the weakly broken triangles.

3.1 1-wBTP-Merging

We start with the simplest case (m = 1) based on a new concept called weakly
broken triangles supported by one other variable.

Definition 4. A pair of values v′
k, v

′′
k ∈ D(xk) satisfies 1-wBTP if for each

broken triangle (vi, vj , v′
k, v

′′
k) with vi ∈ D(xi) and vj ∈ D(xj), there is at least

one variable xℓ ∈ X \ {xi, xj , xk} such that: ∀ vℓ ∈ D(xℓ) if (vi, vℓ) ∈ R(Ciℓ)
and (vj , vℓ) ∈ R(Cjℓ) then

• (v′
k, vℓ) /∈ R(Ckℓ) and

• (v′′
k , vℓ) /∈ R(Ckℓ).

If this is the case, (vi, vj , v′
k, v

′′
k) is known as a weakly broken triangle sup-

ported by the variable xℓ.

This definition can be represented by the microstructure graph, as shown in
Fig. 2. There is a broken triangle (vi, vj , v′

k, v
′′
k). Since for each value vℓ of the

variable xℓ, vℓ is compatible with vi and vj and we have (v′
k, vℓ) /∈ R(Ckℓ) and

(v′′
k , vℓ) /∈ R(Ckℓ), this triangle is a weakly broken triangle supported by xℓ.
The notion of weakly broken triangles allows us to generalise BTP-merging.

Proposition 1. In a binary CSP, merging two values v′
k, v

′′
k ∈ D(xk) which

satisfy 1-wBTP does not change the satisfiability of an instance.

Proof. Let I be the original instance and I ′ the new instance in which v′
k, v

′′
k

have been merged into a new value vk (which replaces v′
k, v

′′
k in D(xk)). Clearly,

if I is satisfiable then so is I ′. Hence, it suffices to show that if I ′ has a solution
s which assigns vk to xk, then I also has a solution.

Let s′, s′′ be two assignments which are identical to s except that s′ assigns
v′
k to xk and s′′ assigns v′′

k to xk. Suppose, for a contradiction, that neither s′

nor s′′ is a solution to I. Then there are two variables xi, xj ∈ X \ {xk} such
that (s(xi), v′

k) /∈ R(Cik) and (s(xj), v′′
k) /∈ R(Cjk). Since s is a solution to I ′

assigning vk to xk, we must have (s(xi), v′′
k) ∈ R(Cik) and (s(xj), v′

k) ∈ R(Cjk).

Extending Broken Triangles and Enhanced Value-Merging 177

vℓ

v′′
k

v′
k

vj

vi

xℓ xk

xj

xi

Fig. 2. A triangle which is weakly broken since (v′
k, vℓ) /∈ R(Ckℓ) and (v′′

k , vℓ) /∈ R(Ckℓ).

Obviously, we also have (s(xi), s(xj)) ∈ R(Cij) since s is a solution to I ′. So
(s(xi), s(xj), v′

k, v
′′
k) is a broken triangle in I.

By the definition of 1-wBTP, there is a variable xℓ ∈ X \ {xi, xj , xk} such
that ∀vℓ ∈ D(xℓ) if (s(xi), vℓ) ∈ R(Ciℓ) and (s(xj), vℓ) ∈ R(Cjℓ) then

• (v′
k, vℓ) /∈ R(Ckℓ) and

• (v′′
k , vℓ) /∈ R(Ckℓ).

As s(xℓ) is compatible with s(xi) and s(xj), it cannot be compatible with either
v′
k or v′′

k . It follows that s(xℓ) is not compatible with vk, which implies that s
is not a solution to I ′. But this contradicts our initial hypothesis. Thus, this
merging rule preserves satisfiability. ⊓'

vℓ

v′′
k

v′
k

vj

vi

xℓ xk

xj

xi

Fig. 3. A CSP instance in which all values are arc consistent (in bold, the weakly
broken triangle).

At first sight, there appears to be an obvious link between this definition
and arc consistency [16]. Indeed, imposing that the tuples (v′

k, vℓ) and (v′′
k , vℓ)

are unauthorized seems to imply that the goal is to render the values v′
k and v′′

k
arc-inconsistent. But the example in Fig. 3 shows that this is not always the case.

178 M.C. Cooper et al.

Indeed, although the two values v′
k, v

′′
k ∈ D(xk) in this figure satisfy 1-wBTP,

establishing arc consistency deletes no values (and obviously no tuples). Thus,
arc consistency does not delete the broken triangle (vi, vj , v′

k, v
′′
k).

3.2 m-wBTP-Merging

In Definition 4, thanks to the supporting variable(s) xℓ, merging values on which
there are only weakly broken triangles leaves the satisfiability of the instance
invariant. In terms of the microstructure, the variable xℓ prevents the creation
of a new clique in the microstructure of size n (i.e. a new solution) which did
not exist before merging. This principle can clearly be extended to m variables
(m ≤ n − 3).

An assignment (vℓ1 , . . . , vℓm) ∈ D(xℓ1)× . . .×D(xℓm) is a partial solution
if it satisfies all constraints Cij such that {xi, xj} ⊆ {xℓ1 , . . . , xℓm}.

Definition 5. A pair of values v′
k, v

′′
k ∈ D(xk) satisfies m-wBTP where m ≤

n − 3 if for each broken triangle (vi, vj , v′
k, v

′′
k) with vi ∈ D(xi) and vj ∈ D(xj),

there is a set of r ≤ m support variables {xℓ1 , . . . , xℓr} ⊆ X \{xi, xj , xk} such
that for all (vℓ1 , . . . , vℓr) ∈ D(xℓ1)×. . .×D(xℓr), if (vℓ1 , . . . , vℓr , vi, vj) is a partial
solution, then there is α ∈ {1, . . . , r} such that (vℓα , v

′
k), (vℓα , v

′′
k) /∈ R(Cℓαk). We

say that xℓα is the shield variable for this partial solution.

Figure 4 shows two configurations illustrating Definition 5. In the first, the
pair of values v′

k, v
′′
k ∈ D(xk) satisfies 2-wBTP because for the unique partial

solution (vℓσ , vℓγ , vi, vj) we have (vℓσ , v
′
k), (vℓσ , v

′′
k) /∈ R(Cℓσk). In the second,

there is no partial solution on the set of variables {xℓσ , xℓγ , xi, xj}; thus v′
k, v

′′
k ∈

D(xk) trivially satisfies 2-wBTP.

vℓσ

vℓγ

v′′
k

v′
k

vj

vi

xℓσ

xℓγ

xk

xj

xi

vℓσ

vℓγ

v′′
k

v′
k

vj

vi

xℓσ

xℓγ

xk

xj

xi

)b()a(

Fig. 4. Two different cases of two values v′
k and v′′

k which satisfy 2-wBTP.

We now generalise Proposition 1 to the merging of values satisfyingm-wBTP.

Proposition 2. In a binary CSP, merging two values v′
k, v

′′
k ∈ D(xk) which

satisfy m-wBTP does not change the satisfiability of an instance.

Extending Broken Triangles and Enhanced Value-Merging 179

Proof. Let I be the original instance and I ′ the new instance in which v′
k, v

′′
k

have been merged into a new value vk (which replaces v′
k, v

′′
k in D(xk)). Clearly,

if I is satisfiable then so is I ′. Hence, it suffices to show that if I ′ has a solution
s which assigns vk to xk, then I also has a solution.

Let s′, s′′ be two assignments which are identical to s except that s′ assigns
v′
k to xk and s′′ assigns v′′

k to xk. Suppose, for a contradiction, that neither s′

nor s′′ is a solution to I. Then there are two variables xi, xj ∈ X \{xk} such that
(s(xi), v′

k) /∈ R(Cik) and (s(xj), v′′
k) /∈ R(Cjk). Since s is a solution to I ′ assigning

vk to xk, we must have (s(xi), v′′
k) ∈ R(Cik) and (s(xj), v′

k) ∈ R(Cjk). We also
have (s(xi), s(xj)) ∈ R(Cij) since s is a solution to I. So (s(xi), s(xj), v′

k, v
′′
k) is

a broken triangle in I.
The values v′

k and v′′
k satisfy m-wBTP, so, by definition, there is a set of

r ≤ m variables {xℓ1 , . . . , xℓr} ⊆ X \{xi, xj , xk} such that for all (vℓ1 , . . . , vℓr) ∈
D(xℓ1) × . . . × D(xℓr), if (vℓ1 , . . . , vℓr , vi, vj) is a partial solution, then there is
α ∈ {1, . . . , r} such that (vℓα , v

′
k), (vℓα , v

′′
k) /∈ R(Cℓαk).

Since s is a solution of the instance I ′, (s(xℓ1), . . . , s(xℓr), s(xi), s(xj)) is
necessarily a partial solution, so there is α ∈ {1, . . . , r} such that we have
(s(xℓα), v′

k), (s(xℓα), v′′
k) /∈ R(Cℓαk), which implies (s(xℓα), vk) /∈ R(Cℓαk). This

is a contradiction since s is a solution of the instance I ′ with s(xk) = vk.
We can deduce that m-wBTP-merging preserves satisfiability. ⊓'

The BTP-merging rule [4] can be seen as 0-wBTP-merging since it is based
on zero support variables. The following proposition establishes the link between
the different versions of merging based on BTP.

Proposition 3. In an n-variable binary CSP, if a pair of values v′
k, v

′′
k ∈ D(xk)

satisfies m-wBTP then it satisfies (m+ 1)-wBTP (for 0 ≤ m ≤ n − 4).

The BTP-merging rule generalises both neighbourhood substitution [12] and
virtual interchangeability [15]. As m-wBTP-merging generalises BTP-merging
for all m ≥ 0, the following result follows immediately:

Corollary 1. m-wBTP-merging generalises neighbourhood substitution and vir-
tual interchangeability.

Besides the fact that m-wBTP-merging preserves satisfiability, it is also pos-
sible to reconstruct in polynomial time all solutions to the original instance
I from the solutions from an instance I ′ obtained by applying a sequence of
m-wBTP-mergings. What is more, the reconstruction of a solution to I from a
solution to I ′ can be achieved in time which is linear in the size of I. It suffices
to apply the same algorithm as in the case of BTP-merging [4].

4 A Maximal Value-Merging Condition

It is well known that any pair of values which satisfies BTP can be merged
while preserving satisfiability [4]. We have shown that a pair of values which
does not satisfy BTP can nevertheless be merged while preserving satisfiability

180 M.C. Cooper et al.

if this pair satisfies m-wBTP. Thus, in an obvious sense, BTP-merging is not a
maximal value-merging condition. A value-merging condition is maximal if the
merging of any other pair of values not respecting the condition necessarily leads
to a modification of the satisfiability of some instance. In this section, we show
that m-wBTP is a maximal value-merging condition when m = n − 3.

Theorem 1. In an unsatisfiable n-variable binary CSP instance, there is no
pair of values not satisfying m-wBTP for m = n − 3 and which can be merged
while preserving satisfiability.

Proof. Let I be an unsatisfiable n-variable CSP instance and let v′
k, v

′′
k ∈ D(xk)

be a pair of values which does not satisfy m-wBTP for m = n − 3. By the
definition of m-wBTP-merging, there is a broken triangle (vi, vj , v′

k, v
′′
k), with

vi ∈ D(xi) and vj ∈ D(xj), and there is (vℓ1 , . . . , vℓm) ∈ D(xℓ1)× . . .×D(xℓm),
where {xℓ1 , . . . , xℓm} = X\{xi, xj , xk}, such that (vℓ1 , . . . , vℓm , vi, vj) is a partial
solution and for all α ∈ {1, . . . ,m} we have (vℓα , v

′
k) ∈ R(Cℓαk) or (vℓα , v

′′
k) ∈

R(Cℓαk).
We have a broken triangle, and so: (vi, v′′

k) /∈ R(Cik), (vj , v′
k) /∈ R(Cjk),

(vi, v′
k) ∈ R(Cik) and (vj , v′′

k) ∈ R(Cjk). We also have, for all ℓ ∈ {ℓ1, . . . , ℓm}:
• (vℓ, v′

k) ∈ R(Cℓk) or
• (vℓ, v′′

k) ∈ R(Cℓk).

After merging, and by definition of merging, the new merged value vk satisfies
(vℓ, vk) ∈ R(Cℓk) for all ℓ ∈ {ℓ1, . . . , ℓm} ∪ {i, j}. We obtain a solution given by
vℓ1 , . . . , vℓm , vi, vj and vk. Thus, we have introduced a solution which did not
exist in the original instance since (vi, v′′

k) /∈ R(Cik) and (vj , v′
k) /∈ R(Cjk). It

follows that the merging of any pair of values which does not satisfy m-wBTP
does not preserve satisfiability. ⊓'

A valid value-merging condition has to guarantee that an unsatisfiable
instance does not become satisfiable after merging. We can therefore deduce
the following corollary.

Corollary 2. (n − 3)-wBTP is a maximal value-merging condition.

5 wBTP and Variable Elimination

BTP allows value-merging [4], variable elimination [2,3] and the definition of a
tractable class [7]. There are several distinct generalisations of BTP according
to the desired property. m-wBTP is a generalisation of BTP which allows us
to reduce the size of domains via value-merging. m-wBTP is a less restrictive
condition than BTP and thus allows more mergings than BTP. On the other
hand, this gain in the number of mergings is counterbalanced by the fact that
m-wBTP does not allow variable elimination.

In [2], it was shown that, for a given variable xk of an arc-consistent binary
CSP instance I, if there is no broken triangle on any pair of values of D(xk),
then eliminating the variable xk from I preserves satisfiability. We now show
that this is not the case for m-wBTP when m > 0.

Extending Broken Triangles and Enhanced Value-Merging 181

Proposition 4. Given a variable xk of an arc-consistent binary CSP instance I,
even if each pair of values in D(xk) satisfies m-wBTP, where m ≥ 1, eliminating
variable xk can change the satisfiability of I.

Proof. Let I be the binary CSP instance defined on four variables x1, . . . , x4

with D(xi) = {0, 1, 2} (i = 1, . . . , 4) and the following constraints: x1 = x2,
x2 = x3, x3 = x1, x1 = (x4 + 1) mod 3, x2 = (x4 − 1) mod 3, x3 = x4. This
instance is arc-consistent. There are three partial solutions (0, 0, 0), (1, 1, 1) and
(2, 2, 2) on variables x1, x2, x3, but I does not have a solution. Therefore, the
elimination of variable x4 does not preserve the satisfiability of the instance (see
Fig. 5).

1

2

0 0

2

1

10 2

10 2

x3 x4

x2

x1

Fig. 5. An unsatisfiable CSP instance in which each pair of values in D(x4) satisfies
1-wBTP but the elimination of x4 introduces three solutions.

Let xi, xj , xℓ be the variables x1, x2, x3 (in any order). There are three broken
triangles (vi, vj , v′

4, v
′′
4) on the variables xi, xj , x4 (the weakly broken triangles

are represented by three different colours in Fig. 5): in each of these broken
triangles, we have vi = vj . For each of these broken triangles, there is exactly
one partial solution of the form (vℓ, vi, vj) on the variables xℓ, xi, xj because we
necessarily have vℓ = vi = vj . By the choice of constraints, the values vℓ, vi, vj
are compatible with three different values in D(x4). We can deduce that (vℓ, v′

4),
(vℓ, v′′

4) /∈ R(Cℓ4) since, by the definition of a broken triangle, each of the values
v′
4, v′′

4 is compatible with one of the values vi, vj . Thus, each pair of values
v′
4, v

′′
4 ∈ D(x4) satisfies 1-wBTP.
We have exhibited an instance I such that each pair of values in D(x4)

satisfies 1-wBTP, but eliminating the variable x4 changes the satisfiability of I.
For values of m > 1, it suffices to add m − 1 other non-constrained variables to
the instance I. ⊓'

In the instance I in the proof of Proposition 4, each pair of values in the
domain D(x4) satisfies 1-wBTP. However, after having performed the merging
of two values, the two remaining values no longer satisfy 1-wBTP and cannot
be merged.

182 M.C. Cooper et al.

6 wBTP and Tractability

In order to compare m-wBTP and other generalisations of BTP defining
tractable classes, we extend the definition of m-wBTP in a natural way to
instances.

Definition 6. Given a constant m ≤ n − 3, a binary CSP instance I with
a variable-order < satisfies m-wBTP relative to this order if for all variables
xk, each pair of values in D(xk) satisfies m-wBTP in the sub-instance of I on
variables xi ≤ xk.

A lighter version of BTP, called k-BTP, which allows certain broken triangles,
has recently been defined [8]. Binary CSP instances which satisfy both strong
k-consistency and k-BTP constitute a tractable class.

Definition 7 (k-BTP [8]). A binary CSP instance I satisfies the k-BTP prop-
erty for a given k (2 ≤ k < n) relative to a variable order < if, for all subsets
of variables xi1 , xi2 , . . . , xik+1 such that xi1 < xi2 < · · · < xik+1 , there is at least
one pair of variables (xij , xij′) with 1 ≤ j < j′ ≤ k such that there is no broken
triangle on xk+1 relative to xij and xij′ .

Unfortunately, and unlike m-wBTP, the k-BTP property cannot be used for
merging values when k is strictly greater than 2 (we recall that 2-BTP = BTP).
As an example, the instance of Fig. 6(a) satisfies 3-BTP. To see this, observe that
there is no broken triangle on xk relative to xi and xℓ. But, if we merge v′

k and
v′′
k , this CSP instance becomes satisfiable whereas it was not initially. Therefore,
k-BTP (for k strictly greater than 2) is not a valid value-merging condition. We
can also note that k-BTP (k > 2) and m-wBTP (m > 0) are incomparable, since
it can happen that m-wBTP-merging can authorize more broken triangles than
k-BTP. For example, the instance in Fig. 6(b) satisfies 1-wBTP but not 3-BTP:
there are broken triangles on the variable xk for each pair of other variables, but
in each case the fourth variable is a support variable.

Naanaa has given two other generalisations of BTP which define tractable
classes [18,19]. It has been shown [8] that the notion of directional rank k−1 [18]
strictly generalises k-BTP. We can deduce that the example of Fig. 6(a) has
directional rank 2, which shows that directional rank k (for k ≥ 2) cannot be
used to merge values (knowing that the case k = 1 corresponds to BTP).

The notion WBTP [19] inspired our definition of 1-wBTP, but is different.
We first give the definition of WBTP before showing that it can be seen as a
strictly stronger condition than 1-wBTP (and thus leads to less mergings).

Definition 8 (WBTP [19]). A binary CSP instance equipped with an order <
on its variables satisfies WBTP (Weak Broken Triangle Property) if for each
triple of variables xi < xj < xk and for all vi ∈ D(xi), vj ∈ D(xj) such that
(vi, vj) ∈ R(Cij), there is a variable xℓ < xk such that when vℓ ∈ D(xℓ) is
compatible with vi and vj, then ∀vk ∈ D(xk),

(vℓ, vk) ∈ R(Cℓk) ⇒ ((vi, vk) ∈ R(Cik) ∧ (vj , vk) ∈ R(Cjk))

Extending Broken Triangles and Enhanced Value-Merging 183

vℓ

v′′
k

v′
k

vj

vi

xℓ

xk

xj

xi

vℓ

v′
ℓ

v′′
k

v′
k

vj

vi

xℓ

xk

xj

xi

)b()a(

Fig. 6. (a) An instance which does not satisfy 1-wBTP but does satisfy 3-BTP, for the
variable ordering xℓ < xi < xj < xk. (b) An instance which satisfies 1-wBTP but does
not satisfy 3-BTP, for the variable ordering xℓ < xi < xj < xk.

Proposition 5. If a binary CSP instance equipped with an order < on its vari-
ables satisfies WBTP, then it satisfies 1-wBTP for each pair of values in the
domain of the last variable (relative to the order <).

Proof. Suppose that the binary CSP instance I satisfies WBTP for the variable
order < and let xk be the last variable of I according to this order. Suppose, for a
contradiction, that I does not satisfy 1-wBTP on a pair of values v′

k, v
′′
k ∈ D(xk).

Then, by the definition of 1-wBTP, there is a broken triangle (vi, vj , v′
k, v

′′
k)

with vi ∈ D(xi), vj ∈ D(xj), v′
k, v

′′
k ∈ D(xk) such that there is no variable

xℓ ∈ X \ {xi, xj , xk} such that ∀ vℓ ∈ D(xℓ) compatible with vi and vj , we have
(vℓ, v′

k), (vℓ, v′′
k) /∈ R(Cℓk).

But WBTP guarantees the existence of a variable xℓ < xk such that ∀vℓ ∈
D(xℓ) compatible with vi and vj , we have ∀vk ∈ D(xk),

(vℓ, vk) ∈ R(Cℓk) ⇒ ((vi, vk) ∈ R(Cik) ∧ (vj , vk) ∈ R(Cjk))

The existence of the broken triangle (vi, vj , v′
k, v

′′
k) implies that xℓ /∈ {xi, xj}

and so xℓ ∈ X \ {xi, xj , xk}. On the other hand, since (vi, vj , v′
k, v

′′
k) is a broken

triangle,
(vi, vk) ∈ R(Cik) ∧ (vj , vk) ∈ R(Cjk)

is false for vk ∈ {v′
k, v

′′
k}. We can deduce that (vℓ, v′

k), (vℓ, v′′
k) /∈ R(Cℓk), a

contradiction. ⊓'

Imposing WBTP is strictly stronger than imposing 1-wBTP. WBTP imposes
a condition on each value vk ∈ D(xk) relative to the same variable xℓ, whereas
1-wBTP (for each pair of values v′

k, v
′′
k ∈ D(xk)) imposes an equivalent condition

but for which the variable xℓ can vary according to the values v′
k, v

′′
k . The instance

in Fig. 7 satisfies 1-wBTP but not WBTP because:

• only variable xℓ2 supports (vi, vj , v′
k, v

′′
k),

• only variable xℓ1 supports (vi, vj , v′
k, v

′′′
k),

184 M.C. Cooper et al.

vℓ1

vℓ2
v′′′
k

v′
k

v′′
k

vj

vi

xℓ1

xℓ2
xk

xj

xi

Fig. 7. An instance that satisfies 1-wBTP but not WBTP.

Therefore, there is no variable which supports at the same time the broken
triangles (vi, vj , v′

k, v
′′
k) and (vi, vj , v′

k, v
′′′
k).

WBTP defines a tractable class [19]. We now show that this is also true for
m-wBTP.

Definition 9. Let I be a m-wBTP binary CSP instance on variables x1, . . . , xn

ordered by <.

– The BT-variable set Bk of xk is the set of the variables xi < xk such
that there is a broken triangle on xk relative to xi (and some other variable
xj < xk).

– A shield set Sk of xk is a set of variables xℓ < xk such that for each broken
triangle (vi, vj , v′

k, v
′′
k) on xk relative to variables xi, xj < xk, each partial

solution (vℓ1 , . . . , vℓr , vi, vj) of its support variables, has a shield variable xℓα ∈
Sk.

– The BT-width of xk is the smallest value of |Bk ∩ Sk| among all shield sets
Sk of xk. The BT-width of I is the maximum BT-width of its variables.

Observe that for constants b and m, it is possible to determine in polynomial
time whether a given instance (with a fixed variable order) has BT-width less
than or equal to b (by exhaustive search). The BT-width provides an upper
bound on the minimum level of consistency required to solve an instance, as
demonstrated by the following theorem.

Theorem 2. If a m-wBTP binary CSP instance I has BT-width b and is strong
directional max(2, b+ 1)-consistent, then I has a solution.

Proof. Let I be a binary CSP instance which has BT-width b and is direc-
tional (b + 1)-consistent. For simplicity of presentation, we suppose that the
variable order is x1 < . . . < xn. We suppose that it has a partial solution
σ = (v1, . . . , vk−1) on the variables (x1, . . . , xk−1). We will show that this par-
tial solution can be extended to a partial solution on (x1, . . . , xk). The base
case of the induction is easily seen to be true, since by arc consistency there is
necessarily a partial solution on the first two variables.

Extending Broken Triangles and Enhanced Value-Merging 185

Let Bk be the set of the BT-variables of xk and let Sk be a shield set of xk

such that |Bk ∩ Sk| ≤ b. By directional (b+ 1)-consistency, any partial solution
on the variables Bk ∩Sk can be extended to variable xk. Therefore ∃vk ∈ D(xk)
such that

∀xi ∈ Bk ∩ Sk, (vi, vk) ∈ R(Cik) (1)

Denote by Bk(σ) the variables xi ∈ Bk such that there is a broken triangle of
the form (vi, vj , v′

k, v
′′
k) on xk (where vi, vj are assignments from σ). Similarly,

let Sk(σ) be the variables of Sk which shield such broken triangles. Let Nk(σ)
be the variables xi < xk such that xi /∈ Bk(σ). The sub-instance of I on vari-
ables Nk(σ)∪ {xk} has no broken triangles on xk. Therefore, ∃uk ∈ D(xk) such
that (vi, uk) ∈ R(Cik) for all xi ∈ Nk(σ) [7]. If Nk(σ) = ∅, then uk is simply
an arbitrary element of D(xk). We will show that one of (v1, . . . , vk−1, vk) or
(v1, . . . , vk−1, uk) is a partial solution.

Suppose, for a contradiction, that this is not the case. Then ∃xi, xj < xk

such that (vi, uk) /∈ R(Cik) and (vj , vk) /∈ R(Cjk). We must have xi ∈ Bk(σ)
and xj /∈ Bk ∩ Sk. Since xi ∈ Bk(σ), there is a broken triangle (vi, vh, v′

k, v
′′
k)

on xk with (vi, v′
k) ∈ R(Cik). This broken triangle must have a shield variable

xℓ ∈ Sk(σ). If xℓ ∈ Nk(σ), then (vℓ, uk) ∈ R(Cℓk). We also have (vℓ, vi) ∈ R(Cik)
(by the definition of a partial solution) and (vℓ, v′

k) /∈ R(Cℓk) (by definition of
a support variable). Since, by assumption, (vi, uk) /∈ R(Cik), we have a broken
triangle (vi, vℓ, v′

k, uk) which is impossible since xℓ ∈ Nk(σ) and hence cannot
participate in such a broken triangle. So the shield variable xℓ belongs to Bk(σ)∩
Sk(σ). By (1), we have (vℓ, vk) ∈ R(Cℓk). Suppose now that (vi, vk) /∈ R(Cik).
Then we have a broken triangle (vi, vℓ, v′

k, vk). This broken triangle must have a
shield variable xm. By the same argument as for xℓ, we can deduce that xm ∈
Bk(σ) ∩ Sk(σ). However, this contradicts (1) since we have (vm, vk) /∈ R(Cmk)
(since xm is a shield variable of the broken triangle (vi, vℓ, v′

k, vk)). It follows
that (vi, vk) ∈ R(Cik). Indeed, we have shown

∀xi ∈ Bk(σ), (vi, uk) /∈ R(Cik) ⇒ (vi, vk) ∈ R(Cik) (2)

Now, if xj ∈ Nk(σ) we have a broken triangle (vi, vj , vk, uk), which is in
contradiction with the definition of Nk(σ), so we must have xj ∈ Bk(σ).
Now, by (2) and our assumption that (vj , vk) /∈ R(Cjk), we can deduce that
(vj , uk) ∈ R(Cjk). We then have a broken triangle (vi, vj , vk, uk). This bro-
ken triangle must have a shield variable xp. By definition of a shield vari-
able, we must have (vp, vk), (vp, uk) /∈ R(Cpk). But this is impossible since
xp ∈ Nk(σ) ⇒ (vp, uk) ∈ R(Cpk) and, by (2), xp ∈ Bk(σ) ⇒ (vp, uk) ∈ R(Cpk)
∨ (vp, vk) ∈ R(Cpk).

This contradiction shows that one of (v1, . . . , vk−1, vk) or (v1, . . . , vk−1, uk)
is a partial solution. By induction, I has a solution. ⊓'

Naanaa showed that a binary arc-consistent CSP instance satisfying WBTP
always has a solution [19]. We can observe that this is a special case of Theorem 2
since a WBTP instance has BT-width of 1.

186 M.C. Cooper et al.

An open question is whether it is possible to determine, in polynomial time,
the existence of some variable order for which a given instance has BT-width b
even for b = 1.

7 Experimental Results

In order to test the applicability of our merging rules, and in particular 1-wBTP-
merging, we carried out an experimental study on all the binary benchmark
instances of the 2008 international CSP solver competition1 (a total of 3,795
instances). The 1-wBTP-merging algorithm is similar to the algorithm for BTP-
merging [5]. More specifically, given a variable xk, we check for each pair of
values v′

k, v
′′
k ∈ D(xk) if these two values are mergeable by 1-wBTP-merging.

Once a broken triangle on v′
k, v

′′
k is found, we search over the other n − 3 vari-

ables to see if there exists a variable xℓ which supports this broken triangle. If
we find one, we continue the search for other broken triangles; if not, the test
is finished for these two values. Finally, if there are no broken triangles or only
weakly broken triangles on the pair v′

k, v
′′
k , we merge them. We do not attempt to

maximize the number of merges since we know that this is an NP-hard problem,
even in the case of BTP-merging [4]. We implemented the two merging algo-
rithms to be tested (BTP-merging and 1-wBTP-merging) in C++ within our
own CSP library. The experiments were performed on 8 Dell PowerEdge M820
blade servers with two processors (Intel Xeon E5-2609 v2 2.5GHz and 32 GB of
memory) under Linux Ubuntu 14.04.

Fig. 8. Comparisons of the percentages of values merged by BTP and 1-wBTP.

For each benchmark instance, we performed BTP-merging and 1-wBTP-
merging until convergence with a timeout of one hour. In all, we obtained results
for 2,535 out of the 3,795 benchmarks and we succeeded in merging at least one
1 See http://www.cril.univ-artois.fr/CPAI08 for more details.

http://www.cril.univ-artois.fr/CPAI08

Extending Broken Triangles and Enhanced Value-Merging 187

Table 1. Experimental results on benchmarks.

Family #benchmarks #values BTP-merging 1-wBTP-merging

BH-4-4 10 674 322 348

BH-4-7 20 2 102 883 932

ehi-85 98 2 079 891 1 045

ehi-90 100 2 205 945 1 100

graph-coloring/school 8 4 473 104 104

graph-coloring/sgb/book 26 1 887 534 534

os-taillard-4 30 2 932 1 820 1 978

rlfapScens 1 8 004 341 1 211

rlfapScensMod 6 8 788 2 415 5 169

subs 9 1 479 40 517

langford-2 22 879 0 233

langford-3 20 1 490 0 554

langford-4 16 1 784 0 504

queenAttacking 7 2 196 0 36

pair of values for 1,001 of these instances. In Table 1, the column #benchmarks
shows the number of benchmark instances for which the test finished within
the one-hour timeout. The column #values indicates the average total num-
ber of values in these benchmarks. The columns BTP-merging and 1-wBTP-
merging give the number of merges performed respectively by BTP-merging and
1-wBTP-merging. In Fig. 8, we compare the percentages of domain reduction by
BTP-merging and 1-wBTP-merging instance by instance. If, for the majority of
instances, the results are comparable, we can observe that for certain instances,
1-wBTP merges significatively more values than BTP. This is notably the case
for the instances in the langford-* family for which 1-wBTP merges from 25
to 80% of the values whereas BTP does not merge any.

8 Conclusion

In this paper we have studied value-merging conditions in binary CSP instances,
based on a generalisation of BTP. We proposed a family of definitions based on
the notion of a weakly broken triangle, which is a broken triangle supported by
one or more variables in order to preserve satisfiability after merging.

We have shown that m-wBTP together with different levels of consistency
defines a family of tractable classes. Possible links with bounded treewidth are
worth investigating. From a practical point of view, it would be interesting to
investigate the influence of the order in which merges are performed on the total
number of merges. We know that finding the best order in which to perform
m-wBTP-merging operations is NP-hard even in the case m = 0 [4].

188 M.C. Cooper et al.

References

1. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a
survey. Constraints 21(2), 115–144 (2016)

2. Cohen, D.A., Cooper, M.C., Escamocher, G., Živný, S.: Variable elimination in
binary CSP via forbidden patterns. In: Proceedings of IJCAI (2013)

3. Cohen, D.A., Cooper, M.C., Escamocher, G., Živný, S.: Variable and value elim-
ination in binary constraint satisfaction via forbidden patterns. J. Comput. Syst.
Sci. 81(7), 1127–1143 (2015)

4. Cooper, M.C., Duchein, A., El Mouelhi, A., Escamocher, G., Terrioux, C., Zanut-
tini, B.: Broken triangles: from value merging to a tractable class of general-arity
constraint satisfaction problems. Artif. Intell. 234, 196–218 (2016)

5. Cooper, M.C., El Mouelhi, A., Terrioux, C., Zanuttini, B.: On broken triangles.
In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 9–24. Springer, Heidelberg
(2014)

6. Cooper, M.C., Jeavons, P., Salamon, A.: Hybrid tractable CSPs which generalize
tree structure. In: Proceedings of ECAI, pp. 530–534 (2008)

7. Cooper, M.C., Jeavons, P., Salamon, A.: Generalizing constraint satisfaction on
trees: hybrid tractability and variable elimination. Artif. Intell. 174, 570–584
(2010)

8. Cooper, M.C., Jégou, P., Terrioux, C.: A microstructure-based family of tractable
classes for CSPs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 74–88.
Springer, Heidelberg (2015)

9. Cooper, M.C., Živný, S.: The power of arc consistency for CSPs defined by
partially-ordered forbidden patterns. In: Proceedings of LICS (2016)

10. El Mouelhi, A., Jégou, P., Terrioux, C.: Hidden tractable classes: from theory to
practice. In: Proceedings of ICTAI, pp. 437–445 (2014)

11. El Mouelhi, A., Jégou, P., Terrioux, C.: A hybrid tractable class for non-binary
CSPs. Constraints 20(4), 383–413 (2015)

12. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proceedings of AAAI, pp. 227–233 (1991)

13. Jégou, P.: Decomposition of domains based on the micro-structure of finite con-
straint satisfaction problems. In: Proceedings of AAAI, pp. 731–736 (1993)

14. Jégou, P., Terrioux, C.: The extendable-triple property: a new CSP tractable class
beyond BTP. In: Proceedings of AAAI, pp. 3746–3754 (2015)

15. Likitvivatanavong, C., Yap, R.H.C.: Many-to-many interchangeable sets of values
in CSPs. In Proceedings of SAC, pp. 86–91 (2013)

16. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118
(1977)

17. Montanari, U.: Networks of constraints: fundamental properties and applications
to picture processing. Artif. Intell. 7, 95–132 (1974)

18. Naanaa, W.: Unifying and extending hybrid tractable classes of CSPs. J. Exp.
Theor. Artif. Intell. 25(4), 407–424 (2013)

19. Naanaa, W.: Extending the broken triangle property tractable class of binary CSPs.
In: Proceedings of the 9th Hellenic Conference on Artificial Intelligence, SETN, pp.
3:1–3:6 (2016)

20. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satis-
faction. In: Proceedings of ECAI, pp. 125–129 (1994)

A Bounded Path Propagator on Directed Graphs

Diego de Uña1(B), Graeme Gange1, Peter Schachte1, and Peter J. Stuckey1,2

1 Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

d.deunagomez@student.unimelb.edu.au,
{gkgange,schachte,pstuckey}@unimelb.edu.au

2 Data 61, CSIRO, Melbourne, Australia

Abstract. Path finding is an ubiquitous problem in optimization and
graphs in general, for which fast algorithms exist. Yet, in many cases side
constraints make these well known algorithms inapplicable. In this paper
we study constraints to find shortest paths on a weighted directed graph
with arbitrary side constraints. We use the conjunction of two directed
tree constraints to model the path, and a bounded path propagator to
take into account the weights of the arcs. We show how to implement
these constraints with explanations so that we can make use of power-
ful constraint programming solving techniques using learning. We give
experiments to show how the resulting propagators substantially accel-
erate the solving of complex path problems on directed graphs.

1 Introduction

Path-finding is an important task in (directed) networks. It arises in tasks such as
graph layout [7], metabolic networks [25] or collaborative path-finding in video-
games [22] among other examples. In many cases, though, side constraints make
these problems highly combinatorial and no efficient algorithms exist.

In this paper, we focus on path-finding with distances. In order to do so, we
go through preliminary steps to build two propagators from which we build a
path propagator that works on the topology of the graph. Then, on top of that,
we construct a propagator that takes into account the weights of the arcs to
propagate distances.

Given a fixed directed graph G = (V, E), we enforce properties of a graph
variable G = (V,E) subgraph of G using the following constraints:

– dreachability(G, r,G) requires all nodes in G are reachable from root r;
– dtree(G, r,G) requires that G forms a tree rooted at r;
– path(G, s, d,G) ensures that G is a simple path from s to d;
– bounded path(G, s, d,G, w,K) ensures that G is a simple path from s to d of
length no more than K given the weight function w over the arcs of G;

The focus of the present paper is the bounded path propagator. We present
two novel explanations for already existing propagation rules. Furthermore, we
introduce a new stronger propagation technique with explanations as well. The
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 189–206, 2016.
DOI: 10.1007/978-3-319-44953-1 13

190 D. de Uña et al.

explanations for this propagator and its new version are the main contributions
of this paper.

Section 2 describes previous work as well as use cases for these propagators.
Section 3 gives the necessary technical background to the reader as well as all
the graph propagators for unweighted graphs. Section 4 describes bounded path.
Section 5 shows an extensive series of experiments justifying the use of these
propagators and their explanations.

2 Related Work

The three first constraints announced in the introduction were first introduced
as part of CP(Graph) [6] in 2005, using a decomposition approach.

Later, Quesada et al. [17] implemented the first reachability propagator and
used it as a path constraint in their paper. They make use of simple propagation
rules based on depth-first traversals of the graph and on the use of dominator
nodes (i.e. nodes that appear in all paths). Nonetheless the asymptotic com-
plexity of their algorithms is substantially greater than ours or those of Fages et
al. [9] since they use a brute-force algorithm to compute dominator nodes.

Constraints for trees and forests were introduced in [1,2,9]. Although focused
on forests, their work used better algorithms improving the work of Quesada et
al. in [17] to make each individual tree connected. For explanations on the dtree
constraint, we use the same algorithm as we previously introduced in [5] for
undirected graphs.

In order to be self-contained, we describe dreachability and dtree in the pre-
liminaries section. The propagations are based on previous work presented in
[1,9,17]. The explanations are novel although the algorithms are similar to the
undirected version which we already introduced [5].

Finding a simple path (no node repetitions) is a classic graph problem with
wide applicability. The usefulness of the constraint arises when there are inter-
esting side constraints. Our path propagator is based on the Ph.D. thesis by
J.-G. Fages [8], which showed how to model the path constraint as a conjunction
of dtree constraints:

path(G, s, d,G) ⇔ dtree(G, s,G) ∧ dtree(G, d,G−1) (1)

This states that a path from s to d is the intersection of a subtree of G rooted
at s and a tree in G−1 (the graph G with arcs reversed) rooted at d.

There exist other approaches to finding paths by using circuit style propa-
gators [10]. We compare for the first time the tree-based and the circuit-based
approaches where both use explanations.

Path finding with distances is one of the most well-studied graph problems,
for which very well known fast algorithms exist. Many specific algorithms that
handle some form of side constraint are also known. For instance, paths with
resource constraints have been very well studied for electrical cars [23] and for
bike routes [24]. Another application is the Generalized Shortest Path queries [18,
19] where a person needs to do a series of tasks during their journey and choose

A Bounded Path Propagator on Directed Graphs 191

among different places to do them. The bounded pathconstraint allows us to
specify shorter path problems with arbitrary side constraints. It was introduced
by Sellman [20,21] with some propagation rules. Our work improves on this.

3 Preliminaries

3.1 Directed Graphs

A directed graph G = (V, E) consists of a set of nodes V and arcs E ⊆ V × V,
where e = (u, v) is an arc from u = tail(e) to v = head(e) (drawn ‘u v’, from
tail to head). Given arc e = (u, v) its reverse arc is e−1 = (v, u). The inverse G−1

of a directed graph G = (V, E) is (V, {e−1 | e ∈ E}). A weighted directed graph
is a graph G with a weight function w : E → N0 mapping arcs to non-negative
weights.

3.2 Lazy Clause Generation

Briefly, Lazy Clause Generation (LCG, [16]) is a technique by which CP solvers
can learn from their mistakes. Propagators are extended to explain their propa-
gations, and the failures they detect. These explanations are captured in clauses.
When failure is detected, explanations are used to generate concise no-goods that
explain why the failure occurred, and these are stored in the solver, preventing
the same failure from occurring again. Using SAT technology to access and
process explanations and no-goods allows very efficient handling of no-goods,
and the reduction in search space for using explanation is usually substantial.

A critical consideration when constructing propagators for an LCG solver are
the algorithms to generate concise and precise explanations of the propagation.
Naive explanations may end up creating no-goods that are not reusable, while
highly complex minimal explanations may require much more computation effort
than propagation, and end up slowing down the solver.

3.3 Graph Propagators with Explanations

In order to model a graph variable G = (V,E) subgraph of G = (V, E) in an LCG
solver, we use Boolean variables cn representing whether node n ∈ V is chosen to
be in V and similarly Boolean variables ce for each e ∈ E representing whether
e ∈ E. Eventually the solution is the subgraph G = ({n|n ∈ V ∧ cn}, {e|e ∈
E ∧ ce}).

As we are searching for G, the variables cn and ce will become fixed by search
or propagation. The propagators we describe here must infer new information
as a consequence of the constraint they implement, hence reducing the future
search. We say that an arc e is mandatory if at the current stage of the search
ce is true (and we draw it as ‘ ’ in the following figures), forbidden (‘ ’) if
ce is false and unknown (‘ ’) for an unassigned arc. Similarly, we use the same
terms for nodes: mandatory (‘ ’), forbidden (‘ ’) and unknown (‘ ’). Nodes or
arcs that are mandatory or unknown are called available.

192 D. de Uña et al.

Basic Graph Propagation. We assume that the graph variable G propagates
basic graph properties: the endnodes of an arc in the graph are also in the graph.
Explanations for this are given in previous work by the authors [5].

Reachability Propagation. The dreachability constraint guarantees that all
nodes in the subgraph G are reachable from a given node r. Quesada et al. [17]
first proposed this propagator, although our algorithm is substantially improved
by making use of the Lengauer-Tarjan algorithm to find dominators in a digraph
[13]. Fages et al. [9] already used this algorithm.

Detecting and explaining failure: In order to detect that the current assignment
of arcs and nodes in G is invalid, we need to check if all the nodes in G (i.e.
mandatory) are reachable from the given node r. We first perform a depth-first
search (DFS) in ({n | cn ̸= false}, {e | ce ̸= false}) starting at r, saving all the
nodes visited in a set R. If some mandatory node f is not in R, we need to fail.

To explain why the mandatory node f is not reachable, we need to find
forbidden arcs that would have let it be in R if they were not forbidden, similarly
to the work in [5] for undirected graphs.

To find these arcs, we perform a DFS in G−1 starting at f , this time following
all (reversed) arcs, regardless of their current state. Whenever the head of a
forbidden reversed arc e−1 = (t, h) is in R, e could have been used to extend
the reachable area further and eventually reach f . Therefore, e must be in the
explanation (we do not cross e−1 in this DFS). We add such arcs to a set Ff .
Then an explanation for failure is: cr ∧ cf ∧

∧
e∈Ff

¬ce ⇒ false. This exact same
rule can be applied for propagation to eliminate unreachable nodes.

Finding dominators: During the search, we also make inferences that will accel-
erate the search. We say that a node t is dominated by a node d from r if all
paths from r to t go through d. The immediate dominator of a node is the
dominator that is its closest ancestor. For reachability, immediate dominators
of mandatory nodes must be mandatory, otherwise some node (namely t) would
not be reachable from r.

Finding immediate dominators in a graph can be done using the Lengauer-
Tarjan algorithm [13] in O(|E|α(|E|, |N |)) where α is the inverse Ackerman func-
tion. Their algorithm builds an array representation of a so-called dominator tree
where the parent of a node is its immediate dominator. For our purposes, we
apply the algorithm to ({n | cn ̸= false}, {e | ce ̸= false}).

We assume that the reachability has been ensured and thus all mandatory
nodes are reachable from r. To enforce dominators to be in G, we build a queue
containing all the mandatory nodes and iterate through the queue until it is
empty while making their immediate dominators mandatory (if they are not
already) and enqueueing them. This way, all the nodes in the path between r
and some mandatory node t in the dominator tree become mandatory.

Now, we need to explain why each dominator that we fix is mandatory.
Explaining this inference comes down to explaining the failure that would happen

A Bounded Path Propagator on Directed Graphs 193

if the dominator d of t was forbidden. We compute a partition of nodes P from
which t can be visited without going through the dominator by performing a
DFS starting at t in ({V\{d}, {e−1 | ce ̸= false}). Now we find alternative ways
to get to any mandatory node beyond the dominator (that is, not in P) without
using d. For that, we perform another DFS in ({V\{d}, {e−1 | e ∈ E}) starting
in t, this time allowing the use of forbidden arcs. Whenever a forbidden reversed
arc e−1 = (t, h) has its tail on the set P but its head is a node outside of P we
know that e would have allowed us to short-circuit d if it was not forbidden. Let
Ft be the set of such arcs. The explanation for making a dominator mandatory
is: cr ∧ ct ∧

∧
e∈Ft

¬ce ⇒ cd.

Finding bridges: Additionally, if any mandatory node n (other than r) has only
one incoming arc that is not forbidden, that arc can be set as mandatory (if it is
not already). This is because lacking that arc would make that node unreachable.
That arc is called a bridge. The explanation for including this arc e in G is
trivial: cn ∧

∧
ei∈ to(n)\{e} ¬cei ⇒ ce, where to(n) is the set of arcs incident to

n. Similarly, if n no longer has any incident arcs available, we have to set it to
false, or fail if it is mandatory, explained by

∧
ei∈ to(n) ¬cei ⇒ ¬cn.

Directed Tree Propagator. Trees are connected graphs, therefore dtree inher-
its from dreachability. Additionally, trees cannot contain any cycle (whether it
is directed or not). Maintaining this condition is the task of dtree.

For this propagator, the algorithm is trivial. The use of the adequate data
structure to detect cycles is what makes the whole propagator. We use the
Rerooted Union-Find (RUF) data structure [5] to detect cycles and retrieve
explanations. This yields a propagator identical to the one for undirected graphs
[5] since cycle detection in undirected and directed graphs is equivalent as far as
trees are concerned.

4 Bounded Path Propagator

As we will see in the experiments, the decomposition of the path constraint as
two trees (Eq. 1) is not competitive for solving shortest path problems when
compared to the alternative circuit formulation by Francis et al. [10]. For this
reason, we needed a bounded path propagator to enhance optimality proving.

In this section we present a bounded path(P, s, d,G, w,K) propagator that
ensures that the weight of the simple path P from s to d in G is no more
than K. The weights of the arcs are given by the function w : E)→ N0. The
propagations in Sects. 4.1 and 4.2 were already introduced by Sellman [20,21],
without explanation. As we will see in the experimental section, the explanations
greatly improve these propagations.

4.1 Propagating Simple Distances

This constraint fails when there is no path from s to d of cost no more than K.
This property naturally extends to all nodes in the path: the distance from s to

194 D. de Uña et al.

any node n in P must be no more than K. The best correct lower bound for
this is obviously the shortest path from s to n ∈ P : if the shortest path is longer
than K, then no solution of cost less than or equal to K exists.

We compute the shortest path from s to every node in (V, {e | ce ̸= false})
(i.e. avoiding forbidden arcs) using Dijsktra’s algorithm. This yields the shortest
available path from s to all nodes. If the cost of the path to a node n is greater
than K, we can forbid n. This reasoning can be applied in both directions: d
cannot be further than K from any node n in the path. For this reason, we also
apply this rule starting Dijkstra’s algorithm at d on the reversed graph.

To explain this inference we need to find (at least a superset of) the arcs that
made the path to n too expensive. Let Fn be that set of arcs (initially empty).
Let δx be the shortest available path from s to some node x, and δ−1

x the shortest
available path from x to d. Any arc e = (u, v) such that δu+w[e]+ δ−1

v ≤ K can
be used to connect s to d in no more than K (we say e is in a short-enough path).
We can easily keep track of those arcs since both runs of Dijkstra’s algorithm
yield δu and δ−1

v . When such an arc is forbidden, a feasible path is removed from
the graph. We then add e to Fn. Eventually, Fn contains all the arcs causing n
to be too far from either s or d. We have the following Theorem:

Theorem 1. Let !δd ≤ K" be the literal stating that δd (i.e. the length of P)
should be less than or equal to K (K is typically a variable). Then, !δd ≤ K" ∧∧

ef∈Fn
¬cef ⇒ ¬cn is a valid explanation for why n cannot be in G.

Note the explanation set Fn is the same for any node n further than K from the
source, its not specific to a particular n. We will address this flaw and give an
example in Fig. 2 later on. The explanations can be used to explain failure too.

These explanations can be computed very efficiently by storing a function
giving constant time access to whether an arc has been in a short-enough path.
Upon removal of an arc e, we add it to Fn if e has been in a short-enough path.

4.2 Propagating Combined Distances

The previous rule removes any node that is too far from the source or too far
from the destination to be in the path P , or detects failure. In addition, we can
consider nodes through which a path from s to d would be longer than K and
filter them. Similarly we can filter arcs.

Proposition 1. Let δu be the cost of the shortest path from s to u, and let δ−1
u

be the cost of the shortest path from u to d. If δu + δ−1
u > K, then u cannot be

in the path from s to d of cost less than or equal to K.

Proposition 2. Let e = (u, v) be an arc of cost w[e]. Let δu and δ−1
v be the cost

of the shortest paths from s to u and v to d respectively. If δu +w[e] + δ−1
v > K,

then e cannot be in a path from s to d of cost less than or equal to K.

We use these observations to filter out nodes and arcs that cannot participate
in the path from s to d.

A Bounded Path Propagator on Directed Graphs 195

Algorithm 1. Shortest path from s to d containing all mandatory nodes M .
1: procedure DPBound(G, s, d, ns = {cn|n ∈ V}, es = {ce|e ∈ E}, w,M)
2: Q ← newPriorityQueue();Q .push((s, {s}, 0));
3: tables[s][{s}] ← 0 ◃ One table per node
4: while ¬Q .empty() do
5: (u,mp , γ) ← Q .top();Q .pop()
6: if tables[u].contains(mp) ∧ tables[u][mp] < γ then continue;

7: for all e = (u, v) ∈ {e|e ∈ E} do
8: if ce = false then continue;

9: if ¬tables[v].contains(mp) ∨ (tables[v][mp] > γ + w[e]) then
10: tables[v][mp] ← γ + w [e]
11: Q .push(v ,mp ⊕ v , γ + w [e]) ◃ S ⊕ v adds v to set S iff v ∈ M

12: return tables[d][M]

To explain these propagations, we note that if the filtered element (either
node or arc) was mandatory, we would have to fail. Thus the explanations are the
same as given in Theorem 1 (applied to the node or the arc we are propagating
here). These explanations can be used for failure if either u or e is mandatory.

4.3 Stronger Bounding Using Dynamic Programming

Although the implementation of bounded path explained above proves to be use-
ful, the bound is too weak if there are many intermediate nodes. For this reason,
we developed a dynamic programming (DP) lower bound. If the previous one
does not prune, we run a more expensive DP algorithm to find the shortest path
from s to d containing all the mandatory nodes.

The algorithm is similar to Dijkstra’s, but our priority queue stores more
information. Each entry is a tuple (u,mp, γ): a node u, the set of mandatory
nodes mp visited in some path p leading to u and the cost of p. As usual, the
priority is on the cost.

We associate a hash-table to each node n that maps sets of mandatory nodes
(encoded as bit-sets in our implementation) to the cost of visiting those nodes
before reaching n. Formally the tables are functions tables[n] : (M ′ ⊆ M))→ N.

Then, when a tuple (u,mp, γ) is retrieved from the queue, the algorithm
considers each available arc (u, v). For each neighbor node v, we first check if
there is a set m′

p in its table such that m′
p = mp. If m′

p exists and its associated
cost is greater than γ +w[(u, v)], we update the entry on v’s table, and enqueue
(v,mp ⊕ v, γ +w[(u, v)]) (where ⊕ adds v to mp iff v is mandatory, and returns
mp otherwise). If such m′

p does not exist, we add that same entry to v’s table
and enqueue it. We do not need to enqueue or update any table if m′

p exists and
its associated cost is less than γ + w[(u, v)]. The cost of the shortest path to d
containing all the nodes will be found in d’s table. If such path does not exist,
we simply return an error code and fail with the naive explanation (all the fixed
arcs and nodes). In practice, this rarely happens.

196 D. de Uña et al.

Notice that this algorithm does not give simple paths, and therefore it does
not give an exact lower bound. Indeed, if we did, we would need to keep track
of all the states in the path, making the state space grow too quickly. Instead
we only keep track of the mandatory nodes visited.

The explanation for pruning is the same as in Theorem 1, but we need to
add the conjunction of cn for all the mandatory nodes n ∈ M . Note that the
asymptotic complexity of this algorithm is O(n2|M ||M |log(n)), hence the state
may grow prohibitively. We will study solutions to this issue in the next sub-
section. Nonetheless, as we will see in the results, this explosion rarely happens
since the higher the number of mandatory nodes, the smaller the choice in arcs.

Limiting State Explosion in the DP Propagation

Strongly Connected Components: Some basic inference we can take into account
to reduce the state explosion is based on strongly connected components (SCC)
of the current graph. There is no point for the DP algorithm to take an arc
leaving SCC A if it has not yet visited all the mandatory nodes in A.

We use Kosaraju’s algorithm [12] to compute SCCs. We then label the SCCs
as follows. Let m be the number of SCCs containing at least one mandatory node
(we call them mandatory SCCs). The SCC D containing the destination node d
is labeled m. All other mandatory SCCs are numbered with the number of the
lowest numbered SCC they can reach minus one. All non-mandatory SCCs are
numbered with the lowest numbered SCC they can reach. It is easy to do this
in linear time using a topological sort on the graph of SCCs. We call this levels
and we denote the level of an SCC A by l(A). Then, if an arc e goes from A to
B such that l(B) > l(A)+1, by crossing it we would skip some mandatory SCC
to which we can never go back. Similarly, if A is mandatory and l(B) = l(A)+1
we only cross e if we have visited all mandatory nodes of A, otherwise we would
not be able to get back to A to finish visiting the mandatory nodes in A.

This process can greatly accelerate the DP algorithm without losing pruning
power. Nonetheless, because during the search the partially assigned graphs tend
to have a succession of SCCs of only one node followed by a big SCC containing
all the unassigned nodes, we often did not see a benefit from this. It is, however,
very worthwhile running at the root level. As a simple example, consider the
graph in Fig. 1: it takes 0.03 s to solve the problem using the SCC labeling, but
22.72 s without it (same number of nodes and conflicts).

S A B

C E D

l(S) = 1 l(A) = 3 l(B) = 5

l(C) = 2 l(E) = 4 l(D) = 6

Each node on the left graph
is an SCC of the form of
the right graph (from [17]).
Each SCC contains 3 ran-
dom mandatory nodes.
All edges have weight 1.

Fig. 1. Example of use of SCCs to accelerate Algorithm 1.

A Bounded Path Propagator on Directed Graphs 197

Clustering mandatory nodes: Further acceleration can be achieved by reducing
the number of mandatory nodes to visit. To decide which ones to ignore, we
use the k-means clustering algorithm [11] on the set M of mandatory nodes.
We use the centroids of the clusters only as mandatory nodes (i.e., we have as
many mandatory nodes as clusters, treating the non-centroid nodes as unknown).
Because the centroids tend to be equidistant to the other nodes in the cluster,
the DP tends to also use some of the other mandatory nodes, thus visiting more
than just the centroids. Also, since k-means has some inherent randomness, we
have different clusters every time, which is also beneficial for the lower bound.

This has huge performance effects, but is a double-edged sword: the DP gets
faster but we prune much less often as the bound is not as high. In order to
regulate this, we use a simple heuristic based on the time spent by the DP. If
the DP algorithm with C clusters takes less than x seconds, we increase C by 1,
if it takes more than y seconds, we lower it. For the experiments where we used
clustering, we chose x = 0.5 s, y = 8.0 s and started with C = 5.

4.4 Improving the Explanations

So far, the explanations for bounded path have been the set of forbidden arcs
that were in a short-enough path at some point (see Sect. 4.1). One problem
with these explanations is that they are not targeted. It is easy to see that some
of the arcs in the explanations may have nothing to do with the fact that some
specific node n is too far from the source. We now provide better explanations.

Simple and Combined Distances Propagation. First, during the propa-
gation we use Dijkstra’s algorithm on the available graph. This leaves a label
on each node indicating how far it is from the source. These labels are noted
δn,∀n ∈ V . Nodes not visited have label δn = ∞.

Let n be a node that is at distance δn more than the limit K from the source.
Algorithm2 returns a set of forbidden arcs that explain why δn > K.

Algorithm 2. Explaining why n is at distance more than K from the source.
1: procedure ExplainDist(G, s, n, {δu|u ∈ V},K) ◃ We consider all arcs in G
2: Q ← newPriorityQueue();Q .push((n, 0)); X = ∅; cost = [∞|v ∈ V]
3: while ¬Q .empty() do
4: (u, δ−1

u) ← Q .top();Q .pop() ◃ δ−1
u : cost of the shortest path from n to u

5: if u = s then break ◃ Reached start s
6: for all e = (v, u) ∈ {e|e ∈ E} do ◃ Notice that we take arcs backwards
7: if e ∈ F ∧ δv + w[e] + δ−1

u ≤ K then X = X ∪ { e }
8: else if cost[v] > δ−1

u + w[e] then
9: cost[v] = δ−1

u + w[e] ◃ Update cost
10: Q .push(v , cost [v]) ◃ Overwrites previous instances of v in Q

11: return X

198 D. de Uña et al.

s a b n

c e

2 2 2
10 2 2 2

e1 e2
0 2 14 18

12 16

16 14 2 0

4 2 K = 10, δn = 18 > K, thus we fail.
Algorithm 2, starting at n (line 7):
e2: 14 + 2 + 0 = 16 > K ⇒ cross it.
e1: 2 + 2 + 2 = 6 ≤ K ⇒ explanation.
Only e1 is needed in the explanation. The
basic explanation would have added both.

Fig. 2. Example of improved explanations. The labels for propagation (‘ x ’, from Dijk-

stra’s algorithm) and explanation (‘ x ’, from Algorithm2) are given next to each node.

Algorithm2 mimics Dijkstra’s starting at n in G−1. For any arc e = (v, u) of
weight w[e] we know δv (obtained during propagation). We also have the distance
from u to n (the cost of the last current node in the loop, line 4). Let X be the
initially empty set of arcs explaining why n is at distance more than K from s.
When considering a forbidden arc, if δv + w[e] + δ−1

u ≤ K, e participates in a
path from s to n no longer than K. Therefore we add it to the explanation and
we do not cross it. Otherwise, we can cross it. Once we dequeue s we finish
since all other paths are no shorter than δ−1

s > K. See Fig. 2 for an example of
explanation.

Theorem 2. The clause !δd ≤ K"∧
∧

ef∈X ¬cef ⇒ ¬cn computed by Algorithm 2
is a correct and minimal explanation for why n is too far from s to be in G.

Proof. Let F be the set of forbidden arcs at the time of explanation. At any stage
of Algorithm2, let Fp be the set of forbidden arcs not yet considered (initially F),
X the arcs in the explanation, dG′(u, v) the shortest distance from u to v for any
G ′ ⊆ G, and u the top of Q. Let GR = G \ (Fp ∪ X). We ensure correctness and
minimality by preserving the following invariants: (1) dGR(s, n) > K, (2) for all
(v′, u′) ∈ Fp, dGR(u, n) ≤ dGR(u′, n), and (3) for all e ∈ X, dGR∪{e}(s, n) ≤ K.

The three invariants hold initially: GR = G \ F = G, so (1) is the bound to
be explained, (2) holds because n is initially the head of Q and all weights are
non-negative, and (3) holds because X is initially empty.

At each iteration, we remove u from Q and process each arc e = (v , u) ∈ E
(removing all forbidden arcs (v, u) from Fp, preserving (2) as nodes are processed
in order of distance from n). We add arcs such that δv + w [e] + δ−1

u ≤ K to X
(preserving property (3)). Other forbidden arcs are now made available in GR.

We show how adding these arcs to GR maintains the invariants. Note
dGR(x, n) values for previously processed nodes x remain unchanged as any
newly introduced path from n must be at least as long as δ−1

u . Newly avail-
able arcs may, however, decrease dGR(x, n) for some x which has not yet been
processed. However, if dGR(x, n) decreased as a result of (v, u) becoming avail-
able, then the shortest path from x to n must pass through u. But, x is not yet
processed, so still dGR(u, n) ≤ dGR(x, n), preserving property (2). If the shortest
path from s to n were to be reduced because now δx + dGR(x, n) < δn, there is

A Bounded Path Propagator on Directed Graphs 199

a contradiction since this path goes through (v, u) meaning the arc should have
been added to X and be unavailable. Hence property (1) is preserved. Adding
arcs to GR can only make paths shorter, hence property (3) is preserved.

Once s is popped from Q, our explanation is X. By (1), Fp ∪ X is a valid
explanation; but by (2), no arc e remaining in Fp may be on a shorter path from
s to n (as either n is unreachable via e, or the head of the arc is distance no less
than δ−1

s from n), so e may be omitted from the explanation. Thus X is also
a valid explanation. Removing arcs from Fp, thus adding them to GR preserves
property (3). By (3), omitting any element of X introduces a path from s to n
of length no greater than K, so X is also minimal. !

Clearly, Algorithm2 runs in O(|E| + |V|log(|V|)), like Dijkstra’s algorithm.
We can use it to explain Propositions 1 and 2 as follows. For Proposition 1, we
first obtain X1 = ExplainDist(G, s, u, {δv |v ∈ V},K − δ−1

u), the explanation
for u being at distance K − δ−1

u from s. The call to Algorithm2 also yields the
distance δ∗

u from s to u in G that is still greater than K − δ−1
u . Let X2 be the

explanation for d being at distance K − δ∗
u from u. The final explanation is

X = X1 ∪X2. The same idea can be used for Proposition 2, using the head and
tail of the arc to be removed.

DP-based Propagation. We can also improve the explanations for the DP-
based propagation. Similarly to the simple propagation, Algorithm1 leaves a
table on each node stating the cost of visiting some subsets of mandatory nodes
before getting to that node. If d is not reachable in less than K + 1 visiting
all mandatory nodes, we fail and explain the failure. To do so, we run the same
Algorithm1 starting at d on the revered graph allowing forbidden arcs (similarly
to Algorithm2).

Let e−1 = (v, u) be some reversed forbidden arc of cost w[e]. On node u
(the tail of e in the original graph) lies the table left from the propagation pass
of Algorithm1. Each row of the table is a pair (mu, γu) as defined in Sect. 4.3.
Symmetrically, node v contains a table where each row (mv, γv) indicates the
mandatory nodes visited from d to v. If there exists an entry (mu, γu) in u’s
table and an entry (mv, γv) in v’s table such that mv ∪ mu = M , then e is
an arc that could be used in a path from s to d containing all nodes in M . If
additionally, γv + w[e] + γu ≤ K, that path would be a valid path. Therefore, e
being forbidden explains why we can’t reach d visiting all mandatory nodes in
no more than K. This corresponds to substituting the if -condition in line 8 of
Algorithm1 with a call to Explain from Algorithm3 (where e is the reversed
arc of whom we are visiting the tail, namely v).

State explosion for explanations: The explanation algorithm needs to use the
same mandatory nodes as the propagation. Therefore, if we clustered, the same
clustering is given to this algorithm. Also, we cannot use SCC levels here (other
than the ones computed at the root) since we need to traverse forbidden arcs
whether or not they skip entire mandatory SCCs as there may be other forbidden
arcs leading to the skipped SCCs later.

200 D. de Uña et al.

A major problem with these explanations is that we need to traverse forbid-
den arcs. In dense graphs, this can be slow as there may be many possible paths
to consider. For this reason, we use a simple stopping condition. Let tp be the
time it takes to run Algorithm 1 for propagation. If explaining is taking more
than x×tp (we choose x arbitrarily) we switch to the version of Explain in Algo-
rithm 4 which corresponds to the basic explanations described in Theorem 1.
We say that we interrupt the explanation when this change happens.

Algorithm 3. Better explanations
1: function explain(e, γv,mv)
2: for all (mh, ch) ∈ table[head(e)] do
3: if mh ∪ mv = M then
4: if γh + w[e] + γv ≤ K then
5: explanation.add(¬ce)
6: return true
7: return false

Algorithm 4. Avoiding state explosion
1: function explain(e, γ,m)
2: ◃ was short(e) = true ⇔ e was in a

short-enough path at some point.
3: if ¬ce ∧ was short(e) then
4: explanation.add(¬ce)
5: return true
6: return false

5 Experimental Results

In this section we test our bounded path in different problems (all benchmarks
available at [4]). We implemented all our work in the Chuffed solver [3]. All
tests are run on a Linux 3.16 Intel R⃝ Core

TM
i7-4770 CPU @ 3.40GHz machine.

We annotate the tests Expl when learning is enabled, NoExpl otherwise.
We use Expl* for the improved explanations. We name the tree decomposition
for path Path, BPath the bounded path propagator without the DP algorithm,
and DPBPath when using the DP algorithm. We compare failures (the number
of times the solver has encountered a wrong valuation of the variables before
proving optimality), the number of nodes (the size of the search space explored)
and the time in seconds.

We found it beneficial to add an array of successors constrained as ce ⇔
succ[tail(e)] = head(e). Definitions of all search strategies are given in [15].

5.1 Node Constrained Shortest Paths

Here we compare our path propagators with the results from [17] using their same
benchmarks. The aim of these problems is to find the shortest path between two
given nodes in a graph G = (N , E) passing through a set of mandatory nodes
M . We present the results in Table 1 using first fail on the succ variables as
the search strategy.

We clearly see that we solved the benchmarks faster than in [17]. We also
see how BPath and DPBPath improve the results obtained by Path, which is
the point of having bounded path. We can also see that the explanations reduced
the number of failures greatly, specially for the two instances with biggest search

A Bounded Path Propagator on Directed Graphs 201

Table 1. Comparison between [10,17], Expl, NoExpl, BPath, DPBPath and Path.
(C) indicates when clustering is used.

[17] [10] Path Path+BPath Path+DPBPath
Benchmark |N | Fails Time(s) Fails Time(s)

E
x
p
l

Fails Time(s) Fails Time(s) Fails Time(s)
Ham22 22 13 4.45 24 0.00 139 0.03 19 0.01 16 0.01
Ham22full 22 0 1.22 2 0.00 19 0.01 15 0.01 15 0.01
Ham52b 52 100 402 112 0.01 1119 0.81 19 0.07 19 0.22
Ham52full 52 3 45.03 5 0.00 90 0.13 72 0.11 72 0.58 (C)
Ham52order a 52 16 57.07 97 0.02 2203 2.54 189 0.45 76 3.80
Ham52order b 52 41 117 1 0.00 49 0.04 49 0.05 49 0.08

See [17] for details on

N
o
E
x
p
l

202 0.02 34 0.01 22 0.01
on the benchmarks. 35 0.01 27 0.01 13 0.74
“full” ≡ M = N 17579 6.04 1523 0.76 21 4.03
“order” ≡ the nodes 328 0.12 264 0.12 264 0.59(C)
in M must be visited 17438 7.93 1409 0.83 407 0.38
in some given order. 83 0.03 83 0.03 83 0.13

space (52b and 52order a). We do not show Expl* as they don’t improve on
Expl, because the search space is already very small, and Expl* is more expen-
sive than Expl.

Although slow, the DPBPath is still suitable for the Hamiltonian path of 22
nodes. For 52 nodes in such dense graph though, the state space explodes and
we absolutely need to cluster.

We also compared against the circuit-based path propagator with explana-
tions presented in [10]. Their propagator is surprisingly fast on these benchmarks
and requires little search. This is because their propagator has much better rea-
soning over the topology of the graph. The topological reasoning of our case is
done by the path propagator, which is a combination of directed trees (Eq. 1),
whereas their propagator makes more inferences based on strongly connected
components and starting the path at different nodes. This specific benchmarks
are simple in terms of distance (all the arcs have the same weight), but hard in
terms of topology, hence the advantage.

The take-away from this experiment is that for graphs that are topologically
hard, using our propagator might be a burden whereas using other propagators
with strong topological reasoning as [10] might be a better approach.

5.2 Metabolic Networks

A metabolic network is a network of molecules and reactions. Biologists use
this to understand how some molecules transform into others and cause some
behavior in cells. For instance, this helps biologists understand how a protein
behaves or how gene expression is regulated. This problem was modeled in [25]
by creating a bipartite graph where molecules are in one partition of the nodes,
and reactions in another partition. The arcs of the graph link the substrates and
products participating in a reaction to the reaction itself.

Here, there is a set of mandatory nodes (because biologists are aware of their
existence) and mutually exclusive nodes (corresponding to mutually exclusive
reactions). Furthermore, each node is given a weight corresponding to its degree

202 D. de Uña et al.

(this is to model highly connected molecules). The objective is to find a pathway
from some given substrate to some given product minimizing the total weight of
the path, where the weight is the sum of the degrees of the nodes.

Table 2 shows a comparison between our solver and the work in [25], which
used the solvers GRASPER and CP(Graph) on an Intel Core 2 Duo 2.16GHz.
Here BPath stands for Path+BPath. There is one instance for each size.

Table 2. Solving metabolic pathways in real-world networks (same strategy as [25]).

Glycosis Lysine Heme

|N| GRASP. CP Path BPath GRASP. CP Path BPath GRASP. CP Path BPath

(Graph) (Graph) (Graph)

500 0.28 0.21 0.05 0.11 0.36 0.41 0.06 0.12 0.22 0.10 0.05 0.22

600 0.38 0.31 0.07 0.17 0.48 0.44 0.06 0.16 0.28 0.12 0.06 0.31

700 0.45 0.35 0.19 0.22 0.47 0.75 0.08 0.25 0.36 0.16 0.08 0.46

800 0.53 0.50 0.24 0.29 0.53 1.00 0.12 0.37 0.41 0.19 0.11 0.55

900 0.64 0.68 0.15 0.39 0.57 1.29 0.16 0.4 0.51 0.27 0.15 0.73

1000 0.77 0.84 0.18 0.51 0.60 1.37 0.18 0.46 0.62 0.32 0.18 0.95

1100 0.91 1.00 0.17 0.71 0.73 1.29 0.19 0.64 0.65 0.33 0.32 1.08

1200 0.96 1.08 0.20 0.75 0.86 2.23 0.23 0.79 0.80 0.41 0.21 3.62

1300 1.03 1.21 0.81 0.84 0.99 2.50 0.28 1.02 0.94 0.47 0.4 1.81

1400 1.23 1.56 0.71 1.05 1.12 2.84 0.30 1.17 1.11 0.51 0.4 2.1

1500 1.40 1.85 1.25 1.28 1.25 2.92 0.39 1.33 1.14 0.52 0.94 2.09

1600 1.67 2.14 0.75 1.49 1.30 2.97 0.43 1.36 1.35 0.61 0.74 2.55

1700 1.93 2.40 0.82 1.77 1.41 3.03 0.67 1.44 1.57 0.69 0.4 3.08

1800 2.11 2.77 1.01 2.01 1.53 3.69 0.49 1.69 1.72 0.77 0.45 3.69

1900 2.27 3.02 1.19 2.21 1.75 3.93 0.60 1.95 1.96 0.84 0.48 6.21

2000 2.40 3.14 1.33 2.3 1.96 2.18 0.64 2.39 2.18 0.91 0.51 4.86

The results show that BPath slows Path down. We interpret this as the
effect of the overhead of bounded path. Indeed, the instances are solved so quickly
by Path that BPath has little to improve on. We also ran the same experiments
with the VSIDS [14] search strategy. The times were very similar to those in
Table 2 for Path, but 3 benchmarks (1200, 1300 and 1900 nodes for Heme) were
much slower (around 30 seconds). We tested the BPath version on those three
instances and noticed a big speedup (between 5 and 15 times faster). Nonetheless,
note how BPath is still faster than GRASPER and CP(Graph) in two thirds
of the tests. From this we conclude that bounding is only worthwhile if the
instances are hard to solve (i.e. there is a big search space to explore).

5.3 Task Constrained Shortest Path

In this problem, we are required to perform a set of tasks along a path. A task
can be done at different nodes, and visiting a node where some task can be
performed is enough, we do not need to visit more than one. As an example,
consider on the drive home withdrawing money from an ATM, going to a carwash

A Bounded Path Propagator on Directed Graphs 203

and buying some groceries. Any ATM, supermarket or carwash on the path is
sufficient. This problem was studied in [18,19] using dynamic programming only.

In [10], the authors used a circuit-based path propagator to solve a similar
problem (minimizing the longest arc). We compare our implementation against
theirs using the same instances (500 graphs of 20 nodes each) with the objective
of minimizing the total length of the path. The aim of this experiment is to see
if BPath and DPBPath can also improve the circuit-based path propagator.

In this experiment we compare the best runtimes of both approaches, even
if they use two different strategies. Our best search strategy is smallest (i.e.
branching on the succ variable with smallest domain) and their best search strat-
egy is first fail on the succ variables. Additionally, we combine our bounding
propagator with theirs to see the benefits.

Table 3. Benefit from BPath&DPBPath with both Path and [10]. Geometric average
over 500 instances of 20 nodes.

Expl* (all use smallest) Expl NoExpl

Version Conflicts Nodes Time Opt Conflicts Nodes Time Opt Conflicts Nodes Time Opt

Nodes (s) (s) (s) (s) (s) (s)

[10] 48790 54254 3.18 2.14 48790 54254 3.18 2.14 308888 619304 7.95 6.48

[10]+BPath 18303 19883 2.90 1.49 27050 29995 3.70 2.84 174329 350327 15.99 13.67

[10]+DPBPath 636 1133 2.09 1.86 4933 6228 1.68 1.36 31256 188278 4.47 3.75

Path 26488 28801 7.05 2.27 26488 28801 7.05 2.27 200773 402943 32.63 9.81

Path+BPath 13175 14787 3.63 1.30 15238 16868 4.07 1.37 76701 156208 16.20 5.51

Path+DPBPath 54 456 0.53 0.36 221 648 1.31 0.44 381 1253 2.96 1.14

Table 3 gives the results, also showing the time (Opt) to find (but not prove)
the optimal solution. The Path constraint finds optimal solutions very fast, but
takes time to prove optimality. On the other hand, the version from [10] is supe-
rior in both these aspects. Adding BPath and DPBPath improves both these
versions. The circuit based propagator does 89% less search when combined with
DPBPath (in its fastest version, using Expl), and Path does 98% less search
when combined with DPBPath (using Expl*). This shows how bounded path
with explanations can be used in combination with both tree-based and circuit-
based paths to enhance propagation.

5.4 Profitable Tourist Path

We introduce here a new problem (as far as we are aware) similar to the prize
collecting TSP. Imagine you need to do a long layover during a trip and change
airports. You might be interested in visiting the city while waiting for your
connection flight. In this problem, we model every point of interest (POI) of a
city with a minimum visit time (i.e. the least amount of time that a visit to some
POI is worthwhile) and a profit (i.e. how much a person enjoys visiting some
POI). The path can contain a node without necessarily visiting the corresponding
POI, but in order to visit a POI the path must contain the corresponding node

204 D. de Uña et al.

and spend the minimum visit time. The objective of the problem is to find the
path with most profit such that the total time is less than a certain bound (i.e.
the time we have available between connections). The total time is the cost of
the path plus the time spent at each POI (either 0 or the minimum visit time).

We created two benchmarks, based on New York City (14 nodes, from LGA
Airport to JFK Airport) and London (12 nodes, from Heathrow Airport to
Liverpool Street Station). We added two side constraints: for London, we require
that the visit to the Tower Bridge (if it happens) takes place between two narrow
time frames (which would correspond to times where the bridge opens to let ships
go through); for NYC, the ferry to Liberty Island leaves every hour and so there
might be a waiting time added to the total time (if the visit happens).

We used Expl on all the tests to study the benefits of bounding. The results
are in Table 4. Clearly, DPBPath and BPath largely improve Path for this
problem. Again, there was no need to cluster or interrupt explanations.

Table 4. Profitable tourist path. Search: smallest on succ variables.

New York City (14 POI) London (12 POI)

Version Fails Nodes Time(s) Fails Nodes Time(s)

Path ≥5030898 >5034046 >3600.00 236010 237263 60.14

Path+BPath (Expl) 390985 391746 379.19 24061 25190 13.86

Path+DPBPath (Expl) 44015 44606 48.82 10645 11866 2.89

Path+BPath (Expl*) 360945 361971 350.26 18546 19881 8.78

Path+DPBPath (Expl*) 2062 2690 37.45 224 670 0.16

Without explanations, though, NYC takes 1598 s using DPBPath and
London takes 13 s, making them substantially slower than with explanations.

6 Conclusion

In this paper we have improved the bounded path propagator by adding a new
propagation technique that is clearly superior. Both propagations are enhanced
by our two new versions of explanations. First, a fast way of computing valid
but not minimal explanations is given. We then provided another version that
generates more reusable explanations.

We have shown how combining bounded path with path propagators (com-
position of directed trees or circuit-based) improves their performance, reaching
the state of the art in bounded path propagation.

A Bounded Path Propagator on Directed Graphs 205

References

1. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano,
M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

2. Beldiceanu, N., Katriel, I., Lorca, X.: Undirected forest constraints. In: Beck,
J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 29–43. Springer,
Heidelberg (2006)

3. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis. The University of
Melbourne (2011)

4. De Uña, D.: Directed graph benchmarks (2015). http://people.eng.unimelb.edu.
au/pstuckey/bounded path/bounded path.zip

5. De Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Steiner tree problems with side
constraints using constraint programming. In: Proceedings of the Thertieth AAAI
Conference on Artificial Intelligence. AAAI Press (2016, to appear)

6. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): introducing a graph computa-
tion domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

7. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(4), 379–403 (1994)

8. Fages, J.G.: Exploitation de structures de graphe en programmation par con-
traintes. Ph.D. thesis. École de Mines de Nantes (2014)

9. Fages, J.-G., Lorca, X.: Revisiting the tree constraint. In: Lee, J. (ed.) Principles
and Practice of Constraint Programming – CP 2011. LNCS, vol. 6876, pp. 271–285.
Springer, Heidelberg (2011)

10. Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1),
1–29 (2014)

11. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. J.
R. Stat. Soc. Ser. C (Applied Statistics) 28(1), 100–108 (1979)

12. Hopcroft, J.E., Ullman, J.D., Aho, A.V.: Data structures and algorithms, vol. 175.
Addison-Wesley Boston, USA (1983)

13. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. (TOPLAS) 1(1), 121–141 (1979)

14. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation
Conference, pp. 530–535. ACM (2001)

15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZ-
inc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

16. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009). http://dx.doi.org/10.1007/s10601-008-9064-x

17. Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using dominators for solving
constrained path problems. In: Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819,
pp. 73–87. Springer, Heidelberg (2005)

18. Rice, M.N., Tsotras, V.J.: Engineering generalized shortest path queries. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE), pp. 949–960.
IEEE (2013)

19. Rice, M.N., Tsotras, V.J.: Parameterized algorithms for generalized traveling sales-
man problems in road networks. In: Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pp.
114–123. ACM (2013)

http://people.eng.unimelb.edu.au/pstuckey/bounded_path/bounded_path.zip
http://people.eng.unimelb.edu.au/pstuckey/bounded_path/bounded_path.zip
http://dx.doi.org/10.1007/s10601-008-9064-x

206 D. de Uña et al.

20. Sellmann, M.: Cost-based filtering for shorter path constraints. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)

21. Sellmann, M., Gellermann, T., Wright, R.: Cost-based filtering for shorter path
constraints. Constraints 12(2), 207–238 (2006). http://dx.doi.org/10.1007/s10601-
006-9006-4

22. Silver, D.: Cooperative pathfinding. In: AIIDE, pp. 117–122 (2005)
23. Storandt, S.: Quick and energy-efficient routes: computing constrained shortest

paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL Inter-
national Workshop on Computational Transportation Science, pp. 20–25. ACM
(2012)

24. Storandt, S.: Route planning for bicycles-exact constrained shortest paths made
practical via contraction hierarchy. In: ICAPS, vol. 4, p. 46 (2012)

25. Viegas, R.D., Azevedo, F.: Lazy constraint imposing for improving the path con-
straint. Electron. Notes Theor. Comput. Sci. 253(4), 113–128 (2009)

http://dx.doi.org/10.1007/s10601-006-9006-4
http://dx.doi.org/10.1007/s10601-006-9006-4

Compact-Table: Efficiently Filtering Table
Constraints with Reversible Sparse Bit-Sets

Jordan Demeulenaere1, Renaud Hartert1, Christophe Lecoutre2,
Guillaume Perez3, Laurent Perron4, Jean-Charles Régin3,

and Pierre Schaus1(B)

1 UCLouvain, Louvain-la-Neuve, Belgium
pschaus@gmail.com

2 CRIL, Univ. Artois and CNRS, 62300 Lens, France
3 University of Nice, Nice, France

4 Google, Paris, France

Abstract. In this paper, we describe Compact-Table (CT), a bitwise
algorithm to enforce Generalized Arc Consistency (GAC) on table con-
straints. Although this algorithm is the default propagator for table
constraints in or-tools and OscaR, two publicly available CP solvers,
it has never been described so far. Importantly, CT has been recently
improved further with the introduction of residues, resetting operations
and a data-structure called reversible sparse bit-set, used to maintain
tables of supports (following the idea of tabular reduction): tuples are
invalidated incrementally on value removals by means of bit-set opera-
tions. The experimentation that we have conducted with OscaR shows
that CT outperforms state-of-the-art algorithms STR2, STR3, GAC4R,
MDD4R and AC5-TC on standard benchmarks.

1 Introduction

Table constraints, also called extension(al) constraints, explicitly express the
allowed combinations of values for the variables they involve as sequences of
tuples, which are called tables. Table constraints can theoretically encode any
kind of constraints and are among the most useful ones in Constraint Pro-
gramming (CP). Indeed, they are often required when modeling combinatorial
problems in many application fields. The design of filtering algorithms for such
constraints has generated a lot of research effort, see [1,10,12,17,20,21,23,30,33].

Over the last decade, many developments have thus been achieved for enforc-
ing the well-known property called Generalized Arc Consistency (GAC) on
binary and/or non-binary extensionally defined constraints. Among successful
techniques, we find:

– bitwise operations that allow performing parallel operations on bit vectors.
Already exploited during the 70’s [27,32], they have been applied more recently
to the enforcement of arc consistency on binary constraints [3,22].

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 207–223, 2016.
DOI: 10.1007/978-3-319-44953-1 14

208 J. Demeulenaere et al.

– residual supports (residues) that store the last found supports of each value.
Initially introduced for ensuring optimal complexity [2], they have been shown
efficient in practice [18,19,24] when used as simple sentinels.

– tabular reduction, which is a technique that dynamically maintains the tables
of supports. Based on the structure of sparse sets [4,16], variants of Simple
Tabular Reduction (STR) have been proved to be quite competitive [17,20,33].

– resetting operations that saves substantial computing efforts in some particu-
lar situations. They have been successfully applied to the algorithm GAC4 [30].

In this paper, we introduce a very efficient GAC algorithm1 for table con-
straints that combines the use of bitwise operations, residual supports, tabular
reduction, and resetting operations. It is called Compact-Table (CT), and origi-
nates from or-tools, the Google solver that won the latest MiniZinc Challenges. It
is important to note that or-tools developers prefer to focus on highly-optimized
implementations of a few important (global) constraints instead of having many
of them. Through the years, CT has reached a good level of maturity because
it has been continuously improved and extended with many cutting edge ideas
such as those introduced earlier. Unfortunately, the core algorithm of CT has
not been described in the literature so far2 and is thus seldom used as a reference
for practical comparisons. The first version of CT implemented in or-tools, with
a bit-set representation of tables, dates back to 2012, whereas the version of CT
presented in this paper is exactly the last one implemented in OscaR [29].

Outline. After presenting related works in Sect. 2, we introduce some technical
background in Sect. 3. Then, we recall in Sect. 4 usual state restoration mech-
anisms implemented in CP solvers, and describe reversible sparse bit-sets in
Sect. 5. In Sect. 6, we describe our algorithm CT. Before concluding, we present
in Sect. 7 the results of an experimentation we have conducted with CT and its
contenders on a large variety of benchmarks.

2 Related Work

Propagators for table constraints are filtering procedures used to enforce GAC.
Given the importance of table constraints, it is not surprising that much research
has been carried out in order to find efficient propagators. This section briefly
describes the most efficient ones.

Generic Algorithms. On the one hand, GAC3 is a classical general-purpose GAC
algorithm [25] for non-binary constraints. Each call to this algorithm for a con-
straint requires testing if each value is still supported by a valid tuple accepted
by the constraint. Several improvements to fasten the search for a support gave
birth to variants such as GAC2001 [2] and GAC3rm [19]. Unfortunately, the
1 We are aware of an independent work [34] on a similar topic, but hadn’t the oppor-

tunity of reading it at the time of writing our paper.
2 Note that some parts of this paper were published in a Master Thesis report [7].

Compact-Table: Efficiently Filtering Table Constraints 209

worst-case time complexity of all these algorithms grows exponentially with the
arity of the constraints. On the other hand, GAC4 [28] is a value-based algorithm,
meaning here that for each value, it maintains a set of valid tuples supporting
it. Each time a value is removed, all supporting tuples are removed from the
associated sets, which allows us to identify values without any more supports.
GAC4R is a recent improvement of GAC4 [30], which recomputes the sets of
supporting tuples from scratch (referred to as a resetting operations) when it
appears to be less costly than updating them based on the removed values.

AC5 Instantiations. In [12], Mairy et al. introduce several instantiations of
the generic AC5 algorithm for table constraints, the best of them being AC5-
TCOptSparse. This algorithm shares some similarities with GAC4 since it pre-
computes lists of supporting tuples which allows us to retrieve efficiently new
supports by iterating over these lists. Note that a reversible integer, i.e., an inte-
ger storage location with a facility to restore its successive values, is used to
indicate the current position of a support in each list. This algorithm is imple-
mented in Comet, and has been shown to be efficient on ternary and quaternary
constraints.

Simple Tabular Reduction. STR1 [33] and STR2 [17] are algorithms that glob-
ally enforce GAC by traversing the constraint tables while dynamically main-
taining them: each call to the algorithm for a constraint removes the invalid
tuples from its table. The improvements brought in STR2 avoid unnecessary
operations by considering only relevant subsets of variables when checking the
validity of a tuple, and collecting supported values. Contrary to its predecessors,
STR3 [20] is a fine-grained (or value-based) algorithm. For each value, it initially
computes a static array of tuples supporting it, and keeps a reversible integer
curr that indicates the position of the last valid tuple in the array. STR3 also
maintains the set of valid tuples. STR3 is shown to be complementary to STR2,
being more efficient when the tables are not reduced drastically during search.

Compressed Representations. Other algorithms gamble on the compression of
tables to reduce the time needed to ensure GAC. The most promising data
structure allowing a more compact representation is the Multi-valued Decision
Diagram (MDD) [31], but note that the order of variables used to build an
MDD may significantly impact its size. Two notable algorithms using MDDs
as main data structure are mddc [6] and MDD4R [30]. The former does not
modify the decision diagram and performs a depth-first search of the MDD
during propagation to detect which parts of the MDD are consistent or not.
MDD4R dynamically maintains the MDD by deleting nodes and edges that do
not belong to a solution. Each value is matched with its corresponding edges in
the MDD, so, when a value has none of its edges present in the MDD, it can be
removed. On the other hand, some other forms of compression have been studied
from the concepts of compressed tuples [14,35], short supports [13] and sliced
tables [11].

210 J. Demeulenaere et al.

3 Technical Background

A constraint network (CN) N is composed of a set of n variables and a set of
e constraints. Each variable x has an associated domain, denoted by dom(x),
that contains the finite set of values that can be assigned to it. Each constraint c
involves an ordered set of variables, called the scope of c and denoted by scp(c),
and is semantically defined by a relation, denoted by rel(c), which contains the
set of tuples allowed for the variables involved in c. The arity of a constraint c is
|scp(c)|, i.e., the number of variables involved in c. A (positive) table constraint
c is a constraint such that rel(c) is defined explicitly by listing the tuples that
are allowed by c.

Example 1. The constraint x ̸= y with x ∈ {1, 2, 3} and y ∈ {1, 2} can be
alternatively defined by the table constraint c such that scp(c) = {x, y} and
rel(c) = {(1, 2), (2, 1), (3, 1), (3, 2)}. We also write:

⟨x, y⟩ ∈ T with T = ⟨(1, 2), (2, 1), (3, 1), (3, 2)⟩

Let τ = (a1, a2, . . . , ar) be a tuple of values associated with an ordered set
of variables X = {x1, x2, . . . , xr}. The ith value of τ is denoted by τ [i] or τ [xi].
The tuple τ is valid iff ∀i ∈ 1..r, τ [i] ∈ dom(xi). An r-tuple τ is a support on
the r-ary constraint c iff τ is a valid tuple that is allowed by c. If τ is a support
on a constraint c involving a variable x and such that τ [x] = a, we say that τ
is a support for (x, a) on c. Generalized Arc Consistency (GAC) is a well-known
domain-filtering consistency defined as follows:

Definition 1. A constraint c is generalized arc consistent (GAC) iff ∀x ∈
scp(c),∀a ∈ dom(x), there exists at least one support for (x, a) on c. A CN
N is GAC iff every constraint of N is GAC.

Enforcing GAC is the task of removing from domains all values that have
no support on a constraint. Many algorithms have been devised for establishing
GAC according to the nature of the constraints. For table constraints, STR [33]
is such an algorithm: it removes invalid tuples during search of supports using
a sparse set data structure which separates valid tuples from invalid ones. This
method of seeking supports improves search time by avoiding redundant tests
on invalid tuples that have already been detected as invalid during previous
GAC enforcements. STR2 [17], an optimization of STR, limits some operations
concerning the validity of tuples and the identification of supports, through the
introduction of two sets called Ssup and Sval (described later in Sect. 6).

4 Reversible Objects and Implementation Details

Trail and Timestamping. The issue of storing related states of the solving process
is essential in CP. In many solvers3, a general mechanism is used for doing and
undoing (on backtrack) the current state. This mechanism is called a trail and
3 One notable exception is Gecode, a copy-based solver.

Compact-Table: Efficiently Filtering Table Constraints 211

it was first introduced in [9] for implementing non-deterministic search. A trail
is a stack of pairs (location, value) where location stands for any piece of mem-
ory (e.g., a variable), which can be restored when backtracking. Typically, at each
search node encountered during the solving process, the constraint propagation
algorithm is executed. A same filtering procedure (propagator) can thus be exe-
cuted several times at a given node. Consequently, if one is interested in storing
some information concerning a filtering procedure, the value of a same memory
location can be changed several times. However, stamping that is part of the “folk-
lore” of programming [15] can be used to avoid storing a same memory location
on the trail more than once per search node. The idea behind timestamping is
that only the final state of a memory location is relevant for its restoration on
backtrack. The trail contains a general time counter that is incremented at each
search node, and a timestamp is attached to each memory location indicating the
time at which its last storage on the trail happened. If a memory location changes
and its timestamp matches the current time of the trail then there is no need to
store it again. CP solvers generally expose some “reversible” objects to the users
using this trail+timestamping mechanism. The most basic one is the reversible
version of primitive types such as int or long values. In the following, we denote
by rint and rlong the reversible versions of int and long primitive types.

Reversible Sparse Sets. Reversible primitive types can be used to implement
more complex data structures such as reversible sets. It was shown in [16] how
to implement a reversible set using a single rint that represents the current
size (limit) of the set. In this structure, which is called reversible sparse set, an
array of size n is used to store the permutation from 0 to n − 1. All values in
this permutation array at indices smaller than or equal to a variable limit are
considered as part of the set, while the others are considered as removed. When
iterating on current values of the set (with decreasing indices from limit to 0),
the value at the current index can be removed in O(1) by just swapping it with
the value stored at limit and decrementing limit. Making a sparse set reversible
just requires managing a single rint for limit. On backtrack, when the limit is
restored, all concerned removed values are restored in O(1).

Domains and Deltas. In OscaR [29], the implementation of domains relies on
reversible sparse sets. One advantage is that one can easily retrieve the set of val-
ues removed from a domain between any two calls to a given filtering procedure.
All we need to store in the filtering procedure is the last size of the domain. The
delta set (set of values removed between the two calls) is composed of all the
values located between the current size and the last recorded size. More details
on this cheap mechanism to retrieve the delta sets can be found in [16].

5 Reversible Sparse Bit-Sets

This section describes the class RSparseBitSet that is the main data structure
for our algorithm to maintain the supports. In what follows, when we refer to
an array t, t[0] denotes the first element (indexing starts at 0) and t.length the
number of its cells (size). Also, 0k will stand for a sequence of k bits set to 0.

212 J. Demeulenaere et al.

Algorithm 1. Class RSparseBitSet
1 words: array of rlong // words.length = p
2 index: array of int // index.length = p
3 limit: rint
4 mask: array of long // mask.length = p

5 Method isEmpty(): Boolean
6 return limit = −1

7 Method clearMask()
8 foreach i from 0 to limit do
9 offset ← index[i]

10 mask[offset] ← 064

11 Method reverseMask()
12 foreach i from 0 to limit do
13 offset ← index[i]
14 mask[offset] ← ˜mask[offset] // bitwise NOT

15 Method addToMask(m: array of long)
16 foreach i from 0 to limit do
17 offset ← index[i]
18 mask[offset] ← mask[offset] — m[offset] // bitwise OR

19 Method intersectWithMask()
20 foreach i from limit downto 0 do
21 offset ← index[i]
22 w ← words[offset] &mask[offset] // bitwise AND
23 words[offset] ← w
24 if w = 064 then
25 index[i] ← index[limit]
26 index[limit] ← offset
27 limit ← limit − 1

28 Method intersectIndex(m: array of long): int
/* Post: returns the index of a word where the bit-set
intersects with m, −1 otherwise */

29 foreach i from 0 to limit do
30 offset ← index[i]
31 if words[offset] & m[offset] ̸= 064 then
32 return offset

33 return −1

The class RSparseBitSet, which encapsulates four fields and 6 methods, is
given in Algorithm 1. One important field is words, an array of p 64-bit words
(actually, reversible long integers), which defines the current value of the bit-set:

Compact-Table: Efficiently Filtering Table Constraints 213

the ith bit of the jth word is 1 iff the (j − 1) × 64 + ith element of the (initial)
set is present. Initially, all words in this array have all their bits at 1, except
for the last word that may involve a suffix of bits at 0. For example, if we want
to handle a set initially containing 82 elements, then we build an array with
p = ⌈82/64⌉ = 2 words that initially looks like:

Because, in our context, only non-zero words (words having at least one bit
set to 1) are relevant when processing operations on the bit-set, we rely on the
sparse-set technique by managing in an array index the indices of all words:
the indices of all non-zero words are in index at positions less than or equal to
the value of a variable limit, and the indices of all zero-words are in index at
positions strictly greater than limit. For our example, we initially have:

If we suppose now that the 66 first elements of our set above are removed,
we obtain:

The class invariant describing the state of a reversible sparse bit-set is the
following:

– index is a permutation of [0, . . . , p − 1], and
– words[index[i]] ̸= 064 ⇔ i ≤ limit, ∀i ∈ 0..p − 1

Note that the reversible nature of our object comes from (1) an array of
reversible long (denoted rlong) (instead of simple longs) to store the bit words,
and (2) the reversible prefix size of non-zero words by using a reversible int
(rint).

A RSparseBitSet also contains a local temporary array, called mask. Is is
used to collect elements with Method addToMask(), and can be cleared and
reversed too. A RSparseBitSet can only be modified by means of the method
intersectWithMask() which is an operation used to intersect with the elements
collected in mask. An illustration of the usage of these methods is given in next
example.

214 J. Demeulenaere et al.

Fig. 1. RSparseBitSet example

Example 2. Figure 1 illustrates the use of Methods addToMask() and intersect
WithMask(). We assume that the current state of the bit-set is given by the value
of words, and that clearMask() has been called such that mask is initially empty.
Then two bit-sets are collected in mask by calling addToMask(). The value of mask
is represented after these two operations. Finally intersectWithMask() is executed
and the new value of the bit-set words is given at the last row of Fig. 1.

We now describe the implementation of the methods in RSparseBitSet.
Method isEmpty() simply checks if the number of non-zero words is different
from zero (if the limit is set to −1, it means that all words are non-zero). Method
clearMask() sets to 0 all words of mask corresponding to non-zero words of words,
whereas Method reverseMask() reverses all words of mask. Method addToMask()
applies a word by word logical bit-wise or operation. Once again, notice that
this operation is only applied to words of mask corresponding to non-zero words
of words. Method intersectMask() considers each non-zero word of words in turn
and replaces it by its intersection with the corresponding word of mask. In case
the resulting new word is zero, it is swapped with the last non-zero word and
the value of limit is decremented. Finally, Method intersectIndex() checks if a
given bit-set (array of longs) intersects with the current bit-set: it returns the
index of the first word where an intersection can be proved, −1 otherwise.

6 Compact-Table (CT) Algorithm

As STR2 and STR3, Compact-Table (CT) is a GAC algorithm that dynamically
maintains the set of valid supports regarding the current domain of each variable.
The main difference is that CT is based on an object RSparseBitSet. In this set,
each tuple is indexed by the order it appears in the initial table. Invalid tuples
are removed during the initialization as well as values that are not supported by
any tuple. The class ConstraintCT, Algorithm 2, allows us to implement any
positive table constraint c while running the CT algorithm to enforce GAC.

6.1 Fields

As fields of Class ConstraintCT, we first find scp for representing the scope of
c and currTable for representing the current table of c by means of a reversible
sparse bit-set. If ⟨τ0, τ1, . . . , τt−1⟩ is the initial table of c, then currTable is a

Compact-Table: Efficiently Filtering Table Constraints 215

RSparseBitSet object (of initial size t) such that the value i is contained (is set
to 1) in the bit-set if and only if the ith tuple is valid:

i ∈ currTable ⇔ ∀x ∈ scp(c), τi[x] ∈ dom(x)

We also have three fields Sval, Ssup and lastSizes in the spirit of STR2. The
set Sval contains variables whose domains have been reduced since the previous
invocation of the filtering algorithm on c. To set up Sval, we need to record the
domain size of each modified variable x right after the execution of CT on c: this
value is recorded in lastSizes[x]. The set Ssup contains unfixed variables (from
the scope of the constraint c) whose domains contain each at least one value
for which a support must be found. These two sets allow us to restrict loops on
variables to relevant ones.

We also have a field supports containing static data. During the set up of the
table constraint c, CT also computes a static array of words supports[x, a], seen
as a bit-set, for each variable-value pair (x, a) where x ∈ scp(c) ∧ a ∈ dom(x):
the bit at position i in the bit-set is 1 if and only if the tuple τi in the initial
table of c is a support for (x, a).

Fig. 2. Illustration of the data structures after the initialization of ⟨x, y, z⟩ ∈ T . The
tuple (a, c, b) will not be indexed and d will be removed from dom(y).

Example 3. Figure 2 shows an illustration of the content of those bit-sets after
the initialization of the following table constraint ⟨x, y, z⟩ ∈ T , with:

– dom(x) = {a, b}, dom(y) = {a, b, d}, dom(z) = {a, b, c}
– T = ⟨(a, a, a), (a, a, b), (a, b, c), (b, a, a), (a, c, b), (a, b, b), (b, a, b), (b, b, a), (b,

b, b)⟩

The tuple (a, c, b) is initially invalid because c /∈ dom(y), and thus will not be
indexed. Value d will be removed from dom(y) given that it is not supported by
any tuple.

Finally, we have an array residues such that for each variable-value pair
(x, a), residues[x, a] denotes the index of the word where a support was found
for (x, a) the last time one was sought for.

216 J. Demeulenaere et al.

Algorithm 2. Class ConstraintCT
1 scp: array of variables // Scope
2 currTable: RSparseBitSet // Current table
3 Sval, Ssup // Temporary sets of variables
4 lastSizes // lastSizes[x] is the last size of the domain of x
5 supports // supports[x, a] is the bit-set of supports for (x, a)
6 residues // residues[x, a] is the last found support for (x, a)

7 Method updateTable()
8 foreach variable x ∈ Sval do
9 currTable.clearMask()

10 if |∆x| < |dom(x)| then // Incremental update
11 foreach value a ∈ ∆x do
12 currTable.addToMask(supports[x, a])

13 currTable.reverseMask()

14 else // Reset-based update
15 foreach value a ∈ dom(x) do
16 currTable.addToMask(supports[x, a])

17 currTable.intersectWithMask()
18 if currTable.isEmpty() then
19 break

20 Method filterDomains()
21 foreach variable x ∈ Ssup do
22 foreach value a ∈ dom(x) do
23 index ← residues[x, a]
24 if currTable.words[index] & supports(x, a)[index] = 064 then
25 index ← currTable.intersectIndex(supports[x, a])
26 if index ̸= −1 then
27 residues[x, a] ← index
28 else
29 dom(x) ← dom(x) \ {a}

30 lastSize[x] ← |dom(x)|

31 Method enforceGAC()
32 Sval ← {x ∈ scp : |dom(x)| ̸= lastSize[x]}
33 foreach variable x ∈ Sval do
34 lastSize[x] ← |dom(x)|
35 Ssup ← {x ∈ scp : |dom(x)| > 1}
36 updateTable()
37 if currTable.isEmpty() then
38 return Backtrack

39 filterDomains()

Compact-Table: Efficiently Filtering Table Constraints 217

6.2 Methods

The main method in ConstraintCT is enforceGAC(). After the initialization of
the sets Sval and Ssup, CT updates currTable to filter out (indices of) tuples
that are no more supports, and then considers each variable-value pair to check
whether these values still have a support.

Updating the Current Table. For each variable x ∈ Sval, i.e., each variable x
whose domain has changed since the last time the filtering algorithm was called,
updateTable() performs some operations. This method assumes an access to
the set of values ∆x removed from dom(x) since the last call to enforceGAC().
There are two ways of updating currTable, either incrementally or from scratch
after resetting. Note that the idea of using resets has been proposed in [30] and
successfully applied to GAC4 and MDD4, with the practical interest of saving
computational effort in some precise contexts. This is the strategy implemented
in updateTable(), by considering a reset-based computation when the size of the
domain is smaller than the number of deleted values.

In case of an incremental update (line 10), the union of the tuples to be
removed is collected by calling addToMask() for each bit-set (of supports) cor-
responding to removed values, whereas in case of a reset-based update (line 14),
we perform the union of the tuples to be kept. To get a mask ready to apply,
we just need to reverse it when it has been built from removed values. Finally,
the (indexes of) tuples of currTable not contained in the mask, built from x,
are directly removed by means of intersectWithMask(). When there are no more
tuples in the current table, a failure is detected, and updateTable() is stopped
by means of a loop break.

Filtering of Domains. Values are removed from the domain of some vari-
ables during the search of a solution, which can lead to inconsistent values in
the domain of other variables. As currTable is a reversible and dynamically
maintained structure, the value of some bits changes from 1 to 0 when tuples
become invalid (or from 0 to 1 when the search backtracks). On the contrary,
the supports bit-sets are only computed at the creation of the constraint and
are not maintained during search. It follows from the definition of those bit-sets
that (x, a) has a valid support if and only if

(currTable ∩ supports[x, a]) ̸= ∅ (1)

Therefore, each time a tuple becomes invalid, the constraint must check this
condition for every variable value pair (x, a) such that a ∈ dom(x), and remove
a from dom(x) if the condition is not satisfied any more. This operation is effi-
ciently implemented in filterDomains() with the help of residues and the method
intersectIndex().

Example 4. The same set of tuples as in Example 3 is considered. Suppose now
that a was removed from dom(x) (by another constraint) after the initialization.

218 J. Demeulenaere et al.

Given that the domain of x is reduced, when updateTable() is called by enforce-
GAC(), all tuples supporting a (because ∆x = {a}) will be invalidated. Figure 3a
illustrates the intermediary bit-sets used to compute the new value currTableout
from currTablein and supports[x, a]. Then filterDomains() computes for each
variable-value pair (xi, ai) (with xi ∈ Ssup and ai ∈ dom(x)) the intersection of
its associated set of supports with currTable as shown in Fig. 3b. Given that
the intersection for supports[z, c] and currTable is empty, c is removed from
dom(z).

Fig. 3. Illustration of enforceGAC() after the removal of a from dom(x).

6.3 Improvements

The algorithm in Sect. 6.2 can be improved to avoid unnecessary computations
in some cases.

Filtering Out Bounded Variables. The initialization of Sval at line 32 can be only
performed from unbound variables (and the last assigned variable), instead of
the whole scope. We can maintain them in a reversible sparse set.

Last Modified Variable. It is not necessary to attempt to filter values out from
the domain of a variable x if this was the only modified variable since the last
call to enforceGAC(). Indeed, when updateTable() is executed, the new state of
currTable will be computed from dom(x) or ∆x only. Because every value of
x had a support in currTable the last time the propagator was called, we can
omit filtering dom(x) by initially removing x from Ssup.

7 Experiments

We experimented CT on 1, 621 CSP instances involving (positive) table con-
straints (15GB of uncompressed files in format XCSP 2.1). This corresponds to
a large variety of instances, taken from 37 series. For guiding search, we used
binary branching with domain over degree as variable ordering heuristic and
min value as value ordering heuristic. A timeout of 1,000 s was used for each

Compact-Table: Efficiently Filtering Table Constraints 219

instance. The tested GAC algorithms are CT, STR2 [17], STR3 [20], GAC4
[28,30], GAC4R [30], MDDR [30] and AC5TCRecomp [26]. All scripts, codes
and benchmarks allowing to reproduce our experiments are available at https://
bitbucket.org/pschaus/xp-table. The experiments were run on a 32-core machine
(1400MHz cpu) with 100GB using Java(TM) SE Runtime Environment (build
1.8.0 60-b27) with 10GB of memory allocated (-Xmx option).

Performance Profiles. Let ti, s represent the time obtained with filtering algo-
rithm s ∈ S on instance i ∈ I. The performance ratio is defined as follows: ri, s =

ti, s
min{ti, s|s∈S} . A ratio ri, s = 1 means that s was the fastest on instance i. The
performance profile [8] is a cumulative distribution function of the performance
of s (speedup) compared to other algorithms: ρs(τ) = 1

|I| × |{i ∈ I|ri, s ≤ τ}|.
Our results are visually aggregated to form a performance profile in Fig. 4

generated by means of the online tool [5] http://sites.uclouvain.be/performance-
profile. Note that we filtered out the instances that (i) could not be solved within
1,000 s by all algorithms (ii) were solved in less than 2 s by the slowest algo-
rithm, and (iii) required less than 500 backtracks. The final set of instances
used to build the profile is composed of 227 instances. An interactive perfor-
mance profile is also available at https://www.info.ucl.ac.be/∼pschaus/assets/
publi/performance-profile-ct to let the interested reader deactivate some family
of instances to analyze the results more closely.

Fig. 4. Performance profile

Table 1 reports the speedup statistics of CT over the other algorithms. A first
observation is that CT is the fastest algorithm on 94.47% of the instances.
Among all tested algorithms, AC5TCRecomp obtains the worse results. Then it
is not clear which one among STR2, STR3, GAC4 and GAC4R is the second
best algorithm. Based on the geometric mean speedup, STR3 seems to be the
second best algorithm followed by STR2, GAC4R and MDD4R. Importantly,

https://bitbucket.org/pschaus/xp-table
https://bitbucket.org/pschaus/xp-table
http://sites.uclouvain.be/performance-profile
http://sites.uclouvain.be/performance-profile
https://www.info.ucl.ac.be/~pschaus/assets/publi/performance-profile-ct
https://www.info.ucl.ac.be/~pschaus/assets/publi/performance-profile-ct

220 J. Demeulenaere et al.

Table 1. Speedup analysis of CT over the other algorithms. Column ‘Best2’ corre-
sponds to a virtual second best solver (minimum time of all algorithms except CT).

Speedup STR2 STR3 GAC4 GAC4R MDD4R AC5-TC Best2

Geometric mean 5.09 4.03 7.05 6.15 6.57 19.22 2.75

Min 0.76 1.09 0.92 1.13 0.13 1.05 0.13

Max 88.58 51.04 173.24 208.52 50.84 1850.82 15.99

St. dev 10.64 4.36 19.67 18.57 9.46 134.13 2.87

one can observe that the geometric mean speedup of CT over the best of the
other algorithms is about 2.75.

Impact of Resetting Operations. In Algorithm 2, the choice of being incremental
or not, when updating currTable, depends on the size of several sets and is thus
dynamic. We propose to analyze two variants of Algorithm 2 when this choice
is static:

– Full incremental (CTI): only the body of the ‘if’ at line 10 is executed (deltas
are systematically used).

– Full re-computation (CTR): only the body of the ‘else’ at line 14 is executed
(domains are systematically used).

The performance profiles with these two variants are given in Fig. 5, and the
speedup table of the static versions over the dynamic one is given in Table 2.

Fig. 5. Performance Profiles with dynamic (CT), recomputation (CTR) and incremen-
tal (CTI) strategies.

As can be seen from both the performance profiles and the speedup table,
the dynamic version using the resetting operations dominates the static ones.
The geometric mean speedup is around 4% over CTI and 34% over CTR.

Compact-Table: Efficiently Filtering Table Constraints 221

Table 2. Speedup analysis of the two static variants over CT.

Speedup CTI CTR Best

Geometric mean 1.04 1.34 0.99

Min 0.44 0.53 0.44

Max 3.23 4.39 1.96

St. dev 0.38 0.65 0.27

Contradiction with Previous Results. In [26], AC5TCRecomp was presented as
being competitive with STR2. When we analyzed the code4 of STR2 used in
[26], it appeared that STR2 was implemented in Comet using built-in sets (trig-
gering the garbage collection of Comet). We thus believe that the results and
conclusions in [26] may over-penalize the performance of STR2. Our results also
somehow contradict the results in [30] where STR3 and STR2 were dominated
by MDD4R and GAC4R. When analyzing the performance of the implementa-
tion of STR2 and STR3 used in [30] with or-tools, it appears that it is not as
competitive as that in AbsCon (sometimes slower by a factor of 3). The results
presented in [30] may thus also over-penalize STR2 and STR3.

One additional contribution of this work is a fined-tuned implementation of
the best filtering algorithms for table constraints. The implementation of these
algorithms in OscaR was optimized, and checked to be close in performance
to the ones by the original authors. For CT, STR2 and STR3, a comparison
was made with AbsCon, and for CT, MDD4R and GAC4R, a comparison was
made with or-tools. Our implementation required a development effort of 10
man-months in order to obtain an efficient implementation of each algorithm.
It involved the expertise of several OscaR developers and a deep analysis of
the existing implementations in AbsCon and or-tools. The implementation of all
algorithms used in this paper is open-source and part of OscaR release 3.1.0.

8 Conclusion

In this paper, we have shown that Compact-Table (CT) is a robust algorithm
that clearly dominates state-of-the-art propagators for table constraints. CT
benefits from well-tried techniques: bitwise operations, residual supports, tabu-
lar reduction and resetting operations. We believe that CT can be easily imple-
mented using the reversible sparse bit-set data structure.

References

1. Bessiere, C., Régin, J.-C.: Arc consistency for general constraint networks: prelim-
inary results. In: Proceedings of IJCAI 1997, pp. 398–404 (1997)

2. Bessiere, C., Régin, J.-C., Yap, R., Zhang, Y.: An optimal coarse-grained arc con-
sistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

4 available at http://becool.info.ucl.ac.be.

http://becool.info.ucl.ac.be

222 J. Demeulenaere et al.

3. Bliek, C.: Wordwise algorithms and improved heuristics for solving hard constraint
satisfaction problems. Technical Report 12–96-R045, ERCIM (1996)

4. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett.
Programm. Lang. Syst. 2(1–4), 59–69 (1993)

5. Van Cauwelaert, S., Lombardi, M., Schaus, P.: A visual web tool to perform what-if
analysis of optimization approaches. Technical report, UCLouvain (2016)

6. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

7. Demeulenaere, J.: Efficient algorithms for table constraints. Technical report, Mas-
ter Thesis, under the supervision of P. Schauss, UCLouvain (2015)

8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

9. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)
10. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised

arc consistency for extensional constraints. In: Proceedings of AAAI 2007, pp. 191–
197 (2007)

11. Gharbi, N., Hemery, F., Lecoutre, C., Roussel, O.: Sliced table constraints: com-
bining compression and tabular reduction. In: Simonis, H. (ed.) CPAIOR 2014.
LNCS, vol. 8451, pp. 120–135. Springer, Heidelberg (2014)

12. Van Hentenryck, P., Mairy, J.-B., Deville, Y.: Optimal and efficient filtering algo-
rithms for table constraints. Constraints 19(1), 77–120 (2014)

13. Jefferson, C., Nightingale, P.: Extending simple tabular reduction with short sup-
ports. In: Proceedings of IJCAI 2013, pp. 573–579 (2013)

14. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Proceedings of CP 2007, pp. 379–393 (2007)

15. Knuth, D.E.: The Art of Computer: Combinatorial Algorithms, vol. 4. Addison-
Wesley (2015)

16. de Saint-Marcq, V.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain
implementation. In: Proceeding of TRICS 2013, pp. 1–10 (2013)

17. Lecoutre, C.: STR2: Optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

18. Lecoutre, C., Boussemart, F., Hemery, F.: Exploiting multidirectionality in coarse-
grained arc consistency algorithms. In: Proceedings of CP 2003, pp. 480–494 (2003)

19. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In:
Proceedings of IJCAI 2007, pp. 125–130 (2007)

20. Lecoutre, C., Likitvivatanavong, C., Yap, R.: STR3: A path-optimal filtering algo-
rithm for table constraints. Artif. Intell. 220, 1–27 (2015)

21. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Proceedings of CP 2006, pp. 284–298 (2006)

22. Lecoutre, C., Vion, J.: Enforcing arc consistency using bitwise operations. Con-
straint Program. Lett. 2d, 21–35 (2008)

23. Lhomme, O., Régin, J.-C.: A fast arc consistency algorithm for n-ary constraints.
In: Proceedings of AAAI 2005, pp. 405–410 (2005)

24. Likitvivatanavong, C., Zhang, Y., Bowen, J., Freuder, E.C.: Arc consistency in
MAC: a new perspective. In: Proceedings of CPAI 2004 Workshop held with CP
2004, pp. 93–107 (2004)

25. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

26. Mairy, J.-B., van Hentenryck, P., Deville, Y.: An optimal filtering algorithm for
table constraints. In: Proceedings of CP 2012, pp. 496–511 (2012)

Compact-Table: Efficiently Filtering Table Constraints 223

27. McGregor, J.J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inf. Sci. 19, 229–250 (1979)

28. Mohr, R., Masini, G.: Good old discrete relaxation. In: Proceedings of ECAI 1988,
pp. 651–656 (1988)

29. Team, O.: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
30. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:

Proceedings of CP 2014, pp. 606–621 (2014)
31. Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function

manipulation. In: Proceedings of ICCAD 1990, pp. 92–95 (1990)
32. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42

(1976)
33. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci. 177,

3639–3678 (2007)
34. Wang, R., Xia, W., Yap, R., Li, Z.: Optimizing simple table reduction with bitwise

representation. In: Proceedings of IJCAI 2016 (2016)
35. Xia, W., Yap, R.: Optimizing STR algorithms with tuple compression. In: Pro-

ceedings of CP 2013, pp. 724–732 (2013)

https://bitbucket.org/oscarlib/oscar

Interval Constraints with Learning:
Application to Air Traffic Control

Thibaut Feydy1(B) and Peter J. Stuckey1,2

1 Data61, CSIRO, Melbourne, Australia
{thibaut.feydy,peter.stuckey}@data61.csiro.au

2 Department of Computing and Information Systems,
University of Melbourne, Melbourne, Australia

Abstract. Lazy Clause Generation (LCG) is a learning extension of
Constraint Programming that combines the power of SAT and CP. In
this paper we present an extension of Lazy Clause Generation from finite
domain constraints to interval constraints, that is: non-linear constraints
over the reals. Because LCG solvers must be able to negate literals
involved in computation, LCG for intervals must represent both open
and closed intervals. This makes LCG for intervals quite different from
LCG for integers. We illustrate the advantage of the technology by solv-
ing a mixed integer non-linear Air Traffic Control problem .

1 Introduction

The capacities of European en-route Air Traffic Control (ATC) centers are far
exceeded by a constant growth in air traffic demand, resulting in ever increas-
ing flight delays. To overcome this issue, novel Air Traffic Management (ATM)
schemes are designed while keeping the hard constraint of a minimal 5 nauti-
cal mile horizontal safety separation between every pair of aircraft. Nowadays,
solutions to avoid conflicts are empirical, and human controllers rely on stan-
dard routes and traffic organization to devise them. However, the complexity of
conflicts could grow tremendously within future ATM systems, should the air-
craft fly on direct routes, from take-off airport to destination. Human controllers
would no longer be able to solve them efficiently on their own, thus requiring
automated solvers. Former approaches like [6] use local search (namely genetic
algorithms) to solve the conflict problem. These meta-heuristics are well suited
to solve large scale and difficult problems when no other relevant techniques are
known, but stochastic search inherently lacks existence and optimality proofs. An
interval constraint approach was offered in [8]. While the method allows proof of
optimality and the existence of solutions, it does not scale to the size of a general
air traffic sector. The difficulty in handling the required constraints is related to
the fact that the separation must be kept at any time. In this paper we propose
to solve this problem by extending an Interval Constraint Solver with Learning.
Learning methods such as lazy clause generation [15] can exponentially reduce
the search complexity and are particularly well suited to such a problem where
some of the variables can be discretized. After presenting interval constraint
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 224–232, 2016.
DOI: 10.1007/978-3-319-44953-1 15

Interval Constraints with Learning: Application to Air Traffic Control 225

methods and its extensions to learning, we present the air traffic control models
and their implementation and provide results validating the approach.

2 Preliminaries

2.1 Finite Domain Constraint Programming

A valuation, θ, is a mapping of variables to values, denoted {x1 !→ d1, . . . , xn !→
dn}. Define vars(θ) = {x1, . . . , xn}. A primitive constraint, c, is a set of val-
uations over a set of variables vars(c). A valuation θ is a solution of c if
{x !→ θ(x) | x ∈ vars(c)} ∈ c. A constraint C is a conjunction of primitive
constraints, which we often treat as a set. A valuation θ is a solution of con-
straint C if it is a solution for each c ∈ C. We write C1 |= C2 if every solution
of C1 is a solution of c2.

An atomic constraint is a unary constraint of the form ⟨x = d⟩, ⟨x ̸= d⟩,
⟨x ≥ d⟩, ⟨x ≤ d⟩, or false. We write atomic constraints in angle brackets to
emphasize their special status. A domain D is a conjunction of atomic con-
straints. D is a false domain if it has no solutions. We use notation D(x) =
{θ(x) | θ is a solution of D}. A singleton domain is one where |D(x)| = 1, x ∈
vars(D), and we let θD = {x !→ dx | x ∈ vars(D),D(x) = {dx}} in this case.

A propagator p(c) for constraint c is an inference algorithm, it maps a domain
D to a set of atomic constraints p(c)(D), where D∧c |= p(c)(D). We assume each
propagator is checking, that is if ∀x ∈ vars(c).|D(x)| = 1 then p(c)(D) = ∅ if θD
is a solution of c and {false} otherwise. A propagation solver prop(P,D) applied
to a set of propagators P and a domain D repeatedly applies the propagators
p ∈ P until p(D′) = ∅ for p ∈ P , and returns D′.

A constraint satisfaction problem (CSP) P = (V,D,C) is a constraint C and
domain constraint D over variables V = vars(C)∪ vars(D). A CP solver solves
the CSP by applying the propagation solver prop({p(c) | c ∈ C},D) to obtain a
new domain D′, then if this is not a false domain or singleton domain, guessing
an atomic constraint decision a, and solving the two problems (V,D′∧a,C) and
(V,D′ ∧ ¬a,C).

2.2 Lazy Clause Generation for Integers

Lazy clause generation (LCG) solvers [15] are hybrid CP and SAT solvers that
combine CP propagation based solving with SAT nogood learning. An LCG
solver represents an integer variable with initial domain [l .. u] by the Boolean
variables [[x = d]], l ≤ d ≤ u (equality variables) and [[x ≥ d]], l < d ≤ u (bounds
variables). Note that each atomic constraint defined earlier, is exactly a Boolean
literal using this representation: ⟨x = d⟩ is [[x = d]], ⟨x ̸= d⟩ is ¬[[x = d]], ⟨x ≥ d⟩
is [[x ≥ d]] and ⟨x ≤ d⟩ is ¬[[x ≥ d+ 1]].

The Boolean variables are connected to an integer domain propagator which
ensures that they maintain a consistent representation of an integer variable, that
is [[x ≥ d+ 1]] → [[x ≥ d]], l < d < u, and [[x = d]] ↔ [[x ≥ d]] ∧ ¬[[x ≥ d+ 1]], l <
d < u, [[x = l]]↔ ¬[[x ≥ l + 1]], and [[x = u]]↔ [[x ≥ u]].

226 T. Feydy and P.J. Stuckey

In LCG solvers propagators are also required to return explanations for each
new consequence l ∈ p(c)(D), that is an explanation clause e ≡ l1 ∧ · · · ln → l
where ∀1 ≤ i ≤ n,D |= li and c |= e. In LCG solvers during propagation [7,15],
a trail of newly inferred literals representing atomic constraints is created, each
of which has an explanation clause showing which previously true literals made
it true.

When an LCG solver infers false it, like a SAT solver, repeatedly replaces
literals in the explanation for the failure until only one literal that became true
since the last decision remains. The resulting explanation of failure is the so
called 1UIP nogood [14]. This nogood is then stored in the system as a new
constraint (propagator), and the solver backjumps to the second last decision
level in the nogood. At this point the nogood is guaranteed to propagate new
information. See [15] for more details.

Example 1. Consider a CSP with constraints x ≥ y, t ≥ 2→ b, b→ x ≤ 3z, b→
y ≥ 2, over integers x, y, z and t, and Boolean b and initial domainD = ⟨x ≥ 0⟩∧
⟨x ≤ 10⟩ ∧ ⟨y ≥ 0⟩ ∧ ⟨y ≤ 10⟩ ∧ ⟨z ≥ 0⟩ ∧ ⟨z ≤ 10⟩ ∧ ⟨t ≥ 0⟩ ∧ ⟨t ≤ 10⟩. An initial
decision ⟨z ≤ 5⟩ (¬[[z ≥ 6]]) causes no propagation. The next decision ⟨t ≥ 6⟩
([[t ≥ 6]]) causes b which in turn causes [[y ≥ 2]] and (with ¬[[z ≥ 6]]) ¬[[x ≥ 2]], and
these two propagate to false. The initial nogood is [[y ≥ 2]] ∧ ¬[[x ≥ 2]] → false,
replacing ¬[[x ≥ 2]] by its reasons gives ¬[[z ≥ 6]] ∧ b ∧ [[y ≥ 2]] → false, then
replacing [[y ≥ 2]] gives ¬[[z ≥ 6]] ∧ b → false. The resulting 1UIP nogood is
[[z ≥ 6]] ∨ ¬b. ⊓1

2.3 Interval Arithmetic

Given the discrete representation of numbers by computers it is impossible to
solve continuous problems exactly. Interval constraint solvers use interval arith-
metic [13] to compute sound approximations of the constraint system, through
a combination of local consistencies and search.

Let R be the set of real numbers, and let R∞ be R ∪ {+∞,−∞}. Let F be
the subset of R of the representable floating-point numbers in a given format,
and let F∞ be F ∪ {+∞,−∞}. Let ↓ (r) (resp. ↑ (r)) be the downward (resp.
upward) roundings to F∞ of a real number r. Given two numbers a ∈ F∪{−∞}
and b ∈ F ∪ {+∞} the closed interval [a, b] is the set {x ∈ R | a ≤ x ≤ b}.

Less usual for interval arithmetic we will also consider open and semi-open
intervals. The open interval (a, b) is the set {x ∈ R | a < x < b}, while the two
forms of semi-open intervals (a, b] and [a, b) represent the sets {x ∈ R | a < x ≤
b} and {x ∈ R | a ≤ x < b} respectively.

We will use I to represent the set of closed intervals, which is closed under
intersection. We will use I+ to represent the set of (all) intervals, including open
and semi-open intervals, which is also closed under intersection.

Given a closed interval I we define ⌊I⌋ (resp. ⌈I⌉) as the smallest (resp.
largest) element of I.

Given a real operator ∗, the associated interval operator ! is defined
by X!Y =

⋂
I {Z | ∀x ∈ X,∀y ∈ Y, x ∗ y ∈ Z}, e.g. [a, b] ⊖ [c, d] =

[↓ (a− d), ↑ (b− c)].

Interval Constraints with Learning: Application to Air Traffic Control 227

2.4 Interval Constraints Solving

A real (resp. interval) constraint is an atomic formula arising from a relation
over real (resp. interval) expressions and variables. In practice interval constraint
propagators enforce approximate consistencies, often hull consistency [3] or box
consistency [2]. The original hull consistency algorithm hc3 decomposes con-
straints into primitives constraints implemented each by a corresponding prop-
agator.

Example 2. The constraint c: (x+y)+2∗ b = 0 can be decomposed into c1 : z =
x + y and c2 : z + 2 ∗ b = 0. The hull consistent propagator for the constraint
c1, with the domains X, Y , and Z computes the common fixed-point of the
projection operators:X ← X∩(Z⊖Y), Y ← Y ∩(Z⊖X), and Z ← Z∩(X⊕Y). ⊓1

A refinement of the hc3 algorithm is hc4 [12] which avoids decomposing
the constraints by working directly on a tree-like representation of constraints
where each node is either a variable, a constant or a primitive function operator.
The variables domains pruning is done through a forward evaluation of the tree
followed by a backward top-down projection narrowing operation. During the
top-down pruning the algorithm may prematurely end by the computation of
an empty interval, in which case the constraint is inconsistent w.r.t the current
domain.

Example 3. The constraint c : (x + y) + (2 ∗ b) = 0 has the tree representation
c : (e1 : (e2 : x+ y)+ (e3 : 2 ∗ b)) = 0. Given the domain X, Y , B, the evaluation
phases computes e2.f = X ⊕ Y , e3.f = [2, 2] ⊗ B, e1.f = e2.f ⊕ e3.f . The top-
down pruning phases enforces the projection e1.b ← e1.f ∩ [0, 0], e2.b ← e2.f ∩
(e1.b⊖e3.f), X ← X∩(e2.b⊖Y), Y ← Y ∩(e2.b⊖X), e3.b← e3.f∩(e1.b⊖e2.f),
B ← B ∩ (e3.b⊘ [2, 2]). ⊓1

3 Lazy Clause Generation for Intervals

The critical question in defining a learning solver is how to represent the changes
in variables. A natural representation for interval variable x would be using
atomic constraints of the form ⟨x ∈ I⟩, which record the entire interval I attached
to the variable. Indeed there are finite domain learning solvers which take this
approach [16]. The disadvantages of this approach is that resulting nogoods
are unlikely to be very reusable, and the atomic constraints themselves interact
in complex ways. A stronger disadvantage is that atomic constraints will be
negated, and the negative form of these constraints is hard to reason about.

The obvious choice, analogous to the integer case is to use the atomic con-
straints ⟨x ≥ a⟩, ⟨x ≤ a⟩, a ∈ F. This allows us to represent all closed intervals.
Unlike the integer case we cannot get away with a single set of bounds variables
since ¬ ⟨x ≥ a⟩ ̸↔ ⟨x ≤ a⟩. Hence we need 2 sets of Boolean variables [[x ≥ a]]
and [[x ≤ a]]. Since ⟨x < a⟩ ↔ ¬[[x ≥ a]] and ⟨x > a⟩ ↔ ¬[[x ≤ a]], we will be able
to represent open and semi-open intervals.

228 T. Feydy and P.J. Stuckey

Clearly we cannot create a Boolean variable for each possible atomic con-
straint ⟨x ≥ a⟩, ⟨x ≤ a⟩, a ∈ F for variable x apriori, there are far too many.
Indeed even during propagation far too many atomic constraints will appear for
us to represent them each by a Boolean variable. In an LCG (and SAT) solver
each Boolean variable is a non-trivial data structure storing watch lists, activity
counts, and any associated atomic constraint.

To avoid the cost of creating many Boolean variables during propagation
we make use of a stateless atomic constraint representation (tagged pointer),
which carries its meaning with it, and use this for propagation, and recording
the implication graph in the trail, and the explanations of propagation, and
for building explanations. Most atomic constraints will appear on the trail, and
simply be removed by backtracking/backjumping. We will only create Boolean
variables corresponding to atomic constraints that end up in the nogoods that
are created.

Example 4. Reconsider the CSP of Example 1 where now x, y, z and t are inter-
val variables. An initial decision ⟨z ≤ 5⟩ causes no propagation. The next decision
⟨t ≥ 6⟩ causes b which in turn causes ⟨y ≥ 2⟩ and (with ⟨z ≤ 5⟩)

〈
x ≤↑ 5

3

〉
, and

these two propagate to false. The initial nogood is ⟨y ≥ 2⟩ ∧
〈
x ≤↑ 5

3

〉
→ false,

replacing
〈
x ≤↑ 5

3

〉
by its reasons gives ⟨z ≤ 5⟩∧b∧⟨y ≥ 2⟩ → false, then replac-

ing ⟨y ≥ 2⟩ gives ⟨z ≤ 5⟩∧b→ false. The resulting 1UIP nogood is ¬[[z ≤ 5]]∨¬b.
Note how the entire process uses atomic constraints, except the final stored
nogood which uses literals. ⊓1

A critical component of the interval learning solver is the interval domain
propagator which is responsible for mapping interval domain information to
atomic constraints and any associated Boolean literals, and vice versa.

The domain of interval variable x is implemented as a sorted map from float
values a to atomic constraints ⟨x < a⟩, ⟨x ≤ a⟩ , ⟨x ≥ a⟩, and ⟨x > a⟩. We cache
the current upper and lower bounds for x, but not their positions in the map.
Changes to D(x) require walking the map to determine which atomic constraints
become true or false. Note that in this way the domain propagator for x also
maintains the consistency of the Boolean literals associated with x, which will
be added to the queue for propagation.

When a new atomic constraint is created, it is inserted appropriately in the
map. Note usually a new atomic constraint is only created by propagation which
makes it true, so we can implement this simply by walking the map from the
current bound to the position of the new bound and inserting it, since we have
to walk the map setting the other atomic constraints in the path true or false
appropriately.

3.1 Propagation with Learning

Note that although we must represent open, semi-open and closed intervals, in
order to have the representation of intervals closed under negation, the interval
propagation almost always relaxes intervals to be closed. The only cases where

Interval Constraints with Learning: Application to Air Traffic Control 229

this does not occur is when no floating point operations occur on the interval
bounds, for example in equality, min and max. Clearly the resulting computation
is still safe.

In order to provide explanations for variable domain updates, interval oper-
ations are augmented to maintain the reasons for their results, in the form of a
set of atoms per bound. For example the augmentation " of the operator ⊕ is
defined as (X, lx, ux) " (Y, ly, uy) = (X ⊕ Y, lx ∪ ly, ux ∪ uy). Given a variable x
with a domain X let ∆(x) = (X, {⟨x ≥ ⌊X⌋⟩}, {⟨x ≤ ⌈X⌉⟩}). These augmented
operators are used in the implementation of propagators, to derive reasons for
failure or variables bounds updates,

Example 5. Reconsiding Example 3 in the context of learning, the bottom-up
evaluation now computes e2.f = ∆(x) " ∆(y), e3.f = ([2, 2], {}, {}) # ∆(b),
e1.f = e2.f " e3.f . The top-down pruning phases enforces the projection e1.b←
e1.f ∩ ([0, 0], {}, {}), e2.b← e2.f ∩ (e1.b $ e3.f), e3.b← e3.f ∩ (e1.b $ e2.f) and
the following potential updates augmented with explanations for x, y, and b :
∆(x)∩ (e2.b $ ∆(y)), ∆(y)∩ (e2.b $ ∆(x)) and ∆(b)∩ (e3.b ! [2, 2]).

Consider the constraint with domains x ∈ [−2, 0], y ∈ [−1, 0] and b ∈ [0, 1]
when b changes to [1,1], ignoring any rounding problems for simplicity. We
recalculate e3.f = ([2, 2], {⟨b ≥ 1⟩}, {}), e2.b = ([−2,−2], {}, {⟨b ≥ 1⟩}), e2.b $
∆(y) = ([−2,−1], {⟨y ≤ 0⟩}, {⟨b ≥ 1⟩ , ⟨y ≥ −1⟩}), x = ([−2,−1], {⟨x ≥ −2⟩},
{⟨b ≥ 1⟩ , ⟨y ≥ −1⟩}). The explanation for the change in x is ⟨b ≥ 1⟩∧⟨y ≥ −1⟩ →
⟨x ≤ −1⟩. ⊓1

In practice it is possible, during forward evaluation, to simply flag bits indicating
which of an expression children bounds are used during evaluation of its f field
to avoid the systematic creation and union of sets of atoms. A reason will be
then reconstructed, if needed, when a variable bound is updated.

4 Mixed Models

In this section we present the models first introduced in [8]. An aircraft i is char-
acterized by an initial position pi(0) = (xi(0), yi(0)), a speed vi, a heading θi and
a waypoint or destination wi along its path (see Fig. 1). We consider horizontal
maneuvers between aircraft at the same altitude. At any given time, two aircraft
are in conflict when the distance between them is less than a safety separation d.
The considered maneuvers for maintaining separation involve deviations of the
aircraft headings. Given that these maneuvers are orders for pilots, the starting
time and deviation angle of a maneuver are discrete variables, indeed arbitrarily
precise orders would be unrealistic.

4.1 Horizontal TCAS Model

This simple model is for emergency situations and could be used for a real-time
Traffic Collision Avoidance System (TCAS): at the initial time, deviations are

230 T. Feydy and P.J. Stuckey

i

(xi(0),y i(0))

vi

j
vj

(xj(0),y j(0))

wi
wj

deviated path

time t1time t1+ t

Fig. 1. Illustration of a deviated path to avoid conflict in the human controller model.

applied to the aircraft headings to avoid conflicts. It has one discrete decision
variable αi per aircraft i.

Given two aircraft i and j, let vij be the relative speed and pij (t) the relative
position between them at time t, and d the safety distance. We have pij (t) =
pij (0) + vij (t− 0). These two aircraft are not in conflict at a given time t if the
distance separating them is greater than d: P (i, j) = pij (t)2 − d2 > 0. If the
discriminant ∆P (i,j) of P (i, j) is negative, these two aircraft will not enter into
conflict, hence the inequality constraint per pair of aircraft is:

(pij (0)vij)2 − (pij (0)
2 − d2)v2ij < 0

with :

pij (0) =
(
xi(0)− xj(0)
yi(0)− yj(0)

)
vij =

(
vicos(θi + αi)− vjcos(θj + αj)
visin(θi + αi)− vjsin(θj + αj)

)

4.2 Horizontal Human Controller Model

In this model we consider that the aircraft is initially heading toward a waypoint.
To avoid a conflict, it is possible to deviate the aircraft from its original heading,
at some time t1. After an amount of time δt it will then head back toward its
original destination. The path of an aircraft p is then composed of three segments
sp1, sp2 and sp3. Given a pair of aircraft i and j, a conflict can arise for each pair
of segments (six, sjy), resulting in 9 avoidance constraints per pair of aircraft.

Given two segments six, sjy, let P (six, sjy) be the associated distance poly-
nomial as defined in the previous model. The avoidance constraint is defined by
the following disjunction :

– there is no common time segment during which the aircraft i flies over six and
aircraft j flies over sjy, or

– the discriminant of P (six, sjy) is negative, or
– the roots of P (six, sjy) are outside the common flight time.

Interval Constraints with Learning: Application to Air Traffic Control 231

5 Experiments

The lazy clause generation solver Chuffed [5] was extended with interval con-
straint support, which can be used both with or without learning. The optimiza-
tion strategy chosen was the minimisation of the sum of the absolute deviations
|αi| which is a good approximation of how disruptive the solution is.

Other possible optimization strategies would be the minimization of number
of deviated aircraft, which is a relevant criterion for a human controller, or to
minimize the total lengthening of the paths, which better captures the airline
operators’ concerns.

In Table 1, we compare the performance of Interval Constraints without learn-
ing (IC) and with Lazy Clause Generation for simple avoidance problems (tcasx)
and human controller model (hmcx) involving 4, 8 and 12 aircraft with a 90 s
timeout. We obtain an exponential search space reduction from learning, with
IC only solving the smaller human controller model problem. Since the aircrafts
are constrained pairwise, it is likely that the nogoods transpose well to different
parts of the search space. The benchmarks are available in MiniZinc format at
people.unimelb.edu.au/pstuckey/atc.

Table 1. Comparison of Interval Constraints with and without learning.

Problem IC LCG
#bts t(s) #lits #bts t(s)

tcas4 13 0.1 65 26 0.1
tcas8 1001 0.2 237 128 0.1
tcas12 52863 4.65 2107 1655 0.3

Problem IC LCG
#bts t(s) #lits #bts t(s)

hcm4 513342 60.1 21206 27621 4.4
hcm8 — >90 28521 42372 21.2
hcm12 — >90 43234 64890 62.1

6 Related Work and Conclusion

Constraint systems such as ECLiPSe [4] support both integers and interval
constraints. The framework presented in [11] and the SMT solver HySAT [9],
based on the iSAT algorithm [10], combine interval constraint propagation with
the learning framework of SMT to solve real constraints, implementing a form
of hc3 augmented by explanations (as opposed to hc4 that we implement).

The SMT approaches do not tightly integrate the handling of integer and
interval variables which is a distinct disadvantage for applications such as ATC.
They both elide the issue of too many literals appearing in the trail, which may
be because the benchmarks they use are quite distinct from those appearing in
typical CP interval problems where interval propagation can take many iterations
to quiesce. Hence it appears the implementation issues for LCG and SMT for
intervals are quite different.

The domain of Air Traffic Management is very complex and contains many
hard combinatorial problems. Although there is little existing work regarding

https://www.people.unimelb.edu.au/pstuckey/atc

232 T. Feydy and P.J. Stuckey

continuous or mixed problems, CP approaches has been developed for many of
the combinatorial problems in this area such as arrival management, runway
allocation, workload management. See [1] for a survey.

References

1. Allignol, C., Barnier, N., Flener, P., Pearson, J.: Constraint programming for air
traffic management: a survey. Knowl. Eng. Rev. 27(03), 361–392 (2012)

2. Benhamou, F., McAllester, D., Van Hentenryck, P.: Clp (intervals) revisited. Rap-
port technique, p. 30. Citeseer (1994)

3. Benhamou, F.: Interval constraint logic programming. In: Podelski, A. (ed.) Con-
straint Programming: Basics and Trends. LNCS, vol. 910, pp. 1–21. Springer,
Heidelberg (1995)

4. Brisset, P., Sakkout, H.E., Fruhwirth, T., Gervet, C., Harvey, W., Meier, M.,
Novello, S., Le Provost, T., Schimpf, J., Shen, K., Wallace, M.: ECLiPSe Con-
straint Library Manual, October 2005

5. Chu, G.G.: Improving combinatorial optimization. Ph.d. thesis, The University of
Melbourne (2011)

6. Durand, N., Alliot, J.M., Noailles, J.: Automatic aircraft conflict resolution using
genetic algorithms. In: Proceedings of the 1996 ACM Symposium on Applied Com-
puting, pp. 289–298. ACM (1996)

7. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

8. Feydy, T., Barnier, N., Brisset, P., Durand, N.: Mixed conflict model for air traffic
control. In: IntCp 2005, Workshop on Interval analysis, constraint propagation,
applications (2005)

9. Fränzle, M., Herde, C.: Hysat: an efficient proof engine for bounded model checking
of hybrid systems. Formal Methods Syst. Des. 30(3), 179–198 (2007)

10. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. J.
Satisfiability, Boolean Model. Comput. 1, 209–236 (2007)

11. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: Formal Methods in Computer-Aided Design (FMCAD
2012), pp. 131–140. IEEE (2012)

12. Ilog, S.: Revising hull and box consistency. In: Logic Programming: Proceedings
of the 1999 International Conference on Logic Programming, p. 230. MIT press
(1999)

13. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)
14. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an

efficient SAT solver. In: Proceedings of the 39th Design Automation Conference
(DAC 2001) (2001)

15. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

16. Veksler, M., Strichman, O.: Learning general constraints in CSP. In: Michel, L.
(ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 410–426. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-18008-3 28

http://dx.doi.org/10.1007/978-3-319-18008-3_28

Backdoors to Tractable Valued CSP

Robert Ganian, M.S. Ramanujan, and Stefan Szeider(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
rganian@gmail.com, ramanujan@tuwien.ac.at, stefan@szeider.net

Abstract. We extend the notion of a strong backdoor from the CSP set-
ting to the Valued CSP setting (VCSP, for short). This provides a means
for augmenting a class of tractable VCSP instances to instances that are
outside the class but of small distance to the class, where the distance is
measured in terms of the size of a smallest backdoor. We establish that
VCSP is fixed-parameter tractable when parameterized by the size of a
smallest backdoor into every tractable class of VCSP instances character-
ized by a (possibly infinite) tractable valued constraint language of finite
arity and finite domain. We further extend this fixed-parameter tractabil-
ity result to so-called “scattered classes” of VCSP instances where each
connected component may belong to a different tractable class.

1 Introduction

Valued CSP (or VCSP for short) is a powerful framework that entails among
others the problems CSP and MAX-CSP as special cases [26]. A VCSP instance
consists of a finite set of cost functions over a finite set of variables which range
over a domain D, and the task is to find an instantiation of these variables that
minimizes the sum of the cost functions. The VCSP framework is robust and has
been studied in different contexts in computer science. In its full generality, VCSP
considers cost functions that can take as values the rational numbers and positive
infinity. CSP (feasibility) and Max-CSP (optimisation) arise as special cases by
limiting the values of cost functions to {0,∞} and {0, 1}, respectively. Clearly
VCSP is in general intractable. Over the last decades much research has been
devoted into the identification of tractable VCSP subproblems. An important
line of this research (see, e.g., [17,18,25]) is the characterization of tractable
VCSPs in terms of restrictions on the underlying valued constraint language Γ ,
i.e., a set Γ of cost functions that guarantees polynomial-time solvability of all
VCSP instances that use only cost functions from Γ . The VCSP restricted to
instances with cost functions from Γ is denoted by VCSP[Γ].

In this paper we provide algorithmic results which allow us to gradually
augment a tractable VCSP based on the notion of a (strong) backdoor into a
tractable class of instances, called the base class. Backdoors where introduced
by Williams et al. [27,28] for SAT and CSP and generalize in a natural way to
VCSP. Let C denote a tractable class of VCSP instances over a finite domain D.

The authors acknowledge support by the Austrian Science Fund (FWF, project
P26696). Robert Ganian is also affiliated with FI MU, Brno, Czech Republic.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 233–250, 2016.
DOI: 10.1007/978-3-319-44953-1 16

234 R. Ganian et al.

A backdoor of a VCSP instance P into C is a (small) subset B of the variables
of P such that for all partial assignments α that instantiate B, the restricted
instance P|α belongs to the tractable class C. Once we know such a backdoor B
of size k we can solve P by solving at most |D|k tractable instances. In other
words, VCSP is then fixed parameter tractable parameterized by backdoor size.
This is highly desirable as it allows us to scale the tractability for C to instances
outside the class, paying for an increased “distance” from C only by a larger
constant factor.

In order to apply this backdoor approach to solving a VCSP instance, we first
need to find a small backdoor. This turns out to be an algorithmically challenging
task. The fixed-parameter tractability of backdoor detection has been subject of
intensive research in the context of SAT (see, e.g., [16]) and CSP (see, e.g., [2]).
In this paper we extend this line of research to VCSP.

First we obtain some basic and fundamental results on backdoor detection
when the base class is defined by a valued constraint language Γ . We obtain
fixed-parameter tractability for the detection of backdoors into VCSP[Γ] where
Γ is a valued constraint language with cost functions of bounded arity. In fact,
we show the stronger result: fixed-parameter tractability also holds with respect
to heterogeneous base classes of the form VCSP[Γ1] ∪ · · · ∪ VCSP[Γℓ] where
different assignments to the backdoor variables may result in instances that
belong to different base classes VCSP[Γi]. A similar result holds for CSP but
the VCSP setting is slightly more complicated as a valued constraint language
of finite arity over a finite domain is not necessarily finite.

Secondly, we extend the basic fixed-parameter tractability result to so-called
scattered base classes of the form VCSP[Γ1] ⊕ · · · ⊕ VCSP[Γℓ] which contain
VCSP instances where each connected component belongs to a tractable class
VCSP[Γi] for some 1 ≤ i ≤ ℓ—again in the heterogeneous sense that for different
assignments to the backdoor variables a single component of the reduced instance
may belong to different classes VCSP[Γi]. Backdoors into a scattered base class
can be much smaller than backdoors into each single class it is composed of, hence
the gain is huge if we can handle scattered classes. This boost in scalability does
not come for free. Indeed, already the “crisp” case of CSP, which was the topic of
a recent SODA paper [14], requires a sophisticated algorithm which makes use
of advanced techniques from parameterized algorithm design. This algorithm
works under the requirement that the constraint languages contain all unary
constraints (i.e., is conservative); this is a reasonable requirement as one needs
these unary cost functions to express partial assignments (see also Sect. 2 for
further discussion). Here we lift the crisp case to general VCSP, and this also
represents our main technical contribution.

To achieve this, we proceed in two phases. First we transform the backdoor
detection problem from a general scattered class VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γℓ)
to a scattered class VCSP(Γ ′

1) ⊕ · · · ⊕ VCSP(Γ ′
ℓ) over finite valued constraint

languages Γ ′
i . In the subsequent second phase we transform the problem to a

backdoor detection problem into a scattered class VCSP(Γ ′′
1)⊕ · · ·⊕VCSP(Γ ′′

ℓ)
where each Γ ′′

i is a finite crisp language; i.e., we reduce from the VCSP setting to

Backdoors to Tractable Valued CSP 235

the CSP setting. We believe that this sheds light on an interesting link between
backdoors in the VCSP and CSP settings. The latter problem can now be solved
using the known algorithm [14].

Related Work

Williams et al. [27,28] introduced backdoors for CSP or SAT as a theoretical tool
to capture the overall combinatorics of instances. The purpose was an analysis
of the empirical behaviour of backtrack search algorithms. Nishimura et al. [22]
started the investigation on the parameterized complexity of finding a small SAT
backdoor and using it to solve the instance. This lead to a number of follow-up
work (see [16]). Parameterized complexity provides here an appealing framework,
as given a CSP instance with n variables, one can trivially find a backdoor of
size ≤ k into a fixed tractable class of instances by trying all subsets of the
variable set containing ≤ k variables; but there are Θ(nk) such sets, and therefore
the running time of this brute-force algorithm scales very poorly in k. Fixed-
parameter tractability removes k from the exponent providing running times of
the form f(k)nc which yields a significantly better scalability in backdoor size.

Extensions to the basic notion of a backdoor have been proposed, including
backdoors with empty clause detection [6], backdoors in the context of learn-
ing [7], heterogeneous backdoors where different instantiations of the backdoor
variables may result in instances that belong to different base classes [15], and
backdoors into scattered classes where each connected component of an instance
may belong to a different tractable class [14]. Le Bras et al. [20] used backdoors
to speed-up the solution of hard problems in materials discovery, using a crowd
sourcing approach to find small backdoors.

The research on the parameterized complexity of backdoor detection was
also successfully extended to other problem areas including disjunctive answer
set programming [10,11], abstract argumentation [9], and integer linear program-
ming [13]. There are also several papers that investigate the parameterized com-
plexity of backdoor detection for CSP. Bessière et al. [1], considered “partition
backdoors” which are sets of variables whose deletion partitions the CSP instance
into two parts, one falls into a tractable class defined by a conservative polymor-
phism, and the other part is a collection of independent constraints. They also
performed an empirical evaluation of the backdoor approach which resulted in
promising results. Gaspers et al. [15] considered heterogeneous backdoors into
tractable CSP classes that are characterized by polymorphisms. A similar app-
roach was also undertaken by Carbonnel et al. [3] who also considered base
classes that are “h-Helly” for a fixed integer h under the additional assumption
that the domain is a finite subset of the natural numbers and comes with a fixed
ordering.

236 R. Ganian et al.

2 Preliminaries

2.1 Valued Constraint Satisfaction

For a tuple t, we shall denote by t[i] its i-th component. We shall denote by Q the
set of all rational numbers, by Q≥0 the set of all nonnegative rational numbers,
and by Q≥0 the set of all nonnegative rational numbers together with positive
infinity, ∞. We define α+∞ = ∞+α = ∞ for all α ∈ Q≥0, and α ·∞ = ∞ for
all α ∈ Q≥0. The elements of Q≥0 are called costs.

For every fixed set D and m ≥ 0, a function ϕ from Dm to Q≥0 will be called
a cost function on D of arity m. D is called the domain, and here we will only
deal with finite domains. If the range of ϕ is {0,∞}, then ϕ is called a crisp cost
function.

With every relation R on D, we can associate a crisp cost function ϕR on
D which maps tuples in R to 0 and tuples not in R to ∞. On the other hand,
with every m-ary cost function ϕ we can associate a relation Rϕ defined by
(x1, . . . , xm) ∈ Rϕ ⇔ ϕ(x1, . . . , xm) < ∞. In the view of the close correspon-
dence between crisp cost functions and relations we shall use these terms inter-
changeably in the rest of the paper.

A VCSP instance consists of a set of variables, a set of possible values, and
a multiset of valued constraints. Each valued constraint has an associated cost
function which assigns a cost to every possible tuple of values for the variables
in the scope of the valued constraint. The goal is to find an assignment of values
to all of the variables that has the minimum total cost. A formal definition is
provided below.

Definition 1 (VCSP). An instance P of the Valued Constraint satis-
faction Problem, or VCSP, is a triple (V,D, C) where V is a finite set of
variables, which are to be assigned values from the set D, and C is a multiset
of valued constraints. Each c ∈ C is a pair c = (x,ϕ), where x is a tuple of
variables of length m called the scope of c, and ϕ : Dm → Q≥0 is an m-ary
cost function. An assignment for the instance P is a mapping τ from V to D.
We extend τ to a mapping from V k to Dk on tuples of variables by applying τ
componentwise. The cost of an assignment τ is defined as follows:

CostP(τ) =
∑

(x,ϕ)∈C

ϕ(τ(x)).

The task for VCSP is the computation of an assignment with minimum cost,
called a solution to P.

For a constraint c, we will use var(c) to denote the set of variables which
occur in the scope of c. We will later also deal with the constraint satisfaction
problem, or CSP. Having already defined VCSP, it is advantageous to simply
define CSP as the special case of VCSP where each valued constraint has a crisp
cost function.

The following representation of a cost function will sometimes be useful for
our purposes. A cost table for an m-ary cost function ϕ is a table with Dm rows

Backdoors to Tractable Valued CSP 237

and m+1 columns with the following property: each row corresponds to a unique
tuple a = (a1, . . . , am) ∈ Dm, for each i ∈ [m] the position i of this row contains
ai, and position m+ 1 of this row contains ϕ(a1, . . . , am).

A partial assignment is a mapping from V ′ ⊆ V to D. Given a partial
assignment τ , the application of τ on a valued constraint c = (x,ϕ) results in a
new valued constraint c|τ = (x′,ϕ′) defined as follows. Let x′ = x \ V ′ (i.e., x′

is obtained by removing all elements in V ∩ x from x) and m′ = |x′|. Then for
each a′ ∈ Dm′

, we set ϕ′(a′) = ϕ(a) where for each i ∈ [m]

a[i] =
{

τ(x[i]) if x[i] ∈ V ′

a′[i − j] otherwise, where j = |{x[p] | p ∈ [i] } ∩ V ′|.

Intuitively, the tuple a defined above is obtained by taking the original tuple
a′ and enriching it by the values of the assignment τ applied on the “missing”
variables from x. In the special case when x′ is empty, the valued constraint
c|τ becomes a nullary constraint whose cost function ϕ′ will effectively be a
constant. The application of τ on a VCSP instance P then results in a new
VCSP instance P|τ = (V \ V ′,D, C′) where C′ = { c|τ | c ∈ C }. It will be useful
to observe that applying a partial assignment τ can be done in time linear in
|P| (each valued constraint can be processed independently, and the processing
of each such valued constraint consists of merely pruning the cost table).

2.2 Valued Constraint Languages

A valued constraint language (or language for short) is a set of cost functions.
The arity of a language Γ is the maximum arity of a cost function in Γ , or ∞ if
Γ contains cost functions of arbitrarily large arities. Each language Γ defines a
set VCSP[Γ] of VCSP instances which only use cost functions from Γ ; formally,
(V,D, C) ∈ VCSP[Γ] iff each (x,ϕ) ∈ C satisfies ϕ ∈ Γ . A language is crisp if it
contains only crisp cost functions.

A language Γ is globally tractable if there exists a polynomial-time algorithm
which solvesVCSP[Γ].1 Similarly, a classH of VCSP instances is called tractable
if there exists a polynomial-time algorithm which solvesH. For technical reasons,
we will implicitly assume that every language contains all nullary cost functions
(i.e., constants); it is easily seen that adding such cost functions into a language
has no impact on its tractability.

There are a few other properties of languages that will be required to for-
mally state our results. A language Γ is efficiently recognizable if there exists a
polynomial-time algorithm which takes as input a cost function ϕ and decides
whether ϕ ∈ Γ . We note that every finite language is efficiently recognizable.

A language Γ is closed under partial assignments if for every instance P ∈
VCSP[Γ] and every partial assignment τ on P and every valued constraint c =
(x,ϕ) in P, the valued constraint c|τ = (x′,ϕ′) satisfies ϕ′ ∈ Γ . The closure of
1 The literature also defines the notion of tractability [17,19], which we do not consider
here. We remark that, to the best of our knowledge, all known tractable constraint
languages are also globally tractable [17,19].

238 R. Ganian et al.

a language Γ under partial assignments, is the language Γ ′ ⊇ Γ containing all
cost functions that can be obtained from Γ via partial assignments; formally,
Γ ′ contains a cost function ϕ′ if and only if there exists a cost function ϕ ∈ Γ
such that for a constraint c = (x,ϕ) and an assignment τ : X → D defined on
a subset X ⊆ var(c) we have c|τ = (x′,ϕ′).

If a language Γ is closed under partial assignments, then also VCSP[Γ] is
closed under partial assignments, which is a natural property and provides a cer-
tain robustness of the class. This robustness is also useful when considering back-
doors into VCSP[Γ] (see Sect. 3), as then every superset of a backdoor remains a
backdoor. Incidentally, being closed under partial assignments is also a property
of tractable classes defined in terms of a polynomial-time subsolver [27,28] where
the property is called self-reducibility.

A language is conservative if it contains all unary cost functions [18]. We
note that being closed under partial assignments is closely related to the well-
studied property of conservativeness. Crucially, for every conservative globally
tractable language Γ , its closure under partial assignments Γ ′ will also be glob-
ally tractable; indeed, one can observe that every instance P ∈ VCSP[Γ ′] can
be converted, in linear time, to a solution-equivalent instance P ′ ∈ VCSP[Γ] by
using infinity-valued (or even sufficiently high-valued) unary cost functions to
model the effects of partial assignments.

2.3 Parameterized Complexity

We give a brief and rather informal review of the most important concepts of
parameterized complexity. For an in-depth treatment of the subject we refer the
reader to other sources [5,8,12,21].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time O(f(k)nc) where f is a computable
function and c is a constant independent of k. The function f is called the
parameter dependence, and algorithms with running time in this form are called
fixed-parameter algorithms. Since the parameter dependence is usually super-
polynomial, we will often give the running times of our algorithms in O∗ nota-
tion which suppresses polynomial factors. Hence the running time of an FPT
algorithm can be simply stated as O∗(f(k)).

The exists a completeness theory which allows to obtain strong theoretical
evidence that a parameterized problem is not fixed-parameter tractable. This
theory is based on a hierarchy of parameterized complexity classes W[1] ⊆
W[2] ⊆ . . . where all inclusions are believed to be proper. If a parameterized
problem is shown to be W[i]-hard for some i ≥ 1, then the problem is unlikely to
be fixed-parameter tractable, similarly to an NP-complete problem being solv-
able in polynomial time [5,8,12,21].

Backdoors to Tractable Valued CSP 239

3 Backdoors into Tractable Languages

This section is devoted to establishing the first general results for finding and
exploiting backdoors for VCSP. We first present the formal definition of back-
doors in the context of VCSP and describe how such backdoors once found,
can be used to solve the VCSP instance. Subsequently, we show how to detect
backdoors into a single tractable VCSP class with certain properties. In fact,
our proof shows something stronger. That is, we show how to detect heteroge-
neous backdoors into a finite set of VCSP classes which satisfy these properties.
The notion of heterogeneous backdoors is based on that introduced by Gaspers
et al. [15]. For now, we proceed with the definition of a backdoor.

Definition 2. Let H be a fixed class of VCSP instances over a domain D and
let P = (V,D, C) be a VCSP instance. A backdoor into H is a subset X ⊆ V
such that for each assignment τ : X → D, the reduced instance P|τ is in H.

We note that this naturally corresponds to the notion of a strong backdoor
in the context of Constraint Satisfaction and Satisfiability [27,28]; here we drop
the adjective “strong” because the other kind of backdoors studied on these
structures (so-called weak backdoors) do not seem to be useful in the general
VCSP setting. Namely, in analogy to the CSP setting, one would define a weak
backdoor of a VCSP instance P = (V,D, C) into H as a subset X ⊆ V such
that for some assignment τ : X → D (i) the reduced instance P|τ is in H and
(ii) τ can be extended to an assignment to V of minimum cost. However, in
order to ensure (ii) we need to compare the cost of τ with the costs of all other
assignments τ ′ to V . If X is not a strong backdoor, then some of the reduced
instances P|τ ′restricted to X will be outside of H, and so in general we have no
efficient way of determining a minimum cost assignment for it.

We begin by showing that small backdoors for globally tractable languages
can always be used to efficiently solve VCSP instances as long as the domain is
finite (assuming such a backdoor is known).

Lemma 1. Let H be a tractable class of VCSP instances over a finite domain
D. There exists an algorithm which takes as input a VCSP instance P along with
a backdoor X of P = (V,D, C) into H, runs in time O∗(|D||X|), and solves P.

Proof. Let B be a polynomial-time algorithm which solves every P in H, i.e.,
outputs a minimum-cost assignment in P; the existence of B follows by the
tractability of H. Consider the following algorithm A. First, A branches on the
at most |D||X|-many partial assignments of X. In each branch, A then applies
the selected partial assignment τ to obtain the instance P|τ in linear time. In
this branch, A proceeds by calling B on P|τ , and stores the produced assignment
along with its cost. After the branching is complete A reads the table of all of the
at most |D||X| assignments and costs outputted by B, and selects one assignment
(say α) with a minimum value (cost) a. Let τ be the particular partial assignment
on X which resulted in the branch leading to α. A then outputs the assignment
α ∪ τ along with the value (cost) a. ⊓.

240 R. Ganian et al.

Already for crisp languages it is known that having a small backdoor does not
necessarily allow for efficient (i.e., fixed-parameter) algorithms when the domain
is not bounded. Specifically, the W[1]-hard k-clique problem can be encoded into
a CSP with only k variables [23], which naturally contains a backdoor of size at
most k for every crisp language under the natural assumption that the language
contains the empty constraint. Hence the finiteness of the domain in Lemma1
is a necessary condition for the statement to hold.

Next, we show that it is possible to find a small backdoor into VCSP[Γ]
efficiently (or correctly determine that no such small backdoor exists) as long
as Γ has two properties. First, Γ must be efficiently recognizable; it is easily
seen that this condition is a necessary one, since detection of an empty backdoor
is equivalent to determining whether the instance lies in VCSP[Γ]. Second, the
arity of Γ must be bounded. This condition is also necessary since already in the
more restricted CSP setting it was shown that backdoor detection for a wide
range of natural crisp languages (of unbounded arity) is W[2]-hard [15].

Before we proceed, we introduce the notion of heterogeneous backdoors for
VCSP which represent a generalization of backdoors into classes defined in terms
of a single language. For languages Γ1, . . . ,Γℓ, a heterogeneous backdoor is a
backdoor into the class H = VCSP[Γ1] ∪ · · · ∪ VCSP[Γℓ]; in other words, after
each assignment to the backdoor variables, all cost functions in the resulting
instance must belong to a language from our set. We now show that detecting
small heterogenous backdoors is fixed-parameter tractable parameterized by the
size of the backdoor.

Lemma 2. Let Γ1, . . . ,Γℓ be efficiently recognizable languages over a domain D
of size at most d and let q be a bound on the arity of Γi for every i ∈ [ℓ]. There
exists an algorithm which takes as input a VCSP instance P over D and an
integer k, runs in time O∗((ℓ · d · (q+ 1))k), and either outputs a backdoor X of
P into VCSP[Γ1]∪ · · ·∪VCSP[Γℓ] such that |X| ≤ k or correctly concludes that
no such backdoor exists.

Proof. The algorithm is a standard branching algorithm (see also [15]). Formally,
the algorithm is called Detectbd, takes as input an instance P = (V,D, C), inte-
ger k, a set of variables B of size at most k and in time O∗((ℓ · d · (q + 1))k)
either correctly concludes that P has no backdoor Z ⊇ B of size at most k into
VCSP[Γ1] ∪ · · · ∪VCSP[Γℓ] or returns a backdoor Z of P into VCSP[Γ1] ∪ · · · ∪
VCSP[Γℓ] of size at most k. The algorithm is initialized with B = ∅.

In the base case, if |B| = k, and B is a backdoor of P into VCSP[Γ1] ∪ · · · ∪
VCSP[Γℓ] then we return the set B. Otherwise, we return No. We now move to
the description of the case when |B| < k.

In this case, if for every σ : B → D there is an i ∈ [ℓ] such that P|σ ∈
VCSP[Γi], then it sets Z = B and returns it. That is, if B is already found to
be a backdoor of the required kind, then the algorithm returns B. Otherwise,
it computes an assignment σ : B → D and valued constraints c1, . . . , cℓ in P|σ
such that for every i ∈ [ℓ], the cost function of ci is not in Γi. Observe that
for some σ, such a set of constraints must exist. Furthermore, since every Γi is

Backdoors to Tractable Valued CSP 241

efficiently recognizable and B has size at most k, the selection of these valued
constraints takes time O∗(dk). The algorithm now constructs a set Y as follows.
Initially, Y = ∅. For each i ∈ [ℓ], if the scope of the constraint ci contains more
than q variables then it adds to Y an arbitrary q + 1-sized subset of the scope
of ci. Otherwise, it adds to Y all the variables in the scope of c. This completes
the definition of Y . Observe that any backdoor set for the given instance which
containsB must also intersect Y . Hence the algorithm now branches on the set Y .
Formally, for every x ∈ Y it executes the recursive calls Detectbd(P, k, B∪{x}).
If for some x ∈ Y , the invoked call returned a set of variables, then it must be
a backdoor set of the given instance and hence it is returned. Otherwise, the
algorithm returns No.

Since the branching factor of this algorithm is at most ℓ · (q + 1) and the
set B, whose size is upper bounded by k, is enlarged with each recursive call, the
number of nodes in the search tree is bounded by O((ℓ ·(q+1))k). Since the time
spent at each node is bounded by O∗(dk), the running time of the algorithm
Detectbd is bounded by O∗((ℓ · (q + 1) · d)k). ⊓.

Combining Lemmas 1 and 2, we obtain the main result of this section.

Corollary 1. Let Γ1, . . . ,Γℓ be globally tractable and efficiently recognizable lan-
guages each of arity at most q over a domain of size d. There exists an algorithm
which solves VCSP in time O∗((ℓ · d · (q+1))k

2+k), where k is the size of a min-
imum backdoor of the given instance into VCSP[Γ1] ∪ · · · ∪ VCSP[Γℓ].

4 Backdoors into Scattered Classes

Having established Corollary 1 and knowing that both the arity and domain
restrictions of the language are necessary, it is natural to ask whether it is possible
to push the frontiers of tractability for backdoors to more general classes of
VCSP instances. In particular, there is no natural reason why the instances we
obtain after each assignment into the backdoor should necessary always belong
to the same language Γ even if Γ itself is one among several globally tractable
languages. In fact, it is not difficult to show that as long as each “connected
component” of the instance belongs to some tractable class after each assignment
into the backdoor, then we can use the backdoor in a similar fashion as in
Lemma 1. Such a generalization of backdoors from single languages to collections
of languages has recently been obtained in the CSP setting [14] for conservative
constraint languages. We proceed by formally defining these more general classes
of VCSP instances, along with some other required notions.

4.1 Scattered Classes

A VCSP instance (V,D, C) is connected if for each partition of its variable set
into nonempty sets V1 and V2, there exists at least one constraint c ∈ C such
that var(c) ∩ V1 ̸= ∅ and var(c) ∩ V2 ̸= ∅. A connected component of (V,D, C)
is a maximal connected subinstance (V ′,D, C′) for V ′ ⊆ V , C′ ⊆ C. These

242 R. Ganian et al.

notions naturally correspond to the connectedness and connected components
of standard graph representations of VCSP instances.

Let Γ1, . . . ,Γd be languages. Then the scattered class VCSP(Γ1) ⊕ · · · ⊕
VCSP(Γd) is the class of all instances (V,D, C) which may be partitioned
into pairwise variable disjoint subinstances (V1,D, C1), . . . , (Vd,D, Cd) such that
(Vi,D, Ci) ∈ VCSP[Γi] for each i ∈ [d]. Equivalently, an instance P is in
VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γd) iff each connected component in P belongs to
some VCSP[Γi], i ∈ [d].

Lemma 3. Let Γ1, . . . ,Γd be globally tractable languages. Then there exists a
polynomial-time algorithm solving VCSP for all instances P ∈ VCSP(Γ1) ⊕
· · · ⊕ VCSP(Γd).

It is worth noting that while scattered classes on their own are a somewhat
trivial extension of the tractable classes defined in terms of individual languages,
backdoors into scattered classes can be much smaller than backdoors into each
individual globally tractable language (or, more precisely, each individual class
defined by a globally tractable language). That is because a backdoor can not
only simplify cost functions to ensure they belong to a specific language, but it
can also disconnect the instance into several “parts”, each belonging to a differ-
ent language, and furthermore the specific language each “part” belongs to can
change for different assignments into the backdoor. As a simple example of this
behavior, consider the boolean domain, let Γ1 be the globally tractable crisp lan-
guage corresponding to Horn constraints [24], and let Γ2 be a globally tractable
language containing only submodular cost functions [4]. It is not difficult to con-
struct an instance P = (V1∪V2∪{x}, {0, 1}, C) such that (a) every assignment to
x disconnects V1 from V2, (b) in P|x&→0, all valued constraints over V1 are crisp
Horn constraints and all valued constraints over V2 are submodular, and (c) in
P|x&→1, all valued constraints over V1 are submodular and all valued constraints
over V2 are crisp Horn constraints. In the hypothetical example above, it is easy
to verify that x is a backdoor into VCSP[Γ1] ⊕ VCSP[Γ2] but the instance does
not have a small backdoor into neither VCSP[Γ1] nor VCSP[Γ2].

It is known that backdoors into scattered classes can be used to obtain fixed-
parameter algorithms for CSP i.e., both finding and using such backdoors is
FPT when dealing with crisp languages of bounded arity and domain size [14].
Crucially, these previous results relied on the fact that every crisp language of
bounded arity and domain size is finite (which is not true for valued constraint
languages in general). We formalize this below.

Theorem 1 ([14, Lemma 1.1]). Let Γ1, . . . ,Γℓ be globally tractable conserv-
ative crisp languages over a domain D, with each language having arity at most
q and containing at most p relations. There exists a function f and an algorithm
solving VCSP in time O∗(f(ℓ, |D|, q, k, p)), where k is the size of a minimum
backdoor into VCSP[Γ1] ⊕ · · · ⊕ VCSP[Γℓ].

Observe that in the above theorem, when q and |D| are bounded, p is imme-
diately bounded. However, it is important that we formulate the running time

Backdoors to Tractable Valued CSP 243

of the algorithm in this form because in the course of our application, these
parameters have to be bounded separately. Our goal for the remainder of this
section is to extend Theorem1 in the VCSP setting to also cover infinite globally
tractable languages (of bounded arity and domain size). Before proceeding, it
will be useful to observe that if each Γ1, . . . ,Γℓ is globally tractable, then the class
VCSP[Γ1] ⊕ · · · ⊕ VCSP[Γℓ] is also tractable (since each connected component
can be resolved independently of the others).

4.2 Finding Backdoors to Scattered Classes

In this subsection, we prove that finding backdoors for VCSP into scattered
classes is fixed-parameter tractable. This will then allow us to give a proof of
our main theorem, stated below.

Theorem 2. Let ∆1, . . . ,∆ℓ be conservative, globally tractable and efficiently
recognizable languages over a finite domain and having constant arity. Then
VCSP is fixed-parameter tractable parameterized by the size of a smallest back-
door of the given instance into VCSP(∆1) ⊕ · · · ⊕ VCSP(∆ℓ).

Recall that the closure of a conservative and globally tractable language
under partial assignments is also a globally tractable language. Furthermore,
every backdoor of the given instance into VCSP(∆1)⊕ · · ·⊕VCSP(∆ℓ) is also a
backdoor into VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γℓ) where Γi is the closure of ∆i under
partial assignments. Due to Lemma 1, it follows that it is sufficient to compute
a backdoor of small size into the scattered class VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γℓ)
where each Γi is closed under partial assignments.

Our strategy for finding backdoors to scattered classes defined in terms of
(potentially infinite) globally tractable languages relies on a two-phase transfor-
mation of the input instance. In the first phase (Lemma 4), we show that for
every choice of Γ1, . . . ,Γd (each having bounded domain size and arity), we can
construct a set of finite languages Γ ′

1, . . . ,Γ
′
d and a new instance P ′ such that

there is a one-to-one correspondence between backdoors of P into Γ1 ⊕ · · ·⊕ Γd

and backdoors of P ′ into Γ ′
1⊕ · · ·⊕Γ ′

d. This allows us to restrict ourselves to only
the case of finite (but not necessarily crisp) languages as far as backdoor detec-
tion is concerned. In the second phase (Lemma 5), we transform the instance and
languages one more time to obtain another instance P ′′ along with finite crisp
languages Γ ′′

1 , . . . ,Γ
′′
d such that there is a one-to-one correspondence between

the backdoors of P ′′ and backdoors of P ′. We crucially note that the newly con-
structed instances are equivalent only with respect to backdoor detection; there
is no correspondence between the solutions of these instances.

Before proceeding, we introduce a natural notion of replacement of valued
constraints which is used in our proofs.

Definition 3. Let P = (V,D, C) be a VCSP instance and let c = (x,ϕ) ∈ C.
Let ϕ′ be a cost function over D with the same arity as ϕ. Then the operation of
replacing ϕ in c with ϕ′ results in a new instance P ′ = (V,D, (C\{c})∪{(x,ϕ′)}).

244 R. Ganian et al.

Lemma 4. Let Γ1, . . . ,Γℓ be efficiently recognizable languages closed under par-
tial assignments, each of arity at most q over a domain D of size d. There exists
an algorithm which takes as input a VCSP instance P = (V,D, C) and an integer
k, runs in time O∗(f(ℓ, d, k, q)) for some function f and either correctly con-
cludes that P has no backdoor into VCSP(Γ1)⊕ · · ·⊕VCSP(Γℓ) of size at most
k or outputs a VCSP instance P ′ = (V,D′, C′) and languages Γ ′

1, . . . ,Γ
′
ℓ with the

following properties.

1. For each i ∈ [ℓ], the arity of Γ ′
i is at most q

2. For each i ∈ [ℓ], Γ ′
i is over D′ and D′ ⊆ D

3. Each of the languages Γ ′
1, . . . ,Γ

′
ℓ is closed under partial assignments and con-

tains at most g(ℓ, d, k, q) cost functions for some function g.
4. For each X ⊆ V , X is a minimal backdoor of P into VCSP(Γ1) ⊕ · · · ⊕

VCSP(Γℓ) of size at most k if and only if X is a minimal backdoor of P ′ into
VCSP(Γ ′

1) ⊕ · · · ⊕ VCSP(Γ ′
ℓ) of size at most k.

Proof. We will first define a function mapping the valued constraints in C to a
finite set whose size depends only on ℓ, d, k and q. Subsequently, we will show
that every pair of constraints in C which are mapped to the same element of this
set are, for our purposes (locating a backdoor), interchangeable. We will then use
this observation to define the new instance P ′ and the languages Γ ′

1, . . . ,Γ
′
ℓ′ . To

begin with, observe that if the arity of a valued constraint in P is at least q+k+1,
then P has no backdoor of size at most k into VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γℓ).
Hence, we may assume without loss of generality that the arity of every valued
constraint in P is at most q + k.

Let F be the set of all functions from [q + k] × 2[q+k] × D[q+k] → 2[ℓ] ∪ {⊥},
where ⊥ is used a special symbol expressing that F is “out of bounds.” Observe
that |F| ≤ η(ℓ, d, k, q) = (2ℓ + 1)(2d)

(q+k)+log(q+k)
. We will now define a function

Type : C → F as follows. We assume without loss of generality that the variables
in the scope of each constraint in C are numbered from 1 to |var(c)| based
on their occurrence in the tuple x where c = (x,ϕ). Furthermore, recall that
|var(c)| ≤ q + k. For c ∈ C, we define Type(c) = δ ∈ F where δ is defined as
follows. Let r ≤ q + k, Q ⊆ [q + k] and γ : [q + k] → D. Let γ[Q ∩ [r]] denote
the restriction of γ to the set Q ∩ [r]. Furthermore, recall that c|γ[Q∩[r]] denotes
the valued constraint resulting from applying the partial assignment γ on the
variables of c corresponding to all those indices in Q ∩ [r].

Then, δ(r,Q, γ) = ⊥ if r ̸= |var(c)|. Otherwise, δ(r,Q, γ) = L ⊆ [ℓ] where
i ∈ [ℓ] is in L if and only if c|γ[Q∩[r]] ∈ VCSP(Γi). This completes the description
of the function Type; observe that Type(c) can be computed in time which is
upper-bounded by a function of ℓ, d, k, q.

For every δ ∈ F , if there is a valued constraint c ∈ C such that Type(c) = δ,
we pick and fix one arbitrary such valued constraint c∗

δ = (x∗
δ ,ϕ

∗
δ). We now

proceed to the definition of the instance P ′ and the languages Γ ′
1, . . . ,Γ

′
ℓ′ .

Observe that for 2 constraints c = (x1,ϕ), c′ = (x′,ϕ′) ∈ C, if Type(c) =
Type(c′) then |var(c)| = |var(c′)|. Hence, the notion of replacing ϕ in c with
ϕ′ is well-defined (see Definition 3). We define the instance P ′ as the instance

Backdoors to Tractable Valued CSP 245

obtained from P by replacing each c = (x,ϕ) ∈ C with the constraint (x,ϕ∗
δ)

where δ = Type(c).
For each i ∈ [ℓ] and cost function ϕ ∈ Γi, we add ϕ to the language Γ ′

i if and
only if for some δ ∈ F and some set Q ⊆ var(c∗

δ) and assignment γ : Q → D,
the constraint c|γ[Q] = (x \ Q,ϕ). Clearly, for every i ∈ [ℓ], |Γ ′

i | ≤ dq · |F| ≤
dq · η(ℓ, d, k, q). Finally, for each Γ ′

i , we compute the closure of Γ ′
i under partial

assignments and add each relation from this closure into Γ ′
i . Since the size of

each Γ ′
i is bounded initially in terms of ℓ, d, k, q, computing this closure can

be done in time O∗(λ(ℓ, d, k, q)) for some function λ. Since each cost function
has arity q and domain D, the size of the final language Γ ′

i obtained after this
operation is blown up by a factor of at most dq, implying that in the end,
|Γ ′

i | ≤ d2q · |F| ≤ d2q · η(ℓ, d, k, q).
Now, observe that the first two statements of the lemma follow from the

definition of the languages {Γ ′
i}i∈[ℓ]. Furthermore, the number of cost functions

in each Γ ′
i is bounded by dq ·η(ℓ, d, k, q), and so the third statement holds as well.

Therefore, it only remains to prove the final statement of the lemma. Before we
do so, we state a straightforward consequence of the definition of P ′.

Observation 1. For every Y ⊆ V , γ : Y → D and connected component H′ of
P ′|γ , there is a connected component H of P|γ and a bijection ψ : H → H′ such
that for every c ∈ H, Type(c) = Type(ψ(c)). Furthermore, for every c = (x,ϕ) ∈
H, the constraint ψ(c) is obtained by replacing ϕ in c with ϕ∗

Type(c).

We now return to the proof of Lemma4. Consider the forward direction and
let X be a backdoor of size at most k for P into VCSP(Γ1)⊕ · · ·⊕VCSP(Γℓ) and
suppose that X is not a backdoor for P ′ into VCSP(Γ ′

1)⊕ · · ·⊕VCSP(Γ ′
ℓ). Then,

there is an assignment γ : X → D such that for some connected component H
of P ′|γ , there is no i ∈ ℓ such that all constraints in H′ lie in VCSP(Γ ′

i). By
Observation 1 above, there is a connected componentH in P|γ and a bijection ψ :
H → H′ such that for every c ∈ H, Type(c) = Type(ψ(c)). Since X is a backdoor
for P, there is a j ∈ ℓ such that all constraints in H lie in VCSP(Γj). Pick
an arbitrary constraint c = (x,ϕ) ∈ H. Let c′ = (x,ϕ∗

Type(c)) be the constraint
ψ(c). By definition of ϕ∗

Type(c) it follows that c
′|γ ∈ VCSP(Γj). The fact that this

holds for an arbitrary constraint in H along with the fact that ψ is a bijection
implies that every constraint in H′ is in fact in VCSP(Γ ′

j), a contradiction. The
argument in the converse direction is symmetric. This completes the proof of the
final statement of the lemma.

The time taken to compute P ′ and the languages Γ ′
1, . . . ,Γ

′
ℓ is dominated by

the time required to compute the function Type. Since the languages Γ1, . . . ,Γℓ

are efficiently recognizable, this time is bounded by O∗(|F|), completing the
proof of the lemma. ⊓.

Lemma 5. Let Γ1, . . . ,Γℓ be efficiently recognizable languages closed under par-
tial assignments, each of arity at most q over a domain D of size d. Let
P ′ = (V,D′, C′) be the VCSP instance and let Γ ′

1, . . . ,Γ
′
ℓ be languages returned

by the algorithm of Lemma 4 on input P and k. There exists an algorithm which
takes as input P ′, these languages and k, runs in time O∗(f(ℓ, d, k, q)) for some

246 R. Ganian et al.

function f and outputs a CSP instance P ′′ = (V ′′ ⊇ V,D′′, C′′) and crisp lan-
guages Γ ′′

1 , . . . ,Γ
′′
ℓ with the following properties.

1. For each i ∈ [ℓ], the arity of Γ ′′
i is at most q + 1

2. D′′ ⊇ D and |D′′| ≤ β(q, d, k) for some function β.
3. The number of relations in each of the languages Γ ′′

1 , . . . ,Γ
′′
ℓ is at most

α(q, d, k) for some function α.
4. if X is a minimal backdoor of arity at most k of P ′′ into CSP(Γ ′′

1) ⊕ · · · ⊕
CSP(Γ ′′

ℓ), then X ⊆ V .
5. For each X ⊆ V , X is a minimal backdoor of P ′ into VCSP(Γ ′

1) ⊕ · · · ⊕
VCSP(Γ ′

ℓ) if and only if X is a minimal backdoor of P ′′ into CSP(Γ ′′
1) ⊕

· · · ⊕ CSP(Γ ′′
ℓ).

Proof. We propose a fixed-parameter algorithm A, and show that it has the
claimed properties. It will be useful to recall that we do not distinguish between
crisp cost functions and relations. We also formally assume that D′ does not
intersect the set of rationals Q; if this is not the case, then we simply rename
elements of D′ to make sure that this holds. Within the proof, we will use a ◦ b
to denote the concatenation of vector a by element b.

First, let Ti be the set of all values which are returned by at least one cost
function from Γ ′

i , i ∈ [ℓ], for at least one input. Let T =
⋃

i∈[ℓ] Ti. Observe that
|T | is upper-bounded by the size, domain and arity of our languages. Let us now
set D′′ = D′ ∪T ∪ ϵ. Intuitively, our goal will be to represent the cost function in
each valued constraint in P ′ by a crisp cost function with one additional variable
which ranges over T , where T corresponds to a specific value which occurs in
one of our base languages. Note that this satisfies Condition 2 of the lemma,
and that T can be computed in linear time from the cost tables of Γ ′

1, . . . ,Γ
′
ℓ .

We will later construct k+ 1 such representations (each with its own additional
variable) to ensure that the additional variables are never selected by minimal
backdoors.

Next, for each language Γ ′
i , i ∈ [ℓ], we compute a new crisp language Γ ′′

i

as follows. For each ϕ ∈ Γ ′
i of arity t, we add a new relation ψ of arity t + 1

into Γ ′′
i , and for each tuple (x1, . . . , xt) of elements from D′ we add the tuple

(x1, . . . , xt,ϕ(x1, . . . , xt)) into ψ; observe that this relation exactly corresponds
to the cost table of ϕ. We then compute the closure of Γ ′′

i under partial assign-
ments and add each relation from this closure into Γ ′′

i . Observe that the number
of relations in Γ ′′

i is bounded by a function of |T | and |Γ ′
i |, and furthermore the

number of tuples in each relation is upper-bounded by q|D
′|, and so Conditions 1

and 3 of the lemma hold. The construction of each Γ ′′
i from Γ ′

i can also be done
in linear time from the cost tables of Γ ′

1, . . . ,Γ
′
ℓ .

Finally, we construct a new instance P ′′ = (V ′′,D′′, C′′) from P ′ = (V,D′, C′)
as follows. At the beginning, we set V ′′ := V . For each c′ = (x′,ϕ′) ∈ C′, we
add k + 1 unique new variables v1c′ , . . . , vk+1

c′ into V ′′ and add k + 1 constraints
c′′1, . . . , c′′k+1 into C′′. For i ∈ [k + 1], each c′′i = (x′ ◦ vic′ ,ψ′′) where ψ′′ is
a relation that is constructed similarly as the relations in our new languages
Γ ′′
i above. Specifically, for each tuple (x1, . . . , xt) of elements from D′ we add

Backdoors to Tractable Valued CSP 247

the tuple (x1, . . . , xt,ϕ′(x1, . . . , xt)) into ψ′′, modulo the following exception.
If ϕ′(x1, . . . , xt) ̸∈ D′′, then we instead add the tuple (x1, . . . , xt, ϵ) into ψ′′.
Clearly, the construction of our new instance P ′′ takes time at most O(|C′| +
q|D

′|). This concludes the description of A.
It remains to argue that Conditions 4 and 5 of the lemma hold. First, consider

a minimal backdoor X of size at most k of P ′′ into CSP[Γ ′′
1] ⊕ · · · ⊕ CSP[Γ ′′

ℓ],
and assume for a contradiction that there exists some c′ = (x′,ϕ′) ∈ C′ and
i ∈ [k+1] such that vic′ ∈ X. First, observe that this cannot happen if the whole
scope of c′′i lies in X. By the size bound on X, there exists j ∈ [k+1] such that
vjc′ ̸∈ X. Then for each partial assignment τ of X, the relation ϕ′′ in c′′j belongs
to the same globally tractable language as the rest of the connected component
of P ′′ containing the scope of c′′ (after applying τ). Since the relation ϕ′′ in c′′j

is precisely the same as in c′′i and the scope of c′′i must lie in the same connected
component as that of c′′j , it follows that X \ {vix′} is also a backdoor of P ′′ into
CSP(Γ ′′

1) ⊕ · · · ⊕ CSP(Γ ′′
ℓ). However, this contradicts the minimality of X.

Finally, for Condition 5, consider an arbitrary backdoor X of P ′ into
VCSP(Γ ′

1) ⊕ · · · ⊕ VCSP(Γ ′
ℓ), and let us consider an arbitrary assignment from

X to D′′. It will be useful to note that while the contents of relations and/or
cost functions in individual (valued) constraints depend on the particular choice
of the assignment to X, which variables actually occur in individual components
depends only on the choice of X and remains the same for arbitrary assignments.

Now observe that each connected component PCSP of P ′′ after the application
of the (arbitrarily chosen) assignment will fall into one of the following two cases.
PCSP could contain a single variable vc′ with a single constraint whose relation
lies in every language Γ ′′

i , i ∈ [ℓ]; this occurs precisely when the whole scope
of a valued constraint c′ ∈ C′ lies in X, and the relation will either contain a
singleton element from T or be the empty relation. In this case, we immediately
conclude that PCSP ∈ CSP(Γi) for each i ∈ [ℓ].

Alternatively, PCSP contains at least one variable v ∈ V . Let PVCSP be the
unique connected component of P ′ obtained after the application of an arbi-
trary assignment from X to D′ which contains v. Observe that the variable
sets of PCSP and PVCSP only differ in the fact that PCSP may contain some
of the newly added variables vc′ for various constraints c′. Now let us con-
sider a concrete assignment τ from X to D′ along with an i ∈ [ℓ] such that
after the application of τ , the resulting connected component PVCSP belongs
to VCSP(Γ ′

i). It follows by our construction that applying the same assignment
τ in P ′′ will result in a connected component PCSP corresponding to PVCSP

such that PVCSP ∈ CSP(Γ ′′
i); indeed, whenever Γ ′

i contains an arbitrary cost
function ϕ(x) = β, the language Γ ′′

i will contain the relation (x ◦ β).
By the above, the application of an assignment from X to D′ in P ′′ will

indeed result in an instance in CSP(Γ ′′
1 ⊕ · · ·⊕ Γ ′′

ℓ). But recall that the domain
of P ′′ is D′′, which is a superset of D′; we need to argue that the above also
holds for assignments τ from X to D′′. To this end, consider an arbitrary such
τ and let τ0 be an arbitrary assignment from X to D′ which matches τ on all
mappings intoD′. Let us compare the instances P ′′

τ0 and P ′′
τ . By our construction

248 R. Ganian et al.

of P ′, whenever τ maps at least one variable from the scope of some constraint
c′′ to D′′ \D′, the resulting relation will be the empty relation. It follows that
each constraint in P ′′

τ will either be the same as in P ′′
τ , or will contain the empty

relation. But since the empty relation is included in every language Γ ′′
1 , . . . ,Γ

′′
ℓ ,

we conclude that each connected component of P ′′
τ must belong to at least one

language Γ ′′
i , i ∈ [ℓ]. This shows that X must also be a backdoor of P ′′ into

CSP[Γ ′′
1] ⊕ · · · ⊕ CSP[Γ ′′

ℓ].
For the converse direction, consider a minimal backdoor X of P ′′ into

CSP[Γ ′′
1] ⊕ · · · ⊕ CSP[Γ ′′

ℓ]. Since we already know that Condition 4 holds, X
must be a subset of V . The argument from the previous case can then simply
be reversed to see that X will also be a backdoor of P ′ into VCSP[Γ ′

1] ⊕ · · · ⊕
VCSP[Γ ′

ℓ]; in fact, the situation in this case is much easier since only assignments
into D′ need to be considered.

Summarizing, we gave a fixed-parameter algorithm and then showed that it
satisfies each of the required conditions, and so the proof is complete. ⊓.

We are now ready to prove Theorem 2, which we restate for the sake of
convenience.

Theorem 2. Let ∆1, . . . ,∆ℓ be conservative, globally tractable and efficiently
recognizable languages over a finite domain and having constant arity. Then
VCSP is fixed-parameter tractable parameterized by the size of a smallest back-
door of the given instance into VCSP(∆1) ⊕ · · · ⊕ VCSP(∆ℓ).

Proof. For each i ∈ [ℓ], let Γi denote the closure of ∆i under partial assign-
ments. Observe that every backdoor of the given instance into VCSP(∆1) ⊕
· · · ⊕ VCSP(∆ℓ) is also a backdoor into VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γℓ). Further-
more, each VCSP(Γi) is tractable since VCSP(∆1) is tractable and conservative.
Hence, it is sufficient to compute and use a backdoor of size at most k into
VCSP(Γ1) ⊕ · · · ⊕ VCSP(Γℓ).

The claimed algorithm has two parts. The first one is finding a backdoor into
VCSP(Γ1)⊕ · · ·⊕VCSP(Γℓ) and the second one is using the computed backdoor
to solve VCSP. Given an instance P and k, we first execute the algorithm of
Lemma 4 to compute the instance P ′, and the languages Γ ′

1, . . . ,Γ
′
ℓ with the

properties stated in the lemma. We then execute the algorithm of Lemma 5
with input P ′, k, and Γ ′

1, . . . ,Γ
′
ℓ to compute the CSP instance P ′′ and crisp

languages Γ ′′
1 , . . . ,Γ

′′
ℓ with the stated properties. Following this, we execute the

algorithm of Theorem 1 with input P ′′, k. If this algorithm returns No then we
return No as well. Otherwise we return the set returned by this algorithm as a
backdoor of size at most k for the given instance P. Finally, we use the algorithm
of Lemma 1 with H set to be the class VCSP(Γ1)⊕ · · ·⊕VCSP(Γℓ), to solve the
given instance.

The correctness as well as running time bounds follow from those of Lemmas 4
and 5, Theorem1, and Lemma1. This completes the proof of the theorem.

Backdoors to Tractable Valued CSP 249

5 Concluding Remarks

We have introduced the notion of backdoors to the VCSP setting as a means
for augmenting a class of globally tractable VCSP instances to instances that
are outside the class but of small distance to the class. We have presented
fixed-parameter tractability results for solving VCSP instances parameterized
by the size of a smallest backdoor into a (possibly scattered and heterogeneous)
tractable class satisfying certain natural properties.

Our work opens up several avenues for future research. Since our main objec-
tive was to establish the fixed-parameter tractability of this problem, we have
not attempted to optimize the runtime bounds for finding backdoors to scat-
tered classes. As a result, it is quite likely that a more focussed study of scat-
tered classes arising from specific constraint languages will yield a significantly
better runtime. A second interesting direction would be studying the parame-
terized complexity of detection of backdoors into tractable VCSP classes that
are characterized by specific fractional polymorphisms.

References

1. Bessiere, C., Carbonnel, C., Hebrard, E., Katsirelos, G., Walsh, T.: Detecting and
exploiting subproblem tractability. In: Rossi, F. (ed.) Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, 3–9
August. IJCAI/AAAI (2013)

2. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a
survey. Constraints 21(2), 115–144 (2016)

3. Carbonnel, C., Cooper, M.C., Hebrard, E.: On backdoors to tractable constraint
languages. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 224–239.
Springer, Heidelberg (2014)

4. Cohen, D.A., Jeavons, P.G., Zivny, S.: The expressive power of valued constraints:
hierarchies and collapses. Theoret. Comput. Sci. 409(1), 137–153 (2008)

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, New York (2015)

6. Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor
detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer,
Heidelberg (2007)

7. Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Backdoors in the context of learning.
In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 73–79. Springer, Heidelberg
(2009)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, New York (2013)

9. Dvorák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract
argumentation. Artif. Intell. 186, 157–173 (2012)

10. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs.
ACM Trans. Comput. Log. 17(1), 1–23 (2015)

11. Fichte, J.K., Szeider, S.: Backdoors to tractable answer set programming. Artif.
Intell. 220, 64–103 (2015)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)

250 R. Ganian et al.

13. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters
for ILP. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
AAAI Press (to appear, 2016)

14. Ganian, R., Ramanujan, M.S., Szeider, S.: Discovering archipelagos of tractability
for constraint satisfaction and counting. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, 10–12 January, pp. 1670–1681 (2016)

15. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Živný, S.: Backdoors into hetero-
geneous classes of SAT and CSP. In: Brodley, C.E., Stone, P. (eds.) Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City,
Québec, Canada, 27–31 July, pp. 2652–2658. AAAI Press (2014)

16. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey,
R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and
Beyond. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)

17. Jeavons, P., Krokhin, A.A., Živný, S.: The complexity of valued constraint satis-
faction. Bull. Eur. Assoc. Theoret. Comput. Sci. 113 (2014)

18. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. J. ACM
60(2), Art. 10, 38 (2013)

19. Krokhin, A., Bulatov, A., Jeavons, P.: The complexity of constraint satisfaction:
an algebraic approach. In: Structural Theory of Automata, Semigroups and Uni-
versal Algebra, Montreal, 2003. NATO Science Series II: Mathematics, Physics,
and Chemistry, vol. 207, pp. 181–213 (2005)

20. LeBras, R., Bernstein, R., Gomes, C.P., Selman, B., van Dover, R.B.: Crowd-
sourcing backdoor identification for combinatorial optimization. In Rossi, F. (ed.)
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
IJCAI 2013, Beijing, China, 3–9 August 2013

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford (2006)

22. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn
and binary clauses. In: Proceedings of Seventh International Conference on Theory
and Applications of Satisfiability Testing, SAT 2004, Vancouver, BC, Canada, 10–
13 May, pp. 96–103 (2004)

23. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. J.
Comput. Syst. Sci. 58(3), 407–427 (1999)

24. Schaefer, T.J.: The complexity of satisfiability problems. In: Conference Record of
the Tenth Annual ACM Symposium on Theory of Computing, San Diego, Calif.,
1978, pp. 216–226. ACM (1978)

25. Thapper, J., Živný, S.: Necessary conditions for tractability of valued CSPs. SIAM
J. Discrete Math. 29(4), 2361–2384 (2015)

26. Živný, S.: The Complexity of Valued Constraint Satisfaction Problems. Cognitive
Technologies. Springer, New York (2012)

27. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kauf-
mann (2003)

28. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings
of the Sixth International Conference on Theory and Applications of Satisfiability
Testing, SAT 2003 S. Margherita Ligure - Portofino, Italy, 5–8 May, pp. 222–230
(2003)

Monte-Carlo Tree Search for the Maximum
Satisfiability Problem

Jack Goffinet and Raghuram Ramanujan(B)

Department of Mathematics and Computer Science, Davidson College,
Davidson, NC 28035, USA

{jagoffinet,raramanujan}@davidson.edu

Abstract. Incomplete algorithms for the Maximum Satisfiability
(MaxSAT) problem use a hill climbing approach in tandem with var-
ious mechanisms that prevent search stagnation. These solvers’ conflict-
ing goals of maintaining search mobility while discovering high qual-
ity solutions constitute an exploration-exploitation dilemma, a problem
which has been tackled with great success in recent years using Monte-
Carlo Tree Search (MCTS) methods. We apply MCTS to the domain
of MaxSAT using various stochastic local search (SLS) algorithms for
leaf node value estimation, thus offering a novel hybrid alternative to
established complete and incomplete solution techniques. Our algorithm
outperforms baseline SLS algorithms like Walksat and Novelty on most
problem instances from the 2015 MaxSAT Evaluation. It also outdoes
CCLS, a state-of-the-art incomplete MaxSAT solver, on a number of
challenging industrial instances from the 2015 MaxSAT Evaluation.

1 Introduction

A canonical NP-complete problem, Boolean Satisfiability (SAT), has attracted a
tremendous amount of attention from researchers in the A.I. and broader com-
puter science community over the years. The Maximum Satisfiability problem
(MaxSAT) is a generalization of SAT: in this setting, the goal is to find a truth
assignment that satisfies the maximum number of clauses (i.e., constraints) in
a given formula. Modern MaxSAT solvers generally fall into one of two cate-
gories. Complete solvers systematically explore the problem search space and can
find provably optimal solutions to a given instance. Typically, they are imple-
mented using branch-and-bound techniques, or make iterative calls to a SAT
solver [19]. In contrast, incomplete solvers start with a random truth assignment
and attempt to discover better assignments by interleaving greedy and random
walk steps in the search space according to some policy. The WalkSAT algo-
rithm [23] is the exemplar of this class of stochastic local search (SLS) methods.
Their memorylessness means that these algorithms are incapable of proving that
a solution is optimal. Incomplete SLS solvers are nonetheless popular as they
are faster than their complete counterparts. Moreover, SLS algorithms are able
to find approximate solutions to large problem instances that are beyond the
capabilities of complete MaxSAT solvers.
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 251–267, 2016.
DOI: 10.1007/978-3-319-44953-1 17

252 J. Goffinet and R. Ramanujan

SLS algorithms work by using various properties of the underlying formula
as a guiding gradient. For example, WalkSAT uses the number of unsatisfied
clauses, while modern solvers like CCLS [16] use more intricate strategies such as
configuration checking [4]. However, this greedy approach, which is beneficial for
refining the quality of a solution, also often leads the solver into “basins” in the
search space that contain suboptimal solutions and from which escape is difficult
[10]. Authoring an effective SLS algorithm thus requires careful management of
this tension between preventing search stagnation and ensuring the reachability
of high-quality solutions. We observe that this can be viewed as an example of
the exploration-exploitation dilemma that is well-studied in the reinforcement
learning community [27]. In recent years, Monte-Carlo Tree Search (MCTS)
methods have proven to be an effective option for addressing this dilemma,
particularly within the setting of sequential decision-making problems.

MCTS methods, such as the Upper Confidence bounds applied to Trees
(UCT) algorithm [13], first came to the attention of the wider A.I. community
due to their startling success in some challenging adversarial planning domains,
most notably Go [8]. In the intervening years, they have been successfully used
to advance the state-of-the-art in several other domains, including other games
[2,3,5], probabilistic single-agent planning [12], and planning in partially observ-
able settings [26]. In all these domains, a balance needs to be struck between
verifying the value of known actions versus evaluating the potential of under-
explored actions, when under computational constraints. Algorithms like UCT
approach this tradeoff in a theoretically sound way, by modeling the search
process as a sequence of plays of a system of heirarchically organized multi-
armed bandits [13]. In this paper, we investigate the potential of UCT in the
domain of MaxSAT. In particular, we present a novel hybrid algorithm named
Uctmaxsat that combines aspects of both complete and incomplete solvers.
Our algorithm maintains a search tree that is methodically explored. An SLS
algorithm is used to estimate the value of the leaf nodes in this tree and guides
its future expansion. We find that our algorithm outperforms the underlying SLS
algorithms on a wide variety of benchmark instances.

2 Related Work

Several attempts have been made in the past to combine aspects of the complete
and incomplete paradigms in an attempt to produce strong SAT solvers. In
1998, Mazure et al. studied the use of an SLS algorithm to inform the variable
selection strategy in a complete solver [17], while in 2002, Habet et al. studied the
possibility of augmenting SLS algorithms with resolution mechanisms commonly
used by complete solvers [9]. There have been fewer studies investigating hybrid
approaches to MaxSAT. The most notable work in this area is that of Kroc
et al. who proposed a framework where one runs both an SLS solver (WalkSAT)
and a complete solver (MiniSAT [6]) in parallel on the same problem instance
[14]. During the run, WalkSAT is forbidden from flipping any variable that has
already been fixed by MiniSAT, but is otherwise unconstrained. MiniSAT, with
its systematic approach, directs the search towards promising regions in the

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 253

search space, where WalkSAT is then tasked with quickly configuring the free
variables. The authors demonstrate impressive results across a wide range of
challenging MaxSAT instances with this technique [14]. The approach, however,
fails on instances that are easily proven unsatisfiable, as in these cases, the
MiniSAT solver terminates too quickly to be of much assistance to WalkSAT.
Our algorithm, on the other hand, can still be applied to such problems and only
relies on a single-processor programming model.

Similarly, there have also been several prior attempts to bring the strength of
MCTS methods to bear on various combinatorial problems. One of the first such
attempts was that of Previti et al. who described a UCT inspired algorithm for
solving SAT instances [20]. Since then, others have investigated the feasibility of
using MCTS methods for solving mixed integer programming [22] and constraint
programming problems [15]. To our knowledge, this is the first work to study
the potential of UCT in the MaxSAT setting.

3 The UCTMAXSAT Algorithm

We now describe Uctmaxsat, a derivative of the original UCT algorithm with
specific enhancements for solving unweighted MaxSAT problems. Uctmaxsat
constructs a search tree where each node corresponds to a variable in the supplied
Boolean CNF formula ϕ. Every non-terminal node is treated like a two-armed
bandit. Playing the “left” arm (i.e., exploring the subtree rooted at the left child
of a node) corresponds to setting a variable to false, while playing the “right”
arm corresponds to setting the variable to true. If we denote the set of variables
in ϕ by V , then a sequence of |V | such plays corresponds to a complete truth
assignment to the variables. Uctmaxsat incrementally grows a search tree by
iterating over the following steps.

Tree Descent: At a node s, the algorithm chooses whether to go left or right by
computing an upper-confidence bound on each child node’s estimated value
as shown [1]:

Ucb1(si) = V (si) + c ·

√
lnn(s)
n(si)

(1)

Here, i ∈ {0, 1} refers to the arm index, si is the child node reached by
playing arm i, V (si) is the estimated value of node si (and is discussed
in greater detail below), n(s) denotes the number of prior visits to the
node s, and c is the exploration bias parameter. Starting at the root node,
Uctmaxsat repeatedly selects the arm with the higher Ucb1 score (break-
ing ties arbitrarily) to descend down the currently maintained search tree,
until a previously unexpanded node (i.e., one for which n(s) = 1) or a termi-
nal node (one corresponding to a complete assignment) is reached. With each
variable assignment (arm play), the original formula is appropriately simpli-
fied — for convenience, we will use ϕ′ to refer to this simplified formula in
contrast to the original formula ϕ.

254 J. Goffinet and R. Ramanujan

Variable Installation: If we have assigned all variables at the conclusion of
the tree descent phase, then we compute the fraction of satisfied clauses in
the formula and skip ahead to the “Value Propagation” phase. Otherwise,
we are left with a partial truth assignment and must decide how to proceed
with the current iteration of the search. In particular, we must decide what
variable to branch on at the current node. We investigated a number of
different heuristics for making this choice, that are summarized in Table 1.
Intuitively, these heuristics may be understood as follows:
– A(k): prefers variables that appear in many clauses in ϕ′ — assigning

such variables first simplifies the formula faster.
– S(k): prefers variables that appear roughly the same number of times with

each sign in ϕ′ — such variables may be better candidates for systematic
exploration.

– M(k): prefers variables that both appear in many clauses, and in a “bal-
anced” way, in ϕ′.

The setting of the parameter k can be used to weight clauses according to
their size: k = −1 weights short clauses more heavily, k = 1 weights long
clauses more heavily, and k = 0 weights all clauses equally. In addition, we
also experimented with other heuristics from the SAT literature including
the MOM, Bohm’s, Jeroslow-Wang [24] and Max-Falsified [17] heuristics.
The results we present in this paper are from using the A(0) heuristic in
Uctmaxsat, owing to its simplicity and robust performance across a range
of problem categories.

Tree Growth: Once a variable v has been installed at the current node s, we
create the left and right child of this node, that we denote by sl and sr respec-
tively. The node sl is reached by setting v to false at s, while sr corresponds
to setting v to true at s. Both nodes are added to the search tree — thus, each
iteration of Uctmaxsat increases the size of the tree by two nodes.

Value Estimation: Once the tree has been augmented with sl and sr, we esti-
mate the value of the decision to install v at s, i.e., the value of further
exploring the search subspace rooted at the node s. We do this by per-
forming two SLS runs, one starting at sl (i.e., with v set to false) and one
starting at sr (with v set to true). We note the similarity between this esti-
mation approach and the idea of random playouts that are commonly used

Table 1. The variable selection heuristics used. Here, C(l) denotes the set of clauses in
the simplified formula ϕ′ in which the literal l appears, |c| denotes the length of clause
c, and k ∈ {−1, 0, 1}.

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 255

in UCT-based game-playing programs [7,8]. However, within our context,
a random playout would correspond to simply assigning all free variables
arbitrarily; instead, we start with an assignment to the free variables that
we then attempt to iteratively improve using a local search. Critically, this
initial assignment of the free variables is not random — instead, we assign
these variables the same truth values as in the best global solution found by
our algorithm so far. Then, during the ensuing SLS runs, we prohibit the
algorithm from flipping any variables whose values have been already fixed
higher up in the search tree. This is similar to the approach of Kroc et al.
[14]. The SLS algorithm is thus constrained to explore the area of the search
space that it has been corralled into by the tree descent process. For each
SLS run, we keep track of the best solution seen (i.e., the highest fraction
of clauses that were satisfied), which we denote by ml and mr. We then
estimate the value of the node s to be m = (m2

l +m2
r)/2. The intuition for

why we use m2
l and m2

r, rather than ml and mr directly, is the following:
on most MaxSAT instances, it is fairly easy to satisfy a large percentage of
clauses using any local search procedure, before the search process plateaus.
Using a non-linear function of ml/mr allows us to magnify the difference
between two high-quality candidate solutions. We also experimented with
other functional forms — higher degree polynomials and exponentials —
but using the square empirically proved to be the best choice for a wide
range of problems.

Value Propagation: Once the SLS runs complete (after some fixed number of
variable flips), the estimated value of the node s (i.e., m) is propagated up
the tree. The value of each node s′ that is on the path from the root node
to s is updated using a simple averaging operator, as in the original UCT
implementation [13]. The visit count is also incremented for each such s′, as
shown:

n(s′) ← n(s′) + 1

V (s′) ← V (s′) +
(m − V (s′))

n(s′)

In this way, feedback from the SLS runs influences future expansions of the
search tree. Since the values ml and mr represent a guaranteed lower bound
on the proportion of satisfied clauses, we also experimented with using a
max backup operator, that sets the value of a node to the maximum of
the incumbent and incoming values. This approach has been found to out-
perform the traditional averaging operator on problems where the heuristic
value estimate is reliable [21,22]. In our setting, however, we found the aver-
aging operator to be superior to the max. A node-closure procedure (similar
to that described by Previti et al. [20]) is also built into the value propa-
gation phase. If the node s is a terminal node (i.e., it assigns to the last
remaining free variable in ϕ′), then s is marked “closed” as further visits
to this node cannot improve our result. These “closed” flags are propagated
upwards through the tree so that tree descents always end at non-closed
nodes.

256 J. Goffinet and R. Ramanujan

The steps outlined above are repeated until the computational budget allot-
ted to the solver is exhausted. The best solution discovered at any point during
the algorithm’s run is then reported as the final result. A pseudo-code specifica-
tion of the algorithm is given in Appendix A.

4 Results

We implemented three flavors of the Uctmaxsat algorithm that only differ in
the SLS algorithm that was employed for estimating the values of leaf nodes:
UctmaxsatW (uses WalkSAT [23]), UctmaxsatN (uses Novelty [18]), and
UctmaxsatC (uses CCLS [16]). The implementations of WalkSAT and Novelty
were adapted from the UBCSAT suite [28], while UctmaxsatC was built on
an implementation of CCLS provided by its authors. In the remainder of this
section, we present our findings from running experiments on problem instances
drawn from the 2015 MaxSAT Evaluation1 and large random 3SAT formulas.
All tests were conducted on an Intel Xeon 3.5GHz quad-core processor running
Linux Ubuntu 14.04, with 16GB of memory.

4.1 The Exploration-Exploitation Trade-Off

We motivated this work by observing that balancing greed and mobility in local
search constituted an exploration-exploitation dilemma that MCTS methods like
UCT are well-equipped to handle. The parameter c in equation (1) controls this
trade-off — smaller values of c correspond to a greater amount of greed and
lead to Uctmaxsat building highly asymmetric trees that are much deeper in
more promising regions of the search space. Higher values of c encourage greater
exploration and lead to “bushier” trees. The left panel of Fig. 1 highlights the
impact of this parameter’s setting on the performance of UctmaxsatW . The
plot shows the average quality of the solutions (over 50 independent runs of
300 s each) found by the algorithm for the maxcut-140-630-0.7-1 instance, for
various values of c. We note that there is a “sweet spot” for the setting of c that
produces the best results, a fact we have confirmed for many different problem
instances, as well as forUctmaxsatN . This indicates thatUctmaxsat is indeed
effective at reconciling the greed-mobility tension in local search and does so in
a sophisticated way — Fig. 1 demonstrates that neither pure-exploitation nor
pure-exploration strategies are as successful as a blend of the two.

4.2 Allocating the Computational Budget

In this section, we address the following question: How much of a fixed compu-
tational budget should we allocate to the tree-building and SLS components of
Uctmaxsat? Using a fixed budget of 300 s of runtime, we investigated various
allocation strategies, measured in flips per SLS run. For example, using 1000 flips
per SLS run would permit us to run more iterations of Uctmaxsat (therefore
1 http://www.maxsat.udl.cat/15/, accessed on Feb. 21, 2016.

http://www.maxsat.udl.cat/15/

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 257

Fig. 1. Left: Effect of the exploration bias parameter c on the quality of the solutions
found by UctmaxsatW . Right: Comparison of different allocations of the computa-
tional budget to the tree-building and SLS components of UctmaxsatW .

producing a larger search tree) than using 2000 flips per SLS run (which would
require relatively more of the runtime budget to be allocated to the SLS runs).
The right panel of Fig. 1 shows the effect of different allocations on the perfor-
mance of UctmaxsatW on the maxcut-140-630-0.7-1 problem instance. Each
data point represents the average number of unsatisfied clauses found over 50
independent runs. At the left extreme of the plot, we are choosing very short
SLS runs that permit us to build larger search trees; at the right extreme, we
are performing long SLS runs and building smaller trees. The shape of the curve
indicates an optimal allocation that is far removed from both extremes — at this
point, there is a synergy between the tree-building and SLS components, and
the combination of the two techniques outperforms either component by itself.
We found this too to be a robust trend, that persisted independent of the prob-
lem instance used, the SLS algorithm or the setting of c. In all the experiments
that follow, we use an allocation of 2000 flips per SLS run, which we empirically
found to be the best general-purpose setting.

4.3 UCTMAXSAT Against Baseline SLS Algorithms

We now present a head-to-head comparison of two baseline SLS algorithms,
WalkSAT and Novelty, to their MCTS-enhanced counterparts. Since the problem
instances we use in our experiments vary widely in size, we report our results
using the following normalized difference in solution quality metric:

σ(s1, s2) =
s1 − s2

max {s1, s2}

Here, s1 and s2 represent the quality of the best solutions (as measured by the
number of unsatisfied clauses) found by the two algorithms being compared. We
follow the convention of always using s1 for the solution found by the SLS algo-
rithm and s2 for the solution found by Uctmaxsat. Thus, positive values of σ
indicate instances where Uctmaxsat outperforms its SLS competition, while
negative values of σ indicate instances where the situation is reversed. Dividing
the difference in solution quality by the max term ensures that σ stays bounded
within [−1,+1]. However, note that the measure is non-linear: for example, a

258 J. Goffinet and R. Ramanujan

Fig. 2. A comparison of the solutions found by WalkSAT to those found by
UctmaxsatW on random instances from the 2015 MaxSAT Evaluation.

score of σ = 0.5 indicates that Uctmaxsat found a solution that violates only
half as many clauses as the best solution found by its SLS counterpart. A score
of σ = 0.9 indicates that the Uctmaxsat solution is superior by an order-of-
magnitude while scores close to 1.0 denote cases where Uctmaxsat improved
upon the SLS solution by several orders-of-magnitude.

Figures 2 and 3 present our results on the complete set of random unweighted
MaxSAT problem instances from the 2015 MaxSAT Evaluation. Each problem
instance corresponds to a data point, for which we report the σ measure (as
defined earlier). The instances are color-coded according to the problem family
from which they are drawn. The critical parameters for the algorithms (noise set-
tings for WalkSAT and Novelty, c for Uctmaxsat) were tuned on a per-instance
basis and we compare the results obtained using the best parameter settings
in each case. All results were collected based on a single run of the appropri-
ate algorithm for 300 s — the same time control that is used in the MaxSAT
Evaluation. As can be seen from these results, the MCTS tree improves the per-
formance of both vanilla WalkSAT and Novelty on a broad range of instances.
In particular, it improves on the best WalkSAT solution (i.e., σ > 0) on 393
instances and improves on the best Novelty solution on 364 instances (out of 695).
There are 287 instances on which WalkSAT and UctmaxsatW tie (i.e., σ = 0);
however, on 286 of these instances, WalkSAT found the optimal solution unaided,
thus leaving no room for improvement. There were only 15 instances where
UctmaxsatW was outperformed by WalkSAT (i.e., where WalkSAT found a
solution with at least one fewer unsatisfied clause than UctmaxsatW). Simi-
larly, there was no room for improvement on 293 of the 309 instances where Nov-
elty andUctmaxsatN tie; overall, Novelty outperformedUctmaxsatN on only
22 (out of 695) instances. This performance breakdown on the random instances

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 259

Table 2. A breakdown of the difference in performance between the specified SLS
algorithm and its MCTS-enhanced counterpart on the random and crafted instances
from the 2015 MaxSAT evaluation. The σ > 0 column presents the number of instances
on which the MCTS algorithm outperformed SLS, the σ < 0 column indicates the
number of instances on which the situation was reversed, and the σ = 0 column gives
the number of instances for which both methods found solutions of equal quality.

Random instances Crafted instances

σ > 0 σ = 0 σ < 0 σ > 0 σ = 0 σ < 0

WalkSAT 393 (56.5%) 287 (41.3%) 15 (2.2%) 336 (83.6%) 63 (15.7%) 3 (0.7%)

Novelty 364 (52.4%) 309 (44.5%) 22 (3.1%) 311 (77.4%) 76 (18.9%) 15 (3.7%)

is summarized in the left section of Table 2. Overall, UctmaxsatW improves
on WalkSAT by larger margins on average than UctmaxsatN improves on
Novelty — this is unsurprising given that Novelty is a superior SLS algorithm
and is thus more challenging to surpass.

Figures 4 and 5 present our results on the complete set of crafted unweighted
MaxSAT instances from the 2015 MaxSAT evaluation. Overall, the trend is
similar to what was observed on the random instances: once again, Uctmaxsat
outperforms WalkSAT and Novelty across a wide variety of benchmark domains,
it tends to improve WalkSAT more so than Novelty, and in the overwhelming
majority of cases when the algorithms tie, there is no room for improvement
since both algorithms find the optimal solution. Interestingly, looking across
the left and right partitions of Table 2, we see that the impact of MCTS on
the underlying SLS algorithm is more pronounced on crafted instances than

Fig. 3. A comparison of the solutions found by Novelty to those found byUctmaxsatN

on random instances from the 2015 MaxSAT Evaluation.

260 J. Goffinet and R. Ramanujan

Fig. 4. A comparison of the solutions found by WalkSAT to those found by
UctmaxsatW on crafted instances from the 2015 MaxSAT Evaluation.

Fig. 5. A comparison of the solutions found by Novelty to those found byUctmaxsatN

on crafted instances from the 2015 MaxSAT Evaluation.

on random instances. This is consistent with results that are well-known in
the SAT community, namely that systematic approaches fare better in domains
with more structure, whereas local search approaches perform better on random
formulas [11].

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 261

Fig. 6. A comparison of the solutions found by CCLS to those found by UctmaxsatC

on industrial instances from the 2015 MaxSAT Evaluation.eps

4.4 UctmaxsatC Against CCLS

In this section, we consider the benefits of augmenting CCLS [16], the top-
performing incomplete MaxSAT solver in the Random and Crafted categories
from the 2015 MaxSAT Evaluation2, with a UCT tree search. We focused our
initial attention on instances from the Industrial track of the MaxSAT Evalua-
tion, having observed that CCLS fared poorly in this category. Using the same
experimental set-up as in Sect. 4.3 (a single run of 300 s using the best parameter
setting for each algorithm), we obtained the results shown in Fig. 6. As can be
seen, UctmaxsatC handsomely outperforms CCLS on all but three instances.
Indeed, the margin of improvement on many of the instances is by several orders
of magnitude. A particularly stark example is the mrisc mem2wire instance (the
blue-grey ‘+’ data point in the plot) where the best solution discovered by CCLS
violates 397,032 clauses. In contrast, the best solution found by UctmaxsatC

only violates 386 clauses. We saw similar margins of improvement on many of
the other instances as well.

We also conducted experiments comparing the performance of UctmaxsatC

to CCLS on random 3SAT formulas. Given that CCLS found the optimal solution
for every single random instance that was used in the 2015 MaxSAT Evaluation,
we chose to work with more challenging instances instead. We generated random
3SAT formulas with 700, 900, and 1100 variables, while maintaining the same
clause-to-variable ratios as those used in the Evaluation. Figure 7 summarizes
our results over a set of 105 formulas. CCLS outperforms UctmaxsatC on all
2 http://www.maxsat.udl.cat/15/results-incomplete/index.html, retrieved on Feb. 21,
2016.

http://www.maxsat.udl.cat/15/results-incomplete/index.html

262 J. Goffinet and R. Ramanujan

Fig. 7. A comparison of the solutions found by CCLS to those found by UctmaxsatC

on large random 3SAT instances.

but two instances in this setting. It appears that the systematic tree search
component really improves the performance of the underlying SLS solver on
structured instances, but offers little benefit on random instances.

4.5 Summary

In summary, overlaying an MCTS search tree on top of existing SLS solvers
has the effect of making them more “well-rounded” — the underlying solvers
are improved in their traditional areas of weakness. For example, it is well-
known that solvers like WalkSAT perform poorly on overconstrained random
MaxSAT instances [29].UctmaxsatW is able to boost the performance of native
WalkSAT in this domain. Similarly, while CCLS is a top-performing solver on
randomMaxSAT instances, industrial problems are its Achilles Heel. In this case,
UctmaxsatC substantially improves the performance of CCLS on industrial
instances.

5 Future Work

This paper presented some exploratory work that demonstrated how techniques
borrowed from the MCTS framework could improve incomplete solution methods
for MaxSAT problems. We offer a few possible directions for future work.

– There is a large region of the algorithm parameter space that is ripe for explo-
ration — for example, one could consider alternatives to the Ucb1 bandit
algorithm such as ϵn-greedy [1], or test other value back up operators (like
a soft-max).

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 263

– In this work, we started with established SLS algorithms and attempted to
“boost” their performance by combining them with tree search. However,
many in the game-playing community have observed that certain random
playout strategies work better in conjunction with UCT than others [8,25]. It
would be interesting to investigate whether one could design novel SLS algo-
rithms that specifically dovetail well withUctmaxsat (but are not necessarily
effective as stand-alone solvers).

– Finally, it would be interesting to look into how one could extend the
Uctmaxsat algorithm to handle partial and weighted MaxSAT instances,
and how the approach compares to the current state-of-the-art solvers.

6 Conclusions

In this paper, we presented a novel Monte-Carlo Tree Search based approach
for solving MaxSAT problems. Our algorithm, Uctmaxsat, elegantly combines
aspects of systematic and local search. Our experiments with problem instances
from the 2015 MaxSAT Evaluation show thatUctmaxsat significantly improves
the performance of baseline incomplete algorithms like WalkSAT and Novelty
on almost every problem domain. Our algorithm also improves the performance
of CCLS, a state-of-the-art incomplete solver, on industrial instances. In the
future, we plan to expand on this work to extract better performance across a
wider range of MaxSAT problem instances.

Acknowledgements. We are grateful to Shaowei Cai and his collaborators for sharing
their implementation of the CCLS algorithm with us. We would also like to thank the
anonymous reviewers for their useful comments and feedback.

A Appendix: The Uctmaxsat Algorithm

Algorithm 1. Uctmaxsat main loop
1:
2: globals:
3: ϕ: the input (non-empty) CNF formula
4: ρbest ← a random complete assignment ◃ best solution found so far
5:
6: function Uctmaxsat
7: root ← CreateNode(∅) ◃ pointer to root node of search tree
8: repeat
9: Descend(root, ϕ, ∅)
10: until time limit is met
11: return ρbest

12: end function
13:

264 J. Goffinet and R. Ramanujan

Algorithm 2. Uctmaxsat helper routines
1:
2: function CreateNode(ρ)
3: node ← new node
4: node.visits ← 1
5: ρ′ ← set of literals in ρbest that do not contradict a literal in ρ
6: Run SLS algorithm using ρ∪ρ′ as starting configuration, never flipping variables

in ρ
7: f ← fraction of satisfied clauses in best assignment found by SLS run
8: node.value ← f2

9: Update ρbest if the SLS run uncovered a new best solution
10: return node
11: end function
12:
13: function Descend(node, ϕ′, ρ) ◃ ρ is the current partial assignment (set of

literals)
14: if ρ is a complete assignment then
15: Mark node as closed
16: f ← fraction of clauses in ϕ that are satisfied by ρ
17: return f2

18: else if node.visits = 1 then ◃ a previously unexpanded node
19: node.variable ← A(0) ◃ (see Table 1)
20: node.left ← CreateNode(ρ ∪ {¬node.variable})
21: node.right ← CreateNode(ρ ∪ {node.variable})
22: r ← (node.left.value+ node.right.value)/2
23: else
24: child,ϕ′, ρ ← SelectChild(node, ϕ′, ρ)
25: r ← Descend(child, ϕ′, ρ)
26: end if
27: node.visits ← node.visits+ 1
28: node.value ← node.value+ (r − node.value)/node.visits
29: Mark node as closed if node.left and node.right are both closed
30: return v
31: end function
32:
33: function SelectChild(node, ϕ′, ρ)
34: if either node.left or node.right is closed then
35: ch ← the still open child
36: else
37: ch ← child that maximizes Ucb1 score ◃ (see Eq. 1)
38: end if
39: if ch is the left child of node then
40: ϕ′ ← ϕ′ simplified by assigning node.variable to False
41: ρ ← ρ ∪ {¬node.variable}
42: else
43: ϕ′ ← ϕ′ simplified by assigning node.variable to True
44: ρ ← ρ ∪ {node.variable}
45: end if
46: return (ch,ϕ′, ρ)
47: end function
48:

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 265

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed ban-
dit problem. Mach. Learn. 47(2–3), 235–256 (2002). doi:10.1023/A:1013689704352

2. Balla, R.K., Fern, A.: UCT for tactical assault planning in real-time strategy
games. In: Proceedings of the 21st International Joint Conference on Artifical Intel-
ligence, IJCAI 2009, pp. 40–45. Morgan Kaufmann Publishers Inc., San Francisco
(2009). http://dl.acm.org/citation.cfm?id=1661445.1661453

3. Branavan, S.R.K., Silver, D., Barzilay, R.: Learning to win by reading manuals in
a Monte-Carlo framework. J. Artif. Intell. Res. (JAIR) 43, 661–704 (2012). doi:10.
1613/jair.3484

4. Cai, S., Su, K.: Local search for boolean satisfiability with configuration checking
and subscore. Artif. Intell. 204, 75–98 (2013). doi:10.1016/j.artint.2013.09.001

5. Ciancarini, P., Favini, G.P.: Monte carlo tree search in Kriegspiel. Artif.
Intell. 174(11), 670–684 (2010). http://www.sciencedirect.com/science/article/
pii/S0004370210000536

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol.
1, AAAI 2008, pp. 259–264. AAAI Press (2008). http://dl.acm.org/citation.cfm?
id=1619995.1620038

8. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceed-
ings of the 24th International Conference on Machine Learning, ICML 2007, NY,
USA, pp. 273–280 (2007). http://doi.acm.org/10.1145/1273496.1273531

9. Habet, D., Li, C.-M., Devendeville, L., Vasquez, M.: A hybrid approach for SAT.
In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 172–184. Springer,
Heidelberg (2002)

10. Hoos, H., Sttzle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

11. H. Hoos, H., Stützle, T.: Systematic vs. local search for SAT. In: Burgard, W.,
Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 289–
293. Springer, Heidelberg (1999)

12. Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In:
McCluskey, L., Williams, B., Silva, J.R., Bonet, B. (eds.) Proceedings of the
Twenty-Second International Conference on Automated Planning and Scheduling,
ICAPS 2012, Atibaia, São Paulo, Brazil, 25–29 June 2012. AAAI (2012). http://
www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4715

13. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

14. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local
search paradigms: a new strategy for maxsat. In: Boutilier, C. (ed.) IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, 11–17 July 2009, pp. 544–551 (2009) http://ijcai.org/
papers09/Papers/IJCAI09-097.pdf

15. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for con-
straint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480.
Springer, Heidelberg (2013)

http://dx.doi.org/10.1023/A:1013689704352
http://dl.acm.org/citation.cfm?id=1661445.1661453
http://dx.doi.org/10.1613/jair.3484
http://dx.doi.org/10.1613/jair.3484
http://dx.doi.org/10.1016/j.artint.2013.09.001
http://www.sciencedirect.com/science/article/pii/S0004370210000536
http://www.sciencedirect.com/science/article/pii/S0004370210000536
http://dl.acm.org/citation.cfm?id=1619995.1620038
http://dl.acm.org/citation.cfm?id=1619995.1620038
http://doi.acm.org/10.1145/1273496.1273531
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4715
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4715
http://ijcai.org/papers09/Papers/IJCAI09-097.pdf
http://ijcai.org/papers09/Papers/IJCAI09-097.pdf

266 J. Goffinet and R. Ramanujan

16. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algo-
rithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843
(2015)

17. Mazure, B., Säıs, L., Grégoire, E.: Boosting complete techniques thanks to local
search methods. Ann. Math. Artif. Intell. 22(3–4), 319–331 (1998). doi:10.1023/A:
1018999721141

18. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search.
In: Proceedings of the Fourteenth National Conference on Artificial Intelligence
and Ninth Conference on Innovative Applications of Artificial Intelligence, AAAI
1997/IAAI 1997, pp. 321–326. AAAI Press (1997). http://dl.acm.org/citation.cfm?
id=1867406.1867456

19. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided maxsat solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

20. Previti, A., Ramanujan, R., Schaerf, M., Selman, B.: Applying UCT to boolean
satisfiability. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
373–374. Springer, Heidelberg (2011)

21. Ramanujan, R., Selman, B.: Trade-offs in sampling-based adversarial planning.
In: Bacchus, F., Domshlak, C., Edelkamp, S., Helmert, M. (eds.) Proceedings of
the 21st International Conference on Automated Planning and Scheduling, ICAPS
2011, Freiburg, Germany, 11–16 June 2011. AAAI (2011). http://aaai.org/ocs/
index.php/ICAPS/ICAPS11/paper/view/2708

22. Sabharwal, A., Samulowitz, H., Reddy, C.: Guiding combinatorial optimization
with UCT. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS,
vol. 7298, pp. 356–361. Springer, Heidelberg (2012)

23. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: Hayes-Roth, B., Korf, R.E. (eds.) Proceedings of the 12th National Confer-
ence on Artificial Intelligence, Seattle, WA, USA, 31 July - 4 August 1994, vol. 1,
pp. 337–343. AAAI Press/The MIT Press (1994). http://www.aaai.org/Library/
AAAI/1994/aaai94-051.php

24. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol.
1695, pp. 62–74. Springer, Heidelberg (1999)

25. Silver, D., Tesauro, G.: Monte-carlo simulation balancing. In: Proceedings of the
26th Annual International Conference on Machine Learning, ICML 2009, NY, USA,
pp. 945–952 (2009). http://doi.acm.org/10.1145/1553374.1553495

26. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPS. In: Laf-
ferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.)
Advances in Neural Information Processing Systems 23: 24th Annual Con-
ference on Neural Information Processing Systems 2010, Proceedings of a
Meeting Held 6–9 December 2010, Vancouver, British Columbia, Canada,
pp. 2164–2172. Curran Associates, Inc. (2010). http://papers.nips.cc/paper/
4031-monte-carlo-planning-in-large-pomdps

27. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

http://dx.doi.org/10.1023/A:1018999721141
http://dx.doi.org/10.1023/A:1018999721141
http://dl.acm.org/citation.cfm?id=1867406.1867456
http://dl.acm.org/citation.cfm?id=1867406.1867456
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2708
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2708
http://www.aaai.org/Library/AAAI/1994/aaai94-051.php
http://www.aaai.org/Library/AAAI/1994/aaai94-051.php
http://doi.acm.org/10.1145/1553374.1553495
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps

Monte-Carlo Tree Search for the Maximum Satisfiability Problem 267

28. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT & MAX-SAT. In: SAT 2004 - The Seventh
International Conference on Theory and Applications of Satisfiability Testing, 10–
13 May 2004, Vancouver, BC, Canada, Online Proceedings (2004). http://www.
satisfiability.org/SAT04/programme/23.pdf

29. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum
satisfiability. In: Proceedings of the 18th International Joint Conference on Arti-
ficial Intelligence, IJCAI 2003, pp. 1179–1184. Morgan Kaufmann Publishers Inc.,
San Francisco (2003)

http://www.satisfiability.org/SAT04/programme/23.pdf
http://www.satisfiability.org/SAT04/programme/23.pdf

A New Approach to Checking the Dynamic
Consistency of Conditional Simple Temporal

Networks

Luke Hunsberger1(B) and Roberto Posenato2

1 Vassar College, Poughkeepsie, NY 12604, USA
hunsberger@vassar.edu

2 University of Verona, Verona, Italy
roberto.posenato@univr.it

Abstract. A Conditional Simple Temporal Network (CSTN) is a struc-
ture for representing and reasoning about temporal constraints in
domains where constraints may apply only in certain scenarios. Obser-
vations in real time incrementally reveal the “real” scenario. A CSTN
is dynamically consistent (DC) if there is a strategy for executing its
time-points that guarantees the satisfaction of all relevant constraints.
The fastest DC-checking algorithm for CSTNs is based on constraint
propagation. This paper introduces a new approach to DC checking
for CSTNs, inspired by controller-synthesis algorithms for Timed Game
Automata. The new algorithm views the DC-checking problem as a two-
player game, searching an abstract game tree to find a “winning” strat-
egy, using Monte-Carlo Tree Search and Limited Discrepancy Search to
guide its search. An empirical evaluation shows that the new algorithm
is competitive with the propagation-based algorithm.

1 Introduction

Recently, there have been significant advances in the theory and practice of
temporal networks and Timed Game Automata (TGAs). Of particular inter-
est is the work by Cimatti et al. [4,5] which showed that dynamic consis-
tency/controllability (a.k.a., DC-checking) problems for a variety of temporal
networks can be reduced to controller-synthesis problems for TGAs. Although
their work revealed strong theoretical connections between temporal networks
and TGAs, it did not immediately result in practical algorithms because the
generic TGA solver (UPPAAL-TIGA [2,3]) could not exploit the particular
structure of the DC-checking problem. However, more recently, Cimatti et al. [6]
presented a practical DC-checking algorithm for one kind of network—a Disjunc-
tive Temporal Network with Uncertainty (DTNU)—by using the same temporal-
network-to-TGA reduction, but customizing the controller-synthesis algorithm
to exploit the particular structure of the DC-checking problem for DTNUs.

Inspired by their approach, this paper presents a new DC-checking algorithm
for a different kind of network: a Conditional Simple Temporal Network (CSTN).

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 268–286, 2016.
DOI: 10.1007/978-3-319-44953-1 18

A New Approach to Checking the Dynamic Consistency 269

Although the spirit of the approach is similar, especially in the traversal of an
abstract simulation graph, the very different execution semantics for CSTNs
and DTNUs required the development of numerous novel representations and
algorithmic techniques. Notably, the new algorithm does not reduce CSTNs
to TGAs; instead, it maps TGA-based techniques into the realm of temporal
networks, using basic consistency-checking algorithms for Simple Temporal Net-
works (STNs) [8], whereas Cimatti et al. use techniques from Satisfiability Mod-
ulo Theory (SMT) [1]. In addition, the new algorithm uses Monte-Carlo Tree
Search (MCTS) [9] and Limited Discrepancy Search (LDS) [10] to guide its
search. An empirical evaluation demonstrates that the new algorithm is compet-
itive with the fastest known DC-checking algorithm for CSTNs from earlier work,
which is based on a very different approach [13]. Although the earlier algorithm
can be faster for weakly constrained networks and inconsistent networks, the
two algorithms perform similarly for moderately constrained networks. In addi-
tion, the new algorithm efficiently handles certain worst-case structures that
dramatically slow down the earlier algorithm.

2 Background

A Simple Temporal Network (STN) is a structure for representing and reasoning
about time [8]. An STN is a pair (T , C), where T is a set of real-valued vari-
ables called time-points (notated X,Y,Z, . . .), and C is a set of binary difference
constraints on those time-points (e.g., Y − X ≤ 5). The graph for an STN is a
pair (T , E), where each constraint, Y −X ≤ δ in C, corresponds to an edge in E
from X to Y of length δ. An STN is consistent if it has a solution as a constraint
satisfaction problem. The consistency-checking problem for STNs can be solved
in cubic time by computing the corresponding all-pairs, shortest-paths (APSP)
matrix—called its distance matrix D. For each X,Y ∈ T , D(X,Y) equals the
length of the shortest path from X to Y .

Theorem 1 (Decomposability of STNs [8,11]). Let S = (T , C) be any
STN, and D its distance matrix. For any X ⊆ T , let C|X = {(Y − X ≤
D(X,Y)) | X,Y ∈ X} be the shortest-path constraints for paths in S whose
end-points are in X . Then any solution for the STN S|X = (X , C|X) can be
extended to form a solution for S; and the distance matrix D|X for S|X satis-
fies: for all X,Y ∈ X , D|X (X,Y) = D(X,Y). (For convenience, D|X may be
called the restriction of D to time-points in X .)

Lemma 1 (Intersecting STN solution sets). Let S1 = (T , C1) and S2 =
(T , C2) be STNs over the same set of time-points, T ; and let D1 and D2 be the
corresponding distance matrices. Next, let D′ be the element-wise minimum of
the matrices D1 and D2; and let S = (T , C) be the STN where C = {(Y − X ≤
D′(X,Y))}. Then the solution set for S is the intersection of the solution sets
for S1 and S2.

270 L. Hunsberger and R. Posenato

Proof. Let σ be a solution for both S1 and S2. Let X,Y ∈ T be arbitrary. Since
σ is a solution for S1, σ(Y)−σ(X) ≤ D1(X,Y); and since σ is a solution for S2,
σ(Y)− σ(X) ≤ D2(X,Y). Thus, σ(Y)− σ(X) ≤ D′(X,Y), implying that σ is a
solution for S. The opposite direction follows similarly. ⊓&

The distance matrix D for S may be called the intersection of D1 and D2, notated
as D = D1∩D2. However, since taking the element-wise minimum may introduce
new shortest paths, entries of D may be less than the corresponding entries of
D1 and D2.

Extending Expressiveness. The expressiveness of an STN can be extended in
several dimensions: (C) allowing conditional constraints; (D) allowing disjunc-
tive constraints; and (U) allowing temporal intervals with uncertain durations.
Different combinations of these features result in networks with names such
as Conditional Simple Temporal Networks (CSTNs) and Disjunctive Temporal
Networks with Uncertainty (DTNUs). (For networks that allow disjunctive con-
straints, the “simple” modifier is dropped.) Arranging these networks according
to their expressiveness leads to the hierarchy in Fig. 1.

STN

CSTN

DTN

STNU

CDTN

CSTNU

DTNU

CDTNU

Fig. 1. A hierarchy of temporal networks from least to most expressive

Dynamic Consistency/Controllability. Although the presence of disjunctive con-
straints makes the consistency-checking problem for Disjunctive Temporal Net-
works (DTNs) NP-hard [8], the execution semantics for DTNs is the same as that
for STNs. In contrast, the presence of conditional constraints (C) or intervals
with uncertain durations (U) dramatically changes the execution semantics and,
therefore, requires new notions of consistency (or controllability). For example, a
CSTN has conditional constraints that may apply only in certain scenarios; and
the “real” scenario is only incrementally revealed by the execution of observation
time-points. A CSTN is dynamically consistent if there exists a dynamic strategy
for executing its time-points such that all relevant constraints will be satisfied
no matter which scenario is incrementally revealed [18]. On the other hand,
a Simple Temporal Network with Uncertainty (STNU) includes intervals with
uncertain durations, represented by contingent links. The ending time-points of
contingent links are uncontrollable, but guaranteed to fall within certain bounds.
An STNU is dynamically controllable if there exists a dynamic strategy for exe-
cuting its controllable time-points such that all constraints will be satisfied no
matter how the uncertain durations turn out [17]. Finally, the dynamic con-
trollability of CSTNUs and CDTNUs, which allow conditional constraints and
contingent links, has also been defined [4,12]. (When including both conditional

A New Approach to Checking the Dynamic Consistency 271

constraints and contingent links, the term “controllability” is preferred.) Cru-
cially, the decisions made by dynamic execution strategies must only depend on
past information, whether gleaned from the execution of observation time-points
or the observed durations of contingent links.

A DC-checking algorithm is an algorithm for checking the dynamic consis-
tency or controllability of a temporal network. DC-checking for STNUs can be
done in cubic time [16]. However, consistency checking for DTNs and the DC-
checking problem for all other network classes in Fig. 1 (other than STNs) are
known to be NP-hard.1

Cimatti et al. [4] showed that the DC-checking problem for CDTNUs, the
most expressive network in Fig. 1, can be reduced to a controller-synthesis prob-
lem for TGAs, but the resulting algorithm was not practical because the generic
controller-synthesis algorithm for TGAs could not exploit the DC-checking prob-
lem structure. More recently, Cimatti et al. [6] presented a practical DC-checking
algorithm for DTNUs, using the same temporal-network-to-TGA reduction,
but implementing a customized controller-synthesis algorithm that exploits the
structure of the DC-checking problem for DTNUs.

Inspired by their approach, this paper presents a new DC-checking algorithm
for CSTNs. Although similar in spirit, the CSTN algorithm differs substantially
from the DTNU algorithm: (1) instead of translating CSTNs into TGAs, all
computations are done on related STNs; (2) the transitions in the simulation
graph are very different owing to the different execution semantics for CSTNs;
(3) the winning regions are represented by unions of STNs, not logic-based for-
mulas; and (4) Monte-Carlo Tree Search (MCTS) [9] and Limited Discrepancy
Search (LDS) [10] are used to guide its search.

3 Conditional Simple Temporal Networks

This section reviews the dynamic consistency of CSTNs [18], using definitions
drawn from Hunsberger et al. [13]. To begin, let P be a set of propositional
letters. A label is any consistent conjunction of (positive or negative) literals
from P; the set of all such labels is denoted by P∗; and the empty label is
denoted by ! ∈ P∗.

A CSTN may include time-points and temporal constraints that apply only
in certain scenarios. The “real” scenario is not known in advance, but is incre-
mentally revealed through the execution of observation time-points (ObsTPs).
(For convenience, non-observation time-points may be called ordinary time-
points (OrdTPs).) Each observation time-point P? has a corresponding proposi-
tional letter p; executing P? generates a truth value for p. During execution, the
observations that have been made so far are recorded in a label called the current
partial scenario (CPS). For example, if p and s were observed to be true, and q
false, then the CPS would be the label p¬qs. Time-points and constraints in a

1 Dechter et al. [8] for DTNs; Comin and Rizzi [7] for CSTNs; the rest follow from
these results.

272 L. Hunsberger and R. Posenato

CSTN may have propositional labels. For example, (Y − X ≤ 5, p¬q) specifies
that Y − X ≤ 5 must hold in any scenario that is consistent with p¬q.

Definition 1 (CSTN). A Conditional Simple Temporal Network (CSTN) is a
tuple, ⟨T , C, L,OT ,O,P⟩, where:

• P is a finite set of propositional letters;
• T is a finite set of real-valued variables (time-points);
• C is a finite set of labeled constraints, each having the form, (Y − X ≤ δ, ℓ),
where X,Y ∈ T , δ ∈ R, and ℓ ∈ P∗;

• L : T → P∗ is a function assigning labels to time-points;
• OT ⊆ T is a set of observation time-points (ObsTPs); and
• O : P → OT is a bijection between ObsTPs and propositional letters.

A CSTN typically includes a special time-point Z whose value is fixed at 0; all
other time-points are constrained to occur at or after Z. (If no such Z exists,
one may be added without adverse effects.) Binary constraints involving Z are
equivalent to unary constraints. For example, Z−X ≤ −5 is equivalent toX ≥ 5.

Each CSTN S = ⟨T , C, L, . . .⟩, has an associated graph, ⟨T , E⟩, where the
edges in E correspond to the labeled constraints in C. In particular, each (Y −X ≤
δ, ℓ) ∈ C corresponds to an edge fromX to Y annotated by the labeled value ⟨δ, ℓ⟩.
A sample CSTN graph is shown in Fig. 2. This graph includes structures, called
negative q-loops, that can dramatically slow down the DC-checking algorithm
from earlier work [13].

The execution semantics for a CSTN can be expressed in terms of a two-
player game between the agent responsible for executing time-points and the
environment responsible for selecting truth values for propositional letters [4].
An execution run begins with Z = 0 and an empty current partial scenario.
At any time, the agent may choose to execute any time-point whose label is
entailed by the CPS. Whenever an observation time-point P? is executed, the
environment instantaneously selects a truth value for the corresponding letter p.
If p = true, then p is conjoined to the CPS; otherwise, ¬p is conjoined to the CPS.
The execution run is completed whenever it happens that all time-points whose
labels are entailed by the CPS have been executed. If all constraints whose labels
are consistent with the final CPS are satisfied, then the agent wins; otherwise,
the environment wins. A sample winning run for the CSTN from Fig. 2 is given
below. (The choices made by the environment are parenthesized.) For this run,
the final CPS is ¬pq¬w; thus, constraints labeled by pw, qw and ¬q¬w need not
be satisfied.

Z = 0;W? = 100 (¬w);X = 101;Y = 106;P? = 107 (¬p);Q? = 125 (q).

Definition 2 (Scenario). A (complete) scenario over a set P of propositional
letters is a (complete) function, s : P → {true, false}. For each label ℓ ∈ P∗, the
truth value for ℓ determined by s is denoted by s(ℓ). The set of all scenarios over
P is denoted by I. A partial scenario is any function, s : P ′ → {true, false},
where P ′ ⊆ P.

A New Approach to Checking the Dynamic Consistency 273

Z

W?

P?

X

Q?

Y
⟨−100,

⟩

⟨−10, ⟩ ⟨−20, ⟩
⟨3, qw⟩ ⟨5, pw⟩

⟨−4,¬q¬w⟩ ⟨−7,¬p¬w⟩

Fig. 2. A CSTN with negative q-loops

Definition 3 (Schedule). A schedule for a set of time-points T is a (complete)
mapping, ψ : T → R. The set of all schedules over all subsets of T is denoted
by Ψ .

Definition 4 (Projection). Let S = ⟨T , C, . . .⟩ be any CSTN, and s any sce-
nario. The projection of S onto s, notated S(s), is the STN, (T +

s , C+
s), con-

sisting of the time-points and constraints whose labels are entailed by s. Thus,
T +
s = {T ∈ T | s(L(T)) = true}; and C+

s = {(Y −X ≤ δ) | for some ℓ, (Y −X ≤
δ, ℓ) ∈ C and s(ℓ) = true}.

Definition 5 (Execution Strategy). An execution strategy for a CSTN S is
a mapping σ : I → Ψ , such that for each scenario s ∈ I, the domain of σ(s) is
T +
s . If, in addition, for each scenario s, the schedule σ(s) is a solution to the

projection S(s), then σ is called viable. The execution time for any X in σ(s) is
denoted by [σ(s)]X .

Definition 6 (History). Let S = ⟨T , C, L, . . .⟩ be any CSTN, s any scenario,
σ any execution strategy for S, and t any real number. The history of t in
the scenario s, for the strategy σ—notated Hist(t, s,σ)—is the set of observa-
tions made before time t according to σ(s): Hist(t, s,σ) = {(p, s(p)) | P? ∈
T +
s and [σ(s)]P? < t}.

Definition 7 (Dynamic Execution Strategy). An execution strategy σ for
a CSTN is called dynamic if for any scenarios s1 and s2, and any time-point X:

let: t = [σ(s1)]X ; if: Hist(t, s1,σ) = Hist(t, s2,σ); then: [σ(s2)]X = t.

The above requirement forces execution decisions to depend only on past obser-
vations.

Definition 8 (Dynamic Consistency). A CSTN S is dynamically consistent
(DC) if there exists an execution strategy for S that is both dynamic and viable.

4 A New Approach to DC Checking for CSTNs

We view the execution semantics of a CSTN as a two-player game between an
agent who executes time-points and the environment that assigns truth values to
propositions [4]. Each run of the game consists of a sequence of turns. Since the
environment is idle until the agent executes an observation time-point, we model
an agent’s turn as involving the (typically not simultaneous) execution of zero

274 L. Hunsberger and R. Posenato

or more ordinary time-points followed by exactly one observation time-point P?
A turn for the environment involves instantaneously assigning a truth value to p,
the propositional letter associated with P?, resulting in either p or ¬p being
appended to the current partial scenario. The run ends when all time-points
whose labels are entailed by the CPS have been executed. The agent wins if all
constraints entailed by the final CPS are satisfied. The agent seeks a winning
strategy (i.e., one that guarantees that all relevant constraints will be satisfied no
matter which choices the environment makes along the way). A dynamic strategy
is able to react to past observations. However, to simplify the presentation, this
paper presumes that an agent is also able to react instantaneously to observations
(i.e., after zero delay).2

Since n time-points can be executed in n! orders, and each time-point can
typically be assigned one of uncountably many values, we use a more abstract
representation for agent moves, one that does not specify execution times for
the time-points being “played”. Each (abstract) move is represented by a pair
(χ, P?), where χ is a possibly empty set of ordinary time-points, and P? is an
observation time-point. For maximal flexibility, the time-points in χ ∪ P? are
only partially ordered: for each X ∈ χ, and each as-yet-unplayed Y ̸∈ χ ∪ P?,
the ordering constraints, X ≤ P? ≤ Y, are posted. Thus, a typical sequence of
alternating moves has the following form:

(χ1, P1?), (p1 = b1), (χ2, P2?), (p2 = b2), . . . , (χk, Pk?), (pk = bk),χk+1

where the χi are disjoint sets of ordinary time-points, the Pi? are distinct obser-
vation time-points, the pi are the corresponding propositional letters, the bi are
truth values, and the last agent move (i.e., χk+1) involves only ordinary time-
points. The associated ordering constraints can be concisely expressed as follows:

Z = 0 ≤ χ1 ≤ P1? ≤ χ2 ≤ P2? ≤ . . . ≤ χk ≤ Pk? ≤ χk+1

where expressions of the form, χi ≤ Pi? ≤ χi+1, stand for the sets of constraints,
(∀X ∈ χi)(X ≤ Pi?) and (∀X ∈ χi+1)(Pi? ≤ X). Note that no ordering con-
straints are imposed among any pair of time-points, X and Y , that belong to
the same set χi.

Consider the CSTN graph shown on the lefthand side of Fig. 3. One pos-
sible sequence of moves is: ({X}, P?), (p = true), {Y }, whose corresponding
ordering constraints are: Z ≤ X ≤ P? ≤ Y . Another possible sequence
is: (∅, P?), (p = false), {X,W}, whose corresponding ordering constraints are:
Z ≤ P? ≤ {X,W}.

The (abstract) game tree—or simulation graph [3]—is a branching tree with
finitely many nodes. It includes: (1) agent nodes (Agt-nodes) that represent
states where it is the agent’s turn to “play” time-points; and (2) environment
nodes (Env-nodes) that represent states where it is the environment’s turn to

2 Similar assumptions have been made elsewhere [13,16]. In contrast, recent papers
address ϵ-dynamic controllability for CSTNs, where agent reaction times are bounded
below [7,13].

A New Approach to Checking the Dynamic Consistency 275

Z

X

P ?

Yp

−7

W¬p

⟨25, p⟩

−5
20

40
⟨−2,¬p⟩

⟨−
4,
p⟩

⟨12,¬p⟩

⟨−10, p⟩

⟨−25,¬p⟩

(∅, P ?)

{X, Y }{X,W}

¬p ¬pp p

CPS = ¬p CPS = p
{Y }

({X}, P ?)

Z = 0, CPS =

{W}
CPS = ¬p CPS = p

Fig. 3. A sample CSTN (left) and the corresponding game tree (right)

select a truth value for a propositional letter. The game tree for the sample
CSTN is illustrated on the righthand side of Fig. 3. In the figure, each agent
move is represented by an edge from an Agt-node (•) to an Env-node (), and
each binary choice for the environment is represented by a hyper-edge [15], shown
as a shaded triangle, whose source is an Env-node, and whose target set is a pair
of Agt-nodes: one for true, one for false.

Our algorithm’s traversal of the game tree is inspired by Liu and Smolka’s
algorithm for finding minimal fixed points of dependency graphs [15]. Their algo-
rithm has a forward phase that does depth-first search with backtracking; and a
back-propagation phase that can interrupt the forward phase. The forward phase
uses a global last-in, first-out queue of forward edges (i.e., moves); the process-
ing of each forward edge typically involves pushing more forward edges onto the
queue. The back-propagation phase (not to be confused with backtracking in the
forward phase) is engaged by pushing a backward edge onto the queue. Process-
ing backward edges involves propagating information back toward the root node,
and continues as long as certain criteria are met. If the back-propagation peters
out, the forward phase is automatically re-engaged by processing the topmost
edge from the queue. Our algorithm similarly interleaves forward and backward
phases but, as will be seen, uses multiple queues.

When it is the agent’s turn, it can play any of the as-yet-unplayed time-
points whose labels are entailed by the current partial scenario. For each move,
(χ, P?), our algorithm effectively asks: “Is there an assignment for the time-
points in χ ∪P? that can force a win from this point onward?” That question is
not answered immediately. But notice that a win-forcing assignment for the time-
points in χ∪P? must be win-forcing regardless of the environment’s subsequent
choice for the value of p.

Although the question, “Is there a win-forcing assignment?”, is not answered
immediately, the constraints from the CSTN that apply to the time-points in
χ ∪ {P?}, and any other already-played time-points, together with the ordering

276 L. Hunsberger and R. Posenato

constraints discussed above, do restrict the space within which such win-forcing
assignments must reside—should they exist. This restricted space of possible
win-forcing assignments can be represented by an STN, hereinafter called the
current STN. A consistency check on the current STN can be used to prune
moves that cannot be part of a winning strategy.

A leaf node in the game tree represents a state where all observation time-
points whose labels are entailed by the CPS have already been played. At that
point, the agent must play all of the as-yet-unplayed ordinary time-points whose
labels are entailed by the CPS. Let χ be that (possibly empty) set of time-
points. Now, if the current STN for that leaf node is consistent, the question
“Is there an assignment for the time-points in χ that can force a win from this
point onward?” is trivially “Yes”, since any solution to the current STN will do.
In other words, for a leaf node in the game tree, the solution set for the current
STN represents not only the restricted domain within which any win-forcing
assignment must reside, but in fact the actual set of win-forcing assignments
for that node. Hereinafter, any set of win-forcing assignments shall be called a
win-set.

The forward phase of our algorithm uses depth-first search with backtracking
to find a sequence of moves that terminate in a leaf node whose current STN
is consistent (i.e., whose win-set is non-empty). To illustrate the forward phase,
recall the game tree from the righthand side of Fig. 3. Its root node has the
following information:

• Z is the only time-point that has been “played”;
• π0 = ! is the current partial scenario;
• T0 = {Z,X,P?}, the time-points whose labels are entailed by π0 = !; and
• C0 = {X ∈ [5, 20], P? ∈ [7, 40]}, the constraints whose labels are entailed by

π0.

From the root node, there are only two legal moves: (∅, P?) or ({X}, P?).
Let’s explore the latter move. After this move, the current STN is S1 =
({Z,X,P?}, C0 ∪ θ), where:

• θ = {Z ≤ X ≤ P?}, the ordering constraints associated with the move
({X}, P?).

The distance matrix D1 for S1 is shown in Fig. 4a. Any win-forcing assignment to
time-points in {Z,X,P?}must satisfy the constraints represented by this matrix.
However, at this point, it is not known whether any win-forcing assignments
exist.

Next, suppose that the environment chooses to set p = true. In that case, we
get:

• {Z,X,P?} are the time-points that have been played;
• πp

1 = p is the current partial scenario; and
• T p

1 = {Y } is the set of unplayed time-points whose labels are entailed by
πp
1 = p.

A New Approach to Checking the Dynamic Consistency 277

Z X P?

Z 0 20 40
X −5 0 35
P? −7 0 0

Z X P? Y

Z 0 15 21 25
X −5 0 16 20
P? −7 0 0 18
Y −15 −10 −4 0

Z X P? W

Z 0 20 30 32
X −13 0 10 12
P? −13 0 0 12
W −25 −5 −2 0

Z X P?

Z 0 15 21
X −13 0 10
P? −13 0 0

(a) D1 (b) Dp (c) D¬p (d) D∗
1

Fig. 4. Distance matrices related to the running example

Since T p
1 contains no observation time-points, the agent’s only option is to play

the remaining time-point Y , ending the run with the current STN (T p
1 , Cp

1 ∪ θp),
where:

• Cp
1 = C0 ∪ {Y ≤ 25,X − Y ≤ −10, P? − Y ≤ −4}; and

• θp = θ ∪ {P? ≤ Y } are the relevant ordering constraints.

The distance matrix, Dp, for this STN is shown in Fig. 4b. Because it is consis-
tent, its solution set is the win-set for the leaf node at the bottom-right of the
game tree in Fig. 3. However, “win-forcing” only means win-forcing from that
point onward. Thus, whenever a leaf node with a non-empty win-set is found,
the forward phase is interrupted by the back-propagation phase, whose purpose
is to determine the constraints that must be imposed on preceding nodes to
ensure that this non-empty win-set can be reached.

By Theorem 1, any solution to the restriction of Dp to {Z,X,P?} can be
extended to a solution to Dp over the time-points in {Z,X,P?, Y }. That is,
any solution to the STN represented by the upper-lefthand 3 × 3 sub-matrix of
Dp, which involves only {Z,X,P?}, is necessarily win-forcing—as long as the
environment subsequently chooses p = true. However, the agent must also force
a win should the environment choose p = false. The relevant matrix for that
case is D¬p, shown in Fig. 4c. Its upper-lefthand 3 × 3 matrix must be satisfied
by Z,X and P? to ensure a win should the environment choose p = false. Since
the agent wants to ensure a win no matter which value the environment chooses
for p, a win-forcing assignment for Z,X and P? must satisfy the constraints
represented by both 3×3 sub-matrices. In other words, a win-forcing assignment
must belong to the intersection of the solution sets represented by those sub-
matrices. By Lemma 1, the distance matrix, D, for that intersection can be
computed as follows. First, the matrix D∗

1 , shown in Fig. 4d, is computed by
taking the element-wise minimum of the corresponding sub-matrices and then
running an all-pairs, shortest-paths computation on D∗

1 , which in this case only
changes the 10 to an 8. The resulting matrix, D = Dp ∩ D¬p, is called the
back-propagation of Dp and D¬p.

For the CSTN from Fig. 3, the back-propagation of Dp and D¬p provides a
non-empty win-set for the Env-node associated with the move ({X}, P?). The
distance matrix for that win-set can then be propagated back to the preceding

278 L. Hunsberger and R. Posenato

Agt-node—in this case, the root node—simply by restricting it to the time-points
associated with that node—in this case, Z. Since the restriction of a consistent
matrix is invariably consistent, propagating a win-set from an Env-node back
to its parent Agt-node never fails. For the sample CSTN, the result is [0], a
consistent 1 × 1 matrix confirming that Z = 0 is a win-forcing assignment for
the root node. Thus, the sample CSTN is DC. However, in many cases, back-
propagation may not make it all the way back to the root node because, at some
point, the intersection of the win-sets from two child Agt-nodes may be empty.
In such cases, back-propagation stops and the forward phase is re-engaged.

Maintaining Lists of Win-Sets. Suppose that N is an Env-node whose two child
Agt-nodes are Np and N¬p, as illustrated in Fig. 5. Next, suppose that the for-
ward search from Np explores an agent move, m1, that eventually leads to a
leaf node with a non-empty win-set; and that the subsequent back-propagation
of that win-set results in a non-empty win-set for Np, represented by a matrix
D1

p. If the forward search has yet to explore the Agt-node N¬p, then there can
be no win-set for that node to intersect with D1

p. Thus, back-propagation of
Dp must stop until forward search from N¬p (e.g., by exploring a move M1)
leads to a leaf node with a non-empty win-set that can be subsequently back-
propagated to a non-empty win-set D1

¬p for N¬p. Now, if D1
p ∩D1

¬p is non-empty,
back-propagation from N toward the root node can be re-started. However, if
D1

p∩D1
¬p turns out to be empty, it need not imply that the Env-node N is a dead

end, because there may be alternative agent moves that can be explored from Np

and N¬p. For example, some of the alternative moves from Np (e.g., m2,m3, . . .)
may lead to additional win-sets for Np, represented by matrices, D2

p,D3
p,

Similarly, various moves from N¬p may lead to additional win-sets for Np, rep-
resented by matrices, D2

¬p,D3
¬p, Any pairing of some Di

p with some Dj
¬p for

which the intersection Di
p ∩ Dj

¬p is non-empty will provide a non-empty win-set
for the Env-node N , which may lead to successful back-propagation toward the
root node. Since the algorithm cannot know in advance which of the win-sets for
Np and N¬p, if any, may contribute to non-empty win-sets for N , it maintains
for each Agt-node a list of the win-sets that have been found so far for that
node. Whenever a new win-set, Di

p, is found for Np, it must be checked against
each win-set, Dj

¬p for N¬p, to determine whether the intersection, Di
p ∩ Dj

¬p, is
non-empty, whence back-propagation from the Env-node N could be re-started.
The following properties of win-sets summarize the main points of the preceding
discussions.

N¬p

Np move m1 generates win-set D1
p

move m2 generates win-set D2
p

move m3, generates win-set D3
p

Env-node N

Fig. 5. Illustrating the need for lists of win-set matrices at Agt-nodes

A New Approach to Checking the Dynamic Consistency 279

(P1) Let N be an Agt-node; and N1, . . . , Nk its child Env-nodes. If D1, . . . ,Dk

are win-sets for those child nodes, and TN is the set of time-points whose
labels are entailed by the CPS at N , then for each i, (Di|TN) is a win-set
for N .

(P2) Let N be an Env-node; and Np and N¬p its child Agt-nodes. If Dp and D¬p

are win-sets for Np and N¬p, respectively, and TN is the set of time-points
whose labels are entailed by the CPS at N , then (Dp|TN) ∩ (D¬p|TN) is a
win-set for N .

(P1) follows from Theorem 1; (P2) follows from Lemma 1 and the fact that a
win-forcing assignment for N must be win-forcing for both Np and N¬p.

Incrementally Constructing Agent Moves. From any Agt-node, there may be
exponentially many moves, each of the form (χ, P?), where χ is a possibly empty
subset of OrdTPs, and P? is an ObsTP. To increase efficiency, our algorithm
incrementally constructs each agent move in a sequence of steps. For each step,
a time-point is selected for incorporation into the nascent move. Each OrdTP
that is selected is added to χ. When an ObsTP is (eventually) selected, the
construction of the move (χ, P?) is completed. In this way, a move (χ, P?) from
an Agt-node to an Env-node is represented by a sequence of step-edges, as illus-
trated in Fig. 6. The selection of an OrdTP is represented by a forward OrdTP
edge, whose destination is an intermediate node. The selection of an ObsTP is
represented by a a forward ObsTP edge, whose destination is an Env-node. In
this way, each agent move is represented by a sequence of zero or more forward
OrdTP edges, followed by a single ObsTP edge that terminates at an Env-node.

OrdTP OrdTP OrdTP ObsTP

Env-node
Intermediate node
Agt-node

X1 X2 X3 P ?

({X1, X2, X3}, P ?)

Fig. 6. A sequence of edges representing a transition from an Agt-node to an Env-node

Monte-Carlo Tree Search. At each step during the incremental construction of
an agent move, the algorithm uses Monte-Carlo Tree Search (MCTS) [9] as a
variable-ordering heuristic. One call to MCTS generates a list of step-edges to be
pushed onto the Agt-node’s queue. The step-edges are sorted so that the “best”
step-edge will be popped first. If an OrdTP is selected, MCTS is run again to
once again generate a sorted list of step-edges to be pushed onto the Agt-node’s
queue, and so on, until an ObsTp is selected, whence the construction of the
move is completed, and the resulting Env-node can be created and explored.
Further details of our use of MCTS are provided later on.

Limited Discrepancy Search. To avoid getting trapped in an unpromising portion
of the search space, instead of doing ordinary depth-first search, the algorithm

280 L. Hunsberger and R. Posenato

uses Limited Discrepancy Search (LDS) [10], as follows. First, each call to MCTS
generates an ordered list of step-moves. If the best step-move is explored, there
is no penalty (or discrepancy). But if the algorithm backtracks and tries the
next best move, a penalty of +1 is accumulated. Further backtracking, leading
to exploring even worse moves, leads to higher penalties. Thus, the sequence
of moves that is currently being explored, going all the way back to the root
node, has an associated total path discrepancy. LDS with a limit of L ignores
any move that would lead to a total path discrepancy greater than L. Since a
winning strategy might not be obtained from LDS using a given limit L, the
algorithm employs an iterative deepening version of discrepancy search where
the limit L starts out at 0 (i.e., only best step-moves are explored at each step).
If that search fails to find a winning strategy, the limit L is incremented and the
algorithm tries again. This process continues until a winning strategy is found
or the search space is exhausted.

Table 1. Pseudo-code for the SG-DC-CHECK algorithm for CSTNs (Part One)

Pseudo-code for the New DC-Checking Algorithm. The new DC-checking algo-
rithm for CSTNs is called SG-DC-CHECK (for “simulation-graph DC-checking”).
Pseudo-code for the SG-DC-CHECK algorithm is given in Tables 1 and 2. The
SG-DC-CHECK algorithm calls the SEARCH method on the root Agt-node v0, whose
sorted list of initial step-moves has been generated by MCTS and pushed onto
v0’s queue. The SEARCH method processes (forward or backward) edges from the
queue of as-yet-unprocessed edges. The behavior of the PROCESS-EDGE method
depends on the type of edge (forward or backward; OrdTP, ObsTP or Env) to be
processed. Processing a forward OrdTP edge creates a new intermediate node;
and uses MCTS to generate a sorted list of legal step-moves to be pushed onto the
Agt-node’s queue. Processing a forward ObsTP edge creates a new Env-node and

A New Approach to Checking the Dynamic Consistency 281

Table 2. Pseudo-code for the SG-DC-CHECK algorithm for CSTNs (Part Two)

282 L. Hunsberger and R. Posenato

pushes an envHyperEdge (environment hyper-edge) onto the Agt-node’s queue.
The first time an envHyperEdge is processed, two Agt-node children are cre-
ated. If both child nodes happen to be leaf nodes, then their restricted win-sets
are intersected and, if non-empty, form a win-set for the parent Env-node. In
that case, a bkwdObsEdge (i.e., backward observation edge) is pushed onto the
queue of the Env-node’s parent Agt-node to initiate back-propagation of that
new win-set. (Env-nodes do not have queues.) Otherwise, the envHyperEdge
that is currently being processed is pushed back onto the queue to ensure that
it is immediately re-visited. Whenever an envHyperEdge is re-visited, it calls
the SEARCH method on one of the child Agt-nodes to see whether a new win-
set can be generated. If so, then a bkwdEnvEdge (i.e., backward environment
edge) is pushed onto the parent Agt-node’s queue to back-propagate that new
win-set. If the back-propagation peters out (i.e., fails to reach the root node
of the entire simulation graph), then the envHyperEdge will be re-visited to see
whether additional win-sets for the child Agt-nodes might be found, as discussed
with Fig. 5.

As already indicated, back-propagation is implemented by processing
bkwdEnvEdges and bkwdObsEdges. Processing a bkwdEnvEdge for a given Env-
node vE takes a new win-set for one of the child Agt-nodes v̂ and intersects it
with the existing win-sets for the other child Agt-node ṽ. If any new win-sets
are generated that are not subsumed by any of the existing win-sets for vE ,
then those win-sets are packaged into a bkwdObsEdge that is pushed onto the
parent Agt-node’s queue to ensure that back-propagation continues. Processing
a bkwdObsEdge takes new win-sets for an Env-node vE and restricts the corre-
sponding distance matrices to the time-points relevant to the parent Agt-node.
If new win-sets for the parent Agt-node are generated, then a bkwdEnvEdge
is pushed onto the queue of the grandparent Agt-node, and back-propagation
continues. If the back-propagation ever reaches the root Agt-node with a non-
empty win-set, then the network is declared to be DC. If the search fails to
find a win-set for the root node, then the discrepancy limit L is increased. That
process continues until a win-set for the root node is found, or the search space
is exhausted.

When run without using MCTS as a node-ordering heuristic, and without
using iterative-deepening limited discrepancy search, the SG-DC-CHECK algorithm
performs quite poorly—even when using consistency checks on the current STN
for each node to prune bad moves. The reason is clear: there are exponentially
many paths through the search tree, most of which typically do not lead to a
leaf node with a non-empty win-set. Therefore, our algorithm uses MCTS to
pick the “best” time-points to insert into agent moves before they are played,
and uses iterative-deepening discrepancy search to avoid wasting time in poor
areas of the search tree. Our implementation of MCTS is closely based on Gelly
and Silver’s two-player UCT algorithm, combined with their all moves as first
(AMAF) technique for rapid action value estimation (RAVE) [9]. In the basic
UCT algorithm, moves for the player and environment are explored, with a
balance between exploration and exploitation. Each node in the incrementally

A New Approach to Checking the Dynamic Consistency 283

expanding tree of explored moves keeps track of how many times that node was
visited, and the cumulative award that node received from those visits. When
a previously unexplored node is reached, a random play-out is performed until
either (1) a leaf node with a non-empty win-set is found; or (2) a node whose
current STN is inconsistent is reached. In the first case, the win is worth one
point, and the algorithm’s backup procedure increments the number of wins
and the number of visits for the nodes seen during that run. In addition, the
AMAF-RAVE technique treats each ordinary time-point from the first agent
move (χ, P?) as a first move, which is justified because those time-points are not
ordered. In the second case, the value of the dead-end node is proportional to
the depth reached.

5 Empirical Evaluation

The fastest DC-checking algorithm for CSTNs from the literature is from our ear-
lier work [13]. For convenience, that algorithm shall be called the DC-CHECK
algorithm. It is based on a more traditional style of constraint propagation,
extended to accommodate labeled constraints. This section compares the per-
formance of the new SG-DC-CHECK algorithm and the existing DC-CHECK
algorithm.

First, it must be acknowledged that the DC-CHECK algorithm performs very
well on networks that are either (1) very loosely constrained or (2) inconsistent.
In the first case, there is not much constraint propagation to perform, so the
algorithm runs quickly. In the second case, negative loops signalling non-DC
can often be found very quickly. In contrast, the SG-DC-CHECK algorithm
typically explores an exponential number of nodes in the simulation graph even
for loosely constrained networks, because it must ensure the existence of a win-
forcing strategy; and for non-DC networks, it must exhaust the search space to
prove that no winning strategy can exist. Therefore, this section focuses primarily
on moderately constrained networks.

The generation of CSTN instances was based on random workflow schema
generated by the ATAPIS toolset [14]. It is hoped that instances generated in
this way may be closer to examples that might be encountered in the real world.
Thirty consistent CSTNs were randomly generated. Each CSTN had between 107
and 155 time-points, between 8 and 16 observation time-points, and between 428
and 970 constraints. Both DC-checking algorithms were implemented in Lisp
and run on Intel Core i7-4790 machines with 3.6 GHz processors (4 cores/8
threads), running Ubuntu 14.04.04 LTS (kernel version 3.16.0-67-generic) and
Allegro Common Lisp (ACL) Enterprise Edition, version 8.1. To dramatically
reduce the number of redundant labeled edges stored during constraint propa-
gation, the DC-CHECK algorithm was improved to store labeled edges in sub-
sumption hierarchies, one hierarchy for each pair of time-points. Because the
DC-CHECK algorithm is deterministic, it was run only once on each network.
In contrast, the SG-DC-CHECK algorithm employs randomness, both from the
use of MCTS to determine “best” moves, and in deciding which of the two child

284 L. Hunsberger and R. Posenato

nodes to explore when processing an envHyperEdge. Therefore, SG-DC-CHECK
was run five times on each network.

The average run-time of the SG-DC-CHECK algorithm was better than that
of the DC-CHECK algorithm for 11 of the 30 instances, while the DC-CHECK
algorithm was faster on 18 of the 30 instances. For one instance, both algorithms
timed out (over 10min). Of the 18 instances where the DC-CHECK algorithm
was faster, the SG-DC-CHECK algorithm timed out at least once on 6 instances.
Over the 23 instances where neither algorithm timed out, the mean run times
were 40.0 s for DC-CHECK and 53.8 s for SG-DC-CHECK, with standard devi-
ations of 80.8 and 89.6, respectively. Furthermore, over the 29 instances where
the DC-CHECK algorithm did not time out, the mean run time of DC-CHECK
was 38.4 s, with a standard deviation of 80.7, but over the same 29 instances, the
minimum run time of the two algorithms (actual for DC-CHECK, average for
SG-DC-CHECK over 5 trials) had a mean of 22.1 s with a standard deviation
of 24.0. This suggests that running the two algorithms in parallel, and taking
the answer obtained by whichever algorithm finishes sooner, has the potential
to dramatically improve the timing performance.

Finally, to demonstrate a shortcoming of the DC-CHECK algorithm, recall
the small CSTN from Fig. 2. The loops between X and P?, and Y and Q?,
are examples of what are called negative q-loops [13]. They do not necessarily
cause a network to be non-DC. In fact, the CSTN in Fig. 2 is DC. However, they
can lead DC-CHECK to do an incredible amount of constraint propagation.
Each loop reinforces the other, gradually increasing the lower bounds on P?
and Q? until they eventually approach the value of the lower bound on W?,
which is 100. (To understand why, see the constraint-propagation rules in our
earlier work [13].) If the lower bound on W? is increased to 1000, then DC-
CHECK takes almost three minutes to determine that the network is DC. In
contrast, the SG-DC-CHECK algorithm solves this network in 80ms, regardless
of the size of the lower bound on W? This example highlights the fact that the
two algorithms have very different strengths and weaknesses. It suggests that
further study of both algorithms is warranted. Both algorithms may achieve
superior results in the future by improving their implementations. For example,
improving the consistency checking and tuning the parameters governing the
Monte-Carlo Tree Search may dramatically improve the performance of the SG-
DC-CHECK algorithm.

6 Conclusion

The SG-DC-CHECK algorithm continues a line of research dating back to the lit-
erature on finding minimal fixed-points for dependency graphs [15], synthesizing
controllers for TGAs [3], and DC checking for DTNUs [6]. Like the DC-checking
algorithm for DTNUs, the SG-DC-CHECK algorithm: (1) searches through an
abstract simulation graph; (2) manages its traversal through that graph by keep-
ing track of edges waiting to be processed, computing winning sets for nodes,
and keeping track of dependencies among nodes; (3) keeps track of ordering

A New Approach to Checking the Dynamic Consistency 285

constraints and performs consistency checks for pruning bad moves; and (4) in
successful instances, can be used to generate a dynamic execution strategy. How-
ever, adapting the high-level approach to CSTNs required the development of
significant novel representations and techniques. For example: (1) TGAs are not
used; (2) winning sets are represented by STNs, not TGA clock zones; (3) consis-
tency checking is done using STN algorithms; (4) the simulation graph includes
hyper-edges that represent the true and false branches for observations; (5) STN
restriction and intersection are used to back-propagate win-sets; and (6) Monte-
Carlo Tree Search and Limited Discrepancy Search are used to guide the search.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

3. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

4. Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Sound and
complete algorithms for checking the dynamic controllability of temporal networks
with uncertainty, disjunction and observation. In: TIME 2014. pp. 27–36. IEEE
Computer Society, September 2014

5. Cimatti, A., Hunsberger, L., Micheli, A., Roveri, M.: Using timed game automata
to synthesize execution strategies for simple temporal networks with uncertainty.
In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI
2014) (2014)

6. Cimatti, A., Micheli, A., Roveri, M.: Dynamic controllability of disjunctive tem-
poral networks: validation and synthesis of executable strategies. In: Proceedings
of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016) (2016)

7. Comin, C., Rizzi, R.: Dynamic consistency of conditional simple temporal networks
via mean payoff games: a singly-exponential time DC-checking. In: 22st Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2015), pp.
19–28. IEEE CPS, September 2015

8. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell.
49(1–3), 61–95 (1991). http://dx.doi.org/10.1016/0004-3702(91)90006-6

9. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in
computer go. Artif. Intell. 175, 1856–1875 (2011)

10. Harvey, W., Ginsberg, M.: Limited discrepancy search. In: Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence, pp. 607–613 (1995)

11. Hunsberger, L.: Group decision making and temporal reasoning. Ph.D. thesis,
Harvard University, available as Harvard Technical Report TR-05-02 (2002)

12. Hunsberger, L., Posenato, R., Combi, C.: The dynamic controllability of con-
ditional STNs with uncertainty. In: Proceedings of the Workshop on Planning
and Plan Execution for Real-World Systems: Principles and Practices (PlanEx),
ICAPS-2012, pp. 1–8 (2012)

http://dx.doi.org/10.1016/0004-3702(91)90006-6

286 L. Hunsberger and R. Posenato

13. Hunsberger, L., Posenato, R., Combi, C.: A sound-and-complete propagation-based
algorithm for checking the dynamic consistency of conditional simple temporal net-
works. In: 22st International Symposium on Temporal Representation and Reason-
ing (TIME 2015), pp. 4–18. IEEE CPS, September 2015

14. Lanz, A., Reichert, M.: Enabling time-aware process support with the atapis
toolset. In: Limonad, L., Weber, B. (eds.) Proceedings of the BPM Demo Sessions
2014. CEUR Workshop Proceedings, vol. 1295, pp. 41–45. CEUR (2014)

15. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998)

16. Morris, P.: Dynamic controllability and dispatchability relationships. In: Simonis,
H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 464–479. Springer, Heidelberg (2014)

17. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In: Nebel, B. (ed.) Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence (IJCAI 2001), pp. 494–502. Kaufmann (2001)

18. Tsamardinos, I., Vidal, T., Pollack, M.E.: CTP: a new constraint-based formalism
for conditional, temporal planning. Constraints 8, 365–388 (2003)

On Finding Minimum Satisfying Assignments

Alexey Ignatiev1,2(B), Alessandro Previti1, and Joao Marques-Silva1

1 LaSIGE, Faculty of Science, University of Lisbon, Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt, apreviti.research@gmail.com

2 ISDCT SB RAS, Irkutsk, Russia

Abstract. Given a Satisfiability Modulo Theories (SMT) formula, a
minimum satisfying assignment (MSA) is a partial assignment of min-
imum size that ensures the formula is satisfied. Minimum satisfying
assignments find a number of practical applications that include software
and hardware verification, among others. Recent work proposes the use
of branch-and-bound search for computing MSAs. This paper proposes a
novel counterexample-guided implicit hitting set approach for computing
one MSA. Experimental results show significant performance gains over
existing approaches.

1 Introduction

For a propositional formula, represented in conjunctive normal form (CNF), a
minimum size prime implicant can be computed with a logarithmic number of
calls to a SAT oracle [18], e.g. by solving unweighted partial maximum satisfiabil-
ity. For arbitrary propositional formulae it is unclear how to solve the problem.
Nevertheless, for formulas expressed in decidable fragments of first order logic
(FOL), the same problem has been investigated as computing a minimum satis-
fying assignment (MSA), which represents a partial assignment of minimum cost
to the formula’s variables such that, for any assignment to the remaining vari-
ables, the formula is true [8]. The MSA problem finds application in software
verification, hardware verification, but also in abductive inference [7]. Recent
work identified other uses of MSAs [15,24].

Earlier work proposed a branch-and-bound algorithm for computing MSAs
of logic formulas expressed in decidable fragments of FOL, being applied in
relatively small-scale test cases. Given the potential for wider use in software
verification, but also in abductive inference, and with the goal of targeting more
challenging problem instances, this paper investigates alternative approaches for
computing MSAs. Concretely, the paper builds on the recent work on implicit
hitting sets [5,12–14,16,19,23], and develops an implicit hitting set approach for
computing MSAs, where implicit hitting sets are obtained by refining identified
counterexamples to the general goal of computing one MSA. The experimental
results, obtained on existing but also novel suites of problem instances, show per-
formance gains when compared with the existing branch-and-bound approach.

The paper is organized as follows. Section 2 introduces the notation used
throughout the paper. The use of implicit hitting sets for computing MSAs is
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 287–297, 2016.
DOI: 10.1007/978-3-319-44953-1 19

288 A. Ignatiev et al.

detailed in Sect. 3, resulting in a new tool referred to as MINT. Section 4 com-
pares the MINT solver with the existing tool MISTRAL [8]. Section 5 concludes
the paper and identifies research directions.

2 Preliminaries

This section introduces the concepts used throughout the paper. Standard defi-
nitions commonly used in first-order logic apply. We follow [3,8], since we build
on this earlier work. The paper assumes basic knowledge of first-order logic, but
some basic definitions are presented to make the paper more self-contained. A
first-order theory T is a set of first-order sentences over a signature S, where
the signature S specifies a set of predicates and function constants. A first-order
model M is a pair ⟨U , I⟩, where the set U represents a universe, and I represents
an interpretation that assigns a semantics to every symbol in S. V denotes the
set of variables (which are distinct from S). Given a model M, a valuation ω is
a partial map from V to U . For simplicity, we assume V to be the set of variables
that occur free in the formula. In what follows, F denotes a first-order formula
modulo a theory defined over variables var(F). If ω is a valuation in V → U , we
write M,ω !F to indicate that the formula F is true, according to the usual
semantic of first-order logic, in model M, with ω giving the valuation of the free
variables in F . We say that M is a model of F when every sentence of F is true
in M.

Definition 1. Formula F is satisfiable modulo T when there exists a model
M = ⟨U , I⟩ of T and an assignment ω ∈ V → U such that M,ω !F . We say
that the pair ⟨M,ω⟩ is a satisfying assignment (SA) for F .

A concept used throughout the paper is that of partial satisfying assignment :

Definition 2. A partial satisfying assignment for a formula F is a pair ⟨M,ω⟩,
where M is a model and ω is a valuation over M such that dom(ω) ⊆ V and
such that for any valuation of α ∈ V \ dom(ω) → U , we have that ⟨M, (ω ∪ α)⟩
is a satisfying assignment for F .
Definition 3. A partial satisfying assignment ⟨M,ω⟩ for F is said to be min-
imal (mSA) if for any valuation α ∈ V → U s.t. dom(α) ⊂ dom(ω), the pair
⟨M,α⟩ is not a satisfying assignment for F . A Minimum Satisfying Assignment
(MSA) is an mSA of smallest size.

Note that an MSA can be defined more generally in terms of a cost function.
In this paper we will refer to MSAs in terms of their size (i.e. the cost associated
with each variable is 1). We conclude this section with the definition of a hitting
set:

Definition 4. Given a collection Γ of sets from a universe U, a hitting set h
for Γ is a set such that ∀S ∈ Γ, h ∩ S ̸= ∅.

A hitting set is minimal when none of its subsets is a hitting set. Let us
denote with HS(Γ) the set of all hitting sets of Γ . Then a hitting set h ∈ HS(Γ)
is said to be a minimum hitting set if ∀h′ ∈ HS(Γ) we have that |h| ≤ |h′|.

On Finding Minimum Satisfying Assignments 289

3 Computing One MSA with Implicit Hitting Sets

This section proposes an algorithm for computing one MSA by exploiting an
implicit hitting set approach, following the ideas of [21] and similar in spirit to
related recent work in different areas [5,12–14,16,19,23]. However, in contrast to
earlier work related with propositional formulas, our approach exploits implicit
hitting sets for selecting sets of variables and not sets of clauses.

The goal of computing one MSA is to find a minimum size set X ∈ var(F)
such that ∃X∀Y .F holds, with Y = var(F) \X. Let us consider the set of sets
J , where each set I ∈ J represents the complement of one counterexample to
our goal, i.e. each set I ∈ J is the complement of Xcex such that ∃Xcex∀Y .F is
false. If a solution is to exist, it must use at least one variable from each set I;
otherwise, we would be repeating the complement of set I, namely Xcex, and we
know there is no solution in that case. Thus, any solution set X ∈ var(F) for
which ∃X∀Y .F is true, must hit any set I ∈ J ; otherwise, set X would not be a
solution. Moreover, we can make each set to hit stronger, by finding a maximal
counterexample, i.e. by growing Xcex [14] (and, hence, reducing its complement
I ∈ J). Thus, the minimal hitting set duality relation between goal sets X and
reduced complements I ∈ J of counterexamples Xcex can be devised, following
the ideas of [21]. In practice, it is unrealistic in many cases to explicitly represent
the set of sets J . Thus, the sets to hit are generated on demand, and this explains
why the approach is referred to as an implicit hitting set approach. The proposed
algorithm is depicted in Algorithm 1. The remainder of this section formalizes
the approach outlined above.

Definition 5. Given a formula F modulo theory T s.t. formula F is defined
over set of variables var(F) = X ∪ Y and ∃X∀Y .F is true, set Y is called a
universal subset (US) for formula F and set X is called an existential subset
(ES) for F .

Algorithm 1. MSA algorithm
input : Formula F
output: One MSA of F

1 H ← ∅
2 while true do
3 X ← MinHS(H)
4 Y ← var(F) \X
5 (st, µX) ← Solve(∃X∀Y .F)
6 if st then
7 break

8 else
9 I ← var(F) \ Grow(X,F)

10 H ← H ∪ I

11 return MSA ← µX

290 A. Ignatiev et al.

An existential subset X (universal subset Y , resp.) is said to be minimal
ES or MinES (maximal US or maxUS, resp.) if ∃X\{z}∀Y ∪{z}.F is false for any
z ∈ X. An ES E of minimum size (US U of maximum size, resp.) is called a
minimum existential subset or MinES (maximum universal subset or MaxUS,
resp.). Observe that given an existential subset for formula F of the smallest size
(i.e. a MinES), one can easily extract an MSA for F . Indeed, it assigns variables
of the existential subset satisfying F , which can be done by calling a decision
procedure for F , i.e. an SMT oracle.

Definition 6. A falsifying subset (FS) for a formula F modulo theory T is a
set of variables Y ⊆ var(F) such that ∃X∀Y .F is false.

As usually, we identify with minFS and MinFS the minimal and minimum
falsifying set, respectively. We can now introduce an important proposition high-
lighting the existing duality between the minESes and the minFSes of a formula:

Proposition 1. Given a formula F , let minES(F) and minFS(F) be the set
of all minESes and minFSes of F. Then the following holds:

1. A subset X ⊆ var(F) is a minES for F iff X is a minimal hitting set of
minFS(F).

2. A subset Y ⊆ var(F) is a minFS for F iff Y is a minimal hitting set of
minES(F).

The intuition1 for the first statement is the following (a dual argument can be
used for the second one). We know that since X is a minES for F then ∃X∀Y .F
is true. This means that for any minFS Y ′ ∈ minFS(F) we have that Y ′ ̸⊆ Y ,
which implies that for any Y ′ ∈ minFS(F) at least one variable of Y ′ is in X.
If X is a minimal hitting set of minFS(F) then at least one variable of every
Y ′ ∈ minFS(F) is in X. This means that ∃X∀Y .F is true since Y ′ ̸⊆ Y for any
Y ′ ∈ minFS(F).

Proposition 2. A subset X ⊆ var(F) is a MinES for F iff X is a minimum
hitting set of minFS(F).

Proposition 2 enables us to compute an MSA once we have the set
minFS(F). However, computing minFS(F) is not always feasible due to the
size of the set. Thus, the idea is to compute a subset of minFS(F), from which
an MSA can be extracted. However, a minimum hitting set X on a subset of
S ⊆ minFS(F) does not necessarily correspond to a MinES for F . For X to be
a MinES for F we need two conditions:

Proposition 3. Let Y = var(F) \ X. If (1) X is a minimum hitting set of
S ⊆ minFS(F) and (2) ∃X∀Y .F is true, then X is a MinES of F .

1 Proofs of Propositions 1 and 2 are omitted here due to lack of space. Note that they
can be constructed following the ideas of [12,22] where similar proofs are presented.

On Finding Minimum Satisfying Assignments 291

Proof. Since ∃X∀Y .F is true we have that, by definition,X is an ES.We know that
an ES is an hitting set of minFS(F) (see Proposition 1). Since X is a minimum
hitting set of S ⊆ minFS(F) we have that X is also a minimum hitting set of
minFS(F). By Proposition 2, it follows that X is a MinES for F . ⊓/

Condition (2) of Proposition 3 is checked at line 5 of Algorithm 1 when the
SMT oracle is invoked. If this oracle call returns true (line 6) then X is a MinES
for F and, thus, an MSA can be extracted. Otherwise, X is extended2 (line 9)
and its complement (minFS) is added to the set H, which contains the set of
minFSes computed so far.

Table 1. MSA computation for F = ((a+ b ≥ 0)∨ (c ≤ 0))∧ ((a+ b ≥ 0)∨ (b−a ≤ 0))

MinHS(H) Solve(∃X∀Y .F) I ← var(F) \ Grow(X,F) H = H ∪ I

X ← {∅} false I ← {b, c} {{b, c}}
X ← {b} false I ← {a} {{b, c}, {a}}
X ← {a, c} true {a = 1, c = 0} is an MSA of F

An example of a run of Algorithm 1 is shown in Table 1. Column 1 contains
the set X of variables identified by the minimum hitting set of H. Whenever
Solve(∃X∀Y .F) returns true, the set X is extended by the Grow procedure (col-
umn 3) and its complement (minFS) is assigned to I. The last column shows the
current H, representing the set of all minFSes computed so far. In the last row,
Solve(∃{a,c}∀{b}.F) returns true, with a = 1, c = 0. This means that {a, c} is a
MinES, and a = 1, c = 0 is an MSA.

4 Preliminary Experimental Results

This section evaluates the proposed approach to computing a minimum satisfying
assignment. The experiments were performed in Ubuntu Linux on an Intel Xeon
E5-2630 2.60GHz processor with 64GByte of memory. The time limit was set
to 3600 s and the memory limit to 10GByte.

The proposed approach was implemented in a prototype called MINT (Mini-
mum satisfyINg assignmenT extractor). The MINT MSA extractor is written as
a Python script, which instruments the interaction between a minimum hitting
set enumerator and an SMT solver, as described in Algorithm 1. The mini-
mum hitting set enumerator (see line 3 of Algorithm 1) was implemented as an
incremental MaxSAT solver3 following the ideas of [17]. The MaxSAT solver was
2 The Grow procedure is implemented as a sequence of SMT oracle calls, each increasing

set X.
3 Indeed, one can observe that Algorithm 1 requires the minimum hitting set solver

to report new hitting sets on demand, i.e. when a new counterexample is detected.
This can be done in an incremental fashion [10], e.g. by adding new clauses when
necessary and computing new solutions on demand while keeping all the information
found during the previous calls.

292 A. Ignatiev et al.

implemented on top of the well-known SAT solver Glucose 3.3 [1]. The MINT
extractor was implemented in the PySMT framework [11], which enables it to
use any SMT solver capable of dealing with the theories of input SMT formulas,
e.g. Z3 [6], CVC4 [2], Yices2 [9], etc. In contrast, the state-of-the-art MSA solver
MISTRAL [8] can work only with formulas in the theory of linear arithmetic
over integers (LIA formulas). In the experimental evaluation, CVC4 was used in
MINT as a backend SMT solver because CVC44 performed reasonably well in
the SMT competition SMT-COMP155 winning a few benchmark subcategories
in the QF LIA category, and it also supports LIA formulas with quantifiers.

Additionally, an improved version of MINT was implemented, which is
referred to as MINT+. The only difference between MINT and MINT+ is that
MINT+ tries to bootstrap the main algorithm with sets of size 1 that need
to be hit in order to get an MSA. More precisely, the procedure traverses all
variables of y ∈ var(F) and decides satisfiability of the formula ∀y. F . If the
formula is unsatisfiable than set {y} is a MinFS of F of size 1, i.e. each MSA
of F necessarily hits it. The bootstrapping procedure is called before running
Algorithm 1. To assess the efficiency of MINT and MINT+, they were compared
to the state-of-the-art MSA extractor MISTRAL.6

4.1 Original Benchmark Instances

To evaluate the performance of MINT and MINT+, we used the benchmark set
referred to as CAV12, which was proposed and also considered in [8]. According
to [8], the benchmark constraints were generated by the program analysis tool
Compass (e.g. see [7]). In this setting, MSAs are important for reducing the
number of queries, which help users diagnose error reports as real bugs or false
alarms. Thus, the size of an MSA greatly affects the quality of queries presented
to users (and, hence, also the time spent on debugging users’ programs). The
total number of variables for these instances varies from 1 to 53 and the total
number of instances in the benchmark set is 373.7 The relative size of MSAs for
the CAV12 instances varies from 0% (i.e. an instance is a tautology) to 100%
(i.e. an MSA necessarily contains all variables) with the average size ≈ 58%.

The performance of the chosen competitors is shown in Fig. 1. Note that
the Y-axis of Fig. 1 is scaled logarithmically. As one can observe, the CAV12
instances are trivial to solve for all the competitors. All competitors spend about
10 s to solve the hardest instances in the benchmark suite. The averate running
4 https://github.com/CVC4/CVC4.
5 http://smtcomp.sourceforge.net/2015.
6 Note that the original distribution of MISTRAL does not have a command-line

interface. But one can easily create one since the source code of the tool is available
online at https://www.cs.utexas.edu/∼tdillig/mistral.

7 We also tested the proposed approach on the standard SMTLIB benchmarks. How-
ever, minimum satisfying assignments for the majority of benchmarks in the QF LIA
category of the SMTLIB benchmarks have trivial minimum satisfying assignments,
which contain all variables of the original formula. Therefore, considering these
instances makes no sense.

https://github.com/CVC4/CVC4
http://smtcomp.sourceforge.net/2015
https://www.cs.utexas.edu/~tdillig/mistral

On Finding Minimum Satisfying Assignments 293

0 50 100 150 200 250 300 350 400
instances

10−3

10−2

10−1

100

101

102

103
CP

U
tim

e
(s
)

MISTRAL
MINT
MINT+

Fig. 1. Performance of MINT, MINT+, and MISTRAL on the CAV12 benchmark
instances.

time for MINT, MINT+, and MISTRAL is 1.59 s, 1.23 s and 0.33 s, respectively.
A possible explanation of why the new approach is about 0.1 second slower
for most of the instances than MISTRAL (it takes 0.1 s vs 0.001 s spent on
these instances by MISTRAL) is that it is implemented as a Python script,
which requires some time to initialize the Python interpreter environment, while
MISTRAL is run as a binary executable written in C++.

4.2 Hardened Benchmarks

The results for the CAV12 benchmark set suggest to consider harder instances in
order to conduct a reasonable performance evaluation of the proposed approach.
One way to create harder instances is to combine the existing CAV12 benchmarks
with unsatisfiable formulas that are hard to solve, i.e. for each SMT formula F
(from the CAV12 benchmark set) defined over variables X one needs to consider
F ∨ U , where U is an unsatisfiable formula over variables Y s.t. X ∩ Y = ∅.
Notice that, by construction, an MSA of formula F is also an MSA of F ∨U , and
vice versa. As unsatisfiable components U , we considered well-known families of
unsatisfiable formulas, which are proved to be hard to refute by resolution-based
reasoning, namely pigeon-hole principle formulas PHPn [20] and formulas GTn,
which are based on the ordering principle that any partial order on a finite set
must have a maximal element [4]. Given 373 CAV12 instances F , the following
experiments considered n ranging from 5 to 7 for both PHPn and GTn resulting
in 3 combined benchmark sets F ∨ PHPn and 3 benchmark sets F ∨GTn, each
also having 373 instances. The translation of CNF formulas PHPn and GTn

was done in the standard way of encoding CNF formulas into integer linear

294 A. Ignatiev et al.

programming sets of constraints.8 The number of Boolean variables in formulas
PHPn and GTn is n× (n− 1), which results in 2× n× (n− 1) integer variables
appearing in the integer linear constraints encoding the original CNF formulas.
Thus, the largest number of additional variables in the combination F ∨ U is
84 (for n = 7) and, hence, the largest total number of variables among the
constructed benchmarks is 137.

The performance of the considered solvers shown for the F ∨PHPn formulas
is detailed in Fig. 2. The cactus plot shown in Fig. 2a illustrates how the perfor-
mance of the competitors changes with the growth of n from 5 to 7. (Again, the
Y-axis is scaled logarithmically in the cactus plot shown in Fig. 2a.) Observe that
MINT+ and MINT are almost not affected by the unsatisfiable part of the for-
mulas. However, the performance of MISTRAL drops significantly even for n = 5
(recall that for the CAV12 benchmarks the average running time of MISTRAL
was 0.33 s while for F∨PHP5 it is 149.4 s). This tendency towards increasing the
running time dramatically for MISTRAL is persistent for n ∈ {6, 7}. The num-
ber of instances of F ∨PHP6 and F ∨PHP7 solved by MISTRAL is 195 and 9,
respectively, whereas MINT+ can solve 373 and 371 and MINT solves 369 and
365 instances, respectively. The advantage of MINT+ over MISTRAL is con-
firmed by the scatter plot shown in Fig. 2b aggregating all instances F ∨PHPn,
n ∈ {5, 6, 7}. As detailed in Fig. 3, similar results are shown by the new approach
for the F ∨ GTn formulas while MISTRAL performs even worse (compared to

0 50 100 150 200 250 300 350 400
instances

10−3

10−2

10−1

100

101

102

103

CP
U
tim

e
(s
)

MISTRAL (PHP7)
MISTRAL (PHP6)
MISTRAL (PHP5)
MINT (PHP7)
MINT+ (PHP7)
MINT (PHP6)
MINT+ (PHP6)
MINT (PHP5)
MINT+ (PHP5)

(a) Cactus plot

10−3 10−2 10−1 100 101 102 103 104
MINT+

10−3

10−2

10−1

100

101

102

103

104

M
IS
TR

A
L

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(b) MINT+ vs MISTRAL

Fig. 2. Performance of MINT, MINT+, and MISTRAL on the F ∨ PHPn instances.

8 For each variable x of the original CNF, two integer variables x+ and x− are intro-
duced s.t. 0 ≤ x+ ≤ 1 and 0 ≤ x− ≤ 1. Variables x+ and x− cannot take value 0 or
1 at the same, which is forced by adding constraints of the form x+ + x− = 1. Each
clause l1 ∨ . . . ∨ lm is translated into constraint x1∗ + . . . + xm∗ ≥ 1, where each xi∗
represents either xi+ or xi− depending on the polarity of literal li.

On Finding Minimum Satisfying Assignments 295

0 50 100 150 200 250 300 350 400
instances

10−3

10−2

10−1

100

101

102

103
CP

U
tim

e
(s
)

MISTRAL (GT7)
MISTRAL (GT6)
MISTRAL (GT5)
MINT (GT7)
MINT+ (GT7)
MINT (GT6)
MINT+ (GT6)
MINT (GT5)
MINT+ (GT5)

(a) Cactus plot

10−3 10−2 10−1 100 101 102 103 104
MINT+

10−3

10−2

10−1

100

101

102

103

104

M
IS
TR

A
L

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(b) MINT+ vs MISTRAL

Fig. 3. Performance of MINT, MINT+, and MISTRAL on the F ∨ GTn instances.

195 F ∨ PHP6 instances solved it solves only 18 instances of F ∨ GT6). This
confirms that for harder formulas the new approach significantly overperforms
MISTRAL. This clear advantage of the new algorithm over MISTRAL is caused
not only by the hardness of the PHPn and GTn formulas (since it does not
affect the new approach that much) but also by a larger number of variables
compared to the original CAV12 benchmark instances, which means that the
proposed approach scales better in practice being able to solve harder problem
instances.

5 Conclusions

MSAs [8] are generalizations of prime implicants for first-order logic formulas
that find applications in a range of practical settings [7,15,24]. Recent work pro-
posed a branch-and-bound approach for computing MSAs. In contrast, this paper
proposes the use of an implicit hitting set solution [5,12–14,16,19,23] for com-
puting MSAs. Experimental results, collected on challenging problem instances
obtained from those used in earlier work [8], indicate significant performance
gains compared to the earlier work [8].

The work described in this paper can be extended in different ways. First,
more efficient algorithms for MSA will motivate additional applications and
revisiting existing ones. Second, the growing range of uses of implicit hitting
sets motivates devising more efficient algorithms.

296 A. Ignatiev et al.

References

1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, pp. 825–885. IOS Press (2009)

4. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

5. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer,
Heidelberg (2011)

6. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. In: PLDI, pp. 181–192 (2012)

8. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments
for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
394–409. Springer, Heidelberg (2012)

9. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

10. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

11. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop (2015)

12. Ignatiev, A., Previti, A., Liffiton, M., Marques-Silva, J.: Smallest MUS extraction
with minimal hitting set dualization. In: Pesant, G. (ed.) CP 2015. LNCS, vol.
9255, pp. 173–182. Springer, Heidelberg (2015)

13. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp.
325–331 (2015)

14. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

15. Maity, S., Ghosh, S.K.: Conflict resolution in heterogeneous co-allied MANET: a
formal approach. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.)
ICDCN 2014. LNCS, vol. 8314, pp. 332–346. Springer, Heidelberg (2014)

16. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment.
OR 61(2), 453–468 (2013)

17. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT
solving. JSAT 9, 129–134 (2015)

18. Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumeration of prime
implicants. Artif. Intell. 111(1–2), 41–72 (1999)

19. Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime compilation of
non-clausal formulae. In: IJCAI, pp. 1980–1987 (2015)

On Finding Minimum Satisfying Assignments 297

20. Razborov, A.A.: Proof complexity of pigeonhole principles. In: Kuich, W.,
Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 100–116.
Springer, Heidelberg (2002)

21. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

22. Rymon, R.: An SE-tree-based prime implicant generation algorithm. Ann. Math.
Artif. Intell. 11(1–4), 351–366 (1994)

23. Saikko, P., Wallner, J.P., Järvisalo, M.: Implicit hitting set algorithms for reasoning
beyond NP. In: KR (2016)

24. Vigo, R., Nielson, F., Nielson, H.R.: Uniform protection for multi-exposed targets.
In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 182–
198. Springer, Heidelberg (2014)

Towards a Dynamic Decomposition of CSPs
with Separators of Bounded Size

Philippe Jégou, Hanan Kanso, and Cyril Terrioux(B)

Aix-Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296, 13397 Marseille Cedex 20, France

{philippe.jegou,hanan.kanso,cyril.terrioux}@lsis.org

Abstract. In this paper, we address two key aspects of solving methods
based on tree-decomposition. First, we propose an algorithm computing
decompositions that allows to bound the size of separators, which is a
crucial parameter to limit the space complexity, and thus the feasibility
of such methods. Moreover, we show how it is possible to dynamically
modify the considered decomposition during the search. This dynamic
modification can offer more freedom to the variable ordering heuristics.
This also allows to better use the information gained during the search
while controlling the size of the required memory.

1 Introduction

The solving methods of CSPs based on tree-decomposition have shown a theo-
retical significance because they guarantee complexity bounds in O(exp(w)) in
time as well as in O(exp(s)) in space where w and s are parameters induced
by the structural properties of the constraint network. When w is bounded by
a constant, these methods ensure a polynomial runtime. Moreover, in practice,
such approaches are quite justified by numerous real-world problems for which w
is relatively small [1]. However, two major problems occur sometimes in practice.
First, controlling the value s is not always guaranteed, especially for decompo-
sition methods like Min-Fill [2] which can be seen as the state of the art [3].
This sometimes makes this type of approach completely ineffective because this
parameter is crucial in practice [4]. On the other hand, ensuring a time com-
plexity in O(exp(w)) requires a traversal of the search space that imposes strong
constraints on the variable assignment ordering, which can lead to a strong dete-
rioration of practical efficiency.

To answer the question of memory, we propose a new configurable algorithm
for computing decompositions. It takes as an input a parameter S to compute
decompositions that guarantee separator sizes at most S. Its time complexity is
less than that of Min-Fill and it offers performances which are widely better in
practice (around 1,000 times faster on a large set of benchmarks). This algorithm
fits perfectly into the framework proposed in [5] and can then be considered
as a refinement of the heuristics proposed in this framework. The second part
of the paper proposes a framework to dynamically change the decomposition

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 298–315, 2016.
DOI: 10.1007/978-3-319-44953-1 20

Towards a Dynamic Decomposition of CSPs 299

during the search, enabling to offer more freedom to heuristics while continuing
exploiting decompositions. This approach relies on the fact that, to be efficient in
practice, the solving methods must take into account the context of the search
and the knowledge gained gradually during the search. This is done by CSP
solvers using adaptive heuristics (e.g. [6,7]) and by CDCL SAT solvers (e.g. [8])
through clause learning and restart techniques. In the case of decomposition
methods, the fundamental difficulty is linked to the variable ordering imposed by
the decomposition. To overcome this difficulty, we propose to adapt dynamically
the decomposition by merging clusters during the search. Such an approach
have been introduced in [9] but mainly from a theoretical viewpoint. Thus, we
show here how it is feasible. In addition, we extend it by integrating restarts
techniques as proposed in [10]. Moreover, we describe how to dynamically change
the decomposition, taking advantage of the knowledge acquired during the search
while proposing to keep a bound on the size of separators all along the search.
The last part of this paper presents an experimental analysis on a large set of
instances, to assess the practical value of this approach.

In Sect. 2, we recall notions about solving methods based on tree-
decompositions while in Sect. 3, we present the computation of tree-
decompositions taking into account the size of separators. Section 4 introduces
a variant of the algorithm BTD able to adapt the decomposition during search
while Sect. 5 presents experiments that assess the relevance of this approach,
before concluding.

2 Preliminaries

The Constraint Satisfaction Problem (CSP) provides a strong framework to for-
mulate problems in computer science [11]. An instance of a finite CSP is given by
a triple (X,D,C), withX = {x1, . . . , xn} a set of n variables,D = {dx1 , . . . , dxn}
a set of finite domains, and C = {c1, . . . , ce} a set of e constraints. Each con-
straint ci is a pair (S(ci), R(ci)), where S(ci) = {xi1 , . . . , xik} ⊆ X defines the
scope of ci, and R(ci) ⊆ dxi1

× · · · × dxik
is its compatibility relation. The arity

of ci is |S(ci)|. If the arity of each constraint is two, the instance is a binary
CSP. The structure of a constraint network (other name of a CSP) is given by a
hypergraph (a graph for a binary CSP), called the constraint (hyper)graph, whose
vertices correspond to variables while edges correspond to the scopes of the con-
straints. To simplify notations, we denote the hypergraph (X, {S(c1), . . . S(ce)})
by (X,C). An assignment on a subset of X is called consistent if all the con-
straints are satisfied. Checking whether a CSP has a solution (i.e. a consistent
assignment of X) is well known to be NP-complete. So, many works have been
done to improve the solving in practice such as algorithms exploiting heuristics,
constraint learning, non-chronological backtracking or filtering-based algorithms.
Nevertheless, the complexity of these approaches remains exponential, at least
in O(n.dn) where d is the maximum size of domains. To circumvent this theo-
retical intractability, other approaches have been proposed. Some of them rely
on a structural tractable class [12] based on the notion of tree-decomposition of
graphs [13].

300 P. Jégou et al.

Definition 1. A tree-decomposition of a graph G = (X,C) is a pair (E, T)
with T = (I, F) a tree (I is the set of nodes and F the set of edges of T) and
E = {Ei : i ∈ I} a family of subsets of X, such that each subset (called cluster)
Ei is a node of T and satisfies: (i) ∪i∈IEi = X, (ii) for each edge {x, y} ∈ C,
there exists i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I, if k is in a path
from i to j in T , then Ei ∩ Ej ⊆ Ek. The width of a tree-decomposition (E, T)
is equal to maxi∈I |Ei|− 1. The tree-width w of G is the minimal width over all
the tree-decompositions of G.

This notion is only defined for graphs but can be considered for a hypergraph
by exploiting its 2-section1. Their primary advantage is related to their theo-
retical time complexity in dw+1 [3] while their space complexity is in ds where
s is the maximum size of intersections (called separators in the sequel) between
clusters. Thus, these methods can be efficient on large instances of small tree-
width as it is the case for example for well known optimization problems of
radio frequency allocations [15]. These methods run in two steps: (1) computing
a tree-decomposition, and (2) solve the instance exploiting the decomposition.
Since computing optimal decompositions (i.e. of width w) is NP-hard [16], in
practice, the first step generally computes tree-decompositions whose width is
w+ ≥ w, that is an approximation of the tree-width. In this context, Min-Fill
[2] appears as the best compromise between the computation time (O(n3)) and
the quality of the obtained decompositions. It can be considered as the state of
the art for such algorithms [3], even if, for graphs with more of tens of thousands
of vertices, it may be unusable in practice.

However, the computed decompositions are not necessarily really suitable
from a solving viewpoint [17,18]. First, Min-Fill does not take into account
explicitly the topological properties of the considered graph which can make
the solving inefficient. For example, the obtained decompositions may contain
disconnected clusters [18]. Secondly, Min-Fill can generate decompositions such
that s is often close to w+. Indeed, in order to minimize the width, Min-Fill
produces clusters with few proper vertices (i.e. vertices belonging to the cluster
but not to its parent cluster in the tree-decomposition) or even only one proper
vertex. This explains why s is often close to w+. This can lead to a prohibitive
cost for space memory. Thus, the minimization of s is crucial to be efficient in
practice [17].

Secondly, to guarantee the time complexity in dw
+
, efficient structural meth-

ods such as BTD [19] use an ordering for the assignment of the variables which is
partially determined by the considered decomposition. When Min-Fill is used,
this freedom is even more restricted because of the limited number of proper ver-
tices in the clusters. But we know that to have an efficient search, it is desirable
to have maximum freedom when choosing the next variable to assign.

To circumvent these difficulties, several approaches are possible. A first app-
roach is to have a decomposition with small separators, while having larger

1 The 2-section of a hypergraph (X,C) is the graph (X,C′) where C′ = {{x, y}|∃c ∈
C, {x, y} ⊆ c} [14].

Towards a Dynamic Decomposition of CSPs 301

clusters thereby releasing the constraints on the ordering [17]. Another possi-
bility is to exploit restarts like in [10]. This approach works by restarting the
search from a first variable which does not necessarily belong to the previous
root cluster. This leads, while retaining the same decomposition (except for the
root cluster), to give more freedom to the ordering and its relevance has been
shown experimentally. Another possibility is to dynamically change the decom-
position during the search while maintaining guarantees for time complexity.
This approach was proposed in [9], but mainly on a theoretical level. It consists
in expanding the cluster size by merging some neighboring clusters. However,
its relevance has never been demonstrated. Moreover, as defined in [9], it is only
guided by structural criteria, without taking into account explicitly the state of
search, and the knowledge gained during the solving. Note that exploiting the
structure of instances dynamically has already been proposed for SAT in [20],
but without guarantee for the complexity bounds, contrary to what we offer
here.

To propose new alternative ways, we introduce in the following, first an algo-
rithm which computes decompositions with clusters of bounded size. Secondly,
we present a new solving algorithm based on BTD allowing to dynamically
adapt the decompositions during the search, using information obtained from
the beginning of the solving.

3 Decomposition Controlling Separators

3.1 A General Framework to Compute Specific Tree-Decompositions

In this part, we recall the framework H-TD-WT (Heuristic Tree-Decomposition
Without Triangulation [5]) that computes a tree-decomposition of the graph G =
(X,C) without triangulation in polynomial time, more precisely in O(n(n+ e)).
LikeMin-Fill, no warranty about the optimality of the computed width is given.
However, it allows to compute decompositions depending on the features we want
to fulfill. Notably, different parameterizations are conceivable depending on the
wanted criteria for the obtained tree-decompositions. For example, these criteria
may be related to w+ and/or s or the connectivity of clusters [18]. By designing
such a framework, we have many goals. First, in order to manage dynamically
the decompositions during the solving, efficient decomposition algorithms are
needed from a theoretical and practical viewpoint. Second, the complexity of
these algorithms should be at most in O(n(n+e)) to be more efficient than Min-
Fill. To do so, the time-consuming step of triangulation performed by Min-Fill
must be avoided. Beyond that, limiting the maximum size of the separators (i.e.
intersection between clusters), as well as the size of clusters, is also crucial.

The first step of H-TD-WT (line 1 in Algorithm 1) computes a first clus-
ter, denoted E0, thanks to a heuristic. X ′ which denotes the set of already
considered vertices is initialized to E0 (line 2). We denote X1,X2, . . . Xk the
connected components of the subgraph G[X\E0] induced by the deletion in G

302 P. Jégou et al.

Algorithm 1. H-TD-WT
Input: A graph G = (X,C)

Output: A set of clusters E0, . . . Em of a tree-decomposition of G

1 Choose a first cluster E0 in G

2 X′ ← E0
3 Let X1, . . . Xk be the connected components of G[X\E0]

4 F ← {X1, . . . Xk}
5 while F ̸= ∅ do /* find new cluster Ei */

6 Delete Xi from F

7 Let Vi ⊆ X′ be the neighborhood of Xi in G

8 Find a subset X′′
i ⊆ Xi such that there is at least one vertex v ∈ Vi such that N(v,Xi) ⊆ X′′

i
9 Ei ← X′′

i ∪ Vi

10 X′ ← X′ ∪ X′′
i

11 Let Xi1 , Xi2 , . . . Xiki
be the connected components of G[Xi\Ei]

12 F ← F ∪ {Xi1 , Xi2 , . . . Xiki
}

of vertices of E0
2. Each one of these sets Xi is inserted in a queue F (line 4).

For each element Xi deleted from F (line 6), Vi denotes the set of vertices of X ′

which are adjacent to at least one vertex of Xi (line 7). One can note that Vi

is a separator in the graph G since removing Vi from G makes G disconnected
(Xi being disconnected from the rest of G). We then consider the subgraph of
G induced by Vi and Xi, that is G[Vi ∪Xi]. The next step (line 8) can be para-
meterized. It looks for a subset of vertices X ′′

i ⊆ Xi such that X ′′
i ∪ Vi will be

a new cluster Ei of the decomposition. This can be ensured if there is at least
one vertex v of Vi s.t. all its neighbors in Xi appear in X ′′

i . More precisely, if
N(v,Xi) = {x ∈ Xi : {v, x} ∈ C}, we must ensure that ∃v,N(v,Xi) ⊆ X ′′

i . We
then define a new cluster Ei = X ′′

i ∪ Vi (line 10). This process is repeated until
the queue is empty. In [5], this framework implements several heuristics. The first
(denoted H1), tries to minimize the size of the clusters while the second (H2)
guarantees that clusters will be connected (see [18]). The third heuristic (H3)
aims to identify independent parts of the graph and to separate them as soon as
possible using a breadth-first search starting from the vertices of Vi. The fourth
heuristic (H4), which introduces the one we will present in this contribution,
aims to limit the size of the separators of the decomposition. To do so, it consid-
ers a parameter S which represents the maximum allowed size for a separator.
This heuristic adds new vertices to the next cluster Ei similarly to H3 . Never-
theless, the heuristic stops progressing through levels at l = L when G[Xi\EiL]
does not contain any connected component with separator’s size greater than S.

3.2 A Heuristic for Controlling Separators

We hereby introduce a new heuristic (denoted H5) controlling the separator
size. It aims to refine the heuristic H4 by detecting more separators of size at
most S. If H4 stops adding vertices when it arrives to a level where all sepa-
rators are of size at most S, H5 may stop earlier. If at level l, the separator

2 For any Y ⊆ X, the subgraph G[Y] of G = (X,C) induced by Y is the graph (Y,CY)
where CY = {{x, y} ∈ C|x, y ∈ Y }.

Towards a Dynamic Decomposition of CSPs 303

associated to one of the connected components has at most size S, the separator
will be taken into account and included in the obtained tree-decomposition. In
fact, when the separator is detected the corresponding connected component is
added to the queue in order to be managed later. Hence, the computation of
the current cluster continues only on the remaining part of Xi after the removal
of the connected component having a suitable separator. Consider the exam-
ple given in Fig. 1(a). We first show the computation of E1, the second cluster
(after E0) during the first pass through the loop and we set S to 2. We consider
then the set V1 = {x, y, z}. The vertices of the first level are then a, b and c.
There is no subset of {a, b, c} of size at most 2 that induces a separator of the
graph. The next level that is visited contains the vertices d, e, f and g, At this
level, we obtain two minimal separators, {d, e, f} and {f, g}. If H4 is used, the
search would continue. However with H5, the search is modified because of the
detection and the exploitation of the separator {f, g}. Since {f, g} is of size 2,
the induced connected component containing the vertices i, j and m is removed
and added to the queue F (line 8). Hence, the search continues only in the
remaining part of the connected component X1 which includes the vertices h,
k, l, and n. The next level only contains the vertex h which is then a separa-
tor of size 1. Therefore, the search stops and a new cluster E1 is created with:
E1 = {x, y, z, a, b, c, d, e, f, g, h} and X ′′

1 = {a, b, c, d, e, f, g, h}. We obtain then
a new connected component X11 = {k, l, n} that is added to F . Note that the
instantiation of H-TD-WT by H5 is integrated in line 8. The conditions required
by the approach are thus respected. In particular, a new subset X ′′

i ⊆ Xi is cre-
ated where there exists at least one vertex v ∈ Vi with N(v,Xi) ⊆ X ′′

i . With
this in mind and the proof given in [5], the validity of H5 is ensured.

Ei

Ej

En
Ek

Eℓ Em

Ei

Ej

En

Eℓ
Em

)c()b()a(

Fig. 1. View of H5 (a), a set of clusters of the decomposition before merging Ek with
Ej (b) and after (c).

Theorem 1. H5 computes the clusters of a tree-decomposition.

Also, the analysis of its complexity is similar to the one given in [5].

Theorem 2. The time complexity of the algorithm H5 is O(n(n+ e)).

304 P. Jégou et al.

4 The Dynamic Decomposition

4.1 Context

The thesis that we defend in this paper is that changing the decomposition
dynamically during the solving allows to adapt the decomposition to the nature
of the instance to solve. The decomposition is modified according to the knowl-
edge acquired during the solving, especially the one related to the semantics of
the problem. The approach can be thus classified among the adaptive methods.
These methods make choices depending on the current state of the problem as
well as previous states. In practice, they have shown their benefit (like in [6,7,21])
w.r.t. conventional methods. For example, with conflict-driven variable ordering
heuristics, the most problematic variables are identified during the search thanks
to learned information from the part of the problem already explored. Hence,
this allows to consider the identified variables earlier in the search and so to
solve the problem efficiently. Nevertheless, in the case of solving methods based
on tree-decompositions like BTD, the variable ordering is partially induced by
the used decomposition. In other words, the next chosen variable should be
allowed by the tree-decomposition. For this reason, the structural methods suf-
fer from the restrictions imposed by the tree-decomposition with regard to the
variable ordering. In order to circumvent this problem, we propose to adapt the
tree-decomposition during the solving by merging dynamically some clusters.

4.2 The Algorithm BTD-MAC+RST+Merge

The algorithm BTD-MAC+RST+Merge (see Algorithm 3) is an adaptation of
the algorithm BTD-MAC+RST [10] in order to take into account the dynamic
merging. For both algorithms, the use of a tree-decomposition having a root
cluster Er induces a partial variable ordering. If Ej is the current cluster, the
freedom of variable ordering is limited to either choose among the unassigned
variables of the cluster Ej or to choose the next cluster among the children of
Ej when all its variables are assigned. Both algorithms compute first a tree-
decomposition before the beginning of the solving. The main difference between
them is that BTD-MAC+RST uses the initial decomposition during the solving
(the same set of clusters but the root can change) while BTD-MAC+RST+Merge
updates dynamically the tree-decomposition depending on the needs of the solv-
ing. Therefore, more different partial orderings can be exploited during the solv-
ing. The operation that permits to change the decomposition in this context
is the merging. It consists in putting together the variables of two different
clusters to create one cluster. Figure 1(c) shows the merging of two clusters
Ej and Ek of the decomposition of Fig. 1(b). Note that, the children of the
merged cluster become the children of the cluster resulting from the merging.
For instance, Eℓ and Em, the children of Ek in Fig. 1(b), become the children
of Ej in Fig. 1(c). Consider D the initial decomposition and D′ the obtained
decomposition after the merging. Any variable ordering allowed by D is also
allowed by D′. Nonetheless, by exploiting D′ we obtain more possible orderings

Towards a Dynamic Decomposition of CSPs 305

Algorithm 2. BTD-MAC+Merge (InOut: P = (X,D,C): CSP; In: Σ: sequence

of decisions, Ei: Cluster, VEi : set of variables; InOut: G: set of goods, N : set of

nogoods)

1 if VEi
= ∅ then

2 result ← true

3 S ← Sons(Ei)

4 while result /∈ {false, unknown} and S ̸= ∅ do

5 Choose a cluster Ej ∈ S

6 S ← S\{Ej}
7 if Pos(Σ)[Ei ∩ Ej] is a nogood in N then result ← false

8 else

9 if Pos(Σ)[Ei ∩ Ej] is not a good of Ei w.r.t. Ej in G then

10 result ←BTD(P ,Σ,Ej ,Ej\(Ei ∩ Ej),G,N)

11 if result = true then Record Pos(Σ)[Ei ∩ Ej] as good of Ei w.r.t. Ej in G

12 else

13 if result = false then Record Pos(Σ)[Ei ∩ Ej] as nogood of Ei w.r.t. Ej

in N

14 else

15 if merge then Merge Ej with one of its sons

16 if not restart then

17 S ← S ∪ {Ej}
18 result ← true

19 return result

20 else

21 Choose a variable x ∈ VEi
22 Choose a value v ∈ dx
23 dx ← dx\{v}
24 if AC (P ,Σ ∪ ⟨x = v⟩) then result ← BTD(P , Σ∪ ⟨x = v⟩, Ei, VEi

\{x}, G, N)

25 else result ← false

26 if result = false then

27 if restart then

28 Record nld-nogoods w.r.t. the decision sequence (Σ ∪ ⟨x ̸= v⟩)[Ei]

29 return unknown

30 else

31 if AC (P ,Σ ∪ ⟨x ̸= v⟩) then return BTD(P ,Σ ∪ ⟨x ̸= v⟩,Ei,VEi
,G,N)

32 else return false

33 else return result

than by using D. We then deduce that the merging preserves the orders initially
allowed but also permits more freedom. Deciding to merge or not two clusters is
only conditioned by the information learned during the solving. Also, the behav-
ior of BTD-MAC+RST+Merge ranges from BTD-MAC+RST with a variable
ordering partially imposed by the tree-decomposition (if no merging occurs) to
MAC (for Maintaining arc consistency [22]) with a totally free variable ordering
(if after several mergings, the decomposition contains only one cluster). So, the
advantage of this new algorithm is its ability to find the right compromise thanks
to learned information during the solving.

BTD-MAC+RST+Merge exploits the algorithm BTD-MAC+Merge (see
Algorithm 2). The difference between BTD-MAC+Merge and BTD-MAC+NG
[10] is located at lines 14–18. Initially, the sequence of decisions Σ as
well as the set of goods G and nogoods N are empty. BTD-MAC+Merge

306 P. Jégou et al.

Algorithm 3. BTD-MAC+RST+Merge (In: P = (X,D,C): CSP)

1 G ← ∅; N ← ∅
2 repeat

3 Choose a root cluster Er

4 result ← BTD-MAC+Merge (P ,∅,Er ,Er ,G,N)

5 until result ̸= unknown

6 return result

(like BTD-MAC+NG) begins the solving by assigning consistently the variables
of the root cluster Er before moving to one of its children. By exploiting the
new cluster Ei, only unassigned variables of Ei are assigned. In other words,
only the variables of Ei that do not belong to Ei ∩Ep(i) (where Ep(i) is the par-
ent cluster of Ei) are assigned. In order to solve each cluster, both algorithms
rely on MAC (lines 21–26 and 31–33). During the solving MAC can make two
kind of decisions: positive decisions xi = vi which assign the value vi to the vari-
able xi and negative decisions xi ̸= vi which ensure that xi cannot be assigned
with vi. Let us consider Σ = ⟨δ1, ..., δi⟩ as the current decision sequence where
each δj may be either a positive or a negative decision. A new positive decision
xi+1 = vi+1 is chosen and AC filtering is achieved (line 24). If no dead-end
occurs, the search goes on by choosing a new positive decision (line 24). Oth-
erwise, the value vi+1 is deleted from the domain dxi+1 , and an AC filtering is
realized (line 31). If a dead-end occurs again, we backtrack and change the last
positive decision xℓ = vℓ to xℓ ̸= vℓ. When the cluster Ei is chosen as the next
cluster, the next positive decision involves a variable of the current cluster Ei.
Since Ei ∩Ep(i) is a separator and all its variables are already assigned, only the
domains of future variables in Desc(Ei) are impacted by the AC filtering (where
Desc(Ei) is the set of variables belonging to the union of the descendants Ek of
Ei). When the variables of the cluster Ei are consistently assigned (line 1), each
subproblem rooted in each child cluster Ej of Ei is solved (line 10). More pre-
cisely, for a child Ej and a current decision sequence Σ, it attempts to solve the
subproblem rooted in Ej induced by Pos(Σ)[Ei ∩Ej] (where Pos(Σ)[Ei ∩Ej] is
the set of positive decisions involving the variables of Ei ∩ Ej in Σ). Once this
subproblem solved, if a solution has been found by consistently extending Σ on
Desc(Ej) then Pos(Σ)[Ei ∩Ej] is recorded as a structural good3 (line 11). Oth-
erwise if no solution exists, Pos(Σ)[Ei ∩ Ej] is recorded as a structural nogood
(line 13). These structural (no)goods are exploited later during the solving to
avoid redundancies (lines 7 and 9).

Regarding the restarts, they are managed like in [10]. If a restart occurs
(line 27), the search is suspended and some reduced nld-nogoods [23] are
recorded in order to avoid exploring again parts of the search tree already
explored. The efficiency of restarts relies on the acquired knowledge and the
exploitation of stored information via the structural (no)goods and the reduced

3 A structural good (resp. nogood) of Ei w.r.t. Ej (with Ej a child of Ei) is a con-
sistent assignment of Ei ∩ Ej which can (resp. cannot) be consistently extended on
Desc(Ej) [19].

Towards a Dynamic Decomposition of CSPs 307

nld-nogoods [23]. The restart condition may involve global parameters (related to
the whole problem) or local parameters (related to the current cluster) or both.
Lines 15–18 deal with the dynamic merging performed by BTD-MAC+Merge.
The dynamic merging, as explained above in Sect. 2, aims to relax the constraints
imposed by the decomposition on the variable ordering. Deciding to merge clus-
ters or not depends on the current state of the problem as well as on all or part
of its intermediate states. If no merging is required (merge returns false), the
search continues normally. On the contrary, if merging is judged relevant for the
solving (e.g. by making possible the early assignment of important variables),
merge returns true and BTD-MAC+Merge changes the current decomposition
by merging the current cluster Ej with one of its children (line 15). To do so, all
the assigned variables of Ej\(Ep(j) ∩ Ej) are unassigned and the reduced nld-
nogoods are recorded (line 28) as with conventional restarts. Once the search
backtracks to the parent cluster, the merging is performed. In this case (line 16),
either the backtracking through clusters continues if restart returns true or the
search is resumed by exploring a child of the parent cluster. Note that, it is
not mandatory to unassign the variables of the current cluster before merging.
However, this would permit to consider the newly added variables in the clus-
ter earlier in the search. BTD-MAC+Merge can be parameterized by a merging
heuristic (we propose one in Sect. 5).

4.3 Theoretical Foundations

We now show the validity of our approach. First, we prove that the merging
operation does not influence the validity of the structural (no)goods and the
reduced nld-nogoods.

Proposition 1. Let (E′, T ′) be the tree-decomposition of the graph G obtained
from the decomposition (E, T) of G after merging the cluster Ey with the cluster
Ex (where Ey is a child of Ex in (E, T)). The recorded structural (no)goods of
Ei w.r.t. Ej (Ej ̸= Ey) and the recorded reduced nld-nogoods for (E, T) remain
valid for (E′, T ′).

Proof: Consider ∆ a structural good of Ei w.r.t. its child Ej recorded for (E, T).
Knowing that Ej differs from Ey, the subproblem of P rooted in Ej in (E, T)
is identical to the subproblem of P rooted in Ej in (E′, T ′). Hence, if ∆ can be
consistently extended on the first subproblem then it can also be extended on
the second one. Consequently, ∆ is a structural good of Ei w.r.t. Ej recorded for
(E′, T ′). The reasoning is similar for a structural nogood. A reduced nld-nogood
∆ is a nogood4 whatever the considered tree-decomposition. We should only
verify then if a nld-nogood ∆ is valid for the decomposition (E′, T ′), that is to say
that there exists a cluster of E′ including all the variables of ∆. By construction,
4 Given a CSP P = (X,D,C) and a sequence of decisions Σ, ∆ is a nogood of P if
P|∆ has no solution where P|∆ is the CSP (X,D′, C) with D′ = (d′

x1 , . . . , d
′
xn) and

for each positive decision xi = vi, d
′
xi

= {vi} and for each negative decision xi ̸= vi,
d′
xi

= dxi\{vi}. If xi does not appear in ∆ then d′
xi

= dxi [23].

308 P. Jégou et al.

there exists necessarily a cluster Ek of (E, T) covering ∆. If Ek ̸= Ex and
Ek ̸= Ey then Ek ∈ E′. Otherwise, after merging, we have Ek ⊂ Ex and
Ex ∈ E′. Therefore, in both cases, the variables of ∆ are all covered by one
cluster of E′ and ∆ is valid for (E′, T ′). ⊓.

Then, we prove the validity of our algorithm.

Theorem 3. BTD-MAC+RST+Merge is sound, complete and terminates.

Proof: Consider first BTD-MAC+Merge which differs from BTD-MAC+NG
by exploiting the merging. Assume that we obtain (E′, T ′) from the decompo-
sition (E, T) by merging two clusters. Let Σf be the sequence of decisions for
which merge becomes true. Some reduced nld-nogoods are then recorded and
the search backtracks to the parent cluster Ei of the current cluster Ej . Thus,
we obtain the sequence Σ′

f that corresponds to the sequence of decisions Σf

restricted to the variables of the clusters present in the branch going from the
root cluster Er to Ei. BTD-MAC+Merge continues the search from Ei with Σ′

f
by exploiting the decomposition (E′, T ′). The cluster resulting from the merging
can be the next visited cluster or can be visited later. The search tree explored
by BTD-MAC+Merge between its first call with an empty sequence of decisions
and the sequence of decisions Σf is the same as the one developed by BTD-
MAC+NG under the same circumstances on the decomposition (E, T). Also,
after the merging, the search tree developed by BTD-MAC+Merge between
the sequence of decisions Σ′

f and its termination is identical to the one devel-
oped by BTD-MAC+NG under the same circumstances on the decomposition
(E′, T ′). We know that BTD-MAC+NG is complete (if no restart occurs), cor-
rect and terminates [10]. Also, according to the Proposition 1, the structural
(no)goods and the reduced nld-nogoods recorded for (E, T) remain valid for the
new decomposition (E′, T ′). So, the correction, the termination and the com-
pleteness of the algorithm are not endangered. Furthermore, recording reduced
nld-nogoods at each restart prevents from exploring a part of the search space
already explored. Hence, BTD-MAC+Merge is complete (if no restart occurs),
correct and terminates. In addition, when many merging operations are per-
formed, the same reasoning can be applied for every merging by splitting the
search tree. Note that, restarts stop the search without changing the fact that
if a solution exists in the search space visited by BTD-MAC+Merge, BTD-
MAC+Merge would find it. As BTD-MAC+RST+Merge only performs sev-
eral calls to BTD-MAC+Merge, it is sound. Regarding the completeness, if
the call to BTD-MAC+Merge is not stopped by a restart (what is necessar-
ily the case of the last call to BTD-MAC+Merge if BTD-MAC+RST+Merge
terminates), the completeness of BTD-MAC+Merge implies the one of BTD-
MAC+RST+Merge. Furthermore, recording reduced nld-nogoods at each restart
prevents from exploring a part of the search space already explored by a pre-
vious call to BTD-MAC+Merge. It ensues that, over successive calls to BTD-
MAC+Merge, one has to explore a more and more reduced part of the search
space. Hence, the termination and completeness of BTD-MAC+RST+Merge
are ensured by the unlimited nogood recording achieved by the different calls

Towards a Dynamic Decomposition of CSPs 309

to BTD-MAC+Merge and by the termination and the completeness of BTD-
MAC+Merge. ⊓.

Finally, we give its time and space complexities.

Theorem 4. BTD-MAC+RST+Merge has a time complexity in O(R.((n.s2.
e. log(d) + w′+.N).dw

′++2 + n.(w′+)2.d)) and a space complexity in O(n.s.ds +
w′+.(d +N)) with w′+ the width of the final obtained decomposition, s the size
of the largest intersection Ei ∩ Ej of the initial decomposition, R the number of
restarts and N the number of recorded reduced nld-nogoods.

Proof: BTD-MAC+RST has a time complexity in O(((n.s2.e. log(d) +
w+.N).dw

++2 +n.(w+)2.d).R) and a space complexity in O(n.s.ds+w+.(d+N))
[10]. Regarding BTD-MAC+RST+Merge, applying the merging operations
implies that the size of the clusters may increase. Hence, the theoretical complex-
ities are expressed in terms of w′+ instead of w+. The merging operations do not
create new clusters but, on the contrary, some are removed. Thus, the maximum
size of separators in the initial decomposition represents an upper bound on the
size of separators. Therefore, the time and space complexities of the elements
related to the size of separators are not modified. Regarding the reduced nld-
nogoods recorded after a merging operation, even though they induce additional
time and space costs, these costs are already taken into account by the costs
of recorded reduced nld-nogoods of restarts. Thereby, the time complexity is in
O(R.((n.s2.e. log(d)+w′+.N).dw

′++2+n.(w′+)2.d)) and the space complexity is
in O(n.s.ds + w′+.(d+N)). ⊓.

Note that, we can limit the increase of the width of the obtained tree-
decomposition regarding the width of the initial decomposition by using a suit-
able merging heuristic.

5 Experiments

In this section, we first present our experimental protocol before assessing H5

w.r.t. the solving and comparing the dynamic decomposition with the static one
and MAC+RST.

5.1 Experimental Protocol

Regarding the exploited tree-decompositions, we consider Min-Fill (as the state
of the art heuristic known for its good tree-width approximation), H2 (which
guarantees the connectivity of the clusters), H3 (whose clusters have many chil-
dren) and H5 (which controls the size of the separators of the decomposition).
We discard H4 since it computes less elaborate decompositions than H5. For H2,
the clusters are computed by choosing the vertices of the considered connected
component by decreasing degree order until the cluster becomes connected (i.e.
the heuristic NV 2 of [18]). For H5, the decomposition is exploited with different
bounds on the size of separators.

310 P. Jégou et al.

The dynamic decomposition exploits a merging heuristic. This latter relies
on the advices of the variable ordering heuristic to assess the need of clusters
merging. More precisely, given a current cluster Ej , each time we choose the
next variable to assign in Ej , we test whether the variable ordering heuristic
would choose another variable if it has the opportunity to choose among the
unassigned variables of (

⋃
Ek∈Children(Ej)

Ek) ∪Ej . If a variable of a child Ek of
Ej is preferred to a variable of Ej , a counter related to Ek is incremented. When
the counter related to Ek reaches the limit L (namely 100 in these experiments),
the cluster Ek is merged with its parent Ej .

Regarding the solving, we consider BTD-MAC and BTD-MAC+RST
as reference structural methods based on a static decomposition, BTD-
MAC+RST+Merge and BTD-MAC+Merge (i.e. BTD-MAC+RST+Merge
without restarts) for the methods exploiting dynamic decompositions, and
MAC+RST as the reference conventional enumerative method. We choose as
root cluster the cluster having the maximum ratio number of constraints to its
size minus one. The arc-consistency is enforced by AC3rm for the preprocessing
and AC8rm for the solving [24]. We use the heuristic dom/wdeg [6] to choose
the next variable to assign and the geometric restart policy based on the number
of performed backtracks with a ratio of 1.1 and an initial number of backtracks
of 100.

All the algorithms are implemented in C++ in our own library. The experi-
ments were performed on blade servers running Linux Ubuntu 14.04 each with
two Intel Xeon processors E5-2609 v2 2.5GHz and 32GB of memory. We con-
sider 1,859 CSP instances (the same as [5,10]) from the CSP 2008 competition5.
Regarding the instances selection, we have excluded the instances having a triv-
ial tree-decomposition (e.g. instances having a complete constraint graph) and
the instances having global constraints (because global constraints are not taken
into account yet by our CSP library). The solving is performed with a timeout
of 15min (including the computation of the decomposition).

5.2 H5 vs Other Decompositions

Table 1 provides the number of solved instances and the cumulative runtime of
each mentioned algorithm with each considered tree-decomposition. First, we
compare the decomposition heuristics w.r.t. the solving efficiency of BTD-MAC.
Regarding the number of solved instances, BTD-MAC with H5 (with S = 50)
solves the largest number of instances (namely 1,469) while with Min-Fill, it
solves the least number of instances (namely 1,344). Clearly, decompositions
aiming to minimize the width are not necessarily the most efficient w.r.t. the
solving. Other parameters have more impact on the solving such as the connec-
tivity of the clusters (with H2), the number of children of a cluster (with H3) as
well as the maximum size of separators (with H5). Note that these results are
consistent with ones of [5,18]. Besides, of course, with H5, the efficiency of the
solving depends on the chosen value for S. For instance, BTD-MAC solves more

5 See http://www.cril.univ-artois.fr/CPAI08.

http://www.cril.univ-artois.fr/CPAI08

Towards a Dynamic Decomposition of CSPs 311

Table 1. Number of solved instances and runtime for BTD-MAC, BTD-MAC+RST,
BTD-MAC+Merge and BTD-MAC+RST+Merge depending on the exploited decom-
positions.

Algorithm Min-Fill H2 H3 H5 (S = 50)

#solved time #solved time #solved time #solved time

BTD-MAC 1,344 43,272 1,405 31,429 1,466 31,469 1,469 33,564

BTD-MAC+RST 1,495 43,557 1,518 35,042 1,529 30,187 1,543 33,049

BTD-MAC+Merge 1,481 42,505 1,518 37,440 1,523 35,101 1,534 34,048

BTD-MAC+RST+Merge 1,544 41,622 1,547 32,547 1,554 33,736 1,567 34,432

Table 2. Runtime for BTD-MAC, BTD-MAC+RST, BTD-MAC+Merge and BTD-
MAC+RST+Merge depending on the exploited decompositions for the 1,234 instances
solved by all the algorithms.

Algorithm Min-Fill H2 H3 H5 (S = 50)

BTD-MAC 34,669 18,018 18,951 18,243

BTD-MAC+RST 24,026 17,233 17,758 16,288

BTD-MAC+Merge 25,238 17,575 18,753 17,837

BTD-MAC+RST+Merge 23,832 16,803 17,602 15,718

instances with S = 15 (namely 1,514). Choosing S = 50 is more interesting for
exploiting dynamic decompositions.

Regarding the runtime, for a fair comparison, we consider, in Table 2, the
1,234 instances solved by all the algorithms. Again, BTD-MAC obtains the best
results with H5 (and H2) and the worst ones with Min-Fill. We must point out
that computing tree-decompositions thanks to Hi (i = 2, 3, 5) is significantly
faster than with Min-Fill. For instance, H5 (with S = 50) only requires 7 s
to compute the tree-decompositions for all the 1,234 instances while Min-Fill
needs 7,582 s.

Note that the benefits of H5 observed here for BTD-MAC are valid whatever
the variant of BTD we use as shown in Tables 1, 2, 3 and 4.

5.3 Dynamic Decompositions vs Static Decompositions

First, if we compare BTD-MAC to BTD-MAC+Merge (resp. BTD-MAC+RST
to BTD-MAC+RST+Merge) in Tables 1 and 2, whatever the used decomposi-
tion, we can observe that the methods exploiting dynamic decompositions solve
more instances than their corresponding variants exploiting a static decompo-
sition while their runtime is either similar or better. This clearly highlights the
benefits of dynamically merging clusters during the solving.

Nevertheless, the concept of merging may also be performed statically, as
advocated in [17], after having computed first a tree-decomposition thanks to
any algorithm (e.g. Min-Fill, H2, H3 and even H5). Tables 3 and 4 provide

312 P. Jégou et al.

Table 3. Number of solved instances and runtime for BTD-MAC and BTD-MAC+RST
depending on the exploited decompositions with a static merging limiting the size of
separators to 15.

Algorithm Min-Fill H2 H3 H5 (S = 50)

#solved time #solved time #solved time #solved time

BTD-MAC 1,450 45,988 1,493 35,871 1,504 31,612 1,511 32,097

BTD-MAC+RST 1,537 41,722 1,549 33,328 1,553 33,164 1,564 33,145

Table 4. Runtime for BTD-MAC and BTD-MAC+RST depending on the exploited
decompositions for the 1,234 instances solved by all the algorithms.

Algorithm Min-Fill H2 H3 H5 (S = 50)

BTD-MAC 32,641 17,914 17,813 16,503

BTD-MAC+RST 24,456 17,514 17,050 16,235

the corresponding results for BTD-MAC(+RST). Here, we limit the size of the
separators by merging with its parent any cluster whose separator with its parent
exceeds a given value (namely 15 in Tables 3 and 4). We can note that, regarding
the number of solved instances, BTD-MAC+Merge is significantly better than
BTD-MAC while BTD-MAC+RST+Merge is comparable or slightly better than
BTD-MAC+RST. Again, the exploitation of dynamic decomposition leads to
obtain one of the best results. Beyond, by dynamically merging some clusters
during the solving, we adapt the decomposition depending on some semantic
knowledge about the instance whereas the static merging relies only on structural
criteria and requires to choose a limit for the separator size, what may be a
difficult task.

Finally, we can remark that BTD-MAC+RST and BTD-MAC+Merge are
relatively close w.r.t. the number of solved instances or the runtime. This can be
explained by the choice of a new root cluster when BTD-MAC+RST restarts,
what can be seen as a light form of dynamicity for the decomposition. Moreover,
the exploitation of both restarts and dynamic decompositions is really relevant
since BTD-MAC+RST+Merge outperforms both BTD-MAC+RST and BTD-
MAC+Merge. At the end, we can note that BTD-MAC+RST+Merge with H5

obtain the best results whatever the decomposition or the solving algorithm we
use.

5.4 BTD-MAC+RST+Merge Versus MAC+RST

We now compare BTD-MAC+RST+Merge versus MAC+RST w.r.t. the solving
efficiency. For this, we consider here S = 50. Figure 2(a) presents the cumula-
tive number of solved instances for MAC-BTD+RST+Merge, MAC+RST and
VBS (i.e. the Virtual Best Solver among the two algorithms). First, BTD-
MAC+RST+Merge solves more instances than MAC+RST (1,567 instances

Towards a Dynamic Decomposition of CSPs 313

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000 1100 1200 1300 1400 1500 1600

tim
e

(s
)

solved instances

MAC+RST
BTD-MAC+RST+Merge

VBS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

M
A

C
+R

ST

MAC-BTD+RST+Merge

)b()a(

Fig. 2. (a) The cumulative number of solved instances for MAC-BTD+RST+Merge
with H5 (S = 50), MAC+RST and VBS, (b) runtime comparison for MAC-
BTD+RST+Merge and MAC+RST for the 577 difficult instances.

against 1,548). Then, we can note that the behavior of BTD-MAC+RST+Merge
is closer to one of VBS than one of MAC+RST, what clearly shows that BTD-
MAC+RST+Merge performs better than MAC+RST.

Now we focus our observations on the hardest instances. Among the 1,859
considered instances, some of them are easily solved by MAC+RST (e.g. 284
instances are solved in backtrack-free manner). Exploiting structural methods
like BTD or its variants for solving such instances is not necessarily relevant. So,
we exploit here the number of nodes developed by MAC+RST as a hardness cri-
terion. An instance is considered as difficult if the number of nodes developed by
MAC+RST is greater than 100n (with n the number of variables). By so doing,
we have 577 instances considered as difficult. Figure 2(b) provides a runtime
comparison for MAC-BTD+RST+Merge and MAC+RST for these instances.
Globally, we can observe that MAC-BTD+RST+Merge and MAC+RST have
a similar behavior on a large part of these instances. Indeed, for about 60% of
the instances, the runtime gap between the two methods is less than 10%. How-
ever, for the remaining instances, MAC-BTD+RST+Merge often outperforms
MAC+RST. For 16% of them, MAC-BTD+RST+Merge is at least 10 times
faster than MAC+RST while MAC+RST performs 10 times faster for only 1%.
Finally, the exploitation of the structure plays here a central role. Indeed, we
can note that 86% of the instances unsolved by MAC+RST but solved by BTD-
MAC+RST+Merge are structured instances having a ratio n/(w + 1) greater
than 5.

6 Conclusion

In this paper, we proposed two complementary contributions. On the one hand,
we presented a new algorithm for computing tree-decompositions (namely H5)
allowing us to bound the size of separators, which is a crucial parameter for the
practical efficiency of structural solving methods like BTD. Its time complexity
is better than the one of Min-Fill and it runs about 1,000 times faster than

314 P. Jégou et al.

Min-Fill on a large set of instances. On the other hand, we described a non
straightforward extension of BTD, namely BTD-MAC+RST+Merge, which has
the ability of adapting the tree-decomposition by dynamically merging some
clusters depending on the semantics of the instance and the knowledge acquired
during the solving. By so doing, our method exploits more flexible variable order-
ings and may correct some drawbacks of the initial tree-decomposition whose
computation relies only on structural parameters. In practice, we showed that
BTD-MAC+RST+Merge outperforms BTD-MAC+RST whatever the exploited
decompositions. Moreover, its use jointly withH5 leads to obtain the best results.

For future investigations, first, other merging heuristics are possible by
exploiting different information related to the semantics learned during the solv-
ing. Then, the fact that H-TD-WT is much more faster than Min-Fill allows
to compute more elaborate decompositions during the solving and on restarts.
Beyond, more difficult problems can be tackled (e.g. optimization, counting or
compilation).

References

1. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local
consistency in weighted CSP. In Proceedings of AAAI, pp. 22–27 (2006)

2. Rose, D.J.: A graph theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In: Graph Theory and Computing, pp. 183–
217. Academic Press (1972)

3. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco
(2003)

4. Allouche, D., de Givry, S., Schiex, T.: Towards parallel non serial dynamic pro-
gramming for solving hard weighted CSP. In: Cohen, D. (ed.) CP 2010. LNCS, vol.
6308, pp. 53–60. Springer, Heidelberg (2010)

5. Jégou, P., Kanso, H., Terrioux, C.: An algorithmic framework for decomposing
constraint networks. In: Proceedings of ICTAI, pp. 1–8 (2015)

6. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI, pp. 146–150 (2004)

7. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

9. Jégou, P., Ndiaye, S.N., Terrioux, C.: Dynamic management of heuristics for solving
structured CSPs. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 364–378.
Springer, Heidelberg (2007)

10. Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solv-
ing CSPs. In: Proceedings of ECAI, pp. 465–470 (2014)

11. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
New York (2006)

12. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124, 243–282 (2000)

13. Robertson, N., Seymour, P.D.: Graph minors II: algorithmic aspects of treewidth.
Algorithms 7, 309–322 (1986)

14. Berge, C.: Graphs and Hypergraphs. Elsevier, New York (1973)

Towards a Dynamic Decomposition of CSPs 315

15. Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency.
Constraints 4, 79–89 (1999)

16. Arnborg, S., Corneil, D., Proskuroswki, A.: Complexity of finding embeddings in
a k-tree. SIAM J. Disc. Math. 8, 277–284 (1987)

17. Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-
decompositions for solving constraint networks. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 777–781. Springer, Heidelberg (2005)

18. Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for solv-
ing constraint networks. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp.
407–423. Springer, Heidelberg (2014)

19. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artif. Intell. 146, 43–75 (2003)

20. Li, W., van Beek, P.: Guiding Real-World SAT solving with dynamic hypergraph
separator decomposition. In: Proceedings of ICTAI, pp. 542–548 (2004)

21. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012)

22. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfac-
tion. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 125–129. Springer,
Heidelberg (1994)

23. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods
from restarts. JSAT 1(3–4), 147–167 (2007)

24. Lecoutre, C., Likitvivatanavong, C., Shannon, S., Yap, R., Zhang, Y.: Maintaining
arc consistency with multiple residues. Constraint Program. Lett. 2, 3–19 (2008)

Constraint Programming for Strictly Convex
Integer Quadratically-Constrained Problems

Wen-Yang Ku(B) and J. Christopher Beck

Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, ON M5S 3G8, Canada
{wku,jcb}@mie.utoronto.ca

Abstract. Inspired by the geometric reasoning exploited in discrete
ellipsoid-based search (DEBS) from the communications literature, we
develop a constraint programming (CP) approach to solve problems with
strictly convex quadratic constraints. Such constraints appear in numer-
ous applications such as modelling the ground-to-satellite distance in
global positioning systems and evaluating the efficiency of a schedule
with respect to quadratic objective functions. We strengthen the key
aspects of the DEBS approach and implement them as combination of a
global constraint and variable/value ordering heuristics in IBM ILOG CP
Optimizer. Experiments on a variety of benchmark instances show sig-
nificant improvement compared to the default settings and state-of-the-
art performance compared to competing technologies of mixed integer
programming, semi-definite programming, and mixed integer nonlinear
programming.

1 Introduction

The strictly convex integer quadratically-constrained problem (IQCP) is an opti-
mization problem where the objective and/or some constraints are strictly con-
vex quadratic functions. The IQCP is known to be NP-hard [1] and arises in
a number of applications including global positioning systems, communications,
cryptography, bioinformatics, scheduling and finance [2–5]. Given its theoretical
challenge and practical value, it is of great interest to develop efficient algorithms
to solve IQCPs. Despite the long history of CP, the techniques to solve quadrati-
cally constrained problems have not receive much attention. There are only a few
dedicated global constraints that reason about quadratic terms. For example, the
Spread constraint [6] enforces the standard quadratic relationship amongst a
set of variables, their mean, and their standard deviation. General quadratic con-
straints [7,8] can be applied to both convex and nonconvex quadratic functions.
However, they do not exploit the strictly convex nature of the IQCP.

It has been shown in Ku and Beck [9] that strictly convex IQCPs can be
formulated as integer least squares (ILS) problems and solved with discrete
ellipsoid-based search (DEBS), a specialized search used in the communications
literature (e.g., see [4]). From a CP perspective, DEBS can be understood as
a form of CP search. First, the search strategy uses a static variable ordering
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 316–332, 2016.
DOI: 10.1007/978-3-319-44953-1 21

CP for Strictly Convex IQCPs 317

heuristic and a dynamic value ordering heuristic based on the structure of the
ellipsoid. Second, the geometry of the ellipsoid induces an interval domain for
each variable. As a result, DEBS is essentially the enumeration of these domains
under the prescribed variable and value orderings with some bounds pruning
based on the radius of the hyper-ellipsoid. DEBS was originally formulated to
solve only three types of ILS problems: unconstrained, box-constrained, and
ellipsoid-constrained [3,9–11]. A recent work has extended DEBS for ILS prob-
lems with general linear constraints [12].

In this work, we aim at developing techniques that are both powerful and
cover a broad range of problems. We introduce two novel techniques, inspired
by DEBS, for solving strictly convex IQCPs with constraint programming.
First, we propose the ellipsoid constraint, a global constraint that filters vari-
able domains with respect to strictly convex quadratic functions. We derive a
direct quadratically-constrained programming (QCP) formulation that achieves
bounds consistency (BC), and two light-weight filtering algorithms that do not
guarantee BC. Though it is natural to consider integer domains in CP, our
filtering algorithm can be applied to variables with real domains, broadening
its application to, for example, mixed integer programming solvers. Second, we
propose a pair of variable/value selection rules. We implement the filtering algo-
rithms and the branching heuristics in IBM ILOG CP Optimizer. We experiment
with five problem classes and show orders of magnitude improvement compared
to the default CP Optimizer. We then compare our new CP approach with the
best known algorithms on the same problem sets. Our results demonstrate that
the new CP approach is competitive to the best known approaches, and, for
some problem classes, establishes a new state of the art.

The rest of the paper is organized as follows. We give the necessary back-
ground in Sect. 2. In Sect. 3 we define of our new global constraint. Sections 4
and 5 present the filtering algorithms and the branching heuristics. Section 6
provides computational results and discussions. We conclude in Sect. 7.

2 Background

2.1 The Strictly Convex Integer Quadratically-Constrained
Problem (IQCP)

The general IQCP problem has the following form:

min
x∈C

1
2
xTHx+ fTx,

C = {x ∈ Zn :
1
2
xTM kx + cTk x ≤ bk, ∀k = 1, . . . ,m, l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}.

The IQCP is strictly convex if the quadratic matrices H, Mk,∀k are sym-
metric positive definite [13]. As the above form suggests, quadratic formulations
can exist in the form of an objective function and/or as constraints.

318 W.-Y. Ku and J.C. Beck

In Operations Research, the common generic approaches to solving IQCPs
exactly are the use of mixed integer nonlinear programming (MINLP) such as
BARON [14,15] and ANTIGONE [16], and the application of MIP solvers such
as CPLEX and Gurobi which have been extended to reason about quadratic
constraints [17]. Another generic approach is semi-definite programming (SDP)
based branch-and-bound [18]. The available SDP solvers, e.g., BiqCrunch [19],
only solve problems with binary variables as opposed to general integer variables.

2.2 Discrete Ellipsoid-Based Search (DEBS)

The DEBS method consists of two phases: reduction and search. The reduction
is a preprocessing step that transforms A to an upper triangular matrix R using
the “QRZ” factorization [3]:

min
x∈Zn

∥y − Ax∥22 → min
z∈Zn

∥ȳ − Rz∥22 , (1)

where ȳ = QTy, z = Z−1x, Q is orthogonal, Z is unimodular. The diago-
nal entries of R are approximately1 ordered in non-decreasing order: |rii| ≤
|ri+1,i+1|. This ordering has been shown to increase the efficiency of the DEBS
search by reducing the branching factor at the top of the search tree [10]. As
we argue in Sect. 5 below, this ordering is approximately equivalent to a static
smallest domain first variable ordering.

Suppose the optimal solution z∗ satisfies ∥ȳ − Rz∗∥22 < β, or equivalently∑n
k=1(ȳk −

∑n
j=k rkjzj)

2 < β, where β is a constant that can be obtained by
substituting any feasible integer solution to Eq. (1). This expression defines a
hyper-ellipsoid with center R−1ȳ. The search, then, systematically enumerates
all the integer points in the bounded hyper-ellipsoid [21]. When an incumbent,
i.e., new upper bound on β, is found, the hyper-ellipsoid is contracted resulting
in reduction of the bounds of the decision variables.

In more detail, let zn
i = [zi, zi+1, . . . , zn]T be the vector of decision variables

and define the so-far-unknown (apart from cn) and usually non-integer variables:

cn = ȳn/rnn, ck : ck(zk+1, . . . , zn) = (ȳk −
n∑

j=k+1

rkjzj)/rkk, k = n−1, . . . , 1.

Note that ck is a function of zk+1 to zn, and it is fixed when zk+1 to zn are
fixed. The above equation can be rewritten as

∑n
k=1 r

2
kk(zk − ck)2 < β, which

defines the possible values that zk can take on. This inequality is equivalent to
the following n inequalities:

level n : (zn − cn)2 <
1
r2nn

β,

level n − 1 : (zn−1 − cn−1)2 <
1

r2n−1,n−1

[β − r2nn(zn − cn)2],

1 Depending on the data, it is sometimes not possible to transform a matrix to exactly
achieve this ordering [20].

CP for Strictly Convex IQCPs 319

...

level k : (zk − ck)2 <
1
r2kk

[β −
n∑

i=k+1

r2ii(zi − ci)2],

...

level 1 : (z1 − c1)2 <
1
r211

[β −
n∑

i=2

r2ii(zi − ci)2].

The search starts at level n, heuristically assigning zn = ⌊cn⌉, the nearest
integer to cn. Given the value of zn, cn−1 can be calculated from the above
equation as cn−1 = (ȳn−1 − rn−1,nzn)/rn−1,n−1. From this value, we can set
zn−1 = ⌊cn−1⌉ and search continues. During the search process, zk is deter-
mined at level k, where zn, zn−1, . . . , zk+1 have already been determined, but
zk−1, zk−2, . . . , z1 are still unassigned. At some level k − 1 in the search, it is
likely that the inequality cannot be satisfied, requiring the search to backtrack
to a previous decision. When we backtrack from level k− 1 to level k, we choose
zk to be the next nearest integer to ck.

After the optimal solution z∗ to the reduced problem (right hand side of
Eq. (1)) is found, the optimal solution, x∗, to the original problem (left hand
side of Eq. (1)) can be recovered with the relationship x∗ = Zz∗.

3 The Ellipsoid Constraint

We propose the ellipsoid constraint to reason about convex quadratic func-
tions. It consists of a set of n variables {x1, . . . , xn}, an n × n matrix A with
full column rank, an n-dimensional vector y, and a constant β. The definition is
given as follows:

ellipsoid({x1, . . . , xn},A,y,β),

where A ∈ Rn×n, y ∈ Rn, β ∈ R. The constraint ensures the following condition:

∥y − Ax∥22 ≤ β. (2)

Geometrically, the above expression defines a hyper-ellipsoid with center A−1y.
Equivalently, (2) can be written in its standard convex quadratic constraint form
as

1
2
xTHx+ fTx ≤ β̄, (3)

where H ∈ Rn×n is a symmetric positive definite matrix, f ∈ Rn is a vector,
and β̄ = (β − yTy)/2. The transformation is obtained with the relationships
H = ATA and f = −yTA.

The ellipsoid constraint can be applied to any formulation with a strictly
convex quadratic function. For example, consider the following objective func-
tion: min 1

2x
THx+fTx+ 1

2y
TH1y+fT

1 y, where only H is symmetric positive
definite. We can still apply the ellipsoid constraint to the first half of the objec-
tive function: 1

2x
THx+ fTx, even if the second part is not strictly convex.

320 W.-Y. Ku and J.C. Beck

4 Filtering Algorithms for the Ellipsoid Constraint

In this section, we present a number of filtering algorithms that achieve or
approximate bounds consistency of the ellipsoid constraint.

Let xj be a finite-domain variable, Dom(xj) be the domain of xj , which is
a set of ordered values that can be assigned to xj , and ID(xj) = [lj , uj] be the
interval domain of xj .

Definition 1. A ellipsoid constraint is bounds consistent [22] with respect to
domains Dom(xj) if for all j ∈ 1, . . . , n and each value vj ∈ {lj , uj}, there
exists values vi ∈ ID(xi) for all i ∈ {1, . . . , n} \ {j} such that ellipsoid({x1 =
v1, . . . , xn = vn},A,y,β) holds.

In the 2D example shown in Fig. 1, the ellipsoid constraint (on the two vari-
ables) is bounds consistent.

Fig. 1. A 2D example that shows the tangent box of the ellipsoid and bounds consis-
tency of the ellipsoid constraint.

4.1 A Direct Quadratically-Constrained Programming (QCP)
Formulation

Achieving bounds consistency for a variable xj is equivalent to finding the lower
bound lBC

j and upper bound uBC
j for xj , given the ellipsoid constraint and

the current bounds of the variables. Assume that no further reduction can be
inferred on the domains of xi,∀i ̸= j, the mathematical model for achieving
bounds consistency for xj can be defined as follows:

lBC
j = min

x∈Rn
eTj x subject to ∥y − Ax∥2 ≤

√
β, l ≤ x ≤ u, (4)

uBC
j = max

x∈Rn
eTj x subject to ∥y − Ax∥2 ≤

√
β, l ≤ x ≤ u. (5)

Note that ej ∈ Rn is the unit vector in the j-th direction, i.e., the j-th column
of an identity matrix with size n. The problems (4) and (5) are quadratically-
constrained programming (QCP) optimization problems, which can be solved

CP for Strictly Convex IQCPs 321

with QCP solvers such as CPLEX. However, it is computationally expensive,
since at least 2n QCPs have to be solved in each iteration.

This approach is essentially a QCP version of optimization-based bound
tightening (OBBT) as used in the MINLP literature [23]. While typically per-
formed with linear constraints, OBBT is often only done at the root node of the
search tree as it is too expensive to perform at every node. Convex QCPs can be
solved in polynomial time using iterative approaches such as the interior point
method [24].

4.2 Axis-Aligned Tangent Box Filtering (BOX)

The simplest way to tighten the domains of the variables is to compute the
tangent box of the hyper-ellipsoid defined in Eq. (2), where the edges of the box
are parallel to the axes of the coordinate system. As a 2D example, the dotted
box in Fig. 1 shows the tangent box. The lower bound lb and the upper bound ub

that define the tangent box can be computed by solving the following problems:

lbj = min
x∈Rn

eTj x subject to ∥y − Ax∥2 ≤
√

β, (6)

ub
j = max

x∈Rn
eTj x subject to ∥y − Ax∥2 ≤

√
β. (7)

Chang & Golub [3] proposed an efficient way to solve the above problems. We
first solve the problem in (7) for ub

j , and the lower bound lbj can be obtained by
using the symmetric property of an ellipsoid. Let p = Ax − y, the problem (7)
becomes

ub
j = max

p
eTj A

−1(p+ y)

= max
p

eTj A
−1p+ eTj A

−1y subject to ∥p∥2 ≤
√

β. (8)

By the Cauchy-Schwarz inequality, we have

eTj A
−1p ≤

∥∥∥A−Tej
∥∥∥
2
∥p∥2 ≤

∥∥∥A−Tej
∥∥∥

√
β.

The first inequality becomes an equality if and only if p = cA−Tej
for some non-negative scalar c. The second inequality becomes equality if
and only if ∥p∥2 =

√
β. Therefore, p is the minimizer for (8) when p =

√
βA−Tej/

∥∥∥A−Tej
∥∥∥
2
. Substituting p into (8), we have

ub
j =

√
β

∥∥∥A−Tej
∥∥∥
2
+ eTj A

−1y. (9)

From the symmetry property of an ellipsoid, we have

lbj = −
√

β
∥∥∥A−Tej

∥∥∥
2
+ eTj A

−1y. (10)

322 W.-Y. Ku and J.C. Beck

Computing the Reduced Intersecting Ellipsoid EF . When a variable is
fixed during the search, e.g., xi = vi, the dimension of the ellipsoid is reduced
by one. Geometrically, we need to find the one-dimension-smaller ellipsoid that
intersects at xi = vi and ∥y − Ax∥22 ≤ β. We propose a general way to compute
the reduced intersecting ellipsoid with any number of variables fixed.

Let F be the set of the variables that are fixed and let Ã = [Aj] ,∀j ̸= F ,

ȳ = y −
∑

i∈F Aivi and the QR factorization of Ã as: Ã =
[
Q̃1 Q̃2

] [
R̃
0

]
, the

reduced intersecting ellipsoid EF can be computed as follows:

EF =
∥∥∥ỹ − R̃x̃

∥∥∥
2

2
≤ β̃, (11)

where x̃ is the vector of the unknown variables of the reduced ellipsoid, ỹ = Q̃
T
1 ȳ

and β̃ = β − ∥ȳ∥22 + ∥ỹ∥22. The derivations on R̃ and ỹ are straightforward so
we only explain β̃ as follows. We know that

∥y − Ax∥22 =
∥∥∥ȳ − Ãx̃

∥∥∥
2

2
=

∥∥∥∥∥

[
Q̃

T
1

Q̃
T
2

]
ȳ −

[
R̃
0

]
x̃

∥∥∥∥∥

2

2

.

It follows that

∥y − Ax∥22 −
∥∥∥Q̃

T
1 ȳ − R̃x̃

∥∥∥
2

2
=

∥∥∥Q̃
T
2 ȳ

∥∥∥
2

2
= ∥ȳ∥22 −

∥∥∥Q̃
T
1 ȳ

∥∥∥
2

2
.

We assume that β and β̃ constraints are satisfied at equality as this corre-
sponds to the largest ellipsoids defined by our inequalities and therefore ensures

that no valid values are pruned. Since β = ∥y − Ax∥22 and β̃ =
∥∥∥Q̃

T
1 ȳ − R̃x̃

∥∥∥
2

2
,

we have β̃ = β − ∥ȳ∥22 + ∥ỹ∥22.
At each node of the tree, we can first compute the reduced ellipsoid EF w.r.t

the variables that are already fixed with Eq. (11), then apply Eqs. (9) and (10) to
compute the axis-aligned tangent box. The algorithm propagates when variables
are instantiated or β is reduced. As our CP search instantiates variables, the
propagation is active at each node.

Complexity of the Filtering Algorithm. The filtering algorithm reduces
the domains of all the variables based on β with O(n3) time-complexity. First,
computing the reduced ellipsoid takes O(n3), as the QR factorization is required,
Second, computing the tangent box takes O(n3), as the complexity is dominated
by computing the matrix inverse A−1. Therefore the total time complexity for
filtering the domain for all the variable is O(n3).

4.3 Approximate Bounds Consistency (ABC) Filtering

Before we introduce the next filtering algorithm, our notation is summarized as
follows:

CP for Strictly Convex IQCPs 323

– [lj , uj]: The interval domains (local bounds) of variable xj .
– [lbj , ub

j]: The tangent box derived with Eqs. (9) and (10) of the ellipsoid E
defined in Eq. (2).

– vj : A value that is within xj ’s domain, i.e., vj ∈ ID(xj) = [lj , uj].

It is observed that if l ≤ lb ≤ ub ≤ u, then the tangent box defines the bounds
of the variables. However, a pair of bounds may lead to reductions in other
variable domains. For example, in Fig. 2-a, the bounds li and ui have the effect
of increasing the lower bound lbj to lj and decreasing the upper bound ub

j to uj .
To perform stronger domain reductions on the ellipsoid, first we need to

determine the set of variables that can be used to infer reductions on the lower
bounds or upper bounds of the variables. We explain the propagation algorithm
below for the lower bound only since the propagation on the upper bound can
be derived in a symmetric manner.

Proposition 1. Let P (E)ij be the ellipse defined by the projection of the hyper-
ellipsoid (Eq. 2) onto the xixj plane. Then the variable xi can be used to infer
domain reductions on xj’s lower bound if and only if li ≤ ui ≤ tlij or tlij ≤ li ≤
ui, where tlij is the xi value at the intersection of xj = lbj and the projected ellipse
P (E)ij.

Proof. If li ≤ tlij ≤ ui (Fig. 2-b), we can set xi = tlij , so that xj = lbj , thus no
domain reduction can be inferred to xj ’s lower bound. In the other two cases
where li ≤ ui ≤ tlij (Fig. 2-a) or tlij ≤ li ≤ ui, since xj is forced to take a value
that is greater than lbj , we can increase xj ’s lower bound.

We refer to tlij and tuij as the touching points.

Computing the Touching Points. The touching points can be computed
easily as a by-product of computing the axis-aligned tangent box (9) and (10).

Fig. 2. The 2D projection of the hyper-ellipsoid onto the xixj plane.

324 W.-Y. Ku and J.C. Beck

Since p =
√

βA−Tej/
∥∥∥A−Tej

∥∥∥
2
uniquely defines the minimizer for the upper

bound ub
j , let x∗ be the solution to the equation p = Ax − y, we have:

(tuj)
T = [tu1j , . . . , t

u
j−1,j , t

u
j+1,j , . . . , t

u
nj]

T = [x∗
1, . . . , x

∗
j−1, x

∗
j+1, . . . , x

∗
n]

T

Note that tuj is a n − 1 dimensional vector and x∗
j = ub

j . Using the symmetry
property of the ellipsoid, tlj can be computed by reflecting tuj about the center
of the ellipsoid.

The complexity of computing the touching points for all the variables, i.e.,
tlj , t

u
j ,∀j, is O(n3), as x∗ can be computed in O(n2) for each variable, given that

A−1 is known.

Proposition 2. If xi can be used to increase xj’s lower bound lj according to
Proposition 1, the value vdi that should be used to increase lj is defined as

vd
i =

{
li, if (tlij − li)2 ≤ (tlij − ui)2.
ui, otherwise.

Proof. Since P (E)ij is convex and xj achieves its minimum lbj at xi = tlij , for any
point xj in P (E)ij , we have xj strictly larger than lbj if xi takes any value other
than tlij . That is, xj increases strictly when xi moves away from tlij . Therefore,
the value (li or ui) that achieves the minimum of the expression min((tlij −
ui)2, (tlij − li)2) determines xj ’s lower bound.

As Fig. 2-a depicts, we choose ui in this example, as using li removes the valid
value lj .

Using Proposition 1 and 2, we can identify the set of variables and their
values that can be used to increase the lower bound of a variable.

Definition 2. For each variable xj, let S l
j (Su

j) be the set of all the variables
that can be used to infer domain reductions on xj’s lower (upper) bound.

Definition 3. An assignment A: xi ,→ ID(xi), i ∈ Sl
j or Su

j is said to be a
determining assignment when A(xi) = vdi .

When a variable takes a determining assignment, we can compute the reduced
intersecting ellipsoid using the method in Sect. 4.2. The complete filtering algo-
rithm for pruning the lower bound of a variable is presented in Algorithm 1. The
upper bound pruning can be derived in a symmetric manner.

Complexity of the Filtering Algorithm. The filtering algorithm reduces
the domain of a single variable in O(n3) time-complexity. First, computing the
tangent box takes O(n3) (see Sect. 4.2). The touching points require O(n2) as
explained previously. In line seven, the sets Sl

j can be computed in O(n). The for-
loop at Line 8 requires O(n3), as Line 9 and 10 require O(n2) for computing the
reduced ellipsoid (by updating the QR factorization) and the tangent plane for
each of the i in Sl

j . Therefore the total time-complexity for filtering the domain
for one variable is O(n3).

CP for Strictly Convex IQCPs 325

Algorithm 1. Prune(lj)
1: Data: The local bounds: l1, . . . , ln, u1, . . . , un, the tangent box for the ellipsoid E :

lb1, . . . , l
b
n, ub

1, . . . , u
b
n, the touching points tlij , β

2: Results: The filtered lower bound l′j
3: Initialization: Set l′j = −∞, F = {}
4: if uj < lbj then
5: The constraint is not satisfiable
6: else
7: Compute the set Sl

j and the associated assignments A(xi), ∀i ∈ Sl
j

8: for each i ∈ Sl
j do

9: Let F = {i}, compute the reduced intersecting ellipsoid EF

10: Compute the tangent box (lFj)b of EF

11: Set l′j = max((lFj)b, l′j)
12: end for
13: if ui < l′j then
14: The constraint is not satisfiable
15: else
16: Set l′j = max((l′j , lj)
17: end if
18: end if

The complexity for filtering all the variables is therefore O(n4), which is the
complexity when Sl

j ,∀j, contains n−1 variables. However, it is beneficial to have
more variables in the set, as more and stronger pruning might be done.

4.4 Relative Strength of the Three Filtering Algorithms

It is clear that the ABC filtering algorithm is at least as strong as the BOX
filtering algorithm, since ABC uses the tangent box as the starting point. The
QCP filtering is at least as strong as ABC. ABC only considers the 2D projection
of the hyper-ellipsoid onto each xixj plane, i.e., xj is only tightened using the
bounds of each xi, independently. However, it is also possible to perform a higher
dimension projection of the hyper-ellipsoid and use the bounds of more than
one variable together to do bound tightening. Consider the 3D projection of the
hyper-ellipsoid and the reasoning among xi, xj , xk. It is possible to use xi and
xk, together, to tighten xj , given that xi and xk intersects inside the hyper-
ellipsoid. For this reason, ABC only achieves BC when |Sl

j | = 1, |Su
j | = 1,∀j,

and the tangent box only achieves BC when |Sl
j | = 0, |Su

j | = 0,∀j.

5 Branching Rules

We propose variable and value ordering rules inspired by the search strategy
of DEBS. Recall that the static variable ordering in DEBS tries to minimize
the branching factor at the top of the tree so that it is easier to find feasible
solutions. In CP, this is the same as choosing a variable with minimum domain

326 W.-Y. Ku and J.C. Beck

size. We therefore use the standard dynamic variable selection rule that chooses
a variable with the smallest domain. The value ordering rule in DEBS always
assigns a variable to the integer value closest to the center of the ellipsoid of the
objective function so that the search greedily chooses the best integer value at
the current node with the hope of finding good feasible solution quickly. In our
implementation, suppose xj is the variable chosen for branching, we first compute
the center of the ellipsoid cj in j-th dimension given the reduced ellipsoid, and
then round it to the nearest integer. When the search backtracks, we assign xj

to the next nearest integer to cj , and so on.

6 Experimental Results

Experimental Setup. We design two experiments. The goal of the first experiment
is to evaluate the impact of our filtering algorithms and the branching heuristics
compared to a default CP model. The second experiment compares our new CP
approach to the best known exact approaches for IQCPs.

For the first experiment, we use IBM ILOG CP Optimizer v12.6.3 with its
default settings. The three filtering algorithms, e.g., BOX, ABC, and QCP, are
implemented in CP Optimizer as customized global constraints. The branching
rules are implemented as customized variable and value choosers (denoted with
the symbol “+b” in our results). We use CPLEX v12.6.3 for solving the QCPs.
We report the arithmetic mean CPU time “time” in seconds, and the arithmetic
mean number of choice points “chpts” to find and prove optimality for each
problem set.

For the second experiment, we use CPLEX v12.6.3,2 BARON v16.4.7 (using
CPLEX v12.6.3 as its LP/MIP solver) and the SDP solver BiqCrunch down-
loaded from the website [19] for comparison. All solvers are executed with their
default settings.3 The DEBS algorithm is written in C.

The CPU time limit for each run on each problem instance is 3600 s. All
experiments were performed on a Intel(R) Xeon(R) CPU E5-1650 v2 3.50GHz
machine (in 64 bit mode) with 16GB memory running MAC OS X 10.9.2 with
one thread.

6.1 Problem Sets

We experiment on medium size problems in five problem classes. The problem
size of each set is chosen with the aim for a mix of solvable and non-solvable
instances across the default CP Optimizer and the three filtering algorithms.

Binary Quadratic Programming (BQP) Problem. The BQP problem is
defined as: minx∈{0,1}

1
2x

THx + fTx, where H ∈ Rn×n and f ∈ Rn. BQPs

2 A major improvement was made in solving IQCPs in CPLEX v12.6.3 [25].
3 There are four versions of the SDP solver that deal with problem-specific structures.

The SDP results presented are the best version for each individual problem instance,
representing the “virtual best” SDP solver.

CP for Strictly Convex IQCPs 327

arise in many combinatorial optimization problems such as task allocation [26],
quadratic assignment [27], and max-cut problems [18]. We experiment on the
Carter type problems [28] divided into four sub-sets of instances with size 40
(p = 0.2), 40 (p = 0.3), 50 (p = 0.2) and 50 (p = 0.3), respectively, where p is a
problem generation parameter.

Exact Quadratic Knapsack Problem (EQKP). The EQKP [29] is defined
as: minx∈C

1
2x

THx + fTx, C = {x ∈ {0, 1} : cT1 x = K, cT2 x ≤ B}, where
H ∈ Rn×n, f ∈ Rn, c1 ∈ Rn is a vector equal to ones, c2 ∈ Rn

+, K ∈ Z+,
B ∈ R+. The objective is to minimize a quadratic function subject to a cardinal-
ity constraint and a knapsack constraint. The EQKP is a extension of the BQP,
maximum diversity problem [30], quadratic knapsack problem [31], and exact
linear knapsack problem [32]. EQKPs arise in a wide range of real world appli-
cations such as wind farm optimization [33,34]. We experiment on the EQKP
and a variation from Ku & Beck [12] with binary domains xj ∈ {0, 1} relaxed to
xj ∈ {0, 1, 2}. We use three sub-sets of the instances with size 10, 20 and 30.

Box-constrained ILS (BILS) Problem. The BILS problem can be defined
as: minx∈C ∥y − Ax∥22 , C = {x ∈ Zn : l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}. The
problem minimizes a least squares expression subject to general integer bounds.
Such problems exist in elevator scheduling [5] and signal processing [10]. We
generate problems the same way as Chang et al. [10], with medium size variable
domains (0 ≤ xi ≤ 10,∀i) and medium level of noise (σ = 0.05). We use five
sub-sets of the instances with size 10, 20, 30, 40 and 50.

Box-constrained and Ellipsoid-constrained ILS (BEILS) Problem. The
BEILS problem can be defined as: minx∈C ∥y − Ax∥22 , C = {x ∈ Zn : ∥Ax∥ ≤
α2, l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}, where α is a constant. In addition to the
least squares objective function, the BEILS problem is also subject to a least
squares constraint. Such problem can exist in signal processing [35]. We generate
problems the same way as those in Chang et al. [3] on the ellipsoid-constrained
ILS problem then add medium size variable domains (−10 ≤ xi ≤ 10,∀i). We
use five sub-sets of the instances with size 10, 20, 30, 40 and 50.

Quadratic Lateness Scheduling Problem (QLSP). The QLSP can
be defined as: min

∑n
j=1(Sj + pj − dj)2 s.t. disjunctive({S1, ..., Sn},

{p1, ..., pn}), Sj ≥ 0,∀j, where Sj , pj , and dj are the start time, processing
time, and due date of job j. The QLSP is a single machine scheduling problem
with the goal of minimizing the sum of the quadratic lateness of the jobs. We
generate problems the same way as those in Schaller [36]. We use four sub-sets
of the instances with size 5, 10, 15 and 20.

Each problem set includes 10 instances of each size, e.g., the BQP problems
includes 4 sub-sets of size 10 for 40 instances.

6.2 Results of Experiment 1

We present the results of Experiment 1 in Tables 1 and 2. From Table 1, it is
clear that the ellipsoid constraint significantly improves the performance of

328 W.-Y. Ku and J.C. Beck

the default CP Optimizer for the BQPs, the BILS problems, and the BEILS
problems both in terms of running time and number of choice points. Without
the reasoning from the ellipsoid constraint, the default CP Optimizer cannot
prove optimality for any instances of these three problem types. For the EQKPs,
the ellipsoid constraint (BOX) is able to decrease the number of choice points
by a factor of 1.5 for the {0,1} problems and almost a factor of 2 for the {0,1,2}
problems. But the extra computation makes the running time worse than that
of the default CP Optimizer.

For QLSPs, CPO achieves the best average running time. Interestingly, for
the instances where all the filtering algorithms are able to prove optimality, the
number of choice points is the same for all the filtering algorithms. Our pre-
liminary investigation shows that the disjunctive constraint has a significant
impact on reducing variable domains for the QLSP, therefore determining the
number of choice points regardless of the strength of propagation of the ellipsoid
constraint. It is worth pointing out that the convex ellipsoid structure of the
QLSP has a simple axis-aligned structure, i.e., the off-diagonal entries of H in
Eq. (3) are all equal to zero. Our results show that the default CPO propagation
does not achieve BC for axis-aligned ellipsoids and that the strength of prun-
ing of our three inference algorithm follows the same pattern for axis-aligned
ellipsoids as for the general case. As future work, we would like to exploit the
axis-aligned property to achieve more efficient filtering.

Among the three filtering algorithms, BOX performs the best in terms of run-
ning time to prove optimality. ABC and QCP both find better primal solutions
in fewer nodes but, BOX finds better solutions in less time. On problems where
all three algorithms are able to prove optimality, the tree size of BOX is about
15% larger than that of ABC and QCP. This is somewhat surprising and sug-
gests that variable fixing leads to strong inference. We observe that the reduced
ellipsoid obtained after fixing a variable often has a much tighter tangent box on
the unfixed variables compared to that of the original ellipsoid. However, we also
observe that ABC can sometimes achieve one order of magnitude improvement
compared to BOX in tree size on some larger instances. We would like to inves-
tigate the problem characteristics that result in such difference. Note that the
lower number of choice points of ABC and QCP are misleading because neither
prove optimality for all instances within the time limit. However they are good
indicators on the number of nodes that can be visited when these two algorithms
are applied.

From Table 2, it is observed that the new branching rules greatly improve
the number of choice points, the running time, and the percentage of optimal
solutions found for most approaches. However CPO still cannot prove optimality
for the BQPs, the BILS problems, and the BEILS problems. The most significant
reduction is observed on the BILS problem and the BEILS problem, followed by
the QLSP, where the variable domains are much larger than the other two types
of problems: a good branching strategy apparently is especially important for
problems with large domains. It is particularly striking to see that the BILS
problems are solved at least five orders of magnitude faster by CP through the
use of the ellipsoid constraint and the branching rule.

CP for Strictly Convex IQCPs 329

Table 1. A comparison of default CP Optimizer and the three filtering algorithms.
Bold numbers indicate the best approach for a given problem set. The symbol ‘-’ means
that no problem instances were solved to optimality within 3600 s. The superscripts
indicate the percentage of instances solved to optimality within 3600 s. If no superscript
is indicated, all of the instances are solved.

Problem CPO BOX ABC QCP

time chpts time chpts time chpts time chpts

BQP - - 11.12 17169 1204.8985 10565 - -

BILS - - 44.61 61552 871.8084 19229 2810.0140 3836

BEILS - - 362.1494 167162 1480.6864 10301 3092.1438 1637

EQKP{0,1} 23.48 667740 44.09 426255 745.7987 60789 2494.7767 2494

EQKP{0,1,2} 83.98 1803982 99.70 932035 481.4490 63177 2256.9557 2273

QLSP 136.34 962400 166.16 962400 754.0785 438394 2432.9850 8631

Table 2. A comparison of default CP Optimizer and the three filtering algorithms
with the branching rules. All notations are the same as in Table 1.

Problem CPO+b BOX+b ABC+b QCP+b

time chpts time chpts time chpts time chpts

BQP - - 8.28 12611 1099.8292 12575 3595.853 1069

BILS - - 0.06 225 5.21 228 314.16 221

BEILS - - 0.47 426 213.47 394 1713.8982 360

EQKP{0,1} 16.40 247896 24.84 193269 578.7490 72134 1868.7157 2550

EQKP{0,1,2} 50.04 521037 46.77 269937 407.5990 39076 2304.0160 2365

QLSP 20.63 347665 31.47 347665 602.7790 265252 2249.5750 8516

6.3 Results of Experiment 2

In this section, we compare our best CP results (using the BOX filtering with
the branching rules) with the best known exact approaches. From Table 3, it
is observed that our new CP approach significantly outperforms the general
MINLP solver BARON and it is competitive with state-of-the-art MIP solver
CPLEX, running at the same order of magnitude as CPLEX for BQPs and BILS
problems. While our CP approach is one order of magnitude slower than CPLEX
for EQKPs, it is almost two orders of magnitude faster for BEILS problems and it
is significantly better for QLSPs. The reason that CPLEX performs particularly
poorly on QLSPs is that the modeling of the disjunctive relationship among the
jobs involve big-M constraints, which result in weak dual bounds. As future work,
we would like to apply our CP approach to even more complicated scheduling
problems, where quadratic component is only one of many components.

The SDP approach, while being the state-of-the-art for the BQPs, is limited
to problems with binary domains. Similarly, DEBS cannot be applied to all the

330 W.-Y. Ku and J.C. Beck

Table 3. A comparison of default CP Optimizer and our best setting: BOX+b. All
notations are the same as in Table 1. The additional symbol “N/A” indicates that the
problem cannot be solved with the approach.

Problem CPO BOX+b CPLEX BARON DEBS SDP

time time time time time time

BQP - 8.28 37.06 38.03 0.24 0.69

BILS - 0.06 0.02 2715.0426 0.01 N/A

BEILS - 0.47 14.79 3248.2516 N/A N/A

EQKP{0,1} 23.48 24.84 4.49 6.23 0.24 114.01

EQKP{0,1,2} 83.98 46.77 4.27 429.6293 0.34 N/A

QLSP 136.34 31.47 1588.1565 1855.0250 N/A N/A

problem classes due to its specialized nature. In contrast, BARON is the most
general solver tested here (along with CPO) and these results on strictly convex
IQCPs do not reflect its more general problem solving power [15].

7 Conclusion

We propose a CP-based approach to solve strictly convex IQCPs via a novel
ellipsoid constraint with three different filtering algorithms and variable/value
ordering heuristics. The constraint and branching heuristics are based on the
geometry of the strictly convex quadratic function. We experiment with a variety
of problems and show significant improvement over the default CP Optimizer
and competitive results to general state-of-the-art solvers CPLEX and BARON.

For future work, it is interesting to experiment with our filtering algorithms
on other problem types. Although ABC and QCP perform worse than BOX for
the problem types tested here, it is possible that ABC and QCP can perform
better for problems where variable fixings do not take place frequently. For the
same reason it is also interesting to implement the filtering algorithms in a MIP-
based solver such as SCIP [37] where branching is typically done by tightening
variable bounds instead of fixing variables. In general, our technique can be
integrated with other solvers provided they represent bounds on variables and
have an“inference loop”.

More broadly, we propose that it may be possible to develop CP as a basis
for MINLP. MINLPs are challenging optimization problems that arise in many
industrial applications. As CP is not dependent on a strong linear relaxation to
bound the search, it may be valuable to study inferences that can be made for
common non-linear constraints as we have done here. We hope that this paper
might serve as a step in this direction.

Acknowledgement. We would like to thank Nick Sahinidis for the BARON license
and Felipe Serrano and Benjamin Müller for valuable discussions. This research has
been supported by the Natural Sciences and Engineering Research Council of Canada
and the University of Toronto School of Graduate Studies Doctoral Completion Award.

CP for Strictly Convex IQCPs 331

References

1. van Emde-Boas, P.: Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Mathematisch Instituut, Amsterdam, The
Netherlands (1981)

2. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE
Trans. Inf. Theory 48(8), 2201–2214 (2002)

3. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares prob-
lems. SIAM J. Matrix Anal. Appl. 31(3), 1071–1089 (2009)

4. Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy, vol. 2. Springer,
Berlin (1998)

5. Kuusinen, J.M., Sorsa, J., Siikonen, M.L.: The elevator trip origin-destination
matrix estimation problem. Transp. Sci. 49(3), 559–576 (2014)

6. Pesant, G., Régin, J.-C.: SPREAD: a balancing constraint based on statistics. In:
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)

7. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Con-
straints 15(3), 404–429 (2010)

8. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for
quadratic constraints. Constraints 10(1), 47–65 (2005)

9. Ku, W.-Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-
cut for binary quadratic programming problems. In: Simonis, H. (ed.) CPAIOR
2014. LNCS, vol. 8451, pp. 334–350. Springer, Heidelberg (2014)

10. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems.
IEEE Trans. Wirel. Commun. 7(1), 277–287 (2008)

11. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-
cut for integer least squares problems. Submitted to IEEE Trans. Wirel. Commun.
(2014)

12. Ku, W.-Y., Beck, J.C.: Combining constraint propagation and discrete ellipsoid-
based search to solve the exact quadratic knapsack problem. In: Michel, L. (ed.)
CPAIOR 2015. LNCS, vol. 9075, pp. 231–239. Springer, Heidelberg (2015)

13. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore
(2012)

14. Sahinidis, N.V.: BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual (2014)

15. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Math. Program. 103, 225–249 (2005)

16. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for coNTinuous/Integer
Global Optimization of Nonlinear Equations. J. Global Optim. (2014). doi:10.1007/
s10898-014-0166-2

17. Bussieck, M.R., Vigerske, S.: MINLP Solver Software. Wiley Encyclopedia of Oper-
ations Research and Management Science. Wiley, Chichester (2010)

18. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for
solving max-cut problems to optimality. Math. Program. 143(1), 61–86 (2012)

19. Krislock, N., Malick, J., Roupin, F.: BiqCrunch solver. http://lipn.univ-paris13.
fr/BiqCrunch/download. Accessed 4 Dec 2016

20. Borno, M.A.: Reduction in solving some integer least squares problems. arXiv
preprint arXiv:1101.0382 (2011)

21. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)

22. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

http://dx.doi.org/10.1007/s10898-014-0166-2
http://dx.doi.org/10.1007/s10898-014-0166-2
http://lipn.univ-paris13.fr/BiqCrunch/download
http://lipn.univ-paris13.fr/BiqCrunch/download
http://arxiv.org/abs/1101.0382

332 W.-Y. Ku and J.C. Beck

23. Gleixner, A.M.: Exact and fast algorithms for mixed-integer nonlinear program-
ming. Ph.D. thesis, Technische Universität Berlin (2015)

24. Nesterov, Y., Nemirovskii, A., Ye, Y.: Interior-point Polynomial Algorithms in
Convex Programming, vol. 13. SIAM, Philadelphia (1994)

25. Bonami, P., Tramontani, A.: Advances in CPLEX for mixed integer nonlinear
optimization. Presented at ISMp 2015, Pittsburgh, PA (2015)

26. Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the unca-
pacitated task allocation problem. Oper. Res. Lett. 33(2), 176–182 (2005)

27. FlNKE, G., Burkard, R.E., Rendl, F.: Quadratic assignment problems. Surv.
Comb. Optim. 132, 61–82 (2011)

28. Carter, M.W.: The indefinite zero-one quadratic problem. Discrete Appl. Math.
7(1), 23–44 (1984)

29. Létocart, L., Plateau, M.C., Plateau, G.: An efficient hybrid heuristic method for
the 0–1 exact k-item quadratic knapsack problem. Pesquisa Operacional 34(1),
49–72 (2014)

30. Mart́ı, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maxi-
mum diversity problem. Eur. J. Oper. Res. 200(1), 36–44 (2010)

31. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack prob-
lem. INFORMS J. Comput. 11(2), 125–137 (1999)

32. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms
for knapsack problems with cardinality constraints. Eur. J. Oper. Res. 123(2),
333–345 (2000)

33. Turner, S., Romero, D., Zhang, P., Amon, C., Chan, T.: A new mathematical
programming approach to optimize wind farm layouts. Renewable Energy 63,
674–680 (2014)

34. Zhang, P.Y., Romero, D.A., Beck, J.C., Amon, C.H.: Solving wind farm layout opti-
mization with mixed integer programs and constraint programs. EURO J. Comput.
Optim. 2(3), 195–219 (2014)

35. Damen, M.O., El Gamal, H., Caire, G.: On maximum-likelihood detection and the
search for the closest lattice point. IEEE Trans. Inf. Theory 49(10), 2389–2402
(2003)

36. Schaller, J.: Single machine scheduling with early and quadratic tardy penalties.
Comput. Ind. Eng. 46(3), 511–532 (2004)

37. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

A Global Constraint for Closed Frequent
Pattern Mining

Nadjib Lazaar1(B), Yahia Lebbah2, Samir Loudni3, Mehdi Maamar1,2,
Valentin Lemière3, Christian Bessiere1, and Patrice Boizumault3

1 LIRMM, University of Montpellier, Montpellier, France
lazaar@lirmm.fr

2 LITIO, University of Oran 1 Ahmed Ben Bella, Oran, Algeria
3 GREYC, Normandie University, Caen, France

Abstract. Discovering the set of closed frequent patterns is one of the
fundamental problems in Data Mining. Recent Constraint Programming
(CP) approaches for declarative itemset mining have proven their useful-
ness and flexibility. But the wide use of reified constraints in current CP
approaches leads to difficulties in coping with high dimensional datasets.
In this paper, we propose the ClosedPattern global constraint to cap-
ture the closed frequent pattern mining problem without requiring reified
constraints or extra variables. We present an algorithm to enforce domain
consistency on ClosedPattern in polynomial time. The computational
properties of this algorithm are analyzed and its practical effectiveness
is experimentally evaluated.

1 Introduction

Frequent Pattern Mining is a well-known and perhaps the most popular research
field of data mining. Originally introduced by Agrawal et al. [1], it plays a key
role in many data mining applications. These applications include the discovery
of frequent itemsets and association rules [1], correlations [2] and many other
data mining tasks.

In practice, the number of frequent patterns produced is often huge and can
easily exceed the size of the input dataset. Most frequent patterns are redundant
and can be derived from other found patterns. Hence, closed frequent patterns
have been introduced. They provide a concise and condensed representation that
avoids redundancy. Discovering the set of closed frequent patterns is one of the
fundamental problems in Data Mining. Several specialized approaches have been
proposed to discover closed frequent patterns (e.g., A-Close Algorithm [12],
CHARM [17], CLOSET [13], LCM [14]).

Over the last decade, the use of the Constraint Programming paradigm (CP)
to model and to solve Data Mining problems has received considerable atten-
tion [3,5,9]. The declarative aspect represents the key success of the proposed
CP approaches. Doing so, one can add/remove any user-constraint without the
need of developing specialized solving methods.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 333–349, 2016.
DOI: 10.1007/978-3-319-44953-1 22

334 N. Lazaar et al.

Related to the Closed Frequent Pattern Mining problem (CFPM), Guns et.
al., propose to express the different constraints that we can have in Pattern Min-
ing as a CP model [5]. The model is expressed on Boolean variables representing
items and transactions, with a set of reified sum constraints. The reified model
has become a de facto standard for many DM tasks. Indeed, the reified model
had been adopted for the k-pattern sets [5]. The drawback is the wide use of
reified constraints in the CP model, which makes the scalability of the approach
questionable.

In the line of the work of Kemmar et al. [8], we propose in this paper the
ClosedPattern global constraint. ClosedPattern does not require reified
constraints and extra variables to encode and propagate the CFPM problem.
ClosedPattern captures the particular semantics of the CFPM problem and
domain consistency can be achieved on it using a polynomial algorithm. Experi-
ments on several known large datasets show that our approach outperforms the
reified model used in CP4IM [3] and is more scalable, which is a major issue for
CP approaches. This result can be explained by the fact that ClosedPattern
insures domain consistency.

The paper is organized as follows. Section 2 recalls preliminaries. Section 3
provides the context and the motivations for the ClosedPattern global con-
straint. Section 4 presents the global constraintClosedPattern. Section 5 illus-
trates the power of the prunning algorithm compared with the reified model.
Section 6 reports experiments. Finally, we conclude and draw some perspectives.

2 Background

In this section, we introduce some useful notions used in closed frequent pattern
mining and constraint programming.

2.1 Closed Frequent Pattern Mining

Let I = {1, ..., n} be a set of n item indices1 and T = {1, ...,m} a set of m
transaction indices. A Pattern P (i.e., itemset) is a subset of I. The language of
patterns corresponds to LI = 2I . A transaction database is a set D ⊆ I × T .
The set of items corresponding to a transaction identified by t is denoted by
D[t] = {i | (i, t) ∈ D}. A transaction t is an occurrence of some pattern P iff the
set D[t] contains P (i.e., P ⊆ D[t]).

The cover of P , denoted by TD(P), is the set of transactions containing P ,
that is, TD(P) = {t ∈ T |P ⊆ D[t]}. Given S ⊆ T a subset of transactions, ID(S)
is the set of common items of S, that is, ID(S) =

⋂
t∈S D[t]. The (absolute)

frequency of a pattern P is the size of its cover (i.e., freqD(P) = |TD(P)|).
Let θ ∈ N+ be some given constant called a minimum support. A pattern P is
frequent if freqD(P) ≥ θ.

1 For the sake of readability, our examples refer to items by their names instead of
their indices.

A Global Constraint for Closed Frequent Pattern Mining 335

Example 1. Consider the transaction database in Table 1. We have TD(C) =
{t1, t3}, freqD(C) = 2 and ID({t1, t3}) = CH.
The closure of a pattern P in D, denoted by Clos(P), is the set of common
items of its cover TD(P), that is, Clos(P) = ID(TD(P)). A pattern is closed if
and only if Clos(P) = P .

Table 1. A transaction database D (a) and its binary matrix (b).

t1
t2
t3
t4
t5

A B C D E F G H
t1 0 1 1 0 0 0 1 1
t2 1 0 0 1 0 0 0 0
t3 1 0 1 1 0 0 0 1
t4 1 0 0 0 1 1 0 0
t5 0 1 0 0 1 1 1 0

Definition 1 (Closed Frequent Pattern Mining (CFPM)). Given a trans-
action database D and a minimum support threshold θ, the closed frequent pattern
mining problem is the problem of finding all patterns P such that (freqD(P) ≥ θ)
and (Clos(P) = P).

Example 2. For θ = 2, the set of closed frequent patterns in Table 1 is ∅⟨5⟩,2
A⟨3⟩, AD⟨2⟩, BG⟨2⟩, CH⟨2⟩ and EF ⟨2⟩.
Closed frequent patterns provide a minimal representation of frequent patterns,
i.e. we can derive all frequent patterns with their exact frequency value from
the closed ones [12]. We now define the important notion of full extension that
comes from pattern mining algorithms and that we will use later in this paper.

Definition 2 (Full extension). The non-empty itemset Q is called a full
extension of P iff TD(P) = TD(P ∪ Q).

Definition 2 is at the key of the item merging property [15] stated as follows: If
some pattern Q is a full extension of some pattern P , and none of the proper
supersets of Q is a full extension of P , then P ∪ Q forms a closed pattern. In
other words, a closed pattern can be defined as a pattern that does not possess
a full extension.

Search Space Issues. In pattern mining, the search space contains 2I candi-
dates. Given a large number of items I, a naive search that consists of enumer-
ating and testing the frequency of pattern candidates in a dataset is infeasible.
The main property exploited by most algorithms to reduce the search space is
that frequency is monotone decreasing with respect to extension of a set.
Property 1 (Anti-monotonicity of the frequency). Given a transaction database
D over I, and two patterns X, Y ⊆ I. Then, X ⊆ Y ⇒ freqD(Y) ≤ freqD(X).

Hence, any subset (resp. superset) of a frequent (resp. infrequent) pattern is
also a frequent (resp. infrequent) pattern.
2 Value between ⟨.⟩ indicates the frequency of a pattern.

336 N. Lazaar et al.

2.2 CFPM Under Constraints

Constraint-based pattern mining aims at extracting all patterns P of LI satis-
fying a query q(P) (conjunction of constraints), which usually defines what we
call a theory [10]: Th(q) = {P ∈ LI | q(P) is true}. A common example is the
frequency measure leading to the frequent pattern constraint. It is also possible
to have other kind of (user-)constraints. For instance, constraints on the size of
the returned patterns, minSize(P, ℓmin) constraint holds if and only if the num-
ber of items of P is greater than or equal to ℓmin. Constraints on the presence
of an item in a pattern item(P, i) state that an item i must be in a pattern P .

2.3 CSP and Global Constraints

A constraint network is defined by a set of variables X = {x1, . . . , xn}, each
variable xi ∈ X having an associated finite domain dom(xi) of possible values,
and a set of constraints C on X. A constraint c ∈ C is a relation that specifies the
allowed combinations of values for its variables X(c). An assignment σ is a map-
ping from variables in X to values in their domains. The Constraint Satisfaction
Problem (CSP) consists in finding an assignment satisfying all constraints.

Domain Consistency (DC). Constraint solvers typically use backtracking
search to explore the search space of partial assignments. At each assignment,
filtering algorithms prune the search space by enforcing local consistency prop-
erties like domain consistency. A constraint c on X(c) is domain consistent, if
and only if, for every xi ∈ X(c) and every di ∈ dom(xi), there is an assignment
σ satisfying c such that xi = di.

Global Constraints are constraints capturing a relation between a non-fixed
number of variables. These constraints provide the solver with a better view of
the structure of the problem. Examples of global constraints are AllDifferent,
Regular and Among (see [7]). Except the case when for a given global constraint
a Berge-acyclic decomposition exists, global constraints cannot be efficiently
propagated by generic local consistency algorithms, which are exponential in
the number of the variables of the constraint. Dedicated filtering algorithms are
constructed to achieve polynomial time complexity in the size of the input, i.e.,
the domains and extra parameters. The aim of this paper is to propose a filtering
algorithm for the frequent closed pattern constraint.

3 Context and Motivations

This section provides a critical review of ad-hoc specialized methods and CP
approaches for CFPM, and motivates the proposition of a global constraint.

Specialized Methods for CFPM. CLOSE [12] was the first algorithm pro-
posed to extract closed frequent patterns (CFPs). It uses an apriori-like bottom-
up method. Later, Zaki and Hsiao [17] proposed a depth-first algorithm based

A Global Constraint for Closed Frequent Pattern Mining 337

on a vertical database format e.g. CHARM. In [13], Pei et al. extended the FP-
growth method to a method called CLOSET for mining CFPs. Lastly, Uno et al.
[14] have proposed LCM, one of the fastest frequent itemset mining algorithm.
It uses a hybrid representation based on vertical and horizontal representations.
The milestone of LCM is a technique called prefix preserving closure extension
(PPCE), which allows to generate a new frequent closed pattern from a previ-
ously obtained closed pattern. Let us explain the PPCE principle. Consider the
closed pattern P . Let P (i) = P ∩ {1, ..., i} be the subset of P consisting of items
no greater than i. The core index of P , denoted by core(P), is the minimum index
i such that TD(P (i)) = TD(P). A pattern Q is PPCE of P if Q = Clos(P ∪ {i})
and P (i − 1) = Q(i − 1) for an item i ̸∈ P and i > core(P). The completeness
of PPCE is guaranteed by the following property: If Q is a nonempty closed
itemset, then there is only one closed itemset P such that Q is a PPCE of P .
The mining process using LCM is a depth first search where at each node we
have a closed pattern P . LCM uses the PPCE technique as a branching strategy
to jump from a closed pattern to other closed patterns by adding new items.
With its specialized depth first search, LCM succeeds to enumerate very quickly
the closed patterns. However, if the user considers other (user-)constraints on
patterns, the search procedure should be revised. In fact, all these specialized
proposals (e.g., Closet, Charm, LCM, etc.), though efficient, are ad-hoc methods
suffering from the lack of genericity, since adding new constraints requires new
implementations.

Reified Constraint Model for Itemset Mining. De Raedt et al. have pro-
posed in [3] a CP model for itemset mining. They show how some constraints
(e.g., frequency, maximality, closedness) can be modeled as CSP [6,11]. This
modeling uses two sets of Boolean variables P and T : (1) Decision variables:
item variables P1, P2, ..., Pn, where Pi = 1 if and only if item i is in the searched
pattern; (2) Auxiliary variables: transaction variables T1, T2, ..., Tm, where Tt = 1
if and only if the searched pattern is in D[t].

The relationship between P and T , set of channeling constraints, is modeled
by reified constraints stating that, for each transaction t, (Tt = 1) iff P is a
subset of D[t]: ∀t ∈ T : (Tt = 1) ↔

∑
i∈I Pi(1 − D[t, i]) = 0 (arity n + 1). The

min frequency constraint is modeled us: ∀i ∈ I : (Pi = 1) →
∑

t∈T TtD[t, i] ≥ θ
(arity m+ 1). The closedness constraint is expressed with: ∀i ∈ I : (Pi = 1) ↔∑

t∈T Tt(1 − D[t, i]) = 0 (arity m + 1). Such encoding has a major drawback
since it requires (m+ n + n) reified constraints of arity (n + 1) and (m+ 1) to
encode the whole database. This constitutes a strong limitation especially when
it comes to handle very large databases.

We propose in the next section the ClosedPattern global constraint to
encode both the minimum frequency constraint and the closedness constraint.
This global constraint requires neither reified constraints nor auxiliary variables.

338 N. Lazaar et al.

4 CLOSEDPATTERN Constraint

This section presents the ClosedPattern global constraint for the CFPM
problem.

4.1 Definition and Filtering

Let P be the unknown pattern we are looking for. The unknown pattern P is
encoded with Boolean item variables P1, ..., Pn. In the rest of the paper we will
denote by σ the partial assignment obtained from the variables P1, ..., Pn that
have a singleton domain. We will also use the following subsets of items:

– present items: σ+ = {j ∈ 1..n | Pj = 1},
– absent items: σ− = {j ∈ 1..n | Pj = 0},
– other items: σ∗ = {1..n} \ (σ+ ∪ σ−).

σ∗ is the set of free items (non instantiated variables). If σ∗ = ∅ then σ is a
complete assignment.

The global constraintClosedPattern ensures both the minimum frequency
property and the closedness property.

Definition 3 (CLOSEDPATTERN global constraint). Let P1, . . . , Pn be
binary item variables. Let D be a transaction database and θ a minimum support.
Given a complete assignment σ on P1, . . . , Pn, ClosedPatternD,θ(σ) holds if
and only if freqD(σ+) ≥ θ and σ+ is closed.

Example 3. Consider the transaction database of Table 1a with θ = 2. Let P =
⟨P1, . . . , P8⟩ with dom(Pi) = {0, 1} for i ∈ 1..8. Consider the closed pattern AD
encoded by P = ⟨10010000⟩, where σ+ = {A,D} and σ− = {B,C,E, F,G,H}.
ClosedPatternD,2(P) holds because freqD({A,D}) ≥ 2 and {A,D} is closed.

Let σ be a partial assignment of variables P and i a free item. We use
the vertical representation of the dataset, denoted VD where for each item, the
transactions containing it are stored: ∀i ∈ I,VD(i) = TD({i}). We denote by
Vσ+

D (i) the cover of item i within the current cover of a pattern σ+:

Vσ+

D (i) = TD(σ+ ∪ {i}) = TD(σ+) ∩ TD({i}).

We need to define extensible assignments.

Definition 4 (Extensible assignment). Given a constraint ClosedPatternD,θ

on P1, . . . , Pn, a partial assignment is said to be extensible if and only if
it can be extended to a complete assignment of P1, . . . , Pn that satisfies
ClosedPatternD,θ.

We show when a partial assignment is extensible with respect to Closed-
Pattern constraint.

A Global Constraint for Closed Frequent Pattern Mining 339

Proposition 1. Let σ be a partial assignment of variables in P1, . . . , Pn. σ is
an extensible partial assignment if and only if freqD(σ+) ≥ θ and ̸ ∃j ∈ σ− such
that {j} is a full extension of σ.

Proof. According to the anti-monotonicity property of the frequency (cf. Prop-
erty 1), if the partial assignment σ is infrequent (i.e., freqD(σ+) < θ), it cannot,
under any circumstances, be extended to a closed pattern.

Given now a frequent partial assignment σ (i.e., freqD(σ+) ≥ θ), let us
take j ∈ σ− such that {j} is a full extension of σ. It follows that TD(σ+) =
TD(σ+∪{j}) = Vσ+

D (j). Therefore, Clos(σ+) = Clos(σ+∪{j}). Since σ+ without
j (j being in σ−) cannot be extended to a closed pattern, the result follows. If
there is no item j ∈ σ− such that {j} is a full extension of σ, then the current
assignment σ can be definitely extended to a closed itemset by adopting a full
extension to form a closed pattern. ⊓3

We now give the ClosedPattern filtering rules by showing when a value
of a given variable is inconsistent.

Proposition 2 (CLOSEDPATTERN filtering rules). Let σ be an extensible
partial assignment of variables in P1, . . . , Pn, and Pj (j ∈ σ∗) be a free variable.
The following two cases characterize the inconsistency of the values 0 and 1
of Pj:

– 0 ̸∈ dom(Pj) iff: {j} is a full extension of σ. (rule 1)

– 1 ̸∈ dom(Pj) iff:

{
|Vσ+

D (j)| < θ ∨ (rule 2)
∃k ∈ σ−,Vσ+

D (j) ⊆ Vσ+

D (k). (rule 3)

Proof. Let σ be an extensible partial assignment and Pj be a free variable.

0 ̸∈ dom(Pj) : (⇒) Let 0 be an inconsistent value. In this case, Pj can only
take value 1. It means that Clos(σ+) = Clos(σ+ ∪ {j}). Thus, TD(σ+) =
TD(σ+ ∪ {j}). By Definition 2, {j} is a full extension of σ.
(⇐) Let {j} be a full extension of σ, which means that Clos(σ+) = Clos(σ+∪
{j}) (Definition 2). The value 0 is inconsistent where j cannot be in σ−

(property 1).
1 ̸∈ dom(Pj) : (⇒) Let 1 be an inconsistent value. This can be the case if the

frequency of the current pattern σ+ is set up below the threshold θ by adding
the item j (i.e., |Vσ+

D (j)| < θ). Or, σ+ ∪ {j} cannot be extended to a closed
itemset: this is the case when there exists an item k ∈ σ− such that at each
time the item j belongs to a transaction in the database, k belongs as well
(Vσ+

D (j) ⊆ Vσ+

D (k)). Conversely, the lack of k (i.e., k ∈ σ−) implies the lack
of j as well. This means that: (Pk = 0 ⇒ Pj = 0).
(⇐) This is a direct consequence of Proposition 1. ⊓3

The first rule takes its origin from item merging [15]. The second rule is
a basic rule derived from the property of anti-monotonicity of the frequency
(Property 1). To the best of our knowledge, the third rule is a new rule taking
its originality from the reasoning made on absent items.

340 N. Lazaar et al.

Example 4. Following Example 3, consider a partial assignment σ such that the
variable P1 is set to 0 (item A). That is, σ− = {A} and σ+ = ∅. Value 1 from
dom(P4) (item D) is inconsistent because the lack of A implies the lack of D in
D (i.e., Vσ+

D (D) ⊆ Vσ+

D (A)). Let now P1 = 0, P4 = 0, that is, σ− = {A,D} and
σ+ = ∅. If the variable P3 is set to 1 (item C), value 1 from Pi, i = {2, 5, 6, 7}
(items B,E, F,G) is inconsistent because |Vσ+

D (Pi)| < 2, and value 0 from P8

(item H) is also inconsistent because {H} is a full extension of σ.

4.2 CLOSEDPATTERN Filtering Algorithm

In this section, we present the algorithm Filter-ClosedPattern (Algo-
rithm1) for enforcing domain consistency on the ClosedPattern constraint.
Filter-ClosedPattern incrementally maintains the internal data structures
σ =< σ+,σ−,σ∗ > and the corresponding cover TD(σ+). Using these two struc-
tures, one can check if an item is present or not in the vertical dataset VD.

Algorithm1 takes as input the vertical dataset VD, a minimum support
threshold θ, the current partial assignment σ on P where σ∗ ̸= ∅, and the
variables P . As output, Algorithm1 reduces the domains of Pi’s and therefore,
increases σ+ and/or σ−, and decreases σ∗.

The algorithm starts by checking if the current partial assignment is exten-
sible or not (Proposition 1). This is performed by checking (1) if the size of the
current cover is greater than the minimum support (line 4) and (2) if no item of
a variable already instantiated to zero is a full extension of σ+ (line 5).

Algorithm 1. Filter-ClosedPattern(VD, θ,σ, P)

1 Input: VD : vertical database; θ : minimum support
2 InOut: P = {P1 . . . Pn}: Boolean item variables; σ : current assignment.

3 begin
4 if (|TD(σ+)| < θ) then return false;

5 if ∃ i ∈ σ− : |Vσ+

D (i)| = |TD(σ+)| then return false;
6 foreach i ∈ σ∗ do

7 if (|Vσ+

D (i)| = |TD(σ+)|) then
8 dom(Pi) ← dom(Pi) − {0};
9 σ+ ← σ+ ∪ {i}; σ∗ ← σ∗ \ {i};

10 else if (|Vσ+

D (i)| < θ) then
11 dom(Pi) ← dom(Pi) − {1};
12 σ− ← σ− ∪ {i}; σ∗ ← σ∗ \ {i};

13 foreach i ∈ σ− do

14 foreach j ∈ σ∗ : Vσ+

D (j) ⊆ Vσ+

D (i) do
15 dom(Pj) ← dom(Pj) − {1};
16 σ− ← σ− ∪ {j}; σ∗ ← σ∗ \ {j};

17 return true;

A Global Constraint for Closed Frequent Pattern Mining 341

Lines 6–12 are a straightforward application of rules 1 and 2 of Proposition 2.
For each non-instantiated variable, (1) we check if value 0 is consistent: that item
is not a full extension (lines 6–9), and (2) we check if value 1 is consistent: the
new cover size by adding that item remains greater than θ (lines 10–12).

Finally, lines 13–16 implement rule 3 of Proposition 2. We prune value 1 from
each free item variable i ∈ σ∗ such that its cover is a superset of the cover of an
absent item j ∈ σ− (Vσ+

D (i) ⊆ Vσ+

D (j)).

Theorem 1. Given a transaction database D of n items and m transactions,
and a threshold minsup θ. AlgorithmFilter-ClosedPattern enforces domain
consistency on the ClosedPattern constraint, or proves that it is inconsistent
in time O(n2 × m) with a space complexity of O(n × m).

Proof. DC: Filter-ClosedPattern implements exactly Proposition 1 and
the three rules given in Proposition 2. Thus Filter-ClosedPattern ensures
domain consistency (see the description of Algorithm1).

Time: Let n = |I| and m = |T |. First, we need to compute TD(σ+) which
requires at most O(n × m). This is done only once. The cover Vσ+

D (i) can be
computed by intersecting TD(σ+) (already computed) and TD({i}) (given by
the vertical representation) within at most O(m). Checking rules 1 and 2 on all
free variables can be done in O(n×m) (lines 6–12). However, checking rule 3 is
cubic at lines 13–16 (i.e., O(n× (n×m))), where checking if a cover Vσ+

D (i) is a
subset of another cover can be done in O(m). Finally, the worst case complexity
is O(n × (n × m)).

Space: The space complexity of Filter-ClosedPattern lies in the storage of
VD, σ and the cover T data structures. The vertical representation VD requires
at most n × m space. In the worst case, we have to store n items within σ and
m transactions within T . That is, the worst case space complexity is O(n×m+
n+m) = O(n × m). ⊓3

During the solving process in depth first search, the whole space complexity
is O(n × (m + n)) because (1) the depth is at most n; (2) σ and T require
O(n × (m + n)); (3) the vertical representation is the same data used all along
the solving process O(n×m); (4) O(n× (m+n))+O(n×m) = O(n× (m+n)).

Proposition 3 (Backtrack-free). Extracting the total number of closed fre-
quent patterns, noted C, is backtrack-free with a complexity in O(C × n2 × m)
using Filter-ClosedPattern to propagate the ClosedPattern constraint.

Proof. Filter-ClosedPattern ensures DC at each node of the search tree.
Hence, the closed frequent patterns are guaranteed to be produced in a
backtrack-free manner. The explored search tree is a binary full tree where each
node is either a leaf (a solution) or possesses exactly two child nodes. The num-
ber of nodes is thus in O(2 × C). Knowing that ensuring DC is in O(n2 × m),
extracting the total number of closed frequent patterns is in O(C × n2 × m). ⊓3

342 N. Lazaar et al.

4.3 Data Structures

To represent the transactional dataset and the cover of items, we adopted the
vertical representation format [16]. Our implementation is in or-tools solver3.

Static Structures: for each item i ∈ I, TD(i) = {t ∈ T | i ∈ t} is stored as a
bitset of size m. If t ∈ TD(i), then the associated bit is set to 1 (0 otherwise).

Dynamic Structure: a vector Memo of bitsets is used to store the cover of
each partial solution. Memo is a vector of size n + 1, since at the beginning of
the search, the partial assignment is empty. Let σ be a partial assignment. Each
time a (new) variable Pi is instantiated, the cover of the new partial assignment
σ ∪ {i} is stored inMemo. If Pi = 0, the cover remains the same: TD(σ+ ∪ {i}) =
TD(σ+). If Pi = 1, the cover of the new partial solution σ ∪ {i} is computed by
a bitwise-AND between TD(σ+) and TD({i}), and stored in Memo.

Backtracking. First, all Pi, as well as their domains dom(Pi), are fully main-
tained by the or-tools backtracking. Then, a single value (the current index of
the vector Memo) is asked to be managed by the or-tools backtracking. Each
time a partial solution is extended (from σ to σ ∪ {i}), the current index of
Memo is memorised. When a backtrack occurs (from σ ∪ {i} to σ), this value is
restored by or-tools giving access to the cover of the (restored) partial solution.

Rule 3. The inclusion between two covers Vσ+

D (i) ⊆ Vσ+

D (j) is rewritten as
Vσ+

D (i) ∩ Vσ+

D (j) = Vσ+

D (i), and the intersection is performed by a bitwise-AND.

5 Running Example

In this section, we illustrate the propagation of our ClosedPattern constraint
and the difference that exists comparing to the use of a simple Reified Constraint
Model (denoted by RCM, and detailed in Sect. 3). For that, let us take the
transactional dataset given in Table 1: Five transactions t1 to t5 and eight items
from A to H.

Figure 1 shows the tree search explored using ClosedPattern (part(a))
and the tree search explored using a reified model (part(b)) to extract closed
frequent patterns at minimum support θ = 2. Here, both approaches use the
same branching heuristics, namely Lex on variables and Max val on values. First
of all, it is worth noticing that the search space that can be explored using
ClosedPattern is defined only on decision variables (item variables), whereas
the reified model adds a further dimension with auxiliary variables (transaction
variables).

At the root node (node 1), no pruning is done since all items are frequent
and no item is a full extension of the empty pattern (see Table 1). Thereafter,
ClosedPattern andRCM are acting in the same manner on the branch A = 1.
With A = 1, B,C,E, F,G,H become infrequent. That is, the 1 values are pruned
(rule 2). With RCM on node 2, the pruning on the five decision variables (the
3 https://developers.google.com/optimization/.

https://developers.google.com/optimization/

A Global Constraint for Closed Frequent Pattern Mining 343

Fig. 1. (a) ClosedPattern and (b) Reified Constraint Model (RCM)

item variables) induce a pruning on four auxiliary variables (transaction vari-
ables). On the branch A = 1, two solutions are found: ⟨AD⟩ and ⟨A⟩.

Branching on A = 0 (node 5), the value 1 of D is pruned with rule 3 of
ClosedPattern. From Table 1, we have D ⇒ A, and a branching on A = 0
reduces D to 0. Here, we can say that the DC is maintained on node 5 using
ClosedPattern, which is not the case using RCM. The same observation can
be made on nodes 7, 9 and 11.

Let us take the node 6, here the branching on A = 0 and thereafter on B = 1
will make C,D,E, F,H infrequent (rule 2). Moreover, (rule 1) can be applied
since G is a full extension of B (i.e., we cannot have a frequent closed pattern
including B without G). That is, the value 0 is pruned from the domain of G,
which allows us to reach the solution ⟨BG⟩. The same observation can be made
on node 8.

To sum up, Filter-ClosedPattern maintains DC at each node and thus,
enumerates the solutions backtrack-free (no fails). The same cannot be said with
RCM because the rule 3 is never covered in this example and there are 3 fails.

6 Experiments

We made several experiments to compare and evaluate our global constraint
with the state of the art methods (CP and specialized methods).

344 N. Lazaar et al.

Benchmark Datasets. We selected several real and synthetic datasets [4,17]
from FIMI repository4 with large size. These datasets have varied characteristics
representing different application domains. Table 2 reports for each dataset, the
number of transactions |T |, the number of items |I|, the average size of trans-
actions |̂T |, its density ρ (i.e., |̂T |/|I|) and its size (i.e., |T | × |I|). We note
that the datasets are presented according to their size. They represent various
numbers of transactions, numbers of items, densities. We have datasets that are
very dense like Chess and Connect (resp. 49% and 33%), and others that are
very sparse like Retail and BMS-Web-View1 (resp. 0.06% and 0.5%). Note that
we have datasets of sizes going from ≈ 105 to more than 109.

Table 2. Dataset Characteristics.

Experimental Protocol. The implementation of our approach was carried
out in the or-tools solver. All experiments were conducted on an Intel Xeon
E5-2680 @ 2.5GHz with 128Gb of RAM with a timeout of 3600s. For each
dataset, we decreased the (relative) θ threshold until it is impossible to extract
all closed patterns within the allocated time/memory. We have implemented
two variants of ClosedPattern constraint: (i) ClosedPattern-dc ensuring
DC with rules 1,2 and 3 (cubic prunning). (ii) ClosedPattern-wc ensuring a
weaker consistency with only rules 1 and 2 (quadratic prunning). Comparisons
are made with: (i) CP4IM, the state-of-the-art on CP approaches, that uses an
RCM model. (ii) LCM, the state-of-the-art on specialized methods.

For ClosedPattern and CP4IM, we use the same branching heuristics,
namely Lex on variables and Max val on values. We experimented using the
available distributions of LCM-v5.3,5 and CP4IM,6 with Gecode as the underly-
ing solver of CP4IM. Table 3 gives a comparison between ClosedPattern (wc
and dc versions), CP4IM and LCM. We report the number of closed patterns #C
of each instance, the number of propagations, the number of nodes, the CPU
times in seconds and the number of failures.

CLOSEDPATTERN (dc vs wc). Despite the pruning complexity, dc clearly
dominates wc in terms of CPU times (except for BMS1 dataset where both
4 http://fimi.ua.ac.be/data/.
5 http://research.nii.ac.jp/∼uno/codes.htm.
6 https://dtai.cs.kuleuven.be/CP4IM/.

http://fimi.ua.ac.be/data/
http://research.nii.ac.jp/~uno/codes.htm
https://dtai.cs.kuleuven.be/CP4IM/

A Global Constraint for Closed Frequent Pattern Mining 345

are more or less equivalent). For instance, on the pumsb dataset with θ = 70%,
dc is about 4 times faster than wc. As a second observation, the use of rule
3 can reduce drastically the number of explored nodes and thus, number of
propagations. For instance, we note a reduction of 38% on explored nodes on
connect and 98% on splice1 compared to wc.

CLOSEDPATTERNvs CP4IM. If we compare ClosedPattern with CP4IM,
the main observation is that dc outperforms significantly CP4IM at all levels. In
terms of CPU times and without counting the Out-of-memory instances, we can
observe 23 instances (out of 30) with a speed-up factor between 2 and 15. Factors
of 27 to 45 are noted for six instances and for one instance, we have a factor
of 182. The weaker version (wc) is also better than CP4IM except two instances
in connect and two instances in chess. In terms of number of propagations,

Table 3. ClosedPattern vs CP4IM vs LCM. (OOM: Out Of Memory; TO: TimeOut; (1):
ClosedPattern-wc; (2): ClosedPattern-dc; (3): CP4IM)

346 N. Lazaar et al.

we observe a gain factor within a range from 13 to 300. This is because of
the huge number of propagator calls for reified constraints comparing to one
propagator call using ClosedPattern. The number of explored nodes is also
reduced, sometimes by half (e.g., mushroom), using ClosedPattern-dc. This
is not a surprise as its number of explored nodes is optimal. Another observation
is the experimental validation of Proposition 3: ClosedPattern-dc extracts
the closed patterns in a backtrack-free manner. All solutions are enumerated
without any fail (see failures column in Table 3). CP4IM requires an important
number of backtracks on most datasets. On connect and three instances of splice1
we can observe that ClosedPattern-dc and CP4IM explore the same number
of nodes. The reified model on such dense datasets and using (Lex\Max val)
heuristics is able to prune all inconsistent values. This result is confirmed by the
number of failures always equal to zero (backtrack-free). Even if the wc version
is faster, CP4IM remains better in terms of pruning (#nodes). Finally, the major
drawback using the reified model for frequent pattern extraction is the memory
consumption. We denote 25 Out-of-memory (out of 51 instances). The Out-of-
memory state is due to the huge number of reified constraints. For instance, if
we take the T40I10D100K dataset, the CP model produced by CP4IM contains
|T | + |I| = 101 000 variables, |T | = 100 000 reified constraints to express the
channeling constraints, 2 × |I| = 2 × 1 000 reified constraints to express the
closure and frequency constraints. This means that the CP solver has to load
in memory a CP model of 102 000 reified constraints expressed on 101 000
variables, which represents the size given in Table 2. From Table 2, we observe
that Gecode is not able to handle CP4IM models on datasets of size greater than
≈ 107 (greater than connect dataset).

CLOSEDPATTERNvs LCM. In terms of CPU times, LCM remains the leader on
basic queries. However, ClosedPattern is quite competitive as a declarative
approach. For instance, if we take chess dataset, LCM is 15 times faster than
ClosedPattern-dc on average, where it is more than 120 times faster on
average comparing to CP4IM. ClosedPattern pruning acts only within the
current node of the search tree, without imposing any condition on the main
search algorithm such as variable or value orderings. This allows to consider
new constraints and let the main search algorithm adopt the best heuristics
favouring the whole solving. To illustrate our point, we propose to model a
particular problem (k-pattern sets) in a declarative manner where LCM could not
meet this need.

k-Patterns Instance. A promising road to discover useful patterns is to impose
constraints on a set of k related patterns (k-pattern sets) [5,9]. In this setting,
the interest of a pattern is evaluated w.r.t. a set of patterns. We propose to
model and solve a particular instance, coined dist kpatterns lb ub. Here, we
aim at finding k closed patterns {P 1, . . . , P k} s.t:

(i) ∀i ∈ [1, k] : ClosedPattern(P i) (Closed Frequent Patterns),
(ii)∀i, j ∈ [1, k] : P i ∩ P j = ∅ (all distinct patterns constraints),
(iii) ∀i ∈ [1, k] : lb < |P i| < ub (min and max size constraints).

A Global Constraint for Closed Frequent Pattern Mining 347

Figure 2 shows a comparison between two models, M1 using ClosedPattern
for the CFPM part of the problem, M2 using a CP4IM implementation. We selected
two dataset instances where CP4IM does not reach the Out-of-memory state and
where we have a reasonable number of closed patterns, chess with θ = 80% (5084
closed patterns) and connect with θ = 90% (3487 closed patterns), and we have
varied k with a timeout of 3600 s. After a few preliminary tests, the bounds lb
and ub on the size of the patterns were set to 2 and 10 respectively. On chess,
model M1 is robust and scales well: it is linear on k and never exceeds 6 min
even with k = 12 (323.53 s). M2 follows an exponential scale and goes beyond
the timeout with only k = 8 (7222.41 s). The same observation can be made on
the connect instance, but in a more pronounced way on the exponential scale
followed by M2. With k = 4, M2 goes beyond the timeout with 5428.05 s whereas
M1 confirms its linear behavior when varying k from 2 to 12.

For such problems, a baseline can be the use of specialized methods with post-
processing. One can imagine (i) the use of LCM to extract the total number of
closed patterns and (ii) a generate-and-test search trying to find distinct patterns
of a given size. Such approach can be very expensive. Here, the postprocessing
will generate all the possible k combinations of closed patterns. For instance, we
recall that for chess with θ = 80% we have 5084 closed patterns. With k = 12
and using M1, we need less than 6 min, where using the baseline we have to cope
with a massive number of combinations. Thus, this last experiment confirms that
if LCM is faster on basic queries (e.g., asking for closed frequent with given size),
it cannot copewith complexqueries. Itwouldneed to thinkand topropose anadhoc
solution whereas CP enables a novice DM-user to express his query as constraints.

7 Conclusion

In this paper we have introduced a new global constraint for Closed Frequent Pat-
tern Mining. The ClosedPattern constraint captures the particular semantic
of the CFPM problem, namely the minimum frequency and closedness of pat-
terns. To propagate efficiently this global constraint, we have first defined three

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

k

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 3 4 5 6 7 8 9 10 11 12

k

M1
M2

θ =chess() connect ()80%, lb = 2, ub = 10 θ = 90%, lb = 2, ub = 10

Fig. 2. dist kpatterns lb ub instance using ClosedPattern and CP4IM.

348 N. Lazaar et al.

filtering rules that ensure domain consistency. Second, we have defined a filtering
algorithm that establishes domain consistency in a cubic time complexity and
quadratic space complexity. We have implemented this filtering algorithm into
the or-tools solver using a vertical representation of datasets and smart data
structures. We have conducted an experimental study on several real and syn-
thetic datasets, showing the efficiency and the scalability of the global constraint
compared to a reified constraints approach such as CP4IM. Finally, to show the
applicability and the flexibility of ClosedPattern compared to specialized
methods we performed experiments on an instance of k-pattern set problem
where ClosedPattern is integrated with a set of constraints.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, Washington, D.C., 26-28 May 1993,
pp. 207–216. ACM Press (1993)

2. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing associ-
ation rules to correlations. In: SIGMOD, pp. 265–276 (1997)

3. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 204–212. ACM (2008)

4. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-Trees.
IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

5. Guns, T., Nijssen, S., De Raedt, L.: k-pattern set mining under constraints. IEEE
Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

6. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12), 1951–1983 (2011)

7. Hoeve, W., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming, pp. 169–208. Elsevier Science Inc.,
New York (2006)

8. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: PREFIX-
PROJECTION global constraint for sequential pattern mining. In: Pesant, G. (ed.)
CP 2015. LNCS, vol. 9255, pp. 226–243. Springer, Heidelberg (2015)

9. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining
n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567.
Springer, Heidelberg (2010)

10. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

11. Nijssen, S., Guns, T.: Integrating constraint programming and itemset mining.
In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010,
Part II. LNCS, vol. 6322, pp. 467–482. Springer, Heidelberg (2010)

12. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)

13. Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for mining frequent closed
itemsets. In: SIGMOD Workshop on Data Mining and Knowledge Discovery, pp.
21–30 (2000)

14. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: DS 2004, pp. 16–31 (2004)

A Global Constraint for Closed Frequent Pattern Mining 349

15. Wang, J., Han, J., Pei, J.: CLOSET+: searching for the best strategies for mining
frequent closed itemsets. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 236–245 (2003)

16. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. pp. 326–335 (2003)

17. Zaki, M.J., Hsiao, C.: CHARM: an efficient algorithm for closed itemset mining.
In: SIAM International Conference on Data Mining, pp. 457–473 (2002)

Clique and Constraint Models for Maximum
Common (Connected) Subgraph Problems

Ciaran McCreesh1(B), Samba Ndojh Ndiaye2, Patrick Prosser1,
and Christine Solnon3

1 University of Glasgow, Glasgow, Scotland
c.mccreesh.1@research.gla.ac.uk

2 Université Lyon 1, LIRIS, UMR5205, 69621 Villeurbanne, France
3 INSA-Lyon, LIRIS, UMR5205, 69621 Villeurbanne, France

Abstract. The maximum common subgraph problem is to find the
largest subgraph common to two given graphs. This problem can be
solved either by constraint-based search, or by reduction to the maximum
clique problem. We evaluate these two models using modern algorithms,
and see that the best choice depends mainly upon whether the graphs
have labelled edges. We also study a variant of this problem where the
subgraph is required to be connected. We introduce a filtering algorithm
for this property and show that it may be combined with a restricted
branching technique for the constraint-based approach. We show how to
implement a similar branching technique in clique-inspired algorithms.
Finally, we experimentally compare approaches for the connected ver-
sion, and see again that the best choice depends on whether graphs have
labels.

1 Introduction

Maximum common subgraph problems arise in biology and chemistry [16,20,40],
in computer vision [7,9], in the analysis of source code [12], binary programs [19],
and circuit designs [9], in character recognition problems [27], and in many other
domains [49], both directly and as a way of measuring the similarity or differ-
ence between two graphs [5,18,23]. We illustrate two variants of this problem in
Fig. 1—in both cases we are finding an induced subgraph and maximising the
number of vertices selected, but in the second variant the common subgraph
must be connected.

1.1 Definitions and Notation

We introduce definitions and algorithms on undirected and unlabelled graphs;
the extension to general graphs is straightforward and is discussed in Sect. 2.3.

C. McCreesh was supported by the Engineering and Physical Sciences Research
Council [grant number EP/K503058/1].
S.N. Ndiaye and C. Solnon were supported by the ANR project SoLStiCe (ANR-13-
BS02-0002-01).

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 350–368, 2016.
DOI: 10.1007/978-3-319-44953-1 23

Clique and Constraint Models for MCCS Problems 351

Fig. 1. A maximum common induced subgraph of the first two graphs has eight ver-
tices, shaded. However, if we require the common subgraph to be connected, only seven
vertices may be selected—one way to do this is shown in the third and fourth graphs.

An undirected graph G is defined by a finite set of vertices V(G) and a set of
undirected edges E(G) ⊆ V(G) × V(G), where (u, v) ∈ E(G) ⇒ (v, u) ∈ E(G).
The neighbourhood of a vertex v, written N(G, v), is the set of vertices to which
it is adjacent, so N(G, v) = {u ∈ V(G) : (u, v) ∈ E(G)}. Given a graph G, two
vertices vs, ve ∈ V(G) are connected by a path in G if there exists a sequence of
vertices (v0, v1, . . . , vk) such that v0 = vs, vk = ve, and each pair of successive
vertices is connected by an edge, i.e. ∀i ∈ {1 . . . k}, (vi−1, vi) ∈ E(G). A graph G
is connected if every distinct pair of vertices is connected by a path.

The subgraph of a graph G induced by a set H ⊆ V(G), written G[H], is the
graph with vertex set H, and with every edge in G which has both endpoints in
G, i.e. E(G[H]) = E(G)∩(V(H)×V(H)). We will consider only subgraphs which
are induced by some set. It is also possible to permit removing edges which are
not incident to removed vertices, thus leading to partial subgraphs—we do not
consider this possibility in this paper, although everything we discuss may be
extended to the partial case [34,54].

A graph G is isomorphic to another graph H if there exists a bijective func-
tion f : V(G) → V(H) which preserves edges and non-edges, i.e. ∀(u, v) ∈
V(G)×V(G), (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(H). A common subgraph of two
graphs G and H is a graph isomorphic to subgraphs of both G and H. A com-
mon connected subgraph is a common subgraph which is connected. A Maximum
Common Subgraph, or MCS (resp. Maximum Common Connected Subgraph, or
MCCS) is a common subgraph (resp. common connected subgraph) which has
a maximum number of vertices.

1.2 Overview

In Sect. 2, we review existing approaches for solving the MCS problem, with a
specific focus on Constraint Programming (CP)-based techniques, and on reduc-
tions of the problem to finding a maximum clique in an association graph.

Previous experimental evaluations have used simple maximum clique algo-
rithms, or even enumeration algorithms—for example, Vismara and Valery [54]
compare a modified form of the Bron-Kerbosch maximal clique enumeration
algorithm [3] with a CP optimisation approach. Our experience suggests that
a modern maximum clique algorithm could give many orders of magnitude
improvement, due to a strong bound function which prunes the search space.
Therefore, in Sect. 3, we re-evaluate the clique-based approach using a modern

352 C. McCreesh et al.

algorithm, and we show that it outperforms CP on labelled graphs, and that it
is competitive with CP on unlabelled graphs, contradicting earlier conclusions.

Then, in Sect. 4, we consider the MCCS problem. For the CP approach, we
may add a global connectedness constraint to the model. Alternatively, we may
use a special branching rule [54] to grow connected subgraphs only. These two
techniques may be combined, and we experimentally show that the best results
are in fact obtained when combining them. When solving the MCCS problem
with a clique-based approach, neither technique seems directly viable with an
association graph encoding. However, we show that it is possible to adapt the
combined branching and bounding rule used by modern clique algorithms to
maintain connectedness during search. We compare the clique-based approach
with the best CP variant for MCCS, and we show that it outperforms CP on
labelled graphs, whereas it is outperformed by CP on unlabelled graphs.

2 Existing Complete Approaches for MCS

There are two main approaches for solving MCS. The first approach (described
in Sect. 2.1) is based on CP, whilst the second (described in Sect. 2.2) is based on
a reformulation of MCS into a maximum clique problem. Both approaches are
described for undirected, unlabelled graphs; their extension to richer graphs is
discussed in Sect. 2.3. Other approaches have been tried, mixed integer program-
ming [37] and heuristics [17]; SAT encodings seem to struggle even for subgraph
isomorphism [31].

2.1 Constraint Programming Models for MCS

McGregor [32] proposed a branch and bound algorithm: each branch of the
search tree corresponds to the matching of two vertices, and a bounding function
evaluates the number of vertices that still may be matched so that the current
branch is pruned as soon as this bound becomes lower than the size of the largest
known common subgraph. CP approaches may be viewed as enhancements of
this branch and bound algorithm.

Vismara and Valery [54] introduced the first explicit CP model. Given two
graphs G and H, this model associates a variable xv with every vertex v of G,
and the domain of this variable contains all vertices of H, plus an additional
value ⊥: variable xv is assigned to ⊥ if vertex v is not matched to any vertex
of H; otherwise xv is assigned to the vertex of H to which it is matched. Edge
constraints are introduced in order to ensure that variable assignments preserve
edges and non-edges between matched vertices, i.e. ∀u, v ∈ V(G), (xu = ⊥) ∨
(xv = ⊥) ∨ ((u, v) ∈ E(G) ⇔ (xu, xv) ∈ E(H)). Difference constraints are
introduced in order to ensure that each vertex of H is assigned to at most one
variable, i.e. ∀u, v ∈ V(G) distinct, (xu = ⊥) ∨ (xv = ⊥) ∨ (xu ̸= xv).

This CP model was improved by Ndiaye and Solnon [34] by replacing binary
difference constraints with a soft global allDifferent constraint which maximizes
the number of xu variables that are assigned to values different from ⊥, while

Clique and Constraint Models for MCCS Problems 353

a

b c d

1 2

3 4

1 2 3 4a → { }

1

2

3

4

b →

1 2 3 4c → { }

1

2

3

4

→d

Fig. 2. A maximum common induced subgraph between the two graphs on the left
has three vertices—one solution is highlighted. On the right, the association graph
encoding: the highlighted clique of size three shows the same solution. The “missing”
vertices correspond to assignments which are impossible due to the presence or absence
of loops.

ensuring they are all different when they are not assigned to ⊥. They find
that the combination “MAC+Bound” (resp. “FC+Bound”) obtains the best
results on labelled (resp. unlabelled) graphs and outperforms the two previous
approaches. The combination “MAC+Bound” maintains arc consistency [41]
of edge constraints, whereas the combination “FC+Bound” simply performs
forward-checking on these constraints. In both combinations, the “Bound” filter-
ing checks whether it is possible to assign distinct values to enough xu variables to
surpass the best cost found so far—it is a weaker version of GAC(softAllDiff) [36]
which computes the maximum number of variables that can be assigned distinct
values.

2.2 Reformulation of MCS to a Maximum Clique Problem

An alternative approach to MCS is to reduce the problem to finding a maximum
clique in an association graph [2,15,24,40]. An association graph (or compati-
bility graph, or weak modular product) of two graphs G and H is an undirected
graph G▽H with vertex set V(G▽H) = {(v, v′) ∈ V(G) × V(H) : (v, v) ∈
E(G) ⇔ (v′, v′) ∈ E(H)}—to avoid confusing vertices of G▽H with vertices
of the two original graphs, we call vertices of G▽H matching nodes, as each
vertex (u, u′) of G▽H denotes the matching of u with u′. The edges of G▽H
connect matching nodes which denote compatible assignments, so two matching
nodes (u, u′) and (v, v′) are adjacent if u ̸= v and u′ ̸= v′, and if they preserve
both edges and non-edges, so (u, v) ∈ E(G) ⇔ (u′, v′) ∈ E(H). We illustrate this
in Fig. 2.

A clique is a subgraph whose vertices are all pairwise adjacent. A clique is
maximal if it is not strictly included in any other clique, and it is maximum if
it is a largest clique of a given graph, with respect to the number of vertices.
A clique in an association graph corresponds to a set of compatible matchings.
Therefore, such a clique corresponds to a common subgraph, and a maximum

354 C. McCreesh et al.

clique of G▽H is an MCS of G and H. It follows that any method able to find
a maximum clique in a graph can be used to solve the MCS problem.

Note that the association graph is a partial subgraph of the microstruc-
ture [21] associated with the CP model of Vismara and Valery [54]: the
microstructure has more matching nodes than the association graph because
it has a matching node (u,⊥) for each vertex u of G. Each clique of size |V(G)|
in the microstructure corresponds to a common subgraph, the size of which is
defined by the number of matching nodes that do not contain ⊥.

2.3 Extension to Labelled or Directed Graphs

In some applications, labels may be associated with vertices or edges. We denote
λ(u) and λ((u, v)) the label of a vertex u and an edge (u, v), respectively. Where
graphs are labelled, any isomorphism f must additionally preserve labels, so
we require λ(f(v)) = λ(v) for any vertex v, and λ((f(u), f(v))) = λ((u, v))
for any edge (u, v). This kind of label compatibility constraint is handled in
a straightforward way in both CP and clique-based approaches to MCS. For
CP, we restrict the domain of every variable xu to vertices with compatible
labels, and ensure that edge labels are preserved in edge constraints. For clique-
based approaches, label compatibility is handled through the definition of the
association graph, by restricting the set of matching nodes to pairs of vertices
with compatible labels, and the set of matching edges to pairs of edges with
compatible labels.

The extension of MCS algorithms to directed graphs, where isomorphisms
must preserve directed edges, is similarly straightforward.

Labels and directed edges usually simplify the solution process, both for
CP and clique-based approaches: vertex labels reduce domain sizes for CP,
and the number of matching nodes in association graphs; edge labels tighten
edge constraints for CP, and make the association graph sparser for clique-based
approaches. It is worth noting that edge constraints do not help CP approaches
to do more filtering so long as ⊥ remains in variable domains: every pair of
variables (xi, xj) having ⊥ ∈ D(xj) is arc consistent, since ⊥ is a support for
any value u ∈ D(xi). However, as soon as ⊥ is removed from domains (i.e. when
the number of variables assigned to ⊥ has reached the best known bound on the
size of the MCS), maintaining arc consistency may filter values, and then tighter
constraints increase the opportunities for filtering.

3 Re-evaluating the Clique Model for MCS

Previous experimental evaluations of the association graph model have used
either maximal clique enumeration algorithms [22,54] (even when the maximi-
sation problem was being considered), or very simple maximum clique algo-
rithms [6,8], and so their conclusions may now be overly pessimistic. Thus we
re-evaluate the approach using a modern maximum clique algorithm. Association
graphs are dense, even if the input is sparse, so we will using (the single-threaded,

Clique and Constraint Models for MCCS Problems 355

102 103 104 105 106 102 103 104 105 106

102

103

104

105

102 103 104 105

102

103

104

105

102 103 104 105

102

≥ 103

Fig. 3. The cumulative number of MCS instances solved in under a certain time: on the
top, 33% labelled graphs, and then unlabelled and undirected graphs. On the bottom,
an instance-by-instance comparison of the clique model with the best CP model, with
33% labelled graphs (with MAC) on the left, and unlabelled and undirected graphs
(with FC) on the right.

bit-parallel version of) the maximum clique solver by McCreesh and Prosser [30],
which implements Prosser’s [38] “MCSa1” variant of a series of algorithms due to
Tomita et al. [51–53], using a bitset encoding due to San Segundo et al. [45,47].
We compare this to the “FC+Bound” and “MAC+Bound” (simply referred to
as FC and MAC) CP implementations of Ndiaye and Solnon [34], using smallest
domain first for variable ordering, and a value ordering which prefers vertices of
most similar degree. We perform our experiments on machines with Intel Xeon
E5-2640 v2 CPUs and 64GBytes RAM; software was compiled using GCC 4.9,
and a timeout of one hour was used.

We consider a randomly generated database [8,42] commonly used for bench-
marking maximum common subgraph problems. The dataset contains differ-
ent classes of graphs: randomly connected graphs with different densities; 2D,
3D, and 4D regular and irregular meshes; regular bounded valence graphs, and
irregular bounded valence graphs. For each pair of graphs, there are 3 different

356 C. McCreesh et al.

labellings such that the number of different labels is equal to 33%, 50% or 75%
of the number of vertices. In this paper, we report experiments with unlabelled
graphs (labels are ignored), and with 33% labellings (the problem becomes very
easy with larger numbers of labels). For unlabelled graphs, we select the 27,500
graph pairs where the number of vertices in each graph is no more than 35;
for labelled graphs, which we find less computationally challenging, we select all
81,400 graph pairs, to include graphs with up to 100 vertices.

The two plots on the top of Fig. 3 display the cumulative number of instances
solved with respect to time. When graphs are labelled, the clique-based approach
clearly outperforms either CP model, and MAC has a slight advantage over FC.
(Recall that edge labels decrease the density of the association graph, which
is typically very beneficial for clique algorithms, but do not help CP until ⊥ is
removed from domains.) For unlabelled graphs, the three approaches are broadly
comparable, and ultimately FC beats MAC, which beats the clique approach.
The bottom row gives a per-instance comparison of the best CP approach with
the clique approach: the heatmaps are similar to scatter plots, but due to the
large number of instances, we colour each point according to the density of solu-
tions around that point. For labelled graphs, the clique approach comes close to
dominating MAC on non-trivial instances (which suggests that there is unlikely
to be scope for per-instance algorithm selection here). For unlabelled graphs,
there is still a broad correlation between the runtimes; the clique approach rarely
wins by more than one order of magnitude, but is sometimes much worse.

A closer inspection of the data suggests that the different randomness models
used to generate instances have little effect on the runtimes for either approach.
However, the relative size of the solution matters, particularly for the clique
algorithm: if the solution is large (i.e. the two input graphs are very similar), the
clique approach finds nearly every labelled instance trivial.

4 Finding Maximum Common Connected Subgraphs

In many applications, the common subgraph must satisfy some additional con-
straints. This is usually handled in a straightforward way in CP, by branch-
ing rules and/or constraint propagation. In clique-based approaches, some con-
straints may be handled by modifying the definition of the association graph—for
example, constraints on pairs of vertices that may be matched are handled by
removing inconsistent pairs from V(G▽H). However, more global constraints
cannot be handled by modifying the definition of the association graph.

In this paper, we focus on the connectedness constraint, which occurs in
many applications [16,22,40,54]. Adding the connectedness requirement makes
certain special cases solvable in polynomial time, including outerplanar graphs
of bounded degree [1] and trees [14], but the general case remains NP-hard. As
illustrated in Fig. 1, the MCCS cannot be deduced from the MCS: we need to
ensure connectedness during search. In Sect. 4.1, we show that in CP this may be
done in two different ways that may be combined, and we show in Sect. 4.2 that
the best results are obtained when combining them. In Sect. 4.3, we introduce

Clique and Constraint Models for MCCS Problems 357

a

b c

d e

1 2

3 4

5

i) Initial problem

a

b c

d e

1 2

3 4

5

ii) Trying a → 1

a

b c

d e

1 2

3 4

5

iii) Trying b → 2

a

b c

d e

1 2

3 4

5

iv) Trying d → 4

a

b c

d e

1 2

3 4

5

v) e → ⊥ is forced

Fig. 4. Suppose we are looking for a connected common subgraph, using the graph
on the left for variables and the graph on the right (which has an isolated vertex) for
values. We initially consider a #→ 1. Our restricted branching rule requires us to select
either variable b or variable c subsequently, not d or e. We try b #→ 2, which adds d to
the branchable variables, and forces c #→ ⊥. We may now only branch on d, and we try
d #→ 4. Now the only remaining variable is unbranchable, and so e = ⊥ is forced, even
though 5 remains in its domain and does not violate any constraints.

a new way for ensuring connectedness in a clique-based approach. Finally, we
compare CP and our clique-based approach in Sect. 4.4.

For MCCS we consider only undirected graphs (and so we treat directed
edges in the inputs as being undirected). For directed graphs, there is more than
one notion of connectivity, and it is not clear which should be selected—the
approaches we consider extend easily to weakly connected directed graphs, but
not to the strongly connected case (for which we know of no applications).

4.1 Ensuring Connectedness in CP

Vismara and Valery [54] implement the connectedness constraint by using a
branching rule which selects the next variable to be assigned. Let A be the
set of variables already assigned to values different from ⊥. The next variable
to be assigned is chosen within the set of unassigned variables which are the
neighbour of at least one vertex of A. When this set is empty, all remaining
unassigned variables are assigned to ⊥. We illustrate this in Fig. 4.

A more traditional CP approach would be to express connectedness as a
conventional constraint. For example, CP(Graph) [13] introduces graph domain
variables and enforces connectivity via the reachable constraint, ensuring that
there is a path from a specified vertex to a specified set of vertices. One such
constraint could be posted for each of the vertices in the graph, encoding the
transitive closure of the graph. Brown et al. [4] explored the use of constraint pro-
gramming in the generation of connected graphs with specified degree sequences.

358 C. McCreesh et al.

Two constraints were combined: the graphical constraint (a backtrackable imple-
mentation of the Havel-Hakimi algorithm), and a connectivity constraint imple-
mented using sets of vertices, where vertex sets A and B are combined when
there exists a pair of vertices v ∈ A and w ∈ B and an edge (v, w) ∈ E. Residual
degree counts are maintained on components and vertices to enforce graphicality
and connectivity. Prosser and Unsworth [39] proposed a connectivity constraint
for connected graph generation where decision variables are edges (the search
process accepts and rejects edges). The constraint employed depth first search
to maintain the set of tree edges and back edges, associating path counters on
these edges. The counters were then used to detect the existence of cut-edges
and protects these by forcing edges.

In all these previous works, the goal was to ensure that a given set of ver-
tices is connected. For MCCS, the problem is slightly different: we have to
ensure that the number of connected vertices that may be matched (in both
graphs) is greater than the size of the largest common subgraph previously
found. Therefore, we introduce a new filtering algorithm to ensure connect-
edness consistency for MCCS. Let us consider two graphs G and H, and let
D be the current domains (we suppose that D(xu) is a singleton when xu is
assigned). Let S and T be the sets of vertices of G and H respectively which
may belong to the common subgraph, i.e. S = {u ∈ V(G) : D(xu) ̸= {⊥}}, and
T = ∪u∈V(G)D(xu) \ {⊥}. Connectedness consistency ensures that both G[S]
and H[T] are connected graphs.

Connectedness consistency is ensured only once a first variable has been
assigned, rather than at the root of search. Let xu be the first assigned variable,
and v the value assigned to xu. To ensure connectedness consistency, we perform
a traversal of G (resp. H), starting from u (resp. v), and we initialize S (resp.
T) with all visited vertices. Then, for each vertex v ∈ V(G) \ S, we set xv to ⊥,
and for each w ∈ V(H) \ T , we remove w from all domains to which it belongs.

During search, each time a variable is assigned to ⊥, we remove the corre-
sponding vertex from S and perform a new traversal of G[S] starting from the
initial vertex u. For each vertex w ∈ S that is not visited by the traversal, we
remove w from S and assign xw to ⊥. Also, each time a value is removed from a
domain so that this value no longer belongs to any domain, we remove it from T ,
and perform a new traversal of H[T] starting from the initial vertex v. For each
vertex w that is not visited by the traversal, we remove w from T , and remove
w from all domains to which it belongs.

Finally, the two approaches for ensuring connectedness (branching and fil-
tering) are complementary and may be combined: at each step of the search, we
select the next variable to be assigned within the neighbors of A, and each time a
vertex of H is removed from a domain we filter domains to ensure connectedness
consistency. In the example in Fig. 4, after the first assignment, filtering alone
would remove 5 from every domain but would allow branching on any remaining
variable, whilst branching alone would force the next variable to be either b or
c but would not immediately eliminate 5 from the domains of d and e.

Clique and Constraint Models for MCCS Problems 359

105 106 105 106

Fig. 5. On top, the cumulative number of MCCS instances solved in under a certain
time using different CP techniques, for 33% labelled (left) and unlabelled undirected
(right) graphs. Below, instance-by-instance comparisons.

4.2 Experimental Comparison of CP Connectedness Techniques

Figure 5 compares the three approaches for ensuring connectedness in CP: by
branching (Branch), by filtering (Filter), or by combining branching and filtering
(Both). We show only results using the best variant for each class—that is, MAC
for labelled graphs, and FC for unlabelled graphs (the other results are very
similar). On labelled graphs, we see many instances which are solved very quickly
by branching but not at all by filtering, and vice versa. However, combining both
is rarely much worse than just doing one or the other, and is often much better,
even if on average it is slightly slower. On unlabelled graphs, the three variants
have rather similar performance.

360 C. McCreesh et al.

4.3 Ensuring Connectedness in a Clique-Based Approach

It is not possible to determine connectedness from a raw association graph.
However, we can take a maximum clique algorithm and mimic the CP branch-
ing strategy if we have access to the underlying graphs and can determine the
“meaning” of the association graph vertices.

Most modern maximum clique algorithms for dense graphs use some varia-
tion of greedy graph colouring as a bound—the underlying observation is that
each vertex in a clique must be given a different colour in a colouring, so if we
can colour a subset of vertices using k colours then a maximum clique in this
subset has at most k vertices. However, the colouring is also used as a branching
heuristic: vertices are selected in reverse order from their colour classes in turn,
starting with the last colour class created. Because of this coupling of branching
and the bound (which is important in practice because it mimics a “smallest
domain first” branching heuristic if colour classes are viewed as variables, with-
out requiring a new bound to be calculated for every iteration [29]), if we were
to select only a subset of vertices for branching at each stage inside a clique
algorithm, we would lose completeness. Thus we must adapt the bound in a
non-trivial way to take into account restricted branching.

In Algorithm 1 we present a novel clique-inspired algorithm which finds a
maximum common connected induced subgraph via an association graph. If the
additional branching restrictions are removed, the core of the algorithm is the
same as the “MCSa1” clique algorithm used in the previous section (and we refer
the reader to the previously cited works for implementation details on how to use
bitsets and other data structures to implement the colouring stage with very low
constant factors). The way we extend this algorithm for connectedness differs
considerably from that of Koch [22] and Vismara and Valery [54]: these earlier
approaches worked by classifying labels in the association graph based upon
whether a common vertex is shared, and then constructing cliques with particular
edge properties—this is harder to integrate with a strong bound function.

Our algorithm begins by building the association graph (line 4). The main
part of the algorithm then works by building up candidate cliques in the solution
variable, by recursive calls to the search procedure—starting from the empty set
(line 5), each recursive subcall adds one vertex to solution (line 14) in such a
way that solution is always a clique which corresponds to a connected common
subgraph. The remaining set contains the set of vertices which are adjacent to
every vertex in solution, and which have not yet been accepted or rejected (and
so initially it contains every vertex). The main loops in the search procedure
(lines 10 and 11) have the effect of iterating over each vertex in this set in a
particular order—each vertex v is selected in turn, and then a recursive call is
made to consider the effects of including v in solution (line 18), followed by the
next iteration where v is instead rejected. When v is accepted, we add it to the
new solution ′ (line 14), and create a new remaining ′ containing only the vertices
in remaining which are adjacent to v (line 17).

The connected set contains the set of matching nodes which corre-
spond to vertices adjacent to an already-accepted vertex in the first input

Clique and Constraint Models for MCCS Problems 361

Algorithm 1. An algorithm for a maximum common connected induced
subgraph isomorphism via an association graph.
1 associationMCCIS :: (Graph G1, Graph G2) → Map
2 begin
3 global incumbent ← ∅
4 G ← G1 ▽G2

5 search(G, ∅, ∅,V(G))
6 return incumbent

7 search :: (Graph G, Set solution, Set connected , Set remaining)
8 begin
9 colourClasses ← concatenate(

colour(G, remaining \ connected), colour(G, remaining ∩ connected))
10 while length(colourClasses) > 0 do
11 foreach v ∈ last(colourClasses) in reverse order do
12 if |solution|+ length(colourClasses) ≤ |incumbent | then return
13 if v /∈ connected and solution ̸= ∅ then return
14 solution ′ ← solution ∪ {v}
15 if |solution ′| > |incumbent | then incumbent ← solution ′

16 connected ′ ← connected ∪ {w ∈ G : first(w) ∈ N(G, first(v))}
17 remaining ′ ← remaining ∩ N(G, v)
18 if remaining ′ ̸= ∅ then search(G, solution ′, connected ′, remaining ′)

19 removeLast(colourClasses)

20 colour :: (Graph G, Set uncoloured) → List of List of Vertex
21 begin
22 return a greedy colouring of the vertices in uncoloured , using the procedure

of San Segundo et al. [47] with a static degree order from G and kmin = 0.

graph—in constraint programming terms, it is the set of assignments which could
be made next which maintain connectedness. (Using only one of the two input
graphs is sufficient for correctness, and has the advantage that the connected-
ness set may be determined by a simple lookup into a precomputed array which
maps each vertex in the first input graph to a bitset.) At the top of search, this
set is empty, and is not used (our first vertex selection is special, and does not
care about connectedness). At subsequent depths, we may only accept vertices
which are in this set, and if no such vertices remain then we return immediately
(line 13). When recursing, we extend connected with the new vertices permitted
by our acceptance of the branching v (line 16). Note that we are assuming that
inside the main loops, we encounter every vertex in remaining∩connected before
any vertex in remaining \ connected .

As we proceed, we keep track of the best solution we have found so far—this is
stored in the incumbent variable (lines 3 and 15). We use the incumbent, together
with a colour bound, to prune portions of the search space which cannot contain a
better solution. The colour bound operates as follows: at each entry to the search
procedure, we produce a greedy colouring of the vertices in remaining (line 9,

362 C. McCreesh et al.

a b

c d

e f

1 2

3 4

5

solution

connected

remaining

{(a, 1)}
{b, c, d} × {1 . . . 5}
({b, c, d} × {2, 3}) ∪ ({e, f} × {4, 5})

i) Initial problem ii) Search variables after guessing a → 1

(e, 4) (e, 5)

(f, 4) (f, 5)

(b, 2) (b, 3)

(c, 2) (c, 3) (d, 2) (d, 3)

iii) remaining \ connected iv) remaining ∩ connected

[[(e, 4), (e, 5)], [(f, 4), (f, 5)], [(b, 2),(b, 3)], [(c, 2), (c, 3), (d, 2), (d, 3)]]

v) The resulting colourClasses variable.

Fig. 6. Solving a maximum common connected problem using an association graph.
Suppose we have already mapped vertex a to vertex 1, giving the assignments on the
right. Now we have two subgraphs to colour. We need two colours for remaining \
connected , and we place these two colour classes first in the colourClasses variable. We
can also colour remaining ∩ connected using two colours, since we cannot simultane-
ously map c to 2 and d to 3, or vice-versa. Thus colourClasses becomes a list of four
colour classes. This tells us that if we hope to extend the current common subgraph
by another four vertices, we must pick one assignment from each of the four colour
classes (which is not actually possible, so the bound here gives an overestimate). The
algorithm thus guesses d #→ 3 as its next assignment, and if that fails, d #→ 2, and so
on; once b #→ 3 is reached, the bound decreases by one, and if f #→ 5 were reached we
would stop due to a lack of remaining connected association nodes.

discussed further below). This greedy colouring gives us a list of colour classes,
each of which is a list of pairwise non-adjacent vertices. The two loops (lines 10
and 11) then iterate over each colour class, from last to first, and then over each
vertex in that colour class, again from last to first. (Rather than actually using a
list of lists and removing items, this process should be implemented using a pair
of immutable flat arrays. This technique is described elsewhere [29], so we do not
discuss it here.) Finally, if at any point the number of remaining colour classes
plus the number of vertices currently present in solution is not strictly greater
than the size of the incumbent, then we may backtrack immediately (line 12).

Finally, we describe the colouring process—an example is shown in Fig. 6. In
conventional clique algorithms, a simple greedy sequential colouring is used (pos-
sibly with the help of previous colourings to reduce the computational cost [35],
and possibly with shortcuts taken for certain vertices [48], and possibly followed
by a repair step to improve the colouring [53], or stronger bounding rules based

Clique and Constraint Models for MCCS Problems 363

102 103 104 105 106 102 103 104 105 106

102

103

104

105

102 103 104 105

102

103

104

105

102 103 104 105

102

≥ 103

Fig. 7. The cumulative number of connected instances solved in under a certain time:
on the top, 33% labelled undirected graphs with up to 100 vertices, and then unlabelled
and undirected graphs with up to 35 vertices. On the bottom, an instance-by-instance
comparison of the association and CP Both approaches, with 33% labelled graphs on
the left, and unlabelled and undirected graphs on the right.

upon MaxSAT inference [25,26,46]). Such colourings will not give us the required
property that vertices in remaining ∩ connected come last (so they are selected
first by the reverse branching order). Thus we produce two greedy sequential
colourings, first considering the non-branching vertices in remaining \connected ,
followed by the branching vertices, and concatenate them (line 9). This produces
a valid colouring, since we do not merge any colour classes between the two
stages, although it may use more colours than a single colouring would.

(What if we did not guarantee that vertices in remaining ∩ connected came
last, and just used a conventional colouring with the branching rule? Suppose
we had four vertices in remaining , and produced a colouring [[v1, v2], [v3], [v4]],
and suppose that extending solution with {v1, v3, v4} gives an optimal solution.
If v4 was not connected yet, we would not branch on that subtree, and the
bound could eliminate branching on v3 and v1, so we would miss the solution.

364 C. McCreesh et al.

Thus we cannot simply add the branching rule without also adapting the com-
bined bound and ordering heuristic.)

Our colour procedure is a simple greedy sequential colouring. We use the
bit-parallel algorithm introduced by San Segundo et al. [47], with the kmin para-
meter set to 0, so we do not describe it here. We use a simple static degree
ordering; other initial vertex orderings have been considered on general clique
problems [38,43], and it is possible that special properties of the association
graph could be exploited in this step (for example, it is always possible to colour
the initial association graph using min(|V(G1)| , |V(G2)|) colours, but with cer-
tain vertex orderings, a greedy sequential colouring will sometimes use many
more colours).

4.4 Experimental Comparison of the CP and Clique Approaches

In Fig. 7 we compare the clique-based approach to the connected problem with
the two CP Both approaches. The trend is broadly similar to the unconnected
problem: for labelled graphs, the clique-based approach is the clear winner, but
for unlabelled graphs the clique approach lags somewhat.

The heatmaps show a more detailed picture. As before, in the unlabelled
case, the association approach is almost never more than an order of magnitude
better, and is often much worse. In the labelled case, however, there are now
many instances where the CP approach does much better than the association
approach, despite the association approach remaining much better overall.

5 Conclusion

Contradicting earlier claims in the literature, we have seen that a modern clique
algorithm can perform competitively for maximum common subgraph problems,
particularly when edge labels are involved. However, the best approaches for
these problems is still far behind the state-of-the-art for subgraph isomorphism,
where we can often scale to unlabelled graphs with thousands of vertices.

To start tackling this gap, we believe there is further scope for tailoring
clique algorithms for association graphs, including specialised inference, a bound
function which is aware that it is working on an association graph, and better
initial vertex orderings. Treating the first branch specially may also be beneficial,
since the first branch has an unusually large effect on the search space with
association graphs [50].

For CP models, using a branching rule for connectedness, rather than simply
as an ordering heuristic, is unconventional and does not cleanly fit into the
abstractions used by toolkits. However, we saw that combining conventional
filtering and the special branching rule was beneficial.

We looked only at single-threaded versions of these algorithms. Maximum
clique algorithms have been extended for thread-parallel search [10,28,44], and
in particular, work stealing strategies designed to eliminate exceptionally hard
instances by forcing diversity at the top of search [30] could be beneficial in

Clique and Constraint Models for MCCS Problems 365

eliminating some of the rare cases where the clique algorithm is many orders of
magnitude worse than the CP models. On the CP side, the focus for parallelism
has been on decomposition [33], rather than fully dynamic work stealing—it
would be interesting to compare these approaches.

Finally, we intend to investigate larger and more diverse sets of instances,
and other variants of the problem. We have yet to investigate partial or weighted
graphs. Nor have we considered strongly connected common subgraphs—this
would make the branching approach impossible, and filtering would be much
more complicated. From the datasets we selected, there appears to be little
scope for per-instance algorithm selection, but other families of input data could
lead to a different conclusion.

References

1. Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the maxi-
mum common connected edge subgraph of outerplanar graphs of bounded degree.
Algorithms 6(1), 119–135 (2013). http://dx.doi.org/10.3390/a6010119

2. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J.
Comput. 15(4), 1054–1068 (1986)

3. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM 16(9), 575–577 (1957). http://doi.acm.org/10.1145/
362342.362367

4. Brown, K.N., Prosser, P., Beck, C.J., Wu, C.W.: Exploring the use of constraint
programming for enforcing connectivity during graph generation. In: Proceedings
IJCAI Workshop on Modelling and Solving Problems with Constraints, Edinburgh,
Scotland, pp. 26–31 (2005)

5. Bunke, H.: On a relation between graph edit distance and maximum common sub-
graph. Pattern Recogn. Lett. 18(8), 689–694 (1997). http://dx.doi.org/10.1016/
S0167-8655(97)00060-3

6. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of
algorithms for maximum common subgraph on randomly connected graphs. In:
Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR
2002 and SSPR 2002. LNCS, vol. 2396, pp. 123–132. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-70659-3 12

7. Combier, C., Damiand, G., Solnon, C.: Map edit distance vs. graph edit distance
for matching images. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang,
X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 152–161. Springer, Heidelberg (2013)

8. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common
subgraph detection algorithms: a performance analysis of three algorithms on
a wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007).
http://jgaa.info/accepted/2007/ConteFoggiaVento2007.11.1.pdf

9. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description
length and background knowledge. J. Artif. Intell. Res. (JAIR) 1, 231–255 (1994).
http://dx.doi.org/10.1613/jair.43

10. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janezic, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. J. Chem. Inf. Model. 53(9),
2217–2228 (2013). http://dx.doi.org/10.1021/ci4002525

http://dx.doi.org/10.3390/a6010119
http://doi.acm.org/10.1145/362342.362367
http://doi.acm.org/10.1145/362342.362367
http://dx.doi.org/10.1016/S0167-8655(97)00060-3
http://dx.doi.org/10.1016/S0167-8655(97)00060-3
http://dx.doi.org/10.1007/3-540-70659-3_12
http://jgaa.info/accepted/2007/ConteFoggiaVento2007.11.1.pdf
http://dx.doi.org/10.1613/jair.43
http://dx.doi.org/10.1021/ci4002525

366 C. McCreesh et al.

11. Dhaenens, C., Jourdan, L., Marmion, M. (eds.): Learning and Intelligent Opti-
mization. LNCS, vol. 8994. Springer, Switzerland (2015). http://dx.doi.org/
10.1007/978-3-319-19084-6

12. Djoko, S., Cook, D.J., Holder, L.B.: An empirical study of domain knowledge and
its benefits to substructure discovery. IEEE Trans. Knowl. Data Eng. 9(4), 575–586
(1997). http://dx.doi.org/10.1109/69.617051

13. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): introducing a graph computa-
tion domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 211–225. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/
11564751 18

14. Droschinsky, A., Kriege, N., Mutzel, P.: Faster algorithms for the maximum com-
mon subtree isomorphism problem. In: Faliszewski, P., Muscholl, A., Niedermeier,
R. (eds.) 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2016). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 58, pp. 34:1–34:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2016, to appear)

15. Durand, P.J., Pasari, R., Baker, J.W., Tsai, C.C.: An efficient algorithm for simi-
larity analysis of molecules. Internet J. Chem. 2(17), 1–16 (1999)

16. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review. Wiley Interdisc. Rev. Com-
put. Mol. Sci. 1(1), 68–79 (2011). http://dx.doi.org/10.1002/wcms.5

17. Englert, P., Kovács, P.: Efficient heuristics for maximum common substructure
search. J. Chem. Inf. Model. 55(5), 941–955 (2015). http://dx.doi.org/10.1021/
acs.jcim.5b00036

18. Fernández, M., Valiente, G.: A graph distance metric combining maximum common
subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6/7), 753–
758 (2001)

19. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). http://dx.doi.org/
10.1007/978-3-540-88625-9 16

20. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epi-
morphism problem. Discrete Appl. Math. 162, 214–228 (2014). http://dx.doi.org/
10.1016/j.dam.2013.08.008

21. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings
of the 11th National Conference on Artificial Intelligence, Washington, DC, USA,
pp. 731–736. AAAI Press/The MIT Press, 11–15 July 1993. http://www.aaai.org/
Library/AAAI/1993/aaai93-109.php

22. Koch, I.: Enumerating all connected maximal common subgraphs in two graphs.
Theor. Comput. Sci. 250(1–2), 1–30 (2001). http://dx.doi.org/10.1016/S0304-
3975(00)00286-3

23. Kriege, N.: Comparing graphs. Ph.d. thesis, Technische Universität Dortmund
(2015)

24. Levi, G.: A note on the derivation of maximal common subgraphs of two
directed or undirected graphs. CALCOLO 9(4), 341–352 (1973). http://dx.doi.org/
10.1007/BF02575586

25. Li, C., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper
bound for the maximum clique problem. In: 2013 IEEE 25th International Confer-
ence on Tools with Artificial Intelligence, Herndon, VA, USA, pp. 939–946. IEEE
Computer Society, 4–6 November 2013. http://dx.doi.org/10.1109/ICTAI.2013.143

http://dx.doi.org/10.1007/978-3-319-19084-6
http://dx.doi.org/10.1007/978-3-319-19084-6
http://dx.doi.org/10.1109/69.617051
http://dx.doi.org/10.1007/11564751_18
http://dx.doi.org/10.1007/11564751_18
http://dx.doi.org/10.1002/wcms.5
http://dx.doi.org/10.1021/acs.jcim.5b00036
http://dx.doi.org/10.1021/acs.jcim.5b00036
http://dx.doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1016/j.dam.2013.08.008
http://dx.doi.org/10.1016/j.dam.2013.08.008
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1016/S0304-3975(00)00286-3
http://dx.doi.org/10.1016/S0304-3975(00)00286-3
http://dx.doi.org/10.1007/BF02575586
http://dx.doi.org/10.1007/BF02575586
http://dx.doi.org/10.1109/ICTAI.2013.143

Clique and Constraint Models for MCCS Problems 367

26. Li, C., Jiang, H., Xu, R.: Incremental MaxSAT reasoning to reduce branches in a
branch-and-bound algorithm for MaxClique. In: Dhaenens et al. [11], pp. 268–274.
http://dx.doi.org/10.1007/978-3-319-19084-6 26

27. Lu, S.W., Ren, Y., Suen, C.Y.: Hierarchical attributed graph representation and
recognition of handwritten chinese characters. Pattern Recogn. 24(7), 617–632
(1991). http://www.sciencedirect.com/science/article/pii/0031320391900295

28. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique algo-
rithm. Algorithms 6(4), 618–635 (2013). http://dx.doi.org/10.3390/a6040618

29. McCreesh, C., Prosser, P.: Reducing the branching in a branch and bound algo-
rithm for the maximum clique problem. In: O’Sullivan, B. (ed.) CP 2014. LNCS,
vol. 8656, pp. 549–563. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/
978-3-319-10428-7 40

30. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. TOPC 2(1), 8 (2015).
http://doi.acm.org/10.1145/2742359

31. McCreesh, C., Prosser, P., Trimble, J.: Heuristics and really hard instances for
subgraph isomorphism problems. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence (2016, to appear)

32. McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph
problem. Softw. Pract. Exp. 12(1), 23–34 (1982)

33. Minot, M., Ndiaye, S.N., Solnon, C.: A comparison of decomposition methods for
the maximum common subgraph problem. In: 27th IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, pp. 461–
468. IEEE, 9–11 November 2015. http://dx.doi.org/10.1109/ICTAI.2015.75

34. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In:
Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-23786-7 48

35. Nikolaev, A., Batsyn, M., Segundo, P.S.: Reusing the same coloring in the child
nodes of the search tree for the maximum clique problem. In: Dhaenens et al. [11],
pp. 275–280. http://dx.doi.org/10.1007/978-3-319-19084-6 27

36. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-
constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001). http://dx.doi.org/10.1007/s10479-011-1019-8

37. Piva, B., de Souza, C.C.: Polyhedral study of the maximum common
induced subgraph problem. Ann. OR 199(1), 77–102 (2012). http://dx.doi.org/
10.1007/s10479-011-1019-8

38. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algo-
rithms 5(4), 545–587 (2012). http://dx.doi.org/10.3390/a5040545

39. Prosser, P., Unsworth, C.: A connectivity constraint using bridges. In: Brewka, G.,
Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European
Conference on Artificial Intelligence, ECAI 2006. Frontiers in Artificial Intelligence
and Applications, vol. 141, August 29–September 1, 2006, Riva del Garda, Italy,
Including Prestigious Applications of Intelligent Systems (PAIS), pp. 707–708. IOS
Press (2006)

40. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–
533 (2002). http://dx.doi.org/10.1023/A:1021271615909

41. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satis-
faction. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 10–20. Springer,
Heidelberg (1994)

http://dx.doi.org/10.1007/978-3-319-19084-6_26
http://www.sciencedirect.com/science/article/pii/0031320391900295
http://dx.doi.org/10.3390/a6040618
http://dx.doi.org/10.1007/978-3-319-10428-7_40
http://dx.doi.org/10.1007/978-3-319-10428-7_40
http://doi.acm.org/10.1145/2742359
http://dx.doi.org/10.1109/ICTAI.2015.75
http://dx.doi.org/10.1007/978-3-642-23786-7_48
http://dx.doi.org/10.1007/978-3-319-19084-6_27
http://dx.doi.org/10.1007/s10479-011-1019-8
http://dx.doi.org/10.1007/s10479-011-1019-8
http://dx.doi.org/10.1007/s10479-011-1019-8
http://dx.doi.org/10.3390/a5040545
http://dx.doi.org/10.1023/A:1021271615909

368 C. McCreesh et al.

42. Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its
use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8),
1067–1079 (2003). http://dx.doi.org/10.1016/S0167-8655(02)00253-2

43. Segundo, P.S., Lopez, A., Batsyn, M.: Initial sorting of vertices in the maxi-
mum clique problem reviewed. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis,
C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 111–120. Springer,
Switzerland (2014). http://dx.doi.org/10.1007/978-3-319-09584-4 12

44. Segundo, P.S., Lopez, A., Pardalos, P.M.: A new exact maximum clique algo-
rithm for large and massive sparse graphs. Comput. OR 66, 81–94 (2016).
http://dx.doi.org/10.1016/j.cor.2015.07.013

45. Segundo, P.S., Mat́ıa, F., Rodŕıguez-Losada, D., Hernando, M.: An improved bit
parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013).
http://dx.doi.org/10.1007/s11590-011-0431-y

46. Segundo, P.S., Nikolaev, A., Batsyn, M.: Infra-chromatic bound for exact maxi-
mum clique search. Comput. OR 64, 293–303 (2015). http://dx.doi.org/10.1016/
j.cor.2015.06.009

47. Segundo, P.S., Rodŕıguez-Losada, D., Jiménez, A.: An exact bit-parallel algo-
rithm for the maximum clique problem. Comput. OR 38(2), 571–581 (2011).
http://dx.doi.org/10.1016/j.cor.2010.07.019

48. Segundo, P.S., Tapia, C.: Relaxed approximate coloring in exact maximum
clique search. Comput. OR 44, 185–192 (2014). http://dx.doi.org/10.1016/j.cor.
2013.10.018

49. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and
graph searching. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2002, NY, USA,
pp. 39–52 (2002). http://doi.acm.org/10.1145/543613.543620

50. Suters, W.H., Abu-Khzam, F.N., Zhang, Y., Symons, C.T., Samatova, N.F.,
Langston, M.A.: A new approach and faster exact methods for the maximum com-
mon subgraph problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp.
717–727. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11533719 73

51. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. J. Global Optim. 37(1), 95–111
(2007). http://dx.doi.org/10.1007/s10898-006-9039-7

52. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a max-
imum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS
2003. LNCS, vol. 2731. Springer, Heidelberg (2003). http://dx.doi.org/10.1007/
3-540-45066-1 22

53. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: Rahman,
M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer,
Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-11440-3 18

54. Vismara, P., Valery, B.: Finding maximum common connected subgraphs using
clique detection or constraint satisfaction algorithms. In: An, L.T.H., Bouvry, P.,
Tao, P.D. (eds.) MCO 2008. CCIS, vol. 14, pp. 358–368. Springer, Heidelberg
(2008). http://dx.doi.org/10.1007/978-3-540-87477-5 39

http://dx.doi.org/10.1016/S0167-8655(02)00253-2
http://dx.doi.org/10.1007/978-3-319-09584-4_12
http://dx.doi.org/10.1016/j.cor.2015.07.013
http://dx.doi.org/10.1007/s11590-011-0431-y
http://dx.doi.org/10.1016/j.cor.2015.06.009
http://dx.doi.org/10.1016/j.cor.2015.06.009
http://dx.doi.org/10.1016/j.cor.2010.07.019
http://dx.doi.org/10.1016/j.cor.2013.10.018
http://dx.doi.org/10.1016/j.cor.2013.10.018
http://doi.acm.org/10.1145/543613.543620
http://dx.doi.org/10.1007/11533719_73
http://dx.doi.org/10.1007/s10898-006-9039-7
http://dx.doi.org/10.1007/3-540-45066-1_22
http://dx.doi.org/10.1007/3-540-45066-1_22
http://dx.doi.org/10.1007/978-3-642-11440-3_18
http://dx.doi.org/10.1007/978-3-540-87477-5_39

Tightening McCormick Relaxations
for Nonlinear Programs via Dynamic

Multivariate Partitioning

Harsha Nagarajan1(B), Mowen Lu2, Emre Yamangil1, and Russell Bent1

1 Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, NM, USA

{harsha,emreyamangil,rbent}@lanl.gov
2 Department of Industrial Engineering, Clemson University, Clemson, SC, USA

mlu87@g.clemson.edu

Abstract. In this work, we propose a two-stage approach to strengthen
piecewise McCormick relaxations for mixed-integer nonlinear programs
(MINLP) with multi-linear terms. In the first stage, we exploit Con-
straint Programing (CP) techniques to contract the variable bounds. In
the second stage we partition the variables domains using a dynamic mul-
tivariate partitioning scheme. Instead of equally partitioning the domains
of variables appearing in multi-linear terms, we construct sparser par-
titions yet tighter relaxations by iteratively partitioning the variable
domains in regions of interest. This approach decouples the number
of partitions from the size of the variable domains, leads to a signifi-
cant reduction in computation time, and limits the number of binary
variables that are introduced by the partitioning. We demonstrate the
performance of our algorithm on well-known benchmark problems from
MINLPLIB and discuss the computational benefits of CP-based bound
tightening procedures.

Keywords: McCormick relaxations · MINLP · Dynamic partitioning ·
Bound tightening

1 Introduction

Mixed Integer Nonlinear Programs (MINLPs) are part of a class of non-convex,
mathematical programs that include discrete variables and nonlinear terms in
the objective function and/or constraints. Within many application domains,
MINLPs with multi-linear, non-convex terms are of great interest. For example,
these problems appear in chemical engineering (synthesis of process/water net-
works) [18,20], energy infrastructure networks [8], and in the molecular distance
geometry problem [16]. Despite their importance in such areas, these problems
remain difficult to solve. Global optimization solvers, like BARON [21], depend
heavily on the quality of mixed-integer linear programing relaxations to MINLPs.
However, these relaxations are often weak and the solvers are not guaranteed to
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 369–387, 2016.
DOI: 10.1007/978-3-319-44953-1 24

370 H. Nagarajan et al.

converge to a global optimum or even find a feasible solution. As a result, there
is considerable interest in developing tighter relaxations that improve the con-
vergence of global solvers. In this paper we focus on MINLPs with multi-linear
terms, though the approach is generalizable.

In the context of this paper, there are two key methods for deriving tight
relaxations of MINLPs with multi-linear terms. First, variable bounds are a
critical contributor to the quality of relaxations. As a result, bound tighten-
ing methods have received a great deal of attention, in particular for problems
with bilinear terms [1,5,6,9,19]. In most of these papers, the most common
approaches solve sequences of minimization and maximization problems where
the continuous variables are the objective. The solutions to these problems are
used to tighten the bounds of the variables. In this paper, we combine these
bound tightening approaches with constraint programming to improve their
effectiveness. The second method for tightening relaxations focuses on reduc-
ing the size of the relaxed feasible space. This is often done with domain par-
titioning, i.e. spatial branch-and-bound (sBB). In sBB, a single variable (often
the variable that violates the feasible region the most) is iteratively partitioned
within a branch-and-bound search tree [22,23]. One of the crucial requirements
of successful sBB is tight lower bounds on the objective. These bounds support
efficient pruning of infeasible regions and some of the most effective bounds are
those that are based on relaxations. When multi-linear terms are involved, a
commonly used method is McCormick relaxations. As McCormick relaxations
tend to be loose in many situations, the literature contains many efforts to
improve these relaxations. The method most closely related to our own builds
uniform piecewise McCormick relaxations via univariate or bivariate partition-
ing [6,11,14]. One of the drawbacks of such approaches is that they may need
a large number of partitions that are controlled by on/off binary variables. As
these binary variables introduce combinatorial inefficiencies, this approach is
often restricted to small problems. To address this issue, there has been recent
work focusing on addressing these inefficiencies. For example, [5,7] combines mul-
tiparametric disaggregation with optimality-based bound tightening methods.
In [25], the authors discuss a non-uniform, bivariate partitioning approach that
improves relaxations but provide results for a single, simple benchmark prob-
lem. More recently, in [11], the authors report the advantages of bivariate (as
compared to univariate) partitioning, however they use partitions chosen at uni-
formly located grid points. In the context of multi-linear terms, [24] discusses a
univariate parametrization method that solves medium-sized benchmarks. How-
ever, none of these approaches address the key limitation of uniform partitioning,
partition density, i.e. these methods introduce partitions in unproductive regions
of the search space. We address this limitation by introducing an approach that
dynamically partitions the relaxations in regions of the search space that favor
optimality. To the best of our knowledge, there is little or no work on methods
for solving MINLPs with multi-linear terms with such sparse partitioning.

To summarize, we address the problem of tight relaxations for non-convex
multi-linear functions and we develop a two-stage algorithm that strengthens

Tightening McCormick Relaxations for Nonlinear Programs 371

piecewise multi-linear relaxations. In the first stage, we apply a sequential,
CP inspired, bound tightening approach. In the second stage, we develop a
dynamic, sparse multivariate partitioning approach that addresses the key limi-
tations of uniform partitioning approaches. With this algorithm, we are able to
solve many MINLPs more efficiently and accurately with fewer parameter tuning
options than the existing approaches. The remainder of this paper is organized
as follows: Sect. 2 discusses the required notation, problem set up and reviews
McCormick relaxations for bilinear and multi-linear terms. Section 3 discusses a
sequential bound tightening approach, formalizes the concepts and notation for
piecewise relaxations of McCormick envelopes, and provides a detailed discussion
on multivariate dynamic partitioning algorithm on multi-linear and monomial
terms. Section 4 illustrates the strength of the proposed algorithms on bench-
mark MINLPs and Sect. 5 concludes the paper.

2 Problem Definition

Notation: Here, we use lower and upper case for vector and matrix entries,
respectively. Bold font refers to the entire vector or matrix. With this nota-
tion, ||v||2 defines the L2 norm of vector v ∈ Rn. Given vectors v1 ∈ Rn

and v2 ∈ Rn, v1 · v2 =
∑n

i=1 v1iv2i; v1 + v2 implies element-wise sums; and
v1
α denotes the element-wise ratio between entries of v1 and the scalar α.
Next, z ∈ Z+ represents a strictly positive integer scalar. M ∈ Sn×n repre-
sents a symmetric square matrix M. Given variables xi and xj , ⟨xi, xj⟩MC ,
⟨xi, xj⟩UTMC and ⟨xi, xj⟩DTMC denote the McCormick envelope, uniformly-
partitioned McCormick envelope and dynamically-partitioned McCormick enve-
lope, respectively. (xL

i , x
U
i) denotes the prescribed global lower and upper bound

and (xl
i, x

u
i) denotes the tightened lower and upper bound, respectively.

Problem: The problems considered in this paper are MINLPs, where the non-
linearity is due to multi-linear (polynomial) functions. Often, these problems are
not convex. The general form of the problem, denoted as P0, is as follows:

P0 : minimize
x,y

f(x,y, z)

subject to g(x,y, z) ≤ 0,

h(x,y, z) = 0,
zK = xixj . . . xk, ∀K ∈ ML

xL ≤ x ≤ xU ,

y ∈ {0, 1}m

where, f : Rn → R is a scalar multi-linear function and g : Rn → Rm1 , h :
Rn → Rm2 are vector, multi-linear functions. x,y and z are vectors of con-
tinuous variables with box constraints, binary variables, and multi-linear func-
tions, respectively. zK is the Kth multilinear term in the set ML such that
ML = {K = (i, j, . . . , k)|zK = xixj . . . xk}. When i = j = . . . = k, the multi-
linearity is reduced to monomial terms.

372 H. Nagarajan et al.

2.1 Standard Convex Relaxations for Multi-linear Terms

McCormick relaxations: Given two variables, xi,xj ∈ R such that xl
i ≤ xi ≤

xu
i and xl

j ≤ xj ≤ xu
j , we define the McCormick relaxation [17] of the bilinear

product xixj as x̂ij ∈ ⟨xi, xj⟩MC such that x̂ij satisfies

x̂ij ≥ xl
ixj + xl

jxi − xl
ix

l
j (1a)

x̂ij ≥ xu
i xj + xu

j xi − xu
i x

u
j (1b)

x̂ij ≤ xl
ixj + xu

j xi − xl
ix

u
j (1c)

x̂ij ≤ xu
i xj + xl

jxi − xu
i x

l
j (1d)

The relaxations in (1) are exact when one of the variables involved in the product
is a binary variable. Further, relaxations in (1) can be reduced to a simpler form
(three constraints) when both the variables involved in the product are binary
variables. If yi and yj are binary variables, we denote this simplified relaxation
as ŷij ∈ ⟨yi, yj⟩BMC .

Successive McCormick relaxations of multi-linear terms: Given a multi-
linear term xixj . . . xk with k-linear terms, we use a general technique for succes-
sively deriving McCormick envelopes on bilinear combinations of the terms. As
discussed in [4], the tightness of McCormick relaxations depends on the grouping
order of bilinear terms. Here, we assume a lexicographic order of grouping the
bilinear terms. For example, given a multi-linear term (x1x2x3x4), the successive
ordering of bilinear terms is (((x1x2)x3)x4). More formally, for k-linear terms,
the McCormick envelope of xixj . . . xk−1xk is represented as

⟨xixj . . . xk−1xk⟩MC = ⟨⟨⟨xixj⟩MC . . . xk−1⟩MCxk⟩MC .

Study of alternate grouping choices is beyond the scope of this paper and is a
topic of future work.

3 CP-DTMC Algorithm

The Constraint Programming with Dynamic Tightening of McCormicks (CP-
DTMC) algorithm is described in this section. It combines CP based domain
tightening with a partitioning scheme for McCormick relaxations.

3.1 Sequential Bound Tightening Procedure

The first stage of CP-DTMC tightens the bounds of the continuous variables
of P0. In many engineering applications there is little or no information about
the upper and lower bounds (xL,xU) of these variables. Even when known, the
gap between the bounds is often large. As discussed earlier, these bounds are
used in McCormick relaxations to derive convex envelopes of multi-linear terms
in P0. Large bounds generally weaken these relaxations, degrade the quality
of the lower bounds, and slow the convergence of branch-and-cut algorithms.

Tightening McCormick Relaxations for Nonlinear Programs 373

In practice, replacing the original bounds with tighter bounds can (sometimes)
dramatically improve the quality of these relaxations (see Fig. 1[a]).

The basic idea of bound tightening is to derive (new) valid bounds to improve
the relaxations. Our approach is based on the work [6] and is related to the
iterative bound tightening of [8]. Let xi, i = 1, . . . , n be the element-wise entries
of a continuous variable vector x ∈ Rn. In order to shrink the bounds of xi,
we solve a modified version of P0. For each xi, we first solve P0 where we
minimize xi and then solve P0 where we maximize xi. In both cases we add a
constraint that bounds the original objective function of P0 with a best known
feasible solution (x∗

loc,y
∗
loc, z

∗
loc). This is a key difference between our approach

and [6,8]. We also iteratively tighten the domain (bounds) of the variables using
the approach above. While there are other CP propagation methods that could
be used to further improve the quality of the bounds, this method was sufficient
to demonstrate the effectiveness of the overall approach.

More formally, Algorithm1 describes the first stage of CP-DTMC. Line 1
takes as input the current bounds and a feasible solution. The core of the algo-
rithm is embedded in Line 4. This is where we solve the variations of P0. Line
4a states the minimization and maximization of xi. Line 4b adds a bound on
the original objective function. Lines 4c–4f state the rest of P0. Based on these
solutions, we update the bounds of our variables (line 5). The procedure contin-
ues until the bounds do not change (line 2). Algorithm1 is naturally parallel as
each MILP of line 4 is independently solvable.

Algorithm 1. Sequential bound tightening on x vector
1: Input: xl ← xL,xu ← xU ,xl

iter = xu
iter ← 0, x∗

loc,y
∗
loc, z

∗
loc, TOL > 0.

2: while ||xl − xl
iter||2 > TOL and ||xu − xu

iter||2 > TOL do
3: xl

iter ← xl, xu
iter ← xu

4: Solve:

x∗l
i := min

x,y
xi; x∗u

i := max
x,y

xi ∀i = 1, . . . , n (a)

subject to f(x,y, z) ≤ f(x∗
loc,y

∗
loc, z

∗
loc), (b)

g(x,y, z) ≤ 0, (c)

h(x,y, z) = 0, (d)

zK = ⟨xixj . . . xk⟩MC , ∀K ∈ ML (d)

xl
iter ≤ x ≤ xu

iter, (e)

y ∈ {0, 1}m (f)

5: xl ← x∗l, xu ← x∗u

6: end while
7: return xl,xu (tightened bounds).

374 H. Nagarajan et al.

3.2 Algorithm for Global Optimization of MINLPs

The second stage of CP-DTMC derives piecewise McCormick relaxations of
multi-linear terms based on multivariate dynamic partitioning. In practice, par-
titioning the bounds of the variables of the McCormick tightens the overall
relaxation. As the number of partitions goes to ∞, partitioning exactly approx-
imates the original multi-linear terms. However, introducing a large number of
partitions generally renders the problem intractable because the choice of par-
tition is controlled by binary on/off variables. Thus, typical approaches assume
a (small) finite number of partitions that uniformly discretize the multi-linear
variables [2,6,10,11]. While this is a straight-forward method for partitioning
the domain of variables, it potentially creates partitions that correspond to solu-
tions that are far away from the optimality region of the search space. In other
words, many of the partitions are not useful. Instead, we develop an approach
that successively tightens the McCormick relaxations with sparse domain dis-
cretization. This approach focuses partitioning on areas of the variable domain
that appear to influence optimality the most.

Lower bounds using piecewise McCormick relaxations: Without loss of
generality and for ease of explanation, we restrict the discussion of the lower
bounding procedure to bilinear terms1. Given a bilinear term xixj , we partition
the domains of xi and xj into Mi ∈ Z+ and Mj ∈ Z+ disjoint regions with
new binary variables ŷi ∈ {0, 1}Mi and ŷj ∈ {0, 1}Mj added to the formula-
tion. The binary variables are used to control the partitions that are active and
the tighter relaxation associated with the active partition. Formally, the piece-
wise McCormick constraints for a bilinear term, denoted by x̂ij ∈ ⟨xi, xj⟩UTMC

(uniform partitioning) or x̂ij ∈ ⟨xi, xj⟩DTMC (dynamic partitioning), take the
following form:

x̂ij ≥ (xl
i · ŷi)xj + (xl

j · ŷj)xi − (xl
i · ŷi)(xl

j · ŷj) (2a)

x̂ij ≥ (xu
i · ŷi)xj + (xu

j · ŷj)xi − (xu
i · ŷi)(xu

j · ŷj) (2b)

x̂ij ≤ (xl
i · ŷi)xj + (xu

j · ŷj)xi − (xl
i · ŷi)(xu

j · ŷj) (2c)

x̂ij ≤ (xu
i · ŷi)xj + (xl

j · ŷj)xi − (xu
i · ŷi)(xl

j · ŷj) (2d)
Mi∑

k=1

ŷik = 1,
Mj∑

k=1

ŷjk = 1 (2e)

ŷi ∈ {0, 1}Mi , ŷj ∈ {0, 1}Mj (2f)

where, (xl
i,xu

i) ∈ RMi are the lower and upper bound vectors of variable xi

for each partition. In other words, for the kth partition of xi, the following
constraint defines the partition: xi

l
k ≤ xi ≤ xi

u
k . Note that the bilinear terms

in ŷjxi and ŷixj are exactly linearized using standard McCormick relaxations.
Also, (xl

i ·ŷi)(xl
j ·ŷj) is rewritten as xl

i(ŷiŷT
j)xl

j , where Ŷ = (ŷiŷT
j) is anMi×Mj

1 This approach is easily extended to multi-linear terms using successive bilinear relax-
ations as discussed in Sect. 2.1.

Tightening McCormick Relaxations for Nonlinear Programs 375

(a) Bilinear term (xixj)

x

x̃i

xL
i

xU
i

xl
i,iter

xu
i,iter

ỹi1
ỹi2

ỹi3

x̃i = x2
i

ỹi3

Piecewise
envelop

Outer
approximation

(b) Monomial term (x2
i)

Fig. 1. Feasible regions for bilinear and monomial (quadratic) terms based on DTMC.

matrix with binary product entries. As discussed in Sect. 2.1, any binary product
entry, yiyj , of Ŷ is exactly represented as ⟨yi, yj⟩BMC .

CP-DTMC algorithm for multi-linear terms.Given this model of piecewise
McCormick relaxations, we can now formalize dynamically tightening of these
relaxations. The pseudo-code of the DTMC algorithm is outlined in Algorithm 2.
The full CP-DTMC algorithm combines Algorithm 1 with Algorithm 2 and is
described in Algorithm 3. We first discuss the dynamic partitioning scheme as
outlined in Algorithm2 followed by the discussion of Algorithm3.

We first define P ∗
iter as a vector of active partitions whose dimension is equal

to |x|. For any variable xi, an active partition contains a lower bound and an
upper bound for xi The choice of the active partition of xi is the binary variable
of vector ŷi whose component is equal to 1.0. As shown in line 3 of Algorithm 2,
the size of the partition is dependent on the size of the active partition of the
current solution x∗

iter. The parameter, ∆, is used to scale the partition’s size and
it influences the convergence speed and the number of partitions. Lines 4–10
ensure that the partition’s size is greater than a prescribed tolerance and that
the partition lies within the contracted bounds.

In Algorithm3, lines 1–3 execute Algorithm1 to tighten the bounds using the
feasible solution (x∗

loc,y
∗
loc, z

∗
loc). Interestingly, on some MINLPs, this process

shrank the gap between the upper and lower bounds on some variables to 0.
Line 5 initializes the tightened bound domains as the active partitions as illus-
trated in “iteration-0” of Fig. 2. Lines 6–12 iteratively add dynamic partitions
around the current solution x∗

iter. Iterations 1 and 2 of Fig. 2 clearly illustrate
the partitioning scheme employed in this algorithm. The iterations stop (line 6)
when (a) the normalized improvement of the lower bound is less than TOLimp,

376 H. Nagarajan et al.

xl
i xu

ix∗
i,loc

ỹi1 ỹi2 ỹi3

xl
i,loc = x∗

i,loc − xu−xl

∆
xu
i,loc = x∗

i,loc +
xu−xl

∆

xl
i xu

ix∗
i,i1

ỹi1 ỹi2 ỹi3

xl
i,i1 = x∗

i,i1 −
xu
i −xu

i,loc

∆ xu
i,i1 = x∗

i,i1 +
xu
i −xu

i,loc

∆

ỹi4 ỹi5

xl
i xu

i
x∗
i,i2

ỹi1 ỹi2 ỹi3

xl
i,i2 = x∗

i,i2 −
xu
i,i1−xl

i,i1
∆

ỹi4 ỹi5

*

*

ỹi7ỹi6

xl
i,i2 = x∗

i,i2 +
xu
i,i1−xl

i,i1
∆

*

Active domain chosen for partitioning (ỹi = 1)

New partition added in active domain

Inactive partitions (ỹi = 0)

Iteration-0 Iteration-1

Iteration-2

Fig. 2. Dynamic partitioning of variable xi as described in Algorithm 2

(b) x∗
iter remains in the same partitions and the size of the partitions is ≤ ϵ, or

(c) the computation hits a time limit. In Fig. 2, the third iteration terminates if
the x∗

i,i3 remains in partition [xl
i,i2, x

u
i,i2] and its size is less than ϵi. Figure 1(a)

is a geometric example of a DTMC iteration applied to a bilinear term. This
figure illustrates how the area enclosed by the convex relaxations decreases as
partitions are applied.

Algorithm 2. Dynamic partitioning of variable domains
Notation: Let P ∗

iter represent a vector of active partitions for variable vector x. xl(P ∗
iter) and

xu(P ∗
iter) represent the vectors of lower and upper bounds of the active partitions of x respectively.

1: Input: xl,xu,x∗
iter, P

∗
iter, ϵ > 0, P ∗

new = ∅, ∆ > 0
2: lb ← xl(P ∗

iter), ub ← xu(P ∗
iter)

3: Evaluate the size of new partition

liter =
ub − lb

∆

4: if liter > ϵ then
5: vl ← max(xl, (xiter − liter)),v

u ← min(xu, (xiter + liter))
6: P ∗

new ← {(vl
i, v

u
i), ∀i = 1, . . . , n}

7: return P ∗
new

8: else
9: return ∅
10: end if

CP-DTMC Generalization. It is important to note that this approach can
be applied to other types of relaxations. For example, consider monomials whose
powers contain positive integer exponents (≥ 2). Without loss of generality2, we
assume the monomial takes the form x2

i . We once again partition the domain
of xi into Ni ∈ Z+ disjoint regions. Let ỹi ∈ {0, 1}Ni be the binary variables
added to the formulation. Formally, this piecewise convex relaxation, denoted
by x̃i ∈ ⟨xi⟩DTMC−q, takes the form:
2 In the case of higher order monomials, i.e., x5

i , we apply a reduction of the form
x2
ix

2
ixi ⇒ x̃i

2xi ⇒ ˜̃xixi.

Tightening McCormick Relaxations for Nonlinear Programs 377

Algorithm 3. An algorithm for global optimization of MINLPs (CP-DTMC)
1: Input: MINLP, TOLimp > 0

2: Obtain local solution (x∗
loc,y

∗
loc, z

∗
loc) for the given MINLP

3: Execute Algorithm 1 (x∗
loc,y

∗
loc, z

∗
loc) to calculate bounds (xl,xu) on variables x ∈ Rn appearing in

multi-linear terms.

4: x∗
iter ← x∗

loc,y
∗
iter ← y∗

loc

5: P ∗
iter ← {(xl

i, x
u
i), ∀i = 1, . . . , n} (Initialize the active partitions with the entire domains of variables)

6: while Stopping criterion not satisfied do

7: For the current x∗
iter and P ∗

iter , obtain P ∗
new from Algorithm 2.

8: P ∗
iter ← (P ∗

iter ∪ P ∗
new) (updated partitions for DTMC in line 9)

9: Solve
P iter : minimize

x,y
f(x,y, z)

subject to g(x,y, z) ≤ 0,

h(x,y, z) = 0,

zK = ⟨xixj . . . xk⟩DTMC , ∀K ∈ ML

xl ≤ x ≤ xu,

y ∈ {0, 1}m

10: Let (x∗
iter,y

∗
iter) be the solution to P iter

11: Update the vector of active partition sets P ∗
iter such that the binary variable ŷ∗

i on xi is equal to

1.0.

12: end while

13: Output: Global optimum solution (x∗
opt,y

∗
opt) or a lower bound (if solver times out) to the MINLP.

x̃i ≥ x2
i , (3a)

x̃i ≤
(
(xl

i · ỹi) + (xu
i · ỹi)

)
xi − (xl

i · ỹi)(xu
i · ỹi) (3b)

Ni∑

k=1

ỹik = 1 (3c)

ỹi ∈ {0, 1}Ni (3d)

Note that (xl
i · ỹi)(xu

i · ỹi) can be rewritten as xl
i(ỹiỹT

i)xu
i , where Ỹ = (ỹiỹT

i) is
an Ni × Ni symmetric matrix with binary product entries (squared binaries on
diagonal). Hence it is sufficient to linearize the entries of the upper triangular
matrix with exact representations as discussed in Sect. 2.1. This relaxation is
then directly introduced into Algorithm3. The only modification is to supple-
ment the convex envelops in P iter with these monomial terms.

Lemma 3.1. Given a finite number of partitions on xi, the piecewise convex
relaxation of ⟨xi⟩DTMC−q is strictly tighter than ⟨xi, xi⟩DTMC .

Proof. For a given, finite number of partitions, Ni, on variable xi, ⟨xi, xi⟩DTMC

reduces to the following three-inequalities representing the piecewise convex
relaxations:

378 H. Nagarajan et al.

x̃i ≥ 2(xl
i · ỹi)xi − (xl

i · ỹi)2 (4a)

x̃i ≥ 2(xu
i · ỹi)xi − (xu

i · ỹi)2 (4b)

x̃i ≤
(
(xl

i · ỹi) + (xu
i · ỹi)

)
xi − (xl

i · ỹi)(xu
i · ỹi) (4c)

Ni∑

k=1

ỹik = 1, ỹi ∈ {0, 1}Ni

Clearly, inequalities (4a) and (4b) are under estimators of x2
i at grid points

xl
i, i = 1, . . . , Ni and xu

Ni
respectively. The over estimator in (4c) is same

as the over estimator defining ⟨xi⟩DTMC−q. Further, the second-order conic
under estimator of ⟨xi⟩DTMC−q can be equivalently represented with infinitely
many linear inequalities. However, as discussed above, the under estimators in
⟨xi, xi⟩DTMC are finite (Ni+1), thus relaxing the second-order-cone. Therefore,
⟨xi⟩DTMC−q ⊂ ⟨xi, xi⟩DTMC . ⊓,

Because of Lemma 3.1, we use this relaxation rather than McCormick on
monomial terms. However, using this relaxation forced us to introduce a technical
subtlety into the algorithm implementation. While constraint x̃i ≥ x2

i in (3) is
a convex, second order cone (SOC), several moderately sized problems were
difficult to solve, even with modern, state-of-the-art solvers (CPLEX). Either
the solver convergence was very slow or they terminated with a numerical error.
To circumvent this issue, we implemented a cutting-plane approach for these
constraints. This approach relaxes the SOC constraint with a finite number of
valid cutting planes (first order derivatives), produces an outer envelop, and
produces a lower bound on the optimal solution. This lower bound is tightened
for every violated SOC constraint by adding the corresponding valid cutting
plane until a solution obtained is feasible, and hence optimal, for the original
SOC set. Figure 1(b) illustrates the outer-approximation procedure. Red colored
lines are the under estimators of x2

1 and the valid cutting planes added to the
formulation. In Algorithm3, this approach is used for the solve routine of line 9.
We expect the need for this technical detail to diminish as conic solvers improve.

TCP-DTMC - A hybrid approach. The main idea behind the TCP-
DTMC approach is to combine the sequential bound tightening procedure in
Algorithm1 with a three-partition piecewise McCormick relaxation on every
variable in multi-linear terms. Since we know x∗

loc from a local solver, we dis-
cretize the domain with atmost three partitions and satisfy the rules of parti-
tioning as described in Algorithm2. Therefore, in line 4(d) of Algorithm1, the
McCormick relaxations are replaced by

zK = ⟨xixj . . . xk⟩DTMC , ∀K ∈ ML.

with an additional constraint,

3∑

k=1

ỹik = 1 ∀i = 1, . . . , |x|.

Tightening McCormick Relaxations for Nonlinear Programs 379

The primary intuition behind this bound tightening procedure is to obtain
tighter bounds around the local solution and possibly converge the bounds to
near-optimum solutions in the initial step.

4 Computational Results

All computations were performed using the high performance computing
resources at Los Alamos National Laboratory (using nodes for parallel computa-
tion) with Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz processors and 62GB
of memory. All MILPs were solved using CPLEX 12.6.2 with default options and
presolver switched on. All the outer-approximation cutting planes for quadratic
terms were implemented as a CPLEX lazy cut callback. BARON 15.2.0 (default
options) was the global solver used to benchmark the performances of CP-DTMC
and TCP-DTMC. Ipopt 3.12.4 and Bonmin 1.8.4 were used as the local NLP
and MINLP solvers, respectively. These solvers were used to produce the ini-
tial feasible solution for Algorithm1. Table 1 summarizes the values of all the
parameters used in CP-DTMC. The notation “TO” is used to indicate when the
algorithm timed out (time limit=3600 sec) and “GOpt” is used to indicate global
optimum, i.e. the lower bound is within 0.0001% of the known optimal solution.
In Table 5, Best∆ and BestN correspond to the best solution found within the
CPU limit for DTMC’s ∆ and UTMC’s number of partitions, respectively. Also,
in Table 5, we define the following:

%Gap =
f(x∗

opt,y
∗
opt, z

∗
opt) − f(x∗

iter,y
∗
iter, z

∗
iter)

f(x∗
iter,y

∗
iter, z

∗
iter)

× 100, %BC =
∥xU − xL∥2 − ∥xu − xl∥2

∥xu − xl∥2
× 100

In our numerical experiments we considered three NLPs and thirteen MINLPs
that ranged from small, contrived examples to large-scale MINLP benchmark
problems selected from MINLPLib 2 [3]. We chose problems whose nonlinearity
is expressed with multi-linear terms. The MINLPs chosen for analysis purposes
are not exhaustive and we will expand the test-bed in our future work. Table 2
summarizes the statistics of the test-bed including global optimum, number of
constraints, binary variables, continuous variables and multi-linear terms. Note
that “nlp2” contains two, fourth degree monomial terms and “eniplac” contains
bilinear, quadratic and cubic monomials. In the case of the “blend” instances,
we partition only a single variable per bilinear term as these were large scale
MINLPs3.

4.1 NLPs

We first consider a small set of simple NLPs, as described in Fig. 3(a) and
[6,15,24]. We compare the performance of our algorithms with BARON. These

3 In the “blend” instances, there were few binary variables that appeared in most of
the bilinear terms. These are the variables chosen for partitioning.

380 H. Nagarajan et al.

Table 1. Parameters used in CP-DTMC

N (number of partitions in UTMC) 10, 20, 40

∆ (scaling parameter in DTMC/TCP) 2, 4, 8, 10, 16, 32

Wall time execution limit 3600.0 sec

ϵ (minimum partition length tolerance) 0.001

TOL (bound tightening tolerance) 0.01

TOLimp (% improvement tolerance in DTMC) 0.001 %

Table 2. Problem description

Instance GOpt #Constraints #BVars #CVars #ML

(#CVars-discretized)

nlp1 58.384 3 0 2(2) 3

nlp2 0 2 0 2(4) 4

nlp3 7049.248 14 0 8(8) 5

ex1223a 4.580 9 4 3(3) 3

ex1264 8.6 55 68 20(20) 16

ex1265 10.3 74 100 30(30) 25

ex1266 16.3 95 138 42(42) 36

fuel 8566.119 15 3 12(6) 3

meanvarx 14.369 44 14 21(7) 28

util 4.305 167 28 117(7) 5

eniplac -132117.083 189 24 117(24) 66

blend029 13.359 213 36 66(10) 28

blend531 20.039 736 104 168(28) 146

blend718 7.394 606 87 135(20) 100

blend480 9.227 884 124 188(28) 152

blend146 45.297 624 87 135(20) 104

problems are interesting to discuss in more detail. “nlp1”, taken from [6], involves
both bilinear and quadratic terms. “nlp2” appears in applications related to elec-
tromagnetic inverse scattering problems [13]. In this problem, quadrilinear terms
in the objective and large bounds on the variables makes it particularly chal-
lenging for existing McCormick-relaxation based algorithms. For computational
studies, we solve nlp2 in two dimensions (n = 2). As shown in Fig. 3, the objec-
tive function has multiple global minima at (1,

√
2) and a local minimum at

the origin. When solved with IPOPT we get a local solution, f∗
loc = 5, at (0, 0).

“nlp3”, taken from a standard test-suite [12], has five bilinear terms and large
bounds on all the variables. Since this is a challenging problem for the equally

Tightening McCormick Relaxations for Nonlinear Programs 381

minimize
x1,x2

6x2
1 + 4x2

2 − 2.5x1x2

subject to x1x2 ≥ 8,
1 ≤ x1, x2 ≤ 10

minimize
x1,...,xn

n∑

i=1

(x2
i − i)2

subject to − 500 ≤ xi ≤ 500, i = 1, . . . , n

minimize
x1,...,x8

x1 + x2 + x3

subject to 0.0025(x4 + x6) − 1 ≤ 0,
0.0025(−x4 + x5 + x7) − 1 ≤ 0,
0.01(−x5 + x8) − 1 ≤ 0,
100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0,
x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,
x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0,
100 ≤ x1 ≤ 10000,
1000 ≤ x2, x3 ≤ 10000,
10 ≤ x4, x5, x6, x7, x8 ≤ 1000

nlp1 nlp2

nlp3

(a) Mathematical formulations (b) nlp2 with multiple global minima
and a local minimum

Fig. 3. NLPs considered in this paper

partitioned, piecewise McCormick relaxations, this problem has been studied in
detail in [5,6,24].

Computational Performance. Table 5 summarizes the performance of the
algorithms on the NLPs. On nlp1 and nlp2, the algorithms performed con-
sistently better than Baron. For nlp2, we observed that the quadratic convex
envelopes, in conjunction with outer-approximation, performed computationally
better than solving mixed-integer SOCs.

Table 3. Contracted bounds after applying sequential tightened-CP algorithm on nlp3.

Variable Original bounds TCP bounds #BVars added

L U l u DTMC CP-DTMC TCP-DTMC

(∆ = 4) (∆ = 10) (∆ = 10)

x1 100 10000 573.1 585.1 14 14 3+3

x2 1000 10000 1351.2 1368.5 14 14 3+3

x3 1000 10000 5102.1 5117.5 17 15 3+3

x4 10 1000 181.5 182.5 16 15 3+3

x5 10 1000 295.3 296.0 17 15 3+3

x6 10 1000 217.5 218.5 16 15 3+3

x7 10 1000 286.0 286.9 17 15 3+3

x8 10 1000 395.3 396.0 17 15 3+3

Total 128 118 48

382 H. Nagarajan et al.

We performed a detailed study of nlp3 as this problem has received con-
siderable interest in the literature. Table 3 show the effectiveness of sequential
tightened-CP (TCP) techniques when applied to nlp3. The initial large global
bounds are tightened by a few orders of magnitude with the addition of three
binary variables per continuous variable in the bilinear terms. This shows the
value of combining the disjunctive polyhedral approximation around the initial
feasible solution (x∗

loc) with the bound tightening procedure. In Fig. 4 we also
observe that the additional variables do not increase the overall run time too
much. More importantly, the reduction in the variable domains is substantial
using TCP. Finally, the jump in the run time after the first iteration in Fig. 4(b)
is due to the reduction in the initial bounds using the CP/TCP algorithm.

Parameter tuning. Table 4 shows the performance of the algorithm on nlp3
for varying values of ∆. It is clear that the solution time and the number of
binary variables added in the DTMC algorithm depend on tuning this parameter.
However, we note that the % gap for all ∆ ≥ 4 using TCP-DTMC were close
to the optimal solution. For ∆ = 10, the global optimum is found in 60 seconds
with only 48 binary variables added to the formulation. Overall, for nlp3, it
is important to note that the TCP-DTMC algorithm outperforms most of the
state-of-the-art piecewise relaxation methods developed in the literature.

(a) Tightened bounds after each iter-
ation

(b) Elapsed time(sec) of bounds
tightening

Fig. 4. Performance of sequential CP and sequential tightened-CP on nlp3.

4.2 MINLPs

In this section we compare the algorithms on MINLP benchmark problems
described in Table 5.

Performance of DTMC without CP/TCP. From Table 5 it is apparent
that dynamically partitioning variable domains to tighten McCormick relax-
ations is efficient even without bound tightening (CP/TCP). DTMC outper-
formed the uniform partitioning approach (UTMC) in twelve out of thirteen

Tightening McCormick Relaxations for Nonlinear Programs 383

Table 4. Performance of proposed algorithms on nlp3 for various ∆ values.

∆ DTMC CP-DTMC TCP-DTMC

#BVars T %Gap #BVars T %Gap #BVars T %Gap

2 137 92.91 141.14 116 1393.31 39.654 160 TO 5.148

4 128 TO 0.013 114 TO 0.032 48 44.44 0.00064

8 116 TO 0.065 117 TO 0.009 48 50.31 0.00014

10 118 TO 0.052 118 TO 0.004 48 59.50 GOpt

16 117 TO 0.092 119 TO 0.009 48 63.04 0.00027

32 118 TO 0.076 120 TO 0.03 48 90.09 0.00029

problems. Problems ex1266, meanvarx and blend718 show the biggest perfor-
mance gains (UTMC even times out on meanvarx). DTMC also outperforms
Baron on ten out of thirteen MINLPs, in particular on eniplac, blend531 and
blend718. Blend718 is noteworthy as Baron times out with a 27.5% optimality
gap but DTMC produces global optimum solution within 326.2 sec.

Performance of DTMC with CP/TCP. In Table 5, we observed a reduc-
tion in run times of the DTMC algorithm (TDTMC) due to CP/TCP bound
tightening (with few exceptions). The reductions are significant on the large-
scale blend480 and blend518 problems. Specifically, after TCP, DTMC performs
almost twice as fast as Baron on blend480. It is also noteworthy to compare
the performance of CP-DTMC and TCP-DTMC with Baron on these problems.
We observed that Baron timed out on blend718 and blend146 with 27.5% and
4.039% optimality gaps. However, for blend718, CP-DTMC and TCP-DTMC
produce global optimum solutions within 488 sec and 208 sec, respectively. On
blend146, CP-DTMC and TCP-DTMC timed out with smaller optimality gaps
(0.043% and 0.0570%) than Baron and UTMC. On blend531, Baron finds the
global optimum in 2349 sec, but CP-DTMC and TCP-DTMC find the global
optimum in 157 sec and 392 sec - at least fifteen times faster. However, on
blend480, while the performance of our algorithms was better than UTMC, it
was not better than Baron.

Performance of CP/TCP. Commonly in optimization adding extra binary
variables increases problem complexity. However, in Table 5, we observed that
the run times for TCP were faster on twelve out of sixteen (including NLPs)
instances. Blend480 was an exception, where TCP was almost five times slower
than CP. Blend480 is one of the harder MINLPs; it has a large number of binary
variables and constraints. From a total domain reduction (BC%) perspective,
the advantages of TCP are evident in Table 5. Nlp3, meanvarx and blend029
have the largest reduction. The small BC% values on “blend” problems are due
to variable bounds that are tight to begin with.

Performance of convex relaxations on monomials. Table 6 describes the
performance of the algorithms when McCormick relaxations (⟨x, x⟩DTMC) are

384 H. Nagarajan et al.

Table 5. Comparison of all algorithms

Instance BARON UTMC DTMC

%Gap T BestN %Gap TUTMC Best∆ %Gap TDTMC

nlp1 GOpt 4.42 40 0.091 12.74 32 GOpt 1.71

nlp2 GOpt 4.19 20 GOpt 0.07 32 GOpt 0.07

nlp3 GOpt 13.26 40 0.585 TO 4 0.013 TO

ex1223a GOpt 4.26 20 GOpt 0.02 32 GOpt 0.01

ex1264 GOpt 13.84 10 GOpt 50.62 10 GOpt 1.97

ex1265 GOpt 7.93 10 GOpt 76.35 8 GOpt 0.57

ex1266 GOpt 17.43 10 GOpt 114.15 2 GOpt 0.74

fuel GOpt 4.38 40 GOpt 1.09 32 GOpt 0.40

meanvarx GOpt 4.31 40 0.221 TO 8 0.012 90.64

util GOpt 5.54 40 8.186 6.94 32 0.0098 8.21

eniplac GOpt 330.46 10 GOpt 2.47 32 GOpt 1.97

blend029 GOpt 15.33 10 GOpt 2.51 32 GOpt 1.95

blend531 GOpt 2348.08 20 0.045 153.43 8 GOpt 140.76

blend718 27.484 TO 20 GOpt 1198.42 16 GOpt 326.17

blend480 GOpt 2044.22 20 0.2 TO 16 0.125 2478.27

blend146 4.039 TO 20 0.58 TO 16 0.035 TO

Instance CP-DTMC TCP-DTMC

Best∆ BC(%) %Gap TCP TDTMC Best∆ BC(%) %Gap TTCP TDTMC

nlp1 16 96.67 GOpt 8.96 1.18 16 98.89 GOpt 2.73 1.10

nlp2 10 99.99 GOpt 8.73 0.02 32 99.99 GOpt 0.34 0.02

nlp3 10 52.86 0.004 9.06 TO 10 99.84 GOpt 59.00 0.50

ex1223a 10 99.00 GOpt 6.31 0.01 10 99.00 GOpt 0.11 0.01

ex1264 10 39.72 GOpt 10.96 1.48 16 40.56 GOpt 5.33 1.74

ex1265 4 23.74 GOpt 10.56 0.64 32 23.74 GOpt 3.20 0.72

ex1266 2 82.29 GOpt 15.15 0.02 4 82.29 GOpt 4.16 0.34

fuel 4 99.90 GOpt 6.95 0.08 4 99.90 GOpt 0.14 0.08

meanvarx 10 67.28 0.004 6.50 12.93 4 84.09 0.0066 8.26 395.23

util 10 99.99 GOpt 13.29 0.47 10 99.99 GOpt 4.73 0.83

eniplac 4 19.15 GOpt 16.71 49.83 32 19.15 GOpt 11.50 5.56

blend029 32 16.08 GOpt 15.73 1.63 10 36.34 GOpt 4.76 1.48

blend531 32 6.91 GOpt 93.91 63.77 4 9.48 GOpt 310.36 82.09

blend718 16 2.38 GOpt 52.07 435.90 32 2.94 GOpt 28.46 179.40

blend480 16 13.89 0.092 183.45 1962.90 16 18.47 0.097 1014.47 1029.00

blend146 32 0.16 0.043 63.71 TO 8 0.45 0.057 30.64 TO

applied to monomial terms. These results are compared with the tighter convex
relaxations (⟨x⟩DTMC−q) of Table 5. The run times of DTMC with tighter convex
relaxations are faster on all the instances (best on eniplac). Moreover, the total
reduction in bounds on variables during CP/TCP steps are up to 11% larger
using tighter convex relaxations.

Tightening McCormick Relaxations for Nonlinear Programs 385

Table 6. Performance of algorithms with basic McCormick relaxations on higher-order
monomials.

Instances with DTMC CP-DTMC TCP-DTMC

monomials %Gap TDTMC BC(%) %Gap TCP TDTMC BC(%) %Gap TTCP TDTMC

nlp1 0.0002 0.86 96.67 0.0002 8.16 0.98 98.89 0.00013 1.64 0.37

nlp2 GOpt 13.50 99.99 GOpt 7.99 2.49 99.99 GOpt 0.31 3.74

ex1223a 0.0002 2.16 99.00 0.0001 5.84 0.31 99.00 0.0001 0.79 0.12

fuel GOpt 1.48 99.82 GOpt 6.45 0.20 99.90 GOpt 3.49 0.21

meanvarx 0.012 755.86 67.28 0.0097 6.43 382.66 74.08 0.0077 6.63 453.31

eniplac 0.0012 350.94 7.68 GOpt 20.31 2662.94 17.26 GOpt 29.98 68.21

5 Conclusions

In this work, we developed an approach for dynamically partitioning McCormick
relaxations of multi-linear terms in MINLPs. This is a class of well-known, hard,
non-convex optimization problems, where the lower bounds from these relax-
ations can be arbitrarily bad. We show that a dynamic partitioning of the
domains of variables outperforms uniform partitioning and leads to a signifi-
cantly smaller number of binary variables. We also show that CP techniques,
such as bound contraction, can be applied in conjunction with dynamic parti-
tioning to improve convergence drastically. Our numerical experiments suggest
that the initial bounds of many benchmark problems are unnecessarily loose,
lead to solver scalability issues, and result in poor relaxations.

Finally, we emphasize that the algorithm presented in this paper is by no
means exhaustive and there are a number of interesting directions for future
research. First, the concept of dynamic partitioning could be combined with
tighter convex over and under estimators for nonlinear functions and further
improve the quality of the relaxations. Second, we only applied the bound tight-
ening procedure at the root node. We could further apply it at sub nodes not
unlike how [19] applies McCormick tightening. Third, there are CP propagation
techniques that could be applied to further tighten variable domains. Finally,
we could also improve the overall quality of the McCormick relaxations by using
different orderings of variables in multi-linear terms.

Acknowledgements. The work was funded by the Center for Nonlinear Studies
(CNLS) and was carried out under the auspices of the NNSA of the U.S. DOE at
LANL under Contract No. DE-AC52-06NA25396.

References

1. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tight-
ening (2012). https://hal.archives-ouvertes.fr/file/index/docid/935464/filename/
377.pdf

2. Bergamini, M.L., Grossmann, I., Scenna, N., Aguirre, P.: An improved piece-
wise outer-approximation algorithm for the global optimization of MINLP models
involving concave and bilinear terms. Comput. Chem. Eng. 32(3), 477–493 (2008)

https://hal.archives-ouvertes.fr/file/index/docid/935464/filename/377.pdf
https://hal.archives-ouvertes.fr/file/index/docid/935464/filename/377.pdf

386 H. Nagarajan et al.

3. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models
for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119
(2003)

4. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J.
Global Optim. 47(4), 661–685 (2010)

5. Castro, P.M.: Normalized multiparametric disaggregation: an efficient relaxation
for mixed-integer bilinear problems. J. Global Optim., 1–20 (2015)

6. Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems.
Comput. Chem. Eng. 72, 300–311 (2015)

7. Castro, P.M., Grossmann, I.E.: Optimality-based bound contraction with multi-
parametric disaggregation for the global optimization of mixed-integer bilinear
problems. J. Global Optim. 59(2–3), 277–306 (2014)

8. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: Strengthening convex relaxations
with bound tightening for power network optimization. In: Pesant, G. (ed.) CP
2015. LNCS, vol. 9255, pp. 39–57. Springer, Heidelberg (2015)

9. Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global opti-
mization of bilinear minlp problems with applications to water management prob-
lems. Comput. Chem. Eng. 35(3), 446–455 (2011)

10. Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete-continuous opti-
mization models through generalized disjunctive programming. AIChE J. 59(9),
3276–3295 (2013)

11. Hasan, M., Karimi, I.: Piecewise linear relaxation of bilinear programs using bivari-
ate partitioning. AIChE J. 56(7), 1880–1893 (2010)

12. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. J.
Optim. Theory Appl. 30(1), 127–129 (1980)

13. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global opti-
misation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

14. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated
water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)

15. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-
based approach for the optimization of the multiperiod blend scheduling problem.
Comput. Chem. Eng. 53, 122–142 (2013)

16. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molec-
ular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)

17. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part I—convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

18. Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex
generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)

19. Mouret, S., Grossmann, I.E., Pestiaux, P.: Tightening the linear relaxation of a
mixed integer nonlinear program using constraint programming. In: van Hoeve,
W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 208–222. Springer,
Heidelberg (2009)

20. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and minlps
with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

21. Sahinidis, N.V.: Baron: a general purpose global optimization software package. J.
Global Optim. 8(2), 201–205 (1996)

22. Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial B&B algorithm
for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4),
457–478 (1999)

Tightening McCormick Relaxations for Nonlinear Programs 387

23. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Math. Program. 103(2), 225–249 (2005)

24. Teles, J.P., Castro, P.M., Matos, H.A.: Univariate parameterization for global opti-
mization of mixed-integer polynomial problems. Eur. J. Oper. Res. 229(3), 613–625
(2013)

25. Wicaksono, D.S., Karimi, I.: Piecewise MILP under-and overestimators for global
optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

Parallel Strategies Selection

Anthony Palmieri1, Jean-Charles Régin2(B), and Pierre Schaus3

1 Huawei Technologie, Boulogne-Billancourt, France
anthony.palmieri@hotmail.fr

2 University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
06900 Sophia Antipolis, France

jcregin@gmail.com
3 Univ. Louvain-La-Neuven, Louvain-la-Neuve, Belgium

pierre.schaus@uclouvain.be

Abstract. We consider the problem of selecting the best variable-value
strategy for solving a given problem in constraint programming. We show
that the recent Embarrassingly Parallel Search method (EPS) can be
used for this purpose. EPS proposes to solve a problem by decomposing
it in many subproblems and to give them on-demand to workers which
run in parallel. Our method uses a sample of these subproblems for com-
paring strategies in order to select the most promising one to be used
for solving the remaining subproblems. Each subproblem of the sample is
solved with all the candidate strategies in parallel using a timeout that is
twice the time of the best one. The selection of the strategy is then based
on the Wilcoxon signed rank test. This test is able to deal with censored
data caused by timeouts and makes no assumption on the solving time
distribution. The experiments we performed on a set of classical bench-
marks for satisfaction and optimization problems show that our method
selects most of the time the best strategy. Our method also outperforms
the portfolio approach consisting of running some strategies in parallel
and is competitive with the multi armed bandit framework.

1 Introduction

Many generic variable-value strategies have been imagined [5,8,17,19,23,27].
Those are especially useful in the absence of specific knowledge on the problem
to solve. They either try to apply generic principles like the first fail principle (i.e.
try to fail as quickly as possible) [13] or try to detect underlined relations between
variables and constraints. In the first case, we have strategies like min-domain
which selects the variable having the minimum domain size, max-constrained
which prefers variables involved in a lot of constraints, or min-regret which selects
the variable which may lead to the largest increase in the cost if it is not selected.
The latter case is mainly formed by the impact based strategy [23], weighted
degree strategy [5] and the activity based strategy [19]. More recently strategies
attempting to prioritize variables according to the past failures or conflicting
decision have also been designed [8,17,27].

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 388–404, 2016.
DOI: 10.1007/978-3-319-44953-1 25

Parallel Strategies Selection 389

However, selecting a priori the best variable-value strategy is not an easy
task. Indeed no strategy dominates the other ones in general and it is difficult to
identify the types of problems for which a strategy performs well. Any variable-
value strategy can give good results for a problem and really bad results for
some others. It is not rare to see ratio of performance for a pair of strategy going
up from 1 to 20 (and even more sometimes) according to the problems which
are solved.

Unfortunately, there is almost no way to compare the performance of
variable-value strategies on a problem without solving it. Since strategies explore
the search space in different ways and since their pruning performances are not
regular it is difficult to compare their behavior before the end of the resolution.

Selecting the right strategy is a challenging decision impacting drastically
the solving time.

Our problem can also be seen as the automatic selection of the most efficient
algorithm among a predefined set of algorithms, for solving a given problem
[15,16,26]. Usually two types of approaches are considered [7]. Either we try to
determine statically, that is a priori, which is the best algorithm or we dynam-
ically compute the best algorithm to use for each step of the problem solving.
Both cases use a set of instances of the problem from which they learn different
criteria that will be used to take a decision.

We propose an original approach which is not based on machine learning but
on the statistical estimation of the best algorithm. Our approach does not require
to deal with a set of instances and use some sampling technique that are usually
more accurate. It exploits the decomposition proposed by the embarrassingly
parallel search (EPS) method recently developed [24,25].

EPS proposes to solve a problem by decomposing it into a large number of
subproblems consistent with the propagation (i.e., there is no immediate fail-
ure triggered by the initial propagation of a subproblem). We propose to use
a part of these subproblems for comparing the strategies in order to select the
most promising one for solving the whole problem. Instead of comparing the
strategies after solving the whole problem, we compare the strategies for each
subproblem of the sample. We measure the solving time for each subproblem
and each strategy and we eliminate the strategies that are statistically proved
to be less efficient by a Wilcoxon signed rank test. At the end, either only one
strategy remains or a set of non distinguishable strategies. In this latter case we
select the one having the smallest mean.

Since for each subproblem the solving times for the strategies may strongly
vary, it is necessary to add a timeout mechanism to control the time spent in the
strategy selection and to stop some computations after a given amount of time.
From a statistical point of view, this means that we may have censored data. By
defining appropriately these timeouts, we show that the results of the Wilcoxon
signed rank test remains valid if timeouts were not considered. Solving each
subproblem with each strategy in parallel allows us to define relative timeouts:
we stop a strategy when it requires more than twice the solving time of the best
strategy.

It is important to note that our method does not require to know the dis-
tribution of the solving times (we made some experiments showing that the

390 A. Palmieri et al.

distributions vary according to the problems or to the strategy, and there are no
general guidelines).

Our method can be distinguished from the machine learning approaches in
two ways:

– The relation between the data from which we take our decision and the
instance to solve is stronger in our case because we consider subproblems
of the instance and not some other instances.

– We do not try to learn any criteria and we do no try to estimate solving times.
We instead aim at selecting the most promising strategy for the given instance
only. Our results are statistically validated.

The paper is organized as follows. First we show the principles of our method
on an example. Then, we recall some preliminaries. Next, we detail the different
steps of our approach. We present some related work and some experiments on
a set of benchmarks, for which we compare our results with classical portfolio
and a multi-armed bandit method. At last we conclude.

2 Selection Principles

We present the principles of our method on a didactic example obtained from
the all-interval series, a common benchmark.

Our method proceeds by elimination of strategies until there is only one
remaining.

We consider 4 strategies (S1, S2, S3, S4). The initial problem has been decom-
posed into 300 subproblems from which we randomly select only 10 subproblems
for the sake of clarity.

We could consider each subproblem in turn and run all the strategies on it in
parallel. The drawback of this approach is that the running times are not regular
and that some strategies may perform poorly for some subproblems compared
to other strategies. For instance, here are the runtimes (in milliseconds) for each
subproblem:

Subproblem S1 S2 S3 S4

1 62 408 80 150

2 90 1134 92 154

3 155 1904 158 233

4 231 1451 250 407

5 198 1580 197 422

6 146 803 170 144

7 62 611 54 115

8 63 389 111 86

9 167 560 163 670

10 83 736 120 232

Σ 1257 9576 1395 2613

Parallel Strategies Selection 391

With this approach the total time for selecting the best strategy is 1257 +
9576 + 1395 + 2613 = 14841, that is more than 10 times the best runtime. Since
there are 300 subproblems to solve and since we selected 10, then we can expect
a total solving time around 30 times the runtime of the best strategy for our 10
subproblems that is 1.26×30 = 37.8 s1. This means that the time allocated to the
strategy selection, named selection time, may require more than 40% of the solv-
ing time. In practice running all the strategies on each subproblem in the sample
might take up to 90% of the solving time that would be taken by the best strat-
egy to solve all the subproblems. Our objective is to keep the overhead induced by
the selection strategy minimal. Therefore some timeouts are be introduced with
respect to the time of the best strategy on each subproblem. Timeouts may cause
censored measures that must be carefully treated by statistical methods.

We propose to deal with censored data and proceed by steps.

1. For each subproblem we compare the strategies, but we introduce a timeout
limit for each computation corresponding to 2 times the runtime obtained by
the best strategy.

2. We select the strategy having the smallest total time (timeouts are counted as
their values). If this strategy was stopped by a timeout for some subproblems
we run it again on these subproblems without timeouts. We repeat this step
until the strategy having the smallest total time without timeout, which we
denote sb, has been selected.

3. We compare all the strategies against sb by using the Wilcoxon signed rank
test. All strategies significantly slower than sb are eliminated. If sb is rejected
by the Wilcoxon test against sx (in theory this can happens even if sb has a
better mean) then sb is eliminated and replaced by sx. Note that this latter
case never happens in the 10,000 s of tests we made.

4. Eventually, if some strategies cannot be distinguished by the Wilcoxon signed
rank test then we select the strategy performing the best on the sample.

Note that in any case we have a strong statistical support of our choice.
With timeouts corresponding to twice the runtime of the best strategy for

each subproblem we obtain the following table:

Timeout S1 S2 S3 S4

1 2 × 62 = 124 62 TO 80 TO

2 2 × 90 = 180 90 TO 92 154

3 2 × 155 = 310 155 TO 158 233

4 2 × 231 = 462 231 TO 250 407

5 2 × 197 = 394 198 TO 197 TO

6 2 × 144 = 288 146 TO 170 144

7 2 × 54 = 108 62 TO 54 TO

8 2 × 63 = 126 63 TO 111 86

9 2 × 163 = 326 167 TO 163 TO

10 2 × 83 = 166 83 TO 120 TO

Σ 1257 2 484 1395 2 142

1 We do not claim that this computation is accurate. We present it only for understand-
ing the intuitive idea.

392 A. Palmieri et al.

It is important to remark that the best strategy for the whole problem is
not the best one for each subproblem. In practice it happens frequently that the
best strategy has some timeouts.

The Wilcoxon signed rank test considers the difference in response within
pairs. Then it ranks the absolute values of these differences. The sum W+ of
the ranks for the positive difference is the Wilcoxon signed rank statistic and
has mean µW+ = n(n+1)

4 . The Wilcoxon signed rank test rejects the hypothesis
that there is no systematic differences within pairs when the rank sum W+ is
far from its mean.

Suppose we want to compare the strategies S1 and S3. For each subproblem
we compute the difference time(S1) − time(S3). Then, we rank the absolute
values of these differences and we add a sign in front of these ranks corresponding
of the signs of the differences. For instance, for the first subproblem we have
time(S1)−time(S3) = 62−80 = −16, 16 is the 6th values so its rank is 6. The sign
rank is −6 because the difference is negative. Then, we compute W+, the sum of
the positive ranks. The following table shows that we have W+ = 1+5+4 = 10.

Sub problem S1 S3 S1 − S3 Signed rank

1 62 80 −18 −6

2 90 92 −2 −2

3 155 158 −3 −3

4 231 250 −19 −7

5 198 197 1 +1

6 146 170 −24 −8

7 62 54 8 +5

8 63 111 −48 −10

9 167 163 4 +4

10 83 120 −37 −9

We consider a one-tailed test (S3 = S1 or S3 > S1) with a significance level
of 0.05.

The critical value of W for N = 10 at p ≤ 0.05 is 10. Therefore the result is
significant and we can conclude that S1 is better than S3. So, we can eliminate
S3.

We repeat this process between S1 and the other strategies. We will prove
that we can perform the calculations by using the timeouts values if these values
are defined by any value greater than twice the maximum positive difference
because in this case the positive ranks will not change for any value greater than
this timeout. For instance, when we compare S1 and S4 there is only one positive
difference equal to 2 (for subproblem 6, we have 146 − 144 = 2), so for each
subproblem j we can set the timeout to any value v such that v > time(S1, j)
and |time(S1, j) − v| > 2, because this will not impact the rank of value 2 and
so the value of W+.

Parallel Strategies Selection 393

If we apply this process for our example, the comparison against S1 will
eliminate all the other strategies.

In conclusion, S1 is selected. This leads to a resolution time of about 39.4 s.

3 Background

3.1 Statistics

These definitions are due to Moore et al. [21].

Simple Random Samples. A simple random sample (SRS) of size n consists
of n individuals from the population chosen in such a way that every set of n
individuals has an equal chance to be the sample actually selected. We select an
SRS by labeling all the individuals in the population and selecting randomly a
sample of the desired size. Notice that an SRS not only gives each individual
an equal chance to be chosen (thus avoiding bias in the choice) but gives every
possible sample an equal chance to be chosen.

Wilcoxon Signed Rank Test for Matched Pairs. Our data do not follow a
Normal distribution and timeouts are introduced leading to right censored data.
Common method like t-test can thus not be used and non nonparametric tests
have to be considered instead for comparing strategies. We use the Wilcoxon
Signed Rank Test. Bootstrap methods and permutation tests based on the idea of
applying the method many times would be too time-consuming for our purpose.

Since we aim at comparing the performance of two algorithms we consider
a matched pairs design, which compares just two observations. The idea is
that matched subjects are more similar than unmatched subjects, so comparing
responses within a number of pairs is more efficient than comparing the responses
of groups of randomly assigned subjects. Matched pairs data are analyzed by
taking the difference within the matched pairs to produce a single sample. The
one sample statistic is applied on this difference data in order to compare the
matched pairs data.

The Wilcoxon signed rank test (WSR test) for matched pairs is defined as
follows. Draw an SRS of size n from a population for a matched pairs study
and take the difference in responses within pairs. Rank the absolute values of
these differences. The sum W+ of the ranks for the positive difference is the
Wilcoxon signed rank statistic. If the distribution of the responses is not affected
by the different treatments within pairs, then W+ has mean µW+ = n(n+1)

4

and standard deviation σW+ =
√

n(n+1)(2n+1)
24 . Difference of zero are discarded

before ranking. Ties among the absolute differences are handled by assigning
average ranks.

The WSR test rejects the hypothesis that there is no systematic difference
within pairs when the rank sum W+ is far from its mean.

394 A. Palmieri et al.

P-values (i.e., the probability computed assuming that null hypothesis is
true, that the test statistic will take a value at least as extreme as that actually
observed) for the signed rank test are based on the sampling distribution of
W+ when the null hypothesis is true. P-values can be computed from the exact
distribution (from software or tables) or obtained from a Normal approximation
with continuity correction.

3.2 Embarrassingly Parallel Search [25]

The idea of the Embarassingly Parallel Search (EPS) is to decompose statically
the initial problem into a huge number of subproblems that are consistent with
propagation (i.e., running the propagation mechanism on them does not detect
any inconsistency). These subproblems are added to a queue which is managed
by a master. Then, each idle worker takes a subproblem from the queue and
solves it. The process is repeated until all the subproblems have been solved.

The decomposition is made by selecting a set V of k variables and then by
searching all instantiations of V that are consistent with propagation. There is no
specific variable-value strategy used to find these instantiations. The number of
generated subproblems depends on the size of V which is determine by successive
computations.

The assignment of the subproblems to workers is dynamic and there is no
communication between the workers. EPS is based on the idea that if there is a
large number of subproblems to solve then the resolution times of the workers
will be balanced even if the resolution times of the subproblems are not. In other
words, load balancing is automatically obtained in a statistical sense. Interest-
ingly, some experiments [24] have shown that the number of subproblems does
not depend on the initial problem but rather on the number of workers. More-
over, they have shown that a good decomposition has to generate more than 30
subproblems per worker.

4 Method

4.1 Simple Random Sample

We use EPS to decompose the initial problem into a huge set of subproblems.
Thus the population is the set of these subproblems. The SRS is built by selecting
randomly k subproblems from the set of subproblems. The sample is limited
to 1% of the subproblems to avoid spending too much time for the strategy
selection. If k = 30 subproblems seems to be the minimum number of subproblem
to consider, then we need to have at least 3, 000 subproblems.

4.2 Comparison of Strategies

Strategies are compared by using the WSR test on the SRS previously defined.
For each subproblem of the SRS we run the strategies in parallel and we stop the

Parallel Strategies Selection 395

slowest ones when they require twice the time of the best strategy. Then, we select
the strategy having the smallest sum of solving times for all the subproblems
of the SRS. If this strategy was stopped by a timeout for some subproblems we
run it again on these subproblems without timeout. We repeat this step until
the strategy, denoted by Sb, having the smallest total time without timeout has
been selected. Next, we compare all the strategies against Sb by using the WSR
test performed on some modified data. All strategies significantly slower than
Sb are eliminated. If at a moment, the strategy Sb is rejected by the Wilcoxon
test against another strategy Sx, then timeouts are removed for Sx and we use
a t-test for deciding whether Sx should become the best strategy. In this latter
case we simply replace Sb by Sx.

In any case, we have a strong statistical support of our selection.
Our hypotheses are

H0: there is no difference between data of both Strategies.
Ha: scores are systematically higher for the second Strategy.

In order to make sure that the result of the test remains valid when exact
solving times are considered instead of timeout values, we proceed as follows.
Suppose we compare Sb and Si. Let us show that if we set for each subproblem j
the timeout to a value to(j) > dmax

bi + time(Sb, j) where dmax
bi the largest positive

value of time(Sb)− time(Si) for all the subproblems of the SRS then the test is
valid if exact solving times are considered instead of timeouts.

Property 1. Let dmax
bi the largest positive value of time(Sb, j)−time(Si, j), and

rank(dmax
bi) be its rank in the WSR test of that value. Then, rank(dmax

bi) is the
greatest value of W+ and for any value v such that rank(v) > rank(dmax

bi) we
have time(Sb, j) − time(Si, j) < 0 and v > dmax

bi .

Proof: By definition of the ranks and since dmax
bi is the largest positive value of

time(Sb, j) − time(Si, j) then it has the largest rank in W+, thus any value
having an absolute value greater than dmax

bi is negative and has a greater rank ⊙

Property 2. Suppose that for any subproblem j the timeout for j is set for Si

to a value to(j) > dmax
bi + time(Sb, j) and let W+ be the sum computed with

these timeouts. Then, for any value of timeout greater than to(j) the value of
W+ remains unchanged.

Proof: If the timeout is set to to(j) > dmax
bi + time(Sb, j) then for any j reaching

the timeout |time(Sb)− time(Si)| > dmax
bi . From Property 1 the increase of to(j)

will not change the rank of the elements of W+ so the property holds ⊙.

So, for each subproblem j such that Si has been stopped by a limit which
is less than dmax

bi + time(Sb, j), we solve again this subproblem with Si with
the time limit defined by dmax

bi + time(Sb, j) + 1. Therefore, our deduction are
statistically valid.

At the end, it is possible that we cannot deduce that some strategies are
statistically different. However, this means that they should lead to equivalent

396 A. Palmieri et al.

solving time for the whole problem, so we can select any of them. In this case,
we select the strategy performing the best on the sample.

If we compare s strategies with an initial timeout fixed to twice the time of the
best strategy and if tmax(Sb) denotes the largest solving time of a subproblem
of the sample by the best strategy Sb, then the sum of the solving times for all
the strategies for each problem in the sample is bounded by s × tmax(Sb).

Significance Level of the Results. The significance level of the method is bounded
by the product of the confidence intervals of each comparison. This means that
for k comparisons, each with a confidence interval of 99%, the overall result has
a confidence interval of 0.99k−1. Fortunately we have only few strategies. For
instance for 7 strategies, this leads to a confidence level of 0.996 = 94%. This is
quite acceptable.

Optimization Problems. In optimizations problems, an optimal value of an objec-
tive function has to be found, thus bounds on this function are important. For
each subproblem, all strategies have the same bound. When a bound is found for
subproblem i, it is used for all subproblems considered after i for all strategies

5 Related Work

There has been a significant amount of work on automatically selecting or adapt-
ing the search strategy. Some successes have been obtained by running some algo-
rithms in parallel in CP [10] and in SAT [12]. Offline and online machine learning
based methods are popular. Offline methods select automatically the strategy
among a set of available strategies. They perform a learning phase on a training
set of instances. They haven been initially proposed for SAT [28] and then for
CSPs [22]. Hamadi [11] proposed two methods: continuous search which aims
at finding the best strategy for solving a given problem and autonomous search
which aims at finding the best strategy in general. These methods are based on
machine learning techniques. On the other hand, online methods have been con-
sidered. Epstein et al. [6] proposed Adaptive Constraint Engine (ACE), a method
which gathers the decision made by several strategies and proceed to a vote in
order to decide which one will be applied for the next decision. Gagliolo and
Schmidhuber [7] allocate times to each algorithms by using a multi-armed ban-
dit algorithm whose decisions is based on the previous computations. Arbelaez
et al. [1] apply Support Vector Machines to the problem of automatically adapt-
ing the search strategy of a CP solver in order to more efficiently solve a given
instance. Loth et al. [18] define the best strategy during the search by using a
multi-armed bandit approaches combined with Monte Carlo Tree Search. Racing
algorithms using a non-parametric test based on ranking to successively discard
unpromising configurations, like F-Race [3], have also been proposed. However,
F-Race does not deal with censored data: it successively executes the algorithm
until its completion on new sampled problems. There is no parallel execution
and no time-out that is central to our approach.

Parallel Strategies Selection 397

For a good introduction to Algorithm selection we encourage the reader to
refer to [7,16].

6 Experiments

All the experiments have been run in parallel on a parallel machine. The scaling
of the EPS method does not depend on the problem solved, so it is the same for
all the variable-value strategies. Therefore, for each strategy we have used the
sum of the time spent on each core allocated to this strategy as a measure of the
time required by the strategy. The best of these times correspond to the value
we want to minimize, thus our experiments are based on these times.

Machines. All the experiments have been made on a Dell machine having four
E7-4870 Intel processors, each having 10 cores with 256GB of memory and run-
ning under Scientific Linux.

Solver. We implemented our method on the top of Gecode 4.2 (http://www.
gecode.org/).

Considered Strategies. After some experiments we selected 7 candidate strate-
gies. Each strategy is dynamic:

– FF implements the first fail principle by selecting the variable with the mini-
mum domain size [13];

– Act selects the variable with the maximum of activity2 [19];
– Wdegm selects the variable with the maximum weighted degree3 [4];
– WdegM same as above excepted that the value is selected differently;
– MRegret selects the variable for which the difference between the largest and
second-largest value still in the domain is maximum [9].

– MostC selects the most constrained variable.
– D/Wdeg selects the variable for which the ratio of the size of its domain by
its weighted degree is minimum [4,5].

After selecting the variable, all strategies but Wdegm, assign to it the mini-
mum value of its domain. WdegM assigns to it the maximum value of its domain.
We did not consider impact based strategy [23] because this strategy is not imple-
mented in Gecode.

2 Roughly the activity is defined by the number of times the variables has been intro-
duced in the propagation queue. The activity is increased at most by one for each
decision.

3 The weighted degree of a variable is defined by a counter associated with it. Each
time a constraint fails, the counter of each variable involved in the constraint is
increased by one.

http://www.gecode.org/
http://www.gecode.org/

398 A. Palmieri et al.

Benchmarks Instances. We present the most representative results that we
obtained (results for other problems are equivalent).

Problems come from the CSPLib, the minizinc challenge [20] or the Hakank’s
constraint programming blog [14].

For satisfaction problems we search for all solutions and we consider the
following problems: all-I: All intervall series 14; Costa: Costa Array 13; Filo:
Filomino 13; Lams 9; Qgrp: Quasi group 7; Msplt: Market split s5–08; Sched:
sport scheduling 12; Tank: tank attack puzzle 7; Gol: Golomb 12; Perm: Permu-
tation 12.

For optimization problems, we search for the optimal solution and we prove
the optimality. Results are given for the following problems: Crew; Dud: dudney
thea; Java: java routing trip 6-3; mario; mario medium 3; Fback: minimum feed
back; matching problem Money: money change 27; War: War Peace 8; Sugi:
Sugiyama 77;

Sampling. The initial problem is decomposed into 16,635 subproblems from
which we randomly select 100 subproblems.

6.1 Main Results

PSS denotes the Parallel Strategies Selection that we propose.
Times are expressed in minutes and correspond to the sum of the times spent

by all the cores. Bold times indicate the best strategy for the considered problem.

FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS

All-I 26.3 210 55.1 54.4 31.6 26.1 0.8 0.9

Costa 46.2 365 78.2 153 213 41.7 96.9 49.2

Filo 427 160 12.0 78.2 335 654 23.5 12.4

Lams 58.6 802 416.3 319.2 49.9 48.7 1301 62.0

Qgrp 36.7 41.0 367 877 4.6 3.3 2.8 3.0

Msplt 525 1035 616 620 526 492 703 515

Sprt 55.8 265 124 116 73.0 36.6 14.9 15.4

Tank 29.6 1091 27 K 47 K 40.6 13 K 3.8 4.1

Gol 341 295 543 455 183 334 168 176

Perm 234 177 159 201 121 331 27.3 28.1

In terms of ratio with respect to the best time (i.e., each time is divided
by the best time), we obtain the following table which clearly shows the strong
disparities between strategies, and that the performance of PSS is close to the
one of the best strategy for each problem. We use the following notation: x is
the mean and geo x is the geometric mean.

Parallel Strategies Selection 399

FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS

All-I 32 254 67 66 38.4 31.7 1 1.06

Costa 1.1 8.8 1.9 3.7 5.1 1.0 2.3 1.06

Filo 35 1.0 13 6.5 27 54 1.96 1.04

Lams 1.2 16.5 8.6 6.6 1.0 1.0 26.8 1.06

Qgrp 13.1 14.7 131 314 1.6 1.2 1.0 1.06

Msplt 1.1 2.1 1.3 1.3 1.1 1.0 1.43 1.04

Sprt 3.7 17.8 8.4 7.8 4.9 2.5 1.0 1.03

Tank 7.9 291 7408 12625 10.8 3576 1.0 1.07

Gol 2.0 1.8 3.2 2.7 1.1 2.0 1.0 1.05

Perm 8.6 6.5 5.8 7.4 4.4 12.1 1.0 1.03

geo x 5.1 12.1 17.6 19.6 4.4 7.3 1.7 1.05

x 10.6 61.5 765 1304 9.7 368.3 3.8 1.05

For optimization problems we obtain the following results:

FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS

Crew 64 258 85 91 68 58 74 61

Dud 15 34 40 32 37 17 16.1 16.3

Java 24 35 41 35 21 24 108 22.7

Mario 4.2 45.9 18.7 9.8 7.4 5.8 5.9 4.6

Fback 126 281 379 436 128 131 127 133

Money 0.6 0.9 0.9 0.6 0.8 0.6 0.6 0.6

War 185 259 232 250 211 54 176 56.4

Sugi 504 154 113 111 381 504 29.1 30.1

We can also express them in term of ratios w.r.t. the best time in order to
see the relative differences between strategies:

FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS

Crew 1.10 4.44 1.46 1.57 1.17 1.00 1.21 1.05

Dud 1.00 2.23 2.60 2.06 2.39 1.12 1.07 1.07

Java 1.12 1.62 1.91 1.64 1.00 1.10 5.14 1.06

Mario 1.0 10.9 4.43 2.33 1.75 1.37 1.40 1.09

Fback 1.00 2.22 3.00 3.45 1.02 1.04 1.01 1.05

Money 1.00 1.57 1.57 1.09 1.35 1.12 1.05 1.05

War 3.45 4.82 4.32 4.65 3.92 1.00 3.26 1.05

Sugi 17.3 5.30 3.90 3.80 13.0 17.3 1.00 1.05

geo x 1.71 3.35 2.67 2.32 2.01 1.56 1.54 1.06

x 3.38 4.14 2.90 2.57 3.21 3.13 1.88 1.06

400 A. Palmieri et al.

Once again our method gives good results. Note that for all problems the
Wilcoxon signed rank test was able to eliminate all strategies against the
best one.

Next we give some results for the search of the first solution. The chance plays
a role in this case. We consider only problems having few solutions since for prob-
lems with many solutions the first one is found during the sampling. Times are
in minutes and the last column contains the number of subproblems considered
before finding one with a solution (recall that the number of subproblems is
16,635). The subproblems are considered as generated by the decomposition. As
can be observed the results are surprisingly good with a very limited footprint
with respect to the best strategy.

PSS Best strategy Ratio #firstSol

Filo 5.56 5.45 1.02 5,283

Msplt 26.8 201 1.33 678

Tank 1.94 1.24 1.57 39

Gol 127 125 1.014 12,400

We report next the mean of 250 experiments obtained by randomly selecting
the subproblems. The results obtained by PSS are close to the results of the best
strategy:

PSS Best strategy Ratio

Filo 7.09 6.19 1.14

Msplt 172 164 1.05

Tank 2.84 2.66 1.07

Gol 101 95 1.07

6.2 Comparison with a Sequential Approach

We compare the results obtained with PSS against the sequential time of the
best strategy (Seq+Best) used for each problem. We give wall clock times in
minutes.

All-I Costa Filo Lams Qgrp Msplt Sprt Tank Gol Perm

PSS 0.024 1.29 0.33 1.63 0.08 13.52 0.40 0.11 4.62 0.74

Seq+Best 1.6 34.6 5.95 38.8 2.1 515 9.8 2.9 135 21

Ratio 28.4 26.8 18.3 23.8 26.5 38.1 24.2 26.7 29.1 28.6

Parallel Strategies Selection 401

6.3 Comparison with Multi-armed Bandit (MAB) Approach

The Multi-Armed Bandit selector is based on a model defined on a set of k arms,
one for each strategy, and a set of rewards Ri(j), where Ri(j) is the reward deliv-
ered when an arm i has been chosen at time j. A reward reflects the performance
of choosing that arm. The idea is to select for each subproblem a strategy (i.e.,
an arm) and then to solve the subproblem with this strategy. This will give us a
reward inversely related to the solving time. The next selection is based on the
sequence of the previous trials. We propose to use the UCB1 policy defined in
[2], which selects the arm i that maximizes p(i) = Ri +

√
2lnm
mi

, where m is the

current number of selection, mi the number of times i has been selected and Ri is
the mean of the past rewards of the i arm. This policy prefers the most rewarded
strategy but also biases the selection toward less frequently selected strategies
(this bias factor increases along the iterations). The main difficulty is the defin-
ition of the reward function. We adapt the one of Gagliolo and Schmidhuber [7]
which is designed for resource allocation and defined by: ln(tmax)−ln(ti)

ln(tmax)−ln(tmin)
, where

tmax and tmin are respectively the maximum and minimum solving time and ti is
the time for solving problem i. Experimentally, we obtained the best results by
defining tmax = 10µ and tmin = µ/10 where µ is the mean of the solving times.
With such values we accept some variations and degenerate cases (i.e., very bad
solving times) will give only negative rewards. We denote by MAB this method.
Here is the comparison with PSS:

Time Ratio w.r.t. best

PSS MAB PSS MAB

All-I 0.9 2.0 1.06 1.14

Costa 49.2 65.4 1.06 1.41

Filo 12.4 36.8 1.04 3.08

Lams 62.0 102 1.06 1.73

Qgrp 3.0 7.8 1.06 2.77

Mspl 515 548 1.04 1.11

Sprt 15.4 19.8 1.03 1.32

Tank 4.1 12.0 1.07 3.13

Gol 176 243 1.05 1.45

Perm 28.1 31.4 1.03 1.15

geo x 1.05 1.68

x 1.05 1.83

The results obtained with PSS are better than with MAB. In addition PSS is
more robust. These experiments show that applying the reasoning on subprob-
lems coming from the instance to solve is certainly a good idea.

402 A. Palmieri et al.

6.4 Comparison with Portfolio

PSS needs 1172min for solving all the problems. The Portfolio-x4 method runs
in parallel the four best strategies. It requires 3959min which is not competitive
with our method.

We also tried to combine our approach with a portfolio approach. PSS-pfolio2
is the PSS method for which we run in parallel the two best estimated strategies
when the difference between them is small. The following results show that it is
never interesting to run some strategies in parallel.

All-I Costa Lams Qgrp Msplt Perm

PSS 0.9 49.2 62.0 3.0 515 28.1

PSS-pfolio2 1.6 94.0 114 5.4 917 37.9

6.5 Timeout, Sample Size and Simple Impact

The timeout (TO) may have a huge impact on the selection time as shown by
the following table, where “without TO” means that we do not stop any strategy
when solving a subproblem.

with TO without TO

All-I 0.1 4.9

Costa 3.0 16.1

Filo 0.4 17.5

Lams 3.4 9.6

Qgrp 0.2 2.9

Msplt 22.9 82.8

Sprt 0.5 7.8

Tank 0.3 136

Gol 7.9 38.0

Perm 0.8 5.5

We also performed some experiments with a sample size equals to 30 instead
of 100. We do not observe any difference for the selected strategy. The best
strategy is selected for all problems.

7 Conclusion

The Embarrassingly Parallel Search method solves a problem by decomposing
it into subproblems. In order to select the best variable-value strategy to solve a

Parallel Strategies Selection 403

problem, we propose to use a part of these subproblems and compare some strate-
gies on them. Then, we select the most promising one by using the Wilcoxon
signed rank test. This method, PSS, is simple and does not require a lot of
computations. It can easily be used in practice because the time allocated to
the strategy selection is under control. Some comparisons with other portfolio
approaches show the advantage of our method. We also give a model based on
the Multi-armed Bandit algorithm which gives interesting results although infe-
rior and less robust than those of PSS. Finally, it appears that it is better to
select only one variable-value strategy than running several in parallel, even if
we make some mistakes sometimes.

Acknowledgments. We would like to thank Guillaume Perez for his useful comments
and for his help in the multi-armed bandit algorithm, and also the anonymous reviewer
who made a lot of comments who helped us to improve this paper.

References

1. Arbelaez, A., Hamadi, Y., Sebag, M.: Online heuristic selection in constraint pro-
gramming. In: International Symposium on Combinatorial Search (2009)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: GECCO 2002: Proceedings of the Genetic and Evo-
lutionary Computation Conference, New York, USA, 9–13 July 2002, pp. 11–18
(2002)

4. Boussemart, F., Hemery, F., Lecoutre, C.: Revision ordering heuristics for the con-
straint satisfaction problem. In: 1st International Workshop on Constraint Prop-
agation and Implementation held with CP 2004 (CPAI 2004), pp. 9–43, Toronto,
Canada, September 2004

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI, vol. 16, p. 146 (2004)

6. Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive
constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–
542. Springer, Heidelberg (2002)

7. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math.
Artif. Intell. 47(3–4), 295–328 (2006)

8. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Heidelberg (2015)

9. Gecode (2012). http://www.gecode.org/
10. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
11. Hamadi, Y., Search, C.: From Algorithms to Systems. Springer (2013)
12. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. JSAT 6(4),

245–262 (2009)
13. Haralick, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satis-

faction problems. Artif. Intell. 14, 263–313 (1980)
14. Kjellerstrand, H.: My constraint programming blog (2016)
15. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. arXiv

preprint. arXiv:1210.7959 (2012)

http://www.gecode.org/
http://arxiv.org/abs/1210.7959

404 A. Palmieri et al.

16. Kotthoff, L.: Algorithm selection literature summary (2016). http://larskotthoff.
github.io/assurvey

17. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last conflict based reasoning. In:
ECAI, pp. 133–137 (2006)

18. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for con-
straint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480.
Springer, Heidelberg (2013)

19. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012)

20. MiniZinc (2012). http://www.g12.csse.unimelb.edu.au/minizinc/
21. Moore, D.S., McCabe, G.P., Craig, B.A.: Introduction to the Practice of Statistics:

Extended Version. W.H. Freeman, New York (2009)
22. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science, pp. 210–216 (2008)

23. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

24. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

25. Régin, J.-C., Rezgui, M., Malapert, A.: Improvement of the embarrassingly parallel
search for data centers. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 622–
635. Springer, Heidelberg (2014)

26. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
27. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based

scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Heidelberg (2015)

28. Lin, X., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for sat. J. Artif. Intell. Res. 32, 565–606 (2008)

http://larskotthoff.github.io/assurvey
http://larskotthoff.github.io/assurvey
http://www.g12.csse.unimelb.edu.au/minizinc/

Learning Parameters for the Sequence
Constraint from Solutions

Émilie Picard-Cantin1(B), Mathieu Bouchard2, Claude-Guy Quimper1,
and Jason Sweeney2

1 Université Laval, 2325, Rue de L’Université, Québec G1V 0A6, Canada
emilie.picard-cantin.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

2 PetalMD, 350 Boulevard Charest Est, Québec G1K 3H5, Canada
{mbouchard,jsweeney}@petalmd.com

Abstract. This paper studies the problem of learning parameters for
global constraints such as Sequence from a small set of positive exam-
ples. The proposed technique computes the probability of observing a
given constraint in a random solution. This probability is used to select
the more likely constraint in a list of candidates. The learning method
can be applied to both soft and hard constraints.

Keywords: Constraint acquisition · Timetabling · Machine learning ·
CSP · Global constraints · Solution counting · Markov chain · Soft
constraints

1 Introduction

Accurate mathematical modeling requires a specific and complex training process
and a lot of scheduling experience as there are as many models as there are
problems. This is why modeling automation has become a popular field of study.

In this paper, we propose a statistical approach that detects the parameters
of multiple global constraints such as Among and Sequence, two common con-
straints used in timetabling. This approach, based on machine learning, analyzes
given positive examples (the only inputs from the user) and determines which
constraint better explains these examples.

The first contribution of this paper is a technique to compute the probability
of observing a specific Sequence constraint. Constraint candidates (satisfied
by all examples) are compared using their individual probability. The candidate
with the lowest probability of being observed, if it is not part of the model,
is chosen and added to the optimization model. The second contribution is an
improvement on solution counting for the Regular constraint using a simpli-
fied automaton and a matrix representation. The last contribution is a machine
learning tool that can be applied to both soft and hard global constraints.

Section 2 describes the problem that motivates our research. Section 3 lists
major contributions to the constraint acquisition field. Section 4 details our
machine learning approach to detect the most likely Sequence constraint for
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 405–420, 2016.
DOI: 10.1007/978-3-319-44953-1 26

406 É. Picard-Cantin et al.

a set of positive examples. Section 5 summarizes our results on a timetabling
problem supplied by PetalMD, a specialist in medical scheduling.

2 Problem Description

Our research is motivated by a medical timetabling problem. A schedule is a
table where rows are associated to employees and columns are associated to
days. The cell (e, t) contains the task assigned to employee e on day t. The
optimization model has two objectives : assigning the maximum number of tasks
and minimizing the deviations from employees’ workload targets. Each employee
can be assigned at most one task at a time. Let xet be the task assigned to
employee e at time t. Let R be the total number of employees and T be the
set of all task types. At least ci and at most c̄i employees must work on task i
every day. We use a global cardinality constraint [16], GCC([x1t, . . . , xRt], c, c̄)
for each day t to ensure these requirements are met.

Let d be the total number of days in the schedule. An employee can be
assigned at least l and at most u tasks taken from a set V ⊆ T within a period of
k consecutive days. This limit is imposed by Sequence(l, u, k, [xe1, . . . , xed], V)
for every employee e, i.e. on each row of the schedule. Both global
constraints Among and Sequence were introduced by Beldiceanu and
Contejean [1]. The constraint Among(l, u, [xij , . . . , xi(j+k−1)], V) ensures that
xij , . . . , xi(j+k−1) are assigned to values in V at least l times and at
most u times. The constraint Sequence(l, u, k, [xi1, . . . , xid], V) ensures that
Among(l, u, [xij , . . . , xi(j+k−1)], V) holds for every subset of k consecutive vari-
ables in {xi1, . . . , xid}.

This paper addresses the problem of learning parameters l, u, k and V of
a Sequence constraint from a small set of positive solutions. In particular,
we apply our method on manually completed schedules provided by PetalMD.
Sequence is one of the most common constraint, yet the parameters are hard
to extract from clients. The automated learning of this constraint will save
PetalMD time and money. Typically, clients express their constraints informally
and model creation is a long interactive process where scheduling experts present
new schedules and clients tell them what is wrong with the new schedule until
all constraints and parameters are determined.

3 Background

As explained in Sect. 1, automatic modeling is a popular field of study. In the
present section, we list important concepts related to our research.

3.1 Constraint Acquisition

Bessiere et al. in [5,6,8,10] propose an algorithm named ConAcq learning con-
straint networks from positive and negative solutions using version space learn-
ing. Version space learning defines the search space for the constraint network

Learning Parameters for the Sequence Constraint from Solutions 407

as a set of constraint network candidates (hypothesis). Each hypothesis not sat-
isfied by all positive examples is removed. ConAcq encodes each example as a
set of clauses where the atoms are taken from the constraint vocabulary of the
library of constraints. A solution to the corresponding satisfiability problem is
therefore an admissible constraint network.

O’Connel et al. [13] propose an interactive version space algorithm, which
creates a first version space from examples given by the user. From one of the
hypotheses, the system builds an qualifying example. The user accepts or rejects
it, and the version space is updated accordingly. The algorithm terminates when
the version space contains a single hypothesis.

Bessiere et al. [4] propose an active learning system named QuAcq. QuAcq
adds one constraint at a time in the network by presenting partial queries, which
are classified by the user as positive or negative. QuAcq choose queries that
satisfy the constraints in the current network and violate at least one constraint
in the library until no such queries exist.

Beldiceanu and Simonis [3] propose a constraint acquisition tool they refer
to as Model Seeker. This tool builds a satisfaction model from positive examples
using constraints from the global constraint catalog. The Model Seeker creates
a list of candidates, all global constraints satisfying the examples, by generating
sequences and matching them against the global constraints using the Constraint
Seeker [2]. The candidates are ordered according to their pertinence, which is
computed using multiple criteria, such as solution density and constraint popu-
larity. A dominance check is performed to remove redundant constraints.

3.2 Solution Counting

The constraint Regular([Xi, . . . , Xn],A) [14] forces the word [Xi, . . . , Xn] to
belong to the regular language defined by the deterministic finite automaton
A. The automaton A is composed of a finite list of states Q, an alphabet Σ, a
transition set δ ⊆ Q × Σ × Q, an initial state q0 ∈ Q, and a set of final states
F ⊂ Q which determine the end of all accepted words. A sequence X1, . . . , Xn

is accepted by A if and only if there exists a sequence of states q0, . . . , qn ∈ Q
such that (qi−1,Xi, qi) ∈ δ for all i ∈ {1, . . . , n} and qn ∈ F .

Zanarini and Pesant [19] use dynamic programming to count the solutions
that satisfy Regular([X1, . . . , Xn],A). Let Ā be the unfolded version of A
where layer Li contains states attainable with the subsequence [X1, . . . , Xi−1],
see Fig. 1. L1 contains the initial state and Ln+1 contains all final states.

L1 L2 L3 . . . Ln Ln+1
X1 X2 X3 Xn−1 Xn

Fig. 1. Unfolded automaton, where Li contains states attainable with [X1, . . . , Xi−1].

408 É. Picard-Cantin et al.

Let vlq be the state q in layer l and let #op(l, q) be the number of paths from
vlq to a final state in layer Ln+1. Then, we have

#op(n+ 1, q) = 1 (1)

#op(l, q) =
∑

(vl,q,c,vl+1,q′)∈δ

#op(l + 1, q′), ∀q ∈ Q, 1 ≤ l ≤ n . (2)

The number of solutions that satisfy Regular([X1, . . . , Xn],A) is #op(1, q0).
Hoeve et al. [11] encode Sequence using Regular. Brand et al. [9] improve

this encoding by simplifying Sequence(l, u, k, [x1, . . . , xd], V) to the constraint
Sequence(l, u, k, [y1, . . . , yd], {1}) where dom(yi) = {0, 1} and with the rela-
tion yi = 1 ⇐⇒ xi ∈ V . Bessiere et al. [7] show how an automaton
can encode the sliding of any constraint over a sequence of variables. Since
Sequence(l, u, k, [y1, . . . , yd], {1}) is defined as the sliding of the constraint
Among on the sequence of variables [y1, . . . , yd], one can get an automaton
in the following way. The states are labeled with sequences of zeros and ones of
length at most k − 1 and are partitioned into two sets. The states in Qs are all
possible sequences of length s ≤ k − 2 and are called transitory states. They are
only visited at the beginning of the sequence. The states in Qk−1 are sequences
of length k − 1 that contains at least l − 1 and at most u occurrences of 1. The
initial state is the empty sequence ϵ and the final states are Qk−1.

Qs = {0, 1}s,∀ s ∈ {0, . . . , k − 2} , (3)

Qk−1 = {w ∈ {0, 1}k−1 | l − 1 ≤
k−1∑

i=1

wi ≤ u} , (4)

Q =
k−1⋃

i=0

Qi . (5)

A state w ∈ Qs for s < k − 1 leads to the state wc ∈ Qs+1 upon reading the
character c ∈ {0, 1}, where wc is the concatenation of the sequence w with the
character c. Finally, let a and b be two characters and w a sequence of length
k − 2. Reading the character b from state aw ∈ Qk−1 leads to state wb ∈ Qk−1

only if there are at least l and at most u occurrences of ones in the sequence wb.

δ ={⟨w, c, wc⟩ | w ∈ Qs, wc ∈ Qs+1} (6)

∪ {⟨aw, b, wb⟩ | aw,wb ∈ Qk−1, l ≤ a+
k−2∑

i=1

wi + b ≤ u} .

Figure 2 shows the automaton for Sequence(1, 2, 3, [y1, . . . , yd], {1}). Note that
states in Qk−1 are accepting because the transitions only lead to acceptable
sequences and the initial state is ϵ, the empty sequence. From the definition
of the transitory states, certain states might be isolated in some automatons.
Figure 3 illustrates a small example where a state labeled 0 is created but never

Learning Parameters for the Sequence Constraint from Solutions 409

00 01 10 11

0 1

0 1

0 1 0 1

1 0

10

0

Fig. 2. Automaton corresponding to Sequence(1, 2, 3, [y1, . . . , yd], {1})

0 1 11
1 1

1

Fig. 3. Automaton corresponding to Sequence(3, 3, 3, [y1, . . . , yd], {1})

used. We could reduce the automaton by removing those isolated states, but we
keep them to simplify notation.

The number of solutions to Sequence can therefore be computed by count-
ing the number of solutions to Regular, when used with the automaton that
encodes Sequence. As the automaton encodes v ∈ V with the value 1 and v ̸∈ V
with 0, we need a slightly modified version of the solution counting algorithm of
Pesant [15] to take into account that there are |V | ways to produce the value 1
and |T \ V | ways to produce a 0. We replace Eq. (2) by the following.

#op(l, q) =
∑

(vl,q,0,vl+1,q′)∈δ

|T \ V |#op(l + 1, q′)

+
∑

(vl,q,1,vl+1,q′)∈δ

|V |#op(l + 1, q′), ∀q ∈ Q, 1 ≤ l ≤ n . (7)

For the constraint Sequence(l, u, k, [y1, . . . , yn]), since the automaton has O(2k)
states, computing the number of solution is achieved in O(n2k).

3.3 Markov Chains

Markov chains can be used to compute the number of solutions for Regular
by encoding the automaton as a transition matrix. A Markov chain [17] is a
stochastic process defined by a set of time steps t ∈ {0, 1, . . . , n} and a set of
states i ∈ {0, 1, . . . ,m}. The variable Xt represent the state of the process at
time t. If Xt = i, then the process is considered to be in state i at time t. The
probability of transitioning from state i to state j is given by a fixed probability
Pij . Pij is independent of the states before i. We must have

∑m
j=1 Pij = 1 for all

410 É. Picard-Cantin et al.

states i. The transition probabilities are gathered in a matrix P , called thematrix
of one-step transition probabilities [17]. The n-step transition probabilities Pn

ij

are the probabilities of being in state j after n transitions if starting in state
i. Let αi be the initial probability of state i. The unconditional probability of
ending at state j after n transitions is

P [Xn = j] =
m∑

i=0

αiP
n
ij . (8)

4 Constraint Acquisition

In this paper, we propose a statistical learning algorithm, which we divide into
three steps. The first step analyzes the given solution, positive example, and
makes a list of all constraints satisfied by the solution that call candidates. This
is done by verifying each possible constraint against the solution. The second
step ranks the selected constraints by computing the individual prior probability
of the candidates using Markov chains. The last step chooses the constraint that
explains the most the positive example we are given.

4.1 Listing Candidates

The first step of the learning process lists the constraints satisfied by the given
solution. We call these satisfied constraints candidates, meaning that the real
constraint we want to learn is in this subset. To learn the parameters of the
constraint Sequence(l, u, k, [y1, . . . , yd], V), we create all possible sets of para-
meters and validate them against the solution. The only known parameter is d,
since the scope of the constraint is known.

Example 1. Let the number of days be d = 6. Let [y1, . . . , y6] = [1, 1, 0, 0, 1, 1]
be a solution for which we want to list all Sequence(l, u, k, [y1, . . . , y6], {1})
candidates. Since V is known, we refer to each constraint with the tuple (l, u, k).

We have the following candidates. Since each window of length 1 has either
0 or 1 assignments, we have the candidate (0, 1, 1). We have between 0 and 2
assignments for a window of length 2. Therefore, we have the candidate (0, 2, 2).
For a window of length 3, we either have 1 assignment or 2, which gives us the
candidate (1, 2, 3). Note that we also observe the candidates (0, 2, 3), (0, 3, 3) and
(1, 3, 3) which are less restrictive than (1, 2, 3). For windows of length 4, we have
the candidates : {(l, u, 4) : 0 ≤ l ≤ 2 ∧ 2 ≤ u ≤ 4}. If we continue this process
up to k = d = 6, we obtain the list

C ={(0, 1, 1), (0, 2, 2)} ∪ {(l, u, 3) : 0 ≤ l ≤ 1 ∧ 2 ≤ u ≤ 3}
∪ {(l, u, 4) : 0 ≤ l ≤ 2 ∧ 2 ≤ u ≤ 4} ∪ {(l, u, 5) : 0 ≤ l ≤ 3 ∧ 3 ≤ u ≤ 5}
∪ {(l, u, 6) : 0 ≤ l ≤ 4 ∧ 4 ≤ u ≤ 6} .

Learning Parameters for the Sequence Constraint from Solutions 411

4.2 Prior Probabilities

To determine which candidate should be learned, we compare them according
to the probability that a random solution validates the candidate constraint.
The best choice is the constraint with the lowest probability because it is highly
improbable that we observe this constraint by chance in the given solution.

Let dom(xj) = {0, 1, . . . ,m} = T for all j ∈ {1, . . . , d} and let pi = P [xj = i].
Consider Sequence(l, u, k, [x1, . . . , xd], V) with V ⊂ T and its simplification
c = Sequence(l, u, k, [y1, . . . , yd], {1}). An acceptable solution according to c is
a solution that validates c. Let Ec be the random event of observing an acceptable
solution for c. Let Xc be the set of all solutions x satisfying c and let P [x] be
the probability of the specific solution x. Then, we have P [Ec] =

∑
x∈Xc

P [x].
Inspired from the automaton presented in Sect. 3, which accepts sequences

satisfying a Sequence constraint, we define a Markov chain A’ that computes
the probability that a random assignment satisfies the sequence constraint. For
the constraint Sequence(l, u, k, [y1, . . . , yd], {1}), let the states of the Markov
chain be the set Q′ = Qk−1 ∪ {σ}, the sequences of length k − 1 described in
Sect. 3 and the sink state σ. The states of Qs for s ∈ {0, . . . , k − 2} are not
required since a Markov chain does not need an initial state. Let a, b ∈ {0, 1}
and w ∈ {0, 1}k−2. Then, aw,wb ∈ Qk−1. There is a transition from aw to wb
with probability

∑
i∈V pi if b = 1 and with probability 1 −

∑
i∈V pi if b = 0.

There is a transition from aw to the sink state σ with probability
∑

i∈V pi if
a+

∑k−2
j=1 wj = u and with probability 1−

∑
i∈V pi if a+

∑k−2
j=1 wj = l. Finally,

there is a transition from σ to σ with probability 1.
Let M be the matrix of one-step transition probabilities for A’. We can

compute, for each state q ∈ Qk−1, the initial probability gq of being in q. Let
[vi1, . . . , vi,k−1] be the sequence of values represented by the state qi. Then,

gi =
k−1∏

j=1

pvij .

Note that we can never start with the state σ and therefore gσ = 0. Let g =
[g1, . . . , gr] be the initial probabilities for all states q ∈ Q′. To build a sequence of
length d from the sequences of length k−1 (states in Q′), we need the (d−k−1)-
step transition probabilities for A’. Then, we have the equation

P [Ec] =
r−1∑

i=1

(gMd−k−1)i . (9)

This equation sums the probabilities of each acceptable path in the Markov
chain according to c, a Sequence constraint. Note that P [Ec] does not include
solutions passing through σ since they represent unacceptable sequences.

Example 2. Suppose we have c = Sequence(1, 2, 3, [x1, . . . , x8], {1, 2}) with
T = {0, 1, 2} and where p0 = 5/6 and p1 = p2 = 1/12. The associated Markov
chain is illustrated in Fig. 4. The path from 00 to 00 forms the sequence 000 with

412 É. Picard-Cantin et al.

probability p0 = 5/6. This transition violates the constraint. It is redirected to
the sink σ. The path from 00 to 01 forms the sequences 001 and 002 and has
a probability of 1/6 = p1 + p2. The path from 10 to 01 creates the sequences
101, 102, 201 and [2, 0, 2]. This transition has a probability of p1 + p2 = 1/6.
There is a single transition of probability 1 leaving σ. It ensures that paths pass-
ing through unfeasible states represented by σ are not counted in P [Ec]. The
associated matrix of one-step transition probabilities is

M =

⎡

⎢⎢⎢⎢⎣

0 0 1/6 0 5/6
5/6 0 1/6 0 0
0 5/6 0 1/6 0
0 5/6 0 0 1/6
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

The initial probabilities are g = [25/36, 5/36, 5/36, 1/36, 0]. Therefore, we have

P [Ec] =
4∑

i=1

(gM4)i ≈ 0.1211 = 12.11%.

00 10 01 11 σ

5/6

1/6

5/6 1/6

5/6

1/6

5/6

1/6
1

Fig. 4. Markov chain for Sequence(1, 2, 3, [x1, . . . , xd], {1, 2}) when p0 = 5/6 and p1 =
p2 = 1/12. σ represents all forbidden transitions according to Sequence

As shown in Sect. 3, the solution counting algorithm for the constraint
Sequence(l, u, k, [y1, . . . , yd], {1}) derived from Pesant’s algorithm [15] has a
computational complexity of O(d2k). This complexity can be improved. One
can compute a power of a matrix using a decrease and conquer approach [12]
based on this recurrence.

Mp =

⎧
⎨

⎩

I if p = 0
M × Mp−1 if p is odd(
Mp/2

)2 otherwise

This algorithm requires O(log p) matrix multiplications and squaring. Given that
multiplying two n × n matrices requires O(nω) steps (ω = 2.373 when using
William’s matrix multiplication algorithm [18]), computing the probability that
a random assignment satisfies Sequence(l, u, k, [y1, . . . , yd], {1}) can be achieved
in O(2ωk log(d − k)) steps.

Learning Parameters for the Sequence Constraint from Solutions 413

Another method to compute Md−k−1 is to use the spectral decomposition
of the matrix M = V−1DV, where V is the matrix of eigenvectors for M and
Dis the diagonal matrix such that Dii is an eigenvalue of M . Therefore, we have
Md−k−1 = V−1Dd−k−1V. Since computing the eigenvectors and eigenvalues is
done in cubic time, this decomposition computes the probability in O(8k) time.
This complexity does not depend on the number of variables. This last method is
preferable in situations where the number of variables d for Sequence is largely
superior to the number of variables k for each corresponding Among.

4.3 Constraints Ordering

Consider a list of candidates C = {c1, . . . , cn}. We will demonstrate that the
best choice is the constraint with the lowest probability since all constraints in
C were observed in the solution set.

Theorem 1. Let C = {c1, . . . , cn} be the list of candidates for a solution. Let
Ei be the random event of observing an acceptable solution for the constraint
ci = Sequence(li, ui, ki, [y1, . . . , yd], {1}). The constraint ci explaining the most
the current positive example, meaning that P [E1 ∧ · · · ∧ En|Ei] is maximum, is
such that P [Ei] ≤ P [Ej] for all cj ∈ C \ {ci}.

Proof. P [E1 ∧ · · · ∧ En|Ei] is the probability of observing a solution satisfying
all constraints in C considering that ci is satisfied. Bayes’ theorem gives us

P [E1 ∧ · · · ∧ En|Ei] =
P [Ei|E1 ∧ · · · ∧ En]P [E1 ∧ · · · ∧ En]

P [Ei]

=
P [E1 ∧ · · · ∧ En]

P [Ei]
.

Therefore, we choose ci over cj if and only if

P [E1 ∧ · · · ∧ En|Ei] ≥ P [E1 ∧ · · · ∧ En|Ej]

⇐⇒ P [E1 ∧ · · · ∧ En]
P [Ei]

≥ P [E1 ∧ · · · ∧ En]
P [Ej]

⇐⇒ P [Ej] ≥ P [Ei].

4.4 Multiple Examples

If multiple positive examples are available, we can increase the performance
of the learning process. The method is applied on each example individually,
generating multiple separate candidate lists. Then, considering all examples are
restricted with the same Sequence constraint, we keep only the candidates that
are present for all examples. The idea is that the real constraint must be satisfied
in all examples.

414 É. Picard-Cantin et al.

4.5 Constraint Dominance

We say that a constraint c1 dominates another c2, noted by c1 ≻ c2, if all
solutions to c1 are solutions to c2. Following Beldiceanu et al. [2], we reduce
computation time by removing dominated constraints from the list of candidates.
The concept of dominance is only applied to constraints with the same scope.

If c1 ≻ c2, then the probability of observing a solution for c1 is lower (or equal)
than the probability of observing a solution for c2 since c1 is more restrictive
than c2. Therefore, the classifier will choose c1 over c2 and removing dominated
constraints does not affect the final choice of the classifier. Moreover, the domi-
nance check is quick and dominance relations can be computed beforehand and
stored. Note that if multiple examples are used, the dominance check is per-
formed after collecting all candidate constraints from every example. Indeed, a
constraint dominates another one only if it is a candidate for all examples.

. . .

k2

k1 k1 k2 mod k1

Fig. 5. When k1 < k2

k1

k1 mod k2k2

Fig. 6. When k1 > k2

• If k1 = k2, then c1 ≻ c2 if and only if u1 ≤ u2 and l1 ≥ l2.
• If k1 < k2, then a maximum of u1 assignments of values in V for every window
of length k1 allows a maximum of

ā = ⌊k2/k1⌋ × u1 +min(u1, k2 mod k1)

in a window of length k2. Similarly, a minimum of l1 assignments of values in
V for every window of length k1 imposes a minimum of

a = k2 − [⌊k2/k1⌋ × (k1 − l1) + min((k1 − l1), k2 mod k1)]

in a window of length k2. Therefore, c1 ≻ c2 if and only if ā ≤ u2 and a ≥ l2.
See Fig. 5 for a visual representation.

• If k1 > k2, then c1 ≻ c2 if and only if (u1 ≤ u2 ∨k2 = u2)∧ (l1 ≥ l2 ∨k2 = l2).
See Figs. 5 and 6 for a visual representation.

4.6 Classifier

Algorithm 1 is a summary of the procedure to determine the Sequence con-
straint from a set of positive examples.

Learning Parameters for the Sequence Constraint from Solutions 415

Algorithm 1. How to determine the parameters of a Sequence constraint
from a set of positive examples.
Data: Positive examples of d variables with the same configuration.
Result: The parameters of a Sequence constraint.

1 begin
2 List all Sequence candidates (l, u, k, V) satisfying all examples;
3 Apply the dominance check to remove dominated constraints;
4 Select, from the remaining candidates, the one with the lower probability of

being observed;

5 end

4.7 Soft Constraints

The proposed approach can be used to learn soft constraints. The listing of
candidates needs to be adapted in order to select constraints which are violated
by the given example. Let β ∈ [0, 1] be the accepted percentage of violations. We
consider Sequence(l, u, k, [y1, . . . , yd], {1}) satisfied if at least (1 − β) × 100%
of the corresponding Among(l, u, [yj , . . . , yj+k−1], {1}) constraints are satisfied
by the example.

The Markov chain also needs to be adapted to accept violations. The new
set of states is Q = {0, 1}k−1 ∪ {σ}, the set of all sequences of length k − 1
augmented with a sink state σ. The violation degree of a sequence Y ∈ {0, 1}k,
according to the constraint Among(l, u, [yi, . . . , yi+k−1], {1}), is given by

d(Y) = max

(
k∑

i=1

Yi − u, l −
k∑

i=1

Yi, 0

)
.

Let w ∈ {0, 1}k−2, a, b ∈ {0, 1} and h = min(d(aw0), d(aw1)). Let v be the
user defined probability of observing d(awb) > h, i.e. the probability of reading
a character that does not minimize the degree of violation. Let P [yi = 1] =∑

v∈V pv and P [yi = 0] = 1−P [yi = 1]. If d(awb) = h, then we have a transition
from state aw to state wb with probability P [yi = b]. If d(awb) > h, then we
have a transition from aw to wb with probability vP [yi = b] and a transition
from aw to σ with probability (1−v)P [yi = b]. Finally, there is a transition from
σ to σ with probability 1.

We assume that the events of accepting the different violated Among con-
straints are independent. Note also that the probability does not depend on
the degree of violation of the Among constraint, but our model could easily be
adapted to do so.

The last modification is the new vector of initial probabilities g. For a state
q ∈ Q, let r =

∑k−1
i=1 qi. The initial probability for q is

gq = P [yi = 1]r × P [yi = 0]k−1−r
(
vd(0q)P [yi = 0] + vd(1q)P [yi = 1]

)
.

The initial probability of the sink state σ is gσ = 1 −
∑

q∈Q
gq.

416 É. Picard-Cantin et al.

00 σ

1001 11

1/12

1/6

3/4

1/6

5/6

5/6

1/6

3/20

5/6
1/60

1

Fig. 7. Graphical representation of the Markov chain corresponding to the soft con-
straint Sequence(1, 2, 3, [y1, . . . , yd], {1}) when v = 1/10, p0 = 5/6 and p1 = 1/6

Example 3. Suppose v = 1/10, p0 = 5/6 and p1 = 1/6. The Markov chain
for the soft constraint Sequence(1, 2, 3, [y1, . . . , yd], {1}) is illustrated in Fig. 7.
The initial probabilities for this example are g00 = 25/144, g01 = g10 = 5/36,
g11 = 17/720 and gσ = 1 − 342/720 = 378/720.

5 Experiments

Experiments focus on the timetabling problem presented in Sect. 2. For every
instance there are three employees and three medical task types (day, evening,
night) repeated each day of an 84 days scheduling period. Tasks are represented
by positive integers and 0 is reserved for unassigned days. In our context, the
employees want to have similar workloads. As there are 84 × 3 tasks to assign,
the target workload of each employee is 84. An employee e can only work on
one task each day. The targets are encoded with soft constraints limiting work-
loads. We minimize deviations from targets in the objective function. Each task
requires one employee, which is encoded using a GCC. There is a constraint
Sequence(0, u, k, [xr1, . . . , xr84], V) where u, k and V are to be learned.

Remember that xet ∈ {0, 1, . . . ,m} is the task assigned to employee e at
time t and that yet ∈ {0, 1} determines if xet ∈ V or not. Let zet be the Boolean
variable, which encodes if e is working or not at time t. Therefore, we have
zet = 0 if xet = 0 and zet = 1 if xet > 0. Let ∆e be the deviation from the target
for the employee e. Let H ⊆ {1, 2, 3} be a subset of employees. The general
model that produced the instances is as follows.

max
3∑

e=1

84∑

t=1

zet −
3∑

e=1

0.1∆e

84 −
84∑

t=1

zet ≤ ∆e, ∀e ∈ {1, 2, 3}

zet = 1 ⇐⇒ xet ≥ 1, ∀e ∈ {1, 2, 3},∀t ∈ {1, . . . , 84}
GCC([x1t, x2t, x3t], [0, 0, 0], [1, 1, 1]]), ∀t ∈ {1, . . . , 84}

Learning Parameters for the Sequence Constraint from Solutions 417

Sequence(0, u, k, [xe1, . . . , xe84], V), ∀e ∈ H

xet ∈ {0, 1, . . . ,m}, ∀e ∈ {1, 2, 3},∀t ∈ {1, . . . , 84}
yet, zet ∈ {0, 1}, ∀e ∈ {1, 2, 3},∀t ∈ {1, . . . , 84}
∆e ∈ N, ∀e ∈ {1, 2, 3}

As a benchmark1, we generate some models and find several optimal solutions
for each of them. These solutions are the positive examples that we feed into our
algorithm, in order to test whether it returns the constraints that were actually
used to generate the solutions. The generated models can be divided into three
categories. We create a first set of schedules (A) where the same Sequence
constraint is applied to all employees (H = {1, 2, 3}). Then, we produce five
different schedules for all possible combinations of (u, k) with 1 ≤ u < k ≤ 7 and
V = {1, 2, 3}. We create a second set of instances (B) where the same Sequence
is applied to e ∈ {1, 2}. The last employee is not subject to any Sequence
constraint. Again, we produce five schedules for all (u, k) with V = {1, 2, 3}.
Finally, we create a last set (C) where Sequence is applied to a subset of tasks
and is the same for all employees. For all V ∈ {{1}, {1, 2}} and for all (u, k), we
produce five schedules. Both sets A and B contain 21 instances (105 schedules)
and the set C contains 42 instances (210 schedules).

Because of theGCC and the target workloads, all tasks tend to have the same
frequency in the schedules. To test our method on instances where values in V
do not have the same probability, we create new schedules. For each instance in
the sets A, B, and C previously described, we modify the schedules so that each
value i ∈ V has a specific probability pi to appear in the schedule. Let Ie = {t ∈
{1, . . . , 84} : xet ∈ V }. For t ∈ Ie, we randomly choose a value in V and assign it
to xet using on of the following probability distribution: (P [v1], P [v2]) = (0.1, 0.9)
if |V | = 2 and (P [v1], P [v2], P [v3]) = (0.1, 0.4, 0.5) if |V | = 3. Then, we apply
the same modification process with I ′

e = {t ∈ {1, . . . , 84} : xet ∈ (T \ V)}. The
new schedule still satisfies Sequence since the tasks in V are shuffled between
themselves. The GCC might not be satisfied and the solution might not be
optimal, but our goal is to test our learning tool on instances with unbalanced
distributions of tasks.

The probability of each task is unknown to the learning process. For a given
example, we compute the probability of each task with P [xet = v] = |{t :
xet = v}|/84 for each employee e. We approximate the probability P [v] with the
average of these probabilities over the five examples. The learning algorithm is
applied individually on each employee. We compare the results obtained using
this approximation with the results using the solution counting algorithm, which
is one of the criteria used by Beldiceanu et al. [3] to rank constraint candidates.
We note the statistical learning algorithm Statistical and the solution counting
version Counting. We note uniform the instances with uniformly distributed
tasks and non-uniform the instances with non-uniformly distributed tasks.

The results obtained for only one positive example are illustrated in Table 1.
The results are divided by instance set (A, B, or C). # is the total number of
1 The benchmark is available upon request to the authors.

418 É. Picard-Cantin et al.

0

10

20

30

40

50

1 2 3 4 5
Number of examples

N
um

be
r o

f i
nc

or
re

ct
ly

 le
ar

ne
d

in
st

an
ce

s
(in

 %
)

Label

Counting (uniform)

Statistical (uniform)

Counting (non−uniform)

Statistical (non−uniform)

Comparison of different methods to
 learn constraints from positive examples.

Fig. 8. Number of incorrectly classified instances in percentage for each method and
each number of examples

instances in the category (one per employee). Inspired by Beldiceanu et al. [2],
we classify our results according to the position of the real constraint in the list
of candidates returned.

As shown in Table 1, the first candidate (#1) is the real constraint for all 63
instances of category A while it is the real constraint for 108 out of 126 instances
of category C. Table 1 also shows that Counting is less efficient on non-uniform
instances. For example, 213 uniform instances were correctly learned (ranked
#1) while only 164 non-uniform instances were correctly ranked. This is a loss
of 49 instances. In comparison, Statistical is more stable since it only “lost” 2
correctly ranked instances with the non-uniform task probabilities. This shows
that Statistical depends on the individual probability of the different values.

Table 1. Results for Counting and Statistical with a single positive example by instance

Counting Statistical

Uniform Non-uniform Uniform Non-uniform

#1 #2 #3 Other #1 #2 #3 Other #1 #2 #3 Other #1 #2 #3 Other

A 63 63 0 0 0 61 1 1 0 63 0 0 0 63 0 0 0

B 63 42 0 0 21 41 1 0 21 42 0 0 21 42 0 0 21

C 126 108 12 1 5 62 7 7 50 108 11 3 4 106 13 2 5

Total 252 213 12 1 26 164 9 8 71 213 11 3 25 211 13 2 26

Figure 8 illustrates the summary results for each method and each number
of examples. We can see that, for the instances where tasks are uniformly dis-
tributed, Statistical is better but Counting quickly catches up as the number of
examples increases. As illustrated, the lack of uniformity of tasks impacts the
performance of both methods. Statistical quickly regains the loss with only 4
examples, while Counting is still far behind (approximately 20% apart).

Learning Parameters for the Sequence Constraint from Solutions 419

0

10

20

30

40

50

1 2 3 4 5
Number of examples

N
um

be
r o

f i
nc

or
re

ct
ly

 le
ar

ne
d

in
st

an
ce

s
(in

 %
)

Label

Counting (uniform)

Statistical (uniform)

Counting (non−uniform)

Statistical (non−uniform)

Comparison of different methods to
 learn constraints from positive examples.

Fig. 9. Number of incorrectly classified instances in percentage after false negatives
have been removed

When the real constraint is dominated by one or many candidates, it is
removed from the candidate list and the instance is incorrectly classified. We
consider this a false negative, as it is impossible to rightly classify this type of
instances without further prior information about the problem. Figure 9 illus-
trates the summary results after the false negatives are removed.

6 Conclusion

In this paper, we proposed a statistical learning algorithm that can be applied to
both soft and hard global constraints that can be formulated as an automaton,
such as Sequence, Among, Knapsack, Stretch, etc. This algorithm uses a new
technique to compute the probability of observing a random solution for a given
constraint. Statistical has proven to be more efficient in the ranking of candidates
than the solution counting algorithm, when tested on scheduling instances. For
instances where values are uniformly distributed, Statistical requires less positive
examples to achieve the same results as other methods. This is important in
scheduling, where as little as four examples might represent more than a year
of data. For instances with non-uniformly distributed values, we showed that
Statistical is largely better than Counting.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Model. 20(12), 97–123 (1994)

2. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-
straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011)

420 É. Picard-Cantin et al.

3. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–
157. Springer, Heidelberg (2012)

4. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.G., Walsh, T.: Constraint acquisition via partial queries. In: Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI
2013), pp. 475–481. AAAI Press (2013)

5. Bessière, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space
algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho,
R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol.
3720, pp. 23–34. Springer, Heidelberg (2005)

6. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks
using a sat-based version space algorithm. In: Proceedings of the 21st National
Conference on Artificial Intelligence, no. 2, pp. 1565–1568. AAAI Press (2006)

7. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.:
Reformulating global constraints: the Slide and Regular constraints. In: Miguel,
I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer,
Heidelberg (2007)

8. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Arti-
ficial Intelligence (2015, In Press)

9. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P., Walsh, T.: Encodings
of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
210–224. Springer, Heidelberg (2007)

10. Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S.,
Quinqueton, J.: Constraint acquisition as semi-automatic modeling. In: Proceed-
ings of the 23rd SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence (AI 2003), pp. 111–124. Springer, London
(2004)

11. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the
sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–
634. Springer, Heidelberg (2006)

12. Levitin, A.: Introduction to the Design and Analysis of Algorithms. Pearson Edu-
cation, Newmarket (2011)

13. O’Connell, S., O’Sullivan, B., Freuder, E.C.: A study of query generation strategies
for interactive constraint acquisition. In: Bessière, C. (ed.) Applications and Science
in Soft Computing. LNCS, vol. 4741, pp. 225–232. Springer, Heidelberg (2004)

14. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

15. Pesant, G.: Counting solutions of csps: a structural approach. In: Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp.
260–265. Morgan Kaufmann Publishers Inc. (2005)

16. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996),
vol. 1, pp. 209–215. AAAI Press (1996)

17. Ross, S.M.: Introduction to Probability Models. Elsevier, Oxford (2014)
18. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Pro-

ceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC
2012), pp. 887–898. ACM (2012)

19. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)

The PPSZ Algorithm for Constraint Satisfaction
Problems on More Than Two Colors

Timon Hertli1, Isabelle Hurbain1, Sebastian Millius1, Robin A. Moser1,
Dominik Scheder1,2(B), and May Szedlák1

1 ETH Zürich, Zürich, Switzerland
2 Shanghai Jiaotong University, Shanghai, China

dominik@cs.sjtu.edu.cn

Abstract. The PPSZ algorithm (Paturi et al., FOCS 1998) is the fastest
known algorithm for k-SAT. We show how to extend the algorithm and
its analysis to (d, k)-Clause Satisfaction Problems where each variable
ranges over d different values. Given an input instance with a unique
satisfying assignment, the resulting algorithm is the fastest known algo-
rithm for (d, k)-CSP except when (d, k) is (3, 2) or (4, 2). For the gen-
eral case of multiple satisfying assignments, our algorithm is the fastest
known for all k ≥ 4.

1 Introduction

In its full generality, the Constraint Satisfaction Problem is NP-complete, so
most researchers believe that we will never find an efficient algorithm for it.
Worse, even getting a substantial edge over trivial exhaustive search is deemed
unlikely by most in the community. Far from despairing, people have tried sev-
eral routes around this. (1) Finding heuristics that work well in practice [3]. (2)
Restricting the constraint language (i.e., what types of constraints are allowed).
This area evolves around the famous CSP Dichotomy Conjecture by Feder and
Vardi [6] and has a strong algebraic flavour (see Krokhin, Bulatov, and Jeav-
ons [12] for a survey). (3) Restricting the structure of the instance rather than
the constraint language (e.g. Grohe and Marx [9], Szeider [18], Allender, Chen,
Lou, Papakonstantinou, and Tang [1]); see Grohe [8] for a survey on both (2)
and (3). (4) Coming up with moderately exponential algorithms.

The study of moderately exponential algorithms has been especially fruitful
in two areas: algorithms for k-satisfiability (short k-SAT) and graph colorability.
For example, the algorithm PPSZ solves 3-SAT in O(1.308n) (Paturi, Pudlák,
Saks, and Zane [14], Hertli [10]) instead of the trivial 2n; Beigel and Eppstein [2]
show how to solve 3-colorability in time O(1.3289n) instead of the trivial 3n;
Björklund and Husfeldt [4] solve k-colorability in time O(2npoly(n)) instead of
the trivial kn.

Dominik Scheder gratefully acknowledges support by the National Natural Science
Foundation of China under grant 61502300.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 421–437, 2016.
DOI: 10.1007/978-3-319-44953-1 27

422 T. Hertli et al.

We focus on the general constraint satisfaction problem where every variable
takes on a value in [d] := {1, . . . , d} and the only structural restriction is that
each constraint may depend on at most k variables. Every constraint can be
written as the conjunction of at most dk clauses, i.e., disjunctive constraints like
(x1 ̸= 3∨x2 ̸= 4∨x1 ̸= 2). Since d and k are considered constant values, we can
re-write an instance as a conjunction of clauses. We call the resulting formula
a (d, k)-clause satisfaction formula and the corresponding decision problem the
clause satisfaction problem. We abbreviate both by (d, k)-ClSP. Note that k-SAT
is the same as (2, k)-ClSP and d-colorability is a special case of (d, 2)-ClSP.

In this paper we generalize the PPSZ k-SAT algorithm [14] and Hertli’s analy-
sis [10] to (d, k)-ClSP. While it is rather straightforward to adapt the algorithm
to handle values d ≥ 3, analyzing its running time is much more challenging
than in the Boolean (d = 2) case. This is in contrast to Schöning’s random walk
algorithm [17], where both algorithm and analysis generalize easily to d ≥ 3.

Which Running Time Can We Expect? We measure the running time of an
algorithm in terms of n, the number of variables in the input formula F . Trivial
brute-force search runs in time O∗ (dn)1, a baseline against which we measure our
algorithms. If P ̸= NP, we will not find a polynomial time algorithm for (d, k)-
CSP (expect for the two trivial cases d = 1 and k = 1, and for (d, k) = (2, 2),
which is 2-SAT). Under the Exponential Time Hypothesis [11], there is some
c > 0 such that every algorithm for (d, 2)-ClSP takes time at least Ω (dcn)
(Traxler [19]). In other words, (d, k)-ClSP becomes strictly more complex as d
increases, even for k = 2. This stands in contrast to d-Colorability, which can
be solved in O∗(2n) time [4], for every d. Thus, under the Exponential Time
Hypothesis, (d, 2)-ClSP is strictly more complex than d-Colorability.

1.1 Previous Results

For k-SAT, the currently fastest known (randomized) algorithm is the PPSZ
algorithm by Paturi, Pudlák, Saks and Zane [14]. For instances with a unique
satisfying assignment they give an elegant running time analysis. We call this
case UniqueSAT (or UniqueClSP for d ≥ 3). For the general case (if the instance
has multiple satisfying assignments), the analysis becomes much more difficult,
and it took over ten years until Hertli [10] showed how to obtain the UniqueSAT
time bound in the general case as well.

There are several moderately exponential algorithms for (d, k)-ClSP. For
example, a simple random walk algorithm by Schöning [17] solves (d, k)-ClSP
in time O∗

((
d(k−1)

k

)n)
. Beigel and Eppstein gave an algorithm for (d, 2)-ClSP

running in time O((0.4518d)n) for d > 3. Feder and Motwani [5] give an (d, 2)-
ClSP algorithm based on the PPZ algorithm [15], the predecessor of the PPSZ
algorithm, improving on the algorithm by Beigel and Eppstein for large d. Li, Li,

1 The notation O∗(f(n)) means f(n) · 2o(n), since we can safely ignore subexponential
factors.

The PPSZ Algorithm for Constraint Satisfaction Problems 423

Liu, and Xu [13] generalized this to (d, k)-ClSP, but with a sub-optimal weaker
analysis. Scheder [16] showed how to use the full power of PPZ for (d, k)-ClSP.

A generic technique for turning any k-SAT algorithm into a (d, k)-ClSP algo-
rithm is downsampling: for each variable x in F , randomly forbid all but 2 colors.
The resulting instance F ′ is a (2, k)-ClSP and can be solved by any off-the-shelf
k-SAT algorithm A. We call this algorithm “downsampling + A”. Note that if F
is unsatisfiable then F ′ is; if F is satisfiable then F ′ is satisfiable with probability
at least (2/d)n.

1.2 Our Contribution

We generalize PPSZ to (d, k)-ClSP and analyze its running time. Our upper
bound for UniqueClSP is of the form O∗ (

dSd,kn
)
where Sd,k < 1 is some constant

depending on the number of colors d and the arity k of the constraints. We have
a complicated but more or less explicit formula for Sd,k (involving a sum and an
integral). However, there is an intuitive explanation “what Sd,k is”:

Consider the following random experiment: Let T be an infinite rooted tree
in which every even-level vertex (this includes the root, which has level 0) has
k− 1 children, and every odd-level vertex has d− 1 children (there are no leafs).
Take d−1 disjoint copies of T , choose a value p ∈ [0, 1] uniformly at random and
delete each odd-level vertex of the d− 1 trees with probability p, independently.
Let Y be the number of trees in which this deletion still leaves an infinite path
starting at the root. Obviously, Y is a random variable and 0 ≤ Y ≤ d − 1.
Define Sd,k := E [logd(1 + Y)]. The full version of this paper will give details on
how to compute Sd,k more explicitly.

Theorem 1.1. There exists a randomized algorithm for Unique-(d, k)-ClSP
with running time O∗(dSd,kn).

A randomized algorithm in this context means one that, given a satisfiable
input instance, returns a satisfying with probability at least 1/2. In the general
case (when the input formula may have multiple satisfying assignments), we fail
to match this running time for k = 2, 3. This failure may well be an artifact of
our analysis and not reflect the true success probability of PPSZ. Let Gd,k :=
max

(
Sd,k, 1 − 1

2 ln(d)

)
.

Theorem 1.2. There exists a randomized algorithm for (d, k)-ClSP with one-
sided error that runs in time O∗(dGd,kn).

It turns out that Gd,k = Sd,k for k ≥ 4, so for k ≥ 4 our analysis yields the same
performance bounds for the unique and the general case:

Lemma 1.3. If k ≥ 4 then Sd,k ≥ 1 − 1
2 ln(d) and therefore Sd,k = Gd,k.

The proof of Lemma 1.3 is quite technical and contained in the full version of this
paper. In the general case, i.e., if F may have multiple satisfying assignments,
we also solve an open problem of Hertli [10]: He made a slight (and natural)

424 T. Hertli et al.

Table 1. Constants c so that the algorithm for (d, 2)-ClSP runs in time cn+o(n)

d k PPSZ Unique PPSZ General BE [2] FM [5] Downsampling+ 2-SAT

3 2 1.434 1.820 1.356 1.5 1.5

4 2 1.849 2.427 1.808 2 2

5 2 2.254 3.033 2.259 2.5 2.5

6 2 2.652 3.640 2.711 2.994 3

10 2 4.208 6.066 4.518 4.529 5

15 2 6.115 9.098 6.777 6.424 7.5

Table 2. Constants c so that the algorithm for (d, k)-ClSP runs in time cn+o(n). For
(*) (d, 3), d ≥ 11, PPSZ seems to be worse than PPZ. This is of course not true—PPSZ
is subsumes PPZ; it is simply a shortfall of our analysis in Sect. 4.

d k PPSZ Unique PPSZ General PPZ [16] Downsampling+PPSZ

3 3 1.901 1.901 2.162 1.961

4 3 2.479 2.479 2.729 2.615

5 3 3.049 3.049 3.291 3.268

10 3 5.844 6.066 6.069 6.536

11 3 6.397 6.672 (*) 6.621 7.189

15 3 8.602 9.098 (*) 8.821 9.803

3 4 2.153 2.153 2.351 2.204

4 4 2.823 2.823 3.014 2.938

15 4 10.006 10.006 10.176 11.018

3 5 2.310 2.310 2.471 2.355

4 5 3.040 3.040 3.195 3.139

15 5 10.906 10.906 11.045 11.771

change to PPSZ but conjectured this change to be unnecessary. We show that
this is indeed the case. Furthermore, our proof actually gives a bound on the
probability that a specific satisfying assignment α is returned, whereas [10] only
gave a bound that some satisfying assignment is returned (Table 1).

Asymptotics. We want to gauge the performance of several (d, k)-ClSP algo-
rithms for large d. For this, we define the savings of an algorithm to be the
largest c such that it solves (d, k)-ClSP in time O∗ (

dn

2cn

)
. Note that the enumer-

ator in this definition is 2cn, not dcn. This is because we simply do not know any
algorithm that solves (d, k)-ClSP in time O∗ (

d(1−ϵk)n
)
for ϵk > 0 independent

of d (Table 2).

Theorem 1.4. For k ≥ 2 and large d, the savings of PPSZ for (d, k)-ClSP
converge to log2(e)(1 − S2,k), and 1 − S2,k = −

∫ 1
0 ln(1 − rk−1)dr.

The PPSZ Algorithm for Constraint Satisfaction Problems 425

Table 3. The savings of several (d, k)-ClSP algorithms. For PPSZ and PPZ the savings
hold for d → ∞. The savings of downsampling+PPSZ and of Schöning do not depend
on d.

k PPSZ (and PPZ) Downsampling+PPSZ Schöning

general k log2(e)(1 − S2,k) 1 − S2,k log2

(
k

k−1

)

2 1.44 1 1

3 0.885 0.613 0.585

4 0.642 0.445 0.415

5 0.504 0.349 0.322

k → ∞ π2 log2(e)
6k ≈ 2.371

k
π2

6k ≈ 1.644
k

log2(e)
k ≈ 1.44

k

This means the savings for large d are a factor log2(e) ≈ 1.44 larger than the
savings for k-SAT. It should be mentioned that for large d the advantage of PPSZ
over PPZ vanishes, i.e., their savings converge, for each fixed k. A detailed proof
of Theorem 1.4 is contained in the full version of this paper. We compare the
savings of several algorithms in Table 3.

1.3 Notation

We adapt the notational framework as used in [20]. Let V be a finite set of
variables, each of which takes values in [d] := {1, . . . , d}. A literal over x ∈ V
is of the form (x ̸= c) for c ∈ [d]. A clause over V is a disjunction (OR) of
finite set of literals over pairwise distinct variables from V . A formula F over
V is a conjunction (AND) of clauses over V . It is sometimes convenient to
view F as a set of clauses. By vbl(F) we denote the set of variables appearing
in F . A formula F is a (d, k)-ClSP if the variables can take on d values and
every clause has at most k literals. We also write (d, k)-ClSP to denote the
satisfiability decision problem on (d, k)-ClSP formulas. By Unique (d, k)-ClSP
we denote the promise problem of deciding whether a (d, k)-ClSP has exactly
one or no satisfying assignment.

An assignment on V is a function α : V → [d]. It satisfies the literal (x ̸= c)
if α(x) ̸= c; it satisfies a clause if it satisfies at least one literal therein; finally,
it satisfies a formula if it satisfies all its clauses. A partial assignment α on V
is a partial function V → [d]. It is convenient to view α as a certain (d, 1)-CSP
over V : for example (x1 = c1) ∧ (x2 = c2) is the partial assignment that sets x1

to c1 and x2 to c2. Two partial assignments α,β over V are compatible if the
(d, 1)-CSP α ∧ β is satisfiable; in other words, if α and β agree wherever they
are defined. For a partial assignment α, we denote by Uα the set of variables in
V on which α is not defined. We denote by α[x = c] the (partial) assignment
that sets x to c and agrees with α elsewhere.

By |= we denote usual logical implication. That is, for two formulas F,G
over a variable set V , the expression F |= G means that every total assignment
α that satisfies F also satisfies G.

426 T. Hertli et al.

2 The PPSZ Algorithm

Definition 2.1 (D-implication). Let F be a satisfiable ClSP formula over V ,
α0 a partial assignment, and D ∈ N. We say that (F,α0) D-implies the literal
(x ̸= c) and write (F,α0) !D (x ̸= c) if there is a subset G of F with |G| ≤ D
such that G ∧ α0 implies (x ̸= c). Here, |G| is the number of clauses in G.

Whether (F,α0) |=D (x ̸= c) holds or not can be checked in time
O(|F |D · dkD · poly(n)). If D is constant this is polynomial. If D is sufficiently
slowly growing this is subexponential (note that d, k are always assumed to be
constant).

Definition 2.2 (Eligible values). Let F be a satisfiable ClSP formula over V ,
α0 a partial assignment, and x ∈ Uα0 (i.e. an unassigned variable). Then

A(x,α0) := {c ∈ [d] | (F,α0) ̸!D (x ̸= c)} .

That is, A(x,α0) is the set of colors not ruled out by D-implication.

Note that A(x,α0) also depends on F and D. However, F and D will not change
throughout the analysis, so we will assume from now on that they are clear from
the context.

Let us describe PPSZ. Given a ClSP F , it starts with the empty assignment
α0 = ∅ and attempts to incrementally add variables to it, hoping that eventually
α0 becomes a satisfying (total) assignment. To achieve this, PPSZ chooses a
uniformly random permutation π of V and iterates through V in the order
dictated by π. When considering some x ∈ V it computes A(x,α0). If this is
empty then F ∧ α0 is unsatisfiable and PPSZ declares failure. Otherwise, it
chooses some eligible color c ∈ A(x,α0) uniformly at random, adds (x = c) to
α0, and continues. Below we give a pseudo-code for PPSZ. Our pseudo-code is
recursive rather than iterative because this is more convenient for the analysis
of the general (multiple satisfying assignments) case.

Algorithm 1. Top-Level-PPSZ(ClSP formula F)
Choose π u.a.r. from all permutations of V (F).
Let α0 be the empty assignment.
return PPSZ(F , π, α0)

Note that A(x,α0) is the set of values that are “currently eligible for x”.
Now suppose α0 is compatible with some satisfying assignment α, and the next
assignment steps of PPSZ are all according to α. We are actually interested how
A(x,α1) will look where α1 is the “future” partial assignment just before x is
processed. This motivates the following (recursive) definition.

Definition 2.3 (Ultimately Eligible Values). Let π a permutation of the
variables, α be a satisfying assignment, α0 a partial assignment compatible with
α, and x a variable in Uα0 . Let y be the first variable of Uα0 according to π.

The PPSZ Algorithm for Constraint Satisfaction Problems 427

Algorithm 2. PPSZ(F , π, α0)
if α0 is a total assignment then

return α0 if it satisfies F , else failure
end if
x ← first variable of Uα0 according to π
c ←u.a.r. A(x,α0) (return failure if A(x,α0) = ∅).
return PPSZ(F , π, α0 ∧ (x = c))

– If y = x set A(x,α0,α,π) := A(x,α0).
– Otherwise, set A(x,α0,α,π) := A(x,α0 ∧ (y = α(y)),α,π).

This definition allows us to write down an explicit formula for the success prob-
ability of PPSZ. We write

p(α0,α) := Pr
π
[PPSZ(F,π,α0) returns α] .

This is the probability that PPSZ returns one particular assignment α. Observe
that PPSZ returns α if and only if it always picks the “correct” value for every
x ∈ Uα0 . For a fixed permutation π this happens with probability 1

|A(x,α0,α,π)| .
Therefore we obtain

p(α0,α) = E
π

⎡

⎣
∏

x∈Uα0

1
|A(x,α0,α,π)

⎤

⎦ (1)

≥ d−
∑

x∈U(α0) Eπ[logd |A(x,α0,α,π)|] . (by Jensen’s Inequality)

A large part of this paper will be devoted to estimating Eπ [logd |A(x,α0,α,π)|].
Note that in general there is no non-trivial upper bound: If F is the empty
formula over n variables, which always evaluates to 1, then A(x,α0,α,π) = d
for all x and π and p(α0,α) = d−|Uα0 |. In particular, this is d−n if we start with
the empty assignment α0 = ∅. In the other extreme, if there is only one possible
value of x, we can actually give a non-trivial upper bound.

Definition 2.4 (Frozen Variables). Let α0 a partial assignment. A variable
x ∈ U(α0) is frozen (in F with respect to α0) if there is a value c ∈ [d] such that
F ∧ α0 |= (x = c).

Here we are talking about “full implication” |= , not D-implication |=D.

Lemma 2.5. Let F be a (d, k)-ClSP formula, α a satisfying assignment, α0 a
partial assignment compatible with α, and x a variable in Uα0 . If x is frozen in
F with respect to α0 then

E
π
[logd |A(x,α0,α,π)|] ≤ Sd,k + ϵD ,

where ϵD is an error parameter that goes to 0 as D goes to infinity.

428 T. Hertli et al.

This lemma immediately implies Theorem 1.1.

Proof (of Theorem 1.1) Suppose F has exactly one satisfying assignment α. Let
α0 be the empty assignment. Note that every x is frozen in F with respect to
α0.

p(α0,α) ≥ d−
∑

x∈U(α0) Eπ[logd |A(x,α0,α,π)|]

≥ d−n(Sd,k+ϵD) .

By making D a slowly growing function in n, we can make sure that PPSZ runs
in subexponential time and has success probability O∗ (

d−Sd,kn
)
. Repeating this

procedure O∗ (
dSd,kn

)
times guarantees a success probability of at least 1/2.

3 Understanding |A(x,α0,α,π)|: Proof of Lemma 2.5

For this whole section, we fix a partial assignment α0, a satisfying assignment
α of F that is compatible with α0, and a frozen variable x on which α0 is not
defined. Without loss of generality, we let α = (d, . . . , d). Since x is frozen we
have F ∧ α0 |= (x = d). Similar to [14] we construct critical clause trees.

3.1 Construction of Critical Clause Trees

For each color c ∈ {1, . . . , d − 1} we construct a critical clause tree Tc. This is
a tree with two types of nodes: clause nodes on even levels (this includes the
root, which is on level 0) and variable nodes on odd levels. A clause node u has a
clause label clause-label(u) ∈ F and an assignment label βu; it will always hold
that βu is compatible with α0 and violates clause-label(u); a clause node has at
most k − 1 children. A variable node v has a variable label var-label(v) ∈ Uα0

and exactly d − 1 children. Furthermore, each edge e = (v, w) from a variable
node v to a clause node w has an edge color edge-color(e) ∈ [d− 1]. Here is how
we construct Tc:

Create a a root vertex and set βroot := α[x = c].
while there is a leaf u without a clause label:
– Choose a clause C unsatisfied by βu.
– Set clause-label(u) := C.
– for all literals (y ̸= d) ∈ C:

• Create a new child v of u. Set var-label(v) = y.
• for all i ∈ [d − 1]: Create a new child of w of v and set βw :=

βu[y = i], edge-color(v, w) = i.

Proposition 3.1. (1) The construction of Tc terminates. (2) Suppose u is a
clause node in Tc, C = clause-label(u) and (y ̸= i) is a literal in C. If i = d
then u has a child v with var-label(v) = y. If i < d then u has an ancestor v
with var-label(v) = y. (3) If var-label(v) = var-label(v′) then v is not an ancestor
of v′. In other words, the set of variable nodes v with var-label(v) = y is an
anti-chain in Tc.

The PPSZ Algorithm for Constraint Satisfaction Problems 429

(1333)

Step 1. A clause node u with
an unsatisfying assignment βu

(1333)

(x1 ̸= 1 ∨ x2 ̸= 3)

x2

Step 2. Find a clause violated
by βu. Add a child for x2 ̸= 3.

(1333)

(x1 ̸= 1 ∨ x2 ̸= 3)

x2

(1133) (1233)

x2 = 2x2
= 1

Step 3. Add (d− 1) clause node
children. Add edge labels.

(1333)

(x1 ̸= 1 ∨ x2 ̸= 3)

x2

(1133) (1233)

x2 = 2x2
= 1

(x1 ̸= 1 ∨ x2 ̸= 1)

Step 4. Find a clause violated by
(1133). No children in this case.

Step 5. Find a clause violated
by (1233). Add a child for (x3 ̸= 3).

(1333)

(x1 ̸= 1 ∨ x2 ̸= 3)

x2

(1133) (1233)

x2 = 2x2
= 1

(x1 ̸= 1 ∨ x2 ̸= 1) (x2 ̸= 2 ∨ x3 ̸= 3)

x3

(1333)

(x1 ̸= 1 ∨ x2 ̸= 3)

x2

(1133) (1233)

x2 = 2x2
= 1

(x1 ̸= 1 ∨ x2 ̸= 1) (x2 ̸= 2 ∨ x3 ̸= 3)

x3

(1213) (1223)

x3 = 2x3
= 1

Step 6. Add (d − 1) clause node children and
edge labels.

(1333)

(x1 ̸= 1 ∨ x2 ̸= 3)

x2

(1133) (1233)

x2 = 2x2
= 1

(x1 ̸= 1 ∨ x2 ̸= 1) (x2 ̸= 2 ∨ x3 ̸= 3)

x3

(1213) (1223)

x3 = 2x3
= 1

(x1 ̸= 1 ∨ x3 ̸= 1) (x1 ̸= 1 ∨ x3 ̸= 2)

Step 7+8. Find clauses violated by (1213) and
(1223), respectively. No new children here.

Fig. 1. Construction of a critical clause tree for d = 3, V = {x1, x2, x3, x4}, α =
(3, 3, 3, 3), α0 = ∅, variable x1, and color c = 1. The formula F contains, amongst
others, the clauses (x1 ̸= 1 ∨ x2 ̸= 3) ∧ (x1 ̸= 1 ∨ x2 ̸= 1) ∧ (x2 ̸= 2 ∨ x3 ̸= 3) ∧ (x1 ̸=
1 ∨ x3 ̸= 1) ∧ (x1 ̸= 1 ∨ x3 ̸= 2).

430 T. Hertli et al.

Definition 3.2. Let Tc be a critical clause tree and π be a permutation. A vari-
able node v is dead if its variable label comes before x in π. It is alive if it is
not dead. All clause nodes are alive, too. A node u is reachable if there is a path
of alive nodes from the root to u. Reachable(Tc,π) is the set of all reachable
vertices. Let G(Tc,π) be the set of clause labels of the nodes in Reachable(Tc,π)
(Fig. 1).

Lemma 3.3 (Critical clause trees model local reasoning). Let π be a
permutation of the variables and c ∈ [d − 1] a color. Let β be the restriction of
α to the variables coming before x in π. Then G(Tc,π) ∧ α0 ∧ β ! (x ̸= c).

We encourage the reader to verify the lemma for the critical clause tree in the
figure above, for example for π = (x2, x1, x3, x4) or π = (x1, x2, x3, x4).

Corollary 3.4. If |Reachable(Tc,π)| ≤ D then c ̸∈ A(x,α0,α,π). In other
words, PPSZ can eliminate color c for x by local reasoning.

Proof (Proof of Lemma 3.3). We show the following equivalent statement: Let γ
be a total assignment that is compatible with α0 ∧ β and γ(x) = c ̸= d. Then γ
does not satisfy G(Tc,π). We will prove this statement constructively by finding
a clause that is violated by γ.

Set u to be the root of Tc. do as long as possible:
– Let C := clause-label(u).
– if there is some (y ̸= d) ∈ C with γ(y) = i ̸= d:

• Let v be the child of u with var-label(v) = y.
• Let w be the child of v such that edge-color(v, w) = i.
• Set u = w and continue.

– else: return u.

Let u be the vertex returned by this procedure. Consider any variable node v on
the path from the root to u and let y := var-label(v). By construction βu(y) =
γ(y) ̸= d. This means that y comes after x in π: Otherwise, γ(y) = α(y) = d
by assumption on γ. So y comes after x, every ancestor v of u is alive, and u is
reachable. Therefore C := clause-label(u) ∈ G(Tc,π).

We claim that γ violates C: First consider a literal (y ̸= d) ∈ C. If γ(y) ̸= d,
the above procedure would have continued, and not returned u. So γ(y) = d,
and γ does not satisfy (y ̸= d). Second consider a literal (z ̸= i) ∈ C for some
i ̸= d. By Proposition 3.1 z appears as a variable label above u, and therefore
γ(z) = βu(z). Since βu violates C, it violates the literal (z ̸= i), thus γ violates
it, too. We conclude that γ violates C. ⊓,

For c ∈ [d − 1], we define an indicator variable Rc. It is 1 if
|Reachable(Tc,π)| > D| and 0 otherwise. By the above corollary we know
that Rc = 0 implies c ̸∈ A(x,α0,α,π). Since d ∈ A(x,α0,α,π) for all
π we get |A(x,α0,α,π)| ≤ 1 +

∑d−1
c=1 Rc. We now have to show that

E
[
logd

(
1 +

∑d−1
c=1 Rc

)]
≤ Sd,k + ϵD.

The PPSZ Algorithm for Constraint Satisfaction Problems 431

Note that Rc depends on the number of reachable nodes. It is difficult to
understand the worst-case behavior of the random variable

∑
Rc. Let us there-

fore define a new ensemble of random variables:

Ph
c =

{
1 if there exists a reachable vertex at depth h in Tc ,

0 else.

Note that if m := |Reachable| is very large, then there exist a reachable vertex
at depth at least h, where h is logarithmic in m. The precise connection is: Let
h be the largest even integer with 2(h/2)(k−1)(d−1) ≤ D. Then Rc ≤ Ph

c . So it
suffices to bound E

[
logd

(
1 +

∑d−1
c=1 P

h
c

)]
from above. Note that the behavior

of
∑

Ph
c depends on (i) the shape of the critical clause trees; (ii) the concrete

arrangement of variable labels in all d − 1 trees. All can be pretty complex.
Luckily, we can prove that in the worst-case, everything looks quite nice. See the
full version for a proof of the following four results.

Lemma 3.5 (Independence Between Trees, Informal). In the worst case,
the trees T1, . . . , Td−1 do not share any variable labels.

This follows from a certain monotonicity argument and the concavity of logd.

Lemma 3.6 (Independence Within a Tree, Informal). In the worst case,
no variable label appears twice within a tree.

A version of this lemma also appears in [14]. It follows from the FKG inequal-
ity [7] and the fact that Ph

c is monotone in each of the events “y comes after x
in π”. At this point we can forget all about variable and clause labels. Instead of
thinking of π as a permutation on Uα0 , we think of it as assigning each variable
x a random value π(x) ∈ [0, 1]. With probability 1 this defines a permutation.
Thus the ensemble (Ph

1 , . . . , P
h
d−1) can be produced by the following random

experiment: Select p ∈ [0, 1] uniformly at random (this corresponds to choos-
ing π(x)). Then delete each odd-level node with probability p, independently (if
π(v) < π(x) then the node labeled v is dead). Now Ph

c = 1 if and only if after
deletion, Tc contains a path of length h starting at its root.

Observation 3.7 (Deletion in Infinite Trees, Informal). In the worst case,
all Tc are infinite trees in which an even-level node has exactly k − 1 children
and an odd-level node exactly d − 1.

This “worst case” of infinite trees can of course not happen for an actual ClSP
instance F . However, it is useful to imagine infinite trees in the analysis. Let
us assume the trees T1, . . . , Td−1 look as in the worst case outlined above, and
write Y h :=

∑d−1
c=1 P

h
c . The distribution of Y h does not depend on F , only on

h, d, and k. We define Pc to 1 if Tc has an infinite path of alive vertices and set
Y :=

∑d−1
c=1 Yc.

Lemma 3.8. E[logd(1 + Y h)] converges to E[logd(1 + Y)] = Sd,k as h → ∞.

432 T. Hertli et al.

Equivalently, E[logd(1 + Y h)] = Sd,k + ϵD for some ϵD that converges to 0 as D
grows. To sum up,

E
π
[logd |A(x,α0,α,π)|] ≤ E

[
logd

(
1 + Y h)

)]
= Sd,k + ϵD .

4 General (d, k)-ClSP

The intuition behind the analysis of the general case is: Our partial assignment
α0 represents the current state of PPSZ (i.e. the variable assignments it has
already made). If a variable x is frozen at this point in time (cf. Definition 2.4),
then Lemma 2.5 gives us an upper bound on E[|A(x,α0,α,π)|]. Otherwise, if x
is not frozen, we have at least a 2/d chance of guessing a value for x that keeps
F satisfiable.

Below we will carefully track how E[logd |A(x,α0,α,π)|] changes over time
after x becomes frozen. Surprisingly we only use one property of our D-
implication mechanism: adding more information to α0 can only decrease the
number of eligible colors:

Let y ̸= x and c := α(y). Then A(x,α0 ∧ y = c) ⊆ A(x,α0).

4.1 Definitions and Notation

Through most of the analysis, we consider a certain “snapshot” of PPSZ. At
this point in time it has already assigned some variables, and we represent this
by the partial assignment α0.

Definition 4.1. Let F be a (d, k)-ClSP formula and α0 a partial assignment.
Let x ∈ U(α0).

– A(x,α0) is the set of eligible values as in Definition 2.2.
– Sα0(x) is the set of values c ∈ [d] such that F ∧ α0 ∧ (x = c) is satisfiable.
– Sα0 := {(x, c) ∈ U(α0) × [d]

∣∣c ∈ Sα0(x)}.

Note that a variable x is frozen if and only if |Sα0(x)| = 1. Also, Sα0(x) ⊆
A(α0, x). We partition the set U(α0) of yet unassigned variables into the parts:
U(α0) = Vfo(α0) ∪̇ Vfr(α0) ∪̇ Vnf(α0) where

– Vnf(α0) := {x ∈ U(α0) | |Sα0(x)| ≥ 2}, i.e., the set of non-frozen variables.
– Vfo(α0) := {x ∈ U(α0) | |A(α0, x)| = 1}, i.e., those variables for which the
D-implication mechanism of PPSZ can rule out all but one value. Clearly,
such a variable is also frozen. We call such a variable forced.

– Vfr(α0) := the set of frozen variables not in Vfo(α0).

Lemma 2.5 guarantees that Eπ[logd |A(x,α0,α,π)|] ≤ Sd,k + ϵD whenever x
is frozen. We write S := Sd,k + ϵD and G := max{S, 1 − logd e

2 }. As in [10] we
define a cost function:

The PPSZ Algorithm for Constraint Satisfaction Problems 433

Definition 4.2. Let α0 be a partial and α a total assignment and x a variable.
We define cost(α0,α, x) as follows:

– If x ̸∈ U(α0) or α0,α are incompatible or α violates F , or x is forced with
respect to α0 then cost(α0,α, x) = 0;

– else if x ∈ Vnf(α0) then cost(α0,α, x) = G;
– else (if x ∈ Vfr(α0)) then cost(α0,α, x) = Eπ[logd(|A(x,α0,α,π)|)].

We define cost(α0,α) =
∑

x∈U(α0)
cost(α0,α, x).

Note that cost(α0,α) ≤ G · n(α0) by Lemma 2.5.

4.2 A Distribution over Satisfying Assignments

Let α0 be a partial assignment such that F ∧ α0 is satisfiable. We define a (not
computationally efficient) process that samples a random satisfying assignment:

while U(α0) ̸= ∅:
– Pick (x, c) ∈ Sα0 .
– Add (x = c) to α0.
return α0.

Note that this process always outputs a total satisfiable assignment compat-
ible with (the original) α0. Let Q(α0,α) be the probability that this process,
started with α0, outputs α. This defines a probability distribution over the set
of satisfying assignments of F . Let p(α0,α) denote the probability that PPSZ(F ,
α0) returns α.

Lemma 4.3. Let α be a satisfying assignment, α0 be a partial assignment com-
patible with α. Then p(α0,α) ≥ Q(α0,α) · d− cost(α0,α).

With this lemma in hand, we can finish the proof of Theorem 1.2.

Proof (of Theorem 1.2). Let α0 be the empty assignment. Then

Pr[PPSZ(F,α0) succeeds] =
∑

α∈sat(F)

p(α0,α)

≥
∑

α∈satV (F)

Q(α0,α) · d− cost(α0,α) ≥
∑

α∈satV (F)

Q(α0,α) · d−Gn = d−Gn .

⊓,

The rest of this section is devoted to proving Lemma 4.3. We prove p(α0,α) ≥
Q(α0,α) · d− cost(α0,α) by induction over |U(α0)|, the number of variables unas-
signed in α0. If α0 is total the statement holds trivially.

For the induction step suppose α0 is not total. PPSZ randomly picks
x ∈ U(α0) and c ∈ A(x,α0), adds (x = c) to α0 and continues. For the rest
of this inductive proof, the meaning of α and α0 will not change. We thus drop

434 T. Hertli et al.

the α0 from Sα0 ,Sα0(x),A(x,α0),Uα0 ,Vnf(α0), We also write S,S(x),A(x)
and write s := |S|, s(x) := |S(x)|, a(x) := |A(x)|. Finally, since PPSZ adds
(x = c) to α0, we have to look at partial assignments that extend α0 by one
variable. For this we write αx=c

0 := α0 ∧ (x = c). Most of the time we consider
partial assignments that fix one additional variable x to α(x). We denote this
by αx

0 := αx=α(x)
0 .

Given the current partial assignment α0, PPSZ randomly picks some x ∈ U
and c ∈ A(x) and continues with αx=c

0 . Thus

p(α0,α) = E
x∈U

[
E

c∈A(x)
[p(αx=c

0 ,α)]
]
= E

x∈U

[
1

a(x)
· p(αx=α(x)

0 ,α)
]

,

The second equality holds since p(αx=c
0 ,α) = 0 for c ̸= α(x). Applying the

induction hypothesis to αx=α(x)
0 (or ax0 , for short):

p(α0,α) ≥ E
x∈U

[
Q(αx

0 ,α)d− cost(αx
0 ,α)

a(x)

]

We could apply Jensen’s inequality to the above expectation. However, the
argument of E above includes Q, which is not necessarily very concentrated
around its expectation, and Jensen’s inequality does not seem to yield any usable
bound. To circumvent this problem, we introduce a new probability distribution
ξ(x) over U(α0) that is proportional to Q(αx

0 ,α). Note that

Q(α0,α) = E
(x,c)∈S

Q(αx=c
0 ,α) =

1
s

∑

x∈U

∑

c∈S(x)

Q(αx=c
0 ,α) =

1
s

∑

x∈U
Q(αx

0 ,α) ,

and therefore ξ(x) := Q(αx
0 ,α)

s·Q(α0,α) is a probability distribution over U . Thus,

p(α0,α) ≥ E
x∈U

[
1

a(x)
·Q(αx

0 ,α) · d− cost(αx
0 ,α)

]

=
s ·Q(α0,α)

|U| E
x∼ξ

[
d− cost(αx

0 ,α)

a(x)

]

≥ s ·Q(α0,α)
|U| dEx∼ξ[− cost(αx

0 ,α)−logd a(x)]. (by Jensen’s)

In order for our inductive prove to go through, the last expression should be at
least Q(α0,α) · d− cost(α0,α). This happens if and only if

s

|U| · d
Ex∼ξ[− cost(αx

0 ,α)−logd a(x)] ≥ d− cost(α0,α) ⇐⇒

logd
s

|U| − E
x∼ξ

[cost(αx
0 ,α) + logd a(x)] ≥ − cost(α0,α) ⇐⇒

E
x∼ξ

[cost(α0,α) − cost(αx
0 ,α)] − E

x∼ξ
[logd a(x)] + logd

s

|U| ≥ 0 . (2)

The PPSZ Algorithm for Constraint Satisfaction Problems 435

The proofs of the next three lemmas are quite technical and demanding but do
not introduce new key ideas. They can be found in the full version of this paper.

Lemma 4.4. Ex∼ξ[cost(α0,α) − cost(αx
0 ,α)] ≥ 1

s

(
G
∑

y∈Vnf
s(y) +

∑
y∈Vfr

logd a(y)
)
.

Lemma 4.5. Ex∼ξ[logd a(x)] ≤
∑

x∈U logd a(x)

s +
∑

x∈Vnf
(s(x)−1)

s .

Lemma 4.6. logd s
|U| ≥ logd(e)

∑
y∈Vnf

(s(y)−1)

s .

Let (∗) denote the left-hand side of inequality (2).

s · (∗) ≥ G
∑

y∈Vnf

s(y) +
∑

y∈Vfr

logd a(y) −
∑

x∈U
logd a(x) −

∑

x∈Vnf

(s(x) − 1) + logd(e)
∑

y∈Vnf

(s(y) − 1)

=
∑

y∈Vnf

(Gs(y) − s(y) + 1 + logd(e)(s(y) − 1)) −
∑

y∈U
logd a(y)(1 − Iy∈Vfr) .

Note that logd a(y)(1− Iy∈Vfr) is equal to 0 if y ∈ Vfr ∪Vfo and at most 1 if y ∈
Vnf . Thus it suffices to show that

∑
y∈Vnf

(Gs(y) − s(y) + logd(e)(s(y) − 1)) ≥ 0.
We will show that every summand is non-negative for each y ∈ Vnf :

Gs(y)s(y) + logd(e)(s(y) − 1) ≥ 0 ⇔ G ≥ 1 − logd(e) ·
s(y) − 1
s(y)

.

The last inequality holds because s(y)−1
s(y) ≥ 1/2 for y ∈ Vnf and G ≥ 1 − logd(e)

2

by definition. This finishes the proof.

5 Conclusion and Open Problems

We have shown how to apply the PPSZ algorithm to (d, k)-ClSPs. In the
unique case we established correlation inequalities showing that PPSZ behaves
as expected. This improves the fastest known running time for Unique (d, k)-
ClSP algorithm for almost all values (d, k). These results transfer to the general
case for k ≥ 4.

In our analysis of the general case we only distinguish frozen and non-frozen
variables. That is, for non-frozen variables we make no difference between vari-
ables with two, three, or even d viable values. A more fine-grained analysis could
give an improved result for the general case. However we do not know how to
analyze the transition between different types of “non-frozen-ness”.

We conjecture that the running time in the general case is no worse than in
the unique case and that the current discrepancy for k = 2, 3 is a shortcoming
of our analysis, not the algorithm.

436 T. Hertli et al.

References

1. Allender, E., Chen, S., Lou, T., Papakonstantinou, P.A., Tang, B.: Width parame-
terized SAT: time-space tradeoffs. Theory of Computing (to appear)

2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–
204 (2005)

3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

4. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set par-
titions. In: 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21–24, October 2006Berkeley, California, USA, Proceedings, pp.
575–582. IEEE Computer Society (2006)

5. Feder, T., Motwani, R.: Worst-case time bounds for coloring and satisfiability
problems. J. Algorithms 45(2), 192–201 (2002)

6. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

7. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some par-
tially ordered sets. Comm. Math. Phys. 22, 89–103 (1971)

8. Grohe, M.: The structure of tractable constraint satisfaction problems. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 58–72. Springer, Heidel-
berg (2006)

9. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proceedings
of the seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
289–298. Society for Industrial and Applied Mathematics (2006)

10. Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in general.
SIAM J. Comput. 43(2), 718–729 (2014)

11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity. J. Comput. System Sci. 63(4), 512–530 (2001). Special issue on FOCS
1998 (Palo Alto, CA)

12. Krokhin, A., Bulatov, A., Jeavons, P.: The complexity of constraint satisfaction:
an algebraic approach. In: Kudryavtsev, V.B., Rosenberg, I.G., Goldstein, M.
(eds.) Structural Theory of Automata, Semigroups, and Universal Algebra. NATO
Science Series II: Mathematics, Physics and Chemistry, vol. 207, pp. 181–213.
Springer, Netherlands (2005)

13. Li, L., Li, X., Liu, T., Xu, K.: From k-SAT to k-CSP: Two generalized algorithms.
CoRR, abs/0801.3147 (2008)

14. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algo-
rithm for k-SAT. J. ACM 52(3), 337–364 (2005). (electronic)

15. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago J. Theoret.
Comput. Sci., Article 11, 19 (electronic) (1999)

16. Scheder, D.: PPZ for more than two truth values - an algorithm for constraint
satisfaction problems. CoRR, abs/1010.5717 (2010)

17. Schöning, U.: A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, 17–18 October 1999, New York, pp. 410–414. IEEE Computer Society (1999)

The PPSZ Algorithm for Constraint Satisfaction Problems 437

18. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004)

19. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Nieder-
meier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg
(2008)

20. Welzl, E.: Boolean Satisfiability - Combinatorics and Algorithms (Lecture Notes)
(2005). www.inf.ethz.ch/∼emo/SmallPieces/SAT.ps

www.inf.ethz.ch/~emo/SmallPieces/SAT.ps

Explaining Producer/Consumer Constraints

Andreas Schutt1,2(B) and Peter J. Stuckey1,2

1 Decision Sciences, Data61, CSIRO, West Melbourne, Australia
{andreas.schutt,peter.stuckey}@data61.csiro.au

2 Department of Computing and Information Systems, The University of Melbourne,
Melbourne, VIC 3010, Australia

Abstract. Resource-constrained project scheduling problems are one
of the most studied scheduling problem, and constraint programming
with nogood learning provides the state-of-the-art solving technology
for them, at least when the aim is minimizing makespan. In this paper
we examine the closely related problem of scheduling producers and
consumers of discrete resources and reservoirs. Producer/consumer con-
straints model consumable resources, such as raw materials (e.g., water)
and money, in which event times relate to a production or consump-
tion event. In this paper, we investigate what is the most appropriate
language of learning: should we learn about the event times for produc-
tion and consumption, or should be instead learn about the temporal
relationships between events? For this reason, we explore global con-
straint propagators with explanation for producer/consumer constraints
and contrast this with simple decomposition approaches. Experiments
on resource-constrained project scheduling problems involving produc-
er/consumer constraints show that nogood learning solvers are highly
effective at these problems.

1 Introduction

One of the most-studied and well-known scheduling problem is the resource-
constrained project scheduling problem (RCPSP) that comprises non-
preemptive activities, scarce renewable resources, and precedence relations
between pairs of activities. A schedule determines the start and end time of
activities such that no resource limit is exceeded over the planning horizon and
all precedence relations are satisfied. In RCPSP, an activity consumes some units
of the renewable resource and releases or produces them at its ends. Renewable
resources are very common and model, e.g., manpower and machines, whereas
non-renewable resources model, e.g., money and energy, and have a fixed initial
capacity, i.e., an activity only consumes them. Reservoirs (also called inven-
tories [15]) are consumable resources, for which activities can produce and/or
consume resource units at their start and/or end. Normally, they have a maximal
capacity or level and a minimal level requirement, e.g., safety stock. They gener-
alize renewable and non-renewable resources. The constraints that the activities

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 438–454, 2016.
DOI: 10.1007/978-3-319-44953-1 28

Explaining Producer/Consumer Constraints 439

impose on the reservoir are called producer/consumer constraints. Typical exam-
ples for such a resource are fuel or water tanks, raw materials, and, even money
in an investment project [15].

There is limited literature about producer/consumer constraints. Simonis
and Cornelissens [22] brought it to the attention of the constraint programming
(CP) community for the first time. They motivated different application sce-
narios and show how to model them with the global cumulative constraint.
Barták [3] provided an overview of the intersection of industrial planning and
scheduling problems which include producer/consumer constraints. Neumann
and Schwindt [15] studied the properties of the feasible regions, proposing a
branch-and-bound algorithm and filtered beam search heuristic for solving pro-
ducer/consumer constraints in combination with generalized precedence con-
straints. They also created the test set ubo. Laborie [12] investigated the inter-
section of planning and scheduling involving producer/consumer constraints with
generalized precedence relations. He proposed a balance constraint that reasons
about the temporal relations between two events and can detect new temporal
relations. He then developed an exact solution method with several dedicated
search heuristics, which were combined to closed the remaining open instances
in the test set ubo. Beldiceanu and Carlsson [5] presented the new global con-
straint cumulatives, which generalized the global cumulative constraint. This
new constraint allowed negative heights in order to model producer/consumer
constraints. Beck [4] investigated heuristics for scheduling problems involving
inventories, and more recently Kinable [10] extended the balance constraints [12]
to optional events.

We consider the scheduling of production and consumption events for dis-
crete resources in reservoirs, as well as generalized precedence constraints (also
called temporal constraints, minimal and maximal time lags, difference logic
constraints) relating those events.

A reservoir is a finite pool for storing a resource, having a minimal Lmin and
maximal resource level Lmax. A production event adds an amount of resource to
a reservoir at a certain time, the reservoir should not exceed its maximal level.
A consumption event removes an amount of resource from a reservoir at a certain
time, the reservoir should not go below its minimal level. An event x has a start
or event time t(x) and an effect or height h(x) on the reservoir. If h(x) < 0
(h(x) > 0) then we have a consumption (production) event.

Generalized precedence constraints relate two events and are of the form:
t(x) − t(y) ≤ d where d is integral. Note that this allows us to express, e.g.,

– fixed separation of events: t(x)− t(y) = d as t(x)− t(y) ≤ d∧ t(y)− t(x) ≤ −d,
– x is before y written x ≺ y as t(x) − t(y) ≤ −1
– x is no later than y written as x ≼ y as t(x) − t(y) ≤ 0

Example 1. Consider a RCPSP with activities i and a resource of capacity R. Let
si, ei, di and ri be the start time of i, the end time of i, the fixed duration of i and
the fixed resource requirement of i on R. Then we can reformulate the problem
as producer/consumer constraints with generalized precedence constraints. Each

440 A. Schutt and P.J. Stuckey

activity i is modeled with a consumption event xi and production event yi for
which t(xi) = si, h(xi) = −ri, t(yi) = ei, and h(yi) = ri, and precedence
constraints enforcing t(xi) + di = t(yi) and the renewable resource is modeled
as a reservoir with Lmin = 0, Lmax = R, and initial resource level at R. The
initial resource level is modeled by a dummy production event z with t(z) = 0
and h(z) = R where 0 is the start of the planning horizon. ⊓'

Given the success of nogood learning on RCPSP and related scheduling prob-
lems [6,9,11,17,19–21,23], it is interesting to explore what is the best learning
approach to tackle the producer/consumer problems with generalized precedence
constraints, a class of problems that generalizes RCPSP and many other schedul-
ing problems.

Usually in CP there is fairly well understood tradeoff: a propagator that infers
more is worthwhile as long as the cost of the inference does not outweigh the
benefits of the extra inference. With nogood learning, this becomes more compli-
cated. A propagator with weaker inference may be better if it makes more local
inferences, that are more reusable, in particular a decomposition may be advan-
tageous since it introduces new local variables which may be worthwhile learning
about. In the case of producer/consumer we have three distinct possibilities:

– a decomposition may be best since the local variables it introduces are valuable
for learning

– a time bounds approach may be best since it uses native literals to the prob-
lem, and bounds can succinctly capture lots of schedules independent of what
happened to earlier events,

– an approach based on ordering may be best, since ordering of events captures
the essence of the constraints on reservoirs

The aim of this paper is to answer the question of which approach is best.

2 Preliminaries

2.1 Lazy Clause Generation

CP solves constraint satisfaction problems by interleaving propagation, which
remove impossible values of variables from the domain, with search, which
guesses values. All propagators are repeatedly executed until no change in
domain is possible, then a new search decision is made. If propagation deter-
mines there is no solution then search undoes the last decision and replaces it
with the opposite choice. If all variables are fixed then the system has found a
solution to the problem. For more details see, e.g., [18].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V, each of which takes values from a given initial finite set of values
or domain Dinit(x). The domain D keeps track of the current set of possible
values D(x) for a variable x. Define D ⊑ D′ iff D(x) ⊆ D′(x),∀x ∈ V. The
constraints of the problem are represented by propagators f which are functions
from domains to domains which are monotonically decreasing f(D) ⊑ f(D′)

Explaining Producer/Consumer Constraints 441

whenever D ⊑ D′, and contracting f(D) ⊑ D. If all values are removed from
one domain of a variable x, i.e.,D(x) = ∅ then the constraints cannot be satisfied
with the search decisions made and a failure is triggered.

We make use of CP with learning using the lazy clause generation (LCG) [16]
approach. Learning keeps track of what caused changes in domain to occur, and
on failure computes a nogood which records the reason for failure. The nogood
prevents search making the same incorrect set of decisions again.

In an LCG solver integer domains are also represented using Boolean vari-
ables. Each variable x with initial domain Dinit(x) = [l..u] is represented by two
sets of Boolean variables !x = d", l ≤ d ≤ u and !x ≤ d", l ≤ d < u which define
which values are in D(x). We use !x ̸= d" as shorthand for ¬!x = d", and !d ≤ x"
as shorthand for ¬!x ≤ d − 1". An LCG solver keeps the two representations of
the domain in sync. For example if variable x has initial domain [0..5] and at some
later stage D(x) = {1, 3} then the literals !x ≤ 3", !x ≤ 4",¬!x ≤ 0",¬!x = 0",
¬!x = 2",¬!x = 4",¬!x = 5" will hold. Explanations are defined by clauses over
this Boolean representation of the variables.

Example 2. Consider a simple constraint satisfaction problem with constraints
b → x+ 3 ≤ y, ¬b → y + 3 ≤ x, b′ → y ≤ 3, ¬b′ → x ≤ 3, with initial domains
Dinit(b) = Dinit(b′) = {0, 1}, andDinit(x) = Dinit(y) = {0, 1, 2, 3, 4, 5, 6}. There
is no initial propagation. Setting !y = 2" makes the first constraint propagate
D(b) = {0} with explanation !y = 2" → ¬b, then the second constraint prop-
agates D(x) = {5, 6} with explanation ¬b ∧ !y = 2" → !5 ≤ x". The third
constraint propagates D(b′) = {0} with explanation !y = 2" → ¬b′ and the last
constraint sets D(x) = ∅, with explanation !5 ≤ x" ∧ ¬b′ → false. The graph
of the implications is

¬b !! !5 ≤ x"
""!!!!!!

!y = 2"

##""""""
!!

$$##############
¬b′ !! false

Any cut separating the decision !y = 2" from false gives a nogood. The
simplest one is !y = 2" → false. ⊓'

2.2 Global Difference Logic Propagator

Constraints of difference, i.e., of the form x− y ≤ d where d is a fixed value are
one of the simplest form of constraints. Efficient algorithms based on shortest
paths are known for computing satisfaction and implications, and propagation
for this class of constraints. In this work we use them inside an explaining solver,
hence the propagator needs to explain its reasoning, making it more akin to a
difference logic theory propagator [7] in SAT modulo theories (SMT).

The global difference logic propagator [8] reasons with literals of the form
!x − y ≤ d", and for example can make transitive deductions like !x − y ≤
1"∧ !y−z ≤ 4" → !x−z ≤ 5" which are beyond the scope of usual finite domain
propagation. The propagator will detect if a literal !x − y ≤ d" becomes true

442 A. Schutt and P.J. Stuckey

or false given the current set of difference constraints (and bounds) which are
asserted, and also detect unsatisfiability of the set of asserted constraints. This
will be important for the producer/consumer constraint which can both make
use of difference logic information, and produce new difference logic information.
Note that because bounds literals !x ≤ d" and !−x ≤ d" are so much more
important in CP they are treated specially unlike in SMT, for details see [8].

3 The Producer/Consumer Constraint

Laborie [12] provides the framework of the producer/consumer (or balance) con-
straint for reasoning about reservoirs. In this section, we revisit his framework
in order to extend it for nogood learning solvers in the next section.

Given a set of events Ev on the reservoir with t(x) being the time of the event
x and h(x) the effect on the reservoir. Let Pr and Co be the set of producer
and consumer events respectively, Pr = {x ∈ Ev | h(x) > 0}, Co = {x ∈ Ev |
h(x) < 0}. The producer/consumer constraint enforces that the reservoir stays
within the minimal (resource) level Lmin and maximal (resource) level Lmax.
Hence for every point in the planning horizon τ it enforces

Lmin ≤
∑

x∈Ev:t(x)≤τ

h(x) ≤ Lmax.

The event time t(x) and height h(x) can be variable. We use the notation tmin(x)
(tmax(x)) to refer to the current minimum (resp. maximum) possible time for
event x, and similarly hmin(x) (hmax(x)) for minimum (maximum) height.

In order to propagate the constraint, the set of events are partitioned into
the following six sets with respect to an event x.

before B(x) = {y ∈ Ev | t(y) < t(x)}
before or with BS(x) = {y ∈ Ev | t(y) ≤ t(x) ∧ y /∈ B(x) ∪ S(x)}
with S(x) = {y ∈ Ev | t(y) = t(x) ∨ (t(y) ≤ t(x) ∧ t(y) ≥ t(x))}
after or with AS(x) = {y ∈ Ev | t(y) ≥ t(x) ∧ y /∈ A(x) ∪ S(x)}
after A(x) = {y ∈ Ev | t(y) > t(x)}
unknown U(x) = {y ∈ Ev | y /∈ B(x) ∪ BS(x) ∪ S(x) ∪ A(x) ∪ AS(x)}

Since normally not all relationships between pairs of events are known in
advanced, the partition of events dynamically changes during the search. How-
ever, only events in one of these sets BS(x), AS(x), or U(x) can move to
another set and that at most twice. At the end, all events are partitioned by
B(x) ∪ S(x) ∪ A(x). An event in U(x) can move to all other sets. An event in
BS(x) can move to either B(x) or S(x). An event in AS(x) can move to either
S(x) or A(x).

Determining to which set an event y belongs to during search can be per-
formed by checking the earliest and latest event time or using ordering con-
straints. If we use event time information then the sets are determined by:

Explaining Producer/Consumer Constraints 443

B(x) = {y ∈ Ev\{x} | tmax(y) < tmin(x)}
BS(x) = {y ∈ Ev\{x} | tmax(y) ≤ tmin(x) ∧ (tmin(y) < tmax(y) ∨ tmin(x) < tmax(x))}
S(x) = {y ∈ Ev\{x} | tmax(y) = tmin(x) ∧ tmin(y) = tmax(y) ∧ tmin(x) = tmax(x)} ∪ {x}

AS(x) = {y ∈ Ev\{x} | tmin(y) ≥ tmax(x) ∧ (tmin(y) < tmax(y) ∨ tmin(x) < tmax(x))}
A(x) = {y ∈ Ev\{x} | tmin(y) > tmax(x)}
U(x) = {y ∈ Ev\{x} | tmin(y) < tmax(x) ∧ tmin(x) ≤ tmax(y)}

To make use of ordering constraints, we first introduce the ordering Booleans
Bxy for all event pairs {x, y} ⊆ Ev, and the constraints

bxy ↔ t(x) < t(y) byx ↔ t(y) < t(x) ¬bxy ∨ ¬byx

unless we use the global difference logic propagator where instead we simply
define the ordering literals bxy as

bxy ≡ !t(x) − t(y) ≤ −1" byx ≡ !t(y) − t(x) ≤ −1"

Using the ordering literals the sets are determined by:.

B(x) = {y ∈ Ev\{x} | bxy = true}
BS(x) = {y ∈ Ev\{x} | D(bxy) = { true, false} ∧ byx = false}
S(x) = {y ∈ Ev\{x} | bxy = false ∧ byx = false} ∪ {x}

AS(x) = {y ∈ Ev\{x} | bxy = false ∧ D(byx) = { true, false}}
A(x) = {y ∈ Ev\{x} | byx = true}
U(x) = {y ∈ Ev\{x} | D(bxy) = { true, false} ∧ D(byx) = { true, false}}

Note that the relationships determined by the ordering constraints will be strictly
more informative than those determined from event time information (indepen-
dent of whether we use difference logic or not). The conditions for B(x), S(x)
and A(x) for event time, will enforce the conditions for ordering literals. Thus,
the ordering literals can potentially decide earlier to which set an event y belongs
to and exploit that information for propagation.

3.1 Immediate Maximal Resource Level Before Event

In this sub-section following [12], we describe the consistency check and the
filtering on the event times and heights. The maximal resource level shortly
before an event x ∈ Ev can be approximated by

L<
max(x) =

∑

y∈B(x)

hmax(y) +
∑

y∈Pr∩(BS(x)∪U(x))

hmax(y) (1)

where the last sum is an approximation because it neglects precedence relations
and consumer events.

444 A. Schutt and P.J. Stuckey

Consistency. If the maximal resource level is too low then there does not exist
any producer event that can be pushed for execution before the event x. Thus,
the system is inconsistent, i.e.,

L<
max(x) < Lmin → false.

Time Bounds Filtering. If the first sum in (1) is less than Lmin then the lower
bound on t(x) can be improved.

∑

y∈B(x)

hmax(y) < Lmin → ∃Ω ⊆ Pr ∩ (BS(x) ∪ U(x)) with

∑

y∈B(x)∪Ω

hmax(y) ≥ Lmin : ∀y ∈ Ω : t(y′) < t(x)

Searching for an arbitrary set Ω is expensive, but a “practical” set can be
computed as follows. Let the events y1, y2, . . . ∈ Pr∩(BS(x)∪U(x)) be in chrono-
logical order according to their earliest event time, i.e., tmin(y1) ≤ tmin(y2) ≤
Then the lower bound on t(x) can be updated as follows.

∃k :
k−1∑

i=1

hmax(yi) < Lmin −
∑

y∈B(x)

hmax(y) ≤
k∑

i=1

hmax(yi) → tmin(yk) < t(x)

Consumption and Production Level Filtering. The consumption or production
level of certain events y can be filtered with the respect to x. The following rule
holds for all consumers y ∈ Co∩B(x) and all producers y ∈ Pr∩(B(x)∪BS(x)∪
U(x)).

L<
max(x) + hmin(y) − hmax(y) < Lmin → Lmin − L<

max(x) + hmax(y) ≤ h(y)

This rules avoids a resource level that is below the safety level Lmin.

3.2 Other Resource Levels Regarding an Event

Similar reasoning to the immediate maximal resource level before an event can
be performed for the immediate minimal resource level before the event (2)
and the immediate maximal (3) and minimal resource level after the event (4).
They lead to similar propagations to those described for L<

max(x) in the previous
subsection.

L<
min(x) =

∑
y∈B(x)

hmin(y) +
∑

y∈Co∩(BS(x)∪U(x))
hmin(y) (2)

L>
max(x) =

∑
y∈B(x)∪BS(x)∪S(x)

hmax(y) +
∑

y∈Pr∩(AS(x)∪U(x))
hmax(y) (3)

L>
min(x) =

∑
y∈B(x)∪BS(x)∪S(x)

hmin(y) +
∑

y∈Co∩(AS(x)∪U(x))
hmin(y) (4)

Explaining Producer/Consumer Constraints 445

4 Explanations

In this section, we describe how to explain propagations for L<
max, the propaga-

tions for other resource levels are explained similarly. Since we investigate dif-
ferent propagation algorithms, we introduce general explanations at first before
refining them to each of the propagators.

4.1 Explanation of the Resource Level and Inconsistency

Explanation for inconsistencies or filtering regarding to an event x must express
the reason for the current bound on the resource level L<

max(x). For simplicity,
we assume fixed consumption/production of the events at first. In this case, the
bound on the level is caused by the following reasons.

– consumer events are executed before event x
– producer events are executed simultaneously to or after event x

All those events cause a lower level on the reservoir shortly before event x. Thus,
the corresponding explanation would be

expl(L<
max(x)) =

∧

y∈Co∩B(x)

expl(y ≺ x) ∧
∧

y∈Pr∩Z(x):y ̸=x

expl(y ≽ x) (5)

where Z(x) = S(x)∪AS(x)∪A(x) and the functions expl(y ≺ x) and expl(y ≽ x)
are defined later. Note that the relative position of events that are not considered
are irrelevant for the current bound on the level. Thus, they can be left out of
the explanation.

In the case, events can have flexible consumption/production then the bound
on the resource level can be caused by these additional reasons.

– consumer events run before event x consume too many resource units
– production events that are not simultaneously to or after event x produce too

few resource units

Thus, the explanation (5) must be extended by
∧

y∈Co∩B(x)

!h(y) ≤ hmax(y)" ∧
∧

y∈Pr∩(B(x)∪BS(x)∪U(x))

!h(y) ≤ hmax(y)"

Explanation for Inconsistency. If we have resource underflow L<
max(x) < Lmin

immediately before an event x then the explanation is simply

expl(L<
max(x)) → false.

We generalize this explanation by removal of consumer and producer events
considered in (5) in input order using the slack Lmin − L<

max(x) − 1.

446 A. Schutt and P.J. Stuckey

4.2 Explanation for Time Bounds Filtering

The lower bound on the event time of x can be updated if all events that are
before x are not enough to achieve the minimal resource level. In that case, some
producer events that are currently in the before-or-simultaneously (BS(x)) or
unknown relationship (U(x)) to x, must happen before x in any solution. In
addition to the reasons considered for the current bound on the maximal resource
level, these reasons need to be considered for a bound update

– producer events in BS(x) ∪ U(x) that start too late

These reasons result in the following explanation.

expl(L<
max(x)) ∧

∞∧

i=k

!tmin(yk) ≤ t(yi)" → tmin(yk) < t(x)

We generalize this explanation in the similar way as in the case of inconsistency,
but we use the slack

∑k
i=1 hmax(yi) − Lmin. At first, we remove events in B(x)

in input order and then the remaining events in chronological order of their
minimal event time.

4.3 Explanation for Consumption and Production Level Filtering

The lower bound on the height of an event y can be updated if it would cause
a resource underflow shortly before event x. The potential underflow is only
related the current bound on the maximal level and an explanation is simply

expl(L<
max(x)) → Lmin − L<

max(x) + hmax(y) ≤ h(y).

5 Global Reservoir Propagators

In this section, we describe three different reservoir propagators and specialize
the general explanations described in the previous section.

5.1 Bounds Propagator

The bounds propagator bounds uses the current bounds on the event times
in order to relate pairs of events, i.e., partitioned all events into the six sets
described in the previous section with respect to an event x. For each event, the
propagator can easily determine the event partition in linear time by scanning
over all events. Thus, it can also determine all four reservoir levels and time
for the time bounds filtering in linear time, for the last one we assume that
the events are sorted with respect to tmin(.). The sorting can be done at the
beginning of the propagator’s execution. Therefore, the worst case complexity
of the bounds propagator is O(|Ev|2).

Explaining Producer/Consumer Constraints 447

When the propagator bounds detects a inconsistency or performs filtering
it additional generates the explanation described in the previous section and
specializes them by using following bounds on the event times.

expl(y ≺ x) = !t(y) < tmin(x)" ∧ !tmin(x) ≤ t(x)"
expl(y ≽ x) = !tmax(x) ≤ t(y)" ∧ !t(x) ≤ tmax(x)"

Note the literals !tmin(x) ≤ t(x)" and !t(x) ≤ tmax(x)" will only appear once
in an explanation. Since most of the explanation, e.g. expl(L<

max(x)), can be
pre-computed in linear time for an event x. It does not add to the worst case
complexity of the propagator.

5.2 Order Propagator

The order propagator order works in the same way as bounds, but it uses
ordering variables between pairs of events for propagation. Hence, it has the
same runtime complexity O(|Ev|2). It uses ordering literals in the explanations.

expl(y ≺ x) = byx expl(y ≽ x) = ¬byx

Note that Laborie [12] uses the non-learning version of the propagator order.

5.3 Timetable Propagator

The timetable propagator tt does not consider the time relations between pair
of events, but relates events to time points in the planning horizon. Instead
of performing propagation at each time point in the horizon, it only has to
consider time points at which the minimal or maximal level may changes. These
time points are the bounds on the event times, i.e., tmin(x) and tmax(x). Hence,
it considers a number of time points which is linear in the number of events.

The propagation and explanation work similar to the bounds propagator.
Consider the time point τ = tmax(x) of an event x for propagation and let z
be an artificial event with t(z) = tmin(z) = tmax(z) = τ and h(z) = 0 then the
same propagation can be done as the bounds propagator with respect to this
fixed artificial event. Consequently, the explanation are the same and reduce to
one of the following literals due to the fixed event z.

expl(y ≺ z) = !t(y) < τ" expl(y ≽ z) = !τ ≤ t(y)"

It is obvious that the tt propagator can easily be implemented with a worst
case complexity O(|Ev|2). Note that this propagator is a specialized form of the
timetable propagator of the global cumulative constraint. Thus, it will prune the
same as the timetable propagator in cumulative when the reservoir constraints
are modeled as cumulative propagators as described in [22].

448 A. Schutt and P.J. Stuckey

6 Models

We use the solver-independent modeling language MiniZinc [13] for describing
our models. The input parameter of an instance are as follows. Their meaning
is giving in the comment after the declaration.
set of int: R; % Set of reservoirs
set of int: E; % Set of events
set of int: P; % Set of generalized precedence relations
array [R] of int: Lmin; % Minimum level of the reservoirs
array [R] of int: Lmax; % Maximum level of the reservoirs
array [R, E] of int: rr; % Amount of resource production / consumption of

the events
array [P, 1..3] of int: prec; % Generalized precedence relations between

two events: start(prec[i ,1]) + prec[i ,2] <= start(prec[i ,3])
array [R] of set of int: resE = [{i | i in E where rr[r,i] != 0} | r in R

]; % Set of"non -zero" events for each reservoir

Then the start (event) time variables s and the objective objective are
declared as follows where 0..UB is the planning horizon.
set of int: Times = 0..UB; % Planning horizon
array [E] of var Times: s; % Event time variables
var Times: objective = s[sink]; % Objective variable

The initial upper bound on the objective UB is initialized by sum(i in
E)(max([0] ++ [prec[p,2] | p in P where prec[p,1] = i])) unless oth-
erwise stated. Note that the set of events E contains one dummy source (source)
and sink (sink) event. The source start time is constrained by s[source] = 0.
Generalized precedence constraints are expressed by one binary linear inequality
constraints as usual.
constraint forall(p in P)(s[prec[p, 1]] + prec[p, 2] <= s[prec[p, 3]]);

Reservoir Decompositions. The first decomposition is the time-indexed formu-
lation (dTT), which allows learning about the event times. This model creates
two linear constraints for each point in time in the planning horizon. Thus the
model size is time-dependent.
array[E, Times] of var bool: bit =

array2d(E, Times , [s[i] <= t | i in E, t in Times]);
constraint forall(r in R, t in Times)(

sum(i in res_events[r])(rr[r,i] * bit[i,t]) <= Lmax[r]
/\ sum(i in res_events[r])(rr[r,i] * bit[i,t]) >= Lmin[r]);

Note that the additional Boolean variables bit are literals of the Boolean repre-
sentation of s in LCG solver, i.e., those already exists for LCG solvers. In total
O(|R| · UB) linear constraints of size O(|E|) are created.

The second decomposition is an event-based formulation (dAfter), which
ensures that the resource levels are within the limits at the event time for each
event. For modeling it, we required two additional sets of Boolean variables
s eq 0 and s leq s, where the first set describes whether an event starts at
time point 0 and the second set are order variables between pairs of events.

Explaining Producer/Consumer Constraints 449

array[E] of var bool: s_eq_0 = [s[i] <= 0 | i in E];
array[E,E] of var bool: s_leq_s = array2d(E, E, [s[i] <= s[j] | i, j in E])

;
% Constraints for correct reservoir levels at event time
constraint forall(r in R, i in resE[r])(

sum(j in resE[r])(rr[r,j] * s_leq_s[j,i]) <= Lmax[r]
/\ sum(j in resE[r])(rr[r,j] * s_leq_s[j,i]) >= Lmin[r]);

% Constraints for correct reservoir level at time point 0
constraint forall(r in R)(

if Lmin[r] > 0
then sum(i in res_events[r])(rr[r,i] * s_eq_0[i]) >= Lmin[r]
else if Lmax[r] < 0

then sum(i in res_events[r])(rr[r,i] * s_eq_0[i]) <= Lmax[r]
else true endif endif);

% Constraints for s_leq_s
constraint forall(i, j in E where i < j)(s_leq_s[i, j] \/ s_leq_s[j, i]);

The first set of constraints enforces the reservoir level at each event time,
whereas the second enforces it for time point 0, and the last set of con-
straints explicitly models that one of the pair of order variables must be
true. Due to the order variables s leq s, a learning solver is able to learn
about the temporal relations between pairs of events. The reified constraints
s leq s[i,j] <-> s[i] <= s[j] are created in the definition of s leq s. The
decomposition (after) creates O(|R| · |E|) linear constraints of size O(|E|) and
O(|E|2) Boolean variables and reified binary linear constraints.

The third decomposition (dBefore) is an extension of the second one
(dAfter). It adds redundant linear constraints for the reservoir level shortly
before the event time for each event. It re-uses the Boolean variables s eq 0 and
s leq s.
constraint forall(i in resE[r])(

sum(j in resE[r])(rr[r,j]*not(s_leq_s[i,j])) <= Lmax[r]-Lmin[r]* s_eq_0[i
]

/\ sum(j in resE[r])(rr[r,j]*not(s_leq_s[i,j]))-Lmin[r]*not(s_eq_0[i]) >=
0);

In addition to the constraints and variables created by the decomposition
(dAfter), it creates O(|R| · |E|) linear constraints of size O(|E|).

Global Reservoir Constraints. Rather than using decompositions to model the
reservoir constraints we can make use of the global propagators. The tt propa-
gators has the same propagation strength as the decomposition dTT, but dras-
tically reduces the model size and makes it time independent, but note it does
not have the same language of learning. The order propagator is equivalent
to the dBefore decomposition, but again drastically smaller in size. Again it
does not have many intermediate variables which might be useful for learning.
The bounds propagator is weaker than the dBefore and dAfter decompositions,
since it does not reason about order, but it is, of course, concise, and avoids the
need for any order variables.

7 Experiments

The experiments were run on a machine running Ubuntu 14.04 with an Intel(R)
Core(TM) i7 CPU running at 2.8GHz with 8GB memory. We implemented the

450 A. Schutt and P.J. Stuckey

Table 1. Results on ubo50

Solver #inst #opt #sat #unk #inf m.rt m.it m.#confl m.#nodes

neu&sch 90 47 1 0 42 16.23s 0.0s

order+diff 90 48 0 0 42 0.07s 0.01s 48 757

order 90 48 0 0 42 0.33s 0.01s 305 1823

bounds+diff 90 48 0 0 42 0.50s 0.01s 2143 6517

bounds 90 48 0 0 42 0.56s 0.01s 2384 6741

tt+diff 90 48 0 0 42 0.94s 0.01s 314 2131

tt 90 48 0 0 42 0.86s 0.01s 282 2108

dTT 90 48 0 0 42 1.21s 0.71s 259 735

dAfter 90 48 0 0 42 0.35s 0.08s 330 2115

dBefore 90 48 0 0 42 0.53s 0.14s 346 2101

Table 2. Results on ubo100

Solver #inst #opt #sat #unk #inf m.rt m.it m.#confl m.#nodes

neu&sch 90 50 7 2 31 60.11s 0.0s

order+diff 90 57 0 0 33 0.89s 0.03s 229 2818

order 90 55 2 0 33 18.16s 0.03s 3996 17758

bounds+diff 90 55 2 0 33 20.55s 0.02s 38048 103067

bounds 90 55 2 0 33 22.02s 0.02s 44001 122138

tt+diff 90 55 2 1 32 31.96s 0.02s 6718 32048

tt 90 55 2 1 32 33.61s 0.02s 6655 33665

dTT 90 57 0 1 32 17.23s 3.45s 2045 12001

dAfter 90 56 1 0 33 11.41s 0.30s 1800 12509

dBefore 90 56 1 0 33 18.22s 0.57s 2347 14017

described propagators in the lazy clause generation solver Chuffed (chuffed). We
ran all model with a smallest first search alternating on each restart with activity
based search. We used the benchmarks ubo10, ubo20, ubo50, and ubo100 created
by [15] consisting of 90 instances with 10, 20, 50, and 100 events, respectively.
Since all instances are closed, we constructed the new benchmark ubo200 1

consisting of 90 instances with 200 events in the same way as in [15].
While the main purpose of our experiments is to determine the best form of

explanation for this class of problem, in order to calibrate the learning methods
against other approaches we also ran the method of Neumann and Schwindt [15]
(neu&sch) on a machine running Windows 10 and having a Intel(R) Core(TM)
i5 CPU with 3.2GHz and 4GB memory (since we only have a Windows

1 Available at http://people.eng.unimelb.edu.au/pstuckey/rcpsp/.

http://people.eng.unimelb.edu.au/pstuckey/rcpsp/

Explaining Producer/Consumer Constraints 451

executable). We were unable to obtain an executable of Laborie’s method [12]
to compare with. All runs were limited to 10min.

We compare the following variations of decompositions and global propa-
gators: (dTT) dTT decomposition, (dAfter) dAfter decomposition, (dBefore)
dBefore decomposition, (order) order propagator, (bounds) bounds prop-
agator, (tt) tt propagator, (order+diff) order and diff propagator,
(bounds+diff) bounds and diff propagator, and (tt+diff) tt and diff prop-
agator.

7.1 Results

The results are shown in Table 1, 2 and 3. Each table shows: (#inst) the number
of benchmark instances, (#opt) the number of instances proved optimal in the
time limit, (#sat) the number where a solution was found, but was not proven
optimal in the time limit, (#unk) the number where no solution was found,
(#inf) the number proved unsatisfiable, (m.rt) the mean runtime in seconds,
(m.it) the mean initialization time in seconds, (m.#confl) the mean number of
conflicts, and (m.#nodes) the mean number of nodes. If the solver timed out
for an instance then the number of conflicts (nodes) at that time are counted in
m.#confl (m.#nodes).

Table 3. Results on ubo200

Solver #inst #opt #sat #unk #inf m.rt m.it m.#confl m.#nodes

neu&sch 90 54 10 11 15 148.92s 0.0s

order+diff 90 66 0 0 24 24.67s 0.09s 2056 22454

order 90 53 12 4 21 154.49s 0.09s 6676 29181

bounds+diff 90 60 5 4 21 82.70s 0.05s 75348 245707

bounds 90 61 4 4 21 83.86s 0.05s 75297 242386

tt+diff 90 52 13 4 21 160.49s 0.05s 4498 21846

tt 90 51 14 5 20 166.96s 0.05s 4644 23048

dTT 90 0 0 90 0 — ∞ — —

dAfter 90 52 14 3 21 155.67s 1.61s 4636 24930

dBefore 90 51 15 2 22 172.75s 3.03s 4634 21900

Note that learning was crucial for solving these problems, even on smaller
benchmarks (ubo20) the best method order+diff was unable to solve all prob-
lems within the 10min time limit without learning, whereas with learning all
our methods could easily solve all these problems, and the larger ones (ubo50).

The method of Neumann and Schwindt is not competitive, for the smallest
sizes it can solve most problems, but significantly slower, and it is very poor at
detecting infeasible problems. The order based explanations are clearly domi-
nant in terms of number of conflicts and number of nodes. The difference logic

452 A. Schutt and P.J. Stuckey

propagator, which clearly supports the order based explanations is significantly
advantageous to the point where in Table 3 even though order based search with-
out the difference logic propagator is massively smaller than linear explanation
search, it cannot prove optimality of as many instances.

What is surprising is how effective the decompositions are, at least in terms
of search. Clearly the intermediate literals introduced by the decompositions
are improving the learning. The decompositions are actually better than all
methods other than the order-based globals until size 200 where the size of the
decompositions become disadvantageous. The time decomposition initialization
time grows quickly, to the point that for ubo200 it prevents the method running.

As the size grows the tradeoff of weaker propagation but better runtime
complexity the bounds global propagator (bounds,bounds+diff) over the tt
global propagator (tt,tt+diff) becomes evident. It still cannot compete with
the order propagator, when used in conjunction with globals difference propa-
gation. This may well change with incremental versions of these propagators.

We also examined the 12 hard instances of the benchmark set generated by
Neumann et al. [14] and closed by Laborie [12] using ILOG Scheduler. Table 4
compares with the published results of Neumann et al. [15] and Laborie [12] on a
HP-UX 9000/785 workstation. Note that Laborie only presents the best results
from his nine different heuristics for each instance.

Table 4. Comparison with Neumann et al. [15] and Laborie [12].

Instance Optimal neu&sch Best of laborie order+diff

50 10 92 time out 0.28 s 0.03 s

50 27 96 346.483 s 2.43 s 0.1s

50 82 Unsat 509.161 s 0.05 s 0.03 s

100 6 211 time out 0.97 s 2.3 s

100 12 197 time out 0.72 s 0.88 s

100 20 199 time out 0.46 s 13.6 s

100 30 204 time out 2.11 s 0.85 s

100 41 337 time out 0.62 s 1.62 s

100 43 Unsat time out 7.65 s 0.54 s

100 54 344 time out 0.46 s 6.95 s

100 58 317 time out 0.49 s 0.37 s

100 69 Unsat time out 1.96 s 0.41 s

Clearly order+diff is comparable to the best of Laborie’s 9 method
(although his CPU is somewhat slower). His approaches includes the inference of
new ordering relationships, and specialized search routines that make use of the
information about precedences inferred by the search. ILOG scheduler includes a
component equivalent to the global difference logic propagator, without learning.

Explaining Producer/Consumer Constraints 453

As the combinatorics of these problems grow substantially as the size increases
we are confident that our learning solver would outperform his approach on
larger problems, although perhaps we would need to invest in incremental prop-
agators and inference of precedences to match the well engineered commercial
solver.

8 Conclusion

The producer/consumer constraints is a powerful tool for specifying complex
scheduling problems with renewable and non-renewable resources. In this paper
we have explored what is right approach to solving these problems once we
are using nogood learning. The key language of learning is the ordering literals
bxy used by the order propagator, but with the proviso that we need to use a
global difference logic propagator to see the interaction of the inference between
ordering literals. Surprisingly without the use of the global difference logic prop-
agator, decompositions based on ordering are competitive, since they generates
many intermediate literals which prove to be useful for learning, even if the
models they create are far larger.

There is considerable scope for improving the producer/consumer propaga-
tors with learning. Making the propagators incremental, and extending the order
propagator to create new order inferences are likely to be highly beneficial. Given
the effectiveness of the decompositions, at least in terms of search, it might be
worth investigating a global propagator that supports lazy decomposition [1,2]
where intermediates are made available during search in parts of the global where
many explanations are generated.

Acknowledgments. We thank to Christoph Schwindt for providing us the instance
generator and an executable of the method used in [15]. This work was partially sup-
ported by Asian Office of Aerospace Research and Development grant 15-4016.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Stuckey, P.J.: To
encode or to propagate? The best choice for each constraint in SAT. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)

2. Ab́ıo, I., Stuckey, P.J.: Conflict directed lazy decomposition. In: Milano, M. (ed.)
CP 2012. LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)

3. Barták, R.: Conceptual models for combined planning and scheduling. Electron.
Notes Discr. Math. 4, 1 (2000)

4. Beck, J.C.: Heuristics for scheduling with inventory: dynamic focus via constraint
criticality. J. Sched. 5(1), 43–69 (2002)

5. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
63–79. Springer, Heidelberg (2002)

454 A. Schutt and P.J. Stuckey

6. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint
integer programming approach for resource-constrained project scheduling. In:
Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317.
Springer, Heidelberg (2010)

7. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for
DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–
183. Springer, Heidelberg (2006)

8. Feydy, T., Schutt, A., Stuckey, P.J.: Global difference constraint propagation for
finite domain solvers. In: Antoy, S. (ed.) Proceedings of 10th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming,
pp. 226–235. ACM Press (2008)

9. Horbach, A.: A boolean satisfiability approach to the resource-constrained project
scheduling problem. Ann. Oper. Res. 181(1), 89–107 (2010)

10. Kinable, J.: A reservoir balancing constraint with applications to bike-sharing. In:
Quimper, C.-G., Cavallo, M. (eds.) CPAIOR 2016. LNCS, vol. 9676, pp. 216–228.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-33954-2 16

11. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262–278. Springer,
Heidelberg (2015)

12. Laborie, P.: Algorithms for propagating resource constraints in AI planning and
scheduling: existing approaches and new results. Artif. Intell. 143(2), 151–188
(2003)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZ-
inc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

14. Neumann, K., Zimmermann, J.: Methods for resource-constrained project schedul-
ing with regular and nonregular objective functions and schedule-dependent time
windows. In: Wȩglarz, J. (ed.) Project Scheduling: Recent Models, Algorithms and
Applications, vol. 14, pp. 261–287. Springer, New York (1999)

15. Neumann, K., Schwindt, C.: Project scheduling with inventory constraints. Math.
Methods Oper. Res. 56(3), 513–533 (2002)

16. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

17. Schnell, A., Hartl, R.F.: On the efficient modeling and solution of the multi-mode
resource-constrained project scheduling problem with generalized precedence rela-
tions. OR Spectr. 38(2), 283–303 (2015)

18. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM
Trans.Program. Lang. Syst. 31(1), 2 (2008)

19. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value
for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson,
É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012)

20. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

21. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. J. Sched. 16(3), 273–289 (2013)

22. Simonis, H., Cornelissens, T.: Modelling producer/consumer constraints. In: Mon-
tanari, U., Rossi, F. (eds.) Principles and Practice of Constraint Programming -
CP ’95. LNCS, vol. 976, pp. 449–462. Springer, Heidelberg (1995)

23. Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained
project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9832, pp. 483–492.
Springer, Heidelberg (2016)

http://dx.doi.org/10.1007/978-3-319-33954-2_16

Learning from Learning Solvers

Maxim Shishmarev1(B), Christopher Mears1,2, Guido Tack1,2,
and Maria Garcia de la Banda1,2

1 Faculty of IT, Monash University, Melbourne, Australia
{maxim.shishmarev,chris.mears,guido.tack,

maria.garciadelabanda}@monash.edu
2 Data61/CSIRO, Melbourne, Australia

Abstract. Modern constraint programming solvers incorporate SAT-
style clause learning, where sets of domain restrictions that lead to fail-
ure are recorded as new clausal propagators. While this can yield dra-
matic reductions in search, there are also cases where clause learning does
not improve or even hinders performance. Unfortunately, the reasons for
these differences in behaviour are not well understood in practice. We
aim to cast some light on the practical behaviour of learning solvers by
profiling their execution. In particular, we instrument the learning solver
Chuffed to produce a detailed record of its execution and extend a graph-
ical profiling tool to appropriately display this information. Further, this
profiler enables users to measure the impact of the learnt clauses by
comparing Chuffed’s execution with that of a non-learning solver, and
examining the points at which their behaviours diverge. We show that
analysing a solver’s execution in this way can be useful not only to bet-
ter understand its behaviour — opening what is typically a black box —
but also to infer modifications to the original constraint model that can
improve the performance of both learning and non-learning solvers.

1 Introduction

Lazy Clause Generation (LCG) [5,10] is a powerful solving technique that com-
bines the strengths of Constraint Programming and SAT solving. It works by
instrumenting finite domain propagation to record the reasons for each prop-
agation step, thus creating an implication graph like the ones built by a SAT
solver [7]. This graph is used to derive nogoods (i.e., reasons for failure) which
can be recorded as clausal propagators and propagated efficiently using SAT
technology. The combination of constraint propagation and clause learning can
dramatically reduce search and greatly improve performance.

Indeed, LCG solvers are the state of the art for solving a number of hard
combinatorial optimisation problems, such as Resource Constrained Project
Scheduling Problems [12] and the Carpet Cutting Problem [13]. Further, they
consistently exhibit better performance than traditional Constraint Program-
ming (CP) solvers for a large number of problems in the annual MiniZinc Chal-
lenge [15]. Yet, for some problems, LCG solvers seem to be unable to benefit

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-44953-1 29) contains supplementary material, which is available to
authorized users.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 455–472, 2016.
DOI: 10.1007/978-3-319-44953-1 29

http://dx.doi.org/10.1007/978-3-319-44953-1_29
http://dx.doi.org/10.1007/978-3-319-44953-1_29

456 M. Shishmarev et al.

from the learnt clauses and perform poorly compared to non-learning competi-
tors. The reasons for these differences in behaviour are not well understood in
practice, as learning solvers are even more complex than traditional CP solvers.
Thus, it is not yet clear to the research community under what circumstances
learning is better, or even how to identify when or why a learning solver is
performing poorly or not.

The aim of this paper is to cast some light on the practical behaviour of
learning solvers by being able to better profile their execution. To achieve this, we
instrumented the open-source LCG solver Chuffed [4] to provide statistical data
regarding the clauses it learnt. We then fed this new data into the profiling tool
introduced in [14], which we augmented with additional visualisations to display
and analyse the LCG solving process. The long term aim of our research is to
identify properties of the search that often indicate good or bad performance.
If those properties can be identified, the profiler will be able to automatically
focus the user’s attention on the parts of the search that show those properties
and suggest a reason for the behaviour, considerably simplifying the profiling
task. As shown in Sect. 4, some of the information uncovered by the profiler has
significant potential in this regard.

While using our augmented profiling tools on models where Chuffed achieved
remarkably good performance, we realised that the clauses learnt by the solver
could sometimes be used to modify the model itself, in such a way as to improve
its execution for traditional CP solvers. This insight came from profiling clauses
whose information was either (a) already expressed in the model by a single con-
straint, (b) not as strong as one would have expected, or (c) already captured
by the model but not in an explicit way. Case (a) hints at a lack of appropriate
propagation for a particular constraint in the model. The user might then decide
to change the strength of the propagator (if the solver supports this) or modify
the constraint to achieve better propagation. Case (b) also hints at a lack of
propagation, possibly as part of the interaction between several constraints. The
user might then decide to modify the constraints involved or add a new redun-
dant constraint that achieves the desired propagation. Case (c) might suggest
new information that could be expressed as a generic redundant constraint and
which might increase propagation if added to the model (as it has increased
propagation for the learning solver). While adding redundant constraints to a
model is a well known method to improve performance, it can also have the
opposite effect, depending on whether the redundant constraint helps propaga-
tion or not. Inferring useful, new redundant constraints for a given model is
extremely difficult, and we are not aware of any proposed system or method
capable of doing so. Using learnt clauses to achieve this is therefore an exciting
new approach with significant potential. As shown in Sect. 3, we have already
been able to detect clauses that fit in each of the three cases above, and modified
the models accordingly obtaining considerable reductions in search effort.

2 Background

Constraint Programming: A finite domain constraint problem P is a tuple
(C,D, f), where C is a set of constraints, D a domain which maps each variable

Learning from Learning Solvers 457

x ∈ vars(C) to a finite set of integers D(x), and f an objective function (if any).
The set C is logically interpreted as the conjunction of its elements, while D is
interpreted as ∧x∈vars(C)x ∈ D(x). A literal of P is a unary constraint c where
var(c) ∈ vars(C). A CP solver starts from an original problem P ≡ (C,D) and
applies propagation to reduce domain D to D′ as a fixpoint of all propagators
for C. If D′ is equivalent to false, we say P is failed. If D′ fixes all variables, we
have found a solution to P . Otherwise, the solver splits P into n subproblems
Pi ≡ (C ∧ ci,D′), 1 ≤ i ≤ n where C ∧D′ ⇒ (c1 ∨ c2 ∨ . . .∨ cn) and where ci are
literals (called decision literals), and iteratively searches these.

The search proceeds making decisions until either (1) a solution is found, (2)
a failure is detected, or (3) a restart event occurs. In case (1) the search either
terminates if the model has no objective function, or computes the value of the
objective function f , sets a bound for the next value of f to be better (greater
or smaller, depending on f) and continues the search for this better value. In
case (2), the search usually backtracks to a previous point where a different
decision can be made. In case (3) the search starts a new search tree, possibly
incorporating new constraints learnt during the previous search.

Profiler: We use the functionality available in the profiler of [14], including
its visualisation of the search tree and its tools for convenient navigation and
analysis of the search. For example, Fig. 1 shows a search tree, where green dia-
monds denote solutions, red squares (and the highlighted yellow square) failures,
grey squares nodes that are skipped due to backjumping, blue circles branching
nodes, and white circles either unexplored nodes (in this case skipped due to
a restart) or the root of an execution tree with restarts (as is the case in this
execution). Labels showing the search decisions can be turned on or off for a
given subtree or branch. Of particular interest is the capability to visually merge
two search trees obtained by, for example, executing the same problem with

Fig. 1. Search tree for freepizza using Chuffed. The path to the highlighted node is
labeled. (Color figure online)

458 M. Shishmarev et al.

two different solvers. The result is a combined tree, where the parts where the
search is the same are visualised as usual, and those where the searches diverged
are depicted as pentagons that can be expanded to show the divergent trees.
This merging technique is particularly useful in combination with a replaying
technique, where the search decisions used by a given solver when executing a
problem are recorded, and the same decisions are then used to execute the same
problem with a different solver. The merged tree then shows exactly where the
two solvers behave differently in terms of constraint propagation.

Lazy Clause Generation: LCG solvers [5,10] can be seen as Satisfiability
Modulo Theories solvers [9], where constraint propagators play the role of the
theories. They extend CP solvers by instrumenting their propagators to explain
the effect of propagation (i.e., domain changes) in terms of literals. In practice,
these literals are all either equality (x = d for d ∈ D(x)), disequality (x ̸= d)
or inequality (x ≥ d or x ≤ d) literals. An explanation for literal ℓ is S → ℓ,
where S is a set of literals. For example, the explanation for the propagator of
constraint x ̸= y inferring literal y ̸= 5 given literal x = 5 is {x = 5} → y ̸= 5.
Explanations make the reasons behind constraint propagation explicit and can
be used later when a failure occurs. In LCG solvers, each new literal inferred by
a propagator is recorded in a stack in the order it was generated and attached
to its explanation. Decision literals are also added to the stack and marked as
such. This stack is called the implication graph. The decision level for any literal
is the number of decision literals pushed in the stack before it. Thus, it is similar
to the traditional concept of search tree depth in CP.

A nogood N is a set of literals that cannot be extended to a solution. Given
an implication graph, LCG solvers compute a nogood by starting with the direct
cause of the failure, and then eliminating literals by replacing them with their
explanations until only one literal at the current decision level remains. The
result is the 1UIP (First Unique Implication Point, [6]) nogood, and its negation
(¬N) is added as a clausal propagator. The search then backtracks to the deci-
sion level of the second latest literal in the nogood, where it applies the newly
learnt clause. Importantly, if the second latest literal is not from the immediately
preceding decision level, the search performs a backjump, skipping decisions that
were unrelated to the failure.

Example 1. Consider the free pizza problem, where customers can get pizzas
either by paying for them or by using vouchers. Each voucher is represented by
a pair of numbers a/b, indicating the voucher allows customers to get b number
of pizzas for free, as long as they pay for a number of pizzas. In addition, none of
the b pizzas can be more expensive than the a pizzas. Given a customer who has
m such vouchers and wants n pizzas, the aim is to minimise the total price paid
for the n pizzas. The model used in the annual MiniZinc Challenge (denoted as
freepizza) is as follows:
1 int: n; set of int: PIZZA = 1..n; % number of pizzas wanted
2 array[PIZZA] of int: price; % price of each pizza
3 int: m; set of int: VOUCHER = 1..m; % number of vouchers
4 array[VOUCHER] of int: buy; % buy this many to use voucher
5 array[VOUCHER] of int: free; % get this many free
6
7 set of int: ASSIGN = -m .. m; % i -i 0 (pizza free/paid with voucher i or not)
8 array[PIZZA] of var ASSIGN: how;

Learning from Learning Solvers 459

9 array[VOUCHER] of var bool: used;
10
11 constraint forall(v in VOUCHER)
12 (used[v]<->sum(p in PIZZA)(how[p]=-v) >= buy[v]);
13 constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);
14 constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);
15 constraint forall(p1, p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])
16 -> price[p2] <= price[p1]);
17 int: total = sum(price);
18 var 0..total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

The first 5 lines introduce the parameters: lines 1 and 3 introduce n and
m, respectively, line 2 introduces an array for the prices of the pizzas, while
vouchers are introduced via two arrays in lines 4 and 5, where the ith voucher
a/b is represented as buy[i]/free[i]. The next 3 lines define the variables:
line 9 defines an array of vouchers, where used[v] is true iff voucher v was
used. Line 8 defines an array of pizzas, where how[p] has value v if pizza p
was free thanks to voucher v, has value 0 if p was paid for and not used in any
voucher, and has value -v if p was paid for and used to get free pizzas with
voucher v.

Fig. 2. Part of the implication graph for freepizza. Decision literals are double
boxed.

Constraints start in line 11, which states that if voucher v was used (used[v]
holds), then the total number of pizzas bought and assigned to v must be greater
than or equal to the number of pizzas required by it (buy[v]). The constraint
in line 12 states similar information but in the opposite direction: the total
number of pizzas bought and assigned to voucher v must be less than or equal to
used[v]*buy[v]. Together they constrain the total number of pizzas bought
for v to be equal to buy[v], if used. The constraint in line 13 states that the
total number of free pizzas obtained thanks to voucher v must be smaller than
or equal to the number of free pizzas allowed by v if used (used[v]*free[v]).
The last constraint is in line 14 and states that if there are two pizzas p1 and
p2 assigned to the same voucher with p2 being free and p1 being paid for
(given how[p1] < how[p2] and how[p1] = -how[p2]), then the price of
p2 must be lower than or equal to that of p1. Finally, the objective function is
defined as the sum of the prices of the pizzas that are bought. Figure 1 shows

460 M. Shishmarev et al.

a search tree for the execution of the model using Chuffed with the following
input data:

n = 5;
price = [17, 98, 76, 36, 69];
m = 8;
buy = [4, 4, 1, 4, 2, 1, 1, 3];
free = [2, 4, 1, 1, 4, 2, 3, 3];

The third branch of the tree shows a restart after bound 259 has been estab-
lished for the objective. Note that during the MiniZinc compilation process
variable names are modified and, thus, variables how i and used j in the
tree correspond to variables how[i] and used[j] in the model, respec-
tively. Figure 2 shows part of the implication graph used to derive a nogood
after the failure caused by search decision how[3]=-8. The failure set is
{how[3]=-8, used[8]=false}. Since the nogood has two literals belong-
ing to the current decision level (level 4), the last literal is reduced obtain-
ing {how[3] = −8, how[2] ̸= −8, how[5] ̸= −8}. Since this set still has two liter-
als belonging to the current decision level, literal how[5] ̸= −8 is reduced to
obtain {how[3] = −8, how[2] ̸= −8, how[5] ≥ 1}. This reduction process continues
until only one literal remains at the current decision level, yielding the 1UIP
nogood {objective ≤ 259, how[1] ≤ 0, how[2] ̸= −8,how[3]=-8}. This nogood
is negated and added to the search as clause {objective > 259, how[1] > 0,
how[2] = −8, how[3] ̸= −8}, which is interpreted as the disjunction of its liter-
als and prevents the same failure from recurring. After adding the clause, the
search backjumps to level 2, as the nogood has no literal at level 3. This jump
indicates that the decision at level 3 (how[2]=-7) is unrelated to the failure.

3 Exploring the Most Effective Learnt Clauses

The merging and replaying techniques mentioned above are useful when trying to
understand the reasons for the success (or failure) of LCG solvers over traditional
CP solvers. To remove the confounding effect of the different search orders, we
can execute the LCG solver Chuffed first and replay its recorded decisions to
execute the same model and search with Gecode [11], an efficient traditional CP
solver. In general, for most constraints Gecode implements the same or stronger
level of propagation as Chuffed. Therefore, the main differences when replaying
the search in the form indicated above come from the clauses learnt by Chuffed.
These clauses might help Chuffed (a) determine a failure earlier in the search,
and/or (b) backjump further up than the parent node. In both cases, Gecode
might perform extra search and, after merging the trees, those nodes will be
displayed as pentagons by the tree visualisation.

We have modified Chuffed and the profiler to provide and visualise, respec-
tively, extra information that is particularly useful when merging the replayed
execution of an LCG solver by a CP solver. In particular, for each pentagon rep-
resenting a failure node in the LCG execution, we can now compute and display
the learnt clauses that helped to cause this failure. We refer to the number of
pentagons to which a learnt clause contributed as activity, and measure its effec-
tiveness in terms of search reduction, i.e., in terms of the number of nodes that

Learning from Learning Solvers 461

Gecode explores and Chuffed does not thanks to the addition of the clause. Since
several clauses can contribute to a failure, our reduced search measure divides
the total number of nodes by the number of clauses involved.

This information is collated at the end of the execution and shown to the
user in table form (see Table 1 for an example). We used this method to explore
Chuffed’s behaviour on three different problems. As illustrated below, the infor-
mation shown by our tables can lead to insights that result in effective model
transformations.

3.1 First Case Study: freepizza.mzn

The first problem we explored combines the freepizza model from the MiniZ-
inc Challenge 2015 as introduced in Example 1, with the following input data:

n = 10;
price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];
m = 4;
buy = [1, 2, 3, 3];
free = [1, 1, 2, 1];

Table 1. Most effective learnt clauses in freepizza

Rank Activity Reduced search Clause

1 159 3425 how[1] = -1 how[2] = -1 how[3] = -1 how[4] = -1 how[5] = -1

how[1] = -2 how[2] = -2 how[3] = -2 how[4] = -2 how[5] = -2

how[6] ≤ 0 how[6] ≥ 3

2 176 2068 how[7] ≤ 2 how[7] ≥ 4 how[1] ̸= -3 how[1] ≥ -2

3 34 1712 how[4] ̸= 3 how[1] = -3 how[2] = -3 how[3] = -3 how[4] = -3

4 8 1636 how[5] ̸= -3 how[3] ̸= 3

5 8 1636 how[8] ̸= -3 how[3] ̸= 3

6 8 1636 how[9] ̸= -3 how[3] ̸= 3

7 8 1636 how[10] ̸= -3 how[3] ̸= 3

8 143 1489 how[6] ≤ 2 how[6] ≥ 4 how[1] ̸= -3 how[1] ≥ -2

9 25 1404 how[5] ̸= -3 how[4] ̸= 3 how[4] ≤ 2

10 24 1403 how[10] ̸= -3 how[4] ̸= 3

We executed the problem using Chuffed, replayed its search using Gecode,
merged their execution trees and explored the most effective learnt clauses in
terms of reduced search and activity. Table 1 shows the top 10 clauses sorted
by reduced search. We first concentrated on some of the shorter clauses, like
how[5] ̸= −3, how[3] ̸= 3, which is ranked number four and states that pizza 3
cannot be obtained for free with voucher 3 by buying pizza 5 and assigning it
to this voucher. This is a direct consequence of the constraint in line 14 and the
fact that pizza 3 (cost 60) is more expensive than pizza 5 (cost 30). This helped
us understand the longer clauses and realise that some of them were weaker
(and more complex) than they should. Consider, for example, the top clause,
which captures information about the relationship between obtaining pizza 6

462 M. Shishmarev et al.

with vouchers 1 or 2 (as how[6] ≤ 0, how[6] ≥ 3 indicates that how[6] cannot be
1 or 2), and buying pizzas 1, 2, 3, 4, and 5, assigning them to these vouchers. It
is clear by the input data that pizza 6 is more expensive than any other pizza
and, thus, it cannot be obtained for free with any voucher (not just 1 and 2) and
must be paid for. Therefore, the clause should be strengthened by expressing it
as how[6] ≤ 0. It was surprising to realise that this simple fact (and its cousin:
the cheapest pizza cannot be used to obtain any other pizza for free) was not
being learnt by the solver. This interesting insight reinforced the usefulness of
studying the learnt clauses to better understand the information learnt (or not
learnt). While the learnings (how[6] ≤ 0 and how[2] ≥ 0) were instance specific,
the same ideas can be stated in a generic way and used as redundant constraints
in the model:

% the most expensive pizza can never be bought with a voucher
constraint forall(p in PIZZA)

(if forall(o in PIZZA where o != p)(price[p] > price[o])
then how[p] <= 0 else true endif);

% the cheapest pizza can never be used with a voucher
constraint forall(p in PIZZA)

(if forall(o in PIZZA where o != p) (price[p] < price[o])
then how[p] >= 0 else true endif);

where != represents disequality. Of course, these redundant constraints will be
vacuous if there is no single most expensive/cheapest pizza.

Another surprise was the fact that while many of the top clauses (4 to 7)
were direct consequences of a single constraint (the one in line 14), learning
them allowed Chuffed to avoid exploring significant amounts of nodes when
compared to Gecode. We expected Gecode to also avoid exploring them by direct
propagation. This indicated that the constraint was not propagating as strongly
as expected. Upon inspection, it became clear that the how[p1] < how[p2]
part of the constraint could be replaced by how[p2] > 0, indicating p2 is free.
This is clearly stronger information and connects with the way the objective
function is expressed, thus allowing stronger propagation when the objective is
bounded. The modified constraint is:

constraint forall(p1,p2 in PIZZA)((how[p2]>0/\how[p1]= -how[p2])
-> price[p2] <= price[p1]);

To assess the model changes we randomly generated 100 input data files
and measured the solving time using Gecode and Chuffed with fixed search (as
specified in the original model) and with free search. Since we aimed to solve all
instances to completion within a reasonable amount of time (not too easy, not
too difficult) for both solvers, we generated the input data with between 2 to
10 vouchers for Gecode and 6 to 10 for Chuffed, each voucher requiring 1 to 4
pizzas to be paid for and allowing customers to get 1 to 4 pizzas for free. We
also used 9 to 10 pizzas for Gecode with fixed search, 12 to 13 for Gecode with
free search, and 15 to 16 for Chuffed. We excluded from the final results any
problem data file that, for a given solver and search, was solved in under one
second for all models. Thus, we used 74 and 80 data files for Gecode with fixed
and free search, respectively, and 98 and 95 data files for Chuffed.

Learning from Learning Solvers 463

Table 2. Aggregate Results for Free Pizza over a set of random instances (relative)

Models Ratio GeoMean(time) Median(time) GeoMean(fails) Median(fails)

redundant/original 0.4885 0.5497 0.5186 0.5737
final/redundant 0.7746 0.7905 0.9159 0.9368

C
hu

ff
ed

final/original 0.3784 0.4152 0.9368 0.5199

redundant/original 0.0904 0.1250 0.0925 0.1234

Fi
xe
d
Se

ar
ch

final/redundant 0.0569 0.0786 0.0435 0.0461

G
ec
od

e

final/original 0.0051 0.0056 0.0040 0.0042

redundant/original 0.7039 0.7162 0.7625 0.7426
final/redundant 0.8228 0.8070 0.8872 0.8944

C
hu

ff
ed

final/original 0.5791 0.5830 0.6765 0.6876

redundant/original 0.1526 0.1468 0.1493 0.1459

Fr
ee

Se
ar
ch

final/redundant 0.7205 0.7330 0.7991 0.8104

G
ec
od

e

final/original 0.1100 0.1050 0.1193 0.1187

Aggregated results for these data files are shown in Table 2, which compares
the performance of the two solvers in terms of execution time and number of
failures using three models: the original one, the one obtained by adding the
two redundant constraints, and the final one obtained by also modifying the
constraint in line 14 as indicated above. Clearly, our modifications improved
the performance of both solvers (as all numbers are below 1), with the results
being particularly significant for Gecode with fixed search, where the difference
reaches two orders of magnitude. Detailed results are presented in Fig. 3, where
each dot shows the solving time for a given data file using the original and the
final models in the horizontal and vertical axes, respectively. The scatter plots
show that the vast majority of the instances lie below the identity line and, thus,
that our final model consistently performs better than the original one.

3.2 Second Case Study: radiation.mzn

The second problem we explored is the intensity-modulated radiation ther-
apy (IMRT) problem [2], where radiation is given through repeated exposures
of a device that delivers a rectangular field of radiation of uniform intensity. This
rectangular field is shaped using horizontal lead rods positioned at the left and
right of the rectangle, and which can slide laterally to block the radiation. In
each exposure, the rods are moved into a given position, the radiation source
switched on for a specified length of time and then switched off, to move to a new
position. The model we studied is the one used in the MiniZinc Challenge 2015,
where the input data is an m × n matrix Intensity of non-negative integers,
where Intensity[i,j] represents the total amount of exposure that the cell
in row i, column j should receive. The problem is to find a decomposition of
the matrix into a positive linear combination of binary matrices, each with the

464 M. Shishmarev et al.

Fig. 3. Execution time of original and improved pizza models (logarithmic scale)

consecutive-ones property (i.e., all 1 s in any row are consecutive), where the 0 s
represent the part of the row occluded by the rods and the 1 s the part that
exposes radiation. The model is:
1 int: m; % Rows
2 int: n; % Columns
3 set of int: Rows = 1..m;
4 set of int: Columns = 1..n;
5 array[Rows, Columns] of int: Intensity; % Intensity matrix
6 set of int: BTimes = 1..Bt_max;
7 int: Bt_max = max(i in Rows, j in Columns) (Intensity[i,j]);
8 int: Ints_sum = sum(i in Rows, j in Columns) (Intensity[i,j]);
9

10 var 0..Ints_sum: Beamtime; % Total beam-on time
11 var 0..m*n: K; % Number of shape matrices
12 % N[b] is the number of shape matrices with associated beam-on time b
13 array[BTimes] of var 0..m*n: N;
14 % Q[i,j,b] is the number of shape matrices with associated beam-on time
15 % b that expose cell (i,j)
16 array[Rows, Columns, BTimes] of var 0..m*n: Q;
17
18 constraint
19 Beamtime = sum(b in BTimes) (b * N[b])
20 /\
21 K = sum(b in BTimes) (N[b])
22 /\
23 forall(i in Rows, j in Columns)
24 (Intensity[i,j] = sum([b * Q[i,j,b] | b in BTimes]))
25 /\
26 forall(i in Rows, b in BTimes)
27 (upper_bound_on_increments(N[b], [Q[i,j,b] | j in Columns]));

Learning from Learning Solvers 465

28
29 predicate upper_bound_on_increments(var int: N_b, array[int] of var int: L) =
30 N_b >= L[1] + sum([max(L[j] - L[j-1], 0) | j in 2..n]);
31
32 int: obj_min = lb((m*n + 1) * Beamtime + K);
33 int: obj_max = ub((m*n + 1) * Beamtime + K);
34 var obj_min..obj_max: objective = (m*n + 1) * Beamtime + K;

The first 7 lines introduce the parameters of the problem: lines 1 and 2 intro-
ducem and n, respectively, line 5 introduces the intensity matrix, line 7 computes
in Bt max the maximum intensity value in the matrix, and in Ints sum the
sum of all intensity values in the matrix, which is an upper bound to the total
amount of time the radiation beam will have to be on. The next lines introduce
the variables of the problem: line 10 defines the total beamtime Bt max for the
solution, line 11 defines the total number K of binary matrices in the solution
(which has m× n as upper bound), line 13 defines vector N, where variable N[b]
is the number of matrices with the same beamtime b, and line 16 defines array
Q, where variable Q[i,j,b] is the number of binary matrices with beamtime
b that expose cell (i,j) to radiation.

Constraints start on line 19, which states that the total beamtime is the result
of adding the beamtime used for every binary matrix. Line 21 states that the
total number of matrices is the result of adding those used for every beamtime.
Line 23 states that the intensity required by each cell (i,j) in the intensity
matrix must be achieved by the solution, that is, it must be equal to the sum of
beamtimes for each of the binary matrices that expose that cell. Finally, line 26
states the consecutive-ones property of the binary matrices by ensuring that
for every beamtime b and every row i of Q[i,j,b], the number of times the
intensity increases from a column j-1 to the next j, is equal or less than the
number of binary matrices with that beamtime N[b].

Table 3 shows the 5 most effective learnt clauses obtained by executing the
radiation model with the following input:

m = 9; n = 9; % rows and columns
Intensity = [| 4, 8, 11, 2, 5, 7, 1, 10, 4 |

11, 4, 4, 5, 1, 8, 9, 3, 9 |
2, 9, 6, 2, 4, 1, 5, 2, 6 |

11, 9, 8, 9, 3, 2, 11, 6, 7 |
2, 8, 11, 2, 10, 5, 5, 4, 5 |
5, 9, 8, 1, 6, 3, 5, 11, 5 |
...
7, 1, 6, 10, 0, 8, 1, 0, 0 |];

The top clause in Table 3 states that there should be a matrix that exposes
cell [2,4] for a beamtime of 1, 3 or 5. This is because the input data requires the
amount of radiation received by cell [2,4] to add up to exactly 5 units, which
is an odd number. Thus, there needs to be at least one matrix with an odd
beamtime. In particular, for 5 this requires a matrix with beamtime 1, 3, or
5, with anything longer than 5 resulting in the overexposure of the cell. This
observation can be expressed in the model as follows:

466 M. Shishmarev et al.

Table 3. Most effective learnt clauses in radiation

Rank Activity Reduced search Clause

1 3 378 Q2,4,1≥1 Q2,4,5≥1 Q2,4,3≥1

2 3 378 Q2,6,1≥2 Q2,6,1≤0 Q2,6,7≥1 Q2,6,8≥1 Q2,6,5≥1

Q2,6,2≥4 Q2,6,4≥2 Q2,6,3≥1

3 3 378 Q2,1,1≥1 Q2,1,5≥1 Q2,1,3≥1 Q2,1,9≥1 Q2,1,10≥1

Q2,1,11≥1 Q2,1,8≥1 Q2,1,7≥1 Q2,1,3≥2

4 2 315 Q2,9,2≤0 Q2,9,3≥1 Q2,9,4≥2 Q2,9,5≥1

Q2,9,6≥1 Q2,9,7≥1 Q2,9,8≥1 Q2,9,9≥1

(Q2,9,2 - Q2,8,2) ≥ 1 (Q2,9,1 - Q2,8,1) ≥ 2

5 1 245 Q2,9,4≥1 Q2,9,3≥2 Q2,9,1≥5 Q2,9,7≥1

Q2,9,8≥1 Q2,9,9≥1 Q2,9,6≥1 Q2,9,5≥1

(Q2,9,1 - Q2,8,1)≥2 (Q2,9,2 - Q2,8,2)≥3

(Q2,9,3 - Q2,8,3)≥1

constraint
forall(b in BTimes where b mod 2 = 1)

(forall(i in Rows, j in Columns where Intensity[i, j] = b)
(sum([Q[i,j,k] | k in 1..b where k mod 2 = 1]) > 0));

While adding this constraint reduces the amount of search space explored,
the reduction is small (3.0% measured as median over 20 random instances),
and is outweighed by the cost of propagating the extra constraints resulting in
a 4.6% longer execution. This suggests that Chuffed’s good performance on this
problem is not due to the learnt clauses, but to its conflict analysis (as confirmed
in Sect. 4).

3.3 Third Case Study: Golomb Ruler

A Golomb ruler of size n is a set of n integer marks on an imaginary ruler, such
that no two pairs of marks are the same distance apart. An optimal ruler is one
with minimum length; i.e. the largest mark is to be minimised. The MiniZinc
benchmarks set contains a model for finding such rulers1, with two arrays of
variables, one holding n integer variables (the marks) with domain 0..n2, and
the other holding n(n−1)

2 integer variables (the differences) with domain
1..n2. This model is known to be difficult for learning solvers. Indeed, we find
that Gecode is consistently faster than Chuffed on this model (see “Original
Model” in Table 5). Nonetheless, Chuffed requires fewer failures to solve the
problem and, thus, we decided to examine Chuffed’s behaviour to see if we could
learn something to help improve the model.

The top of Table 4 shows the 5 most effective clauses learnt by Chuffed
while searching for n = 10. All these clauses are of the form mark[i] >= n
& mark[i+1] >= n+1 -> mark[i+2] >= n+3, for some i and n. (Note

1 https://github.com/MiniZinc/minizinc-benchmarks.

https://github.com/MiniZinc/minizinc-benchmarks

Learning from Learning Solvers 467

Table 4. Most effective learnt clauses for Golomb Ruler (before and after the first
modification)

esualChcraeSdecudeRytivitcAknaR

1 49 193 mark[6] ≥ 38, mark[5] ≤ 35, mark[4] ≤ 34
2 6 170 mark[5] ≥ 18, mark[4] ≤ 15, mark[3] ≤ 14
3 6 170 mark[5] ≥ 15, mark[4] ≤ 12, mark[3] ≤ 11

O
ri
gi
na
l

4 5 168 mark[5] ≥ 22, mark[4] ≤ 19, mark[3] ≤ 18
5 50 163 mark[6] ≥ 36, mark[5] ≤ 33, mark[4] ≤ 32
1 2 55 mark[6] ≥ 19, mark[4] ≤ 14, mark[3] ≤ 13
2 3 55 mark[6] ≥ 18, mark[4] ≤ 13, mark[3] ≤ 12
3 3 41 (mark[8] - mark[6] ≤ 5), (mark[8] - mark[6] ≥ 7),

M
od

ifi
ed

(mark[10] ≥ 55), (mark[6] ≤ 41),
(mark[10] - mark[8] ≤ 5)

that a clause of the form {A,B,C} can be interpreted as ¬B ∧ ¬C → A.)
This indicates a missing constraint which the solver is effectively rediscovering.
Looking again at the problem, we confirmed it was correct to add the follow-
ing redundant constraint: mark[i] + 3 <= mark[i+2], for all i. Clearly
mark[i+2] is at least one more than mark[i+1], which is at least one more
than mark[i]. Thus, mark[i+2] and mark[i] are at least two apart and, if
so, both intermediate differences must be one, which is forbidden.

We added this redundant constraint to the model, re-executed the mod-
ified model and examined the 5 most effective learnt clauses (see bottom of
Table 4). The first two follow the pattern mark[i] >= n & mark[i+1] >=
n+1 -> mark[i+3] >= n+5. The third illustrates a property of connected
differences: if the difference between mark[i] and mark[j] is e.g. 6, and the
difference between mark[j] and mark[k] is at least 6, then the difference
between mark[i] and mark[k] is at least 6+6+1=13. (The extra one appears
for the same reason as above.) All these clauses refer to the idea that the dis-
tance between two marks that are m positions apart is equal to the sum of the
inner distances, which are all different. As a result, this distance is at least as
large as the sum of the arithmetic sequence of natural numbers, i.e., m(m+1)

2 . In
fact, by following this methodology we rediscovered a redundant constraint for
this problem that was earlier discussed in [3].

The inclusion of this redundant constraint reduces the search effort required
to solve the problem, both in number of nodes and in time (see “Improved
Model” in Table 5). Interestingly, even the non-learning solver Gecode benefited
from the constraint. This demonstrates how, even when learning solvers are not
the strongest for a given problem, we can gain useful insights from examining
their behaviour.

4 Profiling Statistics

In addition to computing and showing the most effective clauses in table form, we
have modified the profiler to compute statistical data based on the information

468 M. Shishmarev et al.

Table 5. Golomb Ruler Results

Original Model Improved Model
Size n Time (s) Number of Failures Time (s) Number of Failures

n = 10 1.99 20,912 1.49 19,343
n = 11 72.36 307,957 54.25 288,071

C
hu
ff
ed

n = 12 616.2 2,329,959 512.63 2,254,206

n = 10 0.74 23,463 0.57 19,928
n = 11 15.81 374,886 12.09 321,419

G
ec
od
e

n = 12 147.00 3,002,474 117.83 2,656,663

provided by the solvers. In particular, for a learnt clause L ≡ {l1, . . . , lm} the
profiler can now display the following information:

– Length: the number m of literals in L.
– Decision level: the decision level at which the failure occurred.
– Total number of variables: the cardinality of the set vars(L). Note that

this is always less than or equal to the length. The number of variables can
be much smaller than the length if variables appear in many literals.

– Literal Block Distance: number of decision levels where literals in L were
inferred. Note that this can never be larger than the decision level for L. This
measure has been shown to be useful in SAT problems [1].

– Backjump destination: the decision level of the node to which the search
backjumped after learning L.

– Backjump distance: the distance between the decision level of the node in
which L was learnt and that of the backjump destination. Note that if it is 1,
the behaviour is similar to traditional CP backtracking.

– Activity: number of times L is involved in inferring failures later in the search.
– Size reduction: number of nodes avoided thanks to L being learnt (both
in terms of the tree that would have been explored by a CP solver and in
terms of backjumped ones). This measure requires a comparison with Gecode’s
execution.

– Generation time: point in time during the search at which L was learnt.

Example 2. The length of the clause {objective > 259, how[1] > 0, how[2] =
−8, how[3] ̸= −8} found in Example 1 is 4, which is equal to its number of vari-
ables. Its decision level is 4, its literal block distance is also 4, its backjump
destination is level 2, and its backjump distance is also 2.

As mentioned before, our aim is to determine whether any of this information
could be used to explain the reasons behind good or bad performance and, thus,
should be highlighted to users as possible markers for such behaviour. Figure 4
provides an example of the plots that display some (due to space limitations) of
this statistical information. Each dot in each square represents a single clause.
There is a scatter plot for each pair of attributes, arranged in a triangular matrix.
The attributes shown are (in order from left to right and top to bottom) time at
which the associated clause was learnt (in microseconds), decision level, back-
jump distance, literal block distance, backjump destination and raw activity.

Learning from Learning Solvers 469

Fig. 4. Profiling plots for the radiation problem with Chuffed using fixed and free
search.

Fig. 5. Profiling plots for cvrp (left) and opd (right).

The plots along the diagonal show kernel density estimates of each attribute.
For example, the plot shown in the fifth row and second column (denoted (5,2))
shows the backjump destination against the decision level, while plot (3,3) shows
the overall distribution of backjump distances.

Let us consider Fig. 4, which shows the statistics obtained for an instance of
the radiation problem model with fixed search (left) and free search (right),
with Chuffed performing much better for the fixed search. Let us compare this
with Fig. 5, which shows the statistics for two instances of the MiniZinc Challenge
problems where Chuffed does not performs well: cvrp (left) and opd (right).
There are a few interesting things to note. First, comparing the (6,1) plots,
there is a relatively high level of activity throughout the entire execution of

470 M. Shishmarev et al.

radiation, while the level of activity in the other two problems is smaller and,
in cvrp, only appears at particular points in time.

From the plots we can also observe the high-level behaviour of the search.
For cvrp and opd the (5,2) plots shows quite a compact diagonal, indicating
that the backjump destination level of most clauses is relatively similar to their
decision level – in other words, the search does not backjump significantly. This
is not the case for radiation, where there is a significant “bulge” below the
diagonal.

The radiation problem on the left exhibits a related phenomenon, visible
in plots (2,2) and (5,5), which show the distribution of decision level and back-
jump destination. In the fixed search, the peaks of these plots are the reverse of
one another, a phenomenon unique among all the instances shown. This indi-
cates that the search backjumps from a deeper level (the peak on the right) to a
shallower level (the peak on the left). Indeed, the search is designed to encourage
this behaviour; it fixes the variables in such a way that after the early “master”
variables have been selected, the problem consists of wholly independent sub-
problems. Whenever one such subproblem fails, all subproblems can be discarded
and the search returns to the master variables. This backjumping caused by

Fig. 6. Golomb ruler original model,
n = 11

conflict analysis is the reason that
Chuffed performs well on this problem,
as suggested in Sect. 3.2. The free search
performs worse because this behaviour
occurs less frequently. The plots of these
statistics confirm that the specified
fixed search is performing as expected.

Finally, Fig. 6 shows the profiling
plot for the Golomb ruler problem
examined in Sect. 3. We observe in the
(3,3) plot that there is no significant
backjumping during the search. This
partially explains why Chuffed is slower
than Gecode, and confirms that any
benefit for the learning solver comes
from the learnt clauses and not from any
improvement to the search behaviour.

From these and other examples we
have already identified some statis-
tical markers of learning behaviour,
including:

– Literal block distance being always close to the decision level: this indicates
that failure explanations are poor and backjumping is likely to be minimal;

– Failure decision level being confined to a narrow range, especially deep in the
tree: this is a clear indication of search making no progress;

– Deep decision levels coupled with low backjump distance and low learnt clause
activity: this strongly suggests poor performance.

Learning from Learning Solvers 471

5 Conclusions

Learning solvers dramatically outperform traditional CP solvers on many prob-
lems, but their behaviour in practice is opaque and hard to understand. We have
instrumented the learning solver Chuffed to give detailed information about its
behaviour, so that it can be better understood. In particular, we have considered
several case studies and shown how profiling leads to a better understanding of
the solver’s behaviour on each problem, and how the profiling information can
lead directly to improvements of the model by either modifying its constraints
or adding new redundant ones. One may argue that redundant constraints such
as those derived in Sect. 3 could just as well be found without any profiling
data. However, the method we show here allows the solver to tell us precisely
the constraints it requires to reach its conclusion, avoiding the “guess and test”
approach to model improvement.

This work prompts further analysis of learning behaviour. In particular, there
is the possibility to include other features of learnt clauses, and to determine
via machine learning techniques specific markers for good or bad performance.
As well as providing feedback to the user, such indicators could be used to
guide heuristics for solvers when performing autonomous search. It would also
be interesting to apply the presented techniques to SMT solvers [9]. Further,
while here we have focused on the statistical analysis of learned clauses, studying
the clause graph structure, as for example in [8], can be insightful as well. The
profiler and the modified versions of Chuffed and Gecode used in this work are
available at http://www.minizinc.org.

Acknowledgements. We thank the anonymous reviewers who pointed to overlooked
related work and provided useful comments. This research was partly sponsored by the
Australian Research Council grant DP140100058.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artifical Intelligence
IJCAI 2009, pp. 399–404 (2009)

2. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: CP and IP approaches to cancer
radiotherapy delivery optimization. Constraints 16(2), 173–194 (2011)

3. Barták, R.: Effective modeling with constraints. In: Seipel, D., Hanus, M., Geske,
U., Bartenstein, O. (eds.) INAP/WLP 2004. LNCS (LNAI), vol. 3392, pp. 149–165.
Springer, Heidelberg (2005)

4. Chu, G.G.: Improving combinatorial optimization. Ph.d. thesis, The University of
Melbourne (2011)

5. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

6. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-
Aided Design ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington,
DC (1996)

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, pp. 530–535. ACM (2001)

http://www.minizinc.org

472 M. Shishmarev et al.

8. Newsham, Z., Lindsay, W., Liang, J.H., Czarnecki, K., Fischmeister, S., Ganesh,
V.: SATGraf: visualizing community structure in boolean SAT instances. In: Heule,
M., Weaver, S. (eds.) Theory and Applications of Satisfiability Testing – SAT 2015.
LNCS, vol. 9340, pp. 62–70. Springer, Heidelberg (2015)

9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

10. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007)

11. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode
(2016). http://www.gecode.org

12. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition
is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–
761. Springer, Heidelberg (2009)

13. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69–84. Springer, Heidelberg (2011)

14. Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M.: Visual search tree
profiling. Constraints 21(1), 77–94 (2016)

15. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008–2013. AI Mag. 35(2), 55–60 (2014)

http://www.gecode.org

On Incremental Core-Guided MaxSAT Solving

Xujie Si1(B), Xin Zhang1, Vasco Manquinho2, Mikoláš Janota3,
Alexey Ignatiev4,5, and Mayur Naik1

1 Georgia Institute of Technology, Atlanta, USA
six@gatech.edu

2 INESC-ID, IST, Universidade de Lisboa, Lisbon, Portugal
3 Microsoft Research, Cambridge, UK

4 LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
5 ISDCT SB RAS, Irkutsk, Russia

Abstract. This paper aims to improve the efficiency of unsat core-
guided MaxSAT solving on a sequence of similar problem instances. In
particular, we consider the case when the sequence is constructed by
adding new hard or soft clauses. Our approach is akin to the well-known
idea of incremental SAT solving. However, we show that there are impor-
tant differences between incremental SAT and incremental MaxSAT,
where a straightforward implementation may lead to a sharp decrease
in performance. We present alternatives that enable to cope with such
issues. The presented algorithm is implemented and evaluated on prac-
tical problems. It solves more instances and yields an average speedup
of 1.8× on previously solvable instances.

1 Introduction

MaxSAT is an optimization variant of the Boolean Satisfiability (SAT) problem.
Recent years have witnessed vast improvements in the performance of MaxSAT
solvers [1,4–6,14,15,24–26]. Emerging applications in a variety of domains pose
large MaxSAT instances comprising tens of millions of clauses to such solvers.

A special but common scenario concerns applications which pose a sequence
of similar large MaxSAT instances. For example, many applications involve a
sequence of small updates to a large instance (e.g., verification via abstraction
refinement [13,28] or user interaction [18]). Alternatively, MaxSAT-based solvers
pose such sequences in order to scale to ever larger instances (e.g., using lazy
[16] or demand-driven [29] methods) or more expressive theories (e.g., MaxSMT
[7] and Markov Logic Networks [17,27]). Instead of solving each instance in the
sequence from scratch, it is desirable to improve the efficiency of MaxSAT solvers
by reusing results computed across invocations on such instances.

In this paper, we focus on an especially common case in which the sequence of
MaxSAT instances is constructed by adding hard or soft clauses. Moreover, the
new clauses are determined by the solution to the previous instance. We target an
unsat core-guided algorithm [12] which forms the basis of many popular MaxSAT
solvers. This algorithm solves a single MaxSAT instance by solving a sequence
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 473–482, 2016.
DOI: 10.1007/978-3-319-44953-1 30

474 X. Si et al.

of SAT instances until the underlying SAT solver finds a satisfying solution.
Each SAT instance is constructed using the unsat cores discovered in previous
SAT instances. Since adding clauses to the current MaxSAT instance does not
invalidate existing unsat cores, a compelling idea to improve the performance of
solving the resulting MaxSAT instance is to reuse the existing unsat cores.

Surprisingly, however, we observe that a naive implementation of this idea
can fail to yield performance benefits or, even worse, sharply curtain them. This
reflects an inherent challenge to making core-guided MaxSAT solving incremen-
tal1: for a MaxSAT instance formed with two disjoint sets of clauses φ and δ,
solving φ followed by φ ∪ δ, rather than solving φ ∪ δ directly, restricts the set
of possible computations. This is because the set of unsat cores of φ is always
a subset of those of φ ∪ δ. Reusing the unsat cores of φ in solving φ ∪ δ can be
detrimental because the MaxSAT algorithm’s performance crucially depends on
the quality of the unsat cores, and the unsat cores learnt from solving φ may be
of poorer quality than those it would learn from solving φ ∪ δ directly.

To address this challenge, we propose a hybrid solving framework that alter-
nates between the incremental algorithm and its non-incremental version. In
each iteration, our framework checks whether the current instance may poten-
tially benefit from reusing the cores learnt on previous instances. If the check
succeeds, it applies the incremental algorithm by reusing such cores. Otherwise,
it discards the cores learnt thus far and applies the non-incremental algorithm.

We implemented our approach in the Open-WBO MaxSAT solver [22] and
evaluated it on 74 sequences generated from diverse applications in verifica-
tion and information retrieval. Together, these sequences contain 669 MaxSAT
instances, with an average of 10 million clauses per instance. Our evaluation
shows that our approach outperforms the baseline approaches significantly: it
yields an average speedup of 1.8× per sequence over the non-incremental app-
roach, and it solves 19 more sequences than the naively-incremental approach.

2 Preliminaries

A propositional formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses where each clause is a disjunction of literals. A literal is either a Boolean
variable xi or its negation ¬xi. A literal xi (¬xi) is valued to true if xi is assigned
to true (false). A literal xi (¬xi) is valued to false if xi is assigned to false (true).
A clause is said to be satisfied if at least one of its literals is valued to true.
If all literals in a clause are valued to false, the clause is said to be unsatisfied.
We refer to CNF formulas as sets of clauses and clauses as sets of literals. For a
CNF φ, the Satisfiability (SAT) problem is defined as finding an assignment to
all variables in φ that satisfies all clauses or determining that such an assignment
does not exist.

1 Some works (e.g., [20]) define “incremental MaxSAT solving” as solving a MaxSAT
instance by using a SAT solver incrementally. In this paper, it denotes solving a
MaxSAT instance by reusing the results of solving another similar MaxSAT instance.

On Incremental Core-Guided MaxSAT Solving 475

The Maximum Satisfiability (MaxSAT) problem is an optimization version
of SAT. Given a CNF formula φ, the goal is to find a total assignment that min-
imizes the number of unsatisfied clauses. In partial MaxSAT, the CNF formula
φ = φS ∪ φH contains a set of soft clauses φS and a set of hard clauses φH .
The goal is to find an assignment such that all hard clauses are satisfied while
minimizing the number of unsatisfied soft clauses. Finally, a weighted clause is
a pair (c, w) where w ∈ N is the cost of not satisfying the clause c. In weighted
partial MaxSAT, the goal is to find a total assignment where all hard clauses
are satisfied, while minimizing the sum of the weights of unsatisfied soft clauses.
In the remainder of the paper, we use MaxSAT to refer to the more general
problem of weighted partial MaxSAT.

Most of the state-of-the-art MaxSAT algorithms rely on successive calls to a
SAT solver. In particular, Core-Guided MaxSAT algorithms have been shown to
be very effective in solving instances that arise from real-world applications [23].
These algorithms take advantage of the ability of SAT solvers to identify unsat-
isfiable subformulas (also known as unsatisfiable cores).

A SAT solver call SAT(φ,A) receives a CNF formula φ and a set of assump-
tions A. The set A defines a set of literals that must be true in the model of φ
returned by the SAT call. A SAT call returns a triple (st, ν, φC) where st denotes
the solver status (SAT or UNSAT). If the call is satisfiable, then ν contains a
model of φ. Otherwise, φC ⊆ φ contains a core: an unsatisfiable subformula of φ.
Note that a SAT call can return UNSAT, even when φ is satisfiable. This occurs
when there is no model of φ such that all assumption literals in A can be set to
true. In this case, φC contains clauses from φ as well as literals from A.

3 Sequential Maximum Satisfiability

We define the sequential MaxSAT problem as the problem of solving a sequence
of n MaxSAT formulas φ1,φ2, . . . ,φn, with φk ⊆ φk+1. This problem arises in
many applications [7,16,18,28], where a sequence of MaxSAT instances are to be
solved. In most cases, the k-th MaxSAT instance φk is generated by incrementally
modifying the previous instance φk−1, based on the solution of φk−1.

A straightforward solution to the sequential MaxSAT problem is to use
any off-the-shelf MaxSAT solver to independently solve each MaxSAT instance
φk (1 ≤ k ≤ n). This is the approach currently used in most applications
[7,16,18,28]. However, this does not enable reusing information obtained from
solving a given formula in solving the subsequent formulas.

This section is organized as follows. Section 3.1 reviews the Fu&Malik
algorithm for MaxSAT with incremental SAT—previously published in [20].
Sections 3.2 and 3.3 form the core contribution of the paper: Sect. 3.2 shows how
to generalize Fu&Malik to solve sequential MaxSAT and Sect. 3.3 introduces
restarts to cope with performance issues in the introduced algorithm.

476 X. Si et al.

Algorithm 1. Fu-Malik Algorithm with Incremental SAT [20]
Input: φ = φH ∪ φS

Output: optimal solution to φ
1 φW ← φH ∪ {c∪{blockingVar(c)} | c ∈ φS} // fresh blocking variables
2 A ← {¬blockingVar(c) | c ∈ φS} // enable all soft clauses
3 while true do
4 (st, ν,φC) ← SAT(φW ,A)
5 if st = SAT then return ν // optimal solution to φ
6 VR ← ∅
7 mC = min{weight(c) | c ∈ φC ∧ soft(c)}
8 foreach c ∈ φC ∧ soft(c) do
9 VR ← VR ∪ {r} // r is a fresh relaxation variable

10 cr ← (c \ {blockingVar(c)}) ∪ {r} ∪ {br} // br is a fresh variable
11 A ← A ∪ {¬br} // enable cr
12 φW ← φW ∪ {cr}
13 weight(cr) ← mC

14 if weight(c) > mC then weight(c) ← weight(c) − mC

15 else A ← (A \ {¬blockingVar(c)}) ∪ {blockingVar(c)} // disable c

16 φW ← φW ∪ {CNF(
∑

r∈VR
r ≤ 1)}

3.1 Background: Fu&Malik MaxSAT Algorithm

The Fu&Malik algorithm [12] was initially proposed in 2006 and later extended
to weighted MaxSAT [3,19]. More recently, a new version was proposed where the
SAT solver is not rebuilt in each iteration, thus allowing the reuse of knowledge
learnt by the SAT solver in previous iterations. Hence, the SAT solver is used
incrementally for a single MaxSAT instance. Later we will extend this to use the
whole MaxSAT solver incrementally, i.e. for multiple MaxSAT instances.

Algorithm 1 reviews the pseudo-code of Fu&Malik for solving weighted
partial MaxSAT using SAT incrementally [20]. The working formula φW is ini-
tialized to all hard clauses with all soft clauses extended with a fresh block-
ing variable. Negations of the blocking variables are added to the assumptions
A, thus enabling the original soft clauses (lines 1–2). When a soft clause c is
extended with a blocking variable b to form (c ∨ b), then adding ¬b to the
assumptions effectively enables c since the SAT solver must necessarily sat-
isfy c. Conversely, adding b to the assumptions disables c since (c∨ b) is trivially
satisfied.

Each iteration issues a SAT call on line 4. If the working formula is satisfiable,
the optimal solution was found. Otherwise, φC is an unsatisfiable subformula
(core). In this case, for each soft clause c in φC , a new relaxed clause cr is created
from c with two additional variables (a relaxation and a blocking variable). If
the clause is enabled through the blocking variable, then the relaxation variable
represents if the original clause is satisfied (or not) in the MaxSAT solution.

On line 7, the weight of the core mC is the minimum weight of all soft clauses
in φC . Soft clauses c ∈ φC with weight equal to mC are disabled (line 15) and

On Incremental Core-Guided MaxSAT Solving 477

replaced with their relaxation cr. Soft clauses c ∈ φC with weight larger than
mC are not removed. Their weight is decreased by mC , thus resulting in a clause
split, since the original weight is divided between c and its relaxation cr.

Finally, note that since the working formula is always expanded, the SAT
solver is never rebuilt and its internal state is kept (including the learnt clauses).

3.2 Our Approach: Solving Sequential MaxSAT Incrementally

In this section we propose how to solve a sequential MaxSAT problem incremen-
tally. Consider a sequence of MaxSAT formulas φ1,φ2, . . . ,φn, with φk ⊆ φk+1.

We apply Algorithm 1 to φ1 and then extend the resulting working formula
φW with hard clauses from φ2

H \φ1
H , and, soft clauses from φ2

S \φ1
S each extended

with a fresh blocking variable. Then resume the main loop of Algorithm 1 (from
line 3). This process is analogously repeated for the upcoming formulas in the
sequence. More precisely, each time φW becomes satisfiable, the clauses φk+1

H \
φk
H , and φk+1

S \ φk
S are added to φW , where the soft clauses are adorned with a

fresh blocking variable, which is in turn reflected in the assumptions. Then go
to line 3.

As such, it is not necessary to restart the search from scratch for each formula
in the sequence. This approach is correct because the addition of new soft or
hard clauses does not invalidate any of the previously found cores. Note that the
approach is incremental at two levels: it uses the SAT solver incrementally for
each instance but also is incremental across the sequence of instances.

3.3 Extending Sequential MaxSAT Solving with Restarts

Consider a sequence of MaxSAT instances φ1, . . . ,φn where φi ⊆ φ j for 1 ≤
i < j ≤ n. When solving φi first, the incremental Fu&Malik has a “narrower
perspective” than the non-incremental Fu&Malik applied directly on φj . More
specifically, the set of possible cores in φi is always a subset of the possible
cores in φj . Consequently, the incremental version may end up finding a core of
poorer quality than the non-incremental version. Finding a core of poor quality
is often detrimental to the rest of the computation. This is especially true for
the weighted Fu&Malik, which splits clauses based on the minimum weight of
the found core. This is illustrated by Example 1.

Example 1. Consider an n ∈ N, weights w1 < w2 ∈ N, and the core C[w1, w2] =
{(w2,¬ai) | i ∈ 1..n}∪{(w1, b ∨

∨
i∈1..n ai), (w2,¬b)}. Once found, this core is

conceptually split into the sets of clauses C[w1, w1] and C[0, w2 − w1], where
the first set is relaxed. This creates n+ 1 new clauses and relaxation variables,
incurring thus cost on further computation. If the next iteration adds the hard
clause (b), then the MaxSAT solver can use the simpler core {(b), (w2,¬b)} with-
out encountering the large core above.

Here we propose a solution to the above-outlined issue, which is to restart
the whole computation once we suspect that the incremental version is finding

478 X. Si et al.

cores of poor quality. We say that a given soft clause c ∈ φC is split if its weight
is larger than the weight of the unsatisfiable core (mC). If a clause c is split,
it means that an unsatisfiable core with other soft clauses with smaller weights
was found. In our solver, we maintain a split counter for every soft clause in the
formula and define a split limit. When the split limit is reached for some soft
clause, the solver is rebuilt and Algorithm 1 is restarted. In order to maintain
completeness, the solver restarts at most once for each MaxSAT formula φi in
the sequential MaxSAT instance.

4 Empirical Evaluation

We evaluate our technique on sequential MaxSAT problems generated from three
applications: abstraction refinement, user-guided analysis, and statistical rela-
tional inference. Abstraction refinement [28] tackles a central problem in software
verification: finding a program abstraction that only tracks information relevant
to proving assertions of interest. It solves a sequence of MaxSAT instances to
construct such an abstraction. User-guided analysis [18] iteratively incorporates
user feedback in software analysis tools to eliminate false alarms. In each iter-
ation, it solves a MaxSAT instance to infer the most likely set of true alarms
based on the current feedback. Statistical relational inference [16] enables a wide
range of information retrieval tasks by solving a system of weighted first-order
constraints over a relational database. It scales to large database instances by
lazily solving a sequence of progressively growing MaxSAT instances.

We implemented our technique in the Open-WBO [22] MaxSAT solver. All
experiments were done on a Linux machine with a 3.0GHz processor. We limited
each MaxSAT solver invocation to 32 GB RAM and 30min of CPU time.

We compare our incremental algorithm with restarts to two baselines: the
non-incremental and the incremental-without-restarts algorithms. The former is
the original Open-WBO solver while the latter is obtained by disabling restarts
in our solver. To evaluate the effect of different split limits, we use the split limits
2, 5, 10, and 15. We generated the sequential MaxSAT instances by running the
applications with both our solver (using split limit of 5) and the non-incremental
solver until the application terminates or any MaxSAT invocation exceeds one
hour. Since the solutions returned by the MaxSAT solver may affect the sequence
of MaxSAT instances generated by the applications, we used both the solvers
to reduce the bias introduced by a particular solver in the instance generation.
Following this recipe, we obtained 74 sequential MaxSAT problems comprising
669 MaxSAT instances. The number of clauses in each MaxSAT instance ranges
from two thousand to 150 million, with 10 million being the average.

The cactus plot in Fig. 1(a) shows the number of sequential MaxSAT
instances solved by our approaches and the baseline approaches within given
CPU times. As the plot shows, our incremental algorithm with 5 as the split
limit solves the most instances.

Moreover, on the instances that can be solved by both approaches, our app-
roach with 5 as the split limit yields an average speedup of 1.8× over the non-
incremental approach. On certain instances, the benefit is as high as 4.7×.

On Incremental Core-Guided MaxSAT Solving 479

Fig. 1. Performance of our approaches and baseline approaches on (a) sequential
MaxSAT problems and (b) each individual MaxSAT instance in the sequences.

The scatter plot in Fig. 1(b) further compares the time consumed by both
approaches on each individual MaxSAT instance. As the plot shows, the speedup
can be as high as 296× on certain instances. This shows that our approach effec-
tively improves the overall performance by reusing computation across similar
MaxSAT instances in the same sequence.

We also observe that the incremental algorithm without restarts performs
significantly worse compared to other approaches. This justifies the need for
restarts in incremental MaxSAT solving: naively reusing cores computed from
previous smaller instances can severely impede the solver’s performance on the
current instance. On the other hand, our approach effectively avoids this problem
by restarting the solving process when it observes any clause being split too often.

We further observe that using a split limit that is too high (e.g., 10 or 15) or
too low (e.g., 2) adversely affects the performance of the incremental algorithm.
When the cores learnt from previous smaller MaxSAT instances are unsuitable
for the current MaxSAT instance, a too high split limit can either fail to trigger
the restart or only triggers the restart after the algorithm has spent significant
time running with these cores. On the other hand, using a too low limit can trig-
ger the restart too often, making the algorithm fall back to its non-incremental
version. While finding an adequate restart condition is an interesting research
direction, using 5 as the split limit yields the best overall performance on the
evaluated instances.

480 X. Si et al.

5 Discussion and Future Work

Incrementality and restarts are well established in SAT solving [10,11], so a nat-
ural question is why they do not directly translate to MaxSAT. Adding new
clauses to a SAT solver does not invalidate existing learnt clauses just as new
clauses do not invalidate existing cores in a MaxSAT solver. Yet, core reuse leads
to a decline in performance in MaxSAT (see Sect. 4). This reveals the inherent
issue of computing cores of poor quality when solving the smaller instance (see
Example 1). In SAT, poor quality clauses from previous computations are even-
tually deleted. In MaxSAT, poor quality cores can be detrimental to the rest of
the computation. This is especially true for the weighted Fu&Malik algorithm,
which creates new clauses by splitting [19]. Bad quality cores are also known to
arise in the standard formulation of weighted MaxSAT. There are approaches to
resolve the issue, namely stratification [2] and formula partitioning [21], which
iteratively consider subformulas of the original formula. Note that the same ideas
cannot be easily adapted to our setting since the complete MaxSAT formula in
our case is not available to the algorithm in advance. Also note that although
stratification can be applied to separate MaxSAT instances in the sequence,
many of them are satisfiable, which results in stratification being inefficient in
practice, as also confirmed by our experience.

The proposed approach uses two levels of incrementality at the same time:
(1) it uses incremental SAT calls inside a MaxSAT solver and (2) it makes
MaxSAT calls also incremental. This means that all the information learnt during
the sequential problem solving is kept until the problem is solved completely.
Although the standard way to solve a sequence of MaxSAT instances is to restart
a MaxSAT solver at each iteration while doing incremental SAT calls inside,
alternatively one could consider using incrementality only for the MaxSAT calls
instead. For this, one needs to keep all unsatisfiable cores computed at each
preceding MaxSAT call, relax the corresponding clauses of the formula, and
reconstruct the cardinality constraints.

Observe that the proposed ideas cannot be easily applied to algorithms
that are not core-guided. In the classical SAT-UNSAT, UNSAT-SAT linear
and binary search MaxSAT algorithms, the SAT solver might learn constraints
that are invalid for solving the next MaxSAT formula, so it would have to
be restarted for each MaxSAT formula in the sequence. Also note that the
Fu&Malik algorithm has the drawback of relaxing clauses more than once and
thus introducing many auxiliary variables. Therefore, it is of great interest to
adapt the proposed ideas to more recent MaxSAT algorithms that resolve this
issue (e.g. [1,4–6,8,9,14,15,24–26]). An immediate improvement of the proposed
approach would be to devise more fine-grained restart strategies, that is, selec-
tively keeping certain good cores, instead of completely restarting from scratch.
Finally, it is also interesting to explore incrementality when clauses are not only
added but also deleted.

On Incremental Core-Guided MaxSAT Solving 481

6 Conclusion

This paper explores an incremental approach to core-guided MaxSAT solv-
ing. We begin by extending a core-guided MaxSAT algorithm for sequences of
instances where clauses are gradually added. Experimental evaluation shows that
this approach in fact yields worse performance than applying the MaxSAT solver
on each instance from scratch. This is due to the inherent problem of learning
“bad” information from instances earlier in the sequence. We propose restarts
which enable discarding learnt information if deemed unuseful. Our restart strat-
egy significantly outperforms the non-incremental version.

Acknowledgments. This work was supported by the national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013,
DARPA under agreement #FA8750-15-2-0009, NSF awards #1253867 and #1526270,
and a Facebook Fellowship. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright thereon.

References

1. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: IJCAI (2015)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-Based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 86–101.
Springer, Heidelberg (2012)

3. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp.
427–440. Springer, Heidelberg (2009)

4. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

5. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in MaxSAT. In: IJCAI (2015)

6. Bjorner, N., Narodytska, N.: Maximum satisfiability using cores and correction
sets. In: IJCAI (2015)

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)

8. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer,
Heidelberg (2011)

9. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

12. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

482 X. Si et al.

13. Grigore, R., Yang, H.: Abstraction refinement guided by a learnt probabilistic
model. In: POPL (2016)

14. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: AAAI (2011)

15. Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Pro-
gression in maximum satisfiability. In: ECAI (2014)

16. Mangal, R., Zhang, X., Kamath, A., Nori, A.V., Naik, M.: Scaling relational infer-
ence using proofs and refutations. In: AAAI (2016)

17. Mangal, R., Zhang, X., Nori, A.V., Naik, M.: Volt: a lazy grounding frame-
work for solving very large MaxSAT instances. In: Heule, M., et al. (eds.) SAT
2015. LNCS, vol. 9340, pp. 299–306. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24318-4 22

18. Mangal, R., Zhang, X., Nori, A.V., Naik, M.: A user-guided approach to program
analysis. In: FSE (2015)

19. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

20. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp.
531–548. Springer, Heidelberg (2014)

21. Martins, R., Manquinho, V.M., Lynce, I.: On partitioning for maximum satisfia-
bility. In: ECAI 2012 (2012)

22. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Heidelberg (2014)

23. MaxSAT evaluations. http://www.maxsat.udl.cat/
24. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-

nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Heidelberg (2014)

25. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

26. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: AAAI (2014)

27. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

28. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in Datalog. In: PLDI (2014)

29. Zhang, X., Mangal, R., Nori, A.V., Naik, M.: Query-guided maximum satisfiability.
In: POPL (2016)

http://dx.doi.org/10.1007/978-3-319-24318-4_22
http://dx.doi.org/10.1007/978-3-319-24318-4_22
http://www.maxsat.udl.cat/

Modelling and Solving Multi-mode
Resource-Constrained Project Scheduling

Ria Szeredi1 and Andreas Schutt1,2(B)

1 The University of Melbourne, Melbourne, Australia
ria.szeredi@student.unimelb.edu.au

2 Decision Sciences, Data61, CSIRO, Canberra, Australia
andreas.schutt@data61.csiro.au

Abstract. The resource-constrained project scheduling problem is a
fundamental scheduling problem which comprises activities, scarce
resources required by activities for their execution, and precedence rela-
tions between activities. The goal is to find an optimal schedule satisfy-
ing the resource and precedence constraints. These scheduling problems
have many applications, ranging from production planning to project
management. One of them concerns multi-modes of activities, in which
each mode represents a different time-resource or resource-resource trade-
off option. In recent years, constraint programming technologies with
nogood learning have pushed the boundaries for exact solution meth-
ods on various resource-constrained scheduling problems, but, surpris-
ingly, have not been applied on multi-mode resource-constrained project
scheduling. In this paper, we investigate different constraint program-
ming models and searches and show the superiority of such technologies
in comparison to the current state of the art. Our best approach solved
all remaining open instances from a well-established benchmark library.

1 Introduction

The multi-mode resource-constrained project scheduling problem (MRCPSP) is
an extension of the well-studied resource-constrained project scheduling problem
(RCPSP), which comprises a set of non-preemptive activities, a set of resources
with a constant capacity over time, and precedence relations between pairs of
activities. For both problems, a start-time schedule for the activities is sought
that respects the precedence relations, does not overload a resource at any
point in time, while minimising the project duration (makespan). The differ-
ences between these problems are that activities can be executed in different
modes and resources can be non-renewable in MRCPSP, while activities have
a single mode and all resources are renewable in RCPSP. Different modes for
an activity model time-resource and resource-resource trade-offs. These schedul-
ing problems are NP-hard and have numerous applications, such as production
planning, manufacturing, chemical processing, and project management [16].

An excellent overview of different and state of the art methods can be found
in [5]. Most exact solution methods for solving MRCPSP are based on integer pro-
gramming using branch-and-bound or branch-and-cut. The best methods were
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 483–492, 2016.
DOI: 10.1007/978-3-319-44953-1 31

484 R. Szeredi and A. Schutt

published in [1,16]. Zhu et al. [16] present an exact branch-and-cut algorithmbased
on integer linear programming (ILP). They apply several pre-processing steps in
order to reduce the number of variables in their models, pre-compute cuts from
resource conflicts and precedence relations. In addition, a dedicated branching rule
is developed for taking the different modes into account. To the best of our knowl-
edge, it is the best exact method so far. Coelho et al. [1] propose a solution app-
roach that decomposes the problem into two sub-problems. The first sub-problem
consists of the assignment of the modes of execution solved by a Boolean Satisfi-
ability (SAT) solver. The second sub-problem considers the fixed modes from the
first sub-problem and solves the remaining problem using a local search method.

Closely related problems to MRCPSP are RCPSP and MRCPSP with gen-
eralised precedence relations (MRCPSP/max). In both cases, the best exact
solution methods are based on constraint programming (CP) technologies incor-
porating nogood learning. For RCPSP, [12,13] present a branch-and-bound app-
roach that is based on lazy clause generation (LCG) [2,7]. LCG is a CP solver
that incorporates, amongst others, conflict analysis, conflict-driven search, and
unit propagation on conjunction of clauses from SAT solvers. Exact solution
approaches based on LCG are the best exact solution methods for various
scheduling and packing problems [4,10,11,13–15].

For MRCPSP/max, [8] recently proposed a branch-and-bound approach for-
mulated as a constraint integer program and implemented in the SCIP frame-
work, which also has nogood learning facilities. In order to solve the problem,
they implemented two new global constraints for generalised precedence rela-
tions and renewable resources, taking the multiple modes of an activity into
account. The latter one is an extension of the global constraint cumulative.
Their method is the best exact solution method for MRCPSP/max.

Surprisingly, no CP technology with nogood learning has been applied to
MRCPSP. This paper addresses this gap and not only shows such a method
outperforms the state of the art in [16], but also discusses different models and
search strategies. In addition, we close all remaining open instances from the
well-established benchmark library PSPLib.

2 MRCPSP Model

MRCPSP consists of a set of non-preemptive activities V = {1, 2, . . . , n}, a set of
precedence relations E ⊆ V ×V , and a set of resources R. The set of resources is
partitioned into the set of renewable resources RR and the set of non-renewable
resources RN . A resource k ∈ R has a discrete resource capacity Rk. An activity i
has a fixed set of modes Mi. For each mode m ∈ Mi, the activity has a discrete
non-negative duration (processing time) pmi and a discrete non-negative resource
requirement rmik for each resource k ∈ R over the planning horizon. The discrete
non-negative start time Si and the mode of execution Mi must be determined
by the solution approach. The planning horizon starts at time period 0.

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 485

Definition 1 (Solution of MRCPSP). A solution of MRCPSP is an assign-
ment of start times Si and modes of executions Mi for each activity i such that
the following constraints hold

∀i ∈ V : 0 ≤ Si ∧ Mi ∈ Mi

∀(i, j) ∈ E : Si + pMi
i ≤ Sj (1)

∀k ∈ RR,∀τ ≥ 0 :
∑

i∈V :Si≤τ<Si+p
Mi
i

rMi
ik ≤ Rk (2)

∀k ∈ RN :
∑

i∈V
rMi
ik ≤ Rk (3)

where constraint (1) ensures the satisfaction of the precedence constraints and
constraints (2–3) respectively guarantee a non-overload of renewable and non-
renewable resources. An optimal solution additionally minimises the project dura-
tion (makespan), i.e., minmaxi∈V (Si + pMi

i).

2.1 Solver Independent Model

For the sake of readability, we present a “simplified” model and the “user-
defined” searches using the solver-independent modelling language MiniZinc [6].

An MRCPSP instance is represented by the following parameters, whose
meaning is given in the comment next to them where the arrays mact and mode
respectively map a mode to its activity and an activity to its set of modes.
set of int : Res ; % Set o f r e s ou r c e s

set of int : Act ; % Set o f a c t i v i t i e s

set of int : Mod; % Set o f modes

array [Res] of int : rcap ; % Resource c a p a c i t y

array [Res] of int : r type ; % Resource t ype (1 : r enewab l e ; 2 : non−r enewab l e)

set of int : RRes = {k | k in Res where rtype [k] = 1} ;

set of int : NRes = {k | k in Res where rtype [k] = 2} ;

array [Mod] of Act : mact ; % Corresponding a c t i v i t y o f a mode

array [Mod] of int : mdur ; % Durat ion o f modes

array [Res ,Mod] of int : mrreq ; % Resource r e qu i r emen t s o f modes

array [Act] of set of Mod: mode = [{m | m in Mod where mact [m] = i } | i in Act

] ; % Set o f modes f o r each a c t i v i t y

array [Act] of set of Act : succ ; % Set o f s u c c e s s o r s

Variables. Three variables are created for each activity i reflecting its start
time start[i], its duration adur[i], and its resource requirements arreq[k,i]
for each resource k. The duration and resource requirements are determined by
the mode of execution. A Boolean variable mrun[m] models whether the mode
m is executed in the final schedule. Lastly, the objective variable is defined as
makespan.
array [Mod] of var bool : mrun ;

array [Act] of var 0 . .UB: s t a r t ;

array [Act] of var int : adur = [l et {var {mdur [m] | m in mode [i] } : x} in x | i

in Act] ;

array [Res , Act] of var int : a r req = array2d (Res , Act , [l et {var {mrreq [k ,m] | m

in mode [i] } : x} in x | k in Res , i in Act]) ;

var 0 . .UB: makespan ;

486 R. Szeredi and A. Schutt

The variables in start and the variable makespan have an initial domain 0..UB
where UB is the initial upper bound on the objective. Unless otherwise stated,
UB is initialised by sum(i in Act)(max([mdur[m] | m in mode[i]]));.

Activities and mode constraints. The duration and resource requirements of
an activity are linked via a set of linear constraints, encapsulated in the first two
constraints below. The last constraint ensures that exactly one mode is executed
for each activity.
constraint fo ra l l (i in Act) (adur [i] = sum(m in mode [i]) (mdur [m] ∗ mrun [m])) ;

constraint fo ra l l (i in Act , k in Res) (ar req [k , i] = sum(m in mode [i]) (mrreq [k ,

m] ∗ mrun [m])) ;

constraint fo ra l l (i in Act) (sum(m in mode [i]) (mrun [m]) = 1) ;

Alternatively, we can create an auxiliary variable mi and replace the first two
constraints above by element constraints (elem) for modelling adur and arreq.
constraint fo ra l l (i in Act) (l et {var mode [i] : mi} in (mrun [mi] = 1 /\ adur [i

] = mdur [mi] /\ f o ra l l (k in Res) (ar req [k , i] = mrreq [k , mi]))) ;

Precedence constraints. The precedence constraints are modelled as usual
using the start time and duration variables.
constraint fo ra l l (i in Act , j in succ [i]) (s t a r t [i] + adur [i] <= s t a r t [j]) ;

Renewable resource constraints. There are two options for modelling renew-
able resources using the global constraint cumulative. The first option (ract) cre-
ates one activity in the cumulative constraint for each activity, in which the
durations and resource requirements are variables.
constraint fo ra l l (k in RRes) (cumulative (s ta r t , adur , [a r req [k , i] | i in Act] ,

rcap [k])) ;

The second option (rmode) creates one activity for each mode, resulting in a
greater number of activities generated in the cumulative constraint, but having
only the resource requirements as variables. These variables can be created as a
variable view on the Boolean variables in mrun.
constraint fo ra l l (k in RRes) (cumulative ([s t a r t [mact [m]] | m in Mod] , mdur , [

mrreq [k ,m] ∗ mrun [m] | m in Mod] , rcap [k])) ;

On the one hand, a cumulative propagator can exploit the knowledge of the
duration-resource-requirement pairing in rmode. On the other hand, it loses the
knowledge that exactly one mode has to be executed. Note that [8] extended
the cumulative propagator for taking multi-modes for activities into account.
However, the considered solvers in this paper do not provide this extension.

Non-renewable resource constraints. Non-renewable resources are simply
modelled by linear constraints. As for the renewable resource constraints, there
are again two options. The first option (nact) models it via the activities using
the variables for the resource requirements,
constraint fo ra l l (k in NRes) (sum(i in Act) (ar req [k , i]) <= rcap [k]) ;

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 487

whereas the second option (nmode) models via the modes using the Boolean
variables mrun.
constraint fo ra l l (k in NRes) (sum(m in Mod) (mrreq [k ,m] ∗ mrun [m]) <= rcap [k]) ;

Pairwise non-overlapping constraints. Pairwise non-overlapping constraints
for activities might speed up the solution process and be advantageous for
learning solvers. These are redundant constraints with respect to the renew-
able resource constraints. Two activities i and j cannot be run concurrently
and are disjunct iff ∀mi ∈ Mi,∀mj ∈ Mj ,∃k ∈ RR : rmi

ik + r
mj

jk > Rk. The next
constraint (disj) ensures that one of such activities is run before the other one.
predicate po s t n o c d i s j (int : i , int : j) = (s t a r t [i] + adur [i] <= s t a r t [j] \/

s t a r t [j] + adur [j] <= s t a r t [i]) ;

Other pairs of activities that might be a disjunct in some modes are modelled
by following half-reified constraints.
predicate post noc mode (int : i , int : j) = f o ra l l (mi in mode [i] , mj in mode [j]

where exists (k in RRes) (mrreq [k , mi] + mrreq [k , mj] > rcap [k])) ((mrun [mi]

/\ mrun [mj]) −> (s t a r t [i] + mdur [mi] <= s t a r t [j] \/ s t a r t [j] + mdur [mj]

<= s t a r t [i])) ;

predicate po s t n o c r r e s (int : i , int : j) = f o ra l l (k in RRes) ((ar req [k , i] +

arreq [k , j] > rcap [k]) −> (s t a r t [i] + adur [i] <= s t a r t [j] \/ s t a r t [j] +

adur [j] <= s t a r t [i])) ;

The predicate post noc mode (nocm) models non-overlapping constraints for
each mode pair, while post noc rres (nocr) only for each renewable resource.

Objective constraints. The objective variable is constrained by the latest end
time of an activity as follows.
constraint makespan = max(i in Act where succ [i]={}) (s t a r t [i] + adur [i]) ;

constraint fo ra l l (i in Act where succ [i]={}) (s t a r t [i] + adur [i] <= makespan) ;

Search strategies. We investigated different search strategies including the
default ones of the considered solvers.
ann : mode s = bool search (mrun , input order , indomain max , complete) ;

ann : s t a r t s = int search (s ta r t , sma l l e s t , indomain min , complete) ;

ann : adur s = int search (adur , sma l l e s t , indomain min , complete) ;

ann : a r r e q s = int search ([a r req [k , i] | k in NRes , i in Act] , sma l l e s t ,

indomain min , complete) ;

ann : modeThenStart = seq search ([mode s , s t a r t s]) ;

ann : arreqThenMode = seq search ([a r r eq s , modes s]) ;

ann : arreqThenStart = seq search ([a r r eq s , s t a r t s]) ;

ann : arreqThenModeThenStart = seq search ([a r r eq s , mode s , s t a r t s]) ;

ann : durThenStart = seq search ([adur s , modes s]) ;

ann : durThenModeThenStart = seq search ([adur s , mode s , s t a r t s]) ;

The search modeThenStart splits the search into two stages. First, it assigns
the mode to each activity and then solves the remaining RCPSP by searching
on the start times. The next three searches arreqThenMode, arreqThenStart
and arreqThenModeThenStart assign the smallest resource requirements of
activities for non-renewable resources first, before continuing the search on the
modes and/or the start times. The last two searches assign the shortest duration
of each activity before assigning the mode and/or the start times. Note that if
a search does not assign all variables, then the solver uses its default search to
assign the remaining variables.

488 R. Szeredi and A. Schutt

3 Experiments

We conducted experiments on the well-studied MRCPSP benchmark set from
the PSPLib available at www.om-db.wi.tum.de/psplib/. The benchmark set con-
tains different test sets, which differ in their characteristics. Except for the test
set j30, all instances are closed. In the remainder of this paper, we concen-
trate on j20 and j30. Instances from these test sets are composed of 20 and
30 activities having between one and three modes, two renewable resources, two
non-renewable resources, and a number of precedence relations.

All experiments were run on machines operating CentOS 6.5 with AMD 6-
Core Opteron 4334 clocking 3.1GHz, and 64GB memory. A runtime limit of
10min was imposed unless otherwise stated. For compiling the MiniZinc model
into the solver-specific FlatZinc format, we used MiniZinc 2.0.13 downloaded
from www.minizinc.org. The following CP solvers were investigated Gecode 4.4.1
(gecode), Opturion CPX 1.0.2 (ocpx), G12/LazyFD (lazyfd), and Chuffed rev.
885 (chuffed) where the last three are LCG solvers.

3.1 Comparison of Models

Section 2.1 presents two ways of modelling renewable resource, non-renewable
resource and pairwise non-overlapping constraints. Since the behaviour of non-
learning and learning solvers can be significantly different, we present the results
for gecode and chuffed as representatives for each kind.

Table 1 shows the results for both solvers using the search modeThenStart in
two parts. Part I shows the different combinations for the renewable (rres) and
non-renewable (nres) resource constraints. For both solvers, the best combination
in terms of number of optimal solutions (#opt), mean runtime in seconds (m.rt.),
and mean number of explored nodes (m.#nodes) is to use the activity represen-
tation (act) for both constraints. Interestingly, chuffed performance drastically
decays when using the mode representation (nmode) for non-renewable resource
constraints, while gecode only worsens slightly. This could indicate that chuffed
misses some propagation. Note that we also run the experiments with both activ-
ity and mode representations, but the runtime increased substantially while the
number of explored nodes did not change significantly.

Part II in Table 1 lists the results when the redundant non-overlapping con-
straints are used. In each setting, it is advantageous to use the redundant con-
straints. The best option is to use constraints for non-overlapping (disj, nocr)
and activity representations (ract, nact), which gives the lowest mean runtimes
for both solvers and the highest number of optimally solved instances in the case
for gecode. Part III shows that using element constraints (elem) for the activity
and mode constraints performs similar to the best option in Part II. For the
remainder, we consider the model in Part III, which performs at best on the test
set j30.

http://www.om-db.wi.tum.de/psplib/
http://www.minizinc.org

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 489

Table 1. Comparison of different models on 554 instances from test set j20.

p
ar
t

rr
es

n
re
s

di
sj

no
cm

no
cr

el
em

chuffed gecode
#opt m.rt. m.#nodes #opt m.rt. m.#nodes

I
ract nact 554 1.36s 21k 469 99s 6615k
ract nmode 525 56.7s 1544k 457 134s 9577k

rmode nact 554 2.41s 40k 464 104s 3509k
rmode nmode 516 61.2s 1421k 435 152s 5444k

II

ract nact ! 554 1.15s 19k 472 98s 6610k
ract nact ! ! 554 2.03s 18k 477 94s 4388k
ract nact ! ! 554 1.15s 13k 478 92s 5495k

II
I

ract nact ! ! ! 554 1.16s 13k 478 92s 5139k

Table 2. Comparison of different search strategies on test set j30.

search chuffed

#opt #feas #unsat #unkn m.rt m.#nodes

modeThenStart 495 57 88 0 60.3 s 615 k

arreqThenMode 488 59 88 5 64.0 s 549 k

arreqThenStart 491 61 88 0 61.7 s 580 k

arreqThenModeThenStart 490 62 88 0 62.4 s 614 k

durThenStart 506 46 88 0 56.3 s 628 k

durThenModeThenStart 506 46 88 0 58.3 s 682 k

3.2 Comparison of Search Strategies

Table 2 presents the outcome of the different searches when the best model (see
previous sub-section) is used. Searches starting with the assignment of dura-
tion variables (durThenStart and durThenModeThenStart) are the quickest
and optimally solve the greatest number of instances. The next best search is
modeThenStart, while the remaining searches, all of which assign the resource
requirement variables for non-renewable resources first, perform worst. Interest-
ingly, searching over mode variables is slightly worse than leaving them out.
For instance, the mean runtime of durThenStart is slightly less than that of
durThenModeThenStart. Similar results for the search strategies were obtained
on the models presented in Table 1 in preliminary experiments. For chuffed, we
also ran each search in combination with chuffed activity based search, in which
chuffed alternates between the two searches at each restart. The results are sim-
ilar, but with the alternating searches more instances were solved to optimality
and the mean runtime and number of nodes were lower.

3.3 Comparison of Solvers

Table 3 shows the results of the different solvers for the best model in combination
with the solver’s default search and the best search. Clearly, the default searches,

490 R. Szeredi and A. Schutt

Table 3. Comparison of the different solvers on the test set j30.

solver search #opt #feas #unsat #unkn m.rt m.#nodes

gecode durThenStart 422 105 40 73 184 s 6056 k

gecode default 385 87 0 168 246 s 6184 k

ocpx durThenStart 468 84 44 44 151 s >52 k

ocpx default 492 58 88 2 113 s >33 k

lazyfd durThenStart 473 78 11 78 166 s n/a

lazyfd default 515 37 88 0 53.1 s n/a

chuffed durThenStart 506 46 88 0 56.3 s 628 k

chuffed default 540 12 88 0 18.6 s 148 k

which are conflict driven, of the nogood learning solvers drastically outperform
the user-defined searches. Note that chuffed default search alternates between a
conflict driven and the user-defined search. As expected, nogood learning solvers
outperform gecode, because their derived nogoods avoid the re-exploration of
similar search sub-trees proven to be infeasible and information retrieved by
the conflict analysis is used to guide the search. The clear winner is chuffed.
The big difference in the performance of the LCG solvers may be surprising
at first, but can be explained by the differences in the cumulative constraints.
All three LCG solvers implement the cumulative constraint using the time-table
propagation from [13], but only lazyfd and chuffed allow for variable durations
and resource requirements as input as described in [9]. In addition, MiniZinc
does not provide an interface for the cumulative constraint of lazyfd. Hence,
the cumulative constraint is mapped into the time-indexed decomposition when
compiling the model for ocpx and lazyfd.

3.4 Comparison to the State of the Art

Zhu et al. [16] present—to the best of our knowledge—the best exact solution
method for MRCPSP. This method is based on Integer Linear Programming
using a branch-and-cut for minimizing the makespan. It is implemented in the
Mixed Integer Programming solver CPLEX 7.5. They run their method on a
Linux machine with 1.8GHz Xeon processor. Within one hour, it could optimally
solve 506 instances out of 552 feasible instances with a mean total runtime
of 393.1 s. The average runtime was 125.25 s for finding the best solution. By
constrast, the best set up of chuffed could optimally solve 540 instances (34
more) within 10min. In addition, the runtimes of chuffed are drastically lower.
Thus, chuffed outperforms the state of the art.

Closed instances. With respect to [5,16], there are 46 open instances in the
test set j30. Within the 10min runtime limit, the presented solver was able to
close 34 of them. In preliminary experiments, we ran chuffed without a runtime

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 491

limit and were able to close all instances. The last instance was closed after 18
hours.

4 Conclusion

We investigated different CP models for solving MRCPSP. To our best knowl-
edge, it is the first published CP model, on which an exact solution method
with nogood learning was applied. The best model uses the activity representa-
tion for modelling the resource constraints via the constraint cumulative and
pairwise non-overlapping constraints for activities that might be in disjunction.
All the considered user-defined searches were inferior to the default search of
the CP solvers. The LCG solver chuffed was the best performing solver, which
also outperformed the state of the art ILP solver [16]. Within 10min, all open
instances were closed except 12. Relaxing the time limit, all remaining open
instances were closed within 18 h.

References

1. Coelho, J., Vanhoucke, M.: The Multi-mode resource-constrained project schedul-
ing problem. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Man-
agement and Scheduling. International Handbooks on Information Systems, vol. 1,
pp. 491–511. Springer, Heidelberg (2015)

2. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent [3], pp.
352–366

3. Gent, I.P. (ed.): Principles and Practice of Constraint Programming - CP 2009.
LNCS, vol. 5732. Springer, Heidelberg (2009)

4. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262–278. Springer,
Heidelberg (2015)

5. Mika, M., Waligóra, G., Wȩglarz, J.: Overview and state of the art. In: Schwindt,
C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling.
International Handbooks on Information Systems, vol. 1, pp. 445–490. Springer,
Heidelberg (2015)

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

7. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

8. Schnell, A., Hartl, R.F.: On the efficient modeling and solution of the multi-mode
resource-constrained project scheduling problem with generalized precedence rela-
tions. OR Spectrum 38(2), 283–303 (2015)

9. Schutt, A.: Improving scheduling by learning. Ph.D. thesis, The University of
Melbourne (2011). http://hdl.handle.net/11343/36701

10. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value
for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson,
É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012)

http://hdl.handle.net/11343/36701

492 R. Szeredi and A. Schutt

11. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer, Heidelberg
(2013)

12. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition
is not as bad as it sounds. In: Gent [3], pp. 746–761

13. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

14. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. J. Sched. 16(3), 273–289 (2012)

15. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69–84. Springer, Heidelberg (2011)

16. Zhu, G., Bard, J.F., Yu, G.: A branch-and-cut procedure for the multimode
resource-constrained project-scheduling problem. INFORMS J. Comput. 18(3),
377–390 (2006)

A Nearly Exact Propagation Algorithm
for Energetic Reasoning in O(n2 logn)

Alexander Tesch(B)

Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany
tesch@zib.de

Abstract. In constraint programming, energetic reasoning constitutes
a powerful start time propagation rule for cumulative scheduling prob-
lems (CuSP). This article first presents an improved time interval check-
ing algorithm that is derived from a polyhedral model. In a second step,
we extend this algorithm to an energetic reasoning propagation algorithm
with time complexity O(n2 log n) where n denotes the number of jobs.
The idea is based on a new sweep line subroutine that efficiently evaluates
energy overloads of each job on the relevant time intervals. In particular,
our algorithm performs energetic reasoning propagations for every job.
In addition, we show that on the vast number of relevant intervals our
approach achieves the maximum possible propagations according to the
energetic reasoning rule.

1 Introduction

The cumulative scheduling problem (CuSP) considers a set of jobs J where each
job j ∈ J is given a processing time pj ∈ ZZ>0, a resource demand dj ∈ ZZ>0 and
a scheduling interval [ej , lj] ⊂ IR. For every job j ∈ J we want to compute start
times sj ∈ [ej , lj − pj] such that at any point in time the resource consumption
of all jobs does not exceed the maximum capacity D ∈ ZZ>0. Equivalently, the
CuSP can be described as the feasibility problem

find s ∈ IRn

such that
∑

j∈J:sj≤t<sj+pj

dj ≤ D ∀t ∈ IR (1)

ej ≤ sj ≤ lj − pj ∀j ∈ J. (2)

Usually, CuSP feasibility tests are subroutines for more specific scheduling prob-
lems such as makespan minimization [8,9]. A CuSP checks if a current subprob-
lem may lead to feasible solution of the main problem. If this is not the case,
the search tree can be pruned.

In order to solve the CuSP the literature proposes domain branching in
combination with specific feasibility and propagation algorithms. The most
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 493–519, 2016.
DOI: 10.1007/978-3-319-44953-1 32

494 A. Tesch

common ones are Time-Tabling [6,9,15], Edge-Finding [7,13], Extended Edge-
Finding [14], Time-Table Edge-Finding [8,11,12], Energetic Reasoning [5] and
Not-First/Not-Last Pruning [10].

This paper focuses on energetic reasoning. Except for the last, energetic rea-
soning dominates all of the stated rules. In practice, however, the weaker but
faster propagation rules are preferred over energetic reasoning due to its high
complexity of O(n3), see Baptiste et al. [5]. Therefore, it is natural to ask for
faster implementations of energetic reasoning. In this context, some approaches
aim to improve the energetic reasoning rule directly or its external conditions.
Berthold, Heinz and Schulz [4] characterize time intervals where energetic rea-
soning cannot detect infeasibility. Such intervals can be neglected in the stan-
dard energetic reasoning algorithm which leads to a reasonable computation
time improvement. Similarly, Derrien et al. [3] sharpen the original character-
ization of relevant time intervals of Baptiste et al. [5] and apply the standard
energetic reasoning algorithm to the reduced set of intervals. Both approaches
are exact, that is they compute the maximum energetic reasoning propagations
for all jobs. Their complexity is O(n3). Recently, Bonifas [2] presents a new
O(n2 log n) algorithm that computes one beneficial job for each relevant inter-
val and propagates energetic reasoning on it. Unlike previous approaches, his
algorithm detects at least one possible energetic reasoning propagation. But in
general, the total number of propagations is O(1). Thus, to ensure propagations
for all jobs his algorithm generally needs to be executed O(n) times which gives
a complexity of O(n3 log n). However, the method seems practically relevant,
if one focuses on one job propagations [2]. The idea of Bonifas’ algorithm is
based on a geometric interpretation of energetic reasoning which leads to upper
envelope computations of piecewise linear functions in the plane.

In this article, we proceed from a related geometric interpretation. In con-
trast to Bonifas [2], we state a different geometric problem which allows us to
compute energetic reasoning propagations for all jobs instead of only one. Hence
our approach yields O(n) more propagations in general. In addition, for each
propagation that is found in [2] our algorithm finds an equal or stronger propa-
gation. The complexity of our algorithm is O(n2 log n) compared to the complete
O(n3 log n) algorithm in [2]. Hence, our algorithm supersedes Bonifas’ algorithm.
Compared to the exact O(n3) approach of Derrien et al. [3], our algorithm does
not provably compute the maximum energetic reasoning propagations. But we
show that our approach yields maximum propagations on the huge majority
of relevant intervals. We give a precise characterization of the corresponding
interval set.

Our paper is organized as follows. In Sect. 2 we introduce the concepts of
energetic reasoning. Section 3 gives an alternative characterization for the set
of relevant time intervals from polyhedral theory. From this, we deduce an
improved interval checking algorithm in Sect. 4. Furthermore, we extended this
algorithm by energetic reasoning propagations in Sect. 5. Its basis forms a sweep
line subroutine that is introduced in Sect. 6. In Sect. 7 we characterize the set of
time intervals where our algorithm performs maximum propagations. Section 8

A Nearly Exact Propagation Algorithm for Energetic Reasoning 495

compares our methods to the current state of the art. Finally, we conclude our
results in Sect. 9.

2 Energetic Reasoning

In the following we introduce the basic concepts of energetic reasoning for CuSP,
see Baptiste et al. [5]. Assume a CuSP instance as introduced in Sect. 1. For each
job j ∈ J define

µj(t1, t2) = min{pj , t2 − t1,max{0, ej + pj − t1},max{0, t2 − lj + pj}} (3)

as the minimum left-/right-shift duration in the time interval [t1, t2] ⊂ IR. More-
over, define the energy overload in the time interval [t1, t2] ⊂ IR as

ω(t1, t2) =
∑

j∈J

dj · µj(t1, t2) − D · (t2 − t1) (4)

which is the slack between the consumed energy and the available energy in a
time interval [t1, t2]. If in any time interval [t1, t2] ⊂ IR the consumed energy
exceeds the available energy, that is ω(t1, t2) > 0, then the CuSP is infeasible.
The time interval of maximum energy overload can be computed inO(n2), see [5].

Besides checking infeasibility, energetic reasoning reduces the variable domain
which consists of scheduling intervals [ej , lj] for all jobs j ∈ J . Assume a job j ∈ J
is left-shifted, that is sj = ej , then

µleft
j (t1, t2) = max{0,min{t2, ej + pj} − max{t1, ej}} (5)

defines the left-shift duration of job j in the interval [t1, t2] ⊂ IR. In addition,

ωj(t1, t2) = ω(t1, t2) + dj · (µleft
j (t1, t2) − µj(t1, t2)) (6)

denotes the overload in the interval [t1, t2] ⊂ IR that occurs if job j ∈ J is left-
shifted. The energetic reasoning propagation rule states: if there is an energy
overload in the interval [t1, t2] ⊂ IR due to left-shifting job j ∈ J , that is
ωj(t1, t2) > 0, then ej is an invalid earliest start time and thus can be delayed.

Theorem 1 (Baptiste et al. [5]). Given a job j ∈ J and a time interval
[t1, t2] ⊂ IR with ωj(t1, t2) > 0 then the earliest start time ej can be updated to

ej = t2 − µj(t1, t2) +
⌈

ω(t1, t2)
dj

⌉
. (7)

Note that the right-shift case is equivalent to the left-shift case by symmetry
at time t = 0, see Derrien et al. [3]. Since there are O(n2) relevant time inter-
vals [5], the standard energetic reasoning algorithm checks Theorem 1 for all
jobs on all relevant time intervals which yields an exact O(n3) energetic reason-
ing propagation algorithm. The currently tightest characterization of the O(n2)
time intervals is given by Derrien et al. [3].

496 A. Tesch

3 The Energetic Reasoning Polyhedron

Derrien et al. [3] characterize a set of relevant intervals that are sufficient for
overload checking. However, they do not state an algorithm that reduces to their
characterization. In this section, we introduce a polyhedral model from which we
derive an alternative characterization for the same set of relevant time intervals.
But our polyhedral model enables us to construct an improved overload checking
algorithm that considers a subset of intervals than the algorithm stated in [3].

First, we model the problem of computing an interval [t1, t2] ⊂ IR of max-
imum overload (4) by a simple linear program. Therefore, let t1, t2 ∈ IR be
continuous variables that represent the interval limits. In addition, the variables
µ̃j ≥ 0 model the piecewise linear expression µj(t1, t2), as given in (3), for all
jobs j ∈ J . Then for any job subset S ⊆ J with S ̸= ∅ define the linear program

max
∑

j∈I

dj · µ̃j − D · (t2 − t1)

µ̃j ≤ pj ∀j ∈ S (8)
µ̃j ≤ t2 − t1 ∀j ∈ S (9)

µ̃j ≤ ej + pj − t1 ∀j ∈ S (10)
µ̃j ≤ t2 − lj + pj ∀j ∈ S (11)

t1 ≤ t2 (12)
µ̃j ≥ 0 ∀j ∈ S (13)

t1, t2 ∈ IR

in |S| + 2 variables. With respect to (4), the objective function maximizes the
energy overload in the variable interval [t1, t2] ⊂ IR, whose maximum energy
is bounded by inequalities (8)–(11) for each variable µ̃j with j ∈ S according
to (3). We define the associated polyhedron of inequalities (8)–(13) by

PS = {(t1, t2, µ̃) ∈ IR|S|+2 | (t1, t2, µ̃) satisfies (8) − (13)} (14)

which we call the energetic Reasoning polyhedron for the job subset S ⊆ J .

Lemma 1. There exists a job subset S ⊆ J such that the maximum overload
ω∗ = maxt1<t2 ω(t1, t2) equals the optimal objective value of the linear program

max
∑

j∈J

dj · µ̃j − D · (t2 − t1), (t1, t2, µ̃) ∈ PS .

Proof. Let (t∗1, t∗2) ∈ IR2 be the time interval of maximum overload and let
S = {j ∈ J | µj(t∗1, t∗2) > 0}. The optimal values µ̃∗

j are attained at the minimum
right hand side of inequalities (8)–(11), that is µ̃∗

j = µj(t∗1, t∗2) for all j ∈ J . ⊓+

A Nearly Exact Propagation Algorithm for Energetic Reasoning 497

In the following we characterize the vertices of PS as they identify intervals of
maximum overload. Without loss of generality, we restrict ourselves to vertices
(t1, t2, µ̃) ∈ PS with µ̃j > 0 for all j ∈ S. Otherwise, if µ̃j = 0 for any j ∈ S
then job j does not contribute to the objective function, so we can equivalently
consider PS′ with S′ = S\{j}. In the following we abbreviate notation and write
Pj = P{j} and Pi,j = P{i,j}.

Lemma 2. Let S ⊆ J be a job subset with S ̸= ∅ and PS ̸= ∅. In addition, let
(t1, t2, µ̃) ∈ PS be a vertex of PS with µ̃j > 0 for all j ∈ S. Then either one of
the following holds:

(i) There is a job j ∈ S such that (t1, t2, µ̃j) is a vertex of Pj.
(ii) There are two distinct jobs i, j ∈ S such that (t1, t2, µ̃i, µ̃j) is the intersection

of one edge of Pi and one edge of Pj and thus a vertex of Pi,j.

In order to determine the time interval of maximum energy overload,
Lemma 2 allows us to restrict to vertices of Pj or Pi,j for dedicated jobs i, j ∈ S
with i ̸= j. Since the vertices of case (i) and (ii) correspond to the intersection of
edges of Pj , or Pi and Pj respectively, Lemma 2 motivates to project the edges
of the polyhedron Pj with j ∈ J to the (t1, t2)-plane. The next lemma gives a
similar geometric interpretation as presented in Artigues et al. [1].

Fig. 1. Two possible shapes of the projected polyhedron Pj (here with lower and upper
bounds for t1 and t2) with mandatory part (left) or without mandatory part (right).

Lemma 3. Given a job j ∈ J and assume the projection of the polyhedron Pj

to the (t1, t2)-plane. The projected line segments of the edges of Pj that contain
a vertex (t1, t2, µ̃j) of Pj with µ̃j > 0 are given by

T1(j) = {(ej , t2) ∈ IR2 | t2 ≥ lj}
T2(j) = {(t1, lj) ∈ IR2 | t1 ≤ ej}
T3(j) = {(t1, t2) ∈ IR2 | t1 + t2 = ej + lj , ej ≤ t1 ≤ min{ej + pj , lj − pj}}
TM
1 (j) = {(lj − pj , t2) ∈ IR2 | lj − pj ≤ t2 ≤ ej + pj}

TM
2 (j) = {(t1, ej + pj) ∈ IR2 | lj − pj ≤ t1 ≤ ej + pj}.

498 A. Tesch

We say job j ∈ J has a mandatory part, if it holds lj − pj < ej + pj . Let
JM = {j ∈ J | lj − pj < ej + pj} denote the set of jobs with mandatory
part. Consider Fig. 1. From Lemma 3 we deduce that for any job j ∈ J the
polyhedron Pj can have two combinatorial types: if j has a mandatory part or
if j has no mandatory part. If job j has a mandatory part then inequality (9)
cuts Pj which yields the additional line segments TM

1 (j) and TM
2 (j). If job j

has no mandatory part inequality (9) is dominated by inequalities (8), (10)
and (11) which implies TM

1 (j) = TM
2 (j) = ∅. Combining Lemmas 2 and 3,

define for any two jobs i, j ∈ J with i ̸= j the line segment intersection points
Tj = {(ej , lj)}, T M

j = {(lj−pj , ej+pj)}, Tij =
(
T1(i) ∪ TM

1 (i)
)
∩

(
T2(j) ∪ TM

2 (j)
)

and T ′
ij =

(
T1(i) ∪ TM

1 (i) ∪ T2(i) ∪ TM
2 (i)

)
∩ T3(j).

Thus, the set of relevant time intervals results as the union

T =
⋃

j∈J

Tj ∪
⋃

j∈JM

T M
j ∪

⋃

i,j∈J:i̸=j

Tij ∪
⋃

i,j∈J:i̸=j

T ′
ij (15)

which forms a set of points in the plane.

Theorem 2. If (t1, t2) ∈ IR2 is a time interval of maximum energy overload
then it holds (t1, t2) ∈ T .

Note that the interval set T is equivalent to the characterization of Derrien
et al. [3]. However, in the next section we derive an improved overload checking
algorithm from this characterization of projected line segments.

4 Dynamic Overload Checking Algorithm

In this section we introduce an improved overload checking algorithm that con-
siders a subset of intervals than the checker presented in [3], see Algorithm 1 in
the appendix. We modify the O(n2) overload checking algorithm of Baptiste et
al. [5]. The basic algorithm iterates over all t1 values of vertical line segments
T1(i) ∪ TM

1 (i) with i ∈ J and over all t2 values of horizontal and diagonal line
segments T2(j)∪ TM

2 (j)∪ T3(j) with j ∈ J . At each pair (t1, t2) we check for an
energy overload ω(t1, t2) > 0 which implies infeasibility (line 9).

While the overload checker of [3] iterates all possible t2 values, our algorithm
uses a dynamic list to store only those t2 values that intersect with the current
vertical t1 line segment. In this context, the following fact is crucial: for any cur-
rent t1 value, there is at most one intersecting segment of either T2(j), TM

2 (j) or
T3(j) for every job j ∈ J , see Fig. 1. For non-decreasing t1 values they appear in
the sequence of either T2(j) → T3(j) → TM

2 (j) or T2(j) → T3(j) depending on
whether it holds j ∈ JM or j ∈ J \ JM . Whenever we traverse the intersection
point (ej , lj) ∈ IR2 of the line segments T2(j) and T3(j) we delete the current
T2(j) line segment and add the T3(j) line segment to the list (lines 13–16). Anal-
ogously, if j ∈ JM and we traverse the intersection point (lj − pj , ej + pj) of the
line segments T3(j) and TM

2 (j) we delete the T3(j) line segment and add the
TM
2 (j) line segment to the list (lines 17–19). Moreover, if we detect a t2 value

A Nearly Exact Propagation Algorithm for Energetic Reasoning 499

Fig. 2. Figure 1 continued: The slack regions between the left-shift polyhedron P ′
j and

Pj (lower left region) and between the right-shift polyhedron P ′′
j and Pj (upper right

region). For each job j ∈ J , energetic reasoning takes effect only on such intervals.

that corresponds to a line segment TM
2 (j) or T3(j) and t1 ≥ ej+pj we delete the

t2 segment from the list because it is not defined according to Lemma 3 (lines
10–12). By construction of the line segments T1(j) and TM

1 (j) it is ensured that
all intersection points are traversed by the algorithm. In particular, insertions
and deletions are always performed at the current list element. Therefore, all
modifications to the original algorithm can be implemented in O(1). The num-
ber of iterated intervals remains O(n2) in general, hence the complexity of our
overload checking algorithm is also O(n2).

Note that the intersection relations
(
T2(i) ∪ TM

2 (i)
)
∩T3(i) of T ′

ij in (15) are
not included in our algorithms since they are symmetric to

(
T1(i) ∪ TM

1 (i)
)

∩
T3(i) at time t = 0. We execute our algorithm also for its symmetric version to
include all relevant intervals.

5 Energetic Reasoning Propagation

In this section, we extend the overload checking algorithm of Sect. 4 by start and
end time propagations based on energetic reasoning, as in (7).

Extension. In principle, finding a left-shift energetic reasoning propagation for
a job j ∈ J corresponds to finding an energy overload restricting to polyhedra
P ′
j and Pi for all i ∈ J \ {j}, where P ′

j emerges from Pj by setting lj = ej + pj .
Analogously for right-shift propagations, where P ′′

j emerges from Pj by setting
ej = lj − pj , see Fig. 2. In order to include all relevant intervals that are implied
by the polyhedra P ′

j and P ′′
j we need to take the extended line segments

T1(j) = {(ej , t2) ∈ IR2 | t2 ≥ t1}, TM
1 (j) = {(lj − pj , t2) ∈ IR2 | lj − pj ≤ t2}

T2(j) = {(t1, lj) ∈ IR2 | t1 ≤ lj}, TM
2 (j) = {(t1, ej + pj) ∈ IR2 | t1 ≤ ej + pj}

of Lemma 3 for all jobs j ∈ J . Now these line segments corresponds to vertical
and horizontal lines that cross the entire interval plane t1 ≤ t2. Therefore, any

500 A. Tesch

dynamic update of our overload checking algorithm of Sect. 4 becomes obsolete
for these line segments. Hence, only the diagonal line segments of T3(j) for each
j ∈ J are dynamically updated. This gives an equivalent but simpler character-
ization of relevant intervals for energetic reasoning, as given in [3]. On the basis
of this characterization, we also get a simple O(n3) energetic reasoning propa-
gation algorithm which is equivalent to [3], see Algorithm 2 in the appendix. In
the following we consider the set T as defined in (15) but using the extended
line segments.

Problem Decomposition. We call an energetic reasoning propagation algo-
rithm exact, if it computes

max
(t1,t2)∈T : ωj(t1,t2)>0

t2 − µj(t1, t2) +
⌈

ω(t1, t2)
dj

⌉
(16)

for all jobs j ∈ J , that is the maximum earliest start time update for all jobs j ∈ J
according to (7). In particular, problem (16) implies two nested subproblems
for each job j ∈ J . First, we have to find intervals (t′1, t′2) ∈ T of positive
energy overload ωj(t′1, t′2) > 0. Second, among such intervals (t′1, t′2) ∈ T with
ωj(t′1, t′2) > 0 we have to determine an interval (t1, t2) ∈ T that yields the
maximum update with respect to (16). Our idea is to decompose (16) and to
compute the maxima of the two incorporated functions

max
(t1,t2)∈T

ωj(t1, t2) (17)

max
(t1,t2)∈T

t2 − µj(t1, t2) +
⌈

ω(t1, t2)
dj

⌉
(18)

for all jobs j ∈ J . If for any job j ∈ J the maxima of functions (17) or (18) are
attained at an interval (t1, t2) ∈ T and it holds ωj(t1, t2) > 0 we update the
earliest start time according to (7).

The approach of Bonifas [2] reversely computes maxj∈J ωj(t1, t2) for each
relevant time interval (t1, t2) ∈ T . If the time interval (t1, t2) ∈ T attains its
maximum at job j ∈ J he updates the earliest start time ej according to (7).
Since one job can dominate on many intervals, his algorithm generally takes
O(n3 log n) to propagate all jobs. In the following we construct an O(n2 log n)
algorithm that propagates all jobs according to (17) and (18). Due to the addi-
tional computation of (18) each propagation is equivalent or stronger than in [2].
Hence, our approach dominates Bonifas’ algorithm with respect to complexity
and propagation strength.

In particular, the computation of (17) yields at least one possible energetic
reasoning propagation for every job. But in general, our approach may not detect
the maximum propagations in one step. Thus, we apply our algorithm until a
fixpoint is reached. To our knowledge it is unknown if the number of fixpoint
iterations for energetic reasoning is polynomially bounded. At least, it is not
strongly polynomial, see Mercier and van Hentenryck [14]. In practice, however,
it rarely takes more than two iterations to reach the fixpoint and mostly the
fixpoints of our approach and exact energetic reasoning are equal.

A Nearly Exact Propagation Algorithm for Energetic Reasoning 501

Geometry. The overload checking algorithm of Sect. 4 first loops over all t1
values and then over all t2 values with (t1, t2) ∈ T while checking for potential
energy overloads ω(t1, t2) > 0. In the following we consider a fixed iteration of
the main t1-loop for a fixed value t1.

According to fixed t1, we reformulate functions (17) and (18) equivalently as

max
(t1,t2)∈T

ω(t1, t2) + dj · (µleft
j (t1, t2) − µj(t1, t2)) (19)

max
(t1,t2)∈T

ω(t1, t2) + dj · (t2 − µj(t1, t2)) (20)

for all jobs j ∈ J by using definition (6) and the fact that we only need the
intervals (t1, t2) ∈ T where the maximum is attained. Now, the values ω(t1, t2)
with (t1, t2) ∈ T form the set of points P = {(t2,ω(t1, t2) ∈ IR2 | (t1, t2) ∈ T }
which are collected during the overload checking algorithm. The remaining two
piecewise linear functions dj · (µleft

j (t1, t2) − µj(t1, t2)) and dj · (t2 − µj(t1, t2))
will be decomposed into a set of line segments Lj in IR2, see Lemmas 4 and 5.

Geometrically in IR2, problems (19) and (20) compute for each job j ∈ J and
each line segment l ∈ Lj the point (t2,ω(t1, t2)) ∈ P in the domain of line l such
that the sum of their function values at t2 is maximal. Since by Lemmas 4 and 5
it holds |Lj | ∈ O(1), we select for each job j ∈ J the maximum value among all
line segments l ∈ Lj . In Sect. 6 we introduce a new sweep line algorithm that
solves this problem in O((|L|+ |P|) · log(|L|+ |P|)), where L =

⋃
j∈J Lj . From

|L| ∈ O(n) and |P| ∈ O(n) it follows that the subproblems (19) and (20) can be
solved in O(n log n), which gives a total running time of O(n2 log n).

Line Segment Decomposition. Lemmas 4 and 5 show how the functions
dj · (µleft

j (t1, t2) − µj(t1, t2)) and dj · (t2 − µj(t1, t2)) can be decomposed into
line segments Lj for all jobs j ∈ J . This applies only to the left-shift case. For
the right-shift case, Lemmas 6 and 7 provide line segment decompositions for
the analogous functions dj · (µright

j (t1, t2)−µj(t1, t2)) and −dj · (t̄1 +µj(t1, t2)).
The simultaneous consideration of left- and right-shift propagations enables us
to compute all interesting propagations in one step, compare Sect. 7 and Algo-
rithm 4. We restrict both cases to their specific interval region where energetic
reasoning propagations may occur, see Fig. 2. For this, define θ1 = max{ej , t1},
θ2 = min{ej+pj , lj−pj}, θ3 = max{ej+pj , lj−pj} and θ4 = min{lj , lj+ej−t1}.

Lemma 4. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =
dj · (µleft

j (t1, t2) − µj(t1, t2)) on the interval [θ1, θ4] decomposes into

f1
j (t2) = dj · (t2 − θ1) , t2 ∈ [θ1, θ2]

f2
j (t2) = dj · (θ2 − θ1) , t2 ∈ [θ2, θ3]

f3
j (t2) = −dj · (t2 − θ4) , t2 ∈ [θ3, θ4].

502 A. Tesch

Lemma 5. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =
dj · (t2 − µj(t1, t2)) on the interval [θ1, θ4] decomposes into the linear functions

f1
j (t2) = dj · t2 , t2 ∈ [θ1, lj − pj]

f2
j (t2) = dj · (lj − pj) , t2 ∈ [lj − pj , θ4].

Lemma 6. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj] the
piecewise linear function fj(t2) = dj · (µright

j (t1, t2) − µj(t1, t2)) on the interval
[θ′,∞) decomposes into the linear function segments

f1
j (t2) = dj · (t2 − θ′) , t2 ∈ [θ′, lj]

f2
j (t2) = dj · (lj − θ′) , t2 ∈ [lj ,∞).

Lemma 7. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj] the
piecewise linear function fj(t2) = −dj · (t̄1 + µj(t1, t2)) is constant on [θ′,∞).

6 Sweep Line Algorithm

In this section we introduce a new sweep line algorithm that solves the geometric
problems (19) and (20) that occur during energetic reasoning. Compared to
Sect. 5, we restate the problem more generally.

Let P be a set of pairwise distinct points in IR2 where each point q ∈ P has
coordinates (xq, yq) ∈ IR2. Additionally, let L be a set of line segments in IR2

where each line segment l ∈ L is given a slope al ∈ IR, an intercept bl ∈ IR and
an interval [xl, xl] ⊂ IR. Thus, each line segment l ∈ L corresponds to the set
of points (x, y) ∈ IR2 that satisfy y = al · x + bl with x ∈ [xl, xl]. For each line
segment l ∈ L we want to compute a point q ∈ P with xq ∈ [xl, xl] that has
maximum y-distance to the line segment l. More formally, we compute

max
q∈P:xq∈[xl,xl]

al · xq + yq + bl (21)

for all line segments l ∈ L. Since bl is constant in this term we reduce to

max
q∈P:xq∈[xl,xl]

al · xq + yq (22)

for all line segments l ∈ L. If there is no q ∈ P with xq ∈ [xl, xl] we assume the
function has value −∞. Our approach is to dualize problem (22) and translate it
from the (x, y)-plane to the (a, y)-plane with respect to the slopes al of the line
segments l ∈ L, see Fig. 3. In this dual setting, each point q ∈ P corresponds
to a line with slope xq and intercept yq that contains all points (a, y) ∈ IR2

with y = xq · a + yq. Moreover, each line segment l ∈ L translates to a point
(al, 0) ∈ IR2. The equivalent dual problem is to compute for each point (al, 0)
with l ∈ L the line q ∈ P with xq ∈ [xl, xl] of maximum value y = xq · al + yq.
The difficulty of the dual problem is to consider for each point (al, 0) ∈ IR2 with

A Nearly Exact Propagation Algorithm for Energetic Reasoning 503

Fig. 3. Primal problem (left): given a set of points (xq, yq) ∈ P and a set of line
segments l ∈ L with slope al. Dual problem (right): converts to a set of lines q ∈ P
with slope xq, intercept yq and a set of evaluation points (al, 0) for all l ∈ L where the
sweep line (dashed) is evaluated. The interval tree B stores the state of the sweep line.

l ∈ L a subset of lines q ∈ P with slopes xq in the range [xl, xl]. Therefore, an
upper envelope computation of all dual lines q ∈ P is not sufficient.

In the following we will stick to the dual setting, that means we consider P
as a set of lines and L as a set of points in IR2. A detailed pseudo-code of the
following algorithms can be found in Algorithms 5–8 in the appendix.

Sweeping (Algorithm 5). The sweep line algorithm sweeps over all points
(al, 0) ∈ IR2 with l ∈ L in non-decreasing order of al. All al values are stored
as evaluation events in a min-heap H. At each point (al, 0) we evaluate func-
tion (22), which can be done efficiently for any interval [xl, xl] by using a binary
interval tree B which stores the current state of the sweep line. While sweeping
over all al values with l ∈ L the state of the sweep line changes, so the interval
tree B must be updated dynamically. Therefore, the heap H additionally stores
resolve events which constitute events where the tree structure must be updated.
New resolve events are added dynamically during the sweep.

The main sweep line algorithm successively extracts the minimum element
from the heap H. If it is an evaluation event, we call the subroutine evaluate
and if it is a resolve event we call the subroutine resolve. The main concepts of
the sweep line algorithm are explained in the following.

Interval Tree (Algorithm 6). Let VB denote the set of nodes of the inter-
val tree B. Each tree node v ∈ VB stores four data members: an interval
[xv, xv] ⊂ IR, a dominating line πv ∈ P, a resolve point αv ∈ IR and a minimum
resolve point βv ∈ IR. The data members αv,βv and πv change dynamically while
sweeping over all al values with l ∈ L. For an initial sweep value a0 ∈ IR the tree
is build up recursively from bottom to top. The leaves of B, from left to right,
correspond to lines q ∈ P sorted by xq first and by yq second in non-decreasing
order. The data members of a leaf node v ∈ VB that is associated with one line
q ∈ P is initialized by [xv, xv] = [xq, xq], πv = q, αv = ∞ and βv = ∞.

504 A. Tesch

Conversely, the data members of a non-leaf node v ∈ VB with child nodes
v.left ∈ VB and v.right ∈ VB are defined recursively as follows. The interval
[xv, xv] = [xv.left, xv.right] spans the intervals of the child nodes of v. Its domi-
nating line πv is equal to the line q ∈ {πv.left,πv.right} that has the higher value
of a0 · xq + yq (lines 15–16). Furthermore, for the dominating lines q = πv.left

and q′ = πv.right the resolve point αv = yq−yq′

xq′ −xq
equals the intersection point of

the lines q and q′, if xq ̸= xq′ . Otherwise, if xq = xq′ set αv = ∞ (lines 18–24).
Finally, let βv = min{αv.left,αv.right,βv.left,βv.right} be the minimum value of
a resolve point of any node in the subtree rooted at v (line 14). If, during the
construction, it holds αv < βv for some v ∈ VB we add a resolve event with value
αv to the heap H (lines 22–23), see also resolve.

Evaluate (Algorithm 7). This subroutine evaluates (22) for a sweep value al
and an interval [xl, xl] with l ∈ L. For this, we descend the interval tree B recur-
sively from the root along nodes v ∈ VB with [xv, xv] ∩ [xl, xl] ̸= ∅. For nodes
v ∈ VB with [xvxv] ⊆ [xl, xl] function (22) can be evaluated in O(1) because
the dominating line πv ∈ P (line 11) yields the maximum value of (22) in the
interval [xv, xv] by construction. Therefore, the recursion descends the tree B
only along the interval limits xl and xl. Hence, one evaluation takes O(log |P|).

Resolve (Algorithm 8). This subroutine resolves a node v ∈ VB at its sweep
value αv. Recall that αv denotes the intersection value of the dominating lines
πv.left, πv.right ∈ P. Since resolving means that πv.right replaces πv.left as domi-
nating line with respect to (22) for all sweep values al > αv we set πv = πv.right.
Additionally, we set αv = ∞ since the lines πv.left and πv.right have no future
intersection because πv.right has the higher slope by construction (lines 1–3).

By its recursive definition, changing the dominating line πv ∈ P may change
the values of αu, βu and πu of all nodes u on the path from v to the root of B.
Thus, we propagate those values along this path (lines 4–18). In particular, αu

is updated only if it was not already resolved, that is αu < ∞. If, after the
propagation, it holds αu < βu for any node u on the path from v to the root of
B then the resolve event at αu is added to the heap H (line 14). This is because
we only add the resolve event at the intersection point αv to the heap H, if αv

does not change due to recursion. Otherwise, if βv ≤ αv then resolving a child
node of v may still affect the recursive value of αv. In this case, we add at most
one resolve event for each tree node which is crucial for the running time of our
algorithm. Since only data members along the path from a node v ∈ VB to the
root of B are changed, one resolve takes O(log |P|).

Theorem 3. The sweep line algorithm runs in O((|L|+ |P|) · log(|L|+ |P|)).

Proof. The interval tree is initialized in O(|P|). The event heap H contains
at most O(|P|) resolve events and O(|L|) evaluation events, so extracting all
elements gives O((|L|+ |P|) · log(|L|+ |P|)). The main loop extracts O(|L|+ |P|)
events from the heap H and each event is either evaluated or resolved, where
each has complexity O(log |P|). Hence, the statement follows. ⊓+

A Nearly Exact Propagation Algorithm for Energetic Reasoning 505

7 Exact Intervals

Finally, we characterize interval subsets Tj ⊆ T for all jobs j ∈ J where our
sweep line propagation algorithm of Sect. 5 is exact. That means, if the interval
(t1, t2) ∈ T yields the maximum earliest start time update (7) for job j ∈ J
and it holds (t1, t2) ∈ Tj then the sweep line propagator finds this propagation.
Therefore, recall the functions

max
(t1,t2)∈T

ω(t1, t2) + dj · (µleft
j (t1, t2) − µj(t1, t2)) (23)

max
(t1,t2)∈T

ω(t1, t2) + dj · (t2 − µj(t1, t2)) (24)

as given in (19) and (20) for fixed value t1 ∈ IR.

Lemma 8. If the slopes of the functions (23) and (24) coincide on an interval
[t2, t2] ⊂ IR then both functions on the interval [t2, t2] attain their maximum at
the same point (t1, t2) ∈ T with t2 ∈ [t2, t2], if the maximum exists.

Lemma 8 implies that the two nested subproblems (23) and (24) of the exact-
ness condition (16) attain their maximum at the same point t2 ∈ [t2, t2], if their
slopes are equal. Thus, only one function of (23) and (24) must be considered.
Since the sweep line algorithm of Sect. 5 computes such maxima, we obtain exact
energetic reasoning propagations on the interval [t2, t2]. This suggests to char-
acterize intervals where the difference dj · (t2 − µleft

j (t1, t2)) of functions (23)
and (24) is constant. Analogously for the right-shift case, we study intervals
where the function µright

j (t1, t2) − 2 · µj(t1, t2) is constant.
Recall Fig. 2 and consider the following subdivision of interval areas

T A
j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , lj], t2 ∈ [lj ,∞)}

T B
j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , θ2], t2 ∈ [ej + pj , θ4]}

T B′

j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , lj − pj], t2 ∈ [max{θ3, θ4}, lj]}
T C
j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , θ2], t2 ∈ [t1, ej + pj]}

where θ1 = max{ej , t1}, θ2 = min{ej + pj , lj − pj}, θ3 = max{ej + pj , lj − pj}
and θ4 = min{lj , lj + ej − t1}.

Lemma 9. For fixed value t1 ∈ [ej , lj] the function µright
j (t1, t2) − 2 · µj(t1, t2)

has slope zero for all t2 ∈ [lj ,∞).

Lemma 10. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

one the interval t2 ∈ [ej + pj , θ4].

Lemma 11. For fixed value t1 ∈ [ej , θ2] the function µright
j (t1, t2)−2 ·µj(t1, t2)

has slope one in the interval [max{θ3, θ4}, lj].

Lemma 12. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

zero in the interval [t1, θ2].

506 A. Tesch

From Lemmas 9 and 12 we deduce that our approach is exact on the interval
sets T A

j and T C
j . Thus, we execute our algorithm also for the symmetric version

of the problem to imply exactness on their symmetric copies T A′

j and T C′

j , see
Fig. 2. In contrast, Lemmas 10 and 11 show that our approach is not exact on
the symmetric interval sets T B

j and T B′

j . But in practice, both sets form only a
minor part of the whole interval region where energetic reasoning is propagated.
Fr our computational results, we implemented two versions. One version omits
the line segments that belong to the non-exact interval regions and the other
includes the slopes of both functions (23) and (24) to enhance our chance to find
the exact propagation, see Algorithm 4.

8 Computational Results

Our algorithms are implemented in C++ using Linux GCC compiler version
4.8.4 on a 3.20 GHz Intel Xeon CPU and 16GB RAM. The test set is taken from
RCPSP instances of the PSPLIB [16] and contains 480 instances of 30 jobs, 480
instances of 60 jobs and 600 instances of 120 jobs.

We implemented the basic overload checker of Derrien et al. [3] (CD) and
our improved dynamic overload checker (CC) of Sect. 4. As energetic reasoning
propagators, we implemented the original O(n3) propagator of Baptiste et al. [5]
(ERB) and a simpler but equivalent version of the O(n3) propagator of Derrien
et al. [3] (ERD), see Algorithm 2. Moreover, we implemented two versions of our
O(n2 log n) sweep line propagator. The full version (SWF) adds all line segments
of the exact and non-exact interval regions, compare Algorithm 4 and Sect. 7. For
the non-exact regions, only lines with the slopes of the corresponding overload
and update function are added. The relaxed version (SWR) considers only line
segments of the exact interval regions. In addition to all algorithms, we apply a
fast time-tabling and precedence propagator [9].

We compute lower bounds by destructive improvement [8]. In order to show
the real performance of the algorithms we first apply the static SetTimes [17]
branching rule. To show the practical performance we also apply a dynamic
branching rule, similar to Schutt et al. [9], which stores a score value for every
job that is increased by one, if fixing this job to its earliest start time leads to a
direct failure, otherwise the score is decreased by one. We select the job with the
highest score value and break ties with the earliest start and latest completion
time. The time limit for each lower bound is 3600 s.

Tables 1 and 2 compare the results of the static and the dynamic branching
rule. The column opt shows the number of optimally solved instances, ∆LB
is the sum of the computed lower bounds normed to the weakest algorithm
and nodes/s is the average number of nodes per second of the optimally solved
instances. Our results show that the precise polyhedral interpretation of the
dynamic overload checker (CC) leads to a speedup of factor two compared to
the checker of Derrien et al. [3]. Due to this gain, the checker performs also very
well as standalone algorithm combined with dynamic branching. We have to

A Nearly Exact Propagation Algorithm for Energetic Reasoning 507

Table 1. Results for the checkers and propagators using static branching.

J30 J60 J120

opt ∆ LB nodes/s opt ∆ LB nodes/s opt ∆ LB nodes/s

CD 375 90 815.16 329 0 253.84 159 0 78.86

CC 382 150 1577.41 330 31 590.97 159 25 198.42

ERB 376 0 36.49 343 31 6.38 167 100 1.27

ERD 386 87 137.14 344 62 21.05 168 128 4.20

SWF 386 52 288.04 343 48 84.01 169 97 29.09

SWR 391 97 456.73 342 80 139.65 169 132 50.85

Table 2. Results for the checkers and propagators using dynamic branching.

J30 J60 J120

opt ∆ LB nodes/s opt ∆ LB nodes/s opt ∆ LB nodes/s

CD 458 48 1065.78 386 168 266.79 211 93 90.21

CC 461 78 1747.14 389 210 596.91 217 196 205.78

ERB 446 0 40.93 369 0 6.58 184 0 1.38

ERD 454 44 137.25 380 71 22.01 197 61 4.70

SWF 455 27 299.33 377 83 80.26 209 136 30.29

SWR 460 52 483.42 387 151 134.84 214 205 53.05

note that the PSPLIB instances are rather cumulative than disjunctive, that is
pure checkers perform very reasonable compared to pure energetic approaches.

Our sweep line propagators also show a very positive performance. In terms
of computation time, full and relaxed sweep line propagation highly dominate
the previous energetic reasoning propagators by a factor up to twelve on large
instances. In terms of propagation power, however, full sweep line propagation
(SWF) is slightly inferior to the propagator of Derrien et al. [3] using static
branching. Using dynamic branching, full sweep line propagation dominates
again. In particular, relaxing the non-exact line segments (SWR) results in a
vast computational speedup where much more propagations are performed in
the same time. The relationship between almost the same propagation power
as exact energetic reasoning and much faster computation time lets the relaxed
sweep line algorithm (SWR) outperform all other energetic reasoning algorithms.

On the 120 job test set, the relaxed sweep line algorithm (SWR) further
improved four best known lower bounds: 103 (34 2), 128 (47 6), 104 (59 5), 88
(60 3) and our dynamic checker (CC) improved six additional best known lower
bounds: 116 (12 6), 218 (36 3), 119 (47 3), 128 (47 10), 124 (53 10), 126 (58 9).
The improvement is +1 for each instance, we compared with [18].

508 A. Tesch

9 Conclusion

In this paper we propose an improved overload checking algorithm and a new
energetic reasoning propagation algorithm for solving the CuSP. Our approaches
are derived from a novel polyhedral interpretation of energetic reasoning. On that
basis, we develop practically efficient algorithms that improve the current state
of the art. Further research may focus on practical refinements of the presented
algorithms and the development of more sophisticated combinatorial methods
from a related polyhedral background.

A Proofs

A.1 Proof of Lemma 2

We first show the following helping lemma.

Lemma 13. Let S ⊆ J be a job subset with S ̸= ∅ and PS ̸= ∅. In addition, let
(t1, t2, µ̃) ∈ PS be a vertex of PS with µ̃j > 0 for all j ∈ S. Then either one of
the following holds:

(i) (t1, t2, µ̃) satisfies three inequalities of (8)–(11) with equality and all of them
correspond to one job j ∈ S

(ii) (t1, t2, µ̃) satisfies four inequalities of (8)–(11) with equality where two cor-
respond to one job i ∈ S and two correspond to one job j ∈ S with i ̸= j.

Proof. We first show that PS has full dimension. Let m = |S| and let δj ∈ IRm

be the j-th unit vector. Furthermore, let 0m, 1m ∈ {0, 1}m be the vectors that
containm zeros or one respectively. Consider the m+2 vectors (−T, T, pj ·δj)j∈S ,
(0, T, 0m) and (T, T, 0m) where T denotes a large constant. We verify that these
vectors are linearly independent and satisfy inequalities (8)–(13). Consequently,
PS contains m+ 2 linearly independent vectors, so it has full dimension m+ 2.

It follows that the vertex (t1, t2, µ̃) ∈ PS satisfiesm+2 inequalities of (8)–(13)
with equality. If it satisfies inequality (12) or (13) with equality it holds µ̃j = 0 for
some j ∈ S which contradicts the assumption. Hence, we can restrict to inequal-
ities (8)–(11) which yields the reduced constraint matrix A ∈ {0, 1}4·m×m+2 of
the form

A =

⎛

⎜⎜⎝

0m 0m Im
1m −1m Im
1m 0m Im
0m −1m Im

⎞

⎟⎟⎠

(8)
(9)
(10)
(11)

where the first two columns of A correspond to variables t1, t2 and the last m
columns correspond to variables µ̃j with j ∈ S. Here, Im ∈ {0, 1}m×m equals
the m × m identity matrix.

Thus, the vertex (t1, t2, µ̃) ∈ PS corresponds to a selection of m+ 2 linearly
independent rows of A whose associated submatrix we denote by AB . Since every

A Nearly Exact Propagation Algorithm for Energetic Reasoning 509

column of AB must contain at least one non-zero entry and each row of A has
exactly one non-zero coefficient for some variable µ̃j it follows that AB contains
m rows with non-zero entries for each variable µ̃j with j ∈ S. The remaining
two rows of AB either have a non-zero entry for one job j ∈ S or for two distinct
jobs i, j ∈ S. This is equivalent to cases (i) and (ii) which proves the lemma. ⊓+

Lemma 2. Let S ⊆ J be a job subset with S ̸= ∅ and PS ̸= ∅. In addition, let
(t1, t2, µ̃) ∈ PS be a vertex of PS with µ̃j > 0 for all j ∈ S. Then either one of
the following holds:

(i) There is a job j ∈ S such that (t1, t2, µ̃j) is a vertex of Pj .
(ii) There are two distinct jobs i, j ∈ S such that (t1, t2, µ̃i, µ̃j) is the intersection

of one edge of Pi and one edge of Pj and thus a vertex of Pi,j .

Proof. It either holds case (i) or (ii) of Lemma 13 because the assumptions are
equal. From the proof of Lemma 13, the polyhedra Pi and Pi,j have dimensions
three and four respectively. Case (i) of Lemma 13 implies that the projected
vertex (t1, t2, µ̃j) is a vertex of Pj .

An edge of Pj satisfies two inequalities of (8)–(11) with equality that corre-
spond to job j. Therefore, case (ii) of Lemma 13 yields that the projected vertex
(t1, t2, µ̃i, µ̃j) is the intersection of one edge of Pi and one edge of Pj and hence
a vertex of Pi,j . ⊓+

A.2 Proof of Lemma 3

Lemma 3. Given a job j ∈ J and assume the projection of the polyhedron Pj

to the (t1, t2)-plane. The projected line segments of the edges of Pj that contain
a vertex (t1, t2, µ̃j) of Pj with µ̃j > 0 are given by

T1(j) = {(ej , t2) ∈ IR2 | t2 ≥ lj}
T2(j) = {(t1, lj) ∈ IR2 | t1 ≤ ej}
T3(j) = {(t1, t2) ∈ IR2 | t1 + t2 = ej + lj , ej ≤ t1 ≤ min{ej + pj , lj − pj}}
TM
1 (j) = {(lj − pj , t2) ∈ IR2 | lj − pj ≤ t2 ≤ ej + pj}

TM
2 (j) = {(t1, ej + pj) ∈ IR2 | lj − pj ≤ t1 ≤ ej + pj}.

Proof. By the proof of Lemma 13, it suffices to restrict to inequalities (8)–(11).
An edge of Pj satisfies two inequalities of (8)–(11) with equality. Thus, there are
six possible cases:

(i) If inequalities (8) and (10) hold with equality then it holds µ̃j = pj =
ej + pj − t1 which implies t1 = ej . By inequalities (11) and (9) it follows
t2 ≥ lj and t2 ≥ ej + pj .

(ii) If inequalities (8) and (11) hold with equality then it holds µ̃j = pj =
t2 − lj + pj which implies t2 = lj . By inequalities (10) and (9) it follows
t1 ≤ ej and t1 ≤ lj − pj .

510 A. Tesch

(iii) If inequalities (10) and (11) hold with equality then it holds µ̃j = ej + pj −
t1 = t2 − lj + pj which implies t1 + t2 = ej + lj . By inequalities (8) and
(9) it follows t1 ≥ ej and t1 ≤ lj − pj . In addition, inequality (13) yields
t1 ≤ ej + pj .

(iv) If inequalities (9) and (11) hold with equality then it holds µ̃j = t2 − t1 =
t2 − lj +pj which implies t1 = lj −pj . By inequalities (10) and (8) it follows
t2 ≤ ej + pj and t2 ≤ lj . In addition, inequality (12) yields t2 ≥ lj − pj .

(v) If inequalities (9) and (10) hold with equality then it holds µ̃j = t2 − t1 =
ej+pj −t1 which implies t2 = ej+pj . By inequalities (11) and (8) it follows
t1 ≥ lj − pj and t1 ≥ ej . In addition, inequality (12) yields t1 ≤ ej + pj .

(vi) If inequalities (8) and (9) hold with equality then it holds µ̃j = pj = t2 − t1.
By inequalities (10) and (11) it follows t1 ≤ ej and t2 ≥ lj . Adding both
yields lj − ej ≤ t2 − t1 = pj ≤ lj − ej which implies pj = lj − ej . Thus, it
holds t1 = ej and t2 = lj . Therefore, all inequalities of (8)–(11) are satisfied
with equality. This case is already included in cases (i)–(v).

Since ej ≤ lj − pj and ej + pj ≤ lj always holds the cases (i)-(v), in order of
appearance, correspond to the line segments T1(j), T2(j), T3(j), TM

1 (j), TM
2 (j)

which proves the lemma. ⊓+

A.3 Proof of Theorem 2

Theorem 2. If (t1, t2) ∈ IR2 is a time interval of maximum energy overload
then it holds (t1, t2) ∈ T .

Proof. By Lemma 1 there exists a job subset S ⊆ J with S ̸= ∅ such that
(t1, t2, µ̃) ∈ IR|S|+2 is a vertex of PS with µ̃j > 0 for all j ∈ S. Therefore,
Lemma 2 holds. We distinguish between cases (i) and (ii) of Lemma 2.

If case (i) holds then there is a job j ∈ S such that (t1, t2, µ̃j) is a vertex of
Pj . Since Pj is a three-dimensional polyhedron the vertex (t1, t2, µ̃j) of Pj has at
least three incident edges. By Lemma 3, the only intersection points of at least
three projected edges of Pj are (t1, t2) = (ej , lj) and (t1, t2) = (lj − pj , ej + pj),
if j ∈ JM . This case is equivalent to (t1, t2) ∈ Tj and (t1, t2) ∈ T M

j , if j ∈ JM .
Otherwise, if case (ii) holds then there are two distinct jobs i, j ∈ S such that

(t1, t2) is an intersection point of the projected edges of Pi and Pj respectively.
Since T1(i), TM

1 (i) are vertical, T2(i), TM
2 (i) horizontal and T3(i) diagonal line seg-

ments the possible intersection relations are vertical-horizontal, vertical-diagonal
and horizontal-diagonal. The relation vertical-horizontal corresponds to (t1, t2) ∈
Tij and the relations vertical-diagonal and horizontal-diagonal to (t1, t2) ∈ T ′

ij . If
the line segments of jobs i and j intersect in more than one point, we can always
find an intersection point of the previous characterizations along the intersecting
line. It follows that (t1, t2) ∈ T which shows the theorem. ⊓+

A.4 Proof of Lemmas 4–7

Lemma 4. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =
dj · (µleft

j (t1, t2) − µj(t1, t2)) on the interval [θ1, θ4] decomposes into the linear
function segments

A Nearly Exact Propagation Algorithm for Energetic Reasoning 511

f1
j (t2) = dj · (t2 − θ1) , t2 ∈ [θ1, θ2]

f2
j (t2) = dj · (θ2 − θ1) , t2 ∈ [θ2, θ3]

f3
j (t2) = −dj · (t2 − θ4) , t2 ∈ [θ3, θ4].

Proof. Since t1 ≤ θ2, the function µleft
j (t1, t2) has slope one in the interval

t2 ∈ [θ1, ej + pj] and zero otherwise. The function µj(t1, t2) has slope one in the
interval t2 ∈ [lj − pj , θ4] and zero otherwise. Hence µleft

j (t1, t2) − µj(t1, t2) has
slope one the interval [θ1, θ2], constant slope in [θ2, θ3] and slope minus one in
[θ3, θ4]. Scaling by dj shows the statement. ⊓+

Lemma 5. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =
dj · (t2 − µj(t1, t2)) on the interval [θ1, θ4] decomposes into the linear function
segments

f1
j (t2) = dj · t2 , t2 ∈ [θ1, lj − pj]

f2
j (t2) = dj · (lj − pj) , t2 ∈ [lj − pj , θ4].

Proof. Since t1 ≤ θ2, the function µj(t1, t2) has slope zero in [θ1, lj − pj] and
slope one in the interval [lj − pj , θ4]. Hence, the function t2 −µj(t1, t2) has slope
one in the interval [θ1, lj − pj] and slope zero in the interval [lj − pj , θ4]. Scaling
by dj shows the statement. ⊓+

Lemma 6. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj] the
piecewise linear function fj(t2) = dj · (µright

j (t1, t2) − µj(t1, t2)) on the interval
[θ′,∞) decomposes into the linear function segments

f1
j (t2) = dj · (t2 − θ′) , t2 ∈ [θ′, lj]

f2
j (t2) = dj · (lj − θ′) , t2 ∈ [lj ,∞).

Proof. Since t1 ∈ t1 ∈ [ej , lj], the function µright
j (t1, t2) has slope one in the

interval [θ′, lj] and slope zero in the interval [lj ,∞). The function µj(t1, t2) is
constant for all t2 ∈ [θ′,∞). Hence, the function µright

j (t1, t2) − µj(t1, t2) has
slope one in the interval [θ′, lj] and slope zero in the interval [lj ,∞). Scaling by
dj shows the statement. ⊓+

Lemma 7. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj] the
piecewise linear function fj(t2) = −dj · (t̄1 + µj(t1, t2)) is constant on [θ′,∞).

Proof. By construction, it holds µj(t1, t2) = µj(t1, θ′) for all t2 ∈ [θ′,∞) which
is constant. Consequently, fj(t2) is constant for all t2 ∈ [θ′,∞). ⊓+

512 A. Tesch

A.5 Proof of Lemma 8

Lemma 8. If the slopes of the functions (23) and (24) coincide on an interval
[t2, t2] ⊂ IR then both functions on the interval [t2, t2] attain their maximum at
the same point (t1, t2) ∈ T with t2 ∈ [t2, t2], if the maximum exists.

Proof. Since the slope of (23) equals the slope of (24) the quotient of the func-
tions ω(t1, t2) + dj · (µleft

j (t1, t2)− µj(t1, t2)) and ω(t1, t2) + dj · (t2 − µj(t1, t2))
is constant for all t2 ∈ [t2, t2]. Hence, if there exists an interval (t1, t2) ∈ T with
t2 ∈ [t2, t2] that maximizes (23) it also maximizes (24) and conversely. ⊓+

A.6 Proof of Lemmas 9–12

Lemma 9. For fixed value t1 ∈ [ej , lj] the function µright
j (t1, t2) − 2 · µj(t1, t2)

has slope zero for all t2 ∈ [lj ,∞).

Proof. Both functions µright
j (t1, t2) and µj(t1, t2) have slope zero in the interval

t2 ∈ [lj ,∞), so the stated function has slope zero in this interval. ⊓+

Lemma 10. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

one the interval t2 ∈ [ej + pj , θ4].

Proof. The function µleft
j (t1, t2) has slope zero in the interval t2 ∈ [ej + pj , θ4],

so t2 − µleft
j (t1, t2) has slope one in the interval t2 ∈ [ej + pj , θ4]. ⊓+

Lemma 11. For fixed value t1 ∈ [ej , θ2] the function µright
j (t1, t2)− 2 · µj(t1, t2)

has slope one in the interval [max{θ3, θ4}, lj].

Proof. The function µright
j (t1, t2) has slope one and the function µj(t1, t2) has

slope zero in the interval [max{θ3, θ4}, lj], so the stated function has slope one.
⊓+

Lemma 12. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

zero in the interval [t1, θ2].

Proof. The function µleft
j (t1, t2) has slope one in the interval [t1, θ2], therefore

t2 − µleft
j (t1, t2) has slope zero. ⊓+

B Algorithms

Notes for the algorithms:

– (j, t2, τ2) ∈ O3(t1) ⇐⇒ (j, t2 + t1, τ2) ∈ O3

– the computation of the energy overloads ω(t1, t2) is analogous to the checker
of Baptiste et al. [5] and involves dynamic slope updates

A Nearly Exact Propagation Algorithm for Energetic Reasoning 513

514 A. Tesch

A Nearly Exact Propagation Algorithm for Energetic Reasoning 515

516 A. Tesch

A Nearly Exact Propagation Algorithm for Energetic Reasoning 517

518 A. Tesch

A Nearly Exact Propagation Algorithm for Energetic Reasoning 519

References

1. Artigues, C., Lopez, P.: Energetic reasoning for energy-constrained scheduling with
a continuous resource. J. Sched. 18(3), 225–241 (2015)

2. Bonifas, N.: A O(n2log(n)) propagation for the energy reasoning. In: Conference
Paper, Roadef 2016 (2016)

3. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer,
Heidelberg (2014)

4. Berthold, T., Heinz, S., Schulz, J.: An approximative criterion for the potential of
energetic reasoning. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011.
LNCS, vol. 6595, pp. 229–239. Springer, Heidelberg (2011)

5. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time bound adjust-
ments for cumulative scheduling problems. Ann. Oper. Res. 92, 305–333 (1999)

6. Baptiste, P., Le Pape, C., Nuijten, W.: Applying Constraint Programming to
Scheduling Problems, vol. 39. Springer Science & Business Media (2012)

7. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in O(kn
log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009)

8. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697,
pp. 230–245. Springer, Heidelberg (2011)

9. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

10. Schutt, A., Wolf, A.: A new O(n2 log n) not-first/not-last pruning algorithm for
cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308,
pp. 445–459. Springer, Heidelberg (2010)

11. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propaga-
tion for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.)
CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013)

12. Ouellet, P., Quimper, C.-G.: Time-table extended-edge-finding for the cumulative
constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 562–577. Springer,
Heidelberg (2013)

13. Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y.: A quadratic edge-finding
filtering algorithm for cumulative resource constraints. Constraints 19(3), 243–269
(2014)

14. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling.
INFORMS J. Comput. 20(1), 143–153 (2008)

15. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumu-
lative constraint. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 439–454.
Springer, Heidelberg (2012)

16. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library: OR
software-ORSEP operations research software exchange program. Eur. J. Oper.
Res. 96(1), 205–216 (1997)

17. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: ICAPS, vol. 5, pp. 81–89, June 2005

18. HP Peter Stuckey. http://people.eng.unimelb.edu.au/pstuckey/rcpsp/

http://people.eng.unimelb.edu.au/pstuckey/rcpsp/

Efficient Filtering for the Unary Resource
with Family-Based Transition Times

Sascha Van Cauwelaert1, Cyrille Dejemeppe1(B), Jean-Noël Monette2,
and Pierre Schaus1

1 UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium
{sascha.vancauwelaert,cyrille.dejemeppe,pierre.schaus}@uclouvain.be

2 Tacton Systems, Stockholm, Sweden
jean-noel.monette@tacton.com

Abstract. We recently proposed an extension to Viĺım’s propagators for
the unary resource constraint in order to deal with sequence-dependent
transition times. While it has been shown to be scalable, it suffers from
an important limitation: when the transition matrix is sparse, the addi-
tional filtering, as compared to the original from Viĺım’s algorithm, drops
quickly. Sparse transition time matrices occur especially when activities
are grouped into families with zero transition times within a family. The
present work overcomes this weakness by relying on the transition times
between families of activities. The approach is experimentally evaluated on
instances of the Job-Shop Problem with Sequence Dependent Transition
Times. Our experimental results demonstrate that the approach outper-
forms existing ones in most cases. Furthermore, the proposed technique
scales well to large problem instances with many families and activities.

Keywords: Constraint programming · Scheduling · Job-Shop ·
Sequence-dependent transition times · Family · Global constraint · Trav-
eling Salesman Problem · Dynamic programming · Lower bound

1 Introduction

Unary resources with sequence-dependent transition times (also called set-up
times) for non-preemptive activities are very frequent in real-life scheduling prob-
lems. A first example is the quay crane scheduling in container terminals [20],
where the crane is modeled as a unary resource and transition times represent the
moves of the crane on the rail between positions where it needs to load or unload
containers. A second example is the continuous casting scheduling problem [9],
where a set-up time is required between production programs.

Although efficient propagators have been designed for the standard (UR) [16],
transition time constraints between activities generally make the problem harder
to solve because the existing propagators do not take them into account. We
recently introduced in [5] a propagator for the unary resource constraint with

This work was started during Jean-Noël’s invited stay at UCLouvain in 2015.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 520–535, 2016.
DOI: 10.1007/978-3-319-44953-1 33

Efficient Filtering for the Unary Resource 521

transition times (URTT) as an extension to Viĺım’s algorithms, in order to
strengthen the filtering in the presence of transition times.

Unfortunately, the additional filtering quickly drops in the case of a sparse
transition time matrix, which typically occurs when activities are grouped into
families with zero transition times within a family. The reason for a weak fil-
tering with sparse matrices is that it is based on a shortest path problem with
free starting and ending nodes and a fixed number of edges. The length of this
shortest path drops in the case of zero transition times.

The main contribution of the present article is to introduce adapted filtering
rules considering the families. The new propagator also relies on a shortest path
problem but over a different underlying graph. The main asset of our approach
is its scalability: we obtain an important amount of filtering while keeping a
low time complexity of O(n log(n) log(f)), for n activities and f families. In
general f ≪ n, hence the theoretical complexity is very close to the one of
the propagators in [5,16]. The filtering is experimentally tested on instances of
the Job-Shop Problem with Sequence Dependent Transition Times (JSPSDTT),
although it can be used for any type of problems, e.g., with other kinds of
objective function than the makespan minimization. The results show that our
propagator improves the resolution time over existing approaches and is more
scalable.

The paper starts by providing the background for the considered problems
in Sect. 2. The work on the URTT propagator [5] is also briefly recalled and its
limitations are highlighted. Then, Sect. 3 presents the stronger filtering making
use of the families. Section 4 reviews alternative approaches and Sect. 5 compares
the results of the different approaches.

2 Background

Non-preemptive scheduling problems are usually modeled in constraint program-
ming (CP) by associating three variables to each activity Ai: si, ci, and pi rep-
resenting respectively the starting time, completion time, and processing time
of Ai. These variables are linked together by the following relation: si +pi = ci.
Depending on the problem, the scheduling of the activities can be restricted by
the availability of different kinds of resources required by the activities. In this
work, we are interested in the unary resource (sometimes referred to as a machine
or a disjunctive resource) and the propagators associated to one unary resource.
Let T be the set of activities requiring the considered unary resource. The unary
resource constraint prevents any two activities in T to overlap in time:

∀Ai, Aj ∈ T : Ai ̸= Aj =⇒ (ci ≤ sj) ∨ (cj ≤ si)

The unary resource can be generalized by requiring transition times between activ-
ities. The transition times are described by a square matrix T T in which tt i,j , the
entry at line i and column j, represents the minimum amount of time that must
occur between the activities Ai and Aj when Ai directly precedes Aj . We assume

522 S. Van Cauwelaert et al.

that transition times respect the triangular inequality. That is, inserting an activ-
ity between two activities never decreases the transition time between these two
activities: ∀Ai, Aj , Ak ∈ T : tt i,j ≤ tt i,k + ttk,j .

The unary resource with transition times constraint imposes the following
relation:

∀Ai, Aj ∈ T : Ai ̸= Aj =⇒ (ci + tt i,j ≤ sj) ∨ (cj + ttj,i ≤ si) (1)

The earliest starting time of an activity Ai is denoted est i and its latest
starting time is denoted lst i. The domain of si is thus the interval [est i; lst i].
Similarly the earliest completion time of Ai is denoted ect i and its latest com-
pletion time is denoted lct i. The domain of ci is thus the interval [ect i; lct i].
These definitions can be extended to a set of activity Ω. For instance, estΩ

is the earliest time when any activity in Ω can start and ectΩ is the earliest
time when all activities in Ω can be completed. We also define pΩ =

∑
Aj∈Ω pj

to be the sum of the processing times of the activities in Ω. While one can
directly compute estΩ = min {estj |Aj ∈ Ω} and lctΩ = max {lctj |Aj ∈ Ω}, it is
NP-hard to compute the exact values of ectΩ and lstΩ [16]. Instead, one usually
computes a lower bound for ectΩ and an upper bound for lstΩ . The propagators
of [5,16] allow to compute efficiently such lower bounds, but have limitations in
the presence of family-based transition times.

2.1 Propagator for the Unary Resource

The filtering rules presented in [16] for the UR constraint fall in several
categories known as Overload Checking (OC), Detectable Precedences (DP),
Not-First/Not-Last (NF/NL), and Edge Finding (EF). The implementation of
these filtering rules runs in O(n log(n)), with n = |T |. It relies on an efficient
computation of a lower bound ectLB0

Ω of the earliest completion time of a set of
activities Ω ⊆ T , defined as:

ectLB0
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′} (2)

The rules OC, DP, and NF/NL, rely on the so-called Θ-tree data structure,
while EF relies on the Θ-Λ-tree data structure. The Θ-tree and the Θ-Λ-tree are
used to compute efficiently and incrementally ectLB0

Θ on a set of activities Θ.
For instance, the OC rule is used to detect when ectLB0

Θ > lctΘ for any Θ ⊆ T ,
which triggers a failure. We refer the reader to [16] for a detailed description of
this and the other rules. The following example illustrates the missed filtering
for UR when it does not consider the transition times globally.

Example 1. Consider a set of 3 activities Ω = {A1, A2, A3} as shown in Fig. 1.
Consider also, for simplicity, that all pairs of activities from Ω have the same
transition time tt i,j = 3. The OC rule detects a failure when ectLB0

Ω > lctΩ. The
filtering as described in [16] computes:

ectLB0
Ω = estΩ +

∑

Ai∈Ω

pi = 0 + 5 + 5 + 3 = 13

Efficient Filtering for the Unary Resource 523

As we have lctΩ = maxAi∈Ω lct i = lct2 = 17, the OC rule from [16], combined
with the transition times binary decomposition (Eq. (1)), does not detect a failure.
However, as there are 3 activities in Ω, at least two transitions occur between
these activities and it is actually not possible to find a feasible schedule. Indeed,
taking these transition times into account, one could compute ectΩ = 13 + 2 ·
tt i,j = 13 + 2 · 3 = 19 > 17 = lctΩ, and thus detect the failure.

Fig. 1. Example illustrating the missed failure detection of OC when not considering
transition times.

2.2 Propagator for the Unary Resource with Transition Times

In [5], we extended Viĺım’s work [16] to the case of the unary resource with
transition times constraint. By extending the Θ-tree and the Θ-Λ-tree to take
the transition times into account to compute a lower bound of ectΘ, we could
strengthen the filtering without increasing the time and space complexities.1

Let ΠΩ be the set of all possible permutations of activities in Ω. For a given
permutation π ∈ ΠΩ , where π(i) is the activity taking place at position i, we
can define the total time spent by transition times, ttπ, as follows:

ttπ =
|Ω|−1∑

i=1

ttπ(i),π(i+1)

A lower bound for ectΩ can then be defined as:

ectLB1
Ω = max

Ω′⊆Ω

{
estΩ′ + pΩ′ + min

π∈ΠΩ′
ttπ

}
(3)

Unfortunately, computing this value is NP-hard as computing the optimal per-
mutation π ∈ Π minimizing ttπ amounts to solving a TSP. Since embedding an
exponential algorithm in a propagator is generally impractical, a looser lower
bound can be used instead.
1 Strictly speaking, the propagators are not sufficient to prove Eq. (1) is respected, so
the binary propagators for Eq. (1) must remain active to ensure correctness.

524 S. Van Cauwelaert et al.

More precisely, for each possible subset of cardinality k ∈ {0, . . . , n}, we
compute the smallest transition time permutation of size k on the set T of all
activities requiring the resource:

tt(k) = min
{Ω′⊆T : |Ω′|=k}

{
min

π∈ΠΩ′
ttπ

}
(4)

For each k, the lower bound computation thus requires one to find the shortest
node-distinct (k−1)-edge path between any two nodes, which is also NP-hard
as it can be casted into a resource-constrained shortest path problem. We pro-
posed in [5] various lower bounds to achieve the pre-computation in polynomial
time. Our final lower bound formula for the earliest completion time of a set of
activities, making use of pre-computed lower-bounds of transition times, is:

ectLB2
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|Ω′|)} (5)

The different lower bounds of ectΩ can be ordered as follows:

ectLB0
Ω ≤ ectLB2

Ω ≤ ectLB1
Ω ≤ ectΩ

In order to compute ectLB2
Ω incrementally, adapted versions of the Θ-tree

and the Θ-Λ-tree were introduced in [5].

Limitation. An important limitation of this approach arises in the context of
sparse transition matrices. Indeed, when there exists a node-distinct path withK
zero-transition edges, we have: tt(k) = 0 ∀k ∈ {1, . . . ,K}. The pruning achieved
by the propagator is then equivalent to the one of the original algorithms from
Viĺım [16], which has been shown to perform poorly when transition times are
involved (see [5]). To cope with that problem, we propose to reason with families
of activities, as described in the next section.

Example 2. Consider again the three activities Ω = {A1, A2, A3} shown in
Fig. 1 with A1 belonging to family F1, A2 to family F2, and A3 to family F3. The
transition times are equal to 3 between activities from different families and equal
to 0 between activities of the same family. Assume that 3 additional activities
(not represented) also belong to family F1. Because the transition times between
any pair of activity from a same family is 0, we have that tt(2) = tt(3) = 0 and
ectLB2

Ω = 13 = ectLB0
Ω , hence the OC of [5] is unable to detect the failure.

3 Filtering with Families of Activities

When transition times are present, it is often the case that activities are grouped
in families on which the transition times are expressed. Formally, we denote by
F (Ai) the family of activity Ai and by F the set of all families. In a family-
based setting, the transition times are described as a square matrix T T F of size
|F|. The transition time between two activities Ai and Aj is the transition time

Efficient Filtering for the Unary Resource 525

between their respective families F (Ai) and F (Aj), and it is zero if F (Ai) =
F (Aj):

∀Ai, Aj ∈ T : tt i,j = ttFF (Ai),F (Aj)
∧

(
F (Ai) = F (Aj) =⇒ ttFF (Ai),F (Aj)

= 0
)

(6)
The matrix T T F is smaller and less sparse than the original matrix T T .

To cope with the limitations highlighted in Sect. 2.2, we adapt in the present
section Viĺım’s propagators [16] to include transition times between families
while keeping a low time complexity: O(n log(n) log(|F|)), where n = |T |. To do
so, we adapt the algorithms and the Θ-tree and Θ-Λ-tree data structures in a
way similar to [5]: the number of different families present in a set Ω of activities
is used instead of the cardinality of Ω. Counting the number of families results
in non-zero lower bounds even for small sets, assuming that there are no zero
transition times between families. Formally, Eq. (5) is replaced by:

ectLB3
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|FΩ′ |)} (7)

whereFΩ = {F (Ai) | Ai ∈ Ω}. The term tt(|FΩ′ |) inEq. (7) is pre-computedusing
the lower bounds introduced in [5] for tt(|Ω′|), but using T T F instead of T T .

Lemma 1. In the presence of families, ectLB2
Ω ≤ ectLB3

Ω .

Proof (Sketch). T T F induces a graph that is isomorphic to a subgraph of the
graph induced by T T and any (shortest) path induced by T T F has a corre-
sponding valid path induced by T T . ⊓,

Computing ectLB3
Ω requires some careful adaptations to the algorithms (Sect. 3.1)

and data structures (Sects. 3.2 and 3.3).

3.1 Adapting the Algorithms

We adapt the original algorithms of [16] in order to consider transition times.
While most of the modifications impact the underlying Θ-tree and Θ-Λ-tree data
structures, the filtering rules are also slightly adapted. This is done in a similar
manner to [5], but reasoning with FΩ instead of Ω.

For instance, in the original algorithms of [16] (OC, DP, NF/NL and EF),
if the activity i is detected as having to take place after all activities in a set
Θ, the following update rule can be applied: est i ← max

{
est i, ectLB0

Θ

}
. As

transition times are involved, we can replace ectLB0
Θ by ectLB3

Θ but, additionally,
the minimal transition from any family Fj ∈ FΘ to the family F (Ai) should
also be added as it was not taken into account in the computation of ectLB3

Θ .
This transition is the minimal one from any family to F (Ai), because we do not
know which activity will be just before Ai in the final schedule. The update rule
becomes:

est i ← max
{
est i, ectLB3

Θ + min
Fj∈FΘ

ttFFj ,F (Ai)

}

526 S. Van Cauwelaert et al.

An analogous reasoning can be applied to the rule updating the lct of an activity.
Finally, notice that as in [5], the transition times binary decomposition from
Eq. (1) must be added to the model in order to ensure correctness. Indeed, ectLB3

Θ

contains only a lower bound of the total transition time in Θ. The propagators
based on ectLB3

Θ are thus not sufficient to ensure correctness.

3.2 Extending the Θ-tree with Families

A Θ-tree is a balanced binary tree in which each leaf represents an activity
from a set Θ and internal nodes gather information about the set of activities
represented by the leaves under this node, denoted Leaves(v). We write l(v) for
the left child of v and r(v) for the right one. Leaves are ordered in non-decreasing
order of the est of the activities: for two activities Ai and Aj , if est i < estj , then
the leaf representing Ai is at the left of the leaf representing Aj .

The main value stored in a node v is the lower bound of ectLeaves(v), denoted
ectv. To be able to compute this value incrementally upon insertion or deletion
of an activity in the Θ-tree, one needs to maintain additional values.

In [16], Viĺım has shown that, by defining ectv = ectLB0
Leaves(v), it suffices to

store additionally pv = pLeaves(v). In a leaf v representing an activity Ai, one
can compute pv = pi and ectv = ect i. In an internal node v, one can compute:

pv = pl(v) + pr(v)
ectv = max

{
ectr(v), ect l(v) + pr(v)

}

Hence, the values only depend on the values stored in the two children.
In this work, we would like instead to define ectv = ectLB3

Leaves(v) in order to
take family-based transition times into account. As this value cannot easily be
computed incrementally, we compute a lower bound, denoted ect∗

v . In addition
to ect∗

v , one needs to store not only pv, but also Fv = FLeaves(v), the set of the
families of the activities in Leaves(v). In a leaf v representing an activity Ai, one
can compute pv = pi, ect∗

v = ect i, and Fv = {F (Ai)}. In an internal node v, one
can compute:

pv = pl(v) + pr(v)
Fv = Fl(v) ∪ Fr(v)

ect∗
v = max

{
ect∗

r(v)

ect∗
l(v) + pr(v) + tt

(∣∣Fr(v) \ Fl(v)

∣∣ + eI
(
Fl(v), Fr(v)

))

where eI (FA, FB) is equal to 1 if (FA ∩ FB) = ∅, and to 0 otherwise.

Lemma 2. ect∗
v ≤ ectLB3

Leaves(v)

Proof (Sketch). By induction. If v is a leaf representing activity Ai, then
ect∗

v = ect i = ectLB3
{Ai}. Otherwise, our induction hypothesis is that ect∗

l(v) ≤
ectLB3

Leaves(l(v)) and ect∗
r(v) ≤ ectLB3

Leaves(r(v)). Let us call ΩLB3 ⊆ Leaves(v) the
optimal set to compute ectLB3

Leaves(v). Either:

Efficient Filtering for the Unary Resource 527

– ect∗
v = ect∗

r(v). This rule assumes ΩLB3 ⊆ Leaves(r(v)). If this is the case,
then we already know by induction that ect∗

r(v) ≤ ectLB3
Leaves(r(v)).

– ect∗
v = ect∗

l(v) + pr(v) + tt
(
|Fr(v) \Fl(v)|+ eI

(
Fl(v), Fr(v)

))
. This rule assumes

ΩLB3 ∩ Leaves(l(v)) ̸= ∅. If this is the case, then one only needs to ensure
that:

ectLB3
Leaves(l(v)) + pr(v) + tt

(
|Fr(v) \Fl(v)|+ eI

(
Fl(v), Fr(v)

))
≤ ectLB3

Leaves(v)

Intuitively, we only add to ectLB3
Leaves(l(v)) a time quantity that was not con-

sidered in ectLB3
Leaves(l(v)) and that has yet to be spent: durations of activities

in Leaves(r(v)) and a number of transitions in Fr(v) \Fl(v) (plus an extra
transition when the intersection between Fl(v) and Fr(v) is empty).

⊓,

Complexity. We use bit sets to represent the set of families in each node. The
space complexity of the Θ-tree is thereforeO(n|F|). The set operations we use are
union, intersection, difference and cardinality. Using bit sets, the 3 former ones are
O(1) and the latter one is O(log(|F|)) with a binary population count [18]. The
time complexity of insertion and deletion of an activity in the Θ-tree is therefore
O(log(n) log(|F|)).

Example 3. Let us consider the activities presented in Fig. 2 (left). The transi-
tion matrix T T F between families is given in Fig. 2 (center). The pre-computed
values of tt(k) are reported in Fig. 2 (right). Figure 3 illustrates the extended Θ-
tree when all activities are inserted. Note that the value at the root of the tree is
indeed a lower bound as the real ect is 85 and ectLB3

Θ = 80.

Fig. 2. Example: four activities and their families (left), transition times for the families
(center), and pre-computed lower bounds for the transition times (right).

3.3 Extending the Θ-Λ-tree with Families

The Edge-Finding (EF) algorithm requires an extension of the original Θ-tree,
called Θ-Λ-tree [16]. In this extension, leaves are marked as either white or gray.
White leaves represent activities in the set Θ and gray leaves represent activities
that are in a second set, Λ, with Λ ∩ Θ = ∅. In addition to ectv, a lower bound

528 S. Van Cauwelaert et al.

ect∗ = max{70, 25 + 45 + 5} = 75
p = 20 + 45 = 65
F = {F1,F2,F3}

ect∗ = max{55, 45 + 25 + 0} = 70
p = 20 + 25 = 45
F = {F3}

ect∗ = 55
p = 25
F = {F3}
est4 = 30

ect∗ = 45
p = 20
F = {F3}
est2 = 25

ect∗ = max{25, 10 + 10 + 5} = 25
p = 10 + 10 = 20
F = {F1,F2}

ect∗ = 25
p = 10
F = {F2}
est3 = 15

ect∗ = 10
p = 10
F = {F1}
est1 = 0

Fig. 3. A Θ-tree when all activities of Fig. 2 are inserted.

to the ect of Θ, a Θ-Λ-tree also aims at computing ectv, which is a lower bound
to ect (Θ,Λ), the largest ect obtained by including one activity from Λ into Θ:

ect (Θ,Λ) = max
Ai∈Λ

ectΘ∪{Ai}

In addition to pv, ectv, the original Θ-Λ-tree structure also maintains pv and
ectv, respectively corresponding to pv and ectv, if a single gray activity in the
sub-tree rooted at v maximizing ectLeaves(v)∪{Ai} was included.

Our extension to the Θ-Λ-tree is similar to the one outlined in Sect. 3.2: in
addition to the previous values, each internal node also stores Fv and F v in order
to compute the lower bounds ect∗

v and ect∗
v . This latter value is defined as:

ect∗
(Θ,Λ) = max

{
ect∗

Θ , max
Ai∈Λ

{
ect∗

Θ∪{Ai}

}}

Adapting the rules for the Θ-Λ-tree requires caution when families are involved.
In [5,16], the rules only use implicitly the information about which gray activity
is considered in the update. In our case, the rules must consider explicitly where
the used gray activity is located: either in the left subtree, denoted (L), or in
the right subtree, denoted (R). The rules are then defined as:

ect∗
v = max

⎧
⎪⎨

⎪⎩

ect∗
l(v) + pr(v) + tt

(
|Fr(v) \F l(v)|+ eI

(
F l(v), Fr(v)

))
(L)

ect∗
l(v) + pr(v) + tt

(
|F r(v) \Fl(v)|+ eI

(
Fl(v), F r(v)

))
(R)

ect∗
r(v) (R)

F v =

{
F l(v) ∪ Fr(v) (L)
Fl(v) ∪ F r(v) (R)

pv =

{
pl(v) + pr(v) (L)
pl(v) + pr(v) (R)

In the rules above, the choice of which formula to use for F v and pv depends on
the letter, either (L) or (R), associated with the term maximizing ect∗

v , hence
this value must be computed first. If a leaf v represents an activity Ai, then we

Efficient Filtering for the Unary Resource 529

simply have ect∗
v = ect i, pv = pi, and F v = {F (Ai)}. The rules for pv, ectv,

and Fv are as presented in Sect. 3.2, but one must also define, for a gray leaf v,
ect∗

v = −∞, pv = 0, and Fv = ∅.
For space reasons, we do not present the proof of correctness of our recursive

rules. As for the extended Θ-tree introduced in Sect. 3.2, the time complexity
for the insertion and the deletion of an activity is O(log(n) log(|F|)).

4 Related Work

As described in a recent survey [1], scheduling problems with transition times
can be classified in different categories. First the activities can be in batch (i.e.
a machine allows several activities of the same batch to be processed simulta-
neously) or not. Transition times may exist between successive batches. A CP
approach for batch problems with transition times is described in [16]. Secondly
the transition times may be sequence-dependent or sequence-independent. Tran-
sition times are said to be sequence-dependent if their durations depend on both
activities between which they occur. On the other hand, transition times are
sequence-independent if their durations only depend on the activity after which
they take place. The problem category we study in this article is non-batch
sequence-dependent transition times problems.

Over the years, many CP approaches have been developed to solve such prob-
lems [2,5,7,10,19]. For instance, in [2], a Traveling Salesman Problem with Time
Window (TSPTW) relaxation is associated to each resource. The activities used
by a resource are represented as vertices in a graph, and edges between vertices
are weighted with the corresponding transition times. The TSPTW obtained by
adding time windows to vertices from bounds of corresponding activities is then
resolved. If one of the TSPTW is found unsatisfiable, then the corresponding
node of the search tree is pruned. A similar technique is used in [3] with addi-
tional propagators, which are, to the best of our knowledge, the state of the art
propagators when families of activities are present.

State-of-the-art Filtering with Families

An idea from [17] that is also used in [3] is to pre-compute the exact minimal total
transition time for every subset of families. For a subset of families F ′ ⊆ F , let
tt (F ′) denote the minimal total transition time used for any activity set Ω such
that FΩ = F ′. Similarly tt (Fi → F ′) is the minimal total transition time when
the processing starts with some activity of type Fi ∈ F ′, and tt (F ′ → Fi) when it
completes with an activity of type Fi ∈ F ′. We can pre-compute these values for
every set of families F ′ ⊆ F and every family Fi ∈ F ′ with a dynamic program
running in Θ(|F|2.2|F|) and requiring Θ(|F|.2|F|) of memory. For instance, for
tt (Fi → F ′), one defines:
{
tt (Fi → {Fi}) = 0 ∀Fi ∈ F
tt (Fi → {F ′ ∪ Fi}) = min

Fj∈F ′
{ttFFi,Fj

+ tt (Fj → F ′)} ∀F ′ ⊆ F ,∀Fi ∈ F \ F ′

530 S. Van Cauwelaert et al.

Based on these pre-computed values, which are assumed to be obtainable in
O(1) once the pre-computation is made, two propagators are introduced in [3]:

– A DP-like propagator calledUpdateEarliestStart running inO(n2 log(n)).
– An EF-like propagator called PrimalEdgeFinding running in O(|F|n2).

Although the filtering obtained with these propagators can be stronger than their
counterpart from [16] and our extensions, the time complexity of the propagators
is quite high as compared to O(n log(n) log(|F|)). In addition, they do not make
use of a Not-First/Not-Last rule and the pre-computation of the minimal exact
transition times for every subset of family is only tractable for small (typically
less than 10) values of |F|.

5 Experimentations

The experiments were conducted on JSPSDTT instances. We used AMD
Opteron processors (2.7GHz), the Java Runtime Environment 8 and the con-
straint solver OscaR [12]. The memory consumption was limited to 4Gb.

Problem Instances. We have used two sets of instances. First, we used the
standard t2ps instances from Brucker and Thiele [4]. However, there are only
15 of them, and we wanted to evaluate instances with more families, jobs, and
machines in order to challenge the scalability of the different approaches. We
therefore generated a new set of 315 instances, here referred to as uttf, with
up to 50 jobs, 15 machines and 30 families.2

Compared Propagators. We compare models with the following propagators
for Eq. (1):

– binary-decomp: binary decomposition of Eq. (1) only.
– utt-no-families: propagators for URTT from [5].
– artigues-exact-tsp: propagators of [3] using exact values for tt (F), tt (F → F)

and tt (F → F).
– artigues-lb-tsp: propagators of [3] adapted to make use of cardinality-based
lower bounds from [5] for tt (F), tt (F → F) and tt (F → F).

– utt-families-exact-tsp: propagators introduced in this paper making use of the
exact values for tt(|F|) computed with minF ′:|F ′|=|F| tt (F ′).

– utt-families-lb-tsp: propagators introduced in this paper making use of lower
bounds for tt(|F|). The bounds are computed with the lower bounds of [5].

All approaches also use the binary decomposition of Eq. (1) in order to ensure
correctness as specialized propagators are generally not checking.

2 The instances are available at http://becool.info.ucl.ac.be/resources/uttf-instances.

http://becool.info.ucl.ac.be/resources/uttf-instances

Efficient Filtering for the Unary Resource 531

Replay Evaluation. In order to derive fair and representative conclusions
about the propagators only (i.e., by removing the effects of the search heuristic),
we used the Replay evaluation methodology [14]. First, for each instance, a base-
line model is used to generate a search tree. This baseline model is, among the
different compared approaches, the one that prunes the less the domains (here
binary-decomp). Once the search tree is generated, it is replayed separately with
each model. A replay basically consists in reapplying the exact same sequence of
modifications to the constraint store (e.g., the branching constraints) that were
used to generate the search tree with the baseline model.

The performance of those replays is then used to construct so-called perfor-
mance profiles [6], that we built with a public web tool [15] made available to
the community.3 Performance profiles are cumulative distribution functions of a
performance metric ratio τ . In our case, τ is a ratio of either time or number of
backtracks. In the case of time, the function is defined as:

Fm(τ) =
1
|I|

∣∣∣∣∣∣

⎧
⎨

⎩i ∈ I :
timereplay(m, i)

min
m′∈M

timereplay(m′, i)
≤ τ

⎫
⎬

⎭

∣∣∣∣∣∣
(8)

where I is the set of considered instances, m is a model and M is the set of all
models. The function is similar for the number of backtracks.

To generate the search tree, the Conflict Ordering Search [8] was used, as it
was shown to be a good search strategy for scheduling problems. The generation
lasted for 300 s, and we enforced a timeout of 1,800 s for the replay. If a timeout
occurs for a model m, we consider that timereplay(m,i)

min
m′∈M

timereplay(m′,i) = +∞. The running

times reported here do not take into account the pre-computation step since
they are negligible (generally less than 2 s and max 10 s).

Results on the t2ps Instances. Figures 4 and 5 provide the performance
profiles for the time and number of backtracks, respectively. Figure 5 shows
that, interestingly, utt-families-lb-tsp prunes exactly as much as utt-families-
exact-tsp. This is due to the fact that our lower bounds are here able to com-
pute the same values than minF ′:|F ′|=|F| tt (F ′). This suggests that we often do
not have to compute the exact values for tt (F) with the resource-consuming
dynamic program, which is interesting since it is not tractable when there are
many families. We can see that from a time perspective, our approach is the
fastest for 80% of the instances (utt-families-exact-tsp being here equivalent to
utt-families-lb-tsp, see the function in τ = 1 in Fig. 4). But our approach is
also robust, as the other instances (i.e., the remaining 20%) are solved within
a factor τ < 2 compared to the best model for those remaining instances. Con-
sidering the number of backtracks, our approach generally achieves less pruning
than artigues-exact-tsp (not more than three times), but substantially more than
utt-no-families. This lack of pruning as compared to artigues-exact-tsp is com-
pensated in practice by the low time complexity. Although not reported, we tried
3 Accessible at http://sites.uclouvain.be/performance-profile/.

http://sites.uclouvain.be/performance-profile/

532 S. Van Cauwelaert et al.

2.0 4.0 8.0 16 32
τ (time)

1.0 64

10

20

30

40

50

60

70

80

90

%
 in

st
an

ce

0

100

binary-decomp utt-no-families artigues-exact-tsp artigues-lb-tsp
utt-families-exact-tsp/utt-families-lb-tsp

Fig. 4. Performance profiles on t2ps instances for the time metric.

to combine utt-families-exact-tsp and artigues-exact-tsp and the performances
were close to the ones of artigues-exact-tsp alone, thus only inducing a small
overhead when utt-families-exact-tsp does not provide additional pruning.

Results on theuttf Instances. First of all, we consider the approaches artigues-
exact-tsp and utt-families-exact-tsp unable to solve (i.e., times out by default) the
120 instances (out of 315) with 20 families or more, since the pre-computation
becomes too expensive in terms of CPU and memory usage according to our 4Gb
limitation.

Figures 6 and 7 provide the time performance profiles for the instances with
strictly less than and with more than 20 families, respectively. Figure 6 shows
that our approach still outperforms the other ones, even if it is the fastest on a
smaller percentage of instances than for the t2ps instances. The instances being
less structured, the gain in pruning is weaker as compared to the decomposi-
tion. However, our method catches up very quickly; for example, it is at most
∼ 1.3 and 2 times slower than the best approach for almost 60% and 80% of the
instances, respectively. Another interesting point is that utt-families-exact-tsp
and utt-families-lb-tsp have very similar time performances, while the values for
tt(k) were here generally different (not reported here). This means that comput-
ing the exact values for tt (F) is not mandatory4 when used with our propagators,
which is profitable since we also target scalability in terms of number of families.

Regarding the instances with more than 20 families (Fig. 7), our approach
is significantly better than the other ones, as we are the fastest on almost 70%
of the instances and it is at most 4 times slower than the best approach on the

4 Still, if it is available at a low cost, it can be beneficial to use it.

Efficient Filtering for the Unary Resource 533

Fig. 5. Performance profiles on t2ps instances for the backtracks metric.

Fig. 6. Performance profiles on uttf instances with strictly less than 20 families for
the time metric.

remaining instances. This teaches us that when more families are involved, our
approach is both efficient and robust.

Improvements on Open t2ps Instances. Although not the focus of this paper, we
were able to find tighter upper bounds for 3 of the 6 open t2ps instances within
less than 5min of computation. We simply combined our lightweight propagators
with a LNS [13]. We used a basic relaxation of precedences of activities on the
same machine combined with a Set Times [11] search strategy. The improved
bounds are given in Table 1.

534 S. Van Cauwelaert et al.

Fig. 7. Performance profiles on uttf instances with more than 20 families for the time
metric.

Table 1. New upper bounds for open t2ps instances.

Upper bound t2-ps11 t2-ps12 t2-ps15

Former 1,470 1,305 1,527

New 1,441 1,299 1,505

6 Conclusion

This paper has extended the algorithms and data structures for the unary resource,
taking into account family-based transition times in order to perform additional
propagation. The original data structures and algorithms have been adapted
accordingly. The approach is therefore lightweight from both the time and space
perspectives. Experiments conducted on the JSPSDTT have demonstrated that
the introduced approach provides a substantial gain and is quite robust to changes
in instance characteristics (e.g., number of activities and families).

Future work. We would like to consider other types of problems and combine this
work with the use of good lower bounds in a branch-and-bound setting. More
importantly, when there are no families defined a priori in an instance, we want
to study the benefit of first creating them by means of clustering algorithms and
then using the filtering introduced in this paper. This approach might prove to
be helpful when the intra-cluster transition times are significantly smaller than
the inter-cluster ones.

Efficient Filtering for the Unary Resource 535

References

1. Allahverdi, A., Ng, C., Cheng, T.E., Kovalyov, M.Y.: A survey of scheduling prob-
lems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

2. Artigues, C., Belmokhtar, S., Feillet, D.: A new exact solution algorithm for the
job shop problem with sequence-dependent setup times. In: Régin, J.-C., Rueher,
M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 37–49. Springer, Heidelberg (2004)

3. Artigues, C., Feillet, D.: A branch and bound method for the job-shop problem
with sequence-dependent setup times. Ann. Oper. Res. 159(1), 135–159 (2008)

4. Brucker, P., Thiele, O.: A branch & bound method for the general-shop problem
with sequence dependent setup-times. Operations-Research-Spektrum 18(3), 145–
161 (1996)

5. Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The unary resource with transi-
tion times. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 89–104. Springer,
Heidelberg (2015)

6. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

7. Focacci, F., Laborie, P., Nuijten, W.: Solving scheduling problems with setup times
and alternative resources. In: AIPS, pp. 92–101 (2000)

8. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Heidelberg (2015)

9. Gay, S., Schaus, P., De Smedt, V.: Continuous casting scheduling with constraint
programming. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 831–845.
Springer, Heidelberg (2014)

10. Grimes, D., Hebrard, E.: Job shop scheduling with setup times and maximal time-
lags: a simple constraint programming approach. In: Lodi, A., Milano, M., Toth, P.
(eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 147–161. Springer, Heidelberg (2010)

11. Le Pape, C., Couronné, P., Vergamini, D., Gosselin, V.: Time-versus-capacity com-
promises in project scheduling (1994)

12. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
13. Shaw, P.: Using constraint programming and local search methods to solve vehicle

routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

14. Van Cauwelaert, S., Lombardi, M., Schaus, P.: Understanding the potential of
propagators. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 427–436.
Springer, Heidelberg (2015)

15. Van Cauwelaert, S., Lombardi, M., Schaus, P.: A visual web tool to perform what-if
analysis of optimization approaches. Technical report, UCLouvain (2016)

16. Vilım, P.: Global constraints in scheduling. Ph.D. thesis, Charles University in
Prague, Faculty of Mathematics and Physics, Department of Theoretical Computer
Science and Mathematical Logic, KTIML MFF, Universita Karlova, Malostranské
námestı 2/25, 118 00 Praha 1, Czech Republic (2007)

17. Vilım, P., Barták, R.: Filtering algorithms for batch processing with sequence
dependent setup times. In: Proceedings of the 6th International Conference on
AI Planning and Scheduling, AIPS (2012)

18. Warren, H.S.: Hacker’s Delight. Pearson Education, Upper Saddle River (2013)
19. Wolf, A.: Constraint-based task scheduling with sequence dependent setup times,

time windows and breaks. GI Jahrestagung 154, 3205–3219 (2009)
20. Zampelli, S., Vergados, Y., Van Schaeren, R., Dullaert, W., Raa, B.: The berth

allocation and quay crane assignment problem using a CP approach. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 880–896. Springer, Heidelberg (2013)

https://bitbucket.org/oscarlib/oscar

Application Track

A Constraint Programming Approach
to Multi-Robot Task Allocation

and Scheduling in Retirement Homes

Kyle E.C. Booth(B), Goldie Nejat, and J. Christopher Beck

Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, ON M5S 3G8, Canada

{kbooth,nejat,jcb}@mie.utoronto.ca

Abstract. We study the application of constraint programming (CP) to
the planning and scheduling of multiple social robots interacting with res-
idents in a retirement home. The robots autonomously organize and facil-
itate group and individual activities among residents. The application is a
multi-robot task allocation and scheduling problem in which task plans
must be determined that integrate with resident schedules. The prob-
lem involves reasoning about disjoint time windows, inter-schedule task
dependencies, user and robot travel times, as well as robot energy levels.
We propose mixed-integer programming (MIP) and CP approaches for
this problem and investigate methods for improving our initial CP app-
roach using symmetry breaking, variable ordering heuristics, and large
neighbourhood search. We introduce a relaxed CP model for determining
provable bounds on solution quality. Experiments indicate substantial
superiority of the initial CP approach over MIP, and subsequent sig-
nificant improvements in the CP approach through our manipulations.
This work is one of the few, of which we are aware, that applies CP to
multi-robot task allocation and scheduling problems. Our results demon-
strate the promise of CP scheduling technology as a general optimization
infrastructure for such problems.

1 Introduction

The progressive aging of populations, as observed primarily within developed
countries, has important implications in a number of societal areas, including
health and social care services for the elderly [1]. Such demographic trends have
resulted in a dramatic increase in the number of seniors residing in retirement
and nursing homes [2]. This increase in demand for care services, combined
with a reduction in the working age population, will inevitably result in greater
pressures on the quality of elderly care infrastructure, risking deterioration in
the provision of medical services, daily assistance, social interaction, and overall
quality of life for residents. Due to these demographic and industry dynam-
ics, the investigation of the role of autonomous robotics within healthcare has
been discussed for a number of decades, though primarily with respect to robots
assisting physical rehabilitation. The design and deployment of socially assistive
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 539–555, 2016.
DOI: 10.1007/978-3-319-44953-1 34

540 K.E.C. Booth et al.

robots for retirement home applications and elderly care is a more recent devel-
opment [3]. Such social robots alleviate workforce pressures associated with the
daily operation of retirement homes and work to give assistance through the
autonomous facilitation of cognitively and socially stimulating leisure activities.

In this paper, we contribute a novel application of constraint programming
(CP) to the automated planning and scheduling of a team of social robots in
a retirement home. Our larger project involves the robots providing social and
cognitive stimulation through the facilitation of bingo games involving multiple
residents and telepresence sessions between residents and their family members.
Here, we propose CP as part of a task planning system that must autonomously
allocate, schedule, and facilitate these single and multi-resident leisure activities
throughout the course of the day, while adhering to daily resident calendars
defining their availability. The problem involves reasoning about which tasks
should be implemented (i.e. planning), as well as which robot should facilitate
each task and at what time (i.e. scheduling).

In the field of robotics, multi-robot task allocation (MRTA) aims to solve
robot coordination problems pertaining to task decomposition from high-level
goals, task distribution, and task scheduling. We extend the previously proposed
single robot version of the retirement home problem [4,5], to an MRTA prob-
lem. We investigate mixed-integer programming (MIP) and CP as allocation
and scheduling strategies. These approaches model disjoint time windows, robot
and user travel times within the retirement home, inter-schedule task depen-
dencies, and robot energy consumption/replenishment. We investigate enhance-
ments of our initial CP approach through grouped variable ordering heuristics
and large neighbourhood search (LNS), and present a relaxed CP formulation
used for determining provable bounds on solution quality. Numerical results
indicate substantial superiority of the CP formulation over MIP, and we show
significant improvements of the CP approach through our manipulations of the
search. This experimentation illustrates CP scheduling technology as a promising
general optimization framework for MRTA problems.

2 Related Work

CP has been applied to a wide range of combinatorial optimization problems,
excelling most notably in scheduling applications [6], where it has established
itself as a strong competitor to mathematical programming-based approaches,
often out-performing state-of-the-art MIP solvers [7]. The flexible nature of CP,
combined with its proficiency at representing and solving particular combina-
torial substructure (e.g. problems with task sequencing) has led to its inte-
gration with other methods, producing stronger hybrid approaches. Examples
of this integration include logic-based Benders decomposition (LBBD) [8] and
constraint-integer programming (CIP) [9]. CP has also been used in combination
with Local Search (LS) in the Large Neighbourhood Search (LNS) [10] frame-
work. Indeed, commercial CP software has benefited tremendously from this
integration as seen within the incorporation of self-adapting LNS in state-of-
the-art constraint solvers [11].

A CP Approach to MRTA and Scheduling in Retirement Homes 541

Initial approaches to MRTA problems used dispatch-style methods where
a single task was allocated and executed before the next allocation was made
[12,13]. More recent approaches utilize decentralized methods such as market-
based strategies [14], auction-based approaches [15], and distributed local task-
swapping [16]. In the past decade, efforts have been made to use linear and inte-
ger programming techniques [5,17], largely due to attractive bounds on solution
quality. CP has been proposed as a suitable candidate approach for these prob-
lems [18,19], however, the application of CP to multi-robot task planning and
scheduling is, to the best of our knowledge, limited in the literature. The MAC-
BETH [20] architecture makes use of a combination of hierarchical task networks
and CP, where a human user specifies missions to a team of autonomous agents
via a playbook graphic user interface. Another proposed method uses distrib-
uted constraint satisfaction problems (disCSP) to solve multi-robot exploration
problems [21].

Socially assistive robots for elderly care have seen growing attention within
the literature [22]. For the retirement home application studied in this paper,
existing related work has presented temporal planning, MIP, and CP approaches
for solving the single-robot task planning variant of the problem [4,5], where CP
was demonstrated to outperform the other techniques. Multiple robot scenarios
have also been recently studied [23], where a planning and scheduling architec-
ture was introduced using off-the-shelf temporal planners for a specialization of
the problem studied in this paper.

3 Problem Definition

Given a set of robots, R, a set of possibly optional tasks, T , and a problem-
specific cost function, our MRTA problem involves determining a mapping of
tasks to robots, f : T → R, as well as an assignment of start times to tasks,
such that the objective is optimized. In this section we discuss specific problem
parameters and objectives associated with our retirement home application.

3.1 Parameters

We consider a set of users (retirement home residents), U := {u1, u2, ..., un},
where each user, ui ∈ U , has a unique daily calendar, Σi := {σi1,σi2, ...,σi5},
identifying five busy periods where the user is not available for interaction. For
modeling purposes, we treat each busy period as a required task defined on a
closed interval with a fixed start and end time. These intervals include one hour
breaks for breakfast (8:00–9:00 AM), lunch (12:00–1:00 PM), and dinner (5:00–
6:00 PM), as well as two additional breaks with duration ranging from 30min
to one hour. An estimate of user movement speed, νu in metres/minute, is used
to approximate travel times between locations.

We also consider a set of robots, R := {r1, r2, ..., rm}, that facilitate human-
robot interaction (HRI) tasks within the retirement home. Each robot, rk ∈ R,
starts and ends in the robot depot, a location containing a recharging station.

542 K.E.C. Booth et al.

Robot movement speed, νr in metres/minute, is known, as well as lower and
upper limits on battery level, βmin and βmax, respectively. Robot energy con-
sumption rates are defined for robot movement, ξ∆, and consumption (or replen-
ishment, with a negative rate, for recharge tasks) for task j as ξj .

The retirement home contains a set of locations, L := {ℓr, ℓg, ℓσ}∪{ℓ1, ℓ2, ...,
ℓn}, representing the robot depot, games room, meal/break room, and a personal
room for each of the users. Distances between any pair of locations ℓa and ℓb
are known, and defined as δ(a,b), in metres. Travel time matrices are generated
for users, ∆u := { δ(a,b)

νu
: (a, b) ∈ L × L}, and for robots, ∆r := { δ(a,b)

νr
: (a, b) ∈

L × L}, where travel times are estimated in minutes.
The problem considers individual and group HRI tasks, each requiring a sin-

gle robot facilitator. These task types are: telepresence tasks (individual), bingo
games (group), and bingo game reminders (individual). The set of telepresence
tasks is defined as P := {p1, p2, ..., pn}, where each task corresponds to a user;
these tasks take place in the personal room of the user and have a duration of
30min. The set of bingo game tasks, G := {g1, g2, ..., gUB1}, is defined based on a
calculated upper bound, UB1, as the number of games that can be facilitated is
unknown a priori. These tasks take place in the games room and have a duration
of 60min. The necessity for this upper bound illustrates an important limitation
when using scheduling methods for problems with underlying planning charac-
teristics: a predefined number of tasks is required. We define the set of available
reminder tasks as M :=

⋃n
i=1 Mi where the subset of reminder tasks for each

user, ui ∈ U , is defined as Mi := {mi1,mi2, ...,miUB1}. Each reminder takes
place in the personal room of the participating user and has a duration of two
minutes. The duration of busy period, telepresence, bingo game, and reminder
tasks are represented as dj for task j. We also define a set of available recharge
tasks, C :=

⋃m
k=1 Ck, where the subset of these tasks for each robot, rk ∈ R, is

defined as Ck := {ck1, ck2, ..., ckUB2}. The number of these tasks available for
each robot is defined based on the calculated upper bound, UB2, as the number
of recharge tasks a robot may require is also unknown a priori. The duration (in
minutes) of each recharge task varies within the closed interval [0, βmax−βmin

(−1)·ξj]
for j ∈ Ck, ∀rk ∈ R.

We define the set of all tasks potentially involving each user, ui ∈ U , as Tu
i :=

{Σi∪pi∪G∪Mi}, and mandatory start and end dummy tasks with zero duration
for users as u̇ and ü, respectively. These tasks facilitate user task sequencing and
have zero transition time to all other task locations. We define the set of all
tasks potentially involving each robot, rk ∈ R, as T r

k := {P ∪ G ∪ M ∪ Ck},
with mandatory start and end dummy tasks with zero duration as ṙ and r̈,
respectively. These tasks are located at the robot depot, and have associated
spatial transition times to other tasks, ultimately ensuring that robot schedules
start and end at the robot depot.

3.2 Objective

Given a single day (7:00 AM–7:00 PM) planning horizon, H, a time-extended
allocation of tasks to robots must be determined that integrate with user sched-

A CP Approach to MRTA and Scheduling in Retirement Homes 543

ules. The battery level of each robot, rk ∈ R, is known throughout the day,
and must stay within the specified closed interval, [βmin,βmax]. Each user must
participate in exactly one telepresence activity but user participation in bingo
games is optional. If a user participates in a bingo game activity, the associated
reminder task must be done before the game. The optimization objective of the
problem is to maximize bingo game participation over all users. Solutions with
equivalent bingo game participation are prioritized by favoring schedules with
fewer robot recharge tasks.

A feasible solution to a small problem instance is illustrated in Fig. 1. Telep-
resence (orange), bingo game (blue), reminder (grey), and recharge (yellow) tasks
are all represented, as well as user busy periods (green). We note that unless
tasks occur in the same location (e.g. reminder and telepresence in a user per-
sonal room), the tasks are never scheduled immediately next to each other. This
is due to the modeling of travel times for both robot and users.

Though in this particular problem definition we are generating a single time-
extended plan, complete solution methods for this problem will need to incor-
porate replanning due to likely discrepancies during schedule execution (e.g. a
missed telepresence). As such, we look to generate high-quality allocations within
reasonably short time-frames (≤5min).

Fig. 1. Time-extended MRTA for a retirement home: feasible task allocations and
schedules. Instance size: |U | = 4, |R| = 2. (Color figure online)

4 Task Allocation and Scheduling Models

In this section, we present task allocation and scheduling formulations using CP
and MIP. We formally define both models and discuss key modeling considera-
tions made.

4.1 Constraint Programming Model

We present a CP model in Fig. 2. We utilize cumulative variables to model robot
energy levels and optional interval variables to model tasks, which are decision

544 K.E.C. Booth et al.

variables whose possible values are a convex interval: {⊥}∪{[s, e)|s, e ∈ Z, s ≤ e},
where s and e are the start and end values of the interval and ⊥ is a special
value indicating the variable is not present in the solution [24]. The length of
each interval variable corresponds to the duration of its associated task. The
variable Pres(var) is 1 if interval variable var is present in the solution, and
0 otherwise. Model constraints are only enforced on interval variables that are
present in the solution. Start(var), End(var), and Length(var) return the start
time, end time, and length, respectively, of the interval variable var.

We define the decision variables used in the CP formulation as follows:

xij := (interval) present if user ui attends task j and absent otherwise,
ykj := (interval) present if robot rk facilitates task j and absent otherwise,
Ek := (cumulative) energy level of robot rk throughout the schedule.

Fig. 2. Constraint programming model

Objective (1) maximizes the total number of bingo games played across all
users, prioritizing solutions with fewer recharge tasks in the event of equivalent
group activity participation. Constraints (2) and (3) encapsulate the sequencing
requirement for all potential tasks associated with each user and each robot,
including required dummy tasks. We utilize the NoOverlap global constraint

A CP Approach to MRTA and Scheduling in Retirement Homes 545

which performs efficient domain filtering on the interval variable start times by
reasoning about task time windows, processing times, and the relationship that
no pair of tasks can overlap in time, with consideration for transition times [6].
In our model, the NoOverlap constraints enforced on users differ from those
enforced on robots due to the different tasks within the sets Tu

i and T r
k . Since

both users and robots move within the retirement home throughout the day,
these constraints ensure that their final task plans are properly sequenced and
allow for transition times through the inclusion of the ∆u and ∆r transition
time matrices.

Constraint (4) ensures that, for each user, exactly one robot facilitates the
required telepresence task. Constraint (5) links the user participation bingo game
variables to the robot facilitation variables; the decision for user ui ∈ U to attend
bingo game j ∈ G is bounded by the presence of a robot rk ∈ R facilitating
that game. This constraint also restricts each bingo game to be facilitated by
at most one robot. Constraint (6) enforces the precedence relationship between
user bingo game participation and reminder tasks. Constraint (7) ensures that
if a user is attending a bingo game, he/she must receive exactly one reminder
for that particular bingo game, and zero otherwise.

Constraint (8) ensures that the start times of intersecting tasks between
user and robot schedules are synchronized. We use the StartAtStart constraint
which ensures that, whenever both variables are present, the distance between
their start times, Start(xij)−Start(ykj) = 0. Constraints (9)–(12) represent the
energy-related constraints for each robot. Collectively, these constraints ensure
that the recharge task length and the cumulative function energy level variable,
Ek, stay within specified bounds while using the StepAtStart global constraint
to model the various energy consumptions of the tasks. The term θkj in Eq. (10)
represents the energy consumption (or replenishment) of facilitating task j com-
bined with the energy consumed in travelling to the location of the task from
the previous location in the sequence. Constraint (13) identifies user busy period
tasks as mandatory. Constraints (14) and (15) identify the optionality of the
interval variables, as well as start time domains.

4.2 Mixed-Integer Programming Model

For comparison purposes, we also present a MIP model for the problem as defined
in Fig. 3. The model is based on the formulation for the electric vehicle-routing
problem with time windows (E-VRPTW) [25], treating each of the sets Tu

i

and T r
k as completely-connected graphs with edge-weights representing travel

times between locations. We make extensive use of Miller-Tucker-Zemlin (MTZ)
[26] sequencing constraints to model task start times and robot energy levels
throughout the planning horizon. We extend the E-VRPTW by including task
synchronization constraints, a concept that has been applied within the context
of vehicle routing previously [27], as well as problem-specific inter-schedule task
dependencies (i.e. reminders delivered before bingo games).

546 K.E.C. Booth et al.

We define the decision variables used in the MIP formulation as follows:

xij := (binary) 1 if user ui attends task j and 0 otherwise,
ykj := (binary) 1 if robot rk facilitates task j and 0 otherwise,
αijl := (binary) 1 if task j directly precedes task l for user ui and 0 otherwise,
γkjl := (binary) 1 if task j directly precedes task l for robot rk and 0 otherwise,
φij := (integer) start time of task j in the schedule of user ui,
ψkj := (integer) start time of task j in the schedule of robot rk,
Dkj := (integer) length of task j in the schedule of robot rk,
ϵkj := (integer) energy level of robot rk after completing task j.

Fig. 3. Mixed-integer programming model

Objective (16) is functionally equivalent to the objective of the CP model.
Constraints (17) and (18) represent the node degree constraints for user tasks,
and Constraints (19) and (20) the node degree constraints for robot tasks. Con-
straints (21) and (22) are MTZ sequencing constraints used to determine valid

A CP Approach to MRTA and Scheduling in Retirement Homes 547

start times of user and robot tasks while adhering to task duration and transi-
tion times. Constraint (23) uses MTZ sequencing to model robot energy level,
where energy is consumed or replenished depending on the task sequencing.

Constraint (24) synchronizes the start times of intersecting tasks between
user and robot schedules, necessary for the integration of these task plans. Con-
straint (25) ensures that each user participates in exactly one telepresence task,
and that each of these tasks is facilitated by exactly one robot. Constraint (26)
constrains bingo game facilitation to at most one robot, and ensures user par-
ticipation is bounded by this value. Constraint (27) ensures that if a user par-
ticipates in a bingo game, he/she receives exactly one reminder facilitated by a
single robot.

Constraint (28) defines the length of non-recharge robot tasks to be constant
and Constraint (29) identifies the bounds on variable-length recharge tasks. Con-
straint (30) defines the acceptable bounds on robot battery level and the remain-
der of the model, Eqs. (31)–(33), dictates the domains of the decision variables
as fixed, binary, or positive integer.

4.3 Modeling Considerations

The schedules produced for the users and robots must be temporally synchro-
nized, must accurately model robot and user travel times, and must ensure adher-
ence to the energy capacity of the robots. This section identifies key considera-
tions made when modeling these complex relationships.

Schedule Synchronization. Task synchronization between user and robot
schedules is a primary concern in this problem. While proposed methods for the
single-robot retirement home application [5,28] have accounted for transition
times between robot tasks, they have assumed users travel between locations
instantly. As a result, if a candidate start time for a robot-facilitated task did not
conflict with the availability calendar of that user, the start time was considered
valid (assuming task duration and end time did not pose conflict).

When user movement within the environment is relaxed, straightforward
modeling within CP would utilize the ForbidExtent(var, f) global constraint,
which prevents an interval variable var from overlapping a time point t where
f(t), an integer step function, is equal to 0 [24]. This constraint represents a
natural way to model relationships involving disjoint resource time windows or
calendars, supplementing user-sequencing Constraint (2) within our formulation.
This method of modeling is inaccurate as it does not represent the travel times of
users to and from the locations of subsequent tasks nor break periods. To remedy
this, we include NoOverlap global constraints for both users and robots.

Properly accounting for both user and robot movement within the environ-
ment brings further modeling challenges pertaining to schedule synchronization.
Since user availability is now dependent on spatial transition times in addition
to their calendars, the temporal synchronization of a task involving both a user
and robot on their respective schedules is necessary. This requirement is achieved

548 K.E.C. Booth et al.

within the CP and MIP models using Constraints (8) and (24), respectively. The
modeling presented is then further strengthened by noting that tasks involving a
one-to-one mapping of robots to users (e.g. telepresence and reminder tasks) can
be simultaneously represented on both user and robot schedules. Tasks involving
a one-to-many mapping of robots to users (e.g. bingo game activities) are linked
with the aforementioned synchronization constraints.

Symmetry Breaking. The problem has a number of inherent symmetries due
to the homogenous nature of resources and tasks. We investigate a number of
symmetry breaking options in efforts to reduce the search. These constraints
are formulated in CP, though similar MIP constraints can be expressed with
binary variables. For a given robot, each of the recharging tasks available to it
are identical. Our models, as formulated, treat a single recharge solution using
recharge task, ckj , as functionally different than a solution using recharge task,
ckl, even if the start times and durations of each are the same. These symmetries
can be broken using the following CP constraint to order the use of recharge
tasks:

Pres(ykj+1) ≤ Pres(ykj),∀rk ∈ R, j ∈ Ck \ {ckUB2} (34)

We can also consider breaking symmetries pertaining to bingo game tasks, as
these tasks are also homogeneous. We break these symmetries by enforcing lexi-
cographic ordering within robot facilitation decisions and user participation. We
enforce an ordering on bingo game tasks with the following constraints:

∑
rk∈R Pres(ykj+1) ≤

∑
rk∈R Pres(ykj),∀j ∈ G \ {gUB1} (35)

∑
ui∈U Pres(xij+1) ≤

∑
ui∈U Pres(xij),∀j ∈ G \ {gUB1} (36)

Since bingo game tasks are linked among users and robots, symmetry breaking
can only be expressed over the sum of such variables. As previously noted [29],
symmetry breaking can be counterproductive and delay the discovery of feasible
solutions. We investigate these constraints experimentally in Sect. 6.

5 CP Search Manipulations

As presented in Sect. 6, the initial MIP model exhibits very poor performance
when compared to the initial CP approach. As such, we pursue CP as the more
suitable technology for the given application. In this section we discuss meth-
ods for increasing the performance of the initial CP formulation, using grouped
variable orderings heuristics and large neighbourhood search.

5.1 Grouped Variable Ordering Heuristics

One of the key focuses of this work is to determine if CP can be used to gener-
ate time-extended allocations within realistic timeframes (≤ 5min). In order to
increase the performance of the CP formulation, we conduct a detailed investi-
gation of grouped variable ordering heuristics, specific instantiation orderings of

A CP Approach to MRTA and Scheduling in Retirement Homes 549

groups of variables, to uncover elements of problem structure and help reduce
the search space.

We define groups of variables and then instantiate each group according
to a specified order within the search. Variable groups that appear earlier in
the ordering have all of their elements instantiated before subsequent variables
are considered. For the purposes of our investigation, we consider groups of
variables associated with robot bingo game facilitation, bingo user participa-
tion, user telepresence participation, reminder participation, and robot recharge
tasks. We implement instantiation orderings over variable groups defined as:
V := {{ykg1 , ..., ykgUB1

}, {xig1 , ..., xigUB1
}, {xip1 , ..., xipn}, {ximig1

, ..., ximigUB1
},

{ykck1 , ..., ykckUB2
}} for all robots rk ∈ R and users ui ∈ U . Within these vari-

able groups we investigate orderings on all possible subsets of V of size one and
two (single and double stage). Problem variables not included in the selected sub-
set will be instantiated after those selected. By inspecting Fig. 1, it is clear that
instantiating the set of {ykg1 , ..., ykgUB1

} variables for all rk ∈ R, as detailed
in Constraint (5), will have high impact on other variables and thus may be
promising candidates for early instantiation decisions.

For the first set of experiments, we consider subsets of V of size one resulting
in five orderings. The remainder of the variables are then instantiated using the
default solver strategy. The second set of experiments uses a double-stage search
phase with subsets of size two. We explore all two-stage permutations of decision
variable groups in V, yielding 20 unique group orderings. With this two-stage
assessment we hope to uncover findings pertaining to problem structure that
may not be apparent upon initial inspection.

5.2 Large Neighbourhood Search

Large neighbourhood search (LNS) [10] is a method that combines local search
(LS) with constraint programming (CP). It has proven to be effective for solving
large, complex optimization problems [30]. We implement LNS in order to further
improve solution quality on larger instances of our problem, using a variation of
the time window neighbourhood selection heuristic [30]. Other selection heuristics
that exploit problem-specific structure did not perform as well.

As initial solutions to the global problem are often of low quality, we allot
one minute of run-time to a CP search using our best grouped variable ordering
heuristic to find an incumbent solution. This initial search helps ensure that the
LNS procedure begins with a high-quality solution, ultimately improving the
performance of the method. Next, with variable set N , we unassign all variables
that are: (i) present, and (ii) have start times within the current time window
(initially this window is defined on the closed interval [7:00AM, 10:00AM]). We
fix the remainder of the solution variable start times; the unassigned set is S,
and the fixed set r := N \ S. We solve the resultant problem to try to quickly
find improving solutions, if they exist. The time limit used here is set to 20 s, and
a backtrack limit is enforced to prevent fruitless exploration. If the solution is
improved, we reset the time window to its initial interval, replace the incumbent

550 K.E.C. Booth et al.

solution and repeat. In the event the solution does not improve, we shift our
time window to the right (i.e. later in time) by one hour and repeat the process.
If all time windows, of the current size, are explored without improvement (with
final window [4:00PM, 7:00PM]), we reset the time window to its initial interval,
increase its size by one hour, and repeat. This effectively defines a neighbourhood
selection heuristic that increases in size over time.

6 Experimental Results and Analysis

In this section we present a systematic experimental analysis of our initial models
as well as the search manipulation results for our CP approach. All experiments
are implemented in C++ on a hexacore machine with a Xeon processor and
16GB of RAM running Mac OS X Yosemite. We use CP Optimizer (for CP)
and CPLEX (for MIP) from the IBM ILOG CPLEX Optimization Studio ver-
sion 12.6.2 single-threaded for all simulations with default search and inference
settings unless otherwise noted.

Problem Instances. We consider five instances sizes defined based on the
number of robots, |R|, and users, |U |. These sizes are: 2×5, 2×10, 3×15, 3×20,
4 × 25. These sizes are selected to reflect real-world retirement home problems.
For each problem size we produce 10 unique instances, resulting in an instance set
of 50 problems. Transition matrices, ∆, for each instance are based on randomly
generated travel distances between locations within the facility, satisfying the
triangle inequality (δ(a,b) + δ(b,c) ≥ δ(a,c)). Two mandatory break periods (in
addition to mealtimes) are randomly inserted into user calendars, each with a
duration ranging from 30min to one hour and a randomly assigned start time.
We use |G| = UB1 = 5 available bingo game tasks and |Ck| = UB2 = 3,∀rk ∈ R,
available recharge tasks. We use a 5min run-time limit for all experiments, unless
otherwise noted.

Initial CP and MIP Performance. We ran experiments on the problem
scenarios using the initial CP and MIP formulations presented in Sect. 4 with
default solver settings. CP is able to find feasible solutions for 9/50 problem
instances, as seen in Table 1, while the MIP formulation is not able to find any
feasible solutions. The numerous MTZ sequencing constraints have a poor linear
relaxation strength, largely due to the inclusion of large integer values (i.e., H
and βmax) for disjunctive reasoning. We believe the poor MIP performance is due
to the extensive reliance on these constraints; future work will involve looking
at using generalized subtour elimination [31] to improve algorithm performance.
These experiments strongly suggest that CP is more suitable, of the two methods,
for solving this problem. This finding is in agreement with the conclusions of
previous research on a similar single-robot variant of the problem [5].

A CP Approach to MRTA and Scheduling in Retirement Homes 551

Bounds on Solution Quality. In order to measure the performance of our
methods, we make efforts to determine provable and non-trivial upper bounds
on solution quality. Valid bounds can be determined using the best dual bound
from MIP, however, for these problems MIP is unable to produce non-trivial
bounds within run-times of one hour, even when the problem is relaxed, multi-
threading is permitted, and the search emphasis is set to focus on dual bound
strengthening.

Instead, we use a relaxation of our initial CP formulation, noting that the
relaxation is only a true bound if the solution is proven optimal. The relaxed
formulation is as follows:

{
max

∑

ui∈U

∑

j∈G

Pres(xij) : Constraints (2)−(8), (13)−(15), (35)−(36)
}

(37)

This formulation relaxes the energy component of the problem in both the
objective and constraints, while the remainder of the constraints are enforced.
The set of tasks available to a robot becomes T̄ r

k := T r
k \ Ck. Solver inference

is adjusted to the highest level (extended) in order to increase the amount of
propagation performed at each search node, and symmetry breaking constraints
are included. With these considerations made, the above model is only able to
solve the first ten instances (instance sizes 2× 5 and 2× 10) to proven optimal-
ity within a run-time limit of one hour. The remainder of the instances yield
unproven upper bound estimations.

Numerical Results. We present the performance of the various CP-based
approaches we have investigated in Table 1. CPdefault is the original formula-
tion with default solver settings, CPdefault+SB adds the symmetry breaking
constraints, CPSP1 represents the best performing single-stage variable instan-
tiation strategy, and CPSP1→2 the best performing double-stage instantiation
strategy. To implement grouped variable ordering heuristics within IBM ILOG
CP Optimizer, we use search phases. We conduct 250 experiments (50 × 5) and
1,000 experiments (50× 20), respectively, for the single and double-stage order-
ings, in efforts to deduce the best variable instantiation strategy. CP + LNS
represents the performance of our CP-based time-window LNS approach.

We use mean relative error (MRE) to measure performance, calculated as
follows:

MRE(Ω,0.1) =
∑

f∈F

c∗(f) − c(Ω, 0.1)
|F | × c∗(f)

× 100 (38)

where the MRE for a particular method Ω at 0.1 s, for example, is calculated as
above. The solution c∗(f) represents the upper bound (or upper bound approxi-
mation) obtained by solving the relaxed CP formulation as presented in Formu-
lation (37) for one hour. Problem instances f ∈ F represent problems for which
feasible solutions are found in the 5min run-time limit.

552 K.E.C. Booth et al.

Table 1. CP approach results: mean relative error (%) over time. ‘†’ indicates approx-
imate bound, c∗(f), used for calculation. A value of ‘-’ indicates the approach failed
to find a feasible solution for all ten instances at that run-time. ‘# Inf.’ represents the
number of instances for which no feasible plan was found after 300 s of run-time.

|R|× |U | Approach Run-time (s)

0.1 1 5 10 100 300 # Inf

2× 5 CPdefault 91.2 73.1 36.5 35.4 22.3 20.1 2

CPdefault+SB 97.2 91.5 65.6 55.9 29.9 27.0 2

CPSP1 74.6 50.7 18.4 15.1 0.1 0.1 0

CPSP1→2 89.7 48.0 17.1 15.0 1.3 0.1 0

CP + LNS 74.6 50.7 18.4 15.1 0.1 0.1 0

2× 10 CPdefault - - - - 93.5 91.5 9

CPdefault+SB - - - - - - 10

CPSP1 - 97.8 51.8 45.8 20.6 12.8 0

CPSP1→2 - 89.9 54.0 49.0 22.6 19.8 0

CP + LNS - 97.8 51.5 45.1 22.0 2.8 0

3× 15† CPdefault - - - - - - 10

CPdefault+SB - - - - - - 10

CPSP1 - 99.6 83.2 53.7 32.9 21.7 0

CPSP1→2 - 99.5 65.1 44.8 29.4 25.9 0

CP + LNS - 99.5 82.5 53.3 29.0 13.7 0

3× 20† CPdefault - - - - - - 10

CPdefault+SB - - - - - - 10

CPSP1 - - 97.3 87.4 48.9 41.5 0

CPSP1→2 - - 91.6 76.3 41.2 34.5 0

CP + LNS - - 97.3 87.2 43.4 35.2 0

4× 25† CPdefault - - - - - - 10

CPdefault+SB - - - - - - 10

CPSP1 - - 99.0 91.4 45.1 36.1 0

CPSP1→2 - - 96.2 86.0 47.5 39.8 0

CP + LNS - - 99.3 92.1 45.1 35.6 0

The default CP solver settings struggle to find any solutions for instances
beyond 2 × 5 in size. Furthermore, it would seem that the symmetry breaking
constraints reduce performance. The initial CP formulation without symmetry
breaking is able to find feasible solutions to one 2 × 10 instance, whereas the
symmetry breaking model could not find feasibility for this problem size.

The single stage search phase that performed the strongest involved instan-
tiating the robot bingo game facilitation variables, ykj ∀rk ∈ R; i ∈ G, first as
was previously postulated. Somewhat surprisingly, however, is the substantial

A CP Approach to MRTA and Scheduling in Retirement Homes 553

impact on solver performance compared to the default settings, improving MRE
by ≥ 20% for smaller instances and even more for larger problems. Such an
improvement in MRE translates to a proportional increase in social and cogni-
tive activity participation throughout the course of the day. The best double-
phase instantiation involved fixing user bingo game participation xij variables
first, and then robot bingo game facilitation (as in single stage) variables second.
Referring to the table, double-stage instantiation offers benefit in a number of
areas, particularly for the instances involving one and three robots in time limits
ranging from 5 to 100 s. We note that both instantiation methods find solutions
with just 0.1% MRE for the first instance size. It appears that it becomes dif-
ficult to exploit problem structure past the assignment of bingo game tasks for
this MRTA problem. Instantiating other groups of variables first (e.g., recharge
tasks or reminders) resulted in performance similar to the CP default settings,
although still somewhat stronger.

Due to the first minute spent finding an incumbent, CP with large neigh-
bourhood search (LNS) has better performance in the later run-time limits. The
performance of the method is notably strong at the 300 s run-time limit for
instances 2× 10 and 3× 15, where it outperforms the search phases by a signifi-
cant ≥ 12% MRE. The LNS method uses an instantiation strategy very similar
to CPSP1 for the first minute, and as such the values are very similar for those
run-times. LNS successfully finds the best solution for the largest problem by
the run-time limit, outperforming both search phase methods.

7 Conclusions and Future Work

We applied constraint programming (CP) and mixed-integer programming
(MIP) to the planning and scheduling of multiple social robots within a retire-
ment home. This problem required task allocation and scheduling, aiming to
maximize bingo game participation, while minimizing an energy consumption
component. The proposed approaches reason about disjoint time windows, cross-
schedule precedence relationships, spatial transition times of both users and
robots within the environment, and robot energy consumption/replenishment.

Initial numerical experiments using default solver settings indicate that CP
significantly outperforms MIP for the studied problem. We present methods for
further enhancing CP performance through search manipulations, as well as a
method for generating provable bounds for this problem by solving a relaxed
CP formulation. Specifically, we investigated single and double-stage grouped
variable ordering heuristics, concluding that instantiating the variables related
to bingo game facilitation first has high positive impact on solution quality,
significantly outperforming the default settings of the CP solver. We also imple-
ment a large neighbourhood search (LNS) using a time window variable selection
heuristic. This method significantly outperforms the other approaches for mid-
sized instances, and yields the strongest performance on the largest instances
within the run-time limit. Due to these promising results, we plan to investigate
alternative LNS procedures in future work.

554 K.E.C. Booth et al.

Overall, results indicate that CP is a promising technology for our retirement
home application. The next step is to move from simulation-based experimen-
tation to deployment on real robots. We are integrating the CP solver into our
robot architecture for field trials. In parallel, we are continuing research on the
use of constraint programming in rescheduling and replanning as this will be a
key functionality of the deployed system.

Acknowledgment. The authors would like to thank the Natural Sciences & Engineer-
ing Research Council of Canada (NSERC), Dr. Robot Inc., and the Canada Research
Chairs (CRC) Program.

References

1. De Luca, A.E., Bonacci, S., Giraldi, G.: Aging populations: the health and quality
of life of the elderly. La Clinica Terapeutica 162(1), e13-8 (2010)

2. Francesca, C., Ana, L.-N., Jérôme, M., Frits, T.: OECD Help, Health Policy Studies
Wanted? Providing, Paying for Long-Term Care: Providing and Paying for Long-
Term Care, vol. 2011. OECD Publishing (2011)

3. Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially sassistive
robots in elderly care: a systematic review into effects and effectiveness. J. Am.
Med. Directors Assoc. 13(2), 114–120 (2012)

4. Louie, W.-Y.G., Vaquero, T., Nejat, G., Beck, J.C.: An autonomous assistive robot
for planning, scheduling and facilitating multi-user activities. In: 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 5292–5298. IEEE
(2014)

5. Booth, K.E.C., Tran, T.T., Nejat, J.G., Beck, C.: Mixed-integer, constraint pro-
gramming techniques for mobile robot task planning. Robot. Autom. Lett. 1(1),
500–507 (2016)

6. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Busi-
ness Media, US (2012)

7. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

8. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program.
96(1), 33–60 (2003)

9. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-
ming: a new approach to integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR
2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)

10. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

11. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. In: Proceedings MISTA 2007, Paris, pp. 276–284
(2007)

12. Parker, L.E.: L-alliance: task-oriented multi-robot learning in behavior-based sys-
tems. Adv. Robot. 11(4), 305–322 (1996)

13. Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through nego-
tiated task allocation and achievement. In: Proceedings of the 1999 IEEE Inter-
national Conference on Robotics and Automation, vol. 2, pp. 1234–1239. IEEE
(1999)

A CP Approach to MRTA and Scheduling in Retirement Homes 555

14. Dias, M.B., Stentz, A.: Traderbots: a market-based approach for resource, role,
and task allocationin multirobot coordination. Robotics Institute, Carnegie Mellon
University, Pittsburgh,PA, Tech. Rep. CMU-RI-TR-03-19 (2003)

15. Gerkey, B.P., Matari, M.J.: Sold!: auction methods for multirobot coordination.
IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

16. Liu, L., Michael, N., Shell, D.: Fully decentralized task swaps with optimized local
searching. In: Proceedings of Robotics: Science and Systems (2014)

17. Korsah, G.A., Kannan, B., Browning, B., Stentz, A., Dias, M.B.: xbots: an app-
roach to generating and executing optimal multi-robot plans with cross-schedule
dependencies. In: 2012 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 115–122. IEEE (2012)

18. Van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming.
ACM Comput. Sur. (CSUR) 28(4), 701–726 (1996)

19. Nareyek, A., Freuder, E.C., Fourer, R., Giunchiglia, E., Goldman, R.P., Kautz,
H., Rintanen, J., Tate, A.: Constraints and AI planning. IEEE Intell. Syst. 20(2),
62–72 (2005)

20. Goldman, R.P., Haigh, K.Z., Musliner, D.J., Pelican, M.J.S.: Macbeth: a multi-
agent constraint-based planner [autonomous agent tactical planner]. In: Proceed-
ings of the 21st Digital Avionics Systems Conference, vol. 2, p. 7E3-1. IEEE (2002)

21. Doniec, A., Bouraqadi, N., Defoort, M., Le, V.T., Stinckwich, S.: Distributed con-
straint reasoning applied to multi-robot exploration. In: 21st International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2009, pp. 159–166. IEEE (2009)

22. Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a
review. Gerontechnology 8(2), 94–103 (2009)

23. Vaquero, T., Mohamed, S.C., Nejat, G., Beck, J.C.: The implementation of a plan-
ning and scheduling architecture for multiple robots assisting multiple users in a
retirement home setting. In: Artificial Intelligence Applied to Assistive Technolo-
gies and Smart Environments (AAAI 2015) (2015)

24. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol.
5547, pp. 148–162. Springer, Heidelberg (2009)

25. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with
time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

26. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)

27. Drexl, M.: Synchronization in vehicle routing-a survey of VRPS with multiple
synchronization constraints. Transp. Sci. 46(3), 297–316 (2012)

28. Louie, W.-Y.G., Li, J., Vaquero, T., Nejat, G.: A focus group study on the design
considerations, impressions of a socially assistive robot for long-term care. In: 2014
RO-MAN: The 23rd IEEE International Symposium on Robot, Human Interactive
Communication, pp. 237–242. IEEE (2014)

29. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

30. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J.
Math. Mod. Algorithms 8(3), 245–270 (2009)

31. Booth, K.E.C., Tran, T.T., Beck, J.C.: Logic-based decomposition methods for
the travelling purchaser problem. In: Quimper, C.-G., Cavallo, M. (eds.) CPAIOR
2016. LNCS, vol. 9676, pp. 55–64. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33954-2 5

http://dx.doi.org/10.1007/978-3-319-33954-2_5
http://dx.doi.org/10.1007/978-3-319-33954-2_5

Optimal Performance Tuning in Real-Time
Systems Using Multi-objective Constrained

Optimization

Stefano Di Alesio(B)

Certus Centre for Software Verification and Validation,
Simula Research Laboratory, Lysaker, Norway

stefano@simula.no

Abstract. Real-Time Embedded Systems (RTES) in safety-critical
applications have to meet strict performance requirements to be deemed
safe for operation. The satisfaction of these requirements at runtime
often depends on configuration parameters that regulate how software
tasks interact with hardware sensors and actuators. Tuning performance-
related parameters is usually a manual, time-consuming, and error-prone
process. This is because these parameters and their values define a large
space of system configurations, and evaluating how each configuration
affects the performance often requires executing the whole system. In
this paper, we express RTES performance tuning as a multi-objective
Constrained Optimization Problem (COP) over the configuration space
that captures the dependencies between configuration parameters and
performance requirements. In this way, the COP solutions character-
ize configurations predicted to maximize the satisfaction of performance
requirements, and can in turn be used as guidelines for optimal perfor-
mance tuning. We develop the COP as an OPL model for IBM ILOG
CP Optimizer, and validate our approach on a safety-critical I/O drivers
system from the maritime and energy domain. The validation shows that
our approach identifies within half an hour configurations characterized
by tasks delay times that minimize deadline misses, response time, and
CPU usage.

1 Introduction: Performance Tuning in Safety-Critical
Systems

Failures in safety-critical systems, such as those in the energy, transport, and
healthcare domains, could result in catastrophic consequences [18]. Therefore,
the safety-related software components of these systems are usually subject to
strict performance requirements involving real time and resources utilization
constraints [27]. In particular, three performance requirements that are common-
place in safety-critical systems concern task deadlines, response time, and CPU
usage [25]. Specifically, task deadlines state that the system tasks should always
terminate before a given completion time, entailing that even a single deadline

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 556–574, 2016.
DOI: 10.1007/978-3-319-44953-1 35

Optimal Performance Tuning in Real-Time Systems 557

miss severely compromises the system operational safety. Response time require-
ments specify that, in order for the outputs to be valid, the system should react
to external inputs within a specified time. Finally, CPU usage constraints state
that the system should always keep a certain percentage of free CPU time, to
avoid that high computational load prevents the system from timely responding
to safety-critical alarms.

However, safety-critical systems are progressively relying on Real-Time
Embedded Systems (RTES), where software applications interact with the envi-
ronment through sensors and actuators [23]. In complex RTES, the software
components communicate with a large number of different devices. In particu-
lar, RTES have to ensure a smooth data transfer between hardware devices and
software components. This is especially true in safety-critical systems, where
external data should always be processed in brief time to guarantee a prompt
reaction to critical events [35]. Therefore, the timing of RTES tasks can be
configured to correctly operate with the specific devices connected. Nonethe-
less, tuning these timing properties without violating performance requirements
is complicated by two main factors [17]. First, the task parameters related to
temporal properties, such as delay times, offsets, and periods, range in a large
domain of values. Second, the impact specific parameter values have over the
system performance is hard to evaluate without executing the whole system.
This is because RTES typically run on a preemptive Real-Time Operating Sys-
tem (RTOS) which may preempt a task execution in order to run an incoming
higher priority task. Therefore, a minimal variation in a single task timing may
trigger unpredictable interactions between other tasks [11].

As a consequence, it is often practice in industry to tune parameters related
to RTES performance manually, based on the engineers expertise and knowledge
of the system. This renders the process of tuning these performance-related para-
meters significantly time-consuming and error-prone [42]. Traditionally, system-
atic approaches for analyzing the RTES performance properties rely on Schedul-
ing Theory [37], which is often based on unrealistic assumptions on the target
system [3]. On the other hand, Model Checking [1] has been successfully pro-
posed as an alternative for performance analysis and tuning [10], even though its
scalability has to be further investigated due to the well-known state explosion
problem [9]. Approaches based on metaheuristic search have also been proposed
for identifying configuration parameters likely to satisfy performance require-
ments on CPU usage [29]. However, previous work in the field of software stress
testing [14] suggests that complete search strategies, such as those based on Con-
straint Programming (CP), can potentially find solutions closer to the global
optimum than meta-heuristics such as Genetic Algorithms (GA), and hence are
worth being considered also in the context of performance tuning.

In this paper, we propose a methodology, based on Constrained Optimization,
to help engineers tune performance-related parameters of RTES. The key idea
behind our work is to identify scenarios where tasks finish their execution as
far as possible from their deadlines, and exhibit low response time and CPU
usage. Such scenarios are determined by the way tasks are scheduled to execute

558 S. Di Alesio

at runtime by the RTOS. The task schedules depend in turn on the value of
system timing parameters, on constraints derived from software design, and on
the execution platform. Therefore, we propose a strategy to find combinations
of timing properties that maximize the satisfaction of performance requirements
on deadline misses, response time, and CPU usage. We characterize each of these
combinations by a set of task delay times, and we refer to each set of delay times
as a configuration.

2 Motivating Case Study: The Fire and Gas Monitoring
System

The motivation behind our work originates from a case study in the maritime
and energy domain concerning a Fire and Gas Monitoring System (FGMS). The
system monitors potential gas leaks in off-shore oil extraction platforms, display-
ing to human operators data coming from smoke, heat, and gas flow sensors. In
case a fire is detected, the FGMS triggers audio/visual alarms, activates the
fire sprinklers, shuts down ongoing processes, and isolates electrical equipment.
The software architecture of the system consists of drivers and control modules,
as shown in Fig. 1a. Drivers support I/O communication between the software
components and the operating environment, which consists of hardware sensors
and actuators. Control modules implement the application logic of the FGMS,
processing operational commands coming from the environment and accordingly
deciding the actions to perform. The FGMS software components are executed
by the RTOS VxWorks1, which is configured with a fixed-priority preemptive
scheduling policy on a tri-core computing platform.

We point out three main context factors that influence our formulation of the
performance tuning problem in the FGMS. (1) In this paper, we do not consider
FGMS-level performance requirements, which require considering interactions
between drivers, control modules, and external hardware. On the other hand,
we limit our scope to driver-level requirements, for which it is only necessary to
consider the drivers subsystem. To avoid confusion, in the rest of this paper we
will refer to the FGMS drivers as the system under investigation. (2) Different
instances of a given driver are independent, i.e., they do not communicate with
one another and do not share memory. For this reason, in this paper we focus
on a single driver instance and do not consider interactions between them. (3)
The FGMS performance profiling logs indicate that task deadlines, response
time, and CPU usage of the drivers are not significantly affected by memory
allocation activities such as garbage collection and data transfer operations on
storage peripherals. For this reason, we do not consider the impact of memory
usage on the drivers performance.

Drivers in the FGMS share the same design pattern, consisting of two peri-
odic tasks, (PullData and PushData), and one singular task (IODispatch), which
is executed only once during the drivers execution. The tasks communicate

1 http://www.windriver.com/products/vxworks.

http://www.windriver.com/products/vxworks

Optimal Performance Tuning in Real-Time Systems 559

(a) Software architecture of the FMS (b) Typical drivers data transfer scenario

Fig. 1. Description of the Fire and Gas Monitoring System

through three fixed capacity buffers with mutually exclusive access, namely
BoxIn, Queue, and BoxOut. Figure 1b shows how the three tasks collaborate
in the typical operating scenario, that is a unidirectional data transfer between
hardware sensors and control modules. (1) PullData periodically receives data
from sensors or human operators through the pull signal, formats the data in
an appropriate command form, and (2) writes it in BoxIn. (3) IODispatch reads
the buffer, extracts the commands from the data, and (4) stores them in the
priority Queue. After a given delay time, (5) IODispatch reads the highest pri-
ority command and (6) writes it to BoxOut. When the periodic push signal (7)
activates PushData, the task (8) reads the commands from BoxOut and finally
(9) sends them to the control modules for processing. Note that IODispatch is
executed when the drivers are initialized, and encloses within an infinite loop
four sequential read/write activities. In particular, the two activities writing in
Queue and BoxOut are followed by delay times, implemented as sleep calls in the
drivers source code. In particular, the delay times may vary during the IODis-
patch loop iterations, allowing the drivers to send data to the control modules
at a variable rate. This design is meant to ensure that the FGMS data flow is
slow enough to avoid overloading the computational resources, but fast enough
to ensure prompt reaction to critical events.

The data transfer functionality is subject to strict performance requirements.
Specifically, in each driver instance, (1) no task should miss its deadline, (2) the
response time should be less than one second, and (3) the average CPU usage
should be below 20%. The main variables determining whether or not these
requirements will be satisfied at runtime are the delay times after the write
activities of IODispatch. Indeed, if the delay times are too short, IODispatch is
running continuously and keeps the CPU busy, eventually exceeding the 20%
usage threshold. On the other hand, if the delay times are too large, PullData
may fill up BoxIn, and be blocked waiting for IODispatch to empty the buffer.
As a result, PullData is not able to terminate before the next pull signal arrives,
missing its deadline. In general, it is hard to predict whether a set of delays in
IODispatch will break deadlines in other tasks, or will make the driver exhibit

560 S. Di Alesio

high response time or CPU usage at runtime. This is because the delay deter-
mines the arrival time of the activities in IODispatch, which in turn can preempt
or be preempted by other tasks. Note that, however, the delay times of the IODis-
patch iterations are tunable parameters that engineers can set when configuring
the drivers.

3 Related Work

The increasing complexity in RTES software and hardware architecture renders
analyzing and estimating performance properties in RTES increasingly challeng-
ing [27], especially in safety-critical domains, where performance issues can impact
the system behavior more than incorrect functionality [40]. In RTES, performance
properties have been traditionally analyzed through verification approaches, such
as SchedulingTheory [37] andModelChecking [1].Theorems fromSchedulingThe-
ory are limited to providing sufficient or necessary conditions for a set of tasks to
be schedulable, and are often based on unrealistic assumptions on the target sys-
tem [3]. On the other hand,Model Checking approaches analyze time-related prop-
erties, such as task deadlines and resource usage, by proving reachability prop-
erties in state machines [10]. However, Model Checking requires complex formal
modeling of the system, which is not always available for large systems and often
leads to the state explosion problem [9]. Our experience suggests that, in several
industrial contexts, RTES are developed by relatively small-sized teams consist-
ing of developers with several years of expertise in their domain. This development
strategy increases productivity by reducing the communication overhead [16], but
can potentially come at the cost of overlooking the need of systematic performance
analysis. This usually happens in systems with long lifespan, whose core function-
alities undergo only minor updates over the years and are hence deemed stable. In
such systems, performance tuning is mostly addressed by human expertise, which
in turn relies on profiling and benchmarking tools that dynamically analyze perfor-
mance properties [22]. Such tools, however, can only provide a rough performance
assessment limited to a small number of system executions, which have to be man-
ually investigated [42].

The use of search-based approaches to find optimal configuration parameters
originates from the domain of control systems [39], where Genetic Algorithms
(GA) have been applied to tune the performance of Proportional-Integrative-
Derivative (PID) controllers [20]. In the context of Real-Time Systems, GA have
been used to generate scenarios characterized by reproducible environmental con-
ditions that push the system to break task deadlines [6]. These approaches have
inspired the use of metaheuristic search to derive configuration parameters that
are predicted to minimize the CPU usage [29]. In particular, Non-dominated Sort-
ing GA (NSGA) have been used to identify task offsets that yield an optimal trade-
off between CPU usage and requirements specifying groups of tasks that have to
be executed within short time [30]. Even though these approaches have only been
applied in the context of Static Cyclic Scheduling (SCS), which is non-preemptive,
they represent the closest related work to that presented in this paper.

Optimal Performance Tuning in Real-Time Systems 561

Previous work [14] in the area of stress testing suggests that, when compared
to GA, Constraint Programming (CP) can find task schedules closer to the global
optimum, and is hence worth investigating also in the context of performance
tuning. For schedulability analysis, CP approaches [4] have been used since long
time, especially in the domain of job-shop scheduling [26]. Among those, several
approaches target task real-time constraints such as task deadlines [19], or time-
liness [28]. Preemptive scheduling problems have also been approached with pure
CP [7], and with hybrid approaches combining CP with GA [43]. The most recent
implementations have successfully used both CP and Mixed Integer Program-
ming (MIP) to solve priority-driven scheduling problems, albeit not addressing
task preemption [24]. However, we are unaware of CP approaches targeted to the
generation of software configurations predicted to satisfy performance require-
ments, and in particular of approaches addressing all the complexities of RTES
such as multi-core architectures, task dependencies and triggering relationships,
and priority-based preemptive scheduling policies.

4 Performance Tuning with Constrained Optimization

The approach presented in this paper extends earlier work [13,31] for deriving
test cases exercising CPU usage and task deadlines requirements of multi-core
RTES. Specifically, the approach has been adapted to derive configurations char-
acterized by task delay times that maximize the satisfaction of requirements
on their deadlines, response time, and CPU usage. In particular, we cast the
search for these delay times as a multi-objective Constraint Optimization Prob-
lem (COP). The COP models a preemptive priority-based task scheduler with
fixed priorities, task triggering, and dependencies on shared resources. The COP
is derived from earlier work on generating stress test cases for RTES [15], and
the key idea behind its formulation relies on four main points. (1) We model
the system design, which is static and known prior to the analysis, as a set of
constants. The system design consists of the tasks of the real-time application,
their dependencies, offsets, periods, durations, deadlines, and priorities. (2) We
model the system properties that depend on runtime behavior, and those that
are configurable parameters, as a set of variables. The main real-time property
in the first category is the specific runtime schedule of the tasks. Configurable
properties, which are the output variables of the model, are instead the delay
times between task activities. (3) We model the RTOS scheduler as a set of
constraints among such constants and variables. Indeed, the RTOS scheduler
periodically checks for triggering signals of tasks and determines whether tasks
are ready to be executed or need to be preempted. (4) We model the perfor-
mance requirements the system must satisfy (i.e., task deadlines, response time,
or CPU usage) as objective functions to be minimized. By design, each solution
of our COP is a sequence of task delay times, which in turn characterizes a
configuration.

Our analysis is subject to two assumptions. (1) The RTOS scheduler checks
the running tasks for potential preemptions at regular and fixed intervals of time,

562 S. Di Alesio

called time quanta. Therefore, each time value in our problem is expressed as
a multiple of a time quantum. (2) The interval of time in which the scheduler
switches context between tasks is negligible compared to a time quantum. We
found these two assumptions to be commonplace in several RTES, as the schedul-
ing rate of operating systems varies in the range of few milliseconds, while the
time needed for context switching is usually in the order of nanoseconds [33].
These assumptions allow us to consider time as discrete in our analysis, and
model the COP as an Integer Program (IP) over finite domains.

We implemented the COP in the Optimization Programming Language
(OPL) [38], and solved it with IBM ILOG CPLEX CP Optimizer2. This
choice was motivated by practical reasons, such as its extensive documentation,
strong supporting community, and acknowledged efficiency to solve optimization
problems. Note that we could not express a preemptive priority-driven schedul-
ing problem in an effective way that exploited the solver capabilities of working
with task intervals [8], and hence we implemented our COP as a traditional IP.
In the following, we describe our constraint model (Sect. 4.1), and how to use it
to model infinite loops of activities separated by a delay time (Sect. 4.2).

4.1 Description of the Constrained Optimization Problem

Constants. As explained before, we consider time as discretized in time quanta.
Therefore, we define the observation interval T as an integer interval of length
tq , i.e., T def= [0, tq − 1], representing the time interval during which we observe
the system behavior. Each time value t ∈ T is a time quantum. We define c
as the number of cores in the execution platform, representing the maximum
number of tasks that can be executed in parallel, J as the set of tasks of the
system, and R as the set of resources shared by such tasks. Each resource r ∈ R
is typically implemented as a buffer, and serves as a mechanism to store data for
synchronous and asynchronous communication between tasks. Each task j ∈ J
has a set of static properties, whose values are part of system design and known
prior to the execution of the system. These static properties are defined in Real-
Time Scheduling Theory [34], and comprehend the task priority pr j , period pej ,
offset of j , deadline dl j , and number of task executions tej . In particular, we
refer to the kth execution of task j as the couple (j, k − 1). In this way, the first
execution of j is the couple (j, 0). The offset and period determine the number
of task executions so that tej =

⌊
tq−of j

pej

⌋
. For simplicity, we define the interval

Kj of executions of task j as Kj
def= [0, tej − 1], so that, in the context of a given

j, k ∈ Kj . We also consider the duration dr j of tasks as a constant equal to
the task Worst Case Execution Time (WCET), which can be estimated through
different techniques both statically, using the system design, and dynamically,
by measuring execution times [41]. In our context, the WCET is estimated by
selecting the worst-case time across several executions of the system. Note that
considering the duration of each task as its WCET is a common practice when

2 http://www.ibm.com/software/commerce/optimization/cplex-cp-optimizer/.

http://www.ibm.com/software/commerce/optimization/cplex-cp-optimizer/

Optimal Performance Tuning in Real-Time Systems 563

analyzing task real-time properties [17]. We refer to the dth time quantum of the
task execution (j, k) as the triple (j, k, d − 1). For simplicity, we also define the
interval Dj of duration time quanta of a task as Dj

def= [0, dr j − 1], so that, in
the context of a given j, d ∈ Dj . Finally, we also define as constants the tasks
triggering relation tg , and read (write) dependency relation rd (wr). The former
is an irreflexive and antisymmetric binary relation over J×J , where tgj1,j2 holds
if the event triggering j2 occurs when j1 finishes its execution, plus a possible
delay. The latter are binary relations over J × R, where rd j,r (wr j,r) holds if
j reads data from (writes data to) r during its execution. Note that tasks in a
dependency relation cannot be executed in parallel nor can preempt each other,
but one can execute only after the other has released the lock on the resource.

Variables. Tasks in J also have a set of dynamic properties, whose values depend
on the runtime behavior of the system, and hence are not known prior to the
analysis. Indeed, the values for these variables are calculated during the search,
and represent the output data of the COP. In the context of constraint solving,
variables whose domain values define the search space are said to be indepen-
dent or decision variables [21]. Indeed, the goal of a constraint solver is to assign
values for the independent variables that satisfy all the constraints, optimizing
an objective function when specified. In our model, the independent variables
characterize configurations in terms of the delay time that trigger the task exe-
cutions. The independent variables of our model, marked with a single dot (·),
are the time quanta ȧcj,k,d where the system tasks are active and executing,
the arrival times ȧtj,k of triggered task executions, and their delay times ḋyj,k.
All these variables have domain in T . In particular, we refer to the set of all
ȧc variables as the schedule produced by the arrival times of tasks in J . Note
that the arrival times of periodic tasks are constant, and determined by the
task period and offset: ȧtj,k = of j + k · pej . In addition to these independent
variables, we also define dependent variables, whose value is defined by a math-
ematical expression of independent variables and constant values. Dependent
variables, marked with a double dot (··), simplify our notation by allowing us
to easily formulate constraints and objective functions. For example, we define
as dependent variable the start and end time of tasks s̈tj,k and ënj,k, i.e., the
first and the last time quantum in which (j, k) is executing: s̈tj,k

def= ȧcj,k,0 and
ënj,k

def= ȧcj,k,drj−1 +1. In particular, the end times of tasks allows to define the
deadline miss d̈mj,k of a task execution as the amount of time by which (j, k)
missed its deadline: d̈mj,k

def= ënj,k − (ȧtj,k + dl j). We also define the system
load l̈d t as the number of tasks active at time t: l̈d t

def=
∑

j,k,d(ȧcj,k,d = t). Note
that (äcj,k,d = t) is a boolean variable that is evaluated to 1 when true, and
to 0 when false. Furthermore, the dependent variables include the preempted
time quanta p̈mj,k,d of task executions, defined as the number of time quanta
for which (j, k) is preempted for the dth time: p̈mj,k,d

def= ȧcj,k,d − ȧcj,k,d−1 − 1,
and the waiting time ẅtj,k of task executions, defined as the amount of time
for which (j, k) has to wait after its arrival time before starting its execution:
ẅtj,k

def= s̈tj,k − ȧtj,k. The preempted time quanta and the waiting time allow us

564 S. Di Alesio

to easily formulate constraints specifying that tasks should only be preempted by
higher priority tasks, and should postpone their starting time only when they are
locked on a shared resource, or waiting for data to be written, or because there
is no processing core available. Finally, we define the resource status indicator
r̈sr,t as a binary variable indicating whether the resource r is full or empty at
time t. For any pair of executions of two tasks j1 and j2 which respectively read
and write r, r̈sr,t has value 1, i.e., the resource is full and ready to be accessed
for read operations, between the end of j2 and the end of j1, and has value 0,
i.e., the resource is empty and cannot be accessed for read operations, otherwise:
∀j1, j2 ∈ J, k ∈ Kj1 ∩ Kj2 , r ∈ R, t ∈ T · rd j1,r ∧ wr j2,r

r̈sr,t
def=

{
1 if t ∈ [ënj2,k, ënj1,k]
0 otherwise

The resource status indicator allows us to easily formulate constraints specifying
that tasks can only write to empty buffers, and read from full buffers.

Constraints. We define five sets of constraints which model task runtime inter-
actions, i.e., locks and preemptions, and the way in which the RTOS scheduler
executes these tasks based on their triggering and dependency relations. In this
paper, we only report shortened expressions of constraints, labeled with the letter
γ, as their rigorous mathematical formulation is part of previous work [15]. Well-
formedness constraints specify relations among variables that directly follow
from their definition in the schedulability theory. For example, well-formedness
constraints state that each task execution starts after its arrival time, and ends
after the task duration dr (γ1 : ȧtj,k ≤ s̈tj,k ≤ ënj,k − dr j). Furthermore, note
that resources may be shared between more than two tasks. This entails that
more than one task execution can be locked on a given resource at any time. In
RTES, task queues regulate the access of a resource by multiple locked tasks. In
our COP, these task queues are modeled through a well-formedness constraint
stating that if task j2 is ready to be executed at the same time as a lower-priority
task j1, j2 starts first: (γ2 : ȧtj1,k1 = ȧtj2,k2 ←→ s̈tj2,k2 ≤ s̈tj1,k1). Temporal
ordering constraints specify the relative ordering of tasks based on their depen-
dency and triggering relations. In particular, these constraints state that the a
task j2 triggered by j1 arrives after the delay of j1, counted from when j1 ends
(γ3 : ënj1,k + ḋyj1,k = ȧtj2,k). Furthermore, temporal ordering constraints state
that the executions of two dependent tasks j1 and j2 cannot overlap, i.e., that one
can only start after the other has ended (γ4 : ënj1,k1 ≤ s̈tj2,k2 ∨ ënj2,k2 ≤ s̈tj1,k1).
Finally, these constraints state that (1) a task cannot write to a full buffer, i.e.,
that the start time of a task j writing on a resource r has to occur when r is
empty (γ5 : r̈sr,s̈tj,k = 0), and that (2) a task cannot read from an empty buffer,
i.e., that the start time of a task j reading from a resource r has to occur when
r is full (γ6 : r̈sr,s̈tj,k = 1). Multi-core constraints capture the concurrent nature
of the computing platform, stating that no more than c tasks can be active at
any time (γ7 : l̈d t ≤ c). Preemption constraints capture the priority-driven pre-
emptive scheduling of the RTOS, stating that each task should be preempted

Optimal Performance Tuning in Real-Time Systems 565

when a higher priority task is ready to be executed and no cores are available.
Finally, scheduling efficiency constraints ensure that tasks are not preempted
unnecessarily and are executed as soon as possible.

Objective Functions. We formalize three objective functions representing task
deadlines, response time, and CPU usage. The functions are minimized in a
multi-objective optimization problem, in a way that solutions of the COP charac-
terize scenarios approaching optimal tradeoffs between the objective values. Note
that, even though the performance requirements specify a maximum threshold
on the value of task deadlines, response time, and CPU usage, the value of these
properties is not bound by any constraint in the COP. Therefore, the search
process might initially find solutions that satisfy the constraints, but whose
objective value is greater than the threshold expressed by the requirements.
However, our COP is based on estimates of the tasks WCET, which might be
over-pessimistic. For this reason, the delay times characterized by these solu-
tions might not violate the performance requirements at runtime, and hence
are worth looking at during configuration. Nevertheless, the COP minimizes
the objective functions representing the performance requirements, because the
lower the objective values, the higher the confidence that the system achieves
a satisfactory performance. We define the CPU usage function FCU that mod-
els the system CPU usage: FCU

def=
∑
t∈T

(l̈d t > 0)
/
tq. FCU measures the average

CPU usage of the system over T as the percentage of T where at least one core
is busy. We define the deadline misses function FDM that models the require-
ment on task deadlines: FDM

def=
∑
j,k

2 d̈mj,k . To ensure that tasks completing in

short time do not overshadow deadline misses, FDM assigns to d̈m an expo-
nential contribution towards the sum [14]. Recall that d̈mj,k is positive if the
task execution (j, k) misses its deadline, and negative otherwise. Finally, we also
define the response time function FRT that models the system response time.
In traditional scheduling, the response time measures the maximum length in
time quanta of the task schedule restricted to a single execution. This means
that the response time is the maximum time between the kth arrival time of a
task, and the kth end time of a possibly different task. The response time is also
traditionally known as makespan [32].

FRT
def= max

j1,j2∈J, k∈Kj2∪Kj2

(
ën(j1, k) − ȧt(j2, k)

)

4.2 Modeling Task Activities and Infinite Loops

In task scheduling, a task j consists of a vector [a0, a2, . . . an−1] of n activities ai
executed sequentially. At the lowest level of abstraction, an activity is a single
statement in a task source code. For this reason, several task properties defined
in Sect. 4.1 can also be considered at activity-level. For example, the duration
of an activity is its WCET, while its priority is equal to the priority of its task.
In particular, the delay time of an activity ai is the minimum time that has to

566 S. Di Alesio

elapse, not considering preemptions, between the completion of ai and the start
of ai+1. Since activities are executed sequentially, the arrival time of an activity ai
is the time when the preceding activity ai−1 finishes executing, plus the delay of
ai−1. Task interactions can also be considered at activity-level, as activities may
depend on, or trigger other activities in different tasks. For instance, an activity
may trigger another activity of a waiting task by sending a specific message to
that task, or can launch a new task by triggering its first activity. Therefore, a task
j = [a0, a1, . . . an−1] with priority p consisting of n activities ai can be considered
for scheduling purposes as a vector [j0, j1, . . . jn−1] of n tasks with priority p, where
the duration of ji is equal to the duration of ai, and where ji triggers ji+1. In this
case, each task ji inherits the dependencies and triggering relationships of the cor-
responding activityai. Note that this property holds under the assumption that the
RTOS overhead for managing tasks in negligible compared to their execution and
interarrival times. This assumption has proven to be realistic in most RTES [36].

Fig. 2. Emulation of the loop in IODispatch
through five tasks

Given this mapping between
activities and tasks, we can model
tasks enclosing activities in infinite
loops, such as IODispatch (Fig. 1b).
Consider the task j = [a0, . . . an−1],
where the n activities are enclosed
in an infinite loop. j can be mod-
eled through a vector of n+1 tasks
[j′
0, j0 . . . jn−1]. In the vector, j′

0 and
j0 both correspond to a0, and each
other task ji corresponds to the
activity ai. Each task in the vec-
tor has the same duration, priority,
and dependencies of its correspond-
ing activity. Each task triggers the
following one forming a triggering
chain, with the exception of j′

0 that triggers j1, and jn−1 that triggers j0.
Note that, if all the activities in j are enclosed in an infinite loop, the task
j′
0 is necessary in order to ensure that the COP is feasible. Consider indeed
the alternative of modeling j through the tasks j0 . . . jn−1, with each task
triggering the following one and jn−1 triggering j0. Recall that a triggered
task execution arrives after when its triggering execution finishes, plus a pos-
sible delay. This is specified by the temporal ordering constraint γ3 intro-
duced in Sect. 4.1. Therefore, a circular dependency of tasks triggering each
other would render the model infeasible, because the first arrival time of j0
would depend from a previous execution of jn−1 that never happened. This
means that the temporal ordering constraint above would result in a non well-
defined recursion, i.e., a recursion with no base case. To overcome this issue,
we model the first execution of a0 as a separate task, namely j′

0. j′
0 is a singu-

lar task, i.e., a periodic task whose period is equal to the observation inter-
val T , and hence is only executed once during the system execution. After
finishing, j′

0 triggers j1, emulating a0 triggering for the first time a1 in j.

Optimal Performance Tuning in Real-Time Systems 567

Fixing the first arrival time of the first activity executed during the loop allows
the solver to find the arrival times of subsequent activities by unrolling the task
executions in the triggering chain. Figure 2 shows how the loop in IODispatch
is modeled through five tasks, namely Init, IOBoxRead (IOBR), IOQueueWrite
(IOQW), IOQueueRead (IOQR), and IOBoxWrite (IOBW). In the figure, the
numbers within the rectangles on the lifeline show the correspondence between
activities and tasks.

5 Industrial Experience: Context, Process, Results,
and Discussion

The work reported in this paper originates from the collaboration over the years
with Kongsberg Maritime (KM)3, a leading company in the production of sys-
tems for positioning, surveying, navigation, and automation of merchant vessels
and offshore installations. When developing the software components of their
real-time systems, KM faces significant challenges which have motivated our
research. Therefore, the main goal of our industrial evaluation is to investigate
whether CP can effectively support performance tuning in an industrial con-
text. This aspect depends on whether we can conveniently use the output of
our analysis, i.e., the values for the delay time variables in the COP, to derive
configurations that satisfy the system performance requirements. In particu-
lar, we investigate this practical usefulness through two main factors. First, we
note how, for practical use, performance tuning has to accommodate time and
budget constraints. Therefore, we analyze the efficiency of our approach, i.e.,
the time needed to generate delay times predicted to satisfy the performance
requirements. Second, recall from Sect. 2 that requirements on task deadlines
and response times often conflict with thresholds on the CPU usage, because it
is hard to achieve shorter task completion times without over-utilizing the CPU.
In practice, the goal of performance tuning in the FGMS is finding safe margins
in which delay times yield a trade-off between conflicting performance require-
ments without violating them. For this reason, we also analyze the effectiveness
of our approach, i.e., the capability of the generated delay times to lead to sce-
narios achieving such satisfactory trade-off between performance requirements.

Experimental Design. Recall from Sect. 2 that we characterize system config-
urations by delay times between activities in the IODispatch task of the FGMS
drivers. Therefore, such delay times are the main independent variables in our
constraint model (Sect. 4). We performed an experiment with the FGMS drivers
using an observation interval T of five seconds, assuming, in accordance with
the specification of the RTOS executing the FGMS, time quanta of 10ms. The
search for optimal solutions was driven by a lexicographic multi-objective opti-
mization. In lexicographic ordering, the first criterion is considered as the most
important one, so that its improvement is worth any loss on the other criteria.
The second criterion is the second most important, so that only losses on the first
3 http://www.km.kongsberg.com.

http://www.km.kongsberg.com

568 S. Di Alesio

criterion are not allowed for its improvement, and so on. Using multi-objective
optimization allows us to identify a Pareto-optimal frontier of solutions that are
non-dominated, i.e., solutions x∗ for which no other solution x exists such that
x has a better objective value than x∗ for all the criteria. The solutions in the
frontier achieve an optimal trade-off between the search criteria, because any
solution with a better objective value for one criterion has a worse objective
value for at least another criterion. Investigating solutions in the Pareto frontier
is particularly useful to evaluate trade-offs of conflicting optimization criteria,
such as FRT and FCU .

We run our model for six times, one for each lexicographic permutation of
FDM , FRT , and FCU . Each run was performed on an Amazon EC2 m2.xlarge
instance4 with a timeout of two hours, after which the solver was instructed to
terminate. We also recorded the computation times of the first solutions pre-
dicted to satisfy FDM , FRT , and FCU . Consistent with the terminology used in
Integer Programming, we refer to these (sub)optimal solutions as incumbents [2].
The COP consisted of approximately 500 variables and one million constraints,
and used up to 10GB RAM during resolution.

Results and Discussion — Efficiency. Figure 3 shows 18 graphs reporting
the experimental results for the six runs. The graphs are organized in a matrix,
where each row corresponds to an objective function (FCU , FDM , and FRT ,
respectively), and each column corresponds to a run. Runs are reported in the
format XX-YY-ZZ, where each group of two letters corresponds to an optimiza-
tion criterion, with XX being the most important, YY being the second most
important, and ZZ the least. In each graph, the x-axis reports the incumbent
computation times in the format hh:mm:ss, and the y-axis reports the corre-
sponding objective value. The graphs related to FCU and FRT also report an
horizontal line representing the maximum threshold on the performance require-
ment. Note that, being defined as an exponential function of task deadline misses,
FDM has no threshold on its value. In each graph, we also highlight in a circle
(⃝) the first incumbent predicted to satisfy the relative performance require-
ment, and in a square (!) the first incumbent predicted to satisfy all the require-
ments. For these incumbents, we report in a box their computation times and
objective values. Finally, we report at the top right of each column the total
number of solutions found in the run, and at the top center of each graph the
number of incumbents satisfying the requirement. Recall from Sect. 4 that each
solution of our COP is a sequence of task delay times.

To support engineers in configuring performance-related parameters of
RTES, our approach should be able to efficiently produce usable results. In
particular, engineers need to know for how long on average they should run our
COP. The six runs found a total of 71 incumbents, terminating with proof of
optimality in less than one hour when choosing FDM as the primary optimiza-
tion criterion (third and fourth column in Fig. 3). With the exception of FCU in
the runs CU-DM-RT, CU-RT-DM, and DM-RT-CU, the first solution predicted
to satisfy any of the performance requirements was found in less than a minute.
4 http://aws.amazon.com.

http://aws.amazon.com

Optimal Performance Tuning in Real-Time Systems 569

In these three cases, the first solution predicted to exhibit a CPU usage less
than 20% was found approximately after 28, 27, and 15min, respectively. In
each run, the incumbents found presented no deadline misses. Overall, our COP
was able to find solutions predicted to satisfy at least one performance require-
ment in less than one minute, and all the requirements in less than half an hour.
In particular, the runs DM-CU-RT, RT-CU-DM and RD-DM-CU found the
first solutions satisfying all the requirements in approximately 30 seconds, while
the other runs did so in approximately 28min. The delay times characterizing
these solutions can be used to derive and test initial system configurations while
the search continues, because the lower the objective value, the more likely the
solutions are to satisfy the systems performance requirements. In summary, it is
sufficient to run our COP for half an hour on the FGMS I/O drivers in order to
find solutions satisfying all the requirements.
Results and Discussion — Effectiveness. As explained above, engineers are
particularly interested in finding ranges of delay times where conflicting perfor-
mance requirements are close to their thresholds, but are not violated. To find
these ranges, we first have to identify the conflicting requirements by analyzing
the trend of the objective functions. We note how, in each run, the objective
value over time related to the first optimization criterion presents a monotonic
decreasing trend. This is expected because each run performs a lexicographic
optimization, for which any gain on the primary criterion is worth loss on the
others. When looking into the trend of specific criteria over runs, FDM shows no
significant correlation with FCU and FRT . This seems counterintuitive, because
tasks are likely to miss their deadlines if the response time is too long, and when
the response time is short, tasks are likely to complete long before their dead-
line. However, even though the exponential shape of FDM is very sensible to
variations in task deadlines, the fluctuations in the objective value are several
orders of magnitude smaller than the size of the observation interval T . We also
note how FCU and FRT present an inversely proportional trend. Indeed, in the
runs where FCU is the first optimization criterion (first two columns in Fig. 3),
FRT tends to decrease over time, and vice versa (last two columns in Fig. 3).
This is also expected because, as explained in Sect. 2, short delay times make
IODispatch keep the CPU busy, while long delay times are likely to block Pull-
Data, increasing the drivers response time. Therefore, when configuring delay
times, it is necessary to analyze the trade-off between expected response time
and CPU usage. Note that every incumbent found satisfies the requirement on
task deadlines, and hence this trade-off analysis can ignore FDM .

Figure 4 shows the Pareto-optimal frontier of FCU and FRT , whose solutions
are highlighted with a solid bullet (•). The circle (⃝) highlights the first solution
found in the frontier that satisfies all the requirements, for which we report
computation time and objective values. Similar to Fig. 3, the two orthogonal
lines represent the maximum threshold on FCU and FRT . Over the six runs, the
search found ten solutions in the frontier, four of which satisfy the performance
requirements. The first of such solutions was found in approximately 27min, and
corresponds to that highlighted in the CU-RT-DM run in Fig. 3. By definition,

570 S. Di Alesio

F
ig
.3

.
O
b
je
ct
iv
e
va
lu
es

of
F
C
U
,
F
D
M
,
an

d
F
R
T

ov
er

ti
m
e,

gr
ou

p
ed

b
y
ru
n

Optimal Performance Tuning in Real-Time Systems 571

the solutions in the frontier do not Pareto- dominate each other, entailing that for
each solution in the frontier there does not exist any other solution with a lower

Fig. 4. Pareto-optimal frontier (solid bul-
lets) of FCU and FRT

CPU usage and a lower response time.
Therefore, the solutions in the frontier
achieve an optimal trade-off between
CPU usage and response time, and can
be used to derive configurations that
are as likely as possible to exhibit low
CPU usage and response time. Finally,
recall that the six solutions in the
frontier above the 20% CPU thresh-
old might not violate such require-
ment at runtime due to pessimistic
WCET estimates. These solutions are
still worth being investigated, albeit
with lower priority than the others.
In particular, our experience suggests
that the most valuable solutions lie in
the extreme regions of the Pareto fron-
tier, close to the highest value for a sin-
gle objective function, and in the central part, where the performance require-
ments are equally far from their maximum values. In fact, solutions in extreme
regions can be used to push the system performance to the limit, while solutions
in the central area guarantee a balance between conflicting requirements.

6 Concluding Remarks

In this paper, we presented a multi-objective Constrained Optimization Prob-
lem (COP) for generating RTES configurations characterized by values of con-
figurable timing properties that satisfy a set of performance requirements. In
particular, we presented a COP whose solutions are task delay times that char-
acterize scenarios where tasks are as far as possible from their deadlines, and
exhibit low response time and CPU usage. However, we note that casting the
scheduling analysis of RTES as a COP is a flexible strategy that can be tailored
to support activities in different phases of software development, such as stress
testing and performance tuning, as well as to suit different application scenar-
ios. For example, in order to generate task offsets that satisfy a requirement
on minimal throughput, we would only need to modify the existing COP by (1)
specifying task offsets as variables, rather than constants, and (2) defining a new
throughput objective function. As another example, to target a system with a
priority ceiling scheduling policy, we would have to modify only the preemption
constraints by specifying that tasks locking a resource shared with a high prior-
ity task cannot be preempted. These adaptations would be similar to that done
in this paper with respect to previous work in the area of stress testing [15].

We validated our approach on a RTES from the maritime and energy domain
concerning safety-critical device drivers, showing that our approach is able to find

572 S. Di Alesio

Pareto-optimal solutions with respect to CPU usage and response time in less
than half an hour. Recall that our approach builds also upon previous work in the
context of performance analysis, which introduces a conceptual model to capture
the timing and concurrency abstractions required to analyze response time and
CPU Usage in RTES [31]. Those abstractions form the basis of both the COP
presented in that work, and that presented in this paper. The effort to capture
the input data for that approach was approximately 25 man-hours of effort [31].
This was considered worthwhile as drivers typically have a long lifetime and have
to be certified regularly. We note how both COPs have the same set of constants,
and are applied to FGMS I/O drivers having similar architectural design, and
hence, the overhead for deriving the COP constant values is comparable in both
cases. Furthermore, the design of our COP ensures that the final users, i.e.,
software engineers, can simply use it as a black box configuration generator,
without having to be aware of the mathematical details of the COP. Currently,
KM engineers spend several days simulating the FGMS behavior with manually
tuned delay times, and monitoring its performance requirements. We expect
that, by following our approach, they can configure the delay times in the FGMS
drivers more conveniently, and ensure that no safety risks are posed by violating
performance requirements at runtime.

Previous work in the field of software stress testing has shown that approaches
based on complete search can potentially be more effective than metaheuristics
in finding task schedules closer to the global optimum [14]. This aspect motivated
us to investigate complete search strategies also in the context of performance
tuning. However, we solve the COP with a off-the shelf solver that performs a
deterministic complete search. This means that solving the COP multiple times
within a time budget always finds the same set of solutions. To diversify the
configurations found, we plan to combine complete deterministic search with
randomized metaheuristics in hybrid strategies, which have already been suc-
cessfully applied to stress test RTES [12].

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
LICS 1990, pp. 414–425. IEEE (1990)

2. Atamtürk, A., Savelsbergh, M.W.: Integer-programming software systems. Ann.
Oper. Res. 140(1), 67–124 (2005)

3. Baker, T.P.: An analysis of fixed-priority schedulability on a multiprocessor. Real-
Time Syst. 32(1–2), 49–71 (2006)

4. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems, vol. 39. Springer, New York
(2001)

5. Beizer, B.: Software Testing Techniques. Dreamtech Press (2002)
6. Briand, L.C., Labiche, Y., Shousha, M.: Using genetic algorithms for early schedu-

lability analysis and stress testing in real-time systems. Genet. Program. Evolvable
Mach. 7(2), 145–170 (2006)

Optimal Performance Tuning in Real-Time Systems 573

7. Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., Trinquet, Y.: Decom-
position and learning for a hard real time task allocation problem. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 153–167. Springer, Heidelberg (2004)

8. Caseau, Y., Laburthe, F.: Improved CLP scheduling with task intervals. In: ICLP,
pp. 369–383. Citeseer (1994)

9. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012)

10. David, A., Illum, J., Larsen, K., Skou, A.: Model-based framework for schedulabil-
ity analysis using UPPAAL 4.1. In: Model-Based Design for Embedded Systems,
p. 93 (2010)

11. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. (CSUR) 43(4), 35 (2011)

12. Di Alesio, S., Briand, L., Nejati, S., Gotlieb, A.: Combining genetic algorithms and
constraint programming to support stress testing of task deadlines. ACM Trans.
Softw. Eng. Method. (2015)

13. Di Alesio, S., Gotlieb, A., Nejati, S., Briand, L.: Testing deadline misses for real-
time systems using constraint optimization techniques. In: 2012 IEEE Fifth Inter-
national Conference on Software Testing, Verification and Validation (ICST), pp.
764–769. IEEE (2012)

14. Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Stress testing of task deadlines: a
constraint programming approach. In: 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), pp. 158–167. IEEE (2013)

15. Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Worst-case scheduling of software
tasks. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 813–830. Springer,
Heidelberg (2014)

16. Galorath, D.D., Evans, M.W.: Software Sizing, Estimation, And Risk Management:
When Performance is Measured Performance Improves. CRC Press, Boca Raton
(2006)

17. Gomaa, H.: Designing concurrent, distributed, and real-time applications with
UML. In: Proceedings of the 28th International Conference on Software Engineer-
ing, pp. 1059–1060. ACM (2006)

18. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

19. Hladik, P.E., Cambazard, H., Déplanche, A.M., Jussien, N.: Solving a real-time
allocation problem with constraint programming. J. Syst. Softw. 81(1), 132–149
(2008)

20. Huang, W., Lam, H.: Using genetic algorithms to optimize controller parameters
for HVAC systems. Energy Build. 26(3), 277–282 (1997)

21. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Logic Program.
19, 503–581 (1994)

22. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, New York
(2008)

23. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer, New York (2011)

24. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol.
5547, pp. 148–162. Springer, Heidelberg (2009)

25. Lala, J.H., Harper, R.E.: Architectural principles for safety-critical real-time appli-
cations. Proc. IEEE 82(1), 25–40 (1994)

574 S. Di Alesio

26. Le Pape, C., Baptiste, P.: An experimental comparison of constraint-based algo-
rithms for the preemptive job shop scheduling problem. In: CP 1997 Workshop on
Industrial Constraint-Directed Scheduling. Citeseer (1997)

27. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-physical
Systems Approach. Lee & Seshia (2011)

28. Malapert, A., Cambazard, H., Guéret, C., Jussien, N., Langevin, A., Rousseau,
L.M.: An optimal constraint programming approach to the open-shop problem.
INFORMS J. Comput. 24(2), 228–244 (2012)

29. Nejati, S., Adedjouma, M., Briand, L.C., Hellebaut, J., Begey, J., Clement, Y.:
Minimizing CPU time shortage risks in integrated embedded software. In: 2013
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 529–539. IEEE (2013)

30. Nejati, S., Briand, L.C.: Identifying optimal trade-offs between CPU time usage
and temporal constraints using search. In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pp. 351–361. ACM (2014)

31. Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU
usage in safety-critical embedded systems to support stress testing. In: France,
R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 759–775. Springer, Heidelberg (2012)

32. Reza Hejazi, S., Saghafian, S.: Flowshop-scheduling problems with makespan cri-
terion: a review. Int. J. Prod. Res. 43(14), 2895–2929 (2005)

33. Singh, A.: Identifying Malicious Code Through Reverse Engineering. Springer, New
York (2009)

34. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic task scheduling for hard-real-time
systems. Real-Time Syst. 1(1), 27–60 (1989)

35. Storey, N.R.: Safety Critical Computer Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (1996)

36. Tanenbaum, A.S.: Modern Operating Systems. Pearson Education (2009)
37. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time

systems. Microprocess. Microprogram. 40(2), 117–134 (1994)
38. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,

Cambridge (1999)
39. Varšek, A., Urbančič, T., Filipič, B.: Genetic algorithms in controller design and

tuning. IEEE Trans. Syst. Man Cybern. 23(5), 1330–1339 (1993)
40. Weyuker, E.J., Vokolos, F.I.: Experience with performance testing of software sys-

tems: issues, an approach, and case study. IEEE Trans. Softw. Eng. 26(12), 1147–
1156 (2000)

41. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., et al.: The worst-case
execution-time problem - overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

42. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engi-
neering. In: Future of Software Engineering, FOSE 2007, pp. 171–187. IEEE (2007)

43. Yun, Y.S., Gen, M.: Advanced scheduling problem using constraint programming
techniques in SCM environment. Comput. Ind. Eng. 43(1), 213–229 (2002)

SABIO: An Implementation of MIP and CP
for Interactive Soccer Queries

Robinson Duque1(B), Juan Francisco Dı́az1, and Alejandro Arbelaez2

1 Universidad del Valle, Cali, Colombia
{robinson.duque,juanfco.diaz}@correounivalle.edu.co

2 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
alejandro.arbelaez@insight-centre.org

Abstract. Soccer is one of the most popular sports in the world with
millions of fans that usually raise interesting questions when the com-
petition is partially completed. One interesting question relates to the
elimination problem which consists in checking at some stage of the com-
petition if a team i still has a theoretical chance to become the cham-
pion. Some other interesting problems from literature are the guaranteed
qualification problem, the possible qualification problem, the score vector
problem, promotion and relegation. These problems are NP-complete for
the actual FIFA pointing rule system (0 points-loss, 1 point-tie, 3 points-
win). SABIO is an online platform that helps users discover information
related to soccer by letting them formulate questions in form of con-
straints and go beyond the classical soccer computational problems. In
the paper we considerably improve the performance of an existing CP
model and combine the use of MIP and CP to answer general soccer
queries in a real-time application.

1 Introduction

A soccer competition (league or tournament) consists of n teams playing against
each other in a single or double round-robin schedule. Tournament competitions
are usually played in two-stages: a single or double round-robin schedule for the
regular season and a final knockout stage (aka playoffs) where typically eight
teams qualify. On the other hand, league competitions consist of a single-stage
where each team i gets to play against team j once or twice and the first team
in the standing table becomes the champion.

The elimination problem is well-known in sports competitions [1,2] and con-
sists in determining whether at some stage of the competition a given team
still has the opportunity to be within the top teams to qualify for playoffs or
become the champion. This problem was proved NP-Complete for the current
FiFA score system (0 points-loss, 1 point-tie, 3 points-win) [3,4]. However, in [4]
the authors pointed out that with the old FIFA score system (0, 1, 2) from the

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-44953-1 36) contains supplementary material, which is available to
authorized users.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 575–583, 2016.
DOI: 10.1007/978-3-319-44953-1 36

http://dx.doi.org/10.1007/978-3-319-44953-1_36
http://dx.doi.org/10.1007/978-3-319-44953-1_36

576 R. Duque et al.

90’s, the elimination problem could be solved in polynomial time using network
flow algorithms as first proposed in [5]. Kern and Paulusma [3,6] generalized NP-
completeness depending on the sports’ score system and showed that questions
like “is there a chance that team i ends up being one of the three teams that
have the three lowest final scores?”, is actually an NP-complete problem. Later,
Pálvölgyi showed that deciding whether a given score vector is a possible out-
come of a soccer-tournament (i.e., score vector problem) is also NP -complete [7].

Recently, [8] proposed a MIP formulation to tackle the guaranteed qualifica-
tion problem to find the minimum number of points a given team has to win to
become champion or qualify to the playoffs. However, this model is limited to
single round-robin competitions. In this paper, we use some ideas from [8], and
we extend it for single and double round-robin competitions. Additionally, we
would like to point out that the flexibility of our model allows us to answer more
queries, i.e., game result queries, position in ranking queries, relative position
queries, and final position queries, that let users create different scenarios and
go beyond the classical soccer computation problems.

SABIO (Soccer Analysis Based on Inference Outputs) is an online platform,
available at www.sabiofutbol.com, capable of answering soccer related queries
by letting users formulate questions in form of constraints. In this paper we
considerably improve an existing CP model [9], and we combine the use of MIP
and CP to improve the performance of SABIO.

2 CP Model for Interactive Soccer Queries

Constraint programming (CP) is a powerful paradigm that can be used to solve
combinatorial problems. Typically, CP combines backtracking search with con-
straint propagation to filter inconsistent values and reduce the search space.
In [9], we described a CP model for position in ranking queries. Here we extend
such model by introducing three new type of queries, i.e., game results, relative
position, final points. Additionally, we also propose a set of redundant constraints
that help to prune the search tree for position ranking queries.
Basic Soccer Model : these variables capture basic information to formulate a
model for soccer competitions.

– n: number of teams in the competition;
– T : set of team indexes in the competition;
– i, j: team indexes, such that (i, j ∈ T);
– pi: initial points of team i. If i has not played any games, then pi = 0;
– F : number of fixtures left to be played in the competition. A fixture consists
of one or more games between competitors;

– k: represents a fixture number, (1 ≤ k ≤ F);
– G: set that represents the schedule of the remaining games to be played. Every
game is represented as a triple nge = (i, j, k) ∧ 0 ≤ e ≤ |G|, where k is the
fixture when both teams meet in a game;

– ptik: represents the points that team i gets in fixture k, (1 ≤ k ≤ F and ptik ∈
{0, 1, 3}). If team i is not scheduled to play fixture k, then pti,k = 0.

www.sabiofutbol.com

SABIO: An Implementation of MIP and CP for Interactive Soccer Queries 577

– tpi: total points of team i at end of the competition;
– geqij : Boolean variable indicating if team j has greater or equal total points

as i: if tpj ≥ tpi then geqij = 1; otherwise geqij = 0 (∀i, j ∈ T);
– eqij : boolean variable indicating if two different teams i and j tie in points at
the end of the competition: if tpj = tpi and i ̸= j then eqij = 1; otherwise
eqij = 0 (∀i, j ∈ T).

– posi: position of team i at the end of the competition;
– worstPosi: upper bound for posi;
– bestPosi: lower bound for posi;

Constraint (1) represents a valid game point assignment (0,3), (3,0) or (1,1) for
each game nge ∈ G between two teams i and j in a fixture k and constraint (2)
corresponds to the final points tpi of a team i:

2 ≤ ptik + ptjk ≤ 3 ∀nge ∈ G ∧ nge = (i, j, k) (1)

tpi = pi +
F∑

k=1

ptik ∀i ∈ T (2)

Constraints (3) to (6) are used to calculate final positions. All the final positions
must be different and every position is bounded by bestPosi and worstPosi:

worstPosi =
n∑

j=1

geqij ∀i, j ∈ T (3)

bestPosi = worstPosi −
n∑

j=1,j ̸=i

eqij ∀i, j ∈ T ∧ i ̸= j (4)

bestPosi ≤ posi ≤ worstPosi ∀i ∈ T (5)

alldifferent(pos1, ..., posn) (6)

Game Result Queries: Constraint (7) allows users to include assumptions about
the outcome of remaining games to constrain the points of teams i and j in a
fixture k, e.g., Barcelona ends in a tie with R. Madrid:

– Q: set of game result queries for a pair of teams (i, j) in a fixture k. Every
query is defined as a tuple nqa = (ptcik, ptcjk) and 0 ≤ a ≤ |Q|;

– ptcik and ptcjk: are user suppositions about the points that a pair of teams
(i, j) will get in a fixture k, i.e.,(ptcik, ptcjk) ∈ {(0, 3), (3, 0), (1, 1)});

(ptik = ptcik ∧ ptjk = ptcjk) ∀nqa ∈ Q ∧ nqa = (ptcik, ptcjk) (7)

Position in Ranking Queries: we use this set of constraints to indicate whether
a given team can be above, below, or at a given position ptni, e.g., R.Madrid
will be in position 3. Constraint (8) depicts three of the five possibilities:

– P : set of possible position in ranking queries, defined as a set of triples npb =
(i, opri, ptni) and 0 ≤ b ≤ |P |;

578 R. Duque et al.

– opri: logical operator (opri ∈ {<,≤, >,≥,=}) to constrain team i;
– ptni: denoting the expected position for team i; 1 ≤ ptni ≤ n;

∀npb ∈ P ∧ npb = (i, opri, ptni)

⎧
⎪⎨

⎪⎩

posi = ptni, if opri is =
posi < ptni, if opri is <

posi > ptni, if opri is >

(8)

Relative Position Queries: these queries indicate whether a given team i will
be above, below, or equal to another team j at the end of the tournament and
constraint (9) depicts three of the five queries, e.g., Barcelona will be in a better
position than R. Madrid. In this particular case we use tpi and tpj instead of
posi and posj . We consider that two teams i and j might tie up in the same
position if they have the same points at the end of the competition. We recall
that we do not use posi and posj due to the alldifferent constraint in (6).

– R: set of possible relative position queries defined as a set of triples nrc =
(i, opij , j) and 0 ≤ c ≤ |R|;

– opij : denoting a logical operator (opij ∈ {<,≤, >,≥,=}) to constrain a pair
of teams i and j.

∀nrc ∈ R ∧ nrc = (i, opij , j)

⎧
⎪⎨

⎪⎩

tpi = tpj , if opij is =
tpi < tpj , if opij is <

tpi > tpj , if opij is >

(9)

Final Point Queries: (also known as score queries) we use these variables for
queries about the final points of the teams, e.g., Barcelona scores at the end of
the competition 75 points. Constraint (10) guarantees final point queries.

– S: set of possible final point queries defined as a set of tuples nsd = (i, si) and
0 ≤ d ≤ |S|;

– si: denoting the wanted final points of team i.

(tpi = si) ∀nsd ∈ S ∧ nsd = (i, si) (10)

3 Extended CP Model

In our CP model, the position bounds (i.e., bestPosi and worstPosi) for position
in ranking queries can only be computed after finding the total points (tpi) for
all the teams in the competition, then the position constraints are validated.
This formulation leads to an exhaustive search with a late pruning rule based
on the teams positions.

The redundant constraints proposed in this section make inferences about the
teams positions based on the total points, in order to start pruning as early as
possible while the search unfolds. To depict our approach, consider the following

SABIO: An Implementation of MIP and CP for Interactive Soccer Queries 579

position in ranking constraint: “A will be in the same position as 1” which can
be represented as the triplet (A,=, 1) or posA = 1 according to Constraint (8). In
order to satisfy such constraint, it must hold that during the search, the number
of teams with more points than A has to be 0, otherwise, A will never be in first
position. To take this kind of scenario into account we propose a set of redundant
constraints that constantly validate the number of teams with more (resp. less)
points than A. Therefore, let L denote the set of constrained teams included in
all the triples npb ∈ P , such that npb = (i, opri, ptni) where i ∈ L and L ⊆ T .
Now, let us start by introducing a set of variables for constrained teams i ∈ L:

– lessij : Boolean variables denoting whether teams j have less points than i,
i.e., if tpj < tpi then lessij = 1; otherwise lessij = 0 (∀j ∈ T ∧ ∀i ∈ L);

– grtrij : Boolean variables denoting whether teams j have more points than i,
i.e., if tpj > tpi then grtrij = 1; otherwise grtrij = 0 (∀j ∈ T ∧ ∀i ∈ L).

“Greater than” redundant constraint, i.e., npb = (i, >, ptni). During search, the
number of teams with fewer points than team i must be limited to (n-ptni):

n∑

j=1,j ̸=i

lessij < (n − ptni) ∀j ∈ T ∧ ∀i ∈ L (11)

Similarly, we use
∑n

j=1,j ̸=i lessij ≤ (n − ptni) for constraints npb = (i,≥, ptni).

“Less than” redundant constraint, i.e., npb = (i, <, ptni). During search, the
number of teams with more points than team i must be limited to (ptni-1):

n∑

j=1,j ̸=i

grtrij < (ptni − 1) ∀j ∈ T ∧ ∀i ∈ L (12)

Similarly, we use
∑n

j=1,j ̸=i grtrij ≤ (ptni − 1) for constraints npb = (i,≤, ptni).

“Equal to” redundant constraint, i.e., npb = (i,=, ptni). During search, we con-
strain the number of teams above (resp. below) of a team i to:

n∑

j=1,j ̸=i

grtrij < (ptni) ∀j ∈ T ∧ ∀i ∈ L (13)

n∑

j=1,j ̸=i

lessij < (n − ptni + 1) ∀j ∈ T ∧ ∀i ∈ L (14)

Variable/Value Selection: In SABIO the variable/value selection strategies
involve identifying the outcome of a game for a selected team. Generic heuris-
tics (e.g., [10,11]) typically do not perform well in this domain as they do not
exploit the structure of the problem. Therefore, in [9] we proposed a variable
selection system of priorities for position ranking queries. We use nine strategies
{S1 . . . S9} for the outcome of the game in the value selection process. Each strat-
egy represents the probability of a win, tie, or lose. For instance, S9 = ⟨0.25,

580 R. Duque et al.

0.25, 0.5⟩, indicates that the selected team wins or ties the game with a proba-
bility of 0.25 each and loses with a probability of 0.5. We use decision trees to
select the most suitable strategy for teams constrained with the equal operator.

For relative position queries we use an alternative approach. Let us assume
we want to answer a greater than query for two teams (i.e., tpi > tpj). In this
case it is natural to get team i to win and team j to lose the remaining games.
Therefore, we increase the priority of both teams to be selected during branching
(similarly for less than queries). Alternatively, for queries indicating (tpi = tpj)
we found that both teams have to be assigned a high priority and also that a
(win, lose) strategy may generate final points overshooting, therefore, we decided
to assign both teams a tie strategy.

For final point queries we assign a high priority to teams involved in at least
one query. Finally, game result queries can be trivially solved with our models
by only using constraint propagation.

Sequential and Parallel Restart-Based Search: Inspired by the quickest
first principle [12], we execute the strategies in a predefined order and we use
a restart-based search with a fixed time cutoff. For teams involved in at least
one query we use the above mentioned variable/value selection heuristics in all
restarts. For the remaining teams, we use a different strategy for each restart,
starting with S1 for the first restart and using S9 for the ninth restart, in the
tenth restart we use a random strategy for unconstrained teams. The last restart
is executed until a solution is observed or a time limit is reached.

These restart strategies can be executed either sequentially or in parallel for
a fixed cutoff time (i.e., one restart after another in a single core, or one restart
per core in a multi-core machine). In the parallel version with four cores, we
execute in parallel (for unconstrained teams) {S1, . . ., S4} followed by {S5, . . .,
S9}. We finish the execution with the random strategy for all cores.

4 Empirical Evaluation

Tests Configuration: We evaluated our models using CPLEX (V12.6.2) as our
MIP reference solver and Mozart-Oz (V 1.4.0) as our CP reference solver. All
the experiments were performed in a 4-core machine featuring an Intel Core i5
processor at 2.3Ghz and 4GB of RAM. In particular we focus our attention
in the Colombian league (liga Postobón 2014-I) with 18 teams and 18 fixtures
to play in a single round-robin schedule (17 fixtures + 1 extra fixture for the
derbies). We provided five experimental scenarios by exploring different stages
of the competition (i.e., fixtures 7, 9, 11, 14, and 16). For each fixture we created
instances with position in ranking queries (P), relative position queries (R),
and final point queries (S). We excluded game results queries (Q) from our
experiments as they can be trivially solved with our models.

The scenarios for every query type (P,R, S) and fixture (7, 9, 11, 14, 16)
included 100 instances with 2 suppositions, 100 with 3 suppositions, and the
same for 4, 5, 7, and 9 suppositions. For each instance (9000 in total) we used
a time limit of 30 s. We recall that our models are implemented in SABIO, a

SABIO: An Implementation of MIP and CP for Interactive Soccer Queries 581

(a) Ext. CP vs. Basic CP (b) Ext. CP vs. MIP (c) Mixed CP-MIP vs. MIP

Fig. 1. Runtime (in secs) comparison of the different approaches (Color figure online)

Web based application and long answer times are not desirable. In order to
analyze the performance of the models, we reported executions with 1 and 4
cores and experimented four scenarios separately: the basic CP model proposed
in [9]; the extended CP model with redundant constraints proposed in this paper;
an extended version of the MIP model of [8] able to deal with the same queries
as our CP model; and a mixed execution of our CP and MIP models (i.e., we
observed in our experiments that MIP is slightly better for a small number of
instances (mainly unsat). Therefore, to exploit the best features of both CP and
MIP, we run first our CP model during 0.5 s (average time in 1 core) to solve as
many instances as possible, then run our MIP implementation for 29.5 s).

Tests Results: We start with Fig. 1 where we compare the performance of
extended model with the redundant constraints against the basic model from [9],
the MIP model, and the mixed approach CP-MIP. The x-axis gives the runtime
of the extended model and the y-axis gives the runtime of the basic model (resp.
MIP model). Blue (resp. red) points indicate SAT (resp. UNSAT). Points below
the diagonal indicate that the extend model is faster. In Fig. 1(a) it can be
observed that the extended version is typically better (w.r.t. speed and capacity
solving) than the basic model, except for a few instances where the runtime for
both approaches is less than 0.1 s. Figure 1(b) shows that the extended model is
considerably faster than the MIP model on 8744 instances. Interestingly MIP is
particularly better than CP for UNSAT instances, in fact, 72% of the unsolved
instances for the CP model are UNSAT. We attribute this to the fact that for
UNSAT instances it is necessary to explore the complete search tree. In Fig. 1(c)
we exploit the complementary behaviour of MIP and our extended CP model,
here we observe that only for 243 (out of 9000) instances it would have been
better to alternate the execution of MIP and CP.

We now move our attention to Table 1 where we present complete statistics
of the four approaches. This table shows the number of unsolved instances (top),
the standard deviation and the average run-times (bottom) for solved instances.
Certainly, R and S queries are the easiest ones and nearly all instances can be
solved within the time limit. However, we observed that for these instances the
extended CP model is faster than MIP. Alternatively, P queries are the hardest
ones, particularly for our CP approaches.

582 R. Duque et al.

Table 1. Unsolved instances and run-times (avg, std) in seconds

Num. cores 1 Core 4 Cores

Query type P Queries R Queries S Queries P Queries R Queries S Queries

Unsolved B. CP 627 - 1 607 - 1

Unsolved E. CP 171 - 1 166 - 1

Unsolved MIP 5 - - 1 - -

Uns. mixed
(CP-MIP)

2 - - 1 - -

Avg/std (B. CP) 1.60/3.97 0.05/0.02 0.06/0.24 0.83/2.97 0.05/0.02 0.05/0.04

Avg/std (E. CP) 0.55/2.08 0.05/0.02 0.06/0.24 0.31/1.66 0.05/0.02 0.05/0.05

Avg/std (MIP) 0.54/0.47 0.41/0.09 0.40/0.09 0.58/0.46 0.40/0.06 0.41/0.07

Avg/std
mixed(CP-MIP)

0.19/0.58 0.05/0.01 0.06/0.03 0.16/0.39 0.04/0.02 0.04/0.03

We would like to highlight the importance of the redundant constraints in the
extended CP model. The new constraints help to solve 456 more instances than
the basic model from [9] and it also considerably improves the average runtime
from 0.83 to 0.31 s for 4 cores.

Additionally, we observe that the MIP and the extended CP approach are
complementary. The MIP model in a 4-core execution, is able to solve more
instances, i.e., 607 more than the basic CP approach and 166 more than the
extended CP with redundant constraints. The extended CP approach is about
46%, 87%, and 88% faster than the MIP approach for P , R, and S queries using
4 cores. Interestingly, for P queries we observe that extended CP in 1 and 4 cores
present a less uniform behaviour (std: 2.08 &1.66) compared to MIP (std: 0.47
&0.46). We attribute this to answers found in later restarts. Such behaviour can
also be observed in Fig. 1(b), where most of MIP instances range between 0.1
and 10 secs with observed min. (resp. max.) runtime values of 0.28 (resp. 1.46) s,
while extended CP ranges between 0.01 and 100 with min. (resp. max.) values
of 0.03 (resp. 25.38) s.

Finally, the overall best approach is the mixed solution between CP and MIP,
this solution exploits the best features of both alternatives. We would like to
remark that SABIO has been highlighted as an outstanding platform for soccer
fans in Colombian’s main news paper such as El Tiempo and ADN Cali. We are
planning a new release of SABIO with the models described in this paper.

5 Conclusions

In this paper we have improved an existing CP model to solve general soccer fan
queries at different stages of the computation. We compared our improved CP
approach against a MIP formulation and observed a complementary behaviour
between the two approaches. The CP approach is considerably faster than the
MIP model. However, the MIP model is able to solve more instances than the

SABIO: An Implementation of MIP and CP for Interactive Soccer Queries 583

CP one. We expect our SABIO Web application to interact with thousands of
users at the same time, therefore both speed and capacity solving of the two
models are expected to play an important role for a fast and robust solution.

Acknowledgements. We would like to thank Luis F. Vargas, Maŕıa A. Cruz and
Carlos Mart́ınez for developing early versions of the CP model under the supervision of
Juan F. Dı́az. Robinson Duque is supported by Colciencias under the PhD scholarship
program. Alejandro Arbelaez is supported by SFI Grant No. 10/CE/I1853.

References

1. Schwartz, B.L.: Possible winners in partially completed tournaments. SIAM Rev.
8(3), 302–308 (1966)

2. Hoffman, A., Rivlin, T.: When is a team “mathematically” eliminated? In: Prince-
ton Symposium on Mathematical Programming, pp. 391–401. Princeton, NJ (1967)

3. Kern, W., Paulusma, D.: The new FIFA rules are hard: complexity aspects of
sports competitions. Discrete Appl. Math. 108(3), 317–323 (2001)

4. Bernholt, T., Gälich, A., Hofmeister, T., Schmitt, N.: Football elimination is hard
to decide under the 3-point-rule. In: MFCS, pp. 410–418 (1999)

5. Wayne, K.D.: A new property and a faster algorithm for baseball elimination.
SIAM J. Discrete Math. 14(2), 223–229 (2001)

6. Kern, W., Paulusma, D.: The computational complexity of the elimination problem
in generalized sports competitions. Discrete Optim. 1(2), 205–214 (2004)

7. Pálvölgyi, D.: Deciding soccer scores and partial orientations of graphs. Acta Univ.
Sapientiae 1(1), 35–42 (2009)

8. Ribeiro, C.C., Urrutia, S.: An application of integer programming to playoff elim-
ination in football championships. Int. Trans. Oper. Res. 12(4), 375–386 (2005)

9. Duque, R., Dı́az, J.F., Arbelaez, A.: Constraint programming and machine learning
for interactive soccer analysis. In: LION 10 (2016, to appear)

10. Arbelaez, A., Hamadi, Y.: Exploiting weak dependencies in tree-based search. In:
SAC 2009, pp. 1385–1391 (2009)

11. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. In: IJCAI 1979, San Francisco, CA, USA, pp. 356–364 (1979)

12. Borrett, J., Tsang, E.P., Walsh, N.R.: Adaptive constraint satisfaction: the quickest
first principle. In: European Conference on Artificial Intelligence (1996)

Constraint Programming Models
for Chosen Key Differential Cryptanalysis

David Gerault4(B), Marine Minier1,2, and Christine Solnon1,3

1 Université de Lyon, INSA-Lyon, 69621 Villeurbanne, France
{marine.minier,christine.solnon}@insa-lyon.fr

2 CITI, INRIA, Villeurbanne, France
3 LIRIS, CNRS UMR5205, Villeurbanne, France

4 LIMOS, Clermont-ferrand, France
dagerault@gmail.com

Abstract. In this paper, we introduce Constraint Programming (CP)
models to solve a cryptanalytic problem: the chosen key differential
attack against the standard block cipher AES. The problem is solved
in two steps: In Step 1, bytes are abstracted by binary values; In Step
2, byte values are searched. We introduce two CP models for Step 1:
Model 1 is derived from AES rules in a straightforward way; Model 2
contains new constraints that remove invalid solutions filtered out in
Step 2. We also introduce a CP model for Step 2. We evaluate scale-up
properties of two classical CP solvers (Gecode and Choco) and a hybrid
SAT/CP solver (Chuffed). We show that Model 2 is much more efficient
than Model 1, and that Chuffed is faster than Choco which is faster than
Gecode on the hardest instances of this problem. Furthermore, we prove
that a solution claimed to be optimal in two recent cryptanalysis papers
is not optimal by providing a better solution.

1 Introduction

Cryptography ensures properties such as confidentiality, integrity and signature
of communications. Cryptanalysis aims at testing whether these properties are
actually guaranteed. Whereas public key cryptography relies on hard problems,
symmetric key cryptography relies on simple operations that are iterated many
times to speed up encryption/decryption. The most important symmetric key
primitives are hash functions and ciphers.

Hash functions guarantee integrity by creating a fixed size fingerprint of mes-
sages. Many cryptanalytic results have completely broken the standards MD5,
SHA-0 and SHA-1 [11,23,24] by finding collisions, i.e., messages with a same fin-
gerprint. SAT solvers have been used to find collisions [6,12,15] and also against
the future hash standard Keccak [16].

This research was conducted with the support of the FEDER program of 2014-2020,
the region council of Auvergne, and the Digital Trust Chair of the University of
Auvergne.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 584–601, 2016.
DOI: 10.1007/978-3-319-44953-1 37

Constraint Programming Models for Chosen Key Differential Cryptanalysis 585

Ciphers guarantee confidentiality by encoding the original message into a dif-
ferent message, using a key, in such a way that the encoded message can further
be decoded into the original one. Stream ciphers encode streams “on the fly”,
whereas block ciphers split the text in blocks which are encoded separately. Dif-
ferent approaches have been proposed for applying CP to cryptanalysing stream
ciphers: [20] proposes to solve algebraic systems of equations that link together
keys and encoded streams; [17] uses mixed integer linear programming to com-
pute bounds for the Enocove-128v2 stream cipher. Since the seminal works of
[3,9], several results appeared on block cipher cryptanalysis [17,21,22], mostly
based on Mixed-Integer Programming.

Overview of the paper. In this paper, we focus on the cryptanalysis against
block ciphers proposed in [3,9] and described in Sect. 2. The problem is usually
solved in 2 steps: In Step 1, bytes are abstracted by binary values; In Step
2, byte values are searched. In Sect. 3, we describe a first CP model for Step
1, initially proposed in [14]. This model generates many invalid solutions that
are filtered out in Step 2 (as initially proposed in [3,9]). In Sect. 4, we introduce
new constraints that remove most of these invalid solutions. In Sect. 5, we briefly
describe a CP model for Step 2. In Sect. 6, we evaluate scale-up properties of two
classical CP solvers (Choco and Gecode) and a hybrid CP/SAT solver (Chuffed).
We show that the new model for Step 1 is much more efficient than the initial
model, and that Chuffed is faster than Choco which is faster than Gecode on the
hardest instances of the problem. Furthermore, we prove that a solution claimed
to be optimal in [3,9] is not optimal by providing a better solution. Actually,
CP allows us not only to solve cryptanalysis problems more efficiently than the
dedicated approaches of [3,9], but also in a safer way as it is easier to check the
correctness of a CP model than the correctness of a dedicated program.

2 Problem Statement

In this Section, we detail the general structure of the AES (Advanced Encryption
Standard) block cipher [8]. We then describe what a differential attack is and
finally introduce the chosen key differential attack model.

2.1 AES Block Cipher

A block cipher is a function E : {0, 1}n ×{0, 1}l → {0, 1}n which, given a binary
block X (called plaintext) of length n and a binary key K of length l, outputs a
binary ciphered text E(X,K) of length n such that X = E−1(E(X,K),K).

Most of today’s block ciphers have an iterated structure: They apply a round
function f r times so that E(X,K) = Xr with X0 = X and Xi+1 = f(Xi,Ki+1)
for all i ∈ [0; r − 1].

Two famous examples of block ciphers are DES (Data Encryption Standard),
which was the encryption standard between 1977 and 2000, and AES [8] which
is the actual standard since 2001. AES ciphers blocks of length n = 128 bits,

586 D. Gerault et al.

Y1=M(SR(S(X1)))

S
S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S S

S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

X

K2=KS(K1)K1=KS(K0)KO=K

X0=ARK(X,K0) X1=ARK(Y0,K1) X2=ARK(Y1,K2)Y0=MC(SR(S(X0)))

Fig. 1. AES ciphering process with r = 2 rounds. Each 4 × 4 array represents a group
of 16 bytes. Before the first round, X0 is obtained by applying ARK on the initial text
X and the initial key K = K0. Then, for each round i ∈ [1, 2], S, SR and MC are
applied on Xi to obtain Yi, KS is applied on Ki−1 to obtain Ki, and ARK is applied
on Ki and Yi−1 to obtain Xi. Bytes that pass through the S-box are signaled by an S.

where each block is seen as a 4 × 4 matrix of bytes, where a byte is a sequence
of 8 bits.

Given a 4×4 matrix of bytesM , we noteM [j] the 4 bytes at column j ∈ [0, 3],
and M [j][k] the byte at column j ∈ [0, 3] and row k ∈ [0, 3].

The length of keys is l ∈ {128, 192, 256}. The number of rounds depends on
the key length: r = 10 (resp. 12 and 14) for l = 128 (resp. 192 and 256). In this
Section, we describe AES for l = 128.

The round function f of AES uses an SPN (Substitution-Permutation Net-
work) structure and is described in Fig. 1 for r = 2 rounds. Before the first
round, AddRoundKey is applied on the original plaintext X and the initial key
K0 = K to obtain X0 = ARK(X,K0). Then, for each round i ∈ [0, r − 1]:

– SubBytes, ShiftRows and MixColumns are applied on Xi to obtain
Yi = MC(SR(S(Xi))),

– KeySchedule is applied on Ki to obtain Ki+1 = KS(Ki),
– AddRoundKey is applied on Yi and Ki+1 to obtain Xi+1 = ARK(Yi,Ki+1).

These different operations are described below.

SubBytes S. The S operation, also called S-box, is a non-linear permutation
which is applied on each byte of Xi separately, i.e., for each j, k ∈ [0, 3], S
substitutes Xi[j][k] by S(Xi[j][k]), according to a lookup table.

ShiftRows SR. SR is a linear mapping that rotates on the left by one byte
position (resp. 2 and 3 byte positions) the second row (resp. third and fourth
rows) of the current matrix S(Xi), i.e., for each j, k ∈ [0, 3]:

SR(S(Xi))[j][k] = S(Xi)[(k + j)%4][k]

MixColumns MC. MC is a linear mapping that multiplies each column of the
input matrix SR(S(Xi)) by a 4×4 fixed matrix chosen for its good properties of

Constraint Programming Models for Chosen Key Differential Cryptanalysis 587

diffusion (see [5]). In particular, it has the Maximum Distance Separable (MDS)
property: For each column j ∈ [0, 3], it ensures:

w(SR(S(Xi))[j]) + w(MC(SR(S(Xi)))[j]) ∈ {0, 5, 6, 7, 8}

where w is a function which returns the number of bytes different from 08 (we
note 08 the byte composed of 8 bits equal to 0).

AddRoundKey ARK. ARK performs a xor operation (noted ⊕) between Yi and
subkey Ki+1, i.e., for each column and row j, k ∈ [0, 3],

ARK(Yi[j][k],Ki+1[j][k]) = Yi[j][k] ⊕ Ki+1[j][k]

KeySchedule KS. The subkey at round 0 is the initial key, i.e., K0 = K. For
each round i ∈ [1, r], the subkey Ki is generated from the previous subkey Ki−1

by applying the key schedule, i.e., Ki = KS(Ki−1). For keys of length l = 128
bits, each subkey Ki is a 4 × 4 byte matrix. KS operates on columns:

– It first computes the first column Ki[0] from Ki−1 as follows:

∀k ∈ [0; 3],Ki[0][k] = Ki−1[0][k] ⊕ S(Ki−1[3][(k + 1)%4])

where S is the SubBytes operation. Moreover, r+1 predefined constants are
added to Ki[0][0].

– For the last 3 columns j ∈ {1, 2, 3}, we have: Ki[j] = Ki[j − 1] ⊕ Ki−1[j]

2.2 Differential Cryptanalysis

Differential cryptanalysis was introduced in 1991 [2], and aims at evaluating
confidentiality by testing whether it is possible to find the secret key within a
reasonable number of trials. The idea is to consider plaintext pairs (X,X ′) and
to study the propagation of the initial difference between X and X ′ while going
through the successive rounds. We note δXi the xor difference between the two
plaintexts Xi and X ′

i obtained after the ith round of the ciphering of X and
X ′, i.e., δXi = Xi ⊕ X ′

i, and we say that δXi[j][k] = Xi[j][k] ⊕ X ′
i[j][k] is a

differential byte (for each column and row j, k ∈ [0, 3]).
Let us keep in mind that the round function f is composed of a set of linear

operations (SR, MC, ARK) and a non linear operation (S). The linear oper-
ations only move differences to other places. Indeed, for every linear operation
l ∈ {SR,MC,ARK}, we have l(A⊕B) = l(A)⊕ l(B). So, we can easily predict
how differences are propagated from δXi to δXi+1 by these operations.

The non linear operation S has to be studied more carefully. As said before,
S operates on each byte Xi[j][k] separately. Therefore, we need to study how the
S-box propagates differences for a pair (A,B) of bytes. To this aim, we evaluate
the probability that the output difference S(A) ⊕ S(B) is equal to β when the
input difference A ⊕ B is equal to α, where α and β are bytes. This probability
is denoted Dα,β and is defined by

Dα,β =
#{(A,B)∈{0, 1}8×{0, 1}8 | (A⊕B = α) ∧ (S(A)⊕S(B) = β)}

256

588 D. Gerault et al.

For example, let us consider an input difference α = 00000001 and an output
difference β = 00100000. For the AES S-box, the transition from 00000001 to
00100000 only occurs for 4 couples of inputs, among the 256 possible couples so
thatD00000001,00100000 = 4

256 . For the AES S-box, most of the times the transition
probability is equal to 0

256 or 2
256 , and rarely to 4

256 . Note that S is a bijection so
that A ⊕ B = 08 ⇔ S(A) ⊕ S(B) = 08. As a consequence, D08,08 = 1. In other
words, if there is no difference in the input A⊕B, then there is no difference in
the output S(A) ⊕ S(B).

Then, for each round i ∈ [0; r], we study difference propagation when the
16 bytes of Xi and X ′

i pass through the S-box. For each column j ∈ [0; 3] and
each row k ∈ [0; 3], we note δXi[j][k] = Xi[j][k] ⊕ X ′

i[j][k] and δSXi[j][k] =
S(Xi[j][k]) ⊕ S(X ′

i[j][k]) the difference for the byte at column j and row k
before and after passing the S-box, respectively. The probability of obtaining
the output difference δSXi[j][k] when the input difference is δXi[j][k] is given
by DδXi[j][k],δSXi[j][k]. Hence, the probability of obtaining the output difference
δXr = Xr ⊕ X ′

r after r rounds given an input difference δX = X ⊕ X ′ is:

p1(δXr|δX) =
r∏

i=0

3∏

j=0

3∏

k=0

DδXi[j][k],δSXi[j][k] (1)

We refer the reader to [2] for more details.
A first goal of the attacker is to find the values of δXi for i ∈ {0, . . . r} which

maximize the probability p1. Once done, the attacker retrieves some partial
information on the secret key K from the next subkey Kr+1 = KS(Kr). To do
so, the attacker has to cipher M chosen plaintext pairs (X,X ′) to obtain M
ciphered pairs (C,C ′). From those pairs (C,C ′), the attacker deciphers the last
round to partially retrieve δXr according to all possible values of some bits of
Kr+1. The correct key will be the one for which the optimal value of δXr (that
maximizes p1) appears the most frequently. The number M of plaintext pairs
required for the success of the attack may be directly computed from p1 and is
equal to c/p1 for c a small constant as shown in [2].

2.3 Chosen Key Differential Cryptanalysis

Today, differential cryptanalysis is public knowledge, so modern block ciphers
such as AES have been designed to have proven bounds against differential
attacks. However, in 1993, E. Biham proposed a new type of attack called related
key attack [1] that allows an attacker to inject differences not only between the
plaintexts X and X ′ but also between the keys K and K ′ (even if the secret
key K stays unknown from the attacker) to try to mount more powerful attacks.
The goal of the attack stays the same as previously, i.e., try to find some partial
information on the secret key K by testing some bits of the last subkey Kr on
the veracity of the differential relation which happens with probability p1.

We note Ki[j][k] and K ′
i[j][k] the bytes at column j and row k in the subkeys

ofK andK ′ at round i, δKi[j][k] the difference betweenKi[j][k] andK ′
i[j][k], i.e.,

Constraint Programming Models for Chosen Key Differential Cryptanalysis 589

δKi[j][k] = Ki[j][k]⊕K ′
i[j][k], and δSKi[j][k] the difference between S(Ki[j][k])

and S(K ′
i[j][k]), i.e., δSKi[j][k] = S(Ki[j][k]) ⊕ S(K ′

i[j][k]). As the only bytes
of the subkeys that pass through the S-box are those that are at column j = 3,
Eq. (1) is modified by multiplying it by DδKi[3][k],δSKi[3][k], for each round i and
each line k, i.e., the goal of the attacker is to find the values of δXi and δKi for
i ∈ {0, . . . r} which maximize the probability p2 defined by Eq. (2).

p2(δXr, δKr|δX, δK) = p1(δXr|δX) ∗
r∏

i=0

3∏

k=0

DδKi[3][k],δSKi[3][k] (2)

2.4 Two Step Solving Process for Chosen Key Differential
Cryptanalysis

Two main papers [3,9] describe results for the chosen key differential cryptanaly-
sis of the AES and propose algorithms for finding initial pairs of plain texts and
keys which maximize the probability p2. In both papers, the problem is solved
in two steps.

First step: Search of binary solutions. In the first step, each unknown δXi is
modeled with a 4 × 4 byte matrix, and a binary variable ∆Xi[j][k] is associated
with every differential byte δXi[j][k]. These binary variables are equal to 0 if
their associated differential bytes are equal to 08, i.e.,

∆Xi[j][k] = 0 ⇔ Xi[j][k] = X ′
i[j][k] ⇔ δXi[j][k] = 08

and they are equal to 1 otherwise. We also associate binary variables ∆Ki[j][k]
and ∆Yi[j][k] with every differential byte δKi[j][k] = Ki[j][k] ⊕ K ′

i[j][k] and
δY [j][k] = Yi[j][k] ⊕ Y ′

i [j][k], respectively.
The operations that transform δX into δXr (described in Sect. 2.1 and Fig. 1),

are translated into constraints between these binary variables. In this first step,
the goal is to find solutions which satisfy these constraints. Solutions of this first
step are called binary solutions. Note that during this first step, the SubBytes
operation S is not considered. Indeed, the S-box does not introduce nor remove
differences, i.e., for all bytes A and B, (A ⊕ B=08) ⇔ (S(A) ⊕ S(B)=08).

Second step: Search of byte solutions. In the second step, we try to transform
binary solutions found in the first step into byte solutions. More precisely, for
each binary variable ∆Xi[j][k], ∆Yi[j][k] or ∆Ki[j][k] set to 1 in the binary
solution, we search for a byte value δXi[j][k], δYi[j][k] or δKi[j][k] different from
08 so that the AES transformation rules are satisfied. Note that some binary
solutions may not be transformable into byte solutions. These binary solutions
are called byte-inconsistent binary solution, whereas binary solutions that can be
transformed into byte solutions are called byte-consistent binary solutions. Note
also that a byte-consistent binary solution may be transformable into more than
one byte solution.

590 D. Gerault et al.

Objective function. The goal is to find a byte solution that maximizes probability
p2 of Eq. (2), while being strictly lower than 1 (i.e., there must be at least one
difference between the initial plain texts and keys). It has been shown that a
byte solution that maximizes probability p2 also maximizes the number of factors
Dα,β of Eq. (2) for which α = β = 0 (because D08,08 = 1 whereas Dα,β ≤ 4

256 if
(α,β) ̸= (08, 08)). Therefore, we introduce a variable obj which is equal to the
number of ∆Xi[j][k] and ∆Ki[3][k] variables of Eq. (2) which are set to 1:

obj =
r∑

i=0

3∑

j=0

3∑

k=0

∆Xi[j][k] +
r∑

i=0

3∑

k=0

∆Ki[3][k]

We add the constraint obj ≥ 1, to ensure that probability p2 is strictly lower than
1. To find a byte solution that maximizes p2, we first have to find byte-consistent
binary solutions that minimize the value of obj. Note that there may exist byte-
inconsistent binary solutions that have a smaller obj value. However, these binary
solutions must be discarded as it is not possible to transform them into byte
solutions. Finally, among all byte-consistent binary solutions that minimize obj,
we have to search for the one that maximizes the actual probability p2 associated
with its best byte solution.

Existing approaches to solve the problem. In [3], step 1 is solved with a dedicated
Branch & Bound approach. In a preliminary study, we have implemented this
approach in C programming language. For r = 3 (resp. r = 4), we found the
optimal binary solution in about one hour (resp. 24 h) on a single core PC. In
[9], step 1 is solved by performing a breadth-first traversal of a state-transition
graph that has about 233.6 nodes for a 128 bit key length. The graph needs 60GB
of memory and it is pre-computed in 30min on a 12-core computer for r = 5.
Using this graph, binary solutions are found in a few seconds. Both in [3,9], it
is claimed that the optimal solution for r = 4 rounds has an objective value
obj = 13. We shall see in Sect. 6 that there exists a better solution.

3 First CP Model for Step 1

In this section, we describe a CP model for the first step described in Sect. 2.4.
This model was initially introduced in [14].

3.1 Variables

Let r be the number of rounds, and let l = 128 be the length of the key. We define
the following binary variables (see Fig. 1 for an overview of the bytes associated
with these variables):

– For each column and row j, k ∈ [0; 3], ∆X[j][k] is the variable associated with
the differential byte δX[j][k] = X[j][k] ⊕ X ′[j][k].

Constraint Programming Models for Chosen Key Differential Cryptanalysis 591

– For each round i ∈ [0; r] and for each column and row j, k ∈ [0; 3], ∆Xi[j][k]
and ∆Ki[j][k] are variables associated with differential bytes δXi[j][k] =
Xi[j][k] ⊕ X ′

i[j][k] and δKi[j][k] = Ki[j][k] ⊕ K ′
i[j][k], respectively.

– For each round i ∈ [0; r − 1] and for each column and row j, k ∈ [0; 3],
∆Yi[j][k] is the variable associated with the differential byte δYi[j][k] =
Yi[j][k] ⊕ Y ′

i [j][k].

All these variables are binary variables, which are set to 0 when the associated
differential byte is 08 and to 1 otherwise.

3.2 Constraints

Constraints correspond to the propagation of differences by operations of the
round function f . As said before, the non linear operation S does not imply any
constraint as it neither introduces nor removes differences. The linear ARK and
KS operations involve xor operations. Therefore, we first define a xor constraint.
Then, we define constraints implied by the SR, MC, ARK and KS operations.

xor. Let us consider three differential bytes δA, δB and δC such that δA⊕δB =
δC. If δA = δB = 08, then δC = 08. If (δA = 08 and δB ̸= 08) or (δA ̸= 08 and
δB = 08) then δC ̸= 08. However, if δA ̸= 08 and δB ̸= 08, then we cannot know
if δC is equal to 08 or not. When abstracting differential bytes δA, δB and δC
with binary variables ∆A, ∆B and ∆C (which only model the fact that there is
a difference or not), we obtain the following definition of the xor constraint:

xor(∆A,∆B,∆C) ⇔ ∆A+ ∆B + ∆C ̸= 1

AddRoundKey. At the beginning of the ciphering process, ARK performs xor
operations on ∆X and ∆K0 to obtain ∆X0, i.e.,

∀(j, k) ∈ [0; 3]2, xor(∆X[j][k],∆K0[j][k],∆X0[j][k])

Then, for each round i ∈ [1, r], ARK performs xor operations on ∆Yi−1 and
∆Ki to obtain ∆Xi, i.e.,

∀i ∈ [1, r],∀(j, k) ∈ [0; 3]2, xor(∆Yi−1[j][k],∆Ki[j][k],∆Xi[j][k])

ShiftRows and MixColumns. For each round i ∈ [0, r−1], SR and MC are applied
on ∆Xi to obtain ∆Yi, and MC ensures MDS (see Sect. 2.1), i.e.,

∀i ∈ [0, r − 1],∀j ∈ [0; 3],
3∑

k=0

∆Xi[(k + j)%4][k] + ∆Yi[j][k] ∈ {0, 5, 6, 7, 8}

KeySchedule. KS is applied at each round i to compute ∆Ki from ∆Ki−1, and
it is composed of xor operations between some columns of the key, i.e.,

∀i ∈ [1, r],∀k ∈ [0; 3], xor(∆Ki−1[0][k],∆Ki−1[3][(k + 1)%4],∆Ki[0][k])
∀i∈ [1, r],∀j∈ [1; 3],∀k∈ [0; 3], xor(∆Ki[j − 1][k],∆Ki−1[j][k],∆Ki[j][k])

592 D. Gerault et al.

3.3 Objective Variable

Finally, we introduce an integer variable obj, whose domain is [1, l
6]

1, and we
define obj as the number of differential variables on which a non linear S oper-
ation is performed, i.e.,

obj =
r∑

i=0

3∑

j=0

3∑

k=0

∆Xi[j][k] +
r∑

i=0

3∑

k=0

∆Ki[3][k]

3.4 Ordering Heuristics

As we want to minimize the number of ∆Xi[j][k] and ∆Ki[j][3] variables set to
1, we add a variable ordering heuristic that first assigns these variables, and a
value ordering heuristic that first tries to assign them to 0.

3.5 Limitations of the First CP Model for Step 1

In [14], we evaluated the CP model described in Sect. 3 (implemented with Choco
3 [19]) on two problems: the optimization problem, the goal of which is to find a
binary solution that minimizes the value of obj, and the enumeration problem,
the goal of which is to find all binary solutions for a given value of obj (corre-
sponding to the optimal one). These very first experimental results showed us
that Choco is able to solve these problems up to r = 5 rounds in a reasonable
amount of time. Note that it has been shown in [3] that it is useless to try to
solve these problems for more than 5 rounds because no valid characteristics
exist beyond this limit. However, solutions for low values of r are used as a basis
to build attacks with larger values of r. For example, [3] shows how to build an
attack for r = 12 and l = 192 by combining 2 solutions with r = 4. Hence, it is
very useful to find solutions with lower values of r.

For these two problems, binary solutions are not necessarily byte-consistent.
In particular, it may happen that the binary solution of the optimization problem
is byte-inconsistent. For instance, for r = 3 rounds, the optimal binary solution
has a cost of obj = 3 and there exist 512 binary solutions with this cost. However,
none of these solutions are byte-consistent: The optimal byte-consistent binary
solution has a cost of obj = 5. When solving the enumeration problem with this
cost, we find 21, 504 solutions, among which only 2 are byte-consistent. This
means that we spend most of the time at generating useless binary solutions
which are discarded in the second step because they are byte-inconsistent. Note
that approaches proposed by [3,9] also suffer from the same problem.

1 The upper bound l
6 comes from the fact that Dα,β ≤ 2−6, ∀(α,β) ̸= (08, 08), and

probability p2 must be larger than 2−l which corresponds to a probability with
uniform distribution of the 2l possible keys.

Constraint Programming Models for Chosen Key Differential Cryptanalysis 593

4 Additional Constraints for Step 1

In this section, we introduce new variables and constraints that are added to
the first CP model described in Sect. 3. They are used to infer equality relations
between differential bytes, and these relations are used to propagate the MDS
property of MixColumns at the byte level. They remove most binary solutions
that cannot be transformed into byte solutions, thus speeding up the solution
process.

4.1 Propagation of MDS at the Byte Level

For each round i ∈ [0, r − 1] and each column j ∈ [0, 3], the MDS property of
MixColumns (introduced in Sect. 2.1) ensures:

3∑

k=0

w(Xi[(k + j)%4][k]) + w(Yi[j][k]) ∈ {0, 5, 6, 7, 8}

At differential byte level, this property still holds:

3∑

k=0

w(δXi[(k + j)%4][k]) + w(δYi[j][k]) ∈ {0, 5, 6, 7, 8}

In the first model, this property is ensured by the constraint:

3∑

k=0

∆Xi[(k + j)%4][k] + ∆Yi[j][k] ∈ {0, 5, 6, 7, 8}

However, the MDS property also holds for any xor difference between two dif-
ferent columns in two different rounds of the differential byte model: ∀i1, i2 ∈
[0, r − 1],∀j1, j2 ∈ [0, 3],

3∑

k=0

w(δXi1 [(k+j1)%4][k] ⊕ δXi2 [(k+j2)%4][k])

+ w(δYi1 [j1][k] ⊕ δYi2 [j2][k]) ∈ {0, 5, 6, 7, 8}

To ensure this property (that removes most byte-inconsistent boolean solu-
tions), we introduce new boolean variables, called equality variables: For each
pair of differential bytes δA and δB (in δXi, δYi, and δKi matrices), we introduce
the boolean equality variable EQδA,δB which is equal to 1 if δA = δB, and to
0 otherwise. Using these differential byte equality variables, the MDS property
between different columns is ensured by the following constraint:
∀j1, j2 ∈ [0, 3],∀i1, i2 ∈ [0, r − 1],

3∑

k=0

EQδXi1 [(k+j1)%4][k],δXi2 [(k+j2)%4][k] + EQδYi1 [j1][k],δYi2 [j2][k]
∈ {0, 1, 2, 3, 8}

594 D. Gerault et al.

4.2 Constraints on Equality Variables

In this section, we define constraints that hold on equality variables.

Constraints derived from xor constraints. As pointed out in Sect. 3.2 when
defining the constraint xor(∆A,∆B,∆C) (where ∆A, ∆B and ∆C are binary
variables associated with differential bytes δA, δB and δC, respectively), if
∆A = ∆B = 1, then we cannot know if ∆C is equal to 0 or 1. However,
whenever ∆C = 0 (resp. ∆C = 1), we know for sure that the correspond-
ing byte δC is equal to 08 (resp. different from 08), meaning that the two
bytes δA and δB are equal (resp. different), i.e., that EQδA,δB = 1 (resp.
EQδA,δB = 0). The same reasoning may be done for ∆A and ∆B because
(δA ⊕ δB = δC) ⇔ (δB ⊕ δC = δA) ⇔ (δA ⊕ δC = δB). Therefore, we redefine
the xor constraint as follows:

xor(∆A,∆B,∆C) ⇔ ((∆A+ ∆B + ∆C ̸= 1)
∧ (EQδA,δB = 1 − ∆C)
∧ (EQδA,δC = 1 − ∆B)
∧ (EQδB,δC = 1 − ∆A))

Constraints to ensure that equality variables define an equivalence relation. Sym-
metry is ensured by

∀δA, δB,EQδA,δB = EQδB ,δA

and transitivity by

∀δA, δB, δC, (EQδA,δB = EQδB,δC = 1) ⇒ (EQδA,δC = 1)

Constraints that relate equality variables with binary differential variables. For
each pair of differential bytes δA, δB such that the corresponding binary variables
are ∆A and ∆B, respectively, we have:

(EQδA,δB = 1) ⇒ (∆A = ∆B)
EQδA,δB + ∆A+ ∆B ̸= 0

4.3 Constraints Derived from KS

The KeySchedule (described in Sect. 2.1) mainly performs xor operations: At
each round i, the first column Ki[0] is obtained by performing a xor between
bytes of Ki−1[0] and Ki−1[3]; for the last three columns j ∈ {1, 2, 3}, Ki[j] is
obtained by performing a xor between Ki−1[j] and Ki[j − 1]. Besides these xor
operations, all bytes of Ki−1[3] pass through the S-box before xoring them with
Ki−1[0] to obtain Ki[0]. Therefore, each byte of Ki, for each round i ∈ [1, r]
may be expressed as a combination of xor operations between bytes of the initial

Constraint Programming Models for Chosen Key Differential Cryptanalysis 595

key K0, and bytes obtained by applying the S operation on column 3 of rounds
j < i. For example (recall that A ⊕ A = 08 and 08 ⊕ A = A):

K2[1][1] = K2[0][1] ⊕ K1[1][1]
= K1[0][1] ⊕ S(K1[3][2]) ⊕ K1[0][1] ⊕ K0[1][1]
= S(K1[3][2]) ⊕ K0[1][1]

When reasoning at the differential byte levels, we have

δK2[1][1] = δSK1[3][2] ⊕ δK0[1][1]

where δSK1[3][2] = S(K1[3][2])⊕S(K ′
1[3][2]). As S is a non linear operation, we

cannot assume that δSK1[3][2] = S(δK1[3][2]). Therefore, δSK1[3][2] is a new
differential byte. However, there is a finite number of such new differential bytes:
for each round i ∈ [0, r] and each line k ∈ [0, 3], we introduce a new differential
byte

δSKi[3][k] = S(Ki[3][k]) ⊕ S(K ′
i[3][k])

and a new binary variable ∆SKi[3][k] which is equal to 0 if δSKi[3][k] = 08, and
to 1 otherwise. Note that ∆SKi[3][k] is a redundant variable which is equal to
∆Ki[3][k]. So, we add the constraint

∀i ∈ [1, r],∀k ∈ [0, 3],∆Ki[3][k] = ∆SKi[3][k]

We introduce this redundant variable because at the byte level this equality no
longer holds, i.e., δKi[3][k] = A ̸⇒ δSKi[3][k] = S(A) (because S is a non linear
operator such that S(A ⊕ B) ̸= S(A) ⊕ S(B) except when A = B), and for the
V sets defined below we reason at the byte level.

We propose to exploit the fact that each differential byte of Ki is the result of
a xor between a finite set of bytes. We first use the KS rules defined in Sect. 2.1
to build, for each i ∈ [1, r], and j, k ∈ [0, 3], the set V (i, j, k) of all differential
bytes (coming either from δK0 or from the set of new differential bytes δSKi),
such that:

δKi[j][k] =
⊕

δA∈V (i,j,k)

δA

For example, V (2, 1, 1) = {δK0[1][1], δSK1[3][2]}.
Note that these sets are computed before the search and do not depend on

the initial values of plaintexts and keys.
For each of these sets, we introduce a set variable which contains the corre-

sponding binary differential variables which are equal to 1:

V1(i, j, k) = {∆A | δA ∈ V (i, j, k) ∧ ∆A = 1}

For example, if ∆K0[1][1] = 1 and ∆SK1[3][2] = 0, then V1(2, 1, 1) =
{∆K0[1][1]}.

596 D. Gerault et al.

Whenever two differential key bytes δKi1[j1][k1] and δKi2[j2][k2] have the
same V1 sets, then we may infer that δKi1[j1][k1] = δKi2[j2][k2]. More precisely,
we define the constraint: ∀i1, i2 ∈ [1, r],∀j1, j2, k1, k2 ∈ [0, 3],

(V1(i1, j1, k1) = V1(i2, j2, k2)) ⇒ (EQδKi1 [j1][k1],δKi2 [j2][k2] = 1)

Also, if V1(i, j, k) is empty (resp. contains one or two elements), we infer that
∆Ki[j][k] is equal to 0 (resp. a variable, or a xor between 2 variables). More
precisely, we define the constraints: ∀i ∈ [1, r],∀j, k ∈ [0, 3],

V1(i, j, k) = ∅ ⇒ ∆Ki[j][k] = 0
V1(i, j, k) = {∆A} ⇒ ∆Ki[j][k] = 1 ∧ EQδKi[j][k],δA = 1

V1(i, j, k) = {∆A,∆B} ⇒ xor(∆A,∆B,∆Ki[j][k])

From a practical point of view, V1 variables are not modeled with set vari-
ables, but with vectors of boolean variables. The dimension of these vectors is
equal to the number of possible elements in these sets, i.e., 16 + 4(r + 1) (the
16 bytes of K0 plus the four bytes that pass through an S-box at each round).
Each boolean variable V [p] is equal to 1 if the pth element belongs to V1 (i.e., if
the variable associated with the pth element is equal to 1), and to 0 otherwise.
For each of these vectors, we introduce an integer variable which is constrained
to be equal to the sum of the variables of the vector.

5 CP Model for Step 2

We have implemented in Choco 3 [19] the second step that, given a binary
solution, searches for the byte-consistent solution with the highest p2 value (or
prove that there is no byte-consistent solution). The CP model for this second
step is rather straightforward and mainly uses table constraints to define rela-
tions between the input and the output of the S-box function. The key point is
to use a variable ordering that first chooses variables associated with the matrix
∆Xi such that

∑
j,k ∆Xi[j][k] is minimal.

The second step is not a bottleneck and is rather quickly solved by Choco.
For example, when l = 128, it is solved in 0.41 (resp. 0.42 and 1.26) seconds, on
average, when the number of rounds is r = 3 (resp. r = 4 and r = 5), whereas it
is solved in 2.26 seconds when l = 192 and r = 8. Therefore, we have not tried
to use other solvers for this step.

6 Experimental Evaluation

In this section, we experimentally compare our two CP models for Step 1: Model
1 refers to the first model introduced in Sect. 3; Model 2 refers to the first
model plus the additional constraints introduced in Sect. 4. These two mod-
els are defined with the MiniZinc modelling language [18]. Model 2 is available
at http://gerault.net/resources/CP AES.tar.gz.

http://gerault.net/resources/CP_AES.tar.gz

Constraint Programming Models for Chosen Key Differential Cryptanalysis 597

We compare three solvers on these models: Gecode [10] and Choco 4 [19],
which are classical CP solvers, and Chuffed [4], which is a lazy clause hybrid
solver that combines features of finite domain propagation and Boolean satisfia-
bility. All solvers are run on a single core and with default parameters2, except
option -f for Choco 4 (to break ties of the heuristic described in Sect. 3.4 with
the last conflict heuristic). All runs are limited to one hour of CPU time on a
2.5–3.5GHz i7-4710MQ processor with 8GB of memory.

Table 1 sums up the results for a number of rounds r ∈ {3, 4, 5}3. For each
round, the objective value obj ranges from the largest value such that Model 1
finds no solution to the smallest value such that there exists a byte-consistent
binary solution. Table 1 shows us that Model 2 drastically reduces the number
of byte-inconsistent solutions: For example, there are more than 9 ∗ 107 byte-
inconsistent solutions with Model 1 when r=4 and obj=11, whereas there is no
solution with Model 2. Hence, Model 2 is much more efficient than Model 1.

For both models, the number of choice points is greater for Gecode than for
Choco, and for Choco than for Chuffed. However, choices points are handled
faster by Gecode than by Choco (probably because Choco is implemented in
Java and Gecode in C++), and faster by Choco than by Chuffed (probably due
to lazy clause generation overhead). Therefore, Choco is not faster than Gecode
on small instances, and Chuffed is not faster than Choco on small or medium-
size instances. For the hardest instance (r=5; obj=17), Chuffed is nearly twice
as fast as Choco, which is nearly twice as fast as Gecode.

All solvers are much faster than the Branch & Bound approach of [3]: Our C
implementation of this approach needs 24 h to find an optimal binary solution
when r = 4. They are also faster and much less memory consuming than the
approach of [9], that needs 60GB and 30min on a 12-core computer to pre-
compute the graph. For example, for r = 5 and obj = 17, Choco and Chuffed
need 400MB and 88MB, respectively.

New results for differential cryptanalysis. We have found two byte-consistent
binary solutions with obj = 12 for r = 4 rounds, and we have proven the opti-
mality of these solutions by showing that there does not exist another byte-
consistent binary solution with an obj value strictly lower than 12. The optimal
byte solution (computed in Step 2) when obj = 12 has a probability p2 = 2−79.
The optimal byte solution and its associated binary solution are given in Appen-
dixA. This solution is better than the solution claimed to be optimal in [3] and
[9]: In these papers, authors say that the best byte-consistent binary solution
for r = 4 has an obj value equal to 13, and that the optimal byte solution has a
probability p2 = 2−81.

2 We tried other parameter settings. The best results were obtained with default ones.
3 Let us recall that it has been shown in [3] that it is useless to try to solve the problem
for more than 5 rounds when the key length is l = 128.

598 D. Gerault et al.

Table 1. Comparison of models and solvers, on the enumeration problem. Each line
displays: The number of rounds r, the objective function value obj, the number of
byte-consistent binary solutions (S), and the results with models 1 and 2 (number of
binary solutions (bin), CPU time in seconds (Time) and number of choice points (CP)
for Gecode, Choco 4 and Chuffed). We report ‘-’ when Time is greater than 3600.

r obj S Model 1 Model 2

bin Gecode Choco 4 Chuffed bin Gecode Choco 4 Chuffed

Time CP Time CP Time CP Time CP Time CP Time CP

3 2 0 0 0.0 9E1 0.0 4E1 0.0 5E1 0 0.0 9E1 0.1 4E1 0.0 5E1

3 3 0 5E2 0.1 2E3 0.4 2E3 0.0 7E2 0 0.0 3E2 0.3 2E2 0.1 2E2

3 4 0 5E3 1.3 2E4 1.8 1E4 0.2 5E3 0 0.2 9E2 0.5 4E2 0.2 4E2

3 5 2 2E4 6.0 6E4 5.1 5E4 0.9 2E4 4 0.4 2E3 0.6 1E3 0.6 1E3

4 8 0 0 0.2 2E4 0.6 1E4 0.3 8E3 0 4.6 1E4 4.9 5E3 6.2 4E3

4 9 0 2E4 7.1 1E5 5.4 7E4 1.4 4E4 0 8.1 2E4 7.8 8E3 10.7 7E3

4 10 0 6E6 - - 1161.2 2E7 113.5 6E6 0 14.2 3E4 12.8 1E4 16.2 1E4

4 11 0 9E7 - - - - 1974.5 9E7 0 24.4 5E4 15.5 2E4 25.2 2E4

4 12 2 - - - - - - - 8 44.7 1E5 28.4 5E4 35.7 3E4

5 10 0 0 1.1 1E5 1.4 5E4 2.3 4E4 0 39.2 3E4 26.8 2E4 37.3 1E4

5 11 0 3E1 2.0 2E5 2.4 1E5 5.0 7E4 0 63.0 5E4 46.4 3E4 61.5 2E4

5 12 0 5E5 998.0 4E6 98.3 2E6 48.4 7E5 0 110.0 9E4 74.6 5E4 97.9 3E4

5 13 0 4E7 - - - - 1246.5 5E7 0 187.4 2E5 142.1 9E4 157.6 5E4

5 14 0 - - - - - - - 0 321.7 3E5 247.4 2E5 246.5 8E4

5 15 0 - - - - - - - 10 586.7 5E5 448.2 3E5 408.1 1E5

5 16 0 - - - - - - - 35 1175.8 1E6 770.1 6E5 593.5 2E5

5 17 6 - - - - - - - 50 2879.0 5E6 1524.9 1E6 885.1 4E5

7 Discussion and Conclusion

We have introduced a CP model for solving a problem related to the chosen key
differential cryptanalysis of AES with keys of length l = 128. This model follows
the classical two step solving process of [3,9]. In Step 1, we abstract bytes with
binary values that indicate whether the byte is equal to 08. In Step 2, we search
for non null byte values, for each binary value equal to 1. We have defined new
constraints (not used in [3,9]) which allow us to dramatically reduce the number
of binary solutions that cannot be transformed into byte solutions. The idea is
to keep track of equalities at the byte level to remove byte-inconsistent solutions
at the binary level.

In this paper, we have described models for AES-128, with key length l=128.
We have also defined MiniZinc models for AES-192, with l=192. At this time,
the best solution we obtained for AES-192 concerns 8 rounds and has obj = 19
active S-boxes. We also plan to extend this work to other families of block ciphers,
such as Rijndael [5] for which the approach of [9] cannot be used because of its
exponential memory complexity.

In our model, we use boolean variables to represent equivalence classes
defined by byte equalities: For each pair of bytes, we introduce a boolean variable
which is set to 1 if the two bytes are equal, and we explicitly add constraints
to ensure symmetry and transitivity of the equality relation. Another possibility

Constraint Programming Models for Chosen Key Differential Cryptanalysis 599

would have been to use a graph variable (whose nodes are differential bytes, and
edges are byte equality relations), and to post an n-clique global constraint on
it, as proposed by Fages [7]: This constraint ensures that the graph is composed
of n disjoint cliques, where each clique corresponds to an equivalence class. We
have not used this constraint in our model, as it is not available in MiniZinc. We
plan to investigate the interest of this constraint using Choco.

Finally, the CP model for Step 2 mainly uses table constraints. Some AES
operations operate at the bit level (mostly xor operations), and we plan to
improve our model by using bit-vector variables and channeling them with inte-
ger variables used to model bytes, as proposed in [13].

Acknowledgements. Many thanks to Jean-Guillaume Fages, for sending us Choco 4
before the official public release, and to Yves Deville, Pierre Schaus and François-Xavier
Standaert for enriching discussions on this work.

Appendix

A Solution with obj = 12 Active S-Boxes for AES with
r = 4 Rounds and l = 128 Bits

The byte-consistent binary solution is displayed below. Each binary variable
assigned to 1 is colored in blue, and is surrounded in red when it belongs to the
objective function (i.e., it passes through an S-box).

The optimal byte solution is displayed below, in hexadecimal notation.

Round δX = X ⊕ X′ δK = K ⊕ K′

Init 0d151846 0dacf2f2 0dfff2f2 0dacf2f2

0 00000000 00ac0000 00000000 00ac0000 0d151846 0d00f2f2 0dfff2f2 0d00f2f2

1 00000000 00ff0000 00ff0000 00000000 0dfff2f2 00ff0000 0dfff2f2 00000000

2 00000000 00ff0000 00000000 00000000 0dfff2f2 0d00f2f2 00000000 00000000

3 00000000 00ff0000 00ff0000 00ff0000 0dfff2f2 00ff0000 00ff0000 00ff0000

End/4 fa000000 faff0000 fa000000 f700f2f2 f7fff2f2 f700f2f2 f7fff2f2 f700f2f2

600 D. Gerault et al.

The corresponding plaintexts X and X ′ and keys K and K ′ are displayed below,
in hexadecimal notation. The probability p2 associated with these plaintexts and
keys is p2 = 2−79 whereas it is equal to p2 = 2−81 in the solution given in [3,9]
(solution with obj = 13 active S-boxes).

Round K K′

0 00000000 00000000 00000000 00000000 0d151846 0d00f2f2 0dfff2f2 0d00f2f2

1 62636363 62636363 62636363 62636363 6f9c9191 629C6363 6f639191 62636363

2 9b9898c9 f9fbfbaa 9b9898c9 f9fbfbaa 96676a3b f4fb0958 9b9898c9 f9fbfbaa

3 90973450 696ccffa f2f45733 0b0fac99 9d68c6a2 6993cffa f2b5733 0bf0ac99

4 ee60da7b 876a1581 759e42b2 7e91ee2b 19f92889 706ae773 8261b040 89911cd9

Round X X′

Init. 6b291f8d a800d3d7 f239d5a4 510035ef 663c07cb a5ac2125 ffc62756 5cacc71d

0 6b291f8d a800d3d7 f239d5a4 510035ef 6b291f8d a8acd3d7 f239d5a4 51ac35ef

1 e5000327 00796300 0079005c 0000005a e5000327 00866300 0086005c 0000005a

2 2e2de80b 5186a759 e0d3cbb2 2b02c803 2e2de80b 5179a759 e0d3cbb2 2b02c803

3 5a74f2ae b979ce4a e286aa6a ea86647b 5a74f2ae b986ce4a e279aa6a ea79647b

End c501f2fa 4095b6af cdd8f67b 4fadf0a4 3f01f2fa ba6ab6af 37d8f67b b8ad0256

References

1. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

2. Biham, E., Shamir, A.: Differential cryptanalysis of feal and N-Hash. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 1–16. Springer, Heidelberg
(1991)

3. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

4. Chu, G., Stuckey, P.J.: Chuffed solver description (2014). http://www.minizinc.
org/challenge2014/description chuffed.txt

5. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
6. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash

functions using sat solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007.
LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

7. Fages, J.-G.: On the use of graphs within constraint-programming. Constraints
20(4), 498–499 (2015)

8. FIPS 197. Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197. U.S. Department of Commerce/N.I.S.T (2001)

9. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

http://www.minizinc.org/challenge2014/description_chuffed.txt
http://www.minizinc.org/challenge2014/description_chuffed.txt

Constraint Programming Models for Chosen Key Differential Cryptanalysis 601

10. Team, G.: Gecode: Generic constraint development environment (2006). http://
www.gecode.org

11. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step SHA-1. IACR Cryptology ePrint Archive 2015:530 (2015)

12. Legendre, F., Dequen, G., Krajecki, M.: Encoding hash functions as a sat problem.
In: IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI
2012, Athens, Greece, 7–9 November 2012, pp. 916–921. IEEE (2012)

13. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 527–543. Springer, Heidelberg
(2012)

14. Minier, M., Solnon, C., Reboul, J.: Solving a Symmetric Key Cryptographic Prob-
lem with Constraint Programming. In: ModRef 2014, Workshop of the CP 2014
Conference, September 2014, Lyon, France, July 2014

15. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115.
Springer, Heidelberg (2006)

16. Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced keccak hash
functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)

17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

18. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZ-
inc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

19. Prudhomme, C., Fages, J.-G.: An introduction to choco 3.0: an open source java
constraint programming library. In: CP Workshop on CP Solvers: Modeling, Appli-
cations, Integration, and Standardization (2013)

20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009)

21. Sun, S., Hu, L., Wang, M., Yang, Q., Qiao, K., Ma, X., Song, L., Shan, J.: Extend-
ing the applicability of the mixed-integer programming technique in automatic
differential cryptanalysis. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol.
9290, pp. 141–157. Springer, Heidelberg (2015)

22. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014)

23. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

24. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

http://www.gecode.org
http://www.gecode.org

Solving a Supply-Delivery Scheduling Problem
with Constraint Programming

Katherine Giles and Willem-Jan van Hoeve(B)

Tepper School of Business, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

kgiles@tepper.cmu.edu, vanhoeve@andrew.cmu.edu

Abstract. We describe a constraint programming approach for a
supply-delivery problem in the petrochemical industry, in which barges
transport liquid material from supplier locations to downstream process-
ing plants. The problem is to design a pickup-and-delivery route for each
barge such that given minimum and maximum inventory levels at each
location are met for a given fleet size. This optimization problem is part
of a larger planning system to determine the fleet size, negotiate pickup
windows and quantities, and design operational schedules. We evalu-
ate our model on representative supply networks provided by BP North
America, and contrast our results with those obtained by a mixed-integer
programming approach.

1 Introduction

In the chemical processing industry, often material has to be processed by multi-
ple plants in order to convert it into the final product. We consider such supply-
delivery problem in the petrochemical industry, in which liquid material needs
to be transported from supplier locations to downstream processing plants. The
liquid material is transported by water, using so-called “tows” that consist of
one power unit and two barges. We focus on the design of pickup-and-delivery
schedules for the tows with the aim of satisfying minimum and maximum inven-
tory levels at each of the supply locations and processing plants. The high-level
objective is to minimize total cost, which is determined by the fleet size, the
violation of time window constraints, and the violation of inventory (lower and
upper) capacity constraints.

As a specific application, we study the supply-delivery problem that is oper-
ated by BP (formerly known as British Petroleum) in North America. BP
employs the optimization problem described above within a larger planning sys-
tem to determine the target fleet size, and to negotiate pickup windows and
quantities. In addition, the solution to the optimization problem provides a
basis for the operational schedule. Upon the start of the project, BP employed a
mixed-integer programming (MIP) optimization model which had several draw-
backs. First, the MIP model had difficulty finding optimal (or even good feasible
solutions), already for relatively small instances. Second, larger instances posed
challenges with respect to memory issues. Third, given the large computation
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 602–617, 2016.
DOI: 10.1007/978-3-319-44953-1 38

Solving a Supply-Delivery Scheduling Problem with CP 603

times, it was difficult to use the MIP model in the desired strategic planning
context. In order to find solutions of sufficient quality, this approach required
intensive manual interaction: The model would be solved in several iterations, in
each of which the problem parameters (such as the fleet size or pickup windows)
would be adjusted.

Given these challenges, and driven by the scheduling aspects of the prob-
lem, we therefore present an alternative optimization model based on constraint
programming (CP). In particular, we will represent the problem as a constraint-
based scheduling problem, using activities and resources. Our main finding is
that the CP model scales much better than the MIP formulation that is cur-
rently in place. For certain representative instances considered, CP can find
optimal solutions in a fraction of the time it takes MIP. The CP model is there-
fore much better suited than the existing MIP model to provide solutions in a
broader planning context.

The remainder of the paper is structured as follows: In Sect. 2 we provide a
brief review of the most relevant literature. We then give a detailed description
of our problem in Sect. 3. This is followed by the constraint programming model
in Sect. 4. We provide an evaluation of our model in Sect. 5, and conclude in
Sect. 6.

2 Related Work

Our problem can be viewed as a variant of the maritime inventory routing prob-
lem. The basic maritime inventory routing problem (see [3]) involves the trans-
portation of a single product from loading ports to unloading ports, with each
port having a given inventory storage capacity and a production or consump-
tion rate, therefore combining inventory management and ship routing. These
are typically treated separately in much of the maritime transportation indus-
try. Christiansen and Fagerholt [4] provide a recent survey in ship routing and
scheduling research.

A recent paper by Goel et al. [5] introduces a constraint programming model
for a maritime inventory routing problem in the context of liquefied natural gas
(LNG) tanker scheduling. It follows the approach of representing the routing
problem as a constraint-based scheduling model, which has been successfully
applied before to many industrial routing and scheduling problems [1,2]. In par-
ticular, the routing problem is represented as a disjunctive scheduling problem,
in which a visit to a location becomes a task to be scheduled, and the distance
between two locations is modeled as a ‘sequence-dependent set-up time’ between
tasks. In addition, the same tasks can be associated with resource constraints to
model the inventory levels over time. The effectiveness of CP scheduling models
for such complex inventory routing problems was one of the main motivations
for considering CP for our problem.

Our problem does differ considerably from that in [5], and from the standard
maritime inventory routing problem. First, we consider multiple products instead
of a single commodity. Furthermore, the attributes of the three location types

604 K. Giles and W.-J. van Hoeve

(suppliers, plants, and customers) are not simply pickup and delivery nodes;
the plants both consume and produce products, necessitating both pickup and
delivery visits. Lastly, our vessels have two barges, each of which can carry a
separate product.

3 Problem Description

We will next describe the specific application at BP in detail [6]. The supply
network is defined by a set of suppliers S, a set of plants P , a set of customer
locations C, and a set of products F ; see Fig. 1 for a schematic representation of
a typical instance with four suppliers, two plants, and two customer locations.
The suppliers provide ‘feed’ to the plants (to be picked up in specified time
windows), which then convert this into different final products. In the example
of Fig. 1, the set of products is F = {feed, product 1, product 2, product 3}.
For convenience, we define F− := F \ {feed} to be the set of final products only.
The final products are shipped from plants to customer locations to meet the
demand (or to avoid inventory overflow at the plant). In addition, some plants
can directly meet the demand of a product instead of shipping it to a customer
location. For example, in Fig. 1, Plant 2 only produces final product 1, whose
demand is met exclusively by prescheduled pickups. Lastly, some plants are
connected to a pipeline which provides an alternate supply of feed (for example,
Plant 1 in Fig. 1). Both pipeline deliveries and prescheduled pickups are external
events; no tows will be used for these activities.

We are given a discrete planning horizon (in days) H = {1, 2, . . . , Ĥ},
where Ĥ represents the end of the horizon. We are also given a set of tows
T = {1, 2, . . . ,M}, where M is the maximum number of tows. Each tow consists
of two barges and a power unit, and has a total capacity of 2Λ metric ton. The
specific attributes (input data) for the suppliers, plants, customers, and tows
are given in Table 1. The goal is to design a pickup-and-delivery schedule for the
tows such that (ideally) all time window constraints and all inventory capacity
constraints are respected.

While the structure provided by this network is very generic, our case has
the following specific elements:1

– In our model, we do not explicitly convert feed into final products. Instead,
the conversion is modeled implicitly by specifying daily production and con-
sumption amounts. (Note that other materials are required for the conversion
as well.)

– Suppliers are contractually bound to have sufficient feed available for any
scheduled tow pickup that can occur over the scheduling horizon. We there-
fore do not need to represent the daily production of feed, nor the inventory
levels, at each supplier location. (Our model is easily extended to handle this,
however.)

1 Via private communication with Norman Jerome, BP Americas.

Solving a Supply-Delivery Scheduling Problem with CP 605

Fig. 1. Petrochemical supply-delivery network.

Table 1. Attributes of suppliers, plants, customers, and tows.

Ws Set of pickup windows for supplier s ∈ S,

li,s Start date of pickup window i ∈ Ws for s ∈ S,

ui,s End date of pickup window i ∈ Ws for s ∈ S,

V pu
p,f Set of prescheduled visits to pick up product f ∈ F− for plant p ∈ P ,

V del
p Set of prescheduled visits to deliver feed for plant p ∈ P ,

dpup,f,i Date of visit i ∈ V pu
p for p ∈ P and product f ∈ F−,

ddelp,i Date of visit i ∈ V del
p for p ∈ P ,

apu
p,f,i Amount of f ∈ F− picked up at visit i ∈ V pu

p,f for p ∈ P ,

adel
p,i Amount of feed delivered at visit i ∈ V del

p for p ∈ P ,

I initf,i Initial inventory of product f ∈ F at location i ∈ P ∪ C,

Imin
f,i Minimum inventory of product f ∈ F at location i ∈ P ∪ C,

Imax
f,i Maximum inventory of product f ∈ F at location i ∈ P ∪ C,

Πf,p,d Production amount of product f ∈ F at plant p ∈ P on date d ∈ H,

Γp,d Consumption amount of feed at plant p ∈ P on date d ∈ H,

Di,j Distance (in days) from location i to location j (i, j ∈ S ∪ P ∪ C),

lt First destination for tow t ∈ T ,

Λ Barge capacity (500 metric ton in our data case)

606 K. Giles and W.-J. van Hoeve

– The most important operational concern is to have sufficient feed available at
the plants (i.e., the lower limit is typically binding). The upper capacity of
the feed inventory at the plants is typically not binding.

– The maximum inventory capacity of the final products at the plants is typically
not reached.

– The consumption rate of the final products at the customer locations is not
part of our problem description. At the same time, the maximum inventory
level is practically never binding for customer locations.

Given these considerations, as our specific objective we chose to minimize the
total amount of feed underflow at the plant locations. However, we do present a
generic CP model that can accommodate different objectives as well.

4 Constraint Programming Model

We next present our constraint programming model for the base problem: Given
a fixed number of tows, find a supply-delivery schedule that minimizes the total
feed underflow at the plants. We use the optimization modeling system Aimms
to express our model, using ‘activities’ and ‘resources’ for the constraint-based
scheduling formulation [2]. We will first review the relevant Aimms syntax, and
then provide the details of the model.

4.1 Aimms Syntax for Constraint-Based Scheduling

The activities and resources in Aimms provide an interface to advanced schedul-
ing constraints, in particular those available in IBM ILOG CP Optimizer [7];
readers familiar with the IBM ILOG CP Optimizer scheduling interface will
recognize the similarities. Activities correspond to tasks to be executed over the
time horizon. They have a start time, end time, and duration. Each activity also
has a schedule domain which defines the range of possible dates for the start and
end time. In addition, an activity can be optional, which means that its presence
will be a decision variable. Activities can impact one or more resources; this
is modeled at the resource level. In Aimms, an activity A defines the following
decision variables:

A.Begin the start time of A,
A.End the end time of A,
A.Length the duration of A,
A.Present the presence of A (with Boolean domain).

Several useful functions on activities are provided. For activity A and d ∈ H we
have:

– ActivityBegin(A, d): Returns d if A is absent, and A.Begin if A is present.

Resources can be declared in two ways in Aimms: Sequential or parallel. A
sequential resource maintains a unary resource level (either 0 or 1), which means
that at most one task can be active at a time. The definition of a sequential
resource includes the following attributes:

Solving a Supply-Delivery Scheduling Problem with CP 607

– Resource name and index set (possibly empty),
– Activities: List of activities that influence the resource,
– Group set: Set of groups in which the activities are divided,
– Group definition: Maps activities to group set elements,
– Group transition: Represents the transition/setup time between pairs of group
elements,

– First activity: Reference to the first activity in the sequence.

Sequential resources have several useful associated functions. For sequential
resource R, activity A, and l, d ∈ H, we have:

– BeginOfNext(R,A,l,d): Returns d if A is absent, l if A is present and sched-
uled as last activity on R, and B.Begin if A is present and not scheduled as
last activity on R, and B is the next activity of A scheduled on R.

– EndOfNext(R,A,l,d): Returns d if A is absent, l if A is present and scheduled
as last activity on R, and B.End if A is present and not scheduled as last
activity on R, and B is the next activity of A scheduled on R.

For sequential resource R, activity A, and group elements l, l′, we have:

– GroupOfNext(R,A,l,l′): Returns l′ if A is absent, l if A is present and sched-
uled as last activity on R, and the group of B on R if A is present and not
scheduled as last activity on R, and B is the next activity of A scheduled on
R.

For parallel resources, multiple tasks can be active simultaneously, as long
as the activity level of the resource is within a given lower and upper bound.
The activity level represents the cumulative resource value over time, and is
influenced by the activities. The definition of a parallel resource includes the
following attributes:

– Resource name and index set (possibly empty),
– Activities: List of activities that influence the resource,
– Level range: {L..U} specifies that the activity level must be between L and
U at each time point,

– Initial level: Specifies the initial activity level,
– Begin change: Specifies for each activity A by how much the activity level is
changed at A.Begin,

– End change: Specifies for each activity A by how much the activity level is
changed at A.End.

A useful function for a resource R and a time point d ∈ H is the following:

– R(d).ActivityLevel: Returns the activity level of R at time d.

This function uses ‘overloading’ of the resource name; for example, if we define
a resource indexed over i as R(i), we can access the activity level at time d ∈ H
via R(i, d).ActivityLevel.

We remark that the description above is limited to those concepts that are
relevant to our paper. For a complete description of the scheduling functionality
in Aimms we refer to [8].

608 K. Giles and W.-J. van Hoeve

4.2 Modeling the Location Visits and Inventory Levels

There are three different types of locations: Suppliers, who are solely pickup
nodes, customers, who are exclusively delivery nodes, and plants, which both
produce and consume product and, as such, are both pickup and delivery nodes.

Location Visits. Each possible visit by a tow to a location is indexed by a
master set N := {1, 2, . . . }, for which the upper value is the maximum number
of pickup windows for all the suppliers. That is, each tow cannot make more
than |N | visits to a location. One of the drivers of the computational efficiency
of our model, however, is defining an auxiliary set Nl ⊆ N , with the maximum
number of individual tow visits varying by location l ∈ S ∪P ∪C. For a supplier
s ∈ S, the maximum number is equal to the number of pickup windows |Ws|,
whereas for plants and customers, the maximum number can be adjusted by the
user through the graphical interface, if desired. Restricting the set of location
visits also restricts many of the index domains, so keeping its cardinality low
greatly improves computational performance.

Integer Variables. Due to the multiple products and split load functionality,
we require additional variables to represent the amount of material picked up
and delivered at each visit. We let Lf ⊆ P ∪C be the set of locations that serve
as demand point for final product f ∈ F−. The list of variables we will use to
represent the pickup and delivery at the locations is given in Table 2.

Table 2. Variables for Modeling the Pickup and Delivery at the Locations.

b1t,i,f,p amount of f ∈ F− picked up by barge 1 for t ∈ T at plant p for visit i ∈ Np,

b2t,i,f,p amount of f ∈ F− picked up by barge 2 for t ∈ T at plant p for visit i ∈ Np,

bput,i,f,p total amount of f ∈ F− picked up for t ∈ T at plant p for visit i ∈ Np,

bdemt,l,i,f total amount of f ∈ F− delivered for t ∈ T , location l ∈ Lf , and i ∈ Nl,

cp,d amount of feed consumed at plant p ∈ P on date d ∈ H,

sp,d amount of feed shortage (underflow) at plant p ∈ P on date d ∈ H,

gdelp,i amount of feed delivered at plant p ∈ P for visit i ∈ V del
p ,

gt,p,i amount of feed delivered with t ∈ T at plant p ∈ P for visit i ∈ Np

As we must distinguish between barge capacity and tow capacity, we introduce
the following constraints, for t ∈ T, p ∈ P, i ∈ Np, f ∈ F−:

0 ≤ b1t,i,f,p ≤ Λ,

0 ≤ b2t,i,f,p ≤ Λ,

bput,i,f,p = b1t,i,f,p + b2t,i,f,p.

Solving a Supply-Delivery Scheduling Problem with CP 609

In addition, we ensure that each barge can only contain one product:
∑

f∈F−

(b1t,i,f,p > 0) ≤ 1 for t ∈ T, p ∈ P, i ∈ Np,

∑

f∈F−

(b2t,i,f,p > 0) ≤ 1 for t ∈ T, p ∈ P, i ∈ Np.

To model the feed shortage, we define the next constraints, for p ∈ P, d ∈ H:

0 ≤ cp,d ≤ Γp,d, (1)
0 ≤ sp,d ≤ Γp,d, (2)
cp,d + sp,d = Γp,d. (3)

Unlike products, each tow picks up a “full load” (two barges) upon a supplier
visit. Therefore, to model the delivery of feed with tows, we introduce the con-
straint 0 ≤ gt,p,i ≤ 2Λ, for t ∈ T, p ∈ P, i ∈ Np. The other constraints for this
purpose will be given in Sect. 4.5, as they depend on the definition of plant visit
activities.

Activities. The key activities in our model are the possible visits that each tow
can make to each location. We define the following optional activities represent-
ing the i-th visit of tow t to the respective locations:

VisitSupplier(t, s, i) for t ∈ T , s ∈ S, i ∈ Ns,
VisitPlant(t, p, i) for t ∈ T , p ∈ P , i ∈ Np,
VisitCust(t, c, i) for t ∈ T , c ∈ C, i ∈ Nc.

Each of these activities has a fixed duration of one day, and a uniquely defined
schedule domain. For VisitSupplier(t, s, i), the schedule domain includes
only those days that are part of the pickup windows. VisitPlant(t, p, i) and
VisitCust(t, c, i) have schedule domains that begin either the day the first
prescheduled tow is due to arrive, or the earliest day a tow can arrive with
delivery of feed or product, derived from the travel time from the closest sup-
plier/plant production node.

We also define (fixed) activities to represent the daily production or con-
sumption, as well as the prescheduled visits, at each location:

PlantProduction(p, f, d) for p ∈ P , f ∈ F−, d ∈ H,
PlantConsumption(p, d) for p ∈ P , d ∈ H,
PreSchedPickUp(p, f, i) for p ∈ P , f ∈ F−, i ∈ V pu

p,f ,
PreSchedDelivery(p, i) for p ∈ P , i ∈ V del

p .

Each of these activities has a fixed duration of one day, and must be present.
The activities PlantProduction(p, f, d) and PlantConsumption(p, d) must take
place on day d, i.e., their associated start time variable is fixed to d. The start
time variables of activities PreSchedPickUp(p, f, i) and PreSchedDelivery(p, i)
are fixed to dpup,f,i and ddelp,i , respectively. Therefore, these activities can be viewed

610 K. Giles and W.-J. van Hoeve

as constants; they are necessary to model the resource levels, but their associated
variables are fixed to given values.

We note that the activity PlantConsumption(p, f, d) reduces the inventory
level by cp,d; any consumption that would reduce the inventory level below the
lower bound is considered sp,d, or underflow, as defined by constraints (1)–(3). A
similar overflow variable could be modeled for PlantProduction(p, f, d), but in
this application, we found it more efficient to set hard upper bounds on product
inventory levels and force the plants to ship product to customers to relieve any
excess.

Location Resources. We incorporate the above production, consumption, tow
visits, and prescheduled events in defining resources to represent the inventory
levels of the various products at each location, as follows:

Parallel resource: PlantProductInventory(p, f) for p ∈ P, f ∈ F−

Activities: PlantProduction(p, f, d) for d ∈ H, VisitPlant(t, p, i)
PreSchedPickup(p, f, i) for t ∈ T , i ∈ Np

Level range: {Imin
f,p ..Imax

f,p }
Initial level: I initf,p

End change: PlantProduction(p, f, d): Πf,p,d

VisitPlant(t, p, i): −bput,i,f,p
PreSchedPickup(p, f, i): −apup,f,i

Parallel resource: PlantFeedInventory(p) for p ∈ P
Activities: PlantConsumption(p, d) for d ∈ H, VisitPlant(t, p, i),

PreSchedDelivery(p, i), for t ∈ T , i ∈ Np

Level range: {Imin
feed,p..I

max
feed,p}

Initial level: I initfeed,p

End change: PlantConsumption(p, d): −cp,d
VisitPlant(t, p, i): gt,p,i
PreSchedDelivery(p, i): gdelp,i

Parallel resource: CustomerProductInventory(c, f)
Activities: VisitCust(t, c, i), for t ∈ T , i ∈ Nc

Level range: {0..Imax
f,p }

Initial level: I initf,c

End change: VisitCust(t, c, i): bdemt,c,i,f

To ensure that at most one tow can visit each plant or supplier at a time, we
introduce the following sequential resources:

Sequential resource: PlantVisits(p) for p ∈ P
Activities: VisitPlant(t, p, i), for t ∈ T , i ∈ Np

Sequential resource: SupplierVisits(s) for s ∈ S
Activities: VisitSupplier(t, s, i), for t ∈ T , i ∈ Ns

The supplier visits are special in that the set of possible visits Ns is defined
by the set of pickup windows Ws for supplier s ∈ S, which is not the case for

Solving a Supply-Delivery Scheduling Problem with CP 611

plants. Therefore, we distribute these possible visits over the tows by adding the
following constraints to ensure that at most one tow can visit a supplier in each
pickup time window:

∑

t∈T

VisitSupplier(t, s, i).Present ≤ 1 for s ∈ S, i ∈ Ns. (4)

We recall that the specific pickup time windows are represented by the schedule
domain of VisitSupplier(t, s, i), which is defined as {li,s, . . . , ui,s} for t ∈ T ,
s ∈ S, i ∈ Ns.

4.3 Modeling the Tows

For each tow, we define a unary resource for the sequence of visits (the route)
and parallel resources for the inventory levels of each product carried by the tow.
We assume that during each supplier pickup visit, both barges are filled with
feed to full capacity (this was given as a requirement).

We first define additional activities TowFirstAct(t) for t ∈ T , which represent
the starting location for each tow. As the scheduling process is dynamic, this
activity accounts for tows en route at the beginning of the planning horizon.
These prescheduled tows, even if not active for the entire schedule horizon, are
the minimum number of total tows that can be hired. Any additional tows are not
prescheduled, and begin at a depot with a one-day travel time to any location.

We can now define the sequential resource representing the tow’s route as
follows:
Sequential resource: RouteSeq(t) for t ∈ T

Activities: VisitSupplier(t, s, i), VisitPlant(t, p, i)
VisitCust(t, c, i), TowFirstAct(t)

Group set: S ∪ P ∪ C
Group definition: VisitSupplier(t, s, i): s,

VisitPlant(t, p, i): p,
VisitCust(t, c, i): c,
TowFirstAct(t): lt

Group transition: (i,j): Di,j for i, j ∈ S ∪ P ∪ C
First activity: TowFirstAct(t)

As tows carry several types of inventory, including both feed and final prod-
ucts, each of which is modeled as a different resource, it is necessary to use
variables rather than parameters upon any plant visit. Hence, while the tow
feed inventory level increases by a constant amount upon visiting a supplier, on
any plant visit activity, a tow may or may not be delivering feed. Consequently,
to model the tow inventory for feed, we define:

Parallel resource: TowFeedInv(t)
Activities: VisitPlant(t, p, i),VisitSupplier(t, s, i)

Level range: {0..2Λ}
Begin change: VisitPlant(t, p, i): −gt,p,i
End change: VisitSupplier(t, s, i): 2Λ

612 K. Giles and W.-J. van Hoeve

We similarly model the tow inventory for each final product as follows:

Parallel resource: TowProdInv(t, f) for t ∈ T, f ∈ F−

Activities: VisitPlant(t, p, i),VisitCust(t, c, i)
Level range: {0..2Λ}
End change: VisitPlant(t, p, i): bput,i,f,p − bdemt,p,i,f

VisitCust(t, c, i): −bdemt,c,i,f

4.4 Additional Sequencing Constraints

There are two broad categories of additional sequencing constraints, both of
which prune the search tree by limiting the options RouteSeq(t) has after
processing each activity. Neither category contains constraints that are strictly
required to model the problem; however, their inclusion improves solver perfor-
mance.

Visit Sequencing. We introduce the following constraints for the plant visits,
for t ∈ T, p ∈ P, i ∈ Np \ {1}:

VisitPlant(t, p, i).Present ⇒ VisitPlant(t, p, i − 1).Present (5)

ActivityBegin(VisitPlant(t, p, i), Ĥ) > (6)

EndOfNext(RouteSeq(t), VisitPlant(t, p, i − 1), Ĥ − 1, Ĥ − 1)

Constraint (5) is a symmetry-breaking constraint that ensures we schedule the
visits in order of Np. Constraint (6) ensures we cannot schedule two consecutive
visits of tow t at plant p, which prevents idling. We define similar constraints for
the customer visits, for all t ∈ T, c ∈ C, i ∈ Nc \ {1}:

VisitCust(t, c, i).Present ⇒ VisitCust(t, c, i − 1).Present (7)

ActivityBegin(VisitCust(t, c, i), Ĥ) > (8)

EndOfNext(RouteSeq(t), VisitCust(t, c, i − 1), Ĥ − 1, Ĥ − 1)

Location Sequencing. In addition to defining the order of visits, our model also
restricts the locations a tow can visit after a given activity. As visits to suppliers
leave a tow with no available capacity, we introduce the following constraints
that make sure we visit a plant after a supplier, for t ∈ T, s ∈ S, i ∈ Ns:

(BeginOfNext(RouteSeq(t),VisitSupplier(t, s, i),Ĥ,Ĥ) ̸= Ĥ) ⇒ (9)
GroupOfNext(RouteSeq(t),VisitSupplier(t, s, i)) ∈ P

Likewise, we introduce a constraint to model that we visit a demand location
after picking up some product at a plant. We then define, for t ∈ T, p ∈ P, i ∈ Np:

(BeginOfNext(RouteSeq(t),VisitPlant(t, p, i),Ĥ,Ĥ) ̸= Ĥ) (10)
∧ (bput,i,f,p > 0) ⇒ (GroupOfNext(RouteSeq(t),VisitPlant(t, p, i)) ∈ Lf \ {p})

Solving a Supply-Delivery Scheduling Problem with CP 613

It is also possible to deliver final products at multiple locations in sequence.
Since we must first empty both barges before we can pick up new feed from a
supplier (a given requirement), we introduce the following constraints for t ∈ T ,
p ∈ P, i ∈ Np:

((BeginOfNext(RouteSeq(t), VisitPlant(t, p, i), Ĥ, Ĥ) ̸= Ĥ) ∧ (11)
∨

f∈F−

(TowProdInv(t, f, VisitPlant(t, p, i).Begin).ActivityLevel > 0)) ⇒

GroupOfNext(RouteSeq(t), VisitPlant(t, p, i)) ∈ ∪fLf ,

and for t ∈ T, c ∈ C, i ∈ Nc:

((BeginOfNext(RouteSeq(t), VisitCust(t, c, i), Ĥ, Ĥ) ̸= Ĥ) ∧ (12)
∨

f∈F−

(TowProdInv(t, f, VisitCust(t, c, i).Begin).ActivityLevel > 0)) ⇒

GroupOfNext(RouteSeq(t), VisitCust(t, c, i)) ∈ ∪fLf .

In practice, these constraints can be refined to operate on subsets of locations
and products (and their associated activities). For example, in our case, customer
sites only receive one type of final product. Note that the model does not direct
a tow’s route after both barges are empty, to allow the tows to “choose” to visit
a supplier to pick up more feed, or a plant to pick up more final product.

4.5 Linking Pickup and Delivery Amounts with Visits

We introduce the following constraints to model the delivery amount of feed at
the plants, for t ∈ T, p ∈ P, i ∈ Np:

(VisitPlant(t, p, i).Present = 0) ⇒ (gt,p,i = 0) (13)

(VisitPlant(t, p, i).Present = 0) ⇒ (
∑

f∈F−

bdemt,p,i,f = 0) (14)

(VisitPlant(t, p, i).Present = 0) ⇒ (
∑

f∈F−

bput,i,f,p = 0) (15)

(VisitPlant(t, p, i).Present = 1) ⇒ (16)
(TowFeedInv(t, VisitPlant(t, p, i).End).ActivityLevel = 0)

Constraints (13), (14) and (15) state that no feed or product can be delivered, or
product can be picked up, when the plant is not visited. Constraint (16) states
that partial deliveries are not allowed (this is a given requirement).

614 K. Giles and W.-J. van Hoeve

Similar constraints can be defined for the customer locations:

(VisitCust(t, c, i).Present = 0) ⇒ (
∑

f∈F−

bdemt,c,i,f = 0) (17)

(VisitCust(t, c, i).Present = 1) ⇒ (
∑

f∈F−

bdemt,c,i,f > 0) (18)

(VisitCust(t, c, i).Present = 1) ⇒ (19)
(TowProdInv(t, VisitCust(t, c, i).End).ActivityLevel = 0)

Constraint (17) ensures that we cannot deliver any product when the customer
is not visited. Constraint (18) on the other hand states that we must deliver a
product when the customer is visited, and constraint (19) makes sure that no
partial delivery occurs.

4.6 Objective

The objective function is deceptively simple. In our implementation of the model,
we chose to minimize the total shortage of feed at the plants, as that was the
most pressing issue apparent:

min
∑

p∈P,d∈H

sp,d. (20)

As we will see in our experimental evaluation, the specific instances we were
given permit solutions in which there is no feed shortage, i.e., given a sufficient
number of tows, our solutions satisfy all pickup window, underflow, and overflow
constraints. However, solving the problem as a constraint optimization problem
with objective (20) proved much more computationally efficient than solving the
associated constraint satisfaction problem in which feed shortage is not allowed.

We do note, however, that the objective can easily be adapted to include
other terms, depending on the application at hand.

5 Evaluation

We implemented our CP model in Aimms 4.20, using IBM ILOG CPLEX and
CP Optimizer (12.6.3) as MIP and CP solver, respectively. We performed an
evaluation on the supply network given in Fig. 1. We consider two representative
cases over the same 92-day schedule horizon. Both cases have seven tows en
route and 20 total tows available; additionally, both have similar production
and demand profiles. They differ in the initial location and availability of the
tows as well as in some of the dates of supplier pickup windows.

We compare our CP model with the MIP model that is currently in use at
BP [6], as described in the introduction. The objective of the MIP model is
to minimize total cost, which is a weighted sum of the number of tows in use,
the violation of inventory upper and lower capacity constraints (overflow and

Solving a Supply-Delivery Scheduling Problem with CP 615

underflow), and violation of pickup time windows. The tows account for the
largest relative cost in the objective.

The MIP model is given the option to use all 20 tows available, which,
together with minimizing the constraint violations, allows to find some feasi-
ble solutions early in the solving process. The CP model, on the other hand,
uses a fixed number of tows; in the reported experiments we use the minimum
required number of tows (seven) as well as eight tows.

Table 3. Comparing CP and MIP solutions on two representative cases.

CP MIP

Case 1 Case 2 Case 1 Case 2

7 tows 8 tows 7 tows 8 tows

Variables 7,042 7,593 7,000 7,545 466,564 466,816

Constrains 3,387 3,836 3,371 3,822 509,068 509,320

Number of tows 7 8 7 8 8 7

Total underflow (mt) 0 0 0 0 200 17.72

Total overflow (mt) 0 0 0 0 0 11.83

Time window violations 0 0 0 0 0 5

Optimality gap 18.40% 13.69%

Solving time (s) 385 313 1,140 170 3,600 3,600

The results are presented in Table 3. The table first shows for each model the
number of variables and constraints. In addition, in order to compare CP with
MIP, we report for each solution the number of tows used, the total underflow
and overflow, and the number of time window violations, i.e., visits to suppliers
outside the defined pickup windows. The last two rows indicate the optimality
gap (for MIP) and total solving time. Both MIP models were unable to solve the
cases optimally within a time limit of 3,600 s, whereas all CP models were solved
optimally, in some cases within a couple minutes. Furthermore, the solutions
provided by CP satisfy all problem constraints, whereas the solutions found
by MIP use more tows for Case 1 (8 tows instead of 7), and violate various
constraints.

Aimms not only offers an optimization modeling language, but also comes
with visualization tools to build an end-user interface. The use of the model
as a planning tool is facilitated by a graphical user input page which allows
the user to vary the maximum number of tow and location visits, as discussed
earlier, and, most importantly, the maximum number of tows. The input page
accompanies several additional visualizations, including the inventory profiles
at the locations, as well as the routing schedules for the tows. Figures 2 and
3 provide an illustration; they depict the inventory profiles for Plant 1 (feed)
and Plant 2 (product 1) and the routing sequence for eight tows, in an optimal
solution.

616 K. Giles and W.-J. van Hoeve

Fig. 2. Inventory levels for Plant 1’s feed (left) and Plant 2’s product 1 (right).

Fig. 3. Gantt chart representing the routes for the tows.

6 Conclusion

We introduced a constraint programming model for a maritime inventory routing
problem in the petrochemical sector. Our model is based on a constraint-based
scheduling formulation, and relies on activities to represent possible vessel visits,
and parallel resources to represent the inventory levels over time. In addition,
we utilize sequential resources to represent the vessel routes. As a case study we
considered a barge scheduling problem from BP, with supplier, plant, and cus-
tomer locations. We compared the performance of our CP model to an existing
MIP formulation. The CP model was able to find optimal solutions with a small
fleet size that satisfied all problem constraints, while the MIP formulation had
scalability issues, and was not able to return solutions of similar quality even
when given much more computation time.

Solving a Supply-Delivery Scheduling Problem with CP 617

References

1. Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling
and planning. In: Rossi, F.. van Beek, P., Walsh, T. (eds.) Handbook of Constraint
Programming, chap. 22. Elsevier (2006)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems. Kluwer Academic Publishers (2001)

3. Christiansen, M., Fagerholt, K.: Maritime inventory routing problems. In: Floudas,
C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1947–1955. Springer,
New York (2009)

4. Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Ship Routing and Schedul-
ing in the New Millenium. Eur. J. Oper. Res. 228, 467–483 (2013)

5. Goel, V., Slusky, M., van Hoeve, W.-J., Furman, K., Shao, Y.: Constraint pro-
gramming for LNG ship scheduling and inventory management. Eur. J. Oper. Res.
241(3), 662–673 (2015)

6. Jerome, N.: Description of a MIP Supply Delivery Scheduling Problem (2014).
Unpublished manuscript

7. Laborie, P.: IBM ILOG CP Optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 148–162. Springer, Heidelberg (2009)

8. Roelofs, M., Bisschop, J.: AIMMS - The Language Reference. AIMMS (2016)

Four-Bar Linkage Synthesis Using
Non-convex Optimization

Vincent Goulet1(B), Wei Li2, Hyunmin Cheong2, Francesco Iorio2,
and Claude-Guy Quimper1

1 Université Laval, Quebec, Canada
vincent.goulet.4@ulaval.ca

2 Autodesk Research, Toronto, Canada

Abstract. We show how four-bar linkages can be designed using non-
convex optimization techniques. Our generative design software takes as
input a curve that needs to be reproduced by a four-bar linkage and
outputs the best assembly that approximates this curve. We model the
problem using quadratic constraints and show how redundant constraints
help to solve the problem. We also provide an algorithm that samples the
curve based on its characteristics. Experiments show that our software is
faster and more precise than existing systems. The current work is part
of a larger generative design initiative at Autodesk Research.

1 Introduction

A mechanism is an arrangement of machine parts that generates a specified
motion. The synthesis of a mechanism is the process of determining the position,
the orientation, and other parametric properties of parts according to constraints
governing their alignment or motion. The design of mechanisms has greatly
benefited from the advent of computer techniques. Computer-aided design and
engineering software (CAD/CAE) have been widely used in the documentation,
analysis, and optimization of designs. Though, still nowadays, the existing tech-
nologies and tools lack a function for automated mechanism synthesis. Creating
mechanisms that meet specified motion and geometric requirements demands
highly trained expert designers. As the available computing power keeps grow-
ing, so does the interest in the development of generative design tools.

In this paper, we address the problem of generating a four-bar linkage that
outputs a prescribed curve (Fig. 1). Four-bar linkages are simple yet practically
important mechanisms that can generate complex motion. Since the First Indus-
trial Revolution, they have been widely applied in mechanical systems, including
manufacturing, agriculture, robotics, and automotive industry [16]. However, it
is a laborious process to manually design a four-bar linkage based on a target
curve. The current state of the art of four-bar linkage design is a time consum-
ing process, and the results often lack optimality or generality. Hence, this paper
introduces an automated and efficient four-bar linkage synthesis approach, which
is also an important milestone towards synthesizing more complex mechanisms.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 618–635, 2016.
DOI: 10.1007/978-3-319-44953-1 39

Four-Bar Linkage Synthesis Using Non-convex Optimization 619

Fig. 1. A four-bar linkage and output coupler curve

We first establish the current state of the art regarding mechanical assembly
and path synthesis. We then introduce the terminology and notation used for the
four-bar linkage and the global non-convex optimization strategy. The contribu-
tions presented are the feature identification sampling technique, the four-bar
linkage quadratic model, the special constraint on the area of the curve, and
the design software developed. Results emphasizing the speed and quality of our
method follow along with a discussion.

2 Related Work

2.1 Mechanical Assembly

A long standing challenge of mechanical design is the automation of design
synthesis tasks [21]. Existing mechanism synthesis methods include systematic
search [17,22], machine-learning based approaches [8], stochastic search [26] and
graph-based approach [18,20]. However, to the best of our knowledge, exist-
ing generative design approaches still lack the generality or performance to be
practical.

2.2 Path Synthesis of Four-Bar Linkage

Without a computer-aided approach, a human designer typically uses prior
knowledge and/or atlases of coupler curves to identify a candidate linkage to
produce the desired curve [16]. Then the chosen linkage is modified until it is
satisfactory [25].

Analytical approaches formulate the four-bar linkage constraints, solve the
problem and return exact solutions [19,24]. They require a set of points or posi-
tions input by the user, which can be challenging to provide. In many cases, there
is no mechanism that can produce exactly the desired path. In fact, although the
mechanism found goes through the specified points, it may not go through the
desired curve (see Fig. 8 for an example). Also, analytical approaches are limited
to solving problems with five or less target points, (see [14] and the references
therein).

Alternatively, numerical methods are used to synthesize approximate mech-
anisms with acceptable tolerance between the input path and the coupler curve.
Genetic algorithms have been widely applied to the four-bar mechanism synthe-
sis problem [2,7]. Genetic algorithms and other stochastic search methods [6]

620 V. Goulet et al.

have the same limitation – there is no assurance that they will find a global
optimum. Also, because the objective function of four-bar mechanisms is highly
constrained, the typical evolutionary algorithms have to choose a very large num-
ber of initial population so that a considerable amount of them can play in the
next iteration. This technique unnecessarily increases CPU time and reserves a
large amount of memory during the computing iterations. The lack of consistency
also makes it challenging for performance evaluation.

Machine-learning approaches [8,25] store a large number of coupler curves in
a database. Automated procedures for fitting coupler curves are used to locate
potential linkage solutions from the database. Neural network [12] and sequential
quadratic programming [8] can be used to match coupler curves. However, such
an approach requires building a large linkage database. Another limitation is
that the quality of the generated motion directly depends on the mechanisms in
the database and sampling techniques.

3 Preliminaries

3.1 Mechanical Linkage

A mechanical linkage is a set of rigid bodies, called links, connected by joints.
Though many types of joints exist, we herein only consider the revolute joint or
pivot, which allows for one degree of freedom rotation. This paper focuses on the
two-dimensional four-bar linkage (Fig. 1), made of four links in a closed loop.
The joints A, B, C and D are pivots. The positions of A and B are fixed. The
motion of point E is the output of the mechanism, therefore it is called the end
effector. The link AB, called the frame, cannot move. The link AC, called the
crank, drives the motion of the linkage. The link BD is driven back and forth
about B and is called the rocker. The link CDE, called the coupler, couples the
rocker to the crank. The path traced by E over a full rotation of the crank is
called the coupler curve. A four-bar linkage is collinear if point E is aligned with
C and D. A linkage is Grashof if one link is able to fully rotate. We assume this
condition is met and the crank AC can fully rotate.

3.2 Non-convex Global Optimization

Mathematical optimization aims at finding good solutions to a problem according
to some user-defined criteria. Global optimization is a family of techniques that
guarantee that the solutions returned are absolutely optimal. These techniques
often consist of relaxing the problem to a form efficiently solvable to optimality.
This relaxed solution provides a bound for branch and bound search.

To be computable, the global optimization problem is modelled mathemati-
cally. The model consists of a set of variables, a set of constraints that need to
be satisfied, and an objective function. Each variable has a domain, a set of all
values it can be assigned.

The solver takes as input the model and finds suitable values for all variables,
such that constraints are satisfied and the objective is optimized. Solvers are

Four-Bar Linkage Synthesis Using Non-convex Optimization 621

available for a wide range of applications and can be categorized by the types
of variables they can handle, whether Boolean, integer, or real. Solvers can also
be categorized by the types of functions they can handle, whether logic, linear,
convex, or non-convex.

Modelling a four-bar linkage requires real variables and non-convex con-
straints. The global optimization solver Couenne [5] is specialized in both
regards, and is the solver used for all experimentation presented. It was cho-
sen over related candidates of comparable performance such as Baron [23] and
AlphaBB [4] because it is open source. The constraint solver IBEX [1] was also
considered but did not show sufficient performance. Other considered continuous
solvers include RealPaver [10], SCIP [3] and LindoAPI [15].

Non-convex problems are difficult to solve even for the best available software.
Couenne combines many techniques from constraint programming and other
optimization subfields. It uses constraint propagation and interval arithmetic
to achieve bounds tightening on each variable [5], therefore reducing the search
space. It relaxes the non-linear constraints into linear envelopes. It uses branch
and bound to create more tightly bounded subproblems. By adding redundant
constraints, this envelope is further tightened. Whether redundant constraints
make the solving faster depends on their number and complexity. Testing is
required for validation. Couenne feeds the linear problem to CPLEX [13] to
compute the solution to the relaxation.

4 Contribution

We developed a strategy to effectively design four-bar linkages outputting a
desired curve using non-convex optimization. The benefits of this application
are that the synthesis of the continuous curve is accurate, fast, and determin-
istic. The time frame of this project spanned six months. The first two months
were used to survey the available technology. The last four months were used
to develop the model and strategy. We modelled the mechanism using its geo-
metric properties, keeping in mind the possible generalization to mechanisms
of higher complexity, and a novel cut (or redundant constraint) was developed
using the area of the curve. We also designed a novel point sampling technique.
We implemented this strategy in a simple design software.

4.1 Fitness Metric

We aim at designing a four-bar linkage which replicates as tightly as possible
a continuous curve. To make this problem tractable for the constraint solver,
we strategically sample the curve using the technique describe in Sect. 4.2. The
model described in Sect. 4.3 minimizes a single variable e which represents the
maximum distance from the curve to a sample point. We sample the curve with
as little points as possible to keep the search space small. Note that the solver
could return a solution with zero error, meaning the solution curve reaches all
sample points, and yet not match the input curve, as shown in Fig. 8. In general,

622 V. Goulet et al.

Fig. 2. The Hausdorff distance is obtained by finding, for all points on one curve,
the closest point on the other, and keeping the distance of the furthest pair. X- and
y-dimensions are also shown.

(a) (b) (c)

Fig. 3. Q = (a) 1.7%; (b) 4.4%; (c) 20.8%

it is necessary to evaluate how well the continuous input curve matches the
output curve after it is returned, regardless of the objective value.

Several well-established curve matching metrics exist. The Hausdorff dis-
tance [11] d is the greatest distance from any point on the curves to the closest
point on the other curve. To render the metric independent of the size of the
curves, we normalize it with the greatest x- or y-dimension of the curve. The
normalized Hausdorff distance is herein designated as Q. In compliance with
Fig. 2, the equation for Q is:

Q =
d

max (∆x,∆y)

Figure 3 shows matching curves for different Q values. A Q value of 0 is a
perfect match. The user can define a threshold T under which the curves are
considered a good match. It is worth noting that Q does not consider the course
of the curve, which might result in undesired matches, especially when a curve
self-crosses. However, features of the model such as the area constraint discussed
in Sect. 4.4 make these events unlikely.

4.2 Curve Sampling Technique

The input curve is pre-sampled into a high resolution array of coordinates. The
sampling process consists of choosing n points from this array. Here we propose
a strategy to choose the n sample points T1, . . . , Tn that best represent the
input curve. We call the number n of sample points the sample number. A
compromise needs to be made when choosing the sample number. Indeed, large
sample numbers increase the execution time. However, they also improve the Q
value as they better represent the continuous curve.

Four-Bar Linkage Synthesis Using Non-convex Optimization 623

Some points are more important than others, like cusps or sharp turns. We
call these points of interest features. Figure 4 shows a curve with features and one
without. It is also important to have some sample points between the features to
depict the general behaviour. The remaining sampling points are spread evenly
between the features. It is possible for a curve to have no feature (e.g. an ellipse).
In this case, the samples are distributed uniformly with one placed at the point
of maximal curvature (Fig. 4).

Fig. 4. Sampling technique: features are marked by × and remaining points by ◦.

To identify the features, we find all maxima of curvature. However, we do
not compute the actual curvature, because it approaches infinity at cusps and
reaches inconveniently high values at very sharp turns. Instead, as shown on
Fig. 5, we compute the squared change in angle θ2 between segments of the high
resolution pre-sampled array. We square θ to amplify the variation.

Fig. 5. The deviation θ between consecutive segments

We compute the median absolute deviation from all squared angles θ2. Using
the first derivative of θ2 with respect to the distance travelled on the curve,
we identify the local maxima. There are usually many extrema, and filtering is
needed. We keep only the extrema whose θ value is significantly greater than the
overall values over the curve. Experience has shown that filtering out data within
10 times the median absolute deviation yields satisfactory results. Algorithm 1
presents the equivalent pseudocode.

Algorithm 1. Feature filtering(x,y)
1: Θ ← {θ2

i | θi is the exterior angle at (xi, yi)}
2: Θ̂ ← {θ2

i ∈ Θ | θ2
i−1 < θ2

i > θ2
i+1}

3: m ← median(Θ)
4: d ← median{|θ2

i − m| | θ2
i ∈ Θ}

5: return {(xi, yi) | θ2
i ∈ Θ̂ ∧ θ2

i > m+ 10d}

624 V. Goulet et al.

4.3 Model

The model ensures that the effector E moves as close as possible to the tar-
get curve. It minimizes the distance when the effector passes to each of the n
sample points. In other words, the solver has to find a mechanism and compute
n positions for this mechanism. Each position brings the effector close to its
corresponding target point. This section describes the variables, constraints and
objective function that compose the model.
Variables. A collinear four-bar linkage is defined by eight parameters, which
are the x- and y-coordinates of pivots A and B, the lengths of links AC, BD,
and CD, and the distance from C to E. The variable for the length between two
points such as AC is denoted AC. The solved linkage is interpreted directly from
the values of these variables. We nevertheless define two more redundant vari-
ables. The variable AB represents the distance between A and B. The variable
w gives the ratio of length CE over CD.

We add to the model variables for the x- and y-coordinates of C, D, and
E for each target point, for a total of 6n variables. A single error variable e
represents the maximum of all distances between effector positions Ei and their
corresponding sample point Ti.

Without loss of generality, all variables for coordinates are bounded from -10
to 10. Link lengths are bounded from 0 to 10. The ratio w is bounded from 0 to
4. It is helpful for the algorithm’s filtering to bound the domain of e with the
upper error bound eu.

The information on the variables is gathered in Table 1.

Table 1. Variables for four-bar linkage model

Type Variables Domains Quantity

Defining parameters Ax, Ay, Bx, By [−10, 10] 4

AB, AC, BD, CD, CE [0, 10] 5

w [0, 5] 1

Position parameters Cx, Cy, Dx, Dy, Ex, Ey [−10, 10] 6n

Error e [0, eu] 1

Constraints are relationships between the variables. The solver must find values
for the variables to satisfy all constraints. Here we explain all the constraints of
our model.

The first set of constraints force the coordinates to be separated by distances
corresponding to the lengths of the bars. For example, for the crank AC we
have:

(Ax − Cxi)
2 + (Ay − Cyi)

2 = AC2 ∀ i ∈ [1, n]

Four-Bar Linkage Synthesis Using Non-convex Optimization 625

We use a similar constraint to define the error e as the upper bound of the
squared distance from points Ei to points Ti.

(Txi − Exi)
2 + (Tyi − Eyi)

2 ≤ e ∀ i ∈ [1, n]

The following constraints ensure that the points C, D, and E are collinear.
We use the fact that the components of vectors CE and CD respect the ratio w.

w · (Dxi − Cxi) = Exi − Cxi ∀ i ∈ [1, n]
w · (Dyi − Cyi) = Eyi − Cyi ∀ i ∈ [1, n]

The lengths of the bars are not sufficient to determine the configuration of
the mechanism. As shown in Fig. 6, the same bars can be arranged into two
distinct mechanisms. The two solutions share a symmetry along the segment
joining B and C. For each target point Ti, the coordinates for Ei have to be on
the same side of the segment BCi. Since Ti and Ei must lie close to one another,
constraining either one is equivalent. The cross-product of vectors BC and BE
changes sign depending on which side of BC the point E is. By constraining
the sign of the cross-product to be the same for all positions, we constrain the
configuration. We therefore add either of the next two constraints.

(Txi − Cxi)(By − Cyi) ≥ (Tyi − Cyi)(Bx − Cxi) ∀ i ∈ [1, n] (1)
(Txi − Cxi)(By − Cyi) ≤ (Tyi − Cyi)(Bx − Cxi) ∀ i ∈ [1, n] (2)

The two constraints are mutually exclusive, so a model may represent one con-
figuration at a time. To access the whole search space, we can run the two con-
figurations in parallel. We term them the left and right configurations, according
to the inequality sign.

Fig. 6. The two possible configurations of the same links

The Grashof condition [9] states that the shortest link in a four-bar linkage
can fully rotate only if the combined length of the shortest and longest links
is smaller than the combined length of the remaining two links. The following
constraints enforce this:

AB ≥ AC BD ≥ AC CD ≥ AC

CD +BD ≥ AC +AB + s

AB + CD ≥ AC +BD + s

AB +BD ≥ AC + CD + s

626 V. Goulet et al.

A security constant s is added to the three last constraints to avoid equality.
Otherwise, the mechanism could fold over itself completely. In this state, its
behaviour is indeterminate, as it can unfold in two ways, as shown in Fig. 7. It is
the singularity where the mechanism can switch between the two configurations
of Fig. 6. Singularities are generally undesirable as they require additional control
and involve high mechanical stress. The security constant s can be tuned to the
desired tolerance. For all experiments herein s was set to 0.1, to minimally reduce
the search space while preventing singularities.

Fig. 7. Singular behaviour when CD + BD = AC + AB

It is worth noting that the model does not require the solution found to
follow the sample points in any order. Therefore, in theory, the solver could
return a mechanism which goes through the sample points in an undesired order.

Table 2. List of constraints for four-bar linkage model

Constraint Quantity

(Ax − Bx)
2 + (Ay − By)

2 = AB2 1

(Ax − Cxi)
2 + (Ay − Cyi)

2 = AC2 n

(Bx − Dxi)
2 + (By − Dyi)

2 = BD2 n

(Cxi − Exi)
2 + (Cyi − Eyi)

2 = CE2 n

w · (Dxi − Cxi) = Exi − Cxi n

w · (Dyi − Cyi) = Eyi − Cyi n

AB ≥ AC 1

BD ≥ AC 1

CD ≥ AC 1

CD +BD ≥ AC +AB + s 1

AB + CD ≥ AC +BD + s 1

AB +BD ≥ AC + CD + s 1

(Txi − Cxi) · (By − Cyi) ≶
(Tyi − Cyi) · (Bx − Cxi) n

(Txi − Exi)
2 + (Tyi − Eyi)

2 ≤ e n

Four-Bar Linkage Synthesis Using Non-convex Optimization 627

However, this is unlikely for two reasons. First, part of the sampling is done by
filling gaps between the features. This creates a continuity between the points
which the solutions tend to follow naturally. Second of all, violating the order
of the points generally results in a significant change in the curve area, which is
constrained as discussed in Sect. 4.4 (Table 2).
Objective Function. The goal is to minimize the distance between the two
continuous curves, using the continuous metric Q. Implementing Q in the model
would require approximating the curve with a very large number of points. To
avoid enlarging the model, we have opted for using only carefully selected points
to approximate the curve.

The variable e is defined in an analogous way to Q, but for a low resolution
approximation of the curve. We therefore choose the objective function of mini-
mizing e, which is the maximum distance between the output and input curves
at the sample points. Therefore, even though ultimately we want to minimize
the continuous metric Q, we had to define a discrete metric for the solver to use.

4.4 Constraint on Area

So far, the information contained about the curve is limited to the sample points.
There is a chance that the solution found may go through the sample points, yet
not produce the desired output (see Fig. 8). If we add more points for a tighter
fit, the model will grow proportionately, with added variables and non-convex
constraints. In general, it is desirable that the search space be as small as possible
while sacrificing little precision.

Fig. 8. Possible solution to a curve with few sample points

A relationship found empirically allowed including the area of the curve in
the model. Figure 9(a) shows that the area of the coupler curve varies linearly
with the ratio w of CE over CD. Thus, an expression of the following form can
be induced:

Area(w) = a · w + b

To determine a and b, two points are needed. First, when w is 0, the end
effector E coincides with C and the coupler curve is a circle with radius AC.
Second, when w is 1, the E coincides with point D and moves on an arc of null
area (Fig. 9(b)).

Area(0) = π ·AC2 Area(1) = 0

628 V. Goulet et al.

(a) (b)

Fig. 9. Variation of area with respect to ratio w

By substitution, we obtain the following expression:

Area = π ·AC2 (CE/CD − 1)

The sign of the area tells us if the end effector is travelling clockwise or coun-
terclockwise. Since this information is not known beforehand, we modify the
constraint as such:

Area = π ·AC2 |CE/CD − 1| (3)

The area is a constant computed from the input curve. Since we can con-
strain the area of the coupler curve, even smaller sample numbers yield precise
solutions. Cases such as seen in Fig. 8 are no longer possible. This allows keeping
the model small.

4.5 Simple Design Software

A software application implementing the solving process was developed in
Python. It allows the user to draw a curve and returns a four-bar linkage that
approximates it. The user draws a curve by positioning control points on a min-
imal graphic interface as shown in Fig. 10(a). The curve is then analyzed. A few
samplings are done with different sample numbers. For each sample number,

(a) (b)

Fig. 10. Design software screenshots; (a) User draws a curve; (b) Matching linkage is
displayed.

Four-Bar Linkage Synthesis Using Non-convex Optimization 629

two models are constructed: one with constraint (1) and the second with con-
straint (2). A portfolio approach is used and all models are launched in parallel.
When a solution is returned, its distance to the input curve is evaluated with Q.
If Q is below the user-defined threshold, all processes stop and the best solution
is returned and displayed to the user, as shown at Fig. 10(b).

5 Experimentation

We first show a precision and speed comparison with a genetic algorithm. Then,
we characterize the performance of our approach. Last, we demonstrate the
flexibility of the model by using it to design a robotic gripper.

We use the software described in Sect. 4.5 throughout the experimentation.
We generated a benchmark of 100 random curves. For each instance, N different
samplings are made. For each sampling, we launch the two possible linkage con-
figurations (constraints (1) or (2)). A total of 2N models are solved in parallel.
If a solution with Q lower than threshold T is found, the execution is stopped
and the solution is returned. Tests conducted with the experimental timeout of
900 s demonstrated that 84.5% of solutions were returned before 60 s, and 99.6%
were returned before 400 s. Thus, the timeout was set at 400 s. The solving flow
is shown on Fig. 11.

Fig. 11. How a curve is solved

5.1 Benchmark

The benchmark consists of 100 coupler curves of randomly generated linkages.
The linkages were generated within the search space of the model. The curves
are resized to fit inside a 4 by 4 units square centred at the origin. All curves
measure at least 1 unit at their widest. This benchmark spans a wide range of
shapes in the search space of our model, which all possess at least one solution.
Some curves are presented at Fig. 12.

630 V. Goulet et al.

Fig. 12. Example curves from the benchmark

5.2 Results

Comparison with Genetic Algorithm. To present the performance of our
non-convex optimization approach, we compare it to results obtained with the
genetic algorithm proposed by Cabrera [7], thereafter referred to as the GA.

For the comparison, we replace the solver block from Fig. 11 either with the
non-convex solver Couenne or the GA. The rest of the solving flow remains
unchanged. Three samplings are done (N = 3) with n1 = 6, n2 = 7 and n3 = 8.
The threshold T is set at 5%, so when a solution with lower Q value is returned,
the execution stops. We set s = 0.1, and eu = 0.01, which was found to yield the
best performance through iterative testing. Figure 13 shows the distribution of
the solutions with respect to Q at timeout. The metric quantifies how well the
input and output curves match in a continuous way.

Fig. 13. Distribution of Q values for non-convex optimization and evolutionary
approaches

We see that the majority of the curves were solved by Couenne with Q lower
than 5%. In contrast, all curves solved by the genetic algorithm returned a Q
value below 20%, but less precise on average. Table 3 emphasizes that the median
Q returned by Couenne and the median absolute deviation are lower than those
of the genetic algorithm.

For the non-convex optimization, Q is computed after Couenne has returned
an optimal solution. Therefore, any solution returned by Couenne before timeout
is optimal with respect to the discrete metric of the model. As for the GA, Q is
computed once every few hundred generations. This constitutes an advantage for
the GA because sub-optimal solutions found by Couenne must time out before
evaluation. Even so, as shown in Fig. 14, the non-convex optimization approach
is faster and times out less often.

Four-Bar Linkage Synthesis Using Non-convex Optimization 631

Fig. 14. Distribution of solving times for both approaches. The curves at 400 timed
out.

Table 3. Average, variance,
median and median absolute
deviation of Q.

Approach Q̄ σ2 (Q) Q̃ MAD(Q)

Couenne 3.22 71.59 1.00 1.48

Genetic 8.02 16.52 7.25 10.75

Table 4. Number of curves solved
under 5, 60 or 400 s with different
samplings

Sampling Area Q < 5% No

5 s 60 s 400 s solution

{4, 5, 6} Yes 59 83 92 0

{4, 5, 6} No 37 58 63 0

{6, 7, 8} Yes 51 81 89 1

{6, 7, 8} No 50 68 78 1

{10, 12, 16} Yes 30 59 69 11

{10, 12, 16} No 33 57 66 14

Bounds tightening allows propagation of the restricted domain of variable e.
This considerably reduces the search space from the beginning. As for the GA,
the final solution depends a lot on the initial random population. Though it
consistently finds a reasonable approximation of the curve, it usually stalls in
local minima.
Characterization. We show the critical impact of the area constraint and how
the feature identification sampling improves the model compared to a uniform
sampling.

To evaluate the impact of the area constraint, the benchmark was solved
twice over three sample number sets; once with the area constraint and once
without. Table 4 shows the number of curves in the benchmark solved with Q
lower than 5% in less than τ seconds, for three values of τ . The number of curves
with no solution returned is given.

Higher sample numbers yield longer times of computation without signif-
icantly improving the accuracy. In general, the area constraint improved the
number of curves solved. Also, when the fewer sampling points are used, the
area constraint is most efficient. Without the area constraint, the software per-
forms best with sample numbers {6, 7, 8}. With the area constraint, lower sample
numbers yield a better performance.

The feature identification sampling is compared to a uniform sampling with
no analysis of the curve. The experiment was conducted with sets of sample

632 V. Goulet et al.

numbers {4, 5, 6} and {6, 7, 8}. Figure 15 shows how the sampling affects the
distribution of Q.

(a) (b)

Fig. 15. Distribution of Qs over benchmark with both sampling techniques; (a) sample
numbers {4, 5, 6}; (b) sample numbers {6, 7, 8}

For both sets of sample numbers, the feature identification brought the Q
distribution closer to 0%. This shows that without increasing the complexity of
the model, choosing points strategically can help achieve greater precision.

Design of a Gripper. A benefit of using mathematical optimization is that the
model is easily customizable for specific applications. Say we wish to design a
gripping mechanism made of symmetric four-bar linkages such that the tip goes
through four points, with low precision plow for the first three points and high
precision phigh on the last. Furthermore, the location of the anchors is restricted.
The problem is shown at Fig. 16(a).

(a) (b) (c)

Fig. 16. (a) Target points and anchor bounding box; (b) Synthesized four-bar linkage;
(c) Gripper

To adapt the model, only the following modifications need to be done.
We replace Ax, Ay, Bx, By ∈ {−10, 10} by Ax, Bx ∈ {xmin, xmax}; Ay, By ∈
{ymin, ymax}. We set eu = plow. We add constraint (Tx3 −Ex3)2+(Ty3 −Ey3)2 ≤
phigh and disable the area constraint. The resulting gripping mechanism shown
at Fig. 16(b) was obtained in 0.20 s, with the modified model.

Four-Bar Linkage Synthesis Using Non-convex Optimization 633

5.3 Discussion

Our software can quickly and accurately synthesize collinear four-bar linkages
for given coupler curves. Indeed, the speeds reached are suitable for interactive
applications. Because we use a non-convex optimization solver, our approach is
flexible and can be readily adjusted to meet specific needs or different goals.
Unlike analytical approaches [19,24], we are not limited by the number of target
points to reach. Moreover, the area constraint allows the solver to extrapolate
between the target points.

Our method aims at matching a continuous curve rather than a discrete set
of target points. However, many related works [6,7] focus on matching target
points. Our results show capabilities in both goals. Indeed, the distance to the
target point is bounded by the error, which cannot be higher than eu or to a
maximum of 1% of the size of the curve. Any solution discussed matched its
target points at least to this precision.

Our approach also presents benefits compared to machine-learning
approaches. A database cannot guarantee coverage of the whole search space.
With our approach, the search space is fully explorable and only limited by
user-defined restrictions.

Though we focused on minimizing the error, this can be easily changed by
replacing the objective function. One could minimize the sum of dimensions, the
area of the coupler curve, or the difference of area between the input curve and
the output curve.

5.4 Future Work

The software usability could be improved by providing tools to edit constraints.
Our software could extend to four-bar linkages where points C, D and E are

not collinear. Difficulties include more symmetric configurations and the gener-
alization of the area constraint. Joints such as sliders and complex mechanisms
such as geared five and six-bar mechanisms could be modelled. 3D-mechanisms
could also be tackled. Our software could be combined with other design analyses
such as stress analysis. Multiple linkages could be linked to a gearing software
for timing control. Finally, the model could be generated as the user defines his
own mechanisms by adding bars and joints.

6 Conclusion

The current state of the art of four-bar linkage synthesis is limited in speed,
memory consumption, lack of optimality or lack of generality. Our paper con-
tributes an improved method to the general and fast solving of mechanical link-
ages. We showed how to accurately solve complete coupler curves in a short time
for collinear four-bar linkages using non-convex optimization. For closed curves,
a novel constraint can leverage the area of the curve for increased accuracy and
performance. For our best model, 90% of the curves could be solved under 400 s,
59% of which below 5 s.

634 V. Goulet et al.

Our approach was implemented in simple software where a user can enter a
curve and visualize the solution found. This milestone paves the way for mod-
elling mechanisms of increased complexity such as the general four-bar linkage
or five-bar linkages. It also provides a very flexible basis for solving four-bar
linkages with various constraints or different objectives.

References

1. Ibex library online documentation. http://www.ibex-lib.org/doc/. Accessed 28
June 2016

2. Acharyya, S.K., Mandal, M.: Performance of eas for four-bar linkage synthesis.
Mech. Mach. Theor. 44(9), 1784–1794 (2009)

3. Achterberg, T.: Scip: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009). http://mpc.zib.de/index.php/MPC/article/view/4

4. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: alphabb: a global optimization
method for general constrained nonconvex problems (1995)

5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5),
597–634 (2009)

6. Bulatovic, R.R., Djordjevic, S.R.: Optimal synthesis of a four-bar linkage by
method of controlled deviation. Theor. Appl. Mech. 31(3–4), 265–280 (2004)

7. Cabrera, J.A., Simon, A., Prado, M.: Optimal synthesis of mechanisms with genetic
algorithms. Mech. Mach. Theor. 37(10), 1165–1177 (2002)

8. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W.,
Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM
Trans. Graph. 32(4), 83:1–83:12 (2013)

9. Dijksman, E.A.: Motion geometry of mechanisms. CUP Archive (1976)
10. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using

constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)
11. Groß, W.: Grundzüge der mengenlehre. Monatsh. für Math. 26(1), A34–A35 (1915)
12. Hoeltzel, D.A., Chieng, W.-H.: Pattern matching synthesis as an automated app-

roach to mechanism design. J. Mech. Des. 112(2), 190–199 (1990)
13. IBM. IBM ILOG CPLEX Optimization Studio: High-performance software

for mathematical programming and optimization (2016). http://www.ilog.com/
products/cplex/

14. Kinzel, E.C., Schmiedeler, J.P., Pennock, G.R.: Function generation with finitely
separated precision points using geometric constraint programming. J. Mech. Des.
129(11), 1185–1190 (2007)

15. Lin, Y., Schrage, L.: The global solver in the lindo api. Optim. Methods Softw.
24(4–5), 657–668 (2009)

16. Norton, R.L.: Design of Machinery: An Introduction to the Synthesis and Analysi
of Mechanisms and Machines. WCB McGraw-Hill (1999)

17. O’sullivan, B., Bowen, J.: A constraint-based approach to supporting conceptual
design. In: Gero, J.S., Sudweeks, F. (eds.) Artificial Intelligence in Design 1998,
pp. 291–308. Springer, Netherlands (1998)

18. Radhakrishnan, P., Campbell, M.I.: A graph grammar based scheme for generating
and evaluating planar mechanisms. In: Gero, J.S. (ed.) Design Computing and
Cognition 2010, pp. 663–679. Springer, Netherland (2011)

http://www.ibex-lib.org/doc/
http://mpc.zib.de/index.php/MPC/article/view/4
http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/

Four-Bar Linkage Synthesis Using Non-convex Optimization 635

19. Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthe-
sis. Prentice-Hall, Inc., Englewood Cliffs (1984)

20. Stöckli, F.R., Shea, K.: A simulation-driven graph grammar method for the
automated synthesis of passive dynamic brachiating robots. In: ASME 2015
IDETC/CIE Conferences. American Society of Mechanical Engineers (2015)

21. Subramanian, D.: Conceptual design and artificial intelligence. In: Proceedings of
IJCAI 1993, pp. 800–809. Morgan Kaufmann Publishers Inc., San Francisco (1993)

22. Subramanian, D., Wang, C.-S.: Kinematic synthesis with configuration spaces. Res.
Eng. Des. 7(3), 193–213 (1995)

23. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Math. Program. 103, 225–249 (2005)

24. Uicker, J.J., Pennock, G.R., Shigley, J.E.: Theory of Machines and Mechanisms.
Oxford University Press, Oxford (2011)

25. Unruh, V., Krishnaswami, P.: A computer-aided design technique for semi-
automated infinite point coupler curve synthesis of four-bar linkages. J. Mech.
Des. 117(1), 143–149 (1995)

26. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical
toy modeling. ACM Trans. Graph. 31(6), 127:1–127:10 (2012)

Using Constraint Programming for the Urban
Transit Crew Rescheduling Problem

Xavier Lorca1,2(B), Charles Prud’homme1,2, Aurélien Questel1,2,
and Benôıt Rottembourg1,2

1 TASC - École des Mines de Nantes, Université de Nantes, Inria,
LINA UMR 6241, Nantes, France

{xavier.lorca,charles.prudhomme,
aurelien.questel,benoit.rottembourg}@mines-nantes.fr

2 EURODECISION Versailles, Versailles, France
{xavier.lorca,charles.prudhomme,

aurelien.questel,benoit.rottembourg}@eurodecision.com

Abstract. Scheduling urban and trans-urban transportation is an
important issue for industrial societies. The Urban Transit Crew Schedul-
ing Problem is one of the most important optimization problem related to
this issue. It mainly relies on scheduling bus drivers’ workday respecting
both collective agreements and the bus schedule needs. If this problem
has been intensively studied from a tactical point of view, its opera-
tional aspect has been neglected while the problem becomes more and
more complex and more and more prone to disruptions. In this way, this
paper presents how the constraint programming technologies are able to
recover the tactical plans at the operational level in order to efficiently
help in answering regulation needs after disruptions.

1 Context and Opportunities

Scheduling urban and trans-urban transportation is an important issue for indus-
trial societies. Several aspects are considered by territorial collectivities and
transportation operators: human and material resource for, environmental and
social constraint enforcement, user need requirements. Basically, there exists two
central problems: transit scheduling (vehicles - buses, trains, tramways - plan-
ning on routes) and driver duty planning (assigning crew to those routes). These
problems become more and more complex (regulation, network expansion) and
more and more prone to disruptions (city events, accidents, resource failures) in
the operational phase.

This is the context in which the Urban Transit Crew Scheduling Problem
(UTCSP) has been introduced [5]. In our proposal, we have to schedule bus
drivers’ workdays according to several constraints mainly related to: (1) collec-
tive agreements, e.g. breaking rules (basically, how long a bus driver can work
before a break); (2) the bus schedule itself, e.g. chaining rules (geographic posi-
tion, schedule compatibility between two tasks, etc.). From a tactical point of

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 636–649, 2016.
DOI: 10.1007/978-3-319-44953-1 40

Using Constraint Programming 637

view, the UTCSP has been thoroughly studied both at the academic and indus-
trial levels. Primarily, the technologies derived from mathematical programming
(from integer linear programming to column generation and dynamic program-
ming) dominate the literature and offer satisfying results. The problem is mainly
solved using a set covering approach that represents bus schedule as a set of
tasks, linked together by chaining rules and respecting the breaking rules. From
an operational point of view, these technologies become useless due to their time
consumption. Such a pitfall leads the operators to manually repair the tactical
solutions after a disruption (at the operational level), and to consequently derive
the applied schedule quality.

Focusing on the operational point of view of the UTCSP, a.k.a. Urban Transit
Crew Rescheduling Problem (UTCRP), this paper presents how the Constraint
Programming (CP) technologies are able to recover the tactical plans at the
operational level in order to efficiently help answer regulation needs after dis-
ruptions. Precisely, it is shown how a constraint model of the UTCSP can be
simply modified to address the UTCRP, its operational reformulation.

The paper is composed of six parts. The present one has introduced the con-
text of the UTCSP and has motivated the opportunities for the CP technologies
to tackle the rescheduling problem, namely the UTCRP. Next, Sect. 2 is dedi-
cated to the related works and the operational context of the UTCSP. Section 3
is the main section of the paper. A CP model for the UTCSP is first presented.
Next, it is shown how simple modifications of the UTCSP lead to a model for the
UTCRP. Then, Sect. 4 introduces a common search strategy for UTCSP and its
operational version. Section 5 reports the empirical evaluations of both UTCSP
and UTCRP on industrial instances. Finally, Sect. 6 concludes.

2 Related Works and Operational Context

The most widely used approach for this problem is related to a set partition-
ing problem [2]. It is mainly solved by a Branch-and-Bound algorithm where
the lower bound is computed through a column generation procedure [4]. In
this case, the subproblem corresponds to an Elementary Shortest Path Prob-
lem with Resource Constraints (ESPPRC). Most of the time, it is solved using
dynamic programming [6,10]. However, according to the number and the nature
of the resource constraints, generating a pool of column during a preprocessing
may sometimes be more efficient [11]. The resulting Branch-and-Price algorithm
is designed to be an exact model which, nevertheless, may fail to optimally
solve very large problems (with more than thousands tasks) [3,5,20]. To bypass
this issue, a common approach consists in truncating the search tree [8], the
lower bound quality is ensured then to be the nearest possible from optimal
solutions. Even if many meta-heuristic algorithms have been proposed for the
UTCSP [7,12,19,20], the most efficient industrial softwares such as Austrics,1

1 http://www.trapezegroup.com.

http://www.trapezegroup.com

638 X. Lorca et al.

Hastus,2 GoalDriver3 or LP-EasyDriver 4 are based on a truncated version of
the exact Branch-and-Price algorithm.

Constraint Programming Attempt. The UTCSP has not been many studied by
the CP community. The most related work is [21]. It introduced a pure CP model
for a variant of the UTCSP, as well as a hybrid approach composing a column
generation algorithm with a CP model dedicated to generate the columns. Never-
theless, the proposed pure CP approach is quite poor because it does not embed
global constraints, like Regular, to express the regulation needs. Moreover, the
search strategy is limited to the first-fail principle which is clearly inappropri-
ate. Consequently, not more than 30 tasks can be scheduled to optimality and
feasible solutions can be provided with only at most 125 tasks. However, the
main contribution is related to the hybridization. Thus, it is shown that the
hybrid approach (combining column generation and CP) can be efficient up to
150 tasks.

Operational Context. To the best of our knowledge, there is no literature dealing
with the rescheduling of the UTCSP. So, we present an industrial point of view
which motivates our proposal. Disruptions can occur a few days before the buses
run. Typically, some special event is programmed in the city, like a football
match or local roadworks and the bus schedules must be adapted “accordingly”.
Without loss of generality, tasks to be performed by the buses can either be
added, deleted or their duration modified. In some cases buses have connections
with trains at the coach station, and a slight change of the train timetable
(imposed by French Railways for instance) can have an impact on the bus task
at this place in the network. From an operational point of view, a compromise
must be found by the planning team: on the one hand, building a new cost-
efficient schedule covering the modified tasks and, on the other hand, building
a schedule not “too different” from the regular daily schedules. For bus drivers,
new workdays might have an impact on either security or comfort, for instance
when the new workday ends later than usual.

Today, tools are mainly focussed on finding optimal solutions and tends to
produce–when tasks are altered–bran-new schedules that “destroy” the daily
ones. In practice, human operators adopt a workaround strategy and manually
fix large parts of the schedule, asking the solver tool to optimize only subparts
of the schedule. This approach clearly avoids too much perturbation but con-
sequently offer suboptimal solutions. It is also a time consuming effort. The
UTCRP consists then in managing a good balance between cost optimality and
schedule updates, with dedicated metric and constraints on top on the classical
ones. On the converse to pure tactical crew scheduling tools, the computational
time of rescheduling must be short, as various trials and errors can have to be
experimented by the planning team which is evaluating the impact of what-if
scenarios.
2 http://www.giro.ca.
3 http://www.goalsystems.com.
4 http://www.eurodecision.fr.

http://www.giro.ca
http://www.goalsystems.com
http://www.eurodecision.fr

Using Constraint Programming 639

3 Constraint Programming Model

In the UTCSP, tasks have to be assigned to bus drivers. Formally, given n tasks
that are to be assigned to at most m bus drivers, the objective is to find a full
assignment that minimizes the cost and satisfies breaking rules and chaining
rules. A bus driver is mainly characterized by a unique identifier, a skill level,
among novice and expert, and a workday duration and a hourly cost induced
by its skill. A novice can only execute low level skill tasks while an expert can
execute any type of tasks and can work longer but at a higher hourly cost.
The maximal number of novices, nbNovices and experts, nbExperts, needed to
trivially satisfy the problem is determined from the input. A same bus driver
can perform many tasks, but one task is only processed by a single bus driver.
Each task is defined by its fixed beginning time, Bi, its fixed duration, Di, its
fixed end time, Ei such that, Ei = Bi+Di, ∀i ∈ 1..n. The initially unknown bus
driver performing the task is denoted Ai. In addition, a task requires exactly one
skill, Ki: either high level skill, only experts can do it, or low level skill, anyone
can do it.

A first constraint is that tasks assigned to the same bus driver should not
overlap in time. A second constraint deals with the allocation of breaks to each
bus driver. This is done by stating a Shift constraint, which we now describe.

Definition 1 (SHIFT). A shift is a maximum sequence of tasks assigned to
a same bus driver such that the time gap between any two consecutive tasks is
shorter than a given threshold minBreak.

Two consecutive shifts of a bus driver are separated by a break of minimum
duration minBreak and define its workday. Two consecutive tasks of a shift are
separated by a gap shorter than minBreak . The span of a shift is the difference
between the end time of its last task and the beginning time of its first task. It
is bounded by a given threshold maxSpan.

3.1 Modeling the Shift Constraint

Concisely expressing constraints like Shift is hard and has been recently stud-
ied. In [1], a possible model is presented to manage the Shift problem based
on the Regular [14] and Global Cardinality [17] constraints. We do not
report such a model in this paper because of its time generation and memory
consumption. Another interesting model, also introduced in [1], addresses most
of the pitfalls of the previous one: a StableKeysort-based model. In such a
model, a decomposition of the Shift constraint is expressed as a conjunction of
a StableKeysort constraint and simple arithmetical and logical constraints.
The StableKeysort(L,P, S, k) constraint is declared with:

– L = ⟨Ai, Bi,Di, Ei⟩ | i ∈ 1..n]: a list of task attribute tuples,
– P : an optional permutation list (not required here),

640 X. Lorca et al.

Shift([⟨Ai, Bi, Di, Ei⟩ | i ∈ 1..n], [
〈
A′

i, B
′
i, D

′
i, E

′
i, Yi

〉
| i ∈ 1..n],

minBreak ,maxSpan) ⇔ (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6)

Ei = Bi + Di, ∀i ∈ 1..n (1)
StableKeysort([⟨Ai, Bi, Di, Ei⟩ | i ∈ 1..n], [

〈
A′

i, B
′
i, D

′
i, E

′
i

〉
| i ∈ 1..n], 2) (2)

A′
i−1 < A′

i ∨ E′
i−1 ≤ B′

i, ∀i ∈ 2..n (3)

Yi = 1 ⇔
{
false if i = 1

A′
i = A′

i−1 if i ∈ 2..n
(4)

Xi = 1 ⇔
{
false if i = 1

Yi ∧ B′
i − E′

i−1 < minBreak if i ∈ 2..n
(5)

Ri =

{
D′

i if i = 1

D′
i + Xi · (Ri−1 + B′

i − E′
i−1) if i ∈ 2..n

(6)

where
Ri ∈ 1..maxSpan, ∀i ∈ 1..n

Decomposition 1: Decomposition of the Shift constraint [1].

– S = ⟨A′
i, B

′
i,D

′
i, E

′
i⟩ | i ∈ 1..n]: a stable and non decreasing rearrangement

of L,
– k = 2: number of first positions to consider in the tuples.

Doing so, the StableKeysort(L,P, S, k) provides a view of tasks of L
in which tasks are sorted by workdays. Hence, it eases the expression of the
required constraints which can be directly expressed on sorted variables, while
their expression could be more tedious otherwise.

Decomposition 1 depicts how the Shift constraint is expressed using a
StableKeysort constraint in the state-of-the-art. Constraint (1) ensures tasks
integrity. Constraint (2) maintains the rearrangement of task attribute tuples,
here only Ai and Bi are considered to sort tuples. Constraint (3) ensures that two
consecutive tasks either belong to the different workdays or are chronologically
ordered in the same workday and thus do not overlap in time. Constraints (4) and
constraint (5) introduce auxiliary 0..1 variables: Yi indicates whether two con-
secutive tasks i − 1 and i are in the same workday, Xi indicates if two tasks i − 1
and i are in the same shift. Finally, a last set of auxiliary 1..maxSpan variables
Ri are needed in constraint (6), they compute the shift length up to the end of
task i.

3.2 A Constraint-Based Model for the UTCSP

The targeted problem is based on a central Shift constraint but also comes
with the following additional variables and constraints, presented in Model 1.
For modeling purpose, bus drivers whom unique identifier is in 1..nbNovices are
novices, those with greater identifier, up to nbNovices + nbExperts, are experts.
Hence, constraint (8) introduces the auxiliary 0..1 variables Ki which indicate
whether the bus driver performing the task i is an expert. Pi, Wi, Ci denote

Using Constraint Programming 641

Minimize
n∑

i=1

Ci (7)

subject to

Shift([⟨Ai, Bi, Di, Ei⟩ | i ∈ 1..n], [
〈
A′

i, B
′
i, D

′
i, E

′
i, Yi

〉
| i ∈ 1..n],minBreak ,maxSpan)

Ki = 1 ⇔ A′
i > nbNovices, ∀i ∈ 1..n (8)

Pi =

{
0 if i = 1

B′
i − E′

i−1 if i ∈ 2..n
(9)

Yi ⇒ Pi ≤ maxSpan, ∀i ∈ 2..n (10)

Wi =

{
D′

i if i = 1

D′
i + Xi · (Wi−1 + Pi) if i ∈ 2..n

(11)

Ci =

{
(1 − Yi+1) · costKi,Wi if i ∈ 1..n − 1

costKi,Wi if i = n
(12)

Redundant constraint
AllDifferent([Ak | k ∈ clique(A)]) (13)

where ∀i ∈ 1..n,

Pi ∈ −dayDuration..dayDuration, Wi ∈ 0..dayDuration, Ci ∈ 0..dayDuration × costExpert,

Model 1: Formulation of the Urban Transit Crew Scheduling Problem.

respectively the period between two consecutive tasks i − 1 and i, stated by
constraint (9), the duration of a shift including task i, stated by constraint (11),
and the cost of a bus driver’s workday, stated by constraint (12). Note that the
workday duration is bounded thanks to that last constraint. It is expressed with
a Table [9] constraint wherein possible combinations of skill and workday and
costs are listed. Constraint (10) ensures that, in a shift, the period between two
tasks i − 1 and i is less than or equal to the maxSpan. Based on an a priori
analysis of the tasks network, AllDifferent [16] constraints (13) make sure
that tasks belonging to the same clique are performed by different bus drivers.

Finally, the model is improved by considering symmetries and their related
symmetry breaking constraints, depicted by Model 2. First, we introduce MR

i

and ME
i which maintain, for each skill, the list of identifier of used bus drivers

(constraints (14) and (15)), they also help to count the number of bus drivers
per skill. Then, constraints (16), (17), (18) and (19) break symmetries.

3.3 A Constraint-Based Model for the UTCRP

In order to stay close to the operational context of the bus networks, we have
built instances for the UTCRP based on disruptions of UTCSP instances. Indeed,
a daily schedule is considered as known, and the tasks’ disruptions occur locally.
So, the disruptions can be easily simulated from the UTCSP instances. We have
to keep in mind that these disruptions can either be:

642 X. Lorca et al.

MR
i =

⎧
⎪⎨

⎪⎩

A′
i if Ki = 0

0 if Ki = 1 ∧ i = 1

MR
i−1 if Ki = 1 ∧ i ∈ 2..n

(14)

ME
i =

⎧
⎪⎨

⎪⎩

A′
i if Ki = 1

nbNovices if Ki = 0 ∧ i = 1

ME
i−1 if Ki = 0 ∧ i ∈ 2..n

(15)

MR
i−1 ≤ MR

i , ∀i ∈ 2..n (16)

ME
i−1 ≤ ME

i , ∀i ∈ 2..n (17)
IntValuePrecedeChain(A, [j | j ∈ 1..nbNovices]) (18)

IntValuePrecedeChain(A, [j | j ∈ nbNovices..nbNovices + nbExperts]) (19)
where ∀i ∈ 1..n,

MR
i ∈ 1..nbNovices, ME

i ∈ nbNovices..nbNovices + nbExperts

Model 2: Improving Model 1 with symmetry breaking constraints.

– Creation of new tasks: the bus line has to serve the stadium station at 1
o’clock in the morning, due to a rock concert;

– Task deletion: a roadwork prevents the bus to use the road and stop at the
station;

– Duration change: roadworks slow down the traffic;
– Start time change: a train timetable has been modified, and the connection
forces a change of the bus departure time.

Consequently, UTCRP aims at producing new schedules which: (a) cover all the
tasks (previous and new); (b) do not differ too much in terms of cost from the
initial daily schedule; and (c) ensure that the workday modifications are minimal
for the bus drivers. These schedules have to be produced within a few seconds of
computational time so that the planning team can test different scenarios and
choose the most convenient one.

From a constraint programming point of view, Model 3 presents how to turn
the UTCSP model, depicted in Sect. 3.2, into UTCRP. Given Is, an assignment
of n tasks to m bus drivers, let us denote C⋆ its cost. Consider that some of the
tasks have been disrupted and that Is has to be repaired. First, the previous
objective function, equation (7) in Model 1, is turned into the hard constraint
(21): new solutions have to be at most ϵ% above C⋆. Then, for each set of
tasks performed by the same bus driver in Is, the number of bus drivers needed
to perform the same tasks anew is maintained by constraint (22). Finally, the
objective function (20) aims at computing solutions similar to Is in term of
unmodified workdays.

4 Search Strategy

A constructive search strategy is defined to dive to a first solution quickly without
failure. The Ai variables are selected in lexicographic order. The bus driver that

Using Constraint Programming 643

Minimize
m∑

ℓ=1

Nℓ (20)

subject to
n∑

i=1

Ci < (C⋆ · ϵ)/100 (21)

NValues([Aℓ | ℓ ∈ workday(A)],=, Nℓ) (22)
where ∀ℓ ∈ 1..m,

Nℓ ∈ 0..n

Model 3: Modifications to bring to the CP model of UTCSP to turn it into
UTCRP.

performs a task Ai is computed as follow. Bus drivers already performing at least
one task are considered first. Those whose workday is not directly compatible
with the task to assign (w.r.t. either break rules or chaining rules cannot be
satisfied) are ruled out. Remaining ones are then tried sequentially. Some more
tries are finally considered, allowing the addition of at most one bus driver per
type of skill required.

Next solutions are obtained by plugging Large Neighborhood Search
(LNS) [18] in, a straightforward two-phase local search-like approach. It par-
tially relaxes a given solution and tries to repair it. Given an input solution,
the relaxation phase builds a partial solution: some variables are selected to be
relaxed to their initial domain, while the other ones are assigned to their value
in the solution. The reparation phase tries to extend the partial solution to a
complete one that improves the objective function.

The efficiency of LNS lies in the way variables are selected to be relaxed.
In our case, it tries to find a better solution by locally rearranging bus drivers’
workday. So, the workdays are first extracted from the A variables in a solution.
Then, up to θ ∈ [[2, 4]] workdays are randomly selected to be rearranged in
such way that they overlap in time at least one of the other selected one. The
corresponding A variables are relaxed, the other ones are assigned to the same
bus driver as declared in the solution. To consolidate even more the partial
solution, bus drivers’ identifier corresponding of fixed A variables are removed
from relaxed A variables’ domain. The process is completed with a fast restart
strategy [13], which limits the reparation phase to 2n failures and avoids spending
too much time in hard-to-repair partial solutions.

The same search strategy is applied to both the UTCSP and the UTCRP.
The strategy was initially designed to produce few dense workdays, with a local
reasoning. When the objective changes to repair assignments, the model is con-
strained enough to guide the process towards workdays similar to the initial
ones.

644 X. Lorca et al.

5 Practical Experiments

For an empirical evaluation, we instantiate the UTCSP model of Sect. 3.2. The
Shift constraint holds for a 15-minminBreak and 2-hmaxSpan. A novice cannot
work more than 8 h and its hourly cost is fixed to 10. An expert cannot work
more than 9 h, and its hourly cost is fixed to 17. We consider here the following
additional rule: any working bus driver has a minimal 6-h pay, even if its workday
lasts for less than 6 hours. This constraint is directly encoded into constraint
(12). Finally, the UTCRP model depicted in Sect. 3.3 also instantiates ϵ, the
distance to C⋆, to 10.

There are two sets of instances. A first set aims at comparing the constraint-
based approach with the state-of-the-art one on the UTCSP. It is composed of
real-world problem instances involving up to 3,200 tasks. A second set aims at
evaluating how repairing a disrupted assignment is made easy with a constraint-
based approach using the UTCRP (Model 3). First of all, the best solution found
by EURODECISION for the instance with 800 tasks is selected, it is composed
of 160 workdays. Then, this instance is disrupted applying the following process:
a task j is randomly selected to be removed. Starting from j, within a range
of β ∈ {30, 60, 90, 120} minutes before Bj and after Ej , tasks on a path to j,
that is w.r.t. breaking rules and chaining rules, are removed. Tasks that overlap
the range in time are reduced (either Bi or Ei is modified). The selection-and-
removing phase is repeated α ∈ [[1..5]] times. This results in a set of 20 instances
to be repaired with up to 25% disrupted tasks, which corresponds to our real
life context.

Protocol. The experiments were run on a Mac Pro with 8-core Intel Xeon E5
at 3GHz under MacOS 10.11.3 and Java 1.8.0 25. Each instance of the first set
was run with a 2-h limit on its own core, and each instance of the second set
was run with a 1-min limit on its own core for CP approach. LP-EasyDriver
was evaluated in a 2-h limit for both sets. All of them were run with up to
4GB of memory. The tools used are: Choco [15] for the constraint programming
part, while EURODECISION provides LP-Taskplanner, a generic framework
for ESPPRC based column generation models, relying on CPLEX 12.6.2. LP-
Taskplanner is embedded in LP-EasyDriver: the latter handles every business
aspects while the former deals with the optimization parts. In the following, this
tool will be referred to as LP-EasyDriver.

5.1 Solving the UTCSP

In this section, we compare the constraint-based approach for the UTCSP with
the one being used by EURODECISION and introduced in Sect. 2. The results
are given in Table 1 which is divided into four parts. The first part indicates the
instance size n. The second part reports information related to the constraint-
based approach: the time to get the first solution (time, in seconds), its cost
(first) and the best cost obtained in 120min (best@120). The third part is
about LP-EasyDriver: the time (time, in seconds) to compute the lower bound

Using Constraint Programming 645

(LB) and a first upper bound (UB) then the best upper bound in 120min
(UB@120). Finally, the last part reports, when possible, the ratio

g(a, b) =
a

b
× 100

where, here, a = (best@120 − UB@120) and b = UB@120. In addition, “N/A”
denotes that the information is not available or applicable, “OOT” denotes that
a particular approach runs out of time.

Table 1. Empirical results on the UTCSP: time (time, in seconds) for finding the
first solution (first) and the best solution found in 120 minutes (best@120), and for
finding the root lower bound (LB), the first upper bound (UB), and the best upper
bound in 120 minutes (UB@120). The ratio of best@120 to UB@120 is also reported
(Gap, in %).

n Constraint-based approach LP-EasyDriver Gap

time first best@120 time LB time UB UB@120

200 0.97 5005.00 4352.75 9 4069.81 10 4150.25 4073.75 6.85

400 1.71 9131.75 8318.50 134 7654.78 140 8790.75 7677 8.36

600 2.65 13566.00 12218.25 499 10845.6 4152 11328.5 11014 10.93

800 3.80 17479.25 16375.00 1265 14472.8 23128 14690.2 N/A N/A

1000 5.51 20857.75 20211.25 2593 17868 OOT N/A N/A

1400 9.42 29210.75 28031.00 10245 24214.2 OOT N/A N/A

1800 15.22 37394.50 36431.00 33698 31578.2 OOT N/A N/A

2200 22.42 44849.50 43856.50 OOT OOT N/A N/A

2600 31.94 52885.75 52011.25 OOT OOT N/A N/A

3000 45.09 59138.50 58656.25 OOT OOT N/A N/A

3200 52.60 65382.75 64584.75 OOT OOT N/A N/A

We observe that:

– The truncated Branch-and-Price approach fails at solving large problems. This
observation confirms the state-of-the-art (Sect. 2). The bounds produced are
very sharp considering a 2-h time limit. Indeed, such a time limit is below
from what is commonly allocated at the tactical level.

– The constraint-based approach is able to find a first solution for any problem
size. Moreover, the ability of the model to scale up combined with a construc-
tive search strategy makes possible to provide a first solution in a very short
time. Nonetheless, the quality of the best solution found in the given time
limit tends to decrease when the instance size n becomes larger. In the end,
without any evaluation–neither propagation–of the lower bound, the approach
fails at proving optimality.

646 X. Lorca et al.

At a tactical level, where the run time matters less than the quality of the
bounds, and up to mid-size problems, the state-of-the-art approach is suitable.
On any-size problems, the constraint-based approach is responsive, yet less accu-
rate. At an operational level, when rescheduling tasks is needed, responsiveness
becomes indispensable. This is the point we want to evaluate in Sect. 5.2.

5.2 Solving the UTCRP

When a disrupt occurs, its extent is measurable thanks to three indicators: the
number of removed or modified tasks (n′), the number of bus drivers whose
workday is disrupted (m′) and the total number of affected tasks, gathering all
tasks of disrupted workdays (n′′). In practice, when dealing with rescheduling,
not all the tasks are set as input of the model depicted in Sect. 3.3. Indeed, only
affected tasks are considered. The remaining workdays are immutable. Recall
that the solution selected to be disrupted was made of n = 800 tasks andm = 160
bus drivers (or workdays).

We report the results of constraint-based approach for the UTCRP. The
results are given in Table 2 which is composed of four parts. The first part indi-
cates the disruption parameters β and α and the indicators of its extent n′, m′

and n′′. The second part reports information related to the constraint-based app-
roach: the time to get the first solution (time, in seconds) and gap@first that
is the ratio g(m−m′+m1,m) where m1 is the number of workdays covering the
n′′ tasks (recall that the unaffected workdays are kept immutable). This qualifies
the distance from the first solution found to the initial one in terms of number
of modified workdays needed to cover the affected tasks. The ratios based on the
best solution found in ten seconds (gap@10) and 60 s (gap@60) relative to the
initial solution are also reported. Then, the cost of the best solution found in 60
seconds is indicated (cost@60). For indication purpose, the results found with
LP-EasyDriver when solving the problems from scratch, without any time limit,
are reported in the third part (best). Finally, the ratio g(cost@60 − best, best)
can be observed in the last part (Gap). In addition, “-” denotes that no better
solution was found in the elapsed time.

Our observations are threefold:

– The constraint-based approach is responsive as expected. Its ability to quickly
reschedule disrupted workdays does not depend on the extent of the disruption.
Nevertheless, the quality of the reparation is related to the total number of
the affected tasks n′′.

– The search strategy is able to compute good quality solutions in term of num-
ber of workdays. When less than 83 tasks are affected by the disruption, ten
seconds are enough to provide solutions at most 5% above the number of
workdays needed before the disruption. When more tasks are affected, sixty
seconds are always enough to find solution at most 5% above the initially
required number of workdays.

– The search strategy is able to compute good quality solution in terms of cost.
The best solutions found with CP are very close to the ones computed from

Using Constraint Programming 647

Table 2. Empirical results on the UTCRP: range of the disruption (β) along a path
involving a randomly selected task, number of randomly selected tasks (α), number
of directly affected tasks (n′) and bus drivers (m′) and total number of affected tasks
(n′′), time (time, in seconds) for finding the first solution, the ratio of the number
of workdays needed in, respectively, the first solution (gap@first, in %), the solution
found in 10 seconds to (gap@10, in %) and the solution found in 60 seconds (gap@60,
in %) to the initial number of workdays required, the cost of the solution found in 60
seconds (cost@60), and the ratio of cost@60 to the best solution (best) computed
from scratch with the LP-EasyDriver (Gap, in %).

Inst. parameters Constraint-based approach LP-EasyDriver Gap

β α n′ m′ n′′ time gap@first gap@10 gap@60 cost@60 best

30 1 3 3 15 0.85 1.87 0.00 - 14489.50 14462.00 0.19

2 7 7 39 0.98 4.37 0.62 - 14584.75 14482.50 0.71

3 11 10 63 1.07 15.62 2.50 0.62 14576.25 14440.00 0.94

4 15 14 92 1.16 27.50 20.62 3.75 14597.50 14369.25 1.59

5 18 17 114 1.25 35.62 31.87 4.37 14729.75 14336.50 2.74

60 1 4 4 21 0.86 2.50 0.62 - 14591.50 14446.00 1.01

2 9 9 41 0.93 4.37 0.62 - 14532.00 14416.00 0.80

3 15 14 72 1.06 10.62 3.12 0.62 14578.00 14373.50 1.42

4 18 16 83 1.09 13.12 2.50 0.62 14497.25 14314.50 1.28

5 22 18 99 1.11 18.75 11.87 0.62 14539.75 14345.00 1.36

90 1 6 6 35 0.91 3.75 0.62 - 14576.25 14464.00 0.78

2 13 12 76 1.07 13.75 2.50 1.25 14623.00 14466.75 1.08

3 16 14 84 1.09 16.25 5.62 1.87 14631.50 14424.00 1.44

4 24 21 125 1.24 29.37 23.12 1.25 14669.25 14434.25 1.63

5 32 28 168 1.37 42.50 41.25 2.50 14669.75 14294.00 2.63

120 1 8 7 41 0.94 6.25 1.25 - 14563.50 14458.50 0.73

2 18 15 103 1.18 29.37 19.37 0.62 14571.25 14423.00 1.03

3 27 20 134 1.31 38.12 31.87 0.62 14551.00 14334.25 1.51

4 37 28 185 1.39 55.62 53.12 3.75 14743.25 14319.00 2.96

5 44 33 209 1.45 63.75 61.25 3.75 14722.50 14259.50 3.25

scratch by LP-EasyDriver. Nevertheless, the EURODECISION approach fails
at maintaining the workdays which are not impacted by disruptions. Conse-
quently, such approach does not fit the needs of the planning teams.

6 Conclusion and Further Works

In the context of scheduling bus drivers’ workdays, this paper first described a
constraint-based model for the UTCSP. We empirically confirmed that this CP
model scaled up to 3,200 tasks and was able to quickly build good quality solu-
tions. Nevertheless, due to a lack of any lower bound integration, it struggled to
improve them enough to reach and prove optimality. Second, we highlighted CP
flexibility by turning the UTCSP into its operational counterpart, the UTCRP.
The ability of the constraint-based approach to quickly reschedule workdays has
been assessed on randomly disrupted instances. Indeed, the closeness of the new
scheduling to the initial one in terms of both workdays and cost bears out that
CP is a serious runner for that problem.

648 X. Lorca et al.

The responsiveness and the good quality of the solutions found by the CP
approach for UTCRP offer new perspectives and advocates for field experiments.
EURODECISION will launch pilots with groups of customers in order to measure
the ease of use of repaired solutions together with the real life metrics used by
the planning teams. Our goal is to reduce the hassle imposed to the planners by
the disruptions without loosing too much cost compared to optimality.

Acknowledgements. The authors are supported by the French common-laboratory
grant “TransOp” involving the TASC team and EURODECISION.

References

1. Beldiceanu, N., Carlsson, M., Flener, P., Lorca, X., Pearson, J., Petit, T.,
Prud’Homme, C.: A modelling pearl with sortedness constraints. In: Gottlob, G.,
Sutcliffe, G., Voronkov, A., (eds.), GCAI 2015, Global Conference on Artificial
Intelligence, vol. 36. EPiC Series in Computing, pp. 27–41. EasyChair (2015)

2. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann.
Oper. Res. 98(1–4), 353–371 (2000)

3. Chen, S., Shen, Y.: An improved column generation algorithm for crew scheduling
problems. J. Inf. Comput. Sci. 10(1), 175–183 (2013)

4. Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation, vol. 5.
Springer Science & Business Media, Heidelberg (2006)

5. Desrochers, M., Soumis, F.: A column generation approach to the urban transit
crew scheduling problem. Transp. Sci. 23(1), 1–13 (1989)

6. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: An exact algorithm for the
elementary shortest path problem with resource constraints: application to some
vehicle routing problems. Networks 44(3), 216–229 (2004)

7. Forsyth, P., Wren, A.: An ant system for bus driver scheduling (1997)
8. Franck, B., Neumann, K., Schwindt, C.: Truncated branch-and-bound, schedule-

construction, and schedule-improvement procedures for resource-constrained
project scheduling. OR-Spektrum 23(3), 297–324 (2001)

9. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for gener-
alised arc consistency for extensional constraints. In: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, 22–26 July 2007, Vancouver,
British Columbia, Canada, pp. 191–197. AAAI Press (2007)

10. Irnich, S., Desaulniers, G., et al.: Shortest path problems with resource constraints.
Column Gener. 6730, 33–65 (2005)

11. Jacquet-Lagrèzel, É.: Horaires de chauffeurs de bus. Gestion de production et
ressources humaines: méthodes deplanification dans les systèmes productifs, p. 287
(2005)

12. Lourenço, H.R., Paixão, J.P., Portugal, R.: Multiobjective metaheuristics for the
bus driver scheduling problem. Transportation Sci. 35(3), 331–343 (2001)

13. Perron, L.: Fast restart policies and large neighborhood search. In: Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (2003)

14. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

Using Constraint Programming 649

15. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S (2015)

16. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA,
USA, July 31 - August 4, 1994, vol. 1, pp. 362–367. AAAI Press/The MIT Press
(1994)

17. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference, AAAI 1996, IAAI
1996, Portland, Oregon, 4-8 August 1996, vol. 1, pp. 209–215. AAAI Press/The
MIT Press (1996)

18. Shaw, Paul: Using constraint programming and local search methods to solve vehi-
cle routing problems. In: Maher, Michael J., Puget, Jean-François (eds.) CP 1998.
LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)

19. Shen, Y., Kwan, R.S.K.: Tabu search for driver scheduling. In: Voß, S., Daduna,
J.R. (eds.) Computer-Aided Scheduling of Public Transport, vol. 505, pp. 121–135.
Springer, Heidelberg (2001)

20. Silva, G.P., Reis, A.F.S.: A study of different metaheuristics to solve the urban
transit crew scheduling problem. J. Transport Lit. 8(4), 227–251 (2014)

21. Yunes, T.H., Moura, A.V., de Souza, C.C.: A hybrid approach for solving large
scale crew scheduling problems. In: Pontelli, E., Santos Costa, V. (eds.) PADL
2000. LNCS, vol. 1753, pp. 293–307. Springer, Heidelberg (2000)

Optimizing Shortwave Radio Broadcast
Resource Allocation via Pseudo-Boolean
Constraint Solving and Local Search

Feifei Ma1(B), Xin Gao2, Minghao Yin2, Linjie Pan1, Jiwei Jin3, Hai Liu1,
and Jian Zhang1

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

maff@ios.ac.cn, panlinjie1993@163.com, stuliuhai@gmail.com
2 College of Computer Science, Northeast Normal University, Changchun, China

{gaox819,ymh}@nenu.edu.cn
3 Shan Dong Jiaotong University, Jinan, China

jinjw@ios.ac.cn

Abstract. Shortwave radio broadcasting is the principal way for broad-
casting of voice in many countries. An important problem in shortwave
radio broadcasting is how to allocate transmission devices to radio pro-
grams, so that all radio programs are broadcasted properly and the over-
all broadcasting effect is optimized. The broadcasting effect of a program
is determined by various factors, such as time, location, and device para-
meters. There are also restrictions on the usage of transmission devices.
In this paper, we describe the allocation of shortwave radio broadcast
resources as a constrained optimization problem and prove that it is
NP-hard. A Pseudo-Boolean constraint formulation for the problem is
presented. We also propose an efficient local search algorithm to solve
the problem. Both methods are evaluated using real data. Experimental
results suggest that we can find an allocation plan with good broadcast-
ing effect quite efficiently.

1 Introduction

Shortwave radio is a kind of radio transmission using shortwave frequencies,
ranging from 2 to 30 megahertz (MHz). Such radio waves can be reflected or
refracted back to Earth from the ionosphere, allowing communication around the
curve of the Earth. Therefore, shortwave radio is very effective for long distance
communication. In many countries, shortwave radio broadcasting remains the
principal way for broadcasting of voice and music.

An important problem arising in shortwave radio broadcasting is how to
assign radio transmission resources to programs, so that the broadcasting quality
is optimized. Generally, in a large country like China, there can be thousands of
radio transmission devices distributed in dozens of shortwave radio stations all
over the territory. For a radio program, the broadcasting effect in its target area
may vary from one device to another. It is demanded that each radio program
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 650–665, 2016.
DOI: 10.1007/978-3-319-44953-1 41

Optimizing Shortwave Radio Broadcast Resource 651

should be transmitted with a proper transmission device so that the broadcasting
satisfies certain criteria in the target area. Meanwhile, it is desirable to maximize
the overall broadcasting effect.

In China, the state-level TV programs and radio programs are coordinated
by the State Administration of Press, Publication, Radio, Film and Television
(SAPPRFT1). Currently, the radio programs are managed by staff members
manually. This is not efficient, and it is also error-prone. Since the search space
of the problem is extremely huge, the staff members have no choice but to
rely heavily on previous allocation plans, which are becoming obsolete with the
change of programs and devices.

For the last few years, we have been cooperating with the Division of Radio
Frequency Assignment of SAPPRFT, to increase the degree of automation in
their daily work. Our aim is to design and implement a system that can auto-
matically produce an optimal plan that allocates available transmission devices
to the radio programs to be broadcasted. Basically, there are two kinds of tasks:
the seasonal allocation and the daily allocation. They only differ in the number
of the programs. Seasonal allocation needs to make arrangements for nearly a
hundred programs, while daily allocation only handles several programs. So in
this paper, we do not distinguish these two tasks. The challenges include, among
others, (1) The optimal plan is to be made based on the broadcasting effect data
of all possible allocations. Since there are thousands of devices and nearly a hun-
dred radio programs, the search space of the problem is enormous. In fact, the
raw data files produced by the propagation software for predicting broadcasting
effect amount to hundreds of gigabytes (GB). (2) The problem is time-critical.
Especially when some emergency occurs, the system should be able to adapt the
allocation plan quickly so that all programs can be transmitted without pause.

The shortwave radio broadcast resource allocation problem (SRBRA)
addressed in this paper is derived from our project. In order to focus on the
algorithmic aspect, we omit in this paper the minor issues such as data process-
ing and frequency selection which are actually laborious. We formulate shortwave
radio broadcast resource allocation as a constrained optimization problem and
prove that it is NP-hard. To solve the problem, we propose two complementary
approaches, one is based on Pseudo-Boolean Optimization (PBO) and the other
is an efficient local search algorithm with quick consistency checking mechanism
and the metaheuristic of Greedy Randomized Adaptive Search Procedure [3,12].

The paper is organized as follows. We first describe the shortwave radio
broadcast resource allocation problem and prove its NP-hardness in Sect. 2. In
Sect. 3, we present a Pseudo-Boolean formulation for this problem. In Sect. 4
we describe the local search algorithm. We evaluate the proposed approaches on
real data in Sect. 5. In Sect. 6 we discuss some related works. Finally we conclude
the paper.

1 http://www.sapprft.gov.cn/.

http://www.sapprft.gov.cn/

652 F. Ma et al.

2 Problem Description

2.1 Background

Suppose there are m radio programs to be broadcasted by n radio transmission
devices. We denote the ith (1 ≤ i ≤ m) radio program by Pi and the jth
(1 ≤ j ≤ n) transmission device by Dj . We also denote the set of radio programs
by P and that of transmission devices by D. Program Pi is to be broadcasted to
its target area Ri during a predetermined time span [ti, t′i]. In each target area,
there are a number of monitoring sites. Note that two programs Pi and Pk may
have the geographically same target area, but we still recognize Ri and Rk as
separate areas in our problem. The reason is that Pi and Pk are broadcasted
on different frequencies, so the broadcasting effect of one program would not
interfere with that of the other. A transmission device consists of a transmitter
and an antenna. Two different transmission devices Dj and Dk may share the
same transmitter or antenna, or the same electric switch in their circuits, hence
cannot be used simultaneously. Such devices are called conflicting devices,
denoted by conflict(Dj ,Dk).

A program can only be transmitted with one device. The device Dj , once
occupied by program Pi, cannot transmit other programs during the time span
[ti, t′i]. Without loss of generality, we use < Pi,Dj > to represent the allocation
of transmission device Dj to program Pi. The broadcasting effect of < Pi,Dj >
at a monitoring site in Ri is measured by field strength and circuit reliability of
the shortwave radio, both of which can be computed with a generic propagation
program such as VOACAP [7] or REC533 [2]. The input to the propagation pro-
gram includes the broadcasting time of Pi, parameters ofDj , the radio frequency,
and the locations of the shortwave radio station and the monitoring site.

The broadcasting effect at a monitoring site is considered to be acceptable by
the Division of Radio Frequency Assignment of SAPPRFT if the field strength
is above 38 dB. The site is qualified if the field strength is above 55 dB and the
circuit reliability is above 70%. For an allocation < Pi,Dj > to be admissible,
if at least 60% of the sites are acceptable. The optimization goal is to maximize
the total number of qualified sites in the target areas of all programs.

To model an SRBRA problem, we need to gather a lot of information in
advance. Data processing is an important module in our project, as is demon-
strated in Fig. 1. As a preprocessing step, we employ a propagation program
(REC533) to calculate the field strength and circuit reliability data for each
allocation < Pi,Dj > at every monitoring site in Ri, Then we sift out the
admissible allocations. For each allocation < Pi,Dj >, the number of qualified
sites in Ri, denoted as N<Pi,Dj>, is also derived. Besides, for each program we
find the best frequency to transmit according to certain criterion. In addition to
broadcasting effect modeling, we also need to derive program information and
device information. In particular, we generate the device conflicting constraints
using a conflict checking algorithm. The information obtained from the data
processing module is passed to the allocation algorithm, which is the main topic
of this paper.

Optimizing Shortwave Radio Broadcast Resource 653

Fig. 1. The architecture of the SRBRA project

2.2 Shortwave Radio Broadcast Resource Allocation

Formally, the SRBRA problem can be defined in the following way.

Definition 1 (Shortwave Radio Broadcast Resource Allocation
(SRBRA)). Given m radio programs and n transmission devices, for each pro-
gram Pi select a device Dj such that:

1. The allocation < Pi,Dj > is admissible.
2. If program Pi and program Pk clash in the broadcasting time, i.e., ti < t′k ∧

tk < t′i, then they cannot be transmitted with the same device, or with two
conflicting devices.

3. The total number of qualified sites ΣiN<Pi,Dj> is maximized.

The collection of the selected allocations is a solution to the problem, denoted by
S. The objective value corresponding to S is denoted by NS .

The constraint structure of an SRBRA problem can be represented as a
variant of weighted bipartite graph, with P and D being two disjoint sets of
vertices. If the allocation < Pi,Dj > is admissible, there is an edge with weight

654 F. Ma et al.

N<Pi,Dj> connecting the corresponding vertices. In illustration, we use a solid
line to represent such an edge. Moreover, a dashed line is introduced for two
programs clashing in the broadcasting time, or for two conflicting devices. The
resulting graph is bipartite with respect to the solid lines.

Example 1. Figure 2 demonstrates the weighted bipartite graph of an SRBRA
problem with 3 radio programs and 5 transmission devices. The number of qual-
ified sites produced by each admissible allocation is labeled on the corresponding
edge. The dashed line connecting P2 and P3 suggests that P2 and P3 clash in the
broadcasting time. The dashed line between D2 and D3 suggests that they are
conflicting devices. Similarly, we have conflict(D4,D5). An optimal solution for
this problem is {< P1,D2 >,< P2,D2 >,< P3,D5 >}. Accordingly, the optimal
objective value is 23. Note that P1 and P2 can be transmitted with the same
device because there is no clash in the broadcasting time.

Fig. 2. An example of the SRBRA problem

At first glance, the SRBRA problem resembles the maximum weighted bipar-
tite matching problem. The latter asks for the matching where the sum of the
weights of the edges has a maximal value. There are two features that distin-
guish the SRBRA problem from maximum weighted bipartite matching which
could be solved with Kuhn-Munkres algorithm [6,9] in polynomial time. Firstly,
since each program has a fixed broadcasting time, a transmission device can
be allocated to different programs if there is no clash in the broadcasting time.
Hence the solution to the SRBRA problem is not a matching. Secondly, there
are conflicts in the transmission resources, which means some edges cannot be
selected simultaneously.

2.3 NP-hardness of SRBRA

We now prove the NP-hardness of the SRBRA problem.

Optimizing Shortwave Radio Broadcast Resource 655

Proposition 1. The shortwave radio broadcast resource allocation problem is
NP-hard.

Proof. Consider the decision version of the SRBRA problem, which asks if it
is possible to arrange m radio programs on n transmission devices so that the
first two requirements in Definition 1 are satisfied. We can prove that this deci-
sion problem is NP-complete via reduction from the independent set problem.
In graph theory, an independent set is a set of vertices in a graph, no two of
which are adjacent. The problem of finding an independent set of certain size
is a classical NP-complete problem in computer science. The general form of an
independent set problem is: Given a graph G with n vertices, does there exist
an independent set of size m (m < n)? We can construct a decision problem of
SRBRA from the independent set problem by the following steps:

1. For each vertex vj , create a transmission device Dj . If there is an edge con-
necting vj and vk in G, add a constraint conflict(Dj ,Dk).

2. Create m radio programs of identical broadcasting time. (The target areas
can be arbitrary.)

3. Set the broadcasting effect of each allocation < Pi,Dj > to be admissible,
which means each program can be transmitted with all of the devices.

Apparently, the above procedure is a polynomial-time reduction. Suppose the
SRBRA problem has a solution S = {< Pi,Dj >}. The set of vertices cor-
responding to the devices that are allocated, denoted by V = {vj |∃Pi <
Pi,Dj >∈ S}, is a solution to the original independent set problem. This
can be easily proved by reduction by contradiction. Firstly, the cardinality of
V is m, otherwise, there must be at least one device allocated to two programs.
Since the programs have the same broadcasting time, such allocations contradict
the second requirement in Definition 1. Secondly, assume there are two adjacent
vertices in V, namely vj and vk. According to the construction, Dj and Dk are
conflicting devices, and are used to transmit programs with the same broad-
casting time. The second requirement in Definition 1 is violated too. Hence V is
an independent set of size m. Conversely, if the independent set problem has a
solution, the SRBRA problem is feasible, too.

Now that we have proved the NP-completeness of the decision version of the
SRBRA problem, it easily follows that the problem itself is NP-hard. ⊓&

3 Pseudo-Boolean Formulation

The above problem can be naturally formulated as a Pseudo Boolean Optimiza-
tion Problem. In its broadest sense, a Pseudo Boolean function is a function
that maps Boolean values to a real number. However, in this context, we only
need linear functions with integer coefficients to express the objective and the
constraints. A linear Pseudo-Boolean Optimization Problem can be formally
defined as:

Maximize Σjcjxj

656 F. Ma et al.

Subject to
∧

i

Σjaijxj ≤ bi

where xj ∈ {0, 1} is a Boolean variable.

3.1 Encoding

For each admissible allocation, say < Pi,Dj >, we introduce a Boolean variable
Ai,j to indicate whether the allocation is adopted. In other words, Ai,j is true
if and only if Pi is transmitted with Dj .

Recall that our goal is to maximize the total number of qualified sites in the
target areas of all programs. The objective function is as follows:

Maximize ΣiΣjN<Pi,Dj> × Ai,j

There are three types of linear Pseudo-Boolean constraints:

1. It is required that each program is transmitted with exactly one device. For
each program Pi (1 ≤ i ≤ m), we add the following Pseudo-Boolean con-
straint:

Σn
j=1Ai,j = 1 (1)

2. If two programs Pi and Pk clash in the broadcasting time, then they cannot
be transmitted with the same device. So for each pair of such programs we
add the following constraints:

∧

1≤j≤n

Ai,j +Ak,j ≤ 1 (2)

3. We also have to prevent conflicting devices from being used simultaneously.
Suppose Pi and Pk are two programs clashing in broadcasting time. A natural
way to encode this restriction is as follows:

∧

conflict(Du,Dv)

Ai,u +Ak,v ≤ 1 ∧ Ai,v +Ak,u ≤ 1 (3)

However, in our implementation, we find the following constraints more effec-
tive than Formula (3).

∧

conflict(Du,Dv)

Ai,u +Ai,v +Ak,u +Ak,v ≤ 1 (4)

It states that if Du and Dv are conflicting devices, then only one of them
can transmit one of the programs. Note that Formula (4) implies some con-
straints in Formula (2). But this kind of redundancy in encoding proved to
be beneficial.

Optimizing Shortwave Radio Broadcast Resource 657

4 The Local Search Algorithm

The Greedy Randomized Adaptive Search Procedure (also known as GRASP)
[3,12] is a metaheuristic algorithm commonly applied to combinatorial optimiza-
tion problems. Generally, it consists of iterations over two phases: the greedy
randomized construction of an initial solution and subsequent iterative improve-
ments of the solution. Normally a solution to a combinatorial optimization prob-
lem is composed of many elements. In the construction phase, the solution is built
by iteratively adding elements. Each element is randomly selected from a list of
elements ranked by some greedy function according to the quality of the solution
they will achieve. The list is called a restricted candidate list (RCL). During the
improvement phase, the algorithm tries to improve the constructed solution by
searching in its neighborhood. The two-phase process is executed repeatedly.

Our local search algorithm employs the GRASP metaheuristic. We first intro-
duce several basic sub-procedures before describing the whole algorithm, which
are devised taking into consideration the structure of the SRBRA problem.

4.1 Consistency Checking

The second requirement in Definition 1 imposes an important set of constraints.
We should guarantee that during search the solution S, partial or complete,
always satisfies these constraints. Consistency checking is frequently invoked
in our local search algorithm and its efficiency is critical to the success of the
algorithm. If the consistency checking process is time-consuming, the local search
algorithm can only visit a small portion of the whole search space, thus is likely
to miss solutions with high quality. In the SRBRA problem, there are so many
constraints, thus checking efficiently if any constraint is violated is nontrivial.

We devise the sub-procedure Consistent(< Pi,Dj >, S). It checks if the
allocation < Pi,Dj > is consistent with the current solution S, as shown in
Algorithm1. Since each program is assigned only one device, the number of
allocations in the current solution S is no more than the number of programs.
Besides, in our implementation we use a two-dimensional matrix to store the
conflicting relationship of devices, so conflict(Dj ,Dr) can be decided in con-
stant time. The overall time complexity of Consistent is linear in the number
of programs. Since the number of programs is quite small compared with the
number of devices, the sub-procedure Consistent is very efficient.

Algorithm 1. Consistent(< Pi,Dj >, S)
1: for each < Pk, Dr >∈ S do
2: if (conflict(Dj , Dr) ∨ Dj = Dr) ∧ (ti < t′k ∧ tk < t′i) then
3: return false;
4: end if
5: end for
6: return true;

658 F. Ma et al.

4.2 Greedy Randomized Construction

Algorithm2 describes the greedy randomized construction procedure
Construct(). At first, the solution S is initialized as an empty set. In each iter-
ation, it randomly chooses a program Pi which has not been assigned a device.
All devices are then examined for eligibility to transmit the program. There
are two conditions for a device Dj to be eligible: Firstly, < Pi,Dj > should be
admissible; Secondly, the allocation < Pi,Dj > should be consistent with the
allocations already selected in the partial solution S. The set of eligible devices
is denoted by C. We simply adopt the number of qualified sites as the greedy
function. Therefore, the devices with the top 10% highest numbers of qualified
sites are selected into the set C∗. Then Pi is assigned a device randomly chosen
from C∗.

Algorithm 2. Construct()
1: Solution S = φ;
2: repeat
3: randomly choose an unassigned program Pi ∈ P;
4: C = φ;
5: for each device Dj ∈ D do
6: if < Pi, Dj > is admissible and Consistent(< Pi, Dj >,S) then
7: C = C ∪ {Dj};
8: end if
9: end for
10: C∗ = {Dj |N<Pi,Dj>is within the top 10%inC};
11: randomly choose a device Dr from C∗;
12: S = S ∪ {< Pi, Dr >};
13: until P is traversed.
14: return S;

4.3 Operations in the Improvement Phase

We propose two operations that can locally improve a solution S, Swap(S) and
Substitute(S).

The Swap(S) operation illustrated in Algorithm3 improves the solution S by
selecting a pair of allocations in S and exchanging the corresponding devices. The
allocation pair is greedily selected according to a rank function that evaluates
the benefit of the exchange. For two allocations < Pi,Dj > and < Pk,Dr >
in S, swapping the devices would generate two new allocations < Pi,Dr > and
< Pk,Dj >. The new allocations should be both admissible and consistent with
other allocations in S. The resulting benefit is defined as the increment in the
number of qualified sites, or formally:

score({< Pi,Dj >,< Pk,Dr >}) = N<Pi,Dr>−N<Pi,Dj>+N<Pk,Dj>−N<Pk,Dr>

Finally, the pair of allocations with the highest score is swapped.

Optimizing Shortwave Radio Broadcast Resource 659

Algorithm 3. Swap(S)
1: maxscore = 0;
2: bestpair = newpair = φ;
3: for any two allocations < Pi, Dj > and < Pk, Dr > in S do
4: if < Pi, Dr > and < Pk, Dj > are both admissible then
5: pair = {< Pi, Dj >,< Pk, Dr >};
6: if Consistent(< Pi, Dr >, S \ pair) and Consistent(< Pk, Dj >, S \ pair)

then
7: score = N<Pi,Dr> − N<Pi,Dj> +N<Pk,Dj> − N<Pk,Dr>;
8: if score > maxscore then
9: maxscore = score;
10: bestpair = pair;
11: newpair = {< Pi, Dr >,< Pk, Dj >};
12: end if
13: end if
14: end if
15: end for
16: S = (S \ bestpair) ∪ newpair;
17: return S;

Algorithm 4. Substitute(S)
1: maxscore = 0;
2: alloc1 = null, alloc2 = null;
3: for Each allocation < Pi, Dj >∈ S do
4: for Each device Dr ∈ (D \ {Du|∃Pk(< Pk, Du >∈ S)}) do
5: if < Pi, Dr > is admissible and Consistent(< Pi, Dr >, S \ {< Pi, Dj >})

then
6: score = N<Pi,Dr> − N<Pi,Dj>;
7: if score > maxscore then
8: maxscore = score;
9: alloc1 =< Pi, Dj >;
10: alloc2 =< Pi, Dr >;
11: end if
12: end if
13: end for
14: end for
15: S = (S \ {alloc1}) ∪ {alloc2}
16: return S;

The Swap operation is a minor adjustment within the solution. The search
procedure is likely to get stuck in the local optimum with respect to the neigh-
borhood structure merely specified by Swap. Therefore, we introduce another
operation Substitute(S) which is described in Algorithm4. The basic idea is
to select an allocation < Pi,Dj > in the current solution S and replace Dj with
an idle device Dr. The selection is based on the greedy function evaluating the
benefit of the substitution, which is defined as:

660 F. Ma et al.

score(< Pi,Dj >,Dr) = N<Pi,Dr> − N<Pi,Dj>

The new allocation < Pi,Dr > must be admissible and consistent with other
allocations in S, too. Obviously, the Substitute operation changes the set of
allocated devices, thus may improve the quality of the solution.

4.4 The Local Search Procedure

The framework of our local search algorithm is shown in Algorithm5, as
described below. During the search, S∗ keeps the best solution found thus far. In
the beginning, an initial solution S is constructed, and the counters swaps and
substitutes are set to 0. Then the algorithm iterates over the greedy random-
ized construction phase Construct and two improvement operations Swap and
Substitute until the cut-off time is reached. There are two control parameters,
I and R. At each step, if the current solution S is better than the best solution
S∗, the algorithm updates S∗ and resets both of the counters. Otherwise, the
Swap operation is firstly applied to improve the objective value NS . If Swap is
applied up to I times and there is no improvement over S∗, the Substitute
operation is applied to improve solution S, and the counter swaps is cleared. If
S∗ is still not improved by performing the Substitute operation R times, the
algorithm restarts to get out of local optimum.

5 Empirical Evaluation

In this section we present experimental results of the proposed approaches on the
set of real size shortwave radio broadcasting instances provided by the Division of
Radio Frequency Assignment of SAPPRFT. These instances are taken from 7061
radio transmission devices and 87 programs. All instances are available on the
website2. We use the solver clasp3 for PBO solving. Since the PBO formulation
of the SRBRA problem is naturally a 0-1 integer linear programming (ILP)
problem, we also employ CPLEX as the ILP solver in the experiments.

We carried out two sets of experiments. The first one aims to compare the
local search (LS) algorithm with the PBO approach and ILP solving, while the
second one is mainly to evaluate the performance of the LS algorithm on large
scale instances. The time limit for the LS algorithm is 10 seconds and for clasp
and CPLEX is 3600 seconds. The number of qualified sites (denoted by #QS)
obtained by each method is listed. Because of the randomness of the LS algo-
rithm, it is executed 10 times for each instance, and both the maximum and
average results are listed. Since clasp and CPLEX are exact solvers, if they ter-
minate within the time limit, an optimal solution is found, and the correspond-
ing result is marked with a star(*). Otherwise, we report the time they take to
reach the primal solution at timeout. The times are measured in seconds. All
experiments are performed on a computer with 3.3GHz and 4GB RAM under
windows 7.
2 http://ai.nenu.edu.cn/yinmh/.
3 http://potassco.sourceforge.net/.

http://ai.nenu.edu.cn/yinmh/
http://potassco.sourceforge.net/

Optimizing Shortwave Radio Broadcast Resource 661

Algorithm 5. The Local Search Algorithm
1: Solution S∗=S = Construct();
2: swaps = 0, substitutes = 0;
3: while elapsed time < cut-off time do
4: if NS∗ < NS then
5: S∗ = S;
6: swaps = 0;
7: substitutes = 0;
8: else
9: if (swaps < I) then
10: swaps = swaps+ 1;
11: S=Swap(S);
12: else
13: if (substitutes < R) then
14: substitutes = substitutes+ 1;
15: swaps = 0;
16: S = Substitute(S);
17: else
18: S = Construct();
19: swaps = 0;
20: substitutes = 0;
21: end if
22: end if
23: end if
24: end while
25: return S∗;

Table 1 shows the results of comparing the LS algorithm with clasp and
CPLEX. The number of devices is denoted by ‘D” and the number of programs by
“P”. We can observe from Table 1 that CPLEX performs best. It finishes searching
within one second for all instances, providing the optimal value. The LS algo-
rithm produces a solution in less than one second for almost all instances, while
clasp reaches the time limit for some instances. The LS algorithm can find the
exactly optimal solution for many instances.

Table 2 shows the experimental results on large instances. CPLEX reports “out
of memory” and does not provide any solution for all these instances, so we
only list the results of clasp and the LS algorithm. The “total” is the total
number of sites in the instance. The “rate” is cover rate, that is “#QS/total”.
The “UB” column gives the upper bound of #QS for each instance, which is
obtained by simply selecting the best device for each program, ignoring the device
conflicting constraints. The symbol ‘-’ indicates that clasp fails to produce a
solution at timeout. For those clasp does produce solutions, the results are
unsatisfactory. By contrast, LS can finish all the instances within 10 seconds,
with high cover rate meeting the need. The instance (D=7061, P=87) contains
all usable official radio transmission devices and programs, and takes only 9.62 s

662 F. Ma et al.

with 81.1% average cover rate. That means the LS algorithm can allocate all
shortwave radio broadcast resource in China in a short time with high quality.

We also studied how the solution quality evolves as time passes for LS and
clasp on two representative instances, as demonstrated in Fig. 3. The left picture
indicates that for the instance with 400 devices and 20 programs, LS converges to
the optimal solution much faster than clasp does. The picture on the right shows
that the LS algorithm quickly reaches a good solution on the largest instance.

6 Related Works

The SRBRA problem is an extended resource allocation problem, which is a
well-known problem widely studied in the literature. Numerous algorithms for
variation of resource allocation problem are proposed in the decades. For exam-
ple, for general resource allocation problem, [8] gives a hybrid search algorithm
which combines genetic algorithm (GA) and ant colony optimization (ACO).
Meanwhile special cases of resource allocation problem are studied widely. For
example, [11] gives an algorithm for multi-vehicle systems with nonholonomic
constraints. In this problem the vehicles satisfy a nonholonomic constraint, and
the algorithm employs ideas from the traveling salesman problem and the path
planning literature. [13] presents a proportional share resource allocation algo-
rithm for real-time, time-shared systems.

Table 1. Comparison of clasp, CPLEX and LS

D P clasp CPLEX LS

#QS time #QS time max(avg) #QS time

50 2 94* <0.01 94* <0.01 94(94) <0.01

50 5 103* 0.171 103* 0.19 103(103) <0.01

100 2 94* 0.016 94* <0.01 94(94) <0.01

100 5 103* 0.171 103* 0.14 103(103) <0.01

200 2 121* 0.078 121* 0.14 121(121) <0.01

200 5 238 7.269 238* 0.16 238(238) <0.01

200 10 762 273.995 762* 0.27 762(762) 0.014

400 2 187* 0.577 187* 0.13 187(187) <0.01

400 5 438 25.569 438* 0.09 438(438) 0.015

400 10 965 473.975 965* 0.19 965(965) 0.047

400 20 1228 3200.502 1232* 0.28 1232(1231.9) 3.411

800 2 212* 6.209 212* 0.16 212(212) 0.026

800 5 501 1589.128 501* 0.14 501(501) 0.127

2000 10 1305 1072.545 1555* 0.23 1555(1554.9) 2.667

3000 10 1393 1977.724 1562* 0.28 1562(1562) 1.284

4000 10 1246 1578.536 1677* 0.69 1677(1677) 1.006

Optimizing Shortwave Radio Broadcast Resource 663

Table 2. Experiments on large instances

D P clasp LS UB

#QS time max(avg) #QS/total max(avg) rate(%) time

2000 20 1830 2169.083 2183(2179.8)/2677 81.5(81.4) 4.180 2251

2000 30 710 3091.099 2464(2455.5)/3081 80.0(79.7) 3.260 2597

2000 40 1048 3177.101 3526(3484.2)/4618 76.4(75.4) 3.953 3858

2000 50 1020 1670.685 4180(4116.3)/5655 73.9(72.8) 3.510 4739

2000 60 847 991.647 4872(4806)/6687 72.9(71.9) 4.959 5619

2000 70 1182 2026.448 5707(5611.3)/8055 70.9(69.7) 6.137 6826

2000 87 - - 6358(6234.2)/9404 67.6(66.3) 8.618 7981

3000 20 649 2286.309 2197(2192.4)/2677 82.1(81.9) 1.639 2251

3000 30 140 490.964 2502(2493.7)/3081 81.2(80.9) 2.528 2599

3000 40 540 377.552 3634(3591.1)/4618 78.7(77.8) 4.308 3860

3000 50 1014 1345.908 4306(4265.1)/5655 76.1(75.4) 5.971 4741

3000 60 1117 2112.735 5040(4996.8)/6687 75.4(74.7) 8.581 5623

3000 70 - - 5969(5918)/8055 74.1(73.5) 9.934 6830

3000 87 - - 6666(6609.7)/9404 70.9(70.3) 9.907 7990

4000 20 250 78.608 2320(2318)/2677 86.7(86.6) 2.716 2370

4000 30 115 853.837 2633(2626)/3081 85.5(85.2) 3.227 2753

4000 40 390 2998.060 3822(3800.8)/4618 82.8(82.3) 5.806 4092

4000 50 1060 3004.924 4577(4541.7)/5655 80.9(80.3) 8.500 5063

4000 60 - - 5387(5329.4)/6687 80.6(79.7) 9.884 6040

4000 70 - - 6284(6249.9)/8055 78.0(77.6) 9.806 7315

4000 87 - - 7029(6986.5)/9404 74.7(74.3) 9.824 8570

5000 10 1182 2765.580 1682(1682)/1954 86.1(86.1) 1.312 1695

5000 20 320 2625.094 2338(2334.7)/2677 87.3(87.2) 2.493 2380

5000 30 514 76.035 2679(2660.7)/3081 87.0(86.4) 3.993 2763

5000 40 530 2324.841 3893(3877.9)/4618 84.3(84.0) 7.029 4103

5000 50 927 2892.373 4708(4681.5)/5655 83.3(82.8) 9.845 5077

5000 60 - - 5496(5416.3)/6687 82.2(81.0) 9.912 6054

5000 70 - - 6373(6318)/8055 79.1(78.4) 9.795 7335

5000 87 - - 7186(7142.9)/9404 76.4(76.0) 9.712 8594

6000 10 719 148.395 1772(1772)/1954 90.7(90.7) 1.555 1783

6000 20 391 66.634 2456(2453.6)/2677 91.7(91.7) 2.805 2473

6000 30 411 199.213 2810(2804.3)/3081 91.2(91.0) 4.868 2861

6000 40 874 2329.879 4164(4137)/4618 90.2(89.6) 8.495 4307

6000 50 - - 5030(4990.4)/5655 88.9(88.2) 9.803 5293

6000 60 - - 5856(5788.9)/6687 87.6(86.6) 9.826 6288

6000 70 - - 6878(6797.5)/8055 85.4(84.4) 9.842 7592

6000 87 - - 7854(7667.2)/9404 83.5(81.5) 9.687 8875

7061 10 696 2734.533 1774(1774)/1954 90.8(90.8) 2.269 1785

7061 20 337 203.089 2458(2456.3)/2677 91.8(91.8) 3.358 2475

7061 30 249 2665.458 2812(2802.8)/3081 91.3(91.0) 5.796 2863

7061 40 629 1492.673 4192(4183.2)/4618 90.8(90.6) 9.778 4311

7061 50 - - 5068(5045.9)/5655 89.6(89.2) 9.828 5297

7061 60 - - 5883(5805.7)/6687 88.0(86.8) 9.909 6301

7061 70 - - 6860(6800.8)/8055 85.2(84.4) 9.779 7605

7061 87 - - 7739(7629.6)/9404 82.3(81.1) 9.620 8888

664 F. Ma et al.

D=400, P=20 D=7061, P=87

Fig. 3. Solution vs Time

For the case of radio, some effective algorithms are proposed to tackle the
allocation and scheduling problem. [14] proposes a scheduling algorithm based on
mean field annealing (MFA) neural networks for an optimal broadcast scheduling
in packet radio networks. [10] also proposes a scheduling algorithm for multi-hop
radio networks. [5] presents a radio resource allocation algorithm for Relay-Aided
Cellular OFDMA System.

Some methods for the allocation and schedule problem for radio are based on
CSP and Tabu Search. For example, [15] presents an algorithm for solving the
frequency assignment problem (FAP) in cellular mobile systems, which uses CSP
techniques. The algorithm represents a cell as a variable that has a very large
domain, and determines a variable value step by step. [3] presents a tabu search
algorithm for the FAP in mobile radio networks. [4] presents a modeling approach
of the interference constraints and a probabilistic taboo search algorithm to solve
the FAP in broadcasting. For more about FAPs, one can visit the website [1].

7 Conclusion

Shortwave radio broadcasting is still in heavy use in countries like China. In this
paper, we studied the shortwave radio broadcast resource allocation problem
(SRBRA), which is a kind of optimization problem with complex constraints.
The SRBRA problem is derived from a real project in which we are cooperat-
ing with the Division of Radio Frequency Assignment of SAPPRFT. We have
described the problem formally, and proved that it is an NP-hard problem. We
proposed two complementary methods to solve SRBRA. One is to formulate it as
a Pseudo-Boolean optimization (PBO) problem; and the other is a local search
algorithm with quick consistency checking mechanism and the metaheuristic
of Greedy Randomized Adaptive Search Procedure (GRASP). We have imple-
mented both methods and evaluated them with real data from the Division of

Optimizing Shortwave Radio Broadcast Resource 665

Radio Frequency Assignment of SAPPRFT. It turns out that, we can find an
allocation plan with good broadcasting effect quite efficiently.

References

1. Frequency Assignment Problem. http://fap.zib.de/
2. Hand, G.: VOACAP, ICEPAC and REC-533 propagation prediction programs for

windows. NTI/ITS
3. Hao, J.-K., Dorne, R., Galinier, P.: Tabu search for frequency assignment in mobile

radio networks. J. Heuristics 4(1), 47–62 (1998)
4. Idoumghar, L., Debreux, P.: New modeling approach to the frequency assignment

problem in broadcasting. IEEE Trans. Broadcast. 48(4), 293–298 (2002)
5. Kaneko, M., Popovski, P.: Radio resource allocation algorithm for relay-aided cel-

lular ofdma system. In: Proceedings of IEEE International Conference on Commu-
nications, pp. 4831–4836, June 2007

6. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

7. Lane, G.: Signal-to-Noise Predictions Using VOACAP-A Users Guide. Rockwell
Collins Inc., USA (2001)

8. Lee, Z.-J., Lee, C.-Y.: A hybrid search algorithm with heuristics for resource allo-
cation problem. Inf. Sci. 173(1–3), 155–167 (2005)

9. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5, 32–38 (1957)

10. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks.
IEEE/ACM Trans. Netw. 1(2), 166–177 (1993)

11. Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for mul-
tivehicle systems with nonholonomic constraints. IEEE Trans. Autom. Sci. Eng.
4(1), 98–104 (2007)

12. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures:
advances, hybridizations, and applications. In: Handbook of Metaheuristics, pp.
283–319. Springer, Boston (2010)

13. Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S.K., Gehrke, J.E., Plaxton,
C.G.: A proportional share resource allocation algorithm for real-time, time-shared
systems. In: Proceedings of IEEE Real-Time Systems Symposium, pp. 288–299,
December 1996

14. Wang, G., Ansari, N.: Optimal broadcast scheduling in packet radio networks using
mean field annealing. IEEE J. Sel. Areas Commun. 15(2), 250–260 (1997)

15. Yokoo, M., Hirayama, K.: Frequency assignment for cellular mobile systems using
constraint satisfaction techniques. In: Proceedings of IEEE Vehicular Technology
Conference, vol. 2, pp. 888–894 (2000)

http://fap.zib.de/

Availability Optimization in Cloud-Based
In-Memory Data Grids

Samir Sebbah(B), Claire Bagley, Mike Colena, and Serdar Kadioglu

Oracle Corporation, Burlington, MA, USA
{samir.sebbah,claire.bagley,mike.colena,serdar.kadioglu}@oracle.com

Abstract. This paper presents a Constraint Programming (CP)-based
application for dynamic cache distribution in Oracle Coherence In-
Memory Data Grid (IMDG). A re-sizable decomposition method using
CP is developed to ensure high availability through incremental optimiza-
tion of load distribution and data replication. The application highlights
the flexibility and efficiency that the CP technology offers for (1) con-
cisely capturing the multiple dynamic aspects and complex constraints of
the Oracle Coherence IMDG cache distribution problem; and (2) solving
large-scale problem instances in a dynamic cloud environment. Exten-
sive computational results are presented to assess the scalability and
efficiency of the proposed solution.

Keywords: Constraint programming · Re-sizable decomposition ·
Oracle Coherence · Dynamic Cache Distribution · Availability ·
Resiliency

1 Introduction

The advent of cloud computing has redefined the ways many businesses are oper-
ating. The ability to rapidly build and deploy scalable applications/services and
obtain/release computing resources in a cost-effective and device-independent
way have driven many companies to switch from on-premise IT solutions to
the cloud. In-Memory Data Grid (IMDG) is a one of the big-data applications
that has been experiencing a big shift from on-premise to the cloud. A cloud-
based IMDG is a distributed data structure store that keeps data in memory
for providing low access latency and high availability to mission critical and
big-data applications. By loading Tera-bytes of data into a distributed mem-
ory store, IMDGs can meet the stringent big-data processing requirements in
terms of scalability, resiliency, efficiency, and availability [2]. However, multiple
challenges need to be constantly monitored in order for an IDMG to function
correctly and provide the expected Quality-of-Service (QoS) guarantees [1,5].
In IMDGs, maintaining data integrity with 100% transactional data handling
is extremely important for ensuring system data consistency. Nowadays, many
IMDGs, on premise or in the cloud, support functionalities that provide elastic
provisioning to meet fluctuating and variable unexpected loads, asynchronous
data replication, smart data routing, load balancing, and scalability.
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 666–679, 2016.
DOI: 10.1007/978-3-319-44953-1 42

Availability Optimization in Cloud-Based In-Memory Data Grids 667

Among all the QoS metrics [5], availability is the metric to optimize for the
success of any business in the cloud. The availability of a cloud system is usually
expressed as the percentage of up-time in a given year, e.g., 99.999%, ∼5.26
minutes of down-time per year. Service unavailability, also expressed as the per-
centage of down-time per year, is due to several reasons nominally attributed
to software, hardware, or network infrastructure failures. Service unavailability
in the cloud may also be due to congestion of the cloud infrastructure caused
by unbalanced workload distribution and/or inefficient use of resources. In the
cloud community, notable efforts are centered around the area of availability
provisioning [1]. To achieve any availability level, the cloud system needs to be
resilient against failures. Existing mechanisms to mitigate and anticipate the
impacts of failures in computing and networking have widely been re-used in
the cloud. Examples include dynamic resource allocation, resiliency, and load
balancing [1,6]. Many QoS centered problems in the cloud are combinatorially
NP-hard [3,13]. Given the growing complexity and size of the cloud model, find-
ing solutions to those combinatorial problems is becoming tremendously hard in
practice. Furthermore, the evolving nature of the cloud [9] poses other challenges
related to how quickly and economically a solution that addresses current needs
can be extended and maintained to respond to future requirements. Therefore,
optimization solutions to embed QoS provisioning and resiliency are expected
to go beyond the cost-driven model and address multiple other business and
operation aspects of the cloud.

In this paper, we present a Constraint Programming (CP)-based re-sizable
decomposition method for solving the Dynamic Cache Distribution Problem
(DCDP) in Oracle Coherence cloud-based IMDG. Oracle Coherence is the
industry leading IMDG solution that enables organizations to predictably scale
mission-critical applications [11]. The DCDP is formulated as a variant of the
bin-packing problem and solved using a re-sizable decomposition that uses CP to
incrementally optimize the availability of the Oracle Coherence IMDG system.

The paper is organized as follow. Section 2 presents the DCDP and the archi-
tecture of the Oracle Coherence IMDG system. Section 3 details the solution
approach we developed for solving the DCDP. Section 4 presents computational
results assessing the performance of the proposed approach. Section 6 concludes
the paper.

2 The DCDP in the Oracle Coherence IMDG

2.1 Architecture

Figure 1 presents a model of the cloud-based Oracle Coherence IDMG system.
The cloud physical infrastructure is composed of an interconnection of data
centers that provide processing capacity, storage, and network services for the
IMDG system. Server (or platform) virtualization is the technique that allows
a big computer system to be partitioned into multiple isolated execution envi-
ronments similar to a single physical computer, also called Virtual Machines

668 S. Sebbah et al.

Fig. 1. A Model of the Oracle Coherence IMDG System.

(VM). Each VM can be configured in an independent way to have its own oper-
ating system, memory capacity, and network parameters [14]. In Fig. 1, physical
machines/data centers that share the same risk of failure are grouped together
into a logical entity called a Domain Failure (DF).

The Oracle Coherence IMDG system is a distributed data structure repos-
itory that resides entirely in memory [11]. To support the increasing demands
for big-data applications, Oracle Coherence is designed to support hundreds of
thousands of operations per second by providing continuous data availability in
memory. In Oracle Coherence, the data of users is divided into multiple dynamic
caches and stored in the distributed in-memory repository. When deployed in the
cloud, the Oracle Coherence IMDG is granted access to a set of resources that
it can rapidly provision and release to meet any demand fluctuation [11]. The
IMDG model in Fig. 1 uses the memory of the VMs to store the dynamic caches
of the users. The current state information of all the resources (locations/sizes
of the caches, load of the VMs, state of the machines, e.g., up/faulty) and the
demands coming from the users are given as inputs.

The IMDG decision component is composed of two modules: the Cache Dis-
tribution Manager (CDM) and the Cache Distribution Strategy (CDS) [11]. The
CDM maintains the state information of the IMDG system, assigns new caches,
and re-assign (migrate) pre-assigned caches. In the assignment process, the
CDM takes assignment recommendations from the CDS which instantiates and
solves cache distribution decision problems based on current state information.

Availability Optimization in Cloud-Based In-Memory Data Grids 669

The CDM may query the CDS for assignment decisions at regular time intervals
or after any of the following state information change in the IDMG system: (1)
load distribution unbalance, (2) resource upgrade (3) resource removal - grace-
fully or accidentally (due to failures). Our CP-based cache distribution strategy
for the DCDP will function as the CDS module as shown in Fig. 1.

2.2 Requirements

The availability of any IMDG system can be optimized by a resource allocation
strategy that embeds QoS provisioning in its allocation activities. In the following
we discuss some of the requirements for achieving optimized high-availability in
Oracle Coherence IDMG system.

– Resiliency: guarantee 100% survivability against any k simultaneous machine
failures, i.e., the IMDG system will continue to function even when k machines
are in failure state and cannot provide any service. In case of any machine fail-
ures, the system will switch over to backup machine(s) and continue to provide
the same service (with the same quality) as before the failure happened. To
achieve a k resiliency level [2], k replicas (backup caches) of each primary
cache are created and assigned resources in different DFs.

– Load balancing: guarantee an even load distribution across the candidate VMs.
The load balancing metric is used for access latency prediction and optimiza-
tion [1].

– Fast provisioning and scalability: time consuming provisioning efforts add to
the unavailability of the IMDG system and negatively affect the scalability
of the system. Therefore, fast provisioning decisions are wanted for improved
scalability. Furthermore, given that resources are dynamically added to and
removed from the system, the IMDG needs to quickly update the state infor-
mation and integrate them in the provisioning process.

– Provisioning pattern: incremental batch provisioning is required to minimize
the duration of the cache distribution phase. During the cache distribution
phase parts of the data become unavailable. To minimize the impact on the
customers, the provisioning time1 needs to be minimized, i.e., the CDS needs
to quickly return suggestions of cache distribution and the CDM needs to
implement them as soon as they arrive (minimum time gap). The CDM should
never be in a lengthy idle state waiting for suggestions to come from the CDS.

In the next section, we present a re-sizable decomposition method that addresses
the requirements above.

3 The CP-Based Solution Approach

The Coherence DCDP is a particular resource allocation problem in which strin-
gent technical/business requirements are mandated within the Coherence soft-
ware architecture. Conceptually, the DCDP can be modeled as a variant of the
1 The time that spans from the start of decision making to the end of decision imple-

mentation.

670 S. Sebbah et al.

widely used bin-packing approach for resource allocation in cloud computing
[4,7,14]. Formally, the DCDP consists in finding a packing/re-packing pattern
of dynamic data caches (items) of different sizes into a finite number of capaci-
tated VMs (bins) in a way that maximize the items availability. The availability
of items is enforced by resiliency constraints to forbid collocations of copies of
the same item (copies of the same item cannot be on the same VM), and load
balancing constraints to minimize data access latency. In addition, given that the
data caches are continually and independently growing over time, a (re-)packing
of the caches will need to be performed in a way that minimizes load migration
across the VMs.

The NP-hardness of the bin-packing problem motivated many researchers to
use heuristics especially for dynamic resource allocation in the cloud [13]. CP
has been widely used for its expressiveness that fits well with the complex and
evolving nature of the cloud model. The expressiveness of CP has been comple-
mented with several studies that showed its effectiveness at solving variants of
the bin packing problem [10,12].

In this section, we present our solution approach for solving the Oracle Coher-
ence DCDP. The solution is composed of a Round-Robin (R-R) heuristic and a
CP-based re-sizable decomposition.

3.1 Motivation

As mentioned in the requirements section, in order to optimize data availability
perfect synchronization between decision making/execution is needed to mini-
mize the provisioning time. In Coherence IMDG system, batches of cache distri-
bution recommendations are sent by the CDS to the CDM for implementation.
To achieve good synchronization between the CDS and the CDM, the size of each
decision batch has to be tailored to the current state, including work load, of the
IMDG system. Figure 2 illustrates three scenarios of synchronization between
the CDS and CDM.

(a) The CDS is slower than the CDM (no synchronization): CDS solves large
decision models while the CDM is waiting for decisions to come.

(b) The CDS is faster than the CDM (no synchronization): CDS solves small
decision models and overwhelms the CDM with decisions.

(c) CDS and CDM are synchronized (ideal scenario): CDS solves ideally sized
decision models to achieve synchronization with the CDM. No wasted time
due to decision queuing or idle state is recorded, and the provisioning time
is the lowest over all the three scenarios.

To achieve a perfect synchronization between the CDS and CDM while solv-
ing large-scale instances of the problem, we developed a re-sizable decomposition
method where the size of the cache distribution decision problem can be dynam-
ically changed over time. In the next sections we present the different building
blocks of the re-sizable decomposition.

Availability Optimization in Cloud-Based In-Memory Data Grids 671

Fig. 2. Synchronization Between CDS and CDM.

3.2 The Replication Map

The DCDP involves assigning both primary caches and replicas (up to k repli-
cas for each primary cache) to VMs. Provided that each primary cache and its
replicas are all located in different DFs, each level of replication is a symmetri-
cal problem of the primary cache distribution problem. In order to mirror the
primary cache assignments in the replicas assignments, we build a replication
map that defines the locations of all the replicas. Figure 3 shows an example of a
replication map with replication paths indicating the locations of the k replicas
of any primary cache (the arrows indicates the replication paths). Example, if
a primary cache p1 is assigned to DF4:VM1 then its first and second replicas
will be along the replication path that starts at DF4:VM1, i.e., first replica will
be on DF3:VM1 and second replica will be on DF1:VM1. To reach level k of
resiliency, each path is required to visit k distinct DFs (no loops) in addition to
the source of the primary cache (more details are provided in Sect. 3.6). The set
of all replication paths defines a replication map and a routing table [3].

3.3 The Warm-Starting Heuristic

We use a Round-Robin (R-R) heuristic to quickly find a first solution that
spreads the primary caches across the given VMs. The R-R heuristic alter-
nates between forward and backward cache assignments, i.e., assign caches to
{vm1, vm2, . . . , vmn} then to {vmn, vmn−1, . . . , vm1}. The sizes of caches are
not explicitly used in the process. For a more balanced cache assignment solution,
the caches are sorted prior to the R-R assignment process.

By assigning caches to VMs, the R-R heuristics spreads almost equally the
caches across the VMs, i.e., each VM gets almost equal number of caches.

672 S. Sebbah et al.

Fig. 3. An Example of a Replication Map with Resiliency Level k = 2.

From a combinatorial point of view, the R-R is creating almost equal-size deci-
sion models for the re-sizable decomposition to choose from.

3.4 The Re-sizable Decomposition

The following algorithm illustrates the re-sizable decomposition.

program The Re-Sizable Decomposition (decSize, deviationUpperBound)

const

MaxNbrIterations = 2* |VMs|;

var

NbrIterations: 0..MaxNbrIterations;

begin

NbrIterations := 0

repeat

NbrIterations := NbrIteration + 1;

subProblem := DefineSubProblem (decSize);

BuildSolveCPModel (subProblem);

IF (LoadDeviationOfWholeInstance () <= deviationUpperBound)

break;

EndIf;

until (NbrIterations == MaxNbrIterations)

end.

The algorithm iterates through the following operations:

– The DefineSubModel procedure defines the re-sizable part of the decomposi-
tion (illustrated in DefineSubProblem algorithm below). Based on a decom-
position size value decSize, the method selects decSize of the most loaded
VMs and the same number of least loaded VMs. The model grows in size
with the decomposition size value. That is, decSize = |V Ns|/2 is the whole
model of the IMDG instance.

– Build and solve the CP sub-model (BuildSolveCPModel). The CP method
is described in Sect. 3.5.

Availability Optimization in Cloud-Based In-Memory Data Grids 673

– Check the load deviation of the instance (LoadDeviationOfWholeInstance).
The solution of each CP sub-model improves the load distribution across the
VMs of the sub problem and consequently the load distribution of the whole
IMDG instance. The decomposition stops when the load deviation of the
IMDG instance is below the given threshold value (deviationUpperBound).

program DefineSubProblem (decSize)
{Required decSize in {1, 2,..., |VMs|/2}};
begin

candidateVMs := getMostLoadedVMs (decomposition size)
+ getLeastLoadedVMs (decomposition size)

return candidateVMs;
end.

This decomposition approach is conceptually similar to Column Generation
where the sub-models are built on-the-fly based on the dual values associated
with the constraints of the main model. At each iteration of the decomposition, a
sub-model is built and solved to improve a global objective of load distribution.
The sub-model of each iteration is built with variables associated with the most
and least loaded VMs and their owned caches. Given that the load of the VMs
change as the decomposition iterates, the model of the next iteration is always
different from the one of the previous iteration.

3.5 The CP Model

The CP model is built with the set of VMs and their owned caches of the input
problem.

The Variables

– Load (for each vm ∈ VMs)

Loadvm ∈ [minLoad . . .maxLoad]

captures the load of each vm ∈ VMs. minLoad and maxLoad are the loads
of the least loaded VM and of the most loaded VM , respectively.

– Assignment (for each cache c ∈ Caches)

Assignc ∈ {VMs}

captures the assignment of each of the caches c ∈ Caches. The domain of the
assignments is the set of VMs of the input problem.

674 S. Sebbah et al.

The Constraints

– Bin-packing operator [12]

binPacking(Assignc[], Sizec[], Loadvm[])

where Sizec[] are the sizes of the caches. This constraint defines the assignment
of the caches based on the Load array.

– Deviation operator [8,12]

deviation(Loadvm[])

This constraint, which measures the load deviation of the VMs, enforces cache
load balancing.

Variable/Value Orderings
The following variable/value orderings are used to discriminate among solutions.

– Assign caches in decreasing order of size,
– Migrate caches (re-assign) only to improve load deviation.

3.6 The Replication Problem

The replication map, as introduced in Sect. 3.2, is the structure that indicates
the locations of the k backup caches of each primary cache. The map example
given in Fig. 3 can survive any k = 2 simultaneous DFs. To obtain the locations
of the 2 backup caches of any primary cache, it is required to follow the paths
that starts at the primary cache location.

The replication algorithm is incremental and follows the same algorithmic
steps of the cache distribution algorithm. In the replication process, the objective
is to find a replication destination for each VM without creating loops of length
smaller than or equal to the resiliency level k. A replication loop is any closed
path that revisits the same DF . In Fig. 3, the replication loop DF1 : VM1 →
DF2 : VM1 → DF3 : VM1 → DF1 : VM1 does not violate the resiliency level
2. A loop DF1 : VM1 → DF2 : VM1 → DF1 : VM2, although spans different
VMs, will violate the resiliency level 2.
Similarly to solving the DCDP, the replication algorithm is as follows:

– The warm-starting heuristic matches the VMs of each DF to the VMs of the
closest DF . A R-R heuristic is applied to spread the matching across the des-
tination VMs. The loop avoidance is the only criteria in the construction, no
balancing of replication load is considered. The replication map in Fig. 3 might
result from application of the R-R heuristic. Replication guidelines to make
better network resource usage can be added as well (e.g., local replication).

– The CP-based re-sizable decomposition iterates, as in the cache distribution
problem, by selecting a sub-problem with the most loaded VM and least
loaded VM (decSize = 1) that can share replication load. Next, it builds a

Availability Optimization in Cloud-Based In-Memory Data Grids 675

CP model of the problem, then changes the current replication map based
on the obtained CP solution. A replication deviation test is used to interrupt
the replication load distribution process as in the cache distribution algorithm.
From Fig. 3, a straight forward input problem can be composed ofDF2 : VM1
and DF4 : VM1 (suppose these 2 VMs can share replication load). Then the
CP sub-model is built with the most loaded and least load DF2 : VM1 and
DF4 : VM1. A solution to the CP sub-model that minimizes the replication
load deviation could be to move the replica of DF1 : VM1 or DF1 : VM2 to
DF4 : VM1.

The replication map is required prior to the assignment of the replicas.
The whole cache distribution algorithm (with the replica) is to run sequen-
tially/parallel the primary cache distribution and the replication map building
algorithm, then use the replication map to find the locations of the different
replicas.

3.7 Discussions

In the development process of the solution above we tried two other alternatives:
(1) use standalone Integer Linear Programming (ILP) and CPmodels, (2) replace
the CP sub-model with an ILP sub-model in the decomposition. In the former,
we could not meet the run-time requirements of the problem (sub seconds per
iteration). The size of the model is too large to find any feasible solution within
the specified run-time budget. In the latter, we obtained comparable solutions
for some small decomposition size values, but the run-time was higher compared
to CP. The weakness of the ILP model was due to the |VMs| × |VMs| binary
constraints to measure and limit the load distance between all the pairs of |VMs|.

4 Computational Results

In this section, we present some performance assessments of the proposed solu-
tion approach. For our experiments, we used randomly generated instances with
realistic properties (size and structure) as proxies for the target instances. Each
instance is characterized by a set of DFs, a set of VMs, and a set of data caches.
The VMs are randomly distributed across the different DFs, and the sizes of
the data caches are randomly generated using two different statistical distribu-
tions. In the first distribution the sizes of the caches are uniformly distributed
in one contiguous interval. In the second distribution two disjoint sub-intervals,
distant from each other, are used to generate caches with larger size discrepancy.
The first column of Tables 1 and 2 refer to the properties of these two distrib-
utions, where s̄ is the mean size value and σ is the standard deviation of the
cache size distribution. In total, we generated 160 instances divided into 2 IMDG
datasets: small (50DFs, 1,000 VMd, 50,000 caches) and large (100 DFs, 2,000
VMs, 100,000 caches). In each table, there are 4 different intervals (megabyte)
for cache distributions referred to as CacheSize. For each interval, 10 instances
are generated.

676 S. Sebbah et al.

Table 1. Small dataset: 50 DFs, 1,000 VMs, and 50,000 caches. The sizes of data
caches are uniformly drawn in the intervals of first column.

CacheSize Small dataset Large dataset

s̄,σ R-R Decomposition R-R Decomposition

RT Dev #It RT Dev RT Dev #It RT Dev

[10. . . 30] 0.63 0.81 266 1.94 0.31 2.85 0.87 668 6.49 0.30

20.5, 5.7

[10. . . 50] 0.64 0.73 205 1.70 0.32 3.20 0.86 533 6.90 0.34

30.5, 11.5

[10. . . 80] 0.61 0.92 273 2.09 0.30 2.44 0.72 486 5.48 0.21

45.5, 20.2

[10. . . 120] 0.62 1.05 302 2.34 0.29 2.85 0.92 534 6.52 0.29

65.4, 31.7

The size of the CP-model in the decomposition can be dynamically changed
to fit any solution objective. In fact, it can be changed from one iteration to
another when solving the same instance. The higher the size of the decomposition
is, the harder the model becomes to solve in practice, and the fewer the required
number of iterations to solve the problem is. In order to meet the Coherence
sub-seconds per iteration runtime and synchronization requirements, we set the
decomposition size to 1. The replication map algorithm is run only when the
cloud infrastructure experiences physical changes, i.e., VMs are added/removed
and/or failures happened. In our experiments, we set the number of replicas to
1. In practice, the number of replicas has low impact on the performance of the
whole solution algorithm.

All experiments were run with an Oracle proprietary CP solver on a 2.5GHz
Intel Processor with 8GByte main memory. In Tables 1 and 2 we measure the
run-time (RT in seconds) and the average deviation (Dev in megabytes) values
of the solutions provided by the R-R heuristic and the RT, Dev, and number of
iteration (#It) of the provided solutions by the CP-based decomposition (Recall
that the CP-based decomposition is warm-started with the R-R heuristic).

In Table 1, we see clearly that the R-R heuristic alone finds high quality
solutions within short runtime. The increase in the size of the instances did
not alter the quality of the solutions. Because the standard deviations (σ) of
the cache distributions are not high, the R-R heuristic easily compensates the
load shifts by the forward and backward distribution mechanism. The CP-based
decomposition reduced the load deviations of all the instances in Table 1 by a
factor of up to ∼73%. After an average number of iterations equals to ∼25%
of |VMs| and a few seconds run-time, the CP-based decomposition considerably
improves the solutions found by R-R. The number of iterations indicates that
the CP-based decomposition, on-average, involved at most 50% of the VMs (#It
equal to 25% of |VMs|, and each iteration involves a pair of VMs). The other

Availability Optimization in Cloud-Based In-Memory Data Grids 677

Table 2. Large dataset: 100 DFs, 2,000 VMs, and 100,000 caches. The sizes of 98 %
of data caches are uniformly drawn in the first part of the intervals of first column, 2 %
in the second part of the intervals.

CacheSize Small dataset Large dataset

s̄, σ R-R Decomposition R-R Decomposition

RT Dev #It RT Dev RT Dev #It RT Dev

[10. . . 30][60. . . 90] 0.63 36.28 1008 4.40 0.35 2.85 36.10 2076 11.83 0.32

21.6, 11.75

[10. . . 50][100. . . 150] 0.64 60.49 1164 5.85 0.34 3.20 60.51 2317 13.70 0.33

32.4, 20.7

[10. . . 80][160. . . 240] 0.62 96.58 1348 7.75 0.27 2.44 96.50 2681 18.86 0.34

48.6, 34.5

[10. . . 120][240. . . 360] 0.61 144.85 1376 8.88 0.30 2.85 144.56 2764 20.62 0.33

70.19, 52.8

50% of VMs are assigned caches by the R-R heuristic and not rebalanced by the
CP-based decomposition.

In Table 2 the R-R alone cannot find good quality solutions anymore. The CP-
based decomposition drastically reduced the load deviations of all the instances
by a factor of up to ∼99.8%. Obviously the discrepancies in the cache distribu-
tions created more challenging instances to solve. Both the number of iterations
and the run-time required by the CP-based decomposition are slightly higher
compared to the previous runs with the one interval cache distributions. The
number of iterations in this case increased to more than 100% of |VMs|, which
means that the CP-based decomposition, on-average, involved each of the VMs
at least twice.

5 Incrementality Advantages

Our proposed decomposition is an incremental approach that optimizes the load
deviation by performing local load re-distributions across the VMs. Sugges-
tions of assignments are formulated by the CDS at each iteration of the CP-
based decomposition. The CDM can either implement the suggestions, or decide
to ignore them and interrupt CDS for some reason, e.g., congested network
infrastructure. After an interruption, if no major change occurs in the IMDG
state information, then the CP-based decomposition is likely to regenerate the
sub-model of the interrupted problem. As opposed to a single call to CDS, this
type of incrementality gives high advantage to our solution in complex and highly
dynamic IDMG systems where caches grow in an unpredictably way, and failures
occur more frequently.

678 S. Sebbah et al.

6 Conclusions

We presented a CP-based solution approach for solving the Oracle Coherence
DCDP. The proposed solution is composed of a re-sizable CP-based decomposi-
tion method warm started with a R-R heuristic. The CP-based decomposition
consists of iteratively creating and solving CP sub-models to globally improve
the cache load balance. The same cache distribution solution approach is gener-
alized to solve the replication problem for achieving k resiliency in Coherence.

Extensive computational experiments are performed to assess the quality of
the obtained solutions. The results clearly show the added value of the proposed
CP-based solution for providing optimized incremental load distribution in Ora-
cle Coherence. Solutions for large-scale Coherence instances are obtained within
a few seconds of runtime.

There remains interesting future directions to explore including the trade-off
between the decomposition size and the runtime. Another promising research
direction is the parallelization of the solution. The proposed decomposition app-
roach is naturally parallel as multiple CP-models can be created and executed
in parallel with little overhead.

References

1. Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F., Wang, W.: Quality-of-service
in cloud computing: modeling techniques and their applications. J. Internet Serv.
Appl. 5(1), 1–17 (2014)

2. Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E.K., Moatti, Y., Lorenz, D.H.:
Guaranteeing high availability goals for virtual machine placement. In: IEEE Dis-
tributed Computing Systems (ICDCS), pp. 700–709 (2011)

3. Chen, K., Hu, C., Zhang, X., Zheng, K., Chen, Y., Vasilakos, A.V.: Survey on
routing in data centers: insights and future directions. IEEE Netw. 25(4), 6–10
(2011)

4. Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized
datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer,
Heidelberg (2011)

5. Hermenier, F., Lorca, X., Menaud, J., Muller, G., Lawall, J.L.: Entropy: a consol-
idation manager for clusters. In: VEE, pp. 41–50. ACM (2009)

6. Lubinski, T.: Detecting and alerting on fault conditions in an oracle coherence
distributed caching system. Oracle documentation (2011)

7. Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the
machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514,
pp. 782–797. Springer, Heidelberg (2012)

8. Pesant, G., Régin, J.-C.: SPREAD: a balancing constraint based on statistics. In:
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)

9. Rai, A., Bhagwan, R., Guha, S.: Generalized resource allocation for the cloud. In:
Proceedings of the Third ACM Symposium on Cloud Computing, p. 15. ACM
(2012)

10. Régin, J.C., Rezgui, M.: Discussion about constraint programming bin packing
models. In: AI for Data Center Management and Cloud Computing (2011)

Availability Optimization in Cloud-Based In-Memory Data Grids 679

11. Ruzzi, J.: Oracle coherence getting started guide, release 3.6. Oracle documentation
(2010)

12. Schaus, P.: Solving balancing and bin-packing problems with constraint program-
ming. These de doctorat, Université catholique de Louvain (2009)

13. Wolke, A., Tsend-Ayush, B., Pfeiffer, C., Bichler, M.: More than bin packing:
dynamic resource allocation strategies in cloud data centers. Inf. Syst. 52, 83–95
(2015)

14. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

Computational Sustainability Track

Online HVAC-Aware Occupancy Scheduling
with Adaptive Temperature Control

BoonPing Lim(B), Hassan Hijazi, Sylvie Thiébaux, and Menkes van den Briel

NICTA, The Australian National University, Canberra, Australia
boonping.lim@anu.edu.au

Abstract. Heating, ventilation and air-conditioning (HVAC) is the
largest consumer of electricity in commercial buildings. Consumption is
impacted by group activities (e.g. meetings, lectures) and can be reduced
by scheduling these activities at times and locations that minimize HVAC
utilization. However, this needs to preserve occupants’ thermal comfort
and be responsive to dynamic information such as new activity requests
and weather updates. This paper presents an online HVAC-aware occu-
pancy scheduling approach which models and solves a joint HVAC con-
trol and occupancy scheduling problem. Our online algorithm greedily
commits to the best schedule for the latest activity requests and notifies
the occupants immediately, but revises the entire future HVAC control
strategy each time it considers new requests and weather updates. In
our experiments, the quality of the solution obtained by this approach is
within 1% of that of the clairvoyant solution. We incorporate adaptive
comfort temperature control into our model, encouraging energy saving
behaviors by allowing the occupants to indicate their thermal comfort
flexibility. In our experiments, the integration of adaptive temperature
control further generates up to 12% of energy savings when a reasonable
thermal comfort flexibility is provided.

1 Introduction

Heating, ventilation and air-conditioning (HVAC) dominates the energy con-
sumption of commercial buildings, accounting for roughly 40% of the total
building electricity consumption per annum [11,28]. With rising energy costs
and increasingly stringent regulatory environments, improving the energy effi-
ciency of HVAC operations in buildings has become an important issue.

Recent studies show that energy-oriented occupancy scheduling can lead
to significant savings in energy consumption [5,19–24,26,27]. The idea is to
proactively control occupancy in commercial offices and university buildings by
scheduling energy-hungry activities such as meetings, workshops, lectures and
exams, at times and locations that are favorable from an energy standpoint.
Lim et al.’s “HVAC-aware” occupancy scheduling approach implements this idea
by solving the joint HVAC control and occupancy scheduling problem [21,22],
which consists in simultaneously optimizing the times and locations of the vari-
ous activities and the HVAC control parameters at each time and building zone.
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 683–700, 2016.
DOI: 10.1007/978-3-319-44953-1 43

684 B. Lim et al.

By exploiting the synergy between HVAC control and occupancy scheduling,
this approach achieves a much higher rate of energy savings than works that
are based on (data-driven) black-box models of the HVAC control [5,20] or that
minimize energy consumption proxies (e.g. number of rooms used) [24,27].

Unfortunately, with few exceptions [20], previous works focus on off-line
scheduling, and assume that all activities to schedule and other parameters such
as the weather forecast are known in advance. Existing approaches also adopt a
fixed comfort temperature control, keeping the allowable temperature of occu-
pied locations strictly within narrow bounds (e.g. 21◦-23◦C). Although both
settings generate energy-efficient schedules, they nevertheless limit the practica-
bility of the models in the real-world, and prevent further energy savings that
could be obtained with more flexible temperature bounds. This paper presents
two novel contributions which address these shortcomings. First, we extend Lim
et al.’s HVAC-aware occupancy scheduling approach to process activity requests
in an on-line manner. Second, we encourage energy saving behavior by allow-
ing the occupant to indicate their thermal comfort flexibility, and use it in a
principled way to introduce adaptive comfort temperature control in our model.

In more detail, we propose an on-line approach that models and solves
the joint HVAC control and occupancy scheduling problem. Our on-line algo-
rithm greedily optimizes (and commits to) the times and locations for the latest
requests, leaving the rest of the future schedule fixed but revising the entire future
HVAC control strategy. This ensures that whilst participants are instantly noti-
fied of the scheduled time and location for their requested activity, the HVAC
control is constantly re-optimized and adjusted to the full schedule and weather
updates. Our experiments demonstrate that the quality of the online solution is,
on average, within 1% of that of the solution returned by the original clairvoyant
HVAC-aware algorithm [22].

Adaptive comfort temperature control shifts away from fixed indoor comfort
bands towards wider temperature operating bands. Recent work [1] shows that
even a narrow variation of comfort temperatures can achieve significant energy
savings. We introduce the notion of thermal comfort flexibility in our model
by allowing occupants to indicate their level of tolerance to temperature fluc-
tuation in the form of (a) a threshold limiting the probability of temperature
violation, and (b) the maximum deviation allowed at any time. We then solve
a robust optimization model which provide these probabilistic guarantees. Our
experiments show that, when occupants are reasonably flexible, the integration
of adaptive temperature control generates up an extra 12% of energy savings.

As an additional advantage, adaptive temperature control reduces the con-
strainedness of our online scheduling and control problem. This can make the
problem solvable whereas fixed temperature bounds cannot be met, which often
occurs for instance when a late request needs to be scheduled in the immedi-
ate future in a room whose current temperature is far away from the comfort
band. In our experiments, adaptive temperature control solves 73% of the 700
instances that are unsolvable under the fixed temperature control model.

Online HVAC-Aware Occupancy Scheduling 685

To summarize, the main contributions of the paper are: (a) an efficient online
model for the joint HVAC control and occupancy scheduling problem, (b) a new
notion of thermal comfort flexibility in energy-aware scheduling, (c) experiments
showing substantial energy reduction and improvement of solution feasibility
over the state-of-the-art.

2 Related Work

Our work differs from previous work given its focus on: (i) a joint HVAC control
and occupancy scheduling model which handles dynamically arriving scheduling
requests, and (ii) an adaptive temperature control approach that allows the occu-
pant to specify their thermal comfort flexibility. Existing works on energy-aware
occupancy scheduling [5,21–24,26,27] focus on offline scheduling, and assume
fixed comfort temperature setpoints. In reality, scheduling requests can arrive at
any time of the day using existing room booking systems. A recent survey shows
that 56% of meeting requests were made within 1 day before the actual meeting
day [20]. Thus, the ability to handle impromptu requests is crucial. Moreover, the
ability to update HVAC control following a change in forecast is also essential.

Kwak et al. [19,20] propose an online stochastic MILP model to schedule
meetings. Their work calculates energy consumption based on historical data and
exploits flexibility in the time and location at which a meeting can take place.
However, it does not optimize HVAC control, nor does it take thermal comfort
flexibility into account. Our results show that combining meeting scheduling with
HVAC control, and enabling adaptive temperature control based on occupant
thermal comfort flexibility, significantly impacts energy savings.

Conventionally, room temperature is maintained within strict comfort
bounds while occupied. Such control is not the most effective, since the HVAC
system tries to achieve fixed temperature setpoints regardless of ambient condi-
tions or the comfort levels of the individual occupants. More recent work enables
adaptive thermal comfort control [1,6,7,18,25,31,32], exploiting the observation
that when occupants have some form of input to the control, their subjective
view of comfort changes and they are more willing to accept wider operating con-
ditions than those mandated by traditional comfort models. For example, when
controlling the emissivity of dynamic windows to reduce HVAC consumption in
a smart home, Ono et al. [25] allow for temperature bound violations, but limit
their probability using chance constraints with occupant-specified thresholds.
Inspired by these works, we introduce the notion of thermal comfort flexibility
into our scheduling model. We incorporate occupants’ tolerance level as an input,
allowing the scheduler to identify the best location and time slots that optimize
energy saving while satisfying occupant thermal comfort.

Energy-oriented scheduling has gained more attention in recent years due to
the significant cost saving opportunities. Ifrim et al. [17] present a MIP-based
energy-price savings scheduling model to reduce cost in production scheduling.
Dupont et al. [8] use CP to develop an energy aware framework for virtual
machine placement in cloud-based data centers. Scott et al. [29] describe an

686 B. Lim et al.

online stochastic MILP to schedule home appliances based on real-time pricing.
Most works focus on energy-aware scheduling in production lines, data cen-
ters and residential buildings whilst our work specifically targets energy-efficient
scheduling in the smart building space, which is dominated by HVAC consump-
tion.

3 Online Occupancy Scheduling

This section presents our online occupancy scheduling problem. We start by
describing the scheduling setting and our notations. We then cover the scheduling
constraints and variables which, later on in Sect. 4, will interact with the HVAC
control model to form a more complex joint scheduling and control model. We
formulate our model as a mixed-integer program (MIP). It can be solved using a
MIP solver, or when scaling up to problems of practical size, by combining MIP
with large neighborhood search (LNS) as explained in [22].

In our online setting, the scheduler runs recurrently and each run is called
an online session. Each online session i ∈ I starts at time τi and ends before the
next session starts at time τi+1. The scheduling and control model discretizes
time into a set K of time steps. Each time step k ∈ K starts at time tk. Two
consecutive time steps k and k+1 are separated by a fixed duration tk+1 − tk =
∆t ∈ R+. Each on-line session i considers a horizon of n time steps K(i) =
{k(i), . . . , k(i)+n−1} where k(i), the first time step in that horizon, is the least
time step in K such that tk(i) ≥ τi.

Let L be the set of locations (or, interchangeably, zones) in the building, andP
be a set of participants. An activity requestm is a tuple ⟨am,Km,Lm,Pm,dm,Fm⟩
where am ∈ R+ is the request arrival time, Km ⊆ K is the set of time steps at
which the activity is permitted to start in the future (for each k ∈ Km,am <
tk), Lm ⊆ L is the set of locations at which the activity is permitted to take
place, Pm ⊆ P is the set of attendees for the activity, dm ∈ N is the activity
duration (number of time steps), and Fm represents the comfort temperature
flexibility parameters which will be explained in Sect. 4.4. Note that the sets Km

and Lm can be used to encode a variety of situations, such as room capacity
requirements, availability of special equipment such as video conferencing, time
deadlines for the activity, and attendee availability constraints. We write C(M)
for the set of attendee conflicts w.r.t. a set of requests M ; each conflict C is
a subset of requests, each pair of which has at least one attendee in common:
C(M) = {C ⊆ M | ∀m,m′ ∈ C,Pm ∩ Pm′ ̸= ∅}.

To account for all activities that have been scheduled so far, we maintain a
master schedule S as a set of triples ⟨m, l, k⟩ storing the activity request id m,
the assigned location l, and the time step k at which m is scheduled to start.
At each online session i, the scheduler schedules the new activity requests N(i)
which have been received since the start of session i − 1, i.e., each m ∈ N(i)
satisfies τi−1 < am ≤ τi. It also needs to consider, without modifying them, the
set Q(i) of ongoing activities and future activities that were scheduled during
previous sessions: Q(i) = {m | ∃⟨m, l, k⟩ ∈ S such that k + dm − 1 ≥ k(i)}.

Online HVAC-Aware Occupancy Scheduling 687

Fig. 1. Online scenario

So overall, the set of activities to consider at session i is M(i) = N(i) ∪ Q(i).
To simplify the scheduling model below, we assume that for each pre-scheduled
request m ∈ Q(i) such that ⟨m, l, k⟩ ∈ S, the set of permissible locations is
reduced to Lm = {l}, and the set of permissible start time steps is reduced to
the scheduled start time k or the first time step k(i) of the session, which ever
occurs last, i.e. Km = {max(k, k(i))}. For consistency, the meeting duration dm

is decremented by k(i) − k; this is only needed later in Sect. 4.4 for Eq. (23).
Figure 1 shows a scenario example featuring three requests m1,m2 and m3

with arrival times a1, a2 and a3, respectively. The set of locations is L = {l1, l2}.
The dash vertical lines show the start of the sessions, and the dotted vertical
lines delimit the time steps. In this instance, the scheduler runs every 10min and
the time steps are 30min long. At the start of session i = 302, requests m1 and
m2 have already been scheduled and m3 is a new request, hence N(302) = {m3},
Q(302) = {m1,m2}. The master schedule is S = {⟨m1, l1, 102⟩, ⟨m2, l1, 100⟩},
and the first time step of the new session is k(302) = 101. The set of permissible
locations and start time steps for the new request are K3 = {101, 102} and L3 =
{l1, l2} (l1 will be ruled out by the scheduler). Those of the pre-existing requests
are reduced as follows: L1 = {l1},K1 = {102}, L2 = {l1} and K2 = {101}.

We are now ready to describe our scheduling constraints and variables for
online session i. The main scheduling variable is the boolean decision variable
xm,l,k which is true iff request m ∈ M(i) is scheduled to take place at zone
l ∈ Lm starting at time slot k ∈ Km. We also introduce the variables ym,l,k

which is true iff activity m is scheduled to occupy location l at time step k, zl,k
which is true iff zone l is occupied at time step k, and ppl,k which indicates the
number of people in zone l at time step k. These variables will be used by the
HVAC control part of the model in 4.

The scheduling constraints are the following. Constraints (1) ensure that all
requests are scheduled exactly once within the allowable start times and loca-
tions. Constraints (2) define the ym,l,k variables. Constraints (3) state that no
more than one activity can occupy a location at any time and define the zl,k
variables. Observe that the right hand side of these constraints is either zero or
one, which limits the number of activities to at most one. Also, when the left

688 B. Lim et al.

hand side equals one then the zone must be occupied. Constraints (4) determine
the number ppl,k of occupants at each location and time step, and finally con-
straints (5) ensure that activities with at least one attendee in common cannot
be scheduled in parallel. Once a new request m ∈ N(i) has been scheduled, the
master schedule S is updated by adding the 3-tuple ⟨m, l, k⟩ for which xm,l,k = 1.

∑

l∈Lm,k∈Km

xm,l,k = 1 ∀m ∈ M(i) (1)

∑

k′∈Km:
l∈Lm, k−dm+1≤k′≤k

xm,l,k′ = ym,l,k ∀m ∈ M(i), l ∈ L, k ∈ K(i) (2)

∑

m∈M(i)

ym,l,k ≤ zl,k ∀l ∈ L, k ∈ K(i) (3)

∑

m∈M(i)

ym,l,k × |Pm| = ppl,k ∀l ∈ L, k ∈ K(i) (4)

∑

m∈ν,l∈Lm

ym,l,k ≤ 1 ∀k ∈ K(i), ν ∈ C(M(i)) (5)

4 HVAC Control Model

This section covers the HVAC control model and the adaptive temperature con-
trol approach. We describe the HVAC control aspects starting with the objective
function we consider, the effect of the control on the building thermal dynamics,
and the fixed temperature bounds – we refer the reader to [21] for a more detailed
treatment. We subsequently extend the model with adaptive temperature control
to further maximize energy savings.

4.1 Variable-Air-Volume Systems

Following Goyal et al. [14,15], we focus on commercial buildings with variable-
air-volume (VAV) based HVAC systems, which serve over 30% of the commercial
building floor space in the United States [9]. A schematic of a VAV-based HVAC
system with two VAV boxes connected to two building zones is shown in Fig. 2.

The air handling unit (AHU) supplies conditioned air to the VAV boxes.
The AHU consumes energy when mixing outdoor air with return air and cooling
it to the pre-set conditioned air temperature TCA [12.8 ◦C]; it consumes less
energy when the outdoor air temperature TOA is closer to TCA. Each VAV
box consumes energy when regulating the supply air temperature TSA and the
supply air flow rate aSA to keep the zone temperature T within comfort bounds;
in particular, it may need to reheat the conditioned air. Finally, the supply fan
at the AHU consumes energy to maintain a constant air pressure through the
supply duct; it may speed up or slow down depending on air flow rates used by
the VAV boxes.

Online HVAC-Aware Occupancy Scheduling 689

Fig. 2. VAV-based HVAC system.

We focus on control strategies that can be applied to each VAV box. For such
strategies, the key HVAC decision variables are the supply air flow rate aSA

l,k and
temperature TSA

l,k at each zone/location l ∈ L and time step k ∈ K. We determine
an optimal control for these variables, given the occupancy schedule and the
bounds on supply air temperature, supply air flow rate, and room temperature
during vacant and occupied periods.

4.2 Objective Function

Specifically, our goal is to generate energy-efficient schedules that minimize the
energy use of air-conditioning, re-heating and fan operations of the HVAC. Thus,
the objective function for online session i is the following.

minimize
∑

k∈K(i)

(
pcondk + pfank +

∑

l∈L

pheatl,k

)
× ∆t (6)

where

pcondk = Cpa
(
TOA
k (i) − TCA

) ∑

l∈L

aSA
l,k ∀k ∈ K(i) (7)

pfank = β
∑

l∈L

aSA
l,k ∀k ∈ K(i) (8)

pheatl,k = Cpa(TSA
l,k − TCA)aSA

l,k ∀l ∈ L, k ∈ K(i) (9)

Constraints (7)-(9) determine the values of the variables pcondk , pfank , pheatl,k , which
respectively represent the energy consumed by the AHU for conditioning, by the
supply fan for maintaining air pressure, and by the VAV box for reheating the
conditioned air. In constraint (7), we assume that online session i uses the latest
update TOA

k (i) available for the outdoor temperature forecast at each time step

690 B. Lim et al.

k. The coefficients in these constraints are the fan power coefficient β (0.65),
and the heat capacity of air at constant pressure Cpa (1.005 kJ/kg·K).

TCA ≤ TSA
l,k ≤ T SA ∀l ∈ L, k ∈ K(i) (10)

aSA ≤ aSA
l,k ≤ aSA ∀l ∈ L, k ∈ K(i) (11)

Moreover, constraints (10) and (11) ensure that the supply air temperature and
the air flow rate are bounded by the HVAC operational capacity. The supply
air temperature TSA

l,k may range from that of the conditioned air TCA (12.8 ◦C),
up to T SA (40 ◦C) if the air is reheated at the VAV box. The air flow rate
aSA
l,k can fluctuate between aSA (0.108 kg/s) and aSA (5.0 kg/s), where the lower

bound is determined by the ASHRAE ventilation standard and the upper bound
is reached when the VAV dampers are fully open.

4.3 Building Thermal Dynamics

Next, we want our control to appropriately constrain zone temperatures. The
first step to do this is to introduce a new variable Tl,k representing the temper-
ature at each zone and time step, and model the effects of the HVAC control
on this zone temperature. To capture the building thermal dynamics, we adopt
a computationally efficient lumped RC-network [12–14] which incorporates the
thermal resistance and capacitance of each zone and between adjacent zones, the
latest available forecast of the solar gain Qs

l,k(i), and the internal heat gain Qp
l,k

generated by the occupants at each zone. The latter is directly proportional to
the number of occupants ppl,k scheduled to be at the zone by the online sched-
uler – this is one of the variables via which the scheduling and control models
interact. We use a discrete-time linear model

Tl,k+1 = fl(Tl,k, ul,k, vl,k) ∀l ∈ L, k ∈ K(i) (12)

where ul,k = [aSA
l,k , T

SA
l,k , ppl,k] is the vector of controllable variables, and vl,k =

[Qs
l,k(i), T

OA
k (i)] is the vector of exogenous inputs. With this model, the HVAC

control is optimized over the entire horizon K(i). E.g., the optimal control could
activate the HVAC at night to benefit from the low outside night temperature
to pre-cool a room for an early morning meeting. See [21] for details.1

4.4 Adaptive Temperature Control

Having modeled the effect of the HVAC control on the zone temperatures Tl,k,
we are now ready to ensure that the HVAC fulfills its main role of keeping
these zone temperatures within appropriate comfort bounds. In the fixed comfort

1 Both Lim et al. [21,22] and our experiments use a more complex state vector which
not only includes the zone temperatures Tl,k but also the temperature of the interior
walls. For readability reasons, we abstract from these extra state variables in our
exposition above.

Online HVAC-Aware Occupancy Scheduling 691

bound model found in much of the literature, when a zone is occupied, the
zone temperature must lie within a specified comfort interval [T ,T] ([21 ◦C,
23 ◦C]). When the zone is empty, its temperature can fluctuate more freely within
[T ∅,T ∅] (16 ◦C, 28 ◦C]). These bounds can be set to reflect individual building
guidelines. As shown in [21], maintaining temperature within these fixed bounds
can be achieved by adding constraints (13) to our model. In these constraints,
the HVAC model interacts with the scheduling model via the variables zl,k that
indicate whether or not location l is occupied at time step k. The constants T g

and T g denote the gap between the occupied and unoccupied temperature lower
and upper bounds.

T ∅ + T gzl,k ≤ Tl,k ≤ T ∅ − T gzl,k ∀l ∈ L, k ∈ K(i) (13)

In the present paper, we generate additional energy savings by departing from
these fixed comfort bounds. We adopt a flexible temperature bound model, in
which the comfort interval is dynamically configured through input parameters
reflecting the flexibility of occupants. Specifically, the input parameters we con-
sider for an activity request m are Fm = ⟨T u

m,αm,pm⟩ and are such that the
HVAC control will guarantee: (a) that the zone temperature will never exceed
[T −T u

m,T +T u
m] at any point during the activity and (b) that with probability

at least pm, the cumulative temperature violation during the activity will be
bounded by αm. The parameter αm is equivalent to the duration for which the
occupant would be willing to let the temperature deviation be T u

m. Figure 3 illus-
trates these concepts. In this example, activity m occupies location l for 3 times
steps. The occupant is prepared to accept a maximal deviation (of up to 3◦) from
the default comfort bounds (i.e. [18 ◦C, 26 ◦C]), but also wants the cumulative
violation to remain within acceptable bounds (the equivalent of 20min at 3◦)
with high probability (0.9). This is achieved by setting T u

m = 3, αm = 20, and
pm = 0.9.

Let m be a meeting scheduled to start at time step j ∈ Km in location l. To
formalize these concepts, we introduce the following slack variables in the model
T s

m,k ∈ [0,T u
m] and T s

m,k ∈ [0,T u
m], for k ∈ K(i). These variables represent our

unknown temperature violations above and below the default bounds [T ,T].

Fig. 3. Adaptive Temperature Control

692 B. Lim et al.

Based on these variables, the first guarantee we want to provide can be written
as the adaptive counterpart of the fixed temperature bound constraints (13).

T ∅ + T gzl,k − T s
m,k ≤ Tl,k ≤ T ∅ − T gzl,k + T s

m,k (14)

The second guarantee is about bounding the cumulative temperature violation,
this can be formulated as follows,

j+dm−1∑

k=j

(
T s

m,k + T s
m,k

)
∆t ≤ αmT u

m (15)

To implement a probabilistic version of this constraint, we introduce independent
uniformly distributed random variables ρm,k ∈ [−1, 1], which represent the noise
in our temperature violation, transforming constraints (15) into,

j+dm−1∑

k=j

(
T s

m,k + T s
m,k − ρm,k

)
∆t ≤ αmT u

m (16)

We then resort to results from the Robust Optimization literature [2–4,10,16]
to be able to offer the following probabilistic guarantee,

Pr

⎛

⎝
j+dm−1∑

k=j

(
T s

m,k + T s
m,k − ρm,k

)
∆t ≤ αmT u

m

⎞

⎠ ≥ pm (17)

where Pr (fρ(x) ≤ 0) denotes the probability of satisfying constraint fρ(x) ≤ 0
given the uncertainty created by the random variables ρ. In particular, based on
[2, Theorem3.], we can offer the above probabilistic guarantee by enforcing the
following constraint

j+dm−1∑

k=j

ρ2m,k ≤ δ2
m, (18)

where the the ellipsoid radius δm is linked to the constraint satisfaction proba-
bility pm as follows:

pm ≥ 1 − exp(−δ2
m/1.5).

For instance, a radius of δm = 2.63 leads to a constraint satisfaction probability
pm ≥ 0.99. Furthermore, based on [16, Corollary 1], we can write the following
deterministic equivalent of (17) without having to explicitly enforce (18),

j+dm−1∑

k=j

(
T s

m,k + T s
m,k

)
− |S| −

√
(δ2

m − |S|) |S| ≤ αmT u
m/∆t, (19)

where the set S is described in [16, Proposition 1]. For computational efficiency
reasons, this is the approach we adopt in our current implementation.

Online HVAC-Aware Occupancy Scheduling 693

Since activity locations and start times are not known in advance, we intro-
duce variables T ξ

l,k (resp. T ξ
l,k) such that T ξ

l,k = T s
m,k and T ξ

l,k = T s
m,k when

activity m ∈ M(i) occupies location l ∈ L at time slot k ∈ K(i), i.e., when
ym,l,k = 1. In order to accommodate activities that span multiple schedul-
ing horizons, we also introduce the inputs T prev

m =
∑

k∈K:k<k(i)

(T s
m,k + T s

m,k), which

accounts for the amount of cumulative violation consumed before the start of the
current session. Recall also from Sect. 3 that meetings that have been scheduled
in previous sessions have their start time set Km, location set Lm and duration
dm reduced accordingly when the current session starts. With these notations,
the overall adaptive temperature control constraints replacing the fixed temper-
ature constraints (13) in the HVAC control model are the following.

T ∅ + T gzl,k − T ξ
l,k ≤ Tl,k ≤ T ∅ − T gzl,k + T ξ

l,k ∀l∈L, k∈K(i) (20)

T s
m,k − T̂ (1 − ym,l,k) ≤ T ξ

l,k ≤ T s
m,k + T̂ (1 − ym,l,k) ∀m∈M(i), l∈L, k∈K(i) (21)

T s
m,k − T̂ (1 − ym,l,k) ≤ T ξ

l,k ≤ T s
m,k + T̂ (1 − ym,l,k) ∀m∈M(i), l∈L, k∈K(i) (22)

j+dm−1∑

k=j

(
T s

m,k+T s
m,k

)
−|S|−

√
(δ2

m−|S|) |S|≤αmT u
m/∆t−T prev

m , ∀m∈M(i), j∈Km

(23)

T ξ
l,k ≤

∑

m∈M(i)

T u
mym,l,k l∈L, k∈K(i) (24)

T ξ
l,k ≤

∑

m∈M(i)

T u
mym,l,k l∈L, k∈K(i) (25)

Constraints (20) are the adaptive bound constraints. Constraints (21-22) are
the on-off constraints defining the variables T ξ

l,k and T ξ
l,k with T̂ = max

m∈M(i)
{T u

m}.

Constraint (23) is the probabilistic constraint on the cumulative temperature
violation, taking into account T prev

m . The last two constraints force the corre-
sponding slack to zero when a location is unoccupied.

5 Experimental Results

5.1 Problem Sets

We analyze our contributions using 9 problem sets with increasing numbers
of activities (meetings) and locations (meeting rooms). The problem sets are
labeled 10M-4R, 20M-20R, 50M-20R, 100M-20R, 200M-20R, 50M-50R, 100M-
50R, 200M-50R, and 500M-50R, where xM-yR consists of problem instances
with x meetings and y rooms. Each set contains 800 problem instances, giving
a total of 7200 instances, obtained as follows.

We start from a set of real data from 32,065 unique meetings in a USC library
collected by Kwak [20]. Each meeting request in this original data set includes
the request arrival time, start time, duration, specified room and number of
attendees. We first derive a probability distribution on meeting start times from

694 B. Lim et al.

this data set. To obtain a set of requests, we sample x meetings for this distri-
bution. We then create different instances with that set of requests by varying
the time flexibility, request-to-start time gap, and temperature flexibility of the
requests. The time flexibility of a request m is its number |Km| ∈ {1, 2, 4, 8, 32}
of permissible start time steps. The request-to-start time gap denotes the dura-
tion {10 min, 1 h, 4 h, 24 h} between the request’s arrival time am and its first
possible start time step. The temperature flexibility indicates the level of tol-
erance for the room temperature deviation from the standard heating (21◦C)
and cooling (23◦C) setpoints, and is one of three settings: low, medium, or high
flexibility, with pm = 0.99 for all settings, T u

m =2 (low), 3 (medium), 5 (high),
and αm = 10 (low), 20 (medium), 30 (high). Note that in the high setting, the
deviation could be up to 5◦C, which is equivalent to 28◦C for 30min. This is
an extreme case used to study the effects of temperature flexibility, but not a
recommended setting. In the more realistic medium setting, the deviation is only
up to 3◦C, which is equivalent to 26◦C for 20min.

We keep the meeting duration and number of attendees identical to that of
the original meeting request from the USC data, and assume that the occupant
is fully flexible in terms of location, that is, that the meeting can be allocated
to any room. In all problem sets, the duration dm of meetings ranges from 1
to 4 time steps (30min to 2 h). The meetings must be scheduled over a period
of 5 summer days. The available rooms are located in 5 buildings and differ by
their thermal resistance and capacitance [22]. We use a 1× 4 zone layout where
each zone has the same thermal resistance and capacitance as its neighboring
zones. Moreover, all rooms have the same geometric area of 6 × 10 × 3 m3 with
a window surface area of 4 × 2 m2 and a capacity of 30 people. The solar gain
ranges from 50 to 350 W/m2 during the day. All activities have between 2 and
30 attendees. All our experiments were run on a cluster consisting of a 2 × AMD
6-Core Opteron 4334, 3.1GHz with 64GB memory.

5.2 Solution Method

To solve these problem instances, we combine our MIP model with Large Neigh-
borhood Search as explained in [22]. LNS is a local search metaheuristic which
iteratively improves an initial solution by alternating between a destroy and a
repair step [30]. In brief, our LNS approach works as follows.

In every online session i, we start by generating an initial feasible solution, in
two steps. First, we find a feasible occupancy schedule that minimizes the number
of rooms used. Second, we determine the HVAC control settings (supply air flow
rate and temperature) that minimize energy consumption for this schedule.

Our destroy step destroys part of the schedule by unscheduling the subset of
new requests N(i) that are allocated to two to four randomly selected locations.
This forms an energy-aware meeting scheduling subproblem that is much smaller
than the original problem and can be solved effectively using MIP. The repair
step consists in repairing the schedule and re-optimizing the entire HVAC control
by solving this subproblem using our MIP model. If this leads to an improved
solution, then the new schedule and control settings are accepted. Otherwise,

Online HVAC-Aware Occupancy Scheduling 695

we keep the solution that was just destroyed. Given that the LNS starts with a
feasible solution and does not accept infeasible solutions, the solution remains
feasible throughout the execution of the algorithm.

5.3 Online Vs. Offline Scheduling

We start by comparing the solution quality of our online approach with that
of the offline approach [22]. In the online approach, the scheduler runs LNS for
5min in each session, with a MIP runtime limit of 8 s in each iteration. In the
offline approach, the entire set of requests to schedule is given, and we compute
the final schedule; The scheduler runs LNS for 2 h, with a MIP runtime limit
of 15min in each iteration. To identify how much more improvement can be
obtained, we warm start the offline schedule with the best online solution found
(over all the possible request-to-start time gaps).

The difference of solution quality, that is the excess consumption of the on-
line scheduling as a percentage of the off-line scheduling consumption, is shown
in Fig. 4. The results for the fixed temperature setpoints are shown on the left,
whilst those for the adaptive temperature setpoints are on the right. Both graphs
show that the offline solutions are merely 1% to 1.5% better than the online
solutions for tightly constrained problems (such as 200M-20R, 500M-50R), and
that, as expected, the online approach improves when the problem is less con-
strained in terms of meetings to rooms ratio and temperature flexibility. Note
that in the online approach, at most 20 requests arrive in each online session and
a maximum of 4 rooms are destroyed, thus the sub-problems formed are small
enough for MIP to solve them to (near) optimality. The off-line approach has
many more meetings to deal with, but on the other hand, as problems become
more constrained, it has more room to optimize than the greedy on-line app-
roach. Altogether, even with a simple greedy approach, our online algorithm is
able to perform effectively without prior knowledge of future requests.

Fig. 4. Online vs. Offline Scheduling: With Fixed Temperature Setpoints (left) and
Adaptive Temperature Setpoints (right)

696 B. Lim et al.

5.4 Energy Savings of Adaptive Temperature Control

Next, we examine the benefits of our adaptive temperature control, which allows
the occupant to specify their level of tolerance for the room temperature devi-
ation from the fixed 21◦-23◦C comfort bounds. Because HVAC consumption is
highly dependent on the temperature gap between the outdoor temperature and
the occupied temperature setpoint, we show that even a small variation from
the original setpoints can lead to large energy savings.

Figure 5 shows the additional energy savings obtained with adaptive tem-
perature control as a percentage of the fixed temperature control consumption
(left), and the maximum temperature deviation incurred by the adaptive app-
roach (right). The left figure shows that the additional savings can reach up to
[8%, 12.7%, 16.5%] depending on the [low, medium, high] temperature flexibil-
ity allowed by the occupants. The right figure shows that the maximum degree of
temperature deviation is only about [0.7, 1.5, 2.3]◦C for low-to-high temperature
flexibility, respectively. Overall, increasing temperature flexibility reduces HVAC
consumption and cost. Taking an energy rate of $0.24/kWh and the 500M-50R
problem set as example, this corresponds to annual savings of about [$11500,
$19542, $24690] for [low, medium, high] temperature flexibility.

Fig. 5. Energy Savings from Adaptive Temperature Control (left) and Maximum Tem-
perature Deviation from Standard Setpoints (21◦− 23◦C)

5.5 Model Feasibility

Finally, we study the solution feasibility of on-line scheduling with fixed and
adaptive temperature control, respectively. Figure 6 shows the percentage of fea-
sible solutions generated by the two approaches, as a function of the request-
to-start time gap. Altogether, adaptive temperature control solves 73% of the
instances that are deemed unsolvable under the fixed temperature control regime.

We observed that with fixed temperature setpoints, we fail to generate fea-
sible solutions in most cases when the requests arrive less than 1 h prior to the

Online HVAC-Aware Occupancy Scheduling 697

Fig. 6. Solution Feasibility: With Fixed Temperature Setpoints (left) and Adaptive
Temperature Setpoints (right)

earliest possible activity start time. This infeasibility issue mainly happens at
the initialization stage, where the initial schedule generation is decoupled from
the initial HVAC control generation. In order to quickly generate an initial feasi-
ble schedule, activities are packed into the minimum number of rooms possible.
However, the room temperatures may be too far from the temperature setpoints
to obtain an initial feasible HVAC control reaching the designated occupied
temperature at short notice. In contrast, the model with adaptive temperature
control is able to solve many of these problem instances, and even generates some
feasible solutions when the requests arrive just 10min prior to the earliest activ-
ity start time. This is mainly due to the relaxation of the temperature setpoints.
We observed that the number of feasible solutions increases proportionally to
the temperature flexibility.

Apart from the constrainedness imposed on temperature setpoints, the model
also stumbles into infeasibility when the scheduler fails to schedule all requests
due to the lack of feasible location or time slot. Overall, the performance improves
as the request-to-start time gap increases for both models.

6 Conclusions and Future Work

In this paper we develop an online scheduling model and adaptive temperature
control method for joint HVAC control and occupancy scheduling. Leveraging
an explicit model of building occupancy-based HVAC control, our model adopts
a greedy approach to schedule dynamically arriving requests to take place at
locations and times that are favorable from energy standpoint. Our experiments
show that, even without prior knowledge of future requests, our model is able
to produce energy-efficient schedules which are less than 1% away from the
clairvoyant solution.

We extend the model to enable adaptive temperature control, moving away
from the conventional fixed comfort temperature setting. The occupant is allowed

698 B. Lim et al.

to indicate their level of tolerance for the room temperature to deviate from
the standard heating and cooling setpoints. We shows that thermal comfort
flexibility significantly impacts energy consumption. Compared to the existing
fixed temperature control, the energy savings in our experiments can reach up to
8% with low temperature flexibility, with a maximum deviation of 0.7◦C from
the original setpoints, and up to 15% with high temperature flexibility with a
maximum of 2.3◦C deviation from the standard setpoints. We have also shown
that given some thermal comfort flexibility, our model is able to schedule requests
arriving 10min prior to the start time, and produce substantially more feasible
solutions than the conventional fixed temperature setpoints approach.

We are interested in exploring new algorithmic approaches that allows us
to improve our solution and scale even further. We are particularly interested
in investigating stochastic scheduling and control, which allows us to predict
future request arrival and cancellations. We are also interested in exploring the
CP formulation of joint HVAC control and meeting scheduling. As the joint
model consists of hybrid discrete-continuous variables, we plan to reformulate
it by discretizing the HVAC control variables, and compare the solution quality
generated by both MIP and CP models.

Acknowledgements. Thanks to Milind Tambe and Jun Kwak from USC for shar-
ing the real data in [20] and helpful discussions. This work is supported by NICTA’s
Optimization Research Group as part of the Future Energy Systems project. NICTA
is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

References

1. Aileen, E.: The potential energy savings through the use of adaptive comfort cool-
ing setpoints in fully air conditioned australian office buildings, a simulation study.
Equilibr. J. (2010)

2. Babonneau, F., Vial, J.P., Apparigliato, R.: Uncertainty and Environmental Deci-
sion Making. International Series in Operations Research and Management Science.
Springer, Heidelberg (2009)

3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4),
769–805 (1998)

4. Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. OR
Lett. 25, 1–13 (1999)

5. Chai, B., Costa, A., Ahipasaoglu, S.D., Huang, S., Yuen, C., Yang, Z.: Minimizing
commercial building cost in smart grid: an optimal meeting scheduling approach.
In: 2014 IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pp. 764–769. IEEE (2014)

6. Chew, B., Kazi, S., Amiri, A.: Adaptive thermal comfort model for air-conditioned
lecture halls in Malaysia. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ.
Struct. Constr. Archit. Eng. 9(2), 150–157 (2015)

7. De Dear, R.J., Brager, G.S., Reardon, J., Nicol, F., et al.: Developing an adaptive
model of thermal comfort and preference/discussion. ASHRAE Trans. 104, 145
(1998)

Online HVAC-Aware Occupancy Scheduling 699

8. Dupont, C., Giuliani, G., Hermenier, F., Schulze, T., Somov, A.: An energy aware
framework for virtual machine placement in cloud federated data centres. In: 2012
Third International Conference on Future Energy Systems: Where Energy, Com-
puting and Communication Meet (e-Energy), pp. 1–10. IEEE (2012)

9. EIA: Us eia-department of energy, cbecs detailed tables (2003). http://www.eia.
gov/consumption/commercial/

10. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncer-
tain data. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)

11. Department of Energy: Buildings energy data book. In: Buildings Energy Data
Book. Department of Energy, United States (2011). http://buildingsdatabook.eren.
doe.gov/ChapterIntro1.aspx

12. Gouda, M., Danaher, S., Underwood, C.: Low-order model for the simulation of a
building and its heating system. Build. Serv. Eng. Res. Technol. 21(3), 199–208
(2000)

13. Gouda, M., Danaher, S., Underwood, C.: Building thermal model reduction using
nonlinear constrained optimization. Build. Environ. 37(12), 1255–1265 (2002)

14. Goyal, S., Barooah, P.: A method for model-reduction of non-linear thermal
dynamics of multi-zone buildings. Energy Build. 47, 332–340 (2012)

15. Goyal, S., Ingley, H.A., Barooah, P.: Occupancy-based zone-climate control for
energy-efficient buildings: complexity vs. performance. Appl. Energy 106, 209–221
(2013)

16. Hijazi, H., Bonami, P., Ouorou, A.: Robust delay-constrained routing in telecom-
munications. Ann. Oper. Res. 206(1), 163–181 (2013)

17. Ifrim, G., O’Sullivan, B., Simonis, H.: Properties of energy-price forecasts for
scheduling. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 957–972. Springer,
Heidelberg (2012)

18. Klein, L., Kwak, J.Y., Kavulya, G., Jazizadeh, F., Becerik-Gerber, B.,
Varakantham, P., Tambe, M.: Coordinating occupant behavior for building energy
and comfort management using multi-agent systems. Autom. Constr. 22, 525–536
(2012)

19. Kwak, J.y., Kar, D., Haskell, W., Varakantham, P., Tambe, M.: Building thinc: user
incentivization and meeting rescheduling for energy savings. In: Proceedings of the
13th International Conference on Autonomous Agents and Multi-agent Systems,
pp. 925–932 (2014)

20. Kwak, J.y., Varakantham, P., Maheswaran, R., Chang, Y.H., Tambe, M.,
Becerik-Gerber, B., Wood, W.: Tesla: An energy-saving agent that leverages sched-
ule flexibility. In: Proceedings of the 12th International Conference on Autonomous
Agents and Multi-agent Systems, pp. 965–972 (2013)

21. Lim, B.P., Van Den Briel, M., Thiébaux, S., Backhaus, S., Bent, R.: Hvac-aware
occupancy scheduling. In: AAAI, pp. 4249–4250 (2015)

22. Lim, B.P., van den Briel, M., Thiébaux, S., Bent, R., Backhaus, S.: Large neigh-
borhood search for energy aware meeting scheduling in smart buildings. In: Michel,
L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 240–254. Springer, Heidelberg (2015)

23. Majumdar, A., Zhang, Z., Albonesi, D.: Characterizing the benefits and limitations
of smart building meeting room scheduling. In: Proceedings of the 7th International
Conference on Cyber-Physical Systems (2016)

24. Majumdar, A., Albonesi, D.H., Bose, P.: Energy-aware meeting scheduling algo-
rithms for smart buildings. In: Proceedings of the 4th ACM Workshop on Embed-
ded Sensing Systems for Energy-Efficiency in Buildings, pp. 161–168. ACM (2012)

http://www.eia.gov/consumption/commercial/
http://www.eia.gov/consumption/commercial/
http://buildingsdatabook.eren.doe.gov/ChapterIntro1.aspx
http://buildingsdatabook.eren.doe.gov/ChapterIntro1.aspx

700 B. Lim et al.

25. Ono, M., Graybill, W., Williams, B.C.: Risk-sensitive plan execution for connected
sustainable home. In: Proceedings of the 4th ACMWorkshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, pp. 45–52. ACM (2012)

26. Pan, D., Wang, D., Cao, J., Peng, Y., Peng, X.: Minimizing building electricity
costs in a dynamic power market: algorithms and impact on energy conservation.
In: 2013 IEEE 34th Real-Time Systems Symposium (RTSS), pp. 107–117. IEEE
(2013)

27. Pan, D., Yuan, Y., Wang, D., Xu, X., Peng, Y., Peng, X., Wan, P.J.: Thermal
inertia: towards an energy conservation room management system. In: Proceed-
ings of the 31st IEEE International Conference on Computer Communications,
pp. 2606–2610. IEEE (2012)

28. Pitt, S. (ed.): Baseline Energy Consumption and Greenhouse Gas Emissions in
Commercial Buildings in Australia Part 1 Report. Department of Climate Change
and Energy Efficiency, Australia (2012). http://www.industry.gov.au/Energy/
EnergyEfficiency/Non-residentialBuildings/Documents/CBBS-Part-1.pdf

29. Scott, P., Thiébaux, S., van den Briel, M., Van Hentenryck, P.: Residential demand
response under uncertainty. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124,
pp. 645–660. Springer, Heidelberg (2013)

30. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

31. Ward, J., Wall, J., White, S.: Automate and motivate: behaviour-reliant building
technology solutions for reducing greenhouse gas emissions. Archit. Sci. Rev. 53(1),
87–94 (2010)

32. Yang, R., Wang, L.: Development of multi-agent system for building energy and
comfort management based on occupant behaviors. Energy Build. 56, 1–7 (2013)

http://www.industry.gov.au/Energy/EnergyEfficiency/Non-residentialBuildings/Documents/CBBS-Part-1.pdf
http://www.industry.gov.au/Energy/EnergyEfficiency/Non-residentialBuildings/Documents/CBBS-Part-1.pdf

Behavior Identification in Two-Stage Games
for Incentivizing Citizen Science Exploration

Yexiang Xue1(B), Ian Davies2, Daniel Fink2, Christopher Wood2,
and Carla P. Gomes1

1 Computer Science Department, Cornell University, Ithaca, USA
{yexiang,gomes}@cs.cornell.edu

2 Cornell Lab of Ornithology, Ithaca, USA
{id99,daniel.fink,chris.wood}@cornell.edu

Abstract. We consider two-stage games in which a leader seeks to
direct the activities of independent agents by offering incentives. A good
leader’s strategy requires an understanding of the agents’ utilities and the
ability to predict agent behavior. Moreover, the optimization of outcomes
requires an agent behavior model that can be efficiently incorporated into
the leader’s model. Here we address the agent behavior modeling problem
and show how it can be used to reduce bias in a challenging citizen science
application. Adapting ideas from Discrete Choice Modeling in behavioral
economics, we develop a probabilistic behavioral model that takes into
account variable patterns of human behavior and suboptimal actions.
By modeling deviations from baseline behavior we are able to accurately
predict future behavior based on limited, sparse data. We provide a novel
scheme to fold the agent model into a bi-level optimization as a single
Mixed Integer Program, and scale up our approach by adding redundant
constraints, based on novel insights of an easy-hard-easy phase transition
phenomenon. We apply our methodology to a game called Avicaching, in
collaboration with eBird, a well-established citizen science program that
collects bird observations for conservation. Field results show that our
behavioral model performs well and that the incentives are remarkably
effective at steering citizen scientists’ efforts to reduce bias by explor-
ing under-sampled areas. Moreover, the data collected from Avicaching
improves the performance of species distribution models.

1 Introduction

Many game applications involve a leader, who commits to a strategy before
her followers. Thus in order to come up with an optimal strategy, the leader
must factor in the reasoning process of her followers. This leads naturally to the
following bi-level optimization:

Leader: maximize
a1

UL(a1,a2),

subject to Followers: a2 ← argmax
a2

UF (a2,a1).

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 701–717, 2016.
DOI: 10.1007/978-3-319-44953-1 44

702 Y. Xue et al.

Here the leader’s utility function UL is known a priori, but the utilities of the
individual followers UF are unknown by the leader. a1 and a2 are the actions of
the leader and the followers, respectively.

At the heart of solving this problem lies the challenge of identifying the utility
functions that govern the followers’ behavior. On one hand, the behavioral model
has to be capable of capturing complex, highly variable human behavior and it
should be robust to make predictions with limited, sparse data. On the other
hand, the behavioral model has to be efficiently incorporated into the overall
bi-level optimization problem.

In this paper, we address the behavioral identification problem in two-stage
games to reduce data bias in citizen science projects, such as Zooniverse, Coral-
watch, and eBird [7,20,29]. These projects use crowdsourcing techniques to
engage the public as agents in the data collection process to address scien-
tific questions determined by project leaders. Despite their tremendous success,
the data collected often suffer from biases, which arises from fundamental mis-
matches between the personal motivations that determine how individual agents
collect data and the data needs for scientific inquiry. For example, projects that
allow participants to choose where and when to make observations tend to col-
lect the most data near areas of human activity (see Fig. 1). Uneven geographic
(and temporal) data density presents a challenge for scientific studies.

eBird Submissions (2012)
10km resolution
200

100

1

Fig. 1. Number of observations submitted to eBird in 2012 in the Continental US.
Submissions are biased towards population centers.

Previous work has shown that games are effective in steering citizen scientists
towards crucial scientific tasks [31]. Under a two-stage game scenario, individual
participants are offered incentives to spend more effort collecting data at sites
identified as important by project leaders. In this gamified setting, a key problem
is the optimal reward allocation problem: how to design a reward scheme which
maximizes citizen scientists’ overall contribution to science.

The reward allocation problem is closely related to the Principal-Agent Prob-
lem, first raised in behavioral economics [26]. More recently, it has also been
studied in computer science [1,3,10,14,15]. It is also related to the Stackelberg
pricing games [8,9,11,22], in which the leader commits to a strategy before her

Behavior Identification for Incentivizing Citizen Science Exploration 703

followers. In crowdsourcing, related work includes mechanisms to improve the
crowd performance [2,4,6,17,19,23,27,28,30]. The reward allocation problem is
a bi-level optimization that includes as a crucial component the modeling of
citizen scientists’ behavior.

Here we propose a novel probabilistic model to capture agents’ behav-
ior in two-stage games, adapting ideas from Discrete Choice Modeling in
behavior economics [21], as well as a novel Mixed Integer Programming
encoding to solve the reward allocation problem, in which the proposed
probabilistic behavioral model is folded as linear constraints. We also apply
our novel behavioral model into a real citizen science domain. Our
contributions are multi-dimensional:

– On machine learning side, our proposed behavioral model is (1) structural,
meaning that its parameters provide intuitive insights into agents’ decision-
making process, as well as (2) generative, meaning that it can generalize to
new circumstances with different environmental features and reward treat-
ments. Unlike the knapsack model in previous work [31], our model is (3)
probabilistic. Therefore it is able to account for complex human behavior, as
well as suboptimal actions. Instead of directly modeling agents’ preferences,
which would be difficult to capture, we break the model into (4) a conditional
form, and focus on modeling agents’ deviation from their baseline behavior
under zero reward treatments, alleviating the data sparsity problem by effec-
tively taking advantage of the relatively abundant historical data before the
introduction of the reward game.

– On the inference side, despite the fact that the reward allocation problem is a
bi-level optimization, we are able to (5) fold the behavioral model into the
global problem as a set of linear constraints, therefore the entire reward
allocation problem is solved with a single Mixed Integer Program (MIP).
In addition, we add redundant constraints to trigger pruning, therefore scaling
up the MIP encoding to large instances, based on observations of a novel
(6) easy-hard-easy phase transition phenomenon [13] in the empirical
complexity.

– On the application side, we (7) apply our behavioral model into a
recently launched gamification application called Avicaching [31], in the well-
established eBird citizen science program. Our behavioral model is able to
better capture the decision process of the participants than previously pro-
posed models with real field data. Furthermore, the reward designed by the
optimal reward allocation algorithm proves to be effective in minimizing the
bias in eBird data collection process.

– Finally, in terms of addressing the core scientific goal of ebird, we show the
benefit of having data collected from the Avicaching game by demonstrating
(8) a clear boost in the performance of species distribution modeling when
adding data from Avicaching locations.

704 Y. Xue et al.

2 Two Stage Game for Bias Reduction

In our two-stage game setting, citizen scientists visit a set of locations and report
their observations of events of interest in those locations. Our model can be gen-
eralized to other scientific exploration activities as well [31]. The incentive game
involves two self-interested parties: the organizer and the agents. On one side,
rational agents (e.g., citizen scientists) select a set of locations to visit that max-
imizes their own utilities under budgets. On the other side, the organizer (e.g., a
citizen science program) uses rewards to encourage agents to visit locations with
large scientific value. For example, in eBird, bird watchers choose their sites to
visit based on a combination of environmental values, personal preference and
convenience. The organizer in turn sets external rewards at different locations
to promote uniform exploration activities. At a high level, this leads to a bi-level
optimization problem:

Organizer: maximize
r

Uo(v, r),

subject to Agents: v ← Va(f , r).
(1)

In this formulation, r is the external reward that the organizer uses to steer the
agents, and v are the response from the agents, affected by internal utilities,
which is determined by feature vector f , and external rewards r set by the
organizer. Uo(v, r) is the utility function of the organizer, which depends on
agents’ response v.

Addressing the Organizer-Agent Problem requires a good behavioral model
for agents Va(f , r), which involves challenges from two associated problems: one
is the Identification Problem and the other one is the Pricing Problem. For
the Identification Problem, we need to learn an agent model to predict noisy
human behavior under different reward treatments. For the Pricing Problem,
we need to incorporate the identified agent model into the bi-level optimization
(shown in Eq. 1) to solve the overall reward allocation problem.

The organizer’s goal is to promote a balanced exploration activity. Let L =
{l1, l2, . . . , ln} be the set of locations, and yi be the amount of effort agents
devote to location li. We normalize yi so that

∑n
i=1 yi = 1. In other words, yi is

proportional to the number of observations submitted at location li. Denote by y
the column vector (y1, . . . , yn)T and by y the constant column vector (y, . . . , y)T
where y = 1

n

∑n
i=1 yi =

1
n . To promote a uniform sampling activity, we model the

organizer’s objective as to minimize the bias in agents’ sampling effort: minimize
Dp = 1

n ||y − y||pp. Given this definition, D1 corresponds to the mean absolute
deviation, while D2 corresponds to the sample variance. Other objectives could
be used, e.g., maximizing the entropy of y in order to minimize its distance to
a uniform distribution.1

1 Uncertainty measures, often used in active learning [25], are typically tied to one par-
ticular predictive model. We did not use them because of the need to meet multiple
scientific goals in our application.

Behavior Identification for Incentivizing Citizen Science Exploration 705

3 Probabilistic Behavior Model

A key to solving the reward allocation problem is to identify a good behavioral
model, which captures agents’ preferences to environmental features as well as
external rewards. It is challenging, given (1) the complex and highly variable
human behavior, which cannot be fully captured by environmental variables.
Moreover, (2) the data collected with an incentive game in the field is lim-
ited, since we cannot afford to alienate the community by changing the rewards
dramatically. On the other hand, there is much historical data for participants
collected without the reward game. How to make full use of this piece of data
becomes an interesting question. (3) To efficiently support decision making, our
behavioral model needs to be able to fit nicely into the bi-level optimization
framework of the pricing problem. In this paper, we introduce a novel probabilis-
tic model to capture the agents’ behavior.

– It takes a structural approach, which jointly learns how agents distribute
their effort among all locations, rather than predicting the amount of effort
spent in each location independently.

– We adopt the idea of the Discrete Choice Model in behavioral economics
[21], which captures agents’ noisy behavior as well as suboptimal actions.

– We alleviate the data sparsity problem by focusing on modeling the conditional
probabilities characterizing people’s deviation from their normal behaviors
under no reward treatments, thus effectively taking advantage of relatively
abundant historical data without rewards.

– Finally, this structural and generative model allows us to fold the agents’ model
as a set of linear constraints into the reward allocation problem, therefore the
entire problem can be solved by a single MIP.

During one round of reward treatment, suppose we offer an agent an extra
reward ri for one observation made at location i. Let r = (r1, . . . , rn)T be the
reward vector. Let yj,i be the amount of effort that agent j devote to location
i. We normalize the effort such that

∑n
i=1 yj,i = 1. Let yj = (yj,1, . . . , yj,n)T be

vector characterizing the distribution of effort.
Behavioral modeling is to fit a function yj = Va(f , r) which predicts how

agent j distributes his effort yj based on environmental features f and the cur-
rent reward vector r. One option is to fit Va as a joint distribution. Unfortunately,
this is challenging given the multitude of subtle factors affecting human behav-
ior. Luckily, most participants in our reward game participate heavily in eBird.
We have much historical data on them before the reward game, so we hope to
use this data to capture their subtle preferences. We therefore break down the
agents’ behavior into a conditional form, comprising each participant’s historical
preferences xj without external rewards, and the deviation of new behavior yj

under reward treatment from the baseline behavior xj . xj is summarized based
on agents’ past behavior during the same time of the year, across previous years.
For recently joined participants, we use the population mean as their baseline
distribution.

706 Y. Xue et al.

We focus on modeling the conditional part, which predicts the deviation of
people’s behavior from xj to yj . Notice that it is a simpler problem than fitting
Va as a joint distribution directly, because the only main effect that is in the
field during the reward treatment period of yj , but not in the baseline treatment
period of xj , is the introduction of reward r. Therefore, the effects of rewards
are much stronger in the conditional distribution. We model the transformation
matrix P connecting yj and xj , which depends on internal utility features f ,
and external rewards r:

yj = P (f , r) xj . (2)

Many machine learning applications share similar ideas as ours in terms of mod-
eling the conditional part in the joint data distribution [12,18]. Let pu,v be the
entry of matrix P at the u-th row and the v-th column. Intuitively, pu,v denotes
the proportion of effort that originally was spent in location v, but has been
shifted to location u. Motivated by the Discrete Choice Model in behavioral
economics [21], we further parameterize the matrix P as:

pu,v =
exp(w · φ(fu,v, ru))∑
u′ exp(w · φ(fu′,v, ru′))

. (3)

In this formulation, fu,v is the environmental feature vector for the transition
from location v to location u, which includes features for location u and v indi-
vidually, such as underlying landscapes, interesting species to see, historical pop-
ularities, as well as features that depend on both the two locations, such as the
traveling distance, etc. φ is a function that maps features to a high dimensional
space, which includes singular effect terms as well as cross effect terms. w is a
vector that gives relative weights to different features in the output space of φ.
The dimensionality of w is the same as the output of function φ.

In previous work [31], agents’ behavior are modeled as solving knapsack prob-
lems: agents select the best set of locations to visit, which jointly maximizes the
reward w ·φ(fu,v, ru), subject to a cost constraint. Since Eq. 3 is a softmax func-
tion, our proposed model can be viewed as an extension of the knapsack model
to the probabilistic case. Indeed, suppose agents always take the optimal action
(as in the knapsack case), their behavior will demonstrate a logit form as shown
in Eq. 3, if apart from the features in φ(fu,v, ru), their actions are further affected
by a set of factors that are only known to agents themselves and with an extreme
value distribution [24].

Nevertheless, compared to the knapsack model, our behavioral model is con-
siderably more realistic. Our model is probabilistic, thus it is able to represent
variability in agent behavior, as well as uncertainty on the part of the organizer.
Suppose one agent chooses to visit either location A or B, but with 70% chance
for A, and 30% chance for B. The deterministic knapsack model has to learn
a utility function that either predicts that A is a better option than B or vice
versa. Our model can come up with an optimal reward scheme in this probabilis-
tic setting. Besides, in the knapsack model, agents’ behavior is subject to a strict
budget limit. In reality, people occasionally venture beyond their normal travel

Behavior Identification for Incentivizing Citizen Science Exploration 707

distance. Our model is able to capture this aspect, by learning a soft penalty on
the traveling distance.

3.1 Identification Problem

The identification problem learns the parameters of the agents’ behavior model
by examining agents’ responses to various reward treatments. Specifically, we
are given a dataset D composed of quadruples (xj,t,yj,t, rt, ft), in which xj,t

and yj,t are the visit densities of one citizen scientist without and with the
reward treatment rt. ft is the environmental feature vector during the period
of the treatment. We need to identify weights w that best matches yj,t with
P (ft, rt;w) xj,t. Using the L2 loss, we minimize the following empirical risk
function:

R(w) =
∑

j,t

(uj,t(yj,t − P (ft, rt;w) xj,t))
2 . (4)

Here, instances are weighted by uj,t, which is the total number of submissions
of the corresponding citizen scientist during one reward treatment rt. We fit a
common w for all citizen scientists, due to limited amount of data.

We specify regularizers to prevent overfitting. It is a common practice to
penalize the norm of w in regularizers. However, when the data is uninformative,
a baseline model should always make predictions based on baseline density, i.e.,
predict y = x. This suggests that matrix P should be close to the identity matrix
in such uninformative case. However, setting w = 0 will make all pu,v = 1

n
according to Eq. 3, which renders P away from the identity matrix. In this case,
we add an indicator variable 1u,v as a special feature. 1u,v = 1 if and only if
u = v, and the entries in matrix P becomes:

pu,v =
exp(w · φ(fu,v, ru) + η · 1u,v)∑

u′ exp(w · φ(fu′,v, ru′) + η · 1u′,v)
. (5)

P now becomes close to an identity matrix if w is close to 0 and η is positive.
We minimize the following augmented risk function:

R(w) =
∑

j,t

(uj,t(yj,t − P (ft, rt;w) xj,t))
2 + λ · |w|1. (6)

Here, the classical L1 regularizer λ · |w|1 helps identify important factors by
learning a sparse w vector. Apart from tuning λ, we also tune η to control how
closely the predicted y should match historical densities x. The minimization
problem in Eq. 6 can be solved by gradient descent. We use BFGS algorithm [5],
which further accelerates descent using second order information.

708 Y. Xue et al.

3.2 Pricing Problem

Given a learned behavioral model, the pricing problem is to minimize the spatial
bias Dp, subject to the behavioral model:

minimize
r

Dp =
1
n
||y − y||pp,

subject to y = P (f , r;w) x,
ri ∈ R.

(7)

In this formulation, x = (x1, . . . , xn)T is the normalized distribution of effort
among all agents. Matrix P is learned from the approach given in the previous
section. In practice, because people are more accustomed to only a few distinct
reward levels, we further restrict ri to take a set of discrete values in set R.

The main challenge to solve the pricing problem is the sum-exponential form
of the entires of matrix P (Eq. 5). Nevertheless, in this paper we are able to show
that the sum-exponential form can be captured by a set of linear constraints.
Therefore the pricing problem can be formalized as a single Mixed Integer Pro-
gram (MIP).

Suppose R has K different reward levels: R = {R1, . . . , RK}. Introduce indi-
cator variables dri,k for i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}. dri,k = 1 if and only
if ri, the reward for location i, is Rk. ri can take only one value in R, so dri,k
should satisfy:

K∑

k=1

dri,k = 1, ∀i ∈ {1, . . . , n}. (8)

The challenge is the sum-exponential operator in Eq. 5. To overcome this
difficulty, we introduce extra variables αv (αv ≥ 0) for v ∈ {1, . . . , n}, and we
use linear constraints to enforce

αv =
1
Zv

=
1∑

u′ exp(w · φ(fu′,v, ru′) + η · 1u′,v)
. (9)

Here Zv is the partition function in Eq. 5. We first substitute αv into Eq. 5,
and get:

pu,v = exp(w · φ(fu,v, ru) + η · 1u,v) · αv. (10)

However, in this case both ru and αv are variables, so Eq. 10 is not linear.
To linearize it, we rewrite this equation in the following conditional form:

dru,k = 1 ⇒ pu,v = αv exp(w · φ(fu,v, Rk) + η · 1u,v), (11)
∀k ∈ {1 . . .K},∀u, v ∈ {1 . . . n}.

Behavior Identification for Incentivizing Citizen Science Exploration 709

Here, w is learned from the identification problem, so it is a constant in the
pricing problem. When ru is fixed to Rk (dru,k = 1), exp(w ·φ(fu,v, ru)+η ·1u,v)
becomes a constant, so the right-hand side of Eq. 11 is indeed a linear equation
over αv. We can enforce the conditional constraints using the big-M formulation.
Next, we require the columns of P sum to 1:

n∑

u=1

pu,v = 1, ∀v ∈ {1, . . . , n}. (12)

It can be shown in the following Theorem that Eqs. 11 and 12 guarantee that
αv = 1/Zv. Further because of Eq. 10, we must have the fact that pu,v satisfies
the sum-exponential form in Eq. 5.

Theorem 1. Equations 11 and 12 guarantee that αv = 1/Zv, ∀v ∈ {1, . . . , n}.

Proof. Equation 11 forces αv to be proportional to 1/Zv and Eq. 12 constrains
the sum of pu,v to be 1.

Next we model the objective function Dp. Here we provide a formulation for
D1.2 The key is to model the absolute difference |yi−y|. Introduce variable ti for
|yi − y|, i ∈ {1, . . . , n}, and constraints ti ≥ yi − y and ti ≥ y − yi to guarantee
that ti ≥ |yi − y|. Then we can modify the objective so as to minimize

∑n
i=1 ti.

In practice, we find the MIP encoding with the constraints in Eqs. 8–12 does
not scale well with small external rewards (see Sect. 4.3). In this case, we add
redundant constraints to facilitate constraint propagation and pruning. When
ru = Rk, we add these redundant constraints:

pu,v ≤ exp(gu,v(Rk))
exp(gu,v(Rk)) +

∑
u′ ̸=u exp(minr∈R gu′,v(r))

, (13)

and
pu,v ≥ exp(gu,v(Rk))

exp(gu,v(Rk)) +
∑

u′ ̸=u exp(maxr∈R gu′,v(r))
. (14)

Here, gu,v(r) is an abbreviation for w · φ(fu,v, r) + η · 1u,v. The right hand side
of these two inequalities are clearly the upper and lower bound of pu,v, because
all free variables are fixed to their most extreme values.

4 Experiments

4.1 Applying the Behavioral Model to Avicaching

We apply our behavioral model into Avicaching [31], a recently launched gam-
ified application to reduce the data bias problem within eBird, a well-established
citizen science program. Avicaching is created in the spirit of promoting “friendly
competition and cooperation” among eBird participants. Avicaching started in
2 One needs solve a Mixed Quadratic Program if he uses objective function D2.

710 Y. Xue et al.

March 2015 as a pilot study in Tompkins and Cortland counties, New York.
A set of publicly accessible locations with no prior eBird observations were
defined as Avicaching locations: bird watchers received extra avicaching points
for every checklist they submitted in those locations. These locations were
selected around under-covered regions from the current eBird dataset, empha-
sizing important yet under-sampled land types, such as agricultural land and
forest. Avicaching points have intrinsic value to bird watchers, because they
mark their scientific contribution to eBird. In addition, other rewards, such as
binoculars, were also provided in the form of a lottery, which is based on the
total avicaching points earned by each participant. The Avicaching points were
updated every week. The probabilistic behavioral model was used in the bi-level
optimization problem, which allocates optimal rewards to locations to minimize
the spatial bias. We used the participants’ response in the first few weeks to
train our behavioral model.

Num Visits
1
5
10
25
50

75

100

2014

Num Visits
1
5
10
25
50

75

100

2015

Fig. 2. The comparison of the locations of submissions in eBird in Tompkins and
Cortland County in New York State. The size of the circles represent the number of
submissions. (Left) from Mar 28 to Aug 31, 2014, before Avicaching. (Right) from Mar
28 to Aug 31, 2015, after Avicaching is introduced. Effort is shifted towards under-
sampled locations significantly. Study area is shaded.

Encouraged by Avicaching, bird watchers shifted their effort towards under-
sampled locations. As visually demonstrated in Fig. 2, 482 eBird observations
were submitted from Avicaching locations, out of the 2,522 observations in total
for Tompkins and Cortland County during summer months from June 15 to
Sep 15, 2015. 19.1% of birding effort has shifted from oversampled locations
to under-sampled Avicaching locations, which received zero submissions before.
Cortland, as an under-sampled county, received 202 observations during these
three summer months in 2015, when Avicaching is in the field, which is 2.3 times
the number of visits of the previous two years combined (there are in total 87
submissions from Cortland during the same period of time in 2013 and 2014).
In terms of uniformity, the normalized D2 score (1n ||Y−Y||22/Y), dropped from
0.017 in 2013, 0.017 in 2014 to 0.013 in 2015 during the period of time.

Behavior Identification for Incentivizing Citizen Science Exploration 711

4.2 Evaluation of the Probabilistic Behavioral Model
for the Identification Problem

The behavioral model used in the reward allocation problem of one week is fit
using the data since the beginning of Avicaching and up to that week. The data
are composed of (xj,t,yj,t, rt, ft) tuples, each of which represents the density of
locations a bird watcher visited during one week’s reward treatment. There are
in total 116 locations in total in this two counties (the length of xj,t and yj,t), out
of which 50 are Avicaching locations. We split the dataset into 75% for training,
5% for validation, and the remaining 20% for testing. The data for validation
is used to select the values of regularizers. We found the model is not sensitive
to the values of regularizers, as long as they are in a proper range. The reported
performance is averaged over 3 random splits. The location features we consider
for the behavioral model are: the number of visits in each month (popularity),
the expected number of species to see (interestingness), the NLCD covariates
for the landscape [16], housing density (population center), elevation, distances
to rivers, roads, etc., latitude and longitude (geographical regions), convenience
factor (distance to reach), and Avicaching points (rewards). We also include
non-linear transformation of these features and cross terms.

We compare our proposed model with three baseline models. The first model
always uses historical density to make predictions, i.e., always predict yj,t = xj,t.
The second model is the structural SVMmodel from [31], a powerful nonparamet-
ric machine learning model optimized for solving knapsack problems. The third
benchmark is a continuous-response random forest, which predicts the density yj,t
at each location independently with 1,000 trees of depth 10. Random forests are

Fig. 3. The comparison of probabilities of visiting each location predicted by various
behavioral model on one test set. The range was selected to highlight locations with
small probabilities. The proposed model matches closest to the ground truth (note the
color scale). (Color figure online)

712 Y. Xue et al.

Table 1. Comparison of predicted performance on the test set. The table shows the
normalized mean squared error (MSE). Our proposed model outperforms the other 3
baseline models.

Method Normalized MSE

Proposed 0.26

Historical 0.36

Structural SVM 0.93

Random Forest 0.37

expected to set the benchmark for very good predictive performance. However, the
lack of interpretable structures precludes them from being folded into theMIP for-
mulation of the pricing problem. Both the Structural SVM and the random forest
model share the same environmental features as our proposed model. We include
the baseline density xj,t in the two models as a separate feature.

Table 1 shows the comparison on normalized mean squared error (MSE),

which is
∑

j,t

∑n
i=1(uj,t(y

truth
j,t,i −ypred

j,t,i))
2

∑
j,t

∑n
i=1(uj,t(ytruth

j,t,i −ytruth
j,t,i))2

. Here ytruthj,t,i is the true density for agent

j in time t, and ypredj,t,i is the predicted value at location i. The squared error is
further weighted by uj,t – the number of submissions during the reward period.

Our proposed model clearly outperforms the other 3 models. To fur-
ther visualize the difference, the predicted probabilities to visit each location,
averaged over all test cases in one test set, are compared with the ground truth
in Fig. 3. The locations with high probabilities (shown with dark red cells) are
historically popular sites. The model based on historical density predicted very
well on these sites, because we have rich data on people’s birding history, and
bird watchers’ behavior is relatively stable across different years. Those sites
with relative low probabilities (light orange cells) are often under-sampled sites
with Avicaching rewards. In this case, the historical model missed completely.
Structural SVM performed the worst. While random forest performed well qual-
itatively, it was out-performed by our proposed model (Table 1). Even if the
random forest model had comparable performance, it cannot be folded into the
MIP to solve the bi-level optimization problem.

4.3 Phase Transition on the Pricing Problem

The scalability of the Mixed Integer Programming encoding proposed for the
pricing problem is also important. To evaluate the solver, we generated 5 sets
of synthetic instances, with numbers of locations n ranging from 15 to 35. Each
set had 30 instances with the same n, generated in a way to best mimic people’s
behavior. To make it easy for plotting, reward set R contains 2 levels of rewards
for these instances: one was 0, and the other was a non-zero reward shown in
the horizontal axis of Fig. 4 (all 30 instances in one test set shared a common
non-zero reward). We kept all other parameters the same, and only varied the

Behavior Identification for Incentivizing Citizen Science Exploration 713

non-zero rewards. The curves in Fig. 4 report the median time to solve these
instances with MIP encoded in CPLEX 12.6, with a single Intel x5690 core and
8GB of memory. Each dot in one curve represents the median time of solving 30
instances in one test set. Two points on a given curve only differ in the reward
level.

Fig. 4. The easy-hard-easy phase transition for the pricing problem; n is the number of
locations. (Upper) The median time to solve instances with various non-zero rewards
without the redundant constraints in Eqs. 13 and 14. The time is long for instances with
small rewards. (Lower) The median time when redundant constraints are introduced.
The easy-hard-easy pattern emerges.

Intuitively, there should be an easy-hard-easy pattern in the empirical complex-
ity of the pricing problem. If the external rewards are too small, then it makes little
difference in terms of changing agents’ behavior whether one reward is assigned to
one location or not. On the other hand, if the rewards are too large, then agents’
behavior is completely dominated by these external rewards. It is when the exter-
nal rewardsmatch agents’ internal utilities that the problembecomes hard, and the
algorithmneeds to planwisely in allocating rewards.Nevertheless,when the redun-
dant constraints in Eqs. 13 and 14 were not introduced (Upper Panel of Fig. 4),
we did not see the easy-hard-easy pattern. Problem instances with small non-zero
external rewards were significantly harder than other ones.

The unexpected long runtimes for instances with small rewards were due to
the difficulty in propagating constraints. The solver could not automatically dis-
cover the fact that the reward was too small to have any substantial impact, so it
spends much time on many meaningless branches. This prevented the solver from
early pruning, which was often the key to efficient problem solving. Noticing this
aspect, we added redundant constraints (Eqs. 13 and 14) into the MIP formu-
lation. These two equations were obvious necessary conditions for pu,v. Adding
these two equations helped the solver find bounds on pu,v, so it could prove
tighter bounds for the objective function, and trigger early pruning more often.

714 Y. Xue et al.

After adding these two constraints, the easy-hard-easy phenomenon emerged.
We were also able to scale up to larger instances due to better constraint prop-
agation (It takes too long for the solver to run for n = 30 and n = 35 without
additional constraints, so they are not plotted in the upper panel of Fig. 4).

4.4 Benefit of Avicaching on Species Modeling

We are able to see the benefit of having data collected from avicaching locations
on species distribution modeling – the main scientific application of eBird data.
To fit the species distribution models, we use the data from April to June (the
spring migration period), in both Tompkins and Cortland counties, including
avicaching and non-avicaching locations. We predict the occupancy of a species
based on environmental variables. For each species, we fit random forest models
with 1,000 trees, with each tree at the depth of 10.

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

(a) Ground Truth

0.0

0.1

0.2

0.3

0.4

0.5

(b) with Avicache

0.0

0.1

0.2

0.3

0.4

0.5

(c) without Avicache (d) bird

Fig. 5. The benefit of having observations from avicaching sites. (1st Row) Model
for House Finch; (2nd Row) Ovenbird; (3rd Row) Wood Thrush; (4th Row) White-
throated Sparrow. Predictive model fit with 2015 data including that from Avicaching
sites in Cortland (2rd column) better matches a model close to the ground truth (1st
column, fit with all available data, best effort and validated by experts), compared
with the model fit without Avicaching data (3rd column).

Behavior Identification for Incentivizing Citizen Science Exploration 715

Figure 5 shows the predicted probabilities of occurrence in heatmaps for ran-
dom forest models fit with different datasets, for four species in the two coun-
ties. The first column shows the distribution models fit with the most compre-
hensive dataset, which consists of data from both counties, during April to June
across several years. Because Tompkins county is the best covered area in eBird,
the learned model is close to the ground truth, according to bird experts at the
Cornell Lab of Ornithology. In the second column, we fit the models using
the data only from Cortland County in 2015, including that from avicaching loca-
tions. We use Cortland County as an example to represent a large number of coun-
ties in the United States, where there are few eBird submissions. Then in the third
column, we further exclude the data collected from Avicaching locations.

As we can see from Fig. 5, the species distribution models in the second col-
umn match pretty well in terms of the predicted probabilities with the models in
the first column, although they are fitted using much less data. On the contrary,
the models in the third column are much worse. Indeed, the log losses improve
from 0.44 to 0.30 for Ovenbird, from 0.47 to 0.46 for House Finch, from 0.51 to
0.38 for Wood Thrush and from 0.48 to 0.41 for White-throated sparrow when
Avicaching observations are added.

Since the only difference between the models in the second and the third
columns is whether the models are learned using the dataset containing obser-
vations from Avicaching locations, the clear difference in the predictive perfor-
mance demonstrates the benefit of having data from Avicaching locations. From
this experiment, we see that Avicaching game really helps eBird in addressing
its ultimate scientific goal.

5 Conclusion

We address the behavior identification problem in two-stage games to reduce
the data bias problem in citizen science. We introduce a novel probabilistic
behavioral model and show that it is better at capturing noisy human behav-
ior compared to the knapsack model previously used in Avicaching, a recently
launched gamified application in eBird. In addition, the behavioral model can
be folded as a set of linear constraints into the bi-level optimization problem
for bias reduction, so the whole two-stage game can be solved with a single
Mixed Integer Program. We further scale up the encoding to large instances by
adding redundant constraints, based on a novel easy-hard-easy phase transition
phenomenon. Finally, we also show that the data collected from the Avicaching
game improves species distribution modeling, therefore it better serves the core
scientific goal of citizen science.

Acknowledgements. We are thankful to the anonymous reviewers for comments,
thousands of eBird participants, and the Cornell Lab of Ornithology for managing
the database. This research was supported by National Science Foundation (0832782,
1522054, 1059284, 1356308), ARO grant W911-NF-14-1-0498, the Leon Levy Founda-
tion and the Wolf Creek Foundation.

716 Y. Xue et al.

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for multi-product pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)

2. Anderson, A., Huttenlocher, D.P., Kleinberg, J.M., Leskovec, J.: Steering user
behavior with badges. In: 22nd International World Wide Web Conference, WWW
(2013)

3. Bacon, D.F., Parkes, D.C., Chen, Y., Rao, M., Kash, I., Sridharan, M.: Pre-
dicting your own effort. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, vol. 2, pp. 695–702 (2012)

4. Bragg, J., Mausam, Weld, D.S.: Crowdsourcing multi-label classification for tax-
onomy creation. In: HCOMP (2013)

5. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)

6. Chen, X., Lin, Q., Zhou, D.: Optimistic knowledge gradient policy for optimal
budget allocation in crowdsourcing. In: ICML (2013)

7. Chiappone, M.: Coral watch program summary. a report on volunteer and scientific
efforts to document the status of reefs in the florida keys national marine sanctuary.
The Nature Conservancy, Summerland Key, Florida (1996)

8. Conitzer, V., Garera, N.: Learning algorithms for online principal-agent problems
(and selling goods online). In: Proceedings of the 23rd ICML (2006)

9. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In:
Proceedings of the 7th ACM Conference on Electronic Commerce (EC), pp. 82–90
(2006)

10. Endriss, U., Kraus, S., Lang, J., Wooldridge, M.: Incentive engineering for boolean
games. In: IJCAI Proceedings-International Joint Conference on Artificial Intelli-
gence, vol. 22(3), p. 2602 (2011)

11. Fang, F., Stone, P., Tambe, M.: When security games go green: designing defender
strategies to prevent poaching and illegal fishing. In: IJCAI (2015)

12. Gens, R., Domingos, P.M.: Discriminative learning of sum-product networks. In:
Advances in Neural Information Processing Systems, pp. 3248–3256 (2012)

13. Gomes, C.P., Selman, B.: Satisfied with physics. Science 297(5582), 784–785 (2002)
14. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,

F.: On profit-maximizing envy-free pricing. In: SODA, pp. 1164–1173 (2005)
15. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Dehne,

F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431.
Springer, Heidelberg (2005)

16. Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N.,
Mckerrow, A., Vandriel, J.N., Wickham, J.: Completion of the 2001 national land
cover database for the conterminous United States. Photogram. Eng. Remote Sens.
73(4), 337–341 (2007). http://www.asprs.org/publications/pers/2007journal/
april/highlight.pdf

17. Kawajiri, R., Shimosaka, M., Kashima, H.: Steered crowdsensing: Incentive design
towards quality-oriented place-centric crowdsensing. In: UbiComp (2014)

18. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning, ICML (2001)

19. Li, H., Tian, F., Chen, W., Qin, T., Ma, Z., Liu, T.: Generalization analysis for
game-theoretic machine learning. In: AAAI (2015)

http://www.asprs.org/publications/pers/2007journal/april/highlight.pdf
http://www.asprs.org/publications/pers/2007journal/april/highlight.pdf

Behavior Identification for Incentivizing Citizen Science Exploration 717

20. Lintott, C.J., Schawinski, K., Slosar, A., et al.: Galaxy zoo: morphologies derived
from visual inspection of galaxies from the sloan digital sky survey. Mon. Not.
R. Astron. Soc. 389(3), 1179–1189 (2008). http://dx.doi.org/10.1111/j.1365-2966.
2008.13689.x

21. McFadden, D.: Modeling the choice of residential location. In: Spatial Interaction
Theory and Residential Location, pp. 75–96 (1978)

22. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordóñez, F., Kraus, S.: Playing
games for security: an efficient exact algorithm for solving bayesian stackelberg
games. In: AAMAS, pp. 895–902 (2008)

23. Radanovic, G., Faltings, B.: Incentive schemes for participatory sensing. In:
AAMAS (2015)

24. Rust, J.: Optimal replacement of gmc bus engines: an empirical model of harold
zurcher. Econometrica 55(5), 999–1033 (1987)

25. Settles, B.: Active learning literature survey. Univ. Wis. Madison 52(55–66), 11
(2010)

26. Shavell, S.: Risk sharing and incentives in the principal and agent relationship.
Bell J. Econ. 10, 55–73 (1979)

27. Singer, Y., Mittal, M.: Pricing mechanisms for crowdsourcing markets. In: Proceed-
ings of the 22nd International Conference on World Wide Web (WWW) (2013)

28. Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incen-
tivizing users for balancing bike sharing systems. In: AAAI (2015)

29. Sullivan, B.L., Aycrigg, J.L., Barry, J.H., et al.: The ebird enterprise: an integrated
approach to development and application of citizen science. Bio. Conserv. 169, 31–
40 (2014). http://www.sciencedirect.com/science/article/pii/S0006320713003820

30. Tran-Thanh, L., Huynh, T.D., Rosenfeld, A., Ramchurn, S.D., Jennings, N.R.:
Crowdsourcing complex workflows under budget constraints. In: Proceedings of
the AAAI Conference, AAAI (2015)

31. Xue, Y., Davies, I., Fink, D., Wood, C., Gomes, C.P.: Avicaching: a two stage
game for bias reduction in citizen science. In: Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS (2016)

http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x
http://www.sciencedirect.com/science/article/pii/S0006320713003820

CP and Biology Track

Constraining Redundancy to Improve
Protein Docking

Ludwig Krippahl(B) and Pedro Barahona

NOVA-LINCS, DI, FCT-NOVA, 2829-516 Caparica, Portugal
{ludi,pb}@fct.unl.pt

Abstract. Predicting protein-protein complexes (protein docking) is
an important factor for understanding the majority of biochemical
processes. In general, protein docking algorithms search through a large
number of possible relative placements of the interacting partners, filter-
ing out the majority of the candidates in order to produce a manageable
set of candidates that can be examined in greater detail. This is a six-
dimensional search through three rotational degrees of freedom and three
translational degrees of freedom of one partner (the probe) relative to
the other (the target). The standard approach is to use a fixed step both
for the rotation (typically 10◦ to 15◦) and the translation (typically 1Å).
Since proteins are not isotropic, a homogeneous rotational sampling can
result in redundancies or excessive displacement of important atoms.
A similar problem occurs in the translational sampling, since the small
step necessary to find the optimal fit between the two molecules results
in structures that differ by so little that they become redundant. In this
paper we propose a constraint-based approach that improves the search
by eliminating these redundancies and adapting the sampling to the size
and shape of the proteins involved. A test on 217 protein complexes from
the protein-protein Docking Benchmark Version 5 shows an increase of
over 50% in the average number of non-degenerate acceptable models
retained for the most difficult cases. Furthermore, for about 75% of the
complexes in the benchmark, computation time is decreased by half, on
average.

Keywords: Protein docking · Geometric search · Constraints

1 Introduction

Protein interactions are crucial in any living organism, since proteins make up
most of the biochemical machinery of the cell. Proteins are also the main prod-
uct of genes and thus lie at the base of the phenotypic expression of the genome
and of all metabolism. This is why understanding protein interactions is so
important for both theoretical and practical reasons. From the elucidation of
biochemical mechanisms to medicine and drug design, predicting how proteins
fit together provides useful information. Given the difficulty of studying protein-
protein interactions experimentally and the progress in high-throughput methods
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 721–732, 2016.
DOI: 10.1007/978-3-319-44953-1 45

722 L. Krippahl and P. Barahona

of determining individual protein structures [5], modelling protein interactions
from the known structures of the interacting partners is bound to remain an
important tool for biochemical and medical research.

There are two main approaches to predicting protein-protein complexes, or
protein docking. Some algorithms use local search or stochastic sampling meth-
ods, such as genetic algorithms [15] or simulated annealing [2], to maximize a
scoring function that estimates how favourable the interaction is. This func-
tion takes into account several factors such as solvation effects, entropy and
electrostatics, which limits the configurations that can be sampled during the
search. This is why most docking algorithms use geometric complementarity as
a first filtering criterion [1,7,11,12,14], postponing a more detailed evaluation
to a second stage, limited to a smaller set of selected candidates. This allows a
systematic search through a very large number of possible configurations – on
the order of 1015 or more – by rotating one of the proteins, the probe, relative to
the other, the target, and exploring all translations for each orientation in small
steps. Each configuration is then evaluated according to geometric complemen-
tarity in order to retain the best candidate models, each being the model for one
possible structure for the complex formed by the two interacting proteins. This
relatively smaller number of candidate models, with a fixed number that is typ-
ically from 103 to 104 structures, is then scored in more detail and ranked in the
evaluation step. This paper focuses on optimizing the search in the filtering step.
We use the BiGGER (Bimolecular complex Generation with Global Evaluation
and Ranking) docking program, which has a geometric search algorithm based
on constraint programming techniques. BiGGER uses constraint propagation to
speed up the translational search by eliminating the majority of unproductive
configurations, such as those with forbidden overlaps or insufficient surface con-
tact [8] and also to restrict the translational search according to predicted or
observed points of contact between the interacting partners [9]. In this paper,
we describe the application of the same constraint processing ideas to improve
docking results by pruning the rotational search space in a way that accounts
for the shape of the protein being rotated and by imposing constraints on the
redundancy of the candidates retained. These improvements are integrated in
the constraint propagation algorithms that allow BiGGER to search efficiently
for good docking model candidates.

1.1 Uniform Rotational Search

The standard approach for the rotational search in exhaustive search docking
algorithms is to generate a set of uniformly distributed rotations by rotating the
probe molecule around the three orthogonal axis in a constant step, typically
ranging from 6◦ to 15◦. Although the implementation details vary, one usual
method is to sample the combinations of rotations around the x, y and z axis. If
we rotate in steps of 15◦, this would mean a total of 12 × 24 × 24 orientations,
since there are 24 steps of 15◦ around each axis but, for one axis, we would only
need half a turn to avoid repeating orientations. This results in some degenerate
orientations and can be improved by selecting 12×24 uniformly distributed axes

Improving Protein Docking with Redundancy Constraints 723

and then rotating 23 steps around each one (the 0◦ and 360◦ rotations around any
arbitrary axis all lead to no rotation) and then adding the original orientation,
for a total for 12 × 24 × 23 + 1 is 6625 orientations. This is the default uniform
rotational search algorithm used in BiGGER. It starts by creating 24×24 = 576
points uniformly spread on the surface of a sphere of radius 1, using the spiral
method [13], and then selecting all those with z ≥ 0 to define 288 rotation axes.1
Each rotation axis is then used to generate 23 quaternions specifying the 23
different rotations of 15◦ around the axis, and finally the original orientation (no
rotation) is also kept, for the total of 6625 orientations.

1.2 The Search Dilemma

While a finer sampling of both the rotation and translation space is desirable in
order to find the best fit between the two proteins, besides the increase in com-
putation time, it also leads to a larger number of very similar configurations.
This, in turn, increases the chance that incorrect configurations push all accept-
able candidates out of the set of retained models. However, a coarser sample
may result in missing the most favourable ways of fitting the proteins and thus
not find any acceptable models with a good enough geometric fit to be retained
in the filtered set. It is this dilemma that motivates our addition of redundancy
constraints. With the method described below, we adapt the rotation sampling
to the size and shape of the protein in order that the atom displacement between
neighbouring orientations is as close to uniform as possible. This gives us a better
control of the trade-off between searching too many or too few orientations. In
addition, we constrain the set of retained models to avoid keeping models that
are too similar. This way we can do a translation search in small steps of 1Å, in
order to better optimize the geometrical fit, but also mitigate the crowding out
of acceptable candidates by groups of redundant models.

2 Method

One possibility for optimizing the rotation sampling is to take into account the
shape of the probe protein and apply a different constraint to the generation
of the rotations. Instead of requiring a constant step, it would be better to
require that the maximum displacement of the atoms from one rotation to its
nearest neighbour be constant. This would result in a distribution of orientations
that is heterogeneous in the angular step but more homogeneous in the atomic
distances since proteins are not spherical and can have highly irregular shapes.
Another possibility is to prune the rotations searched to reduce the number of
orientations used. The rationale for this approach is that, for adequate results,
smaller or more globular proteins should need a smaller number of orientations
than larger or more irregularly-shaped proteins. The following subsections detail
each of these approaches.
1 Or 289 rotation axes, in some previous implementations, depending on exactly how
the points are spread with respect to this cutoff for the hemisphere.

724 L. Krippahl and P. Barahona

2.1 Redundancy in Retained Models

The standard approach to the filtering stage of the docking process is to retain
the set of models with the highest scores for the scoring function used in this
stage. Given the large search space, this function must be inexpensive to eval-
uate, and is generally based on estimates of the contact surface [4]. This is the
current procedure in BiGGER. However, retaining the highest scoring models
can result in redundancies because the step size in the translation search, which
in BiGGER is 1Å, can be small enough to result in multiple nearly identical
models. On the other hand, a larger translation step could result in missing the
most favourable configurations. One way of solving this dilemma is to restrict
the models retained so that, of two sufficiently similar models, only the highest
scoring one is kept. This consideration, along with the asymmetry of the probe,
lead us to the following constraints for reducing redundancy.

2.2 Defining the Constraints

To prevent redundancy in rotation, we define the distance between two rota-
tions as:

Definition 1. Distance between rotations
Let S be the set of N points with coordinates c1, c2, ..., cn and ρ1 and ρ2

two rotations. The distance between rotations ρ1 and ρ2 with respect to S is the
largest distance between the pair of images for each point:

distS(ρ1, ρ2) = max
ci∈S

|ρ1(ci) − ρ2(ci)|

The rotation constraint that reduces the angular redundancy is:

Constraint 1. Rotation redundancy constraint
Given a set of points S defining the shape of the probe, a distance parameter δ

specifying the smallest non-redundant displacement, and a set R of rotations,
then:

∀ρi, ρj ̸=i ∈ R,distS(ρi, ρj) > δ

Evidently, this constraint is trivial to fulfil with an empty set of rotations. How-
ever, we also want to cover all the possible orientations of the probe as well
as possible. So the goal is to find the largest set of rotations that respect con-
straint 1.

To reduce redundancy in retained models, we also add the following con-
straint:

Constraint 2. Model redundancy constraint
Let M be the set of retained models, where each model mt,ρ is determined by

the translation vector t and rotation ρ. Given a radius r specifying the redun-
dancy neighbourhood, then:

∀mti,ρi ,mtj ,ρj ∈ M, ρi = ρj =⇒ |ti − tj | > r

Improving Protein Docking with Redundancy Constraints 725

This constraint ensures that the final set of candidate models does not retain
any pair of models that are mutually redundant, in the sense of having the same
orientation and not being farther apart than r. However, by itself, this does not
tell us which model to retain. Since we want the best match for the interaction,
we need to retain the model with the highest score, which means we have to
score all redundant models before filtering. So, unlike the constraint for rota-
tional redundancy, which can greatly prune the search space, the translational
redundancy constraint cannot be used to improve computation time.

2.3 Implementing the Constraints

To speed up the calculation, we use a set of 20 atoms to represent the protein
shape. These atoms are selected by first picking the atom farthest from the cen-
tre and then iteratively picking the atom with the largest distance to the closest
atom in those previously picked. This is the set of points over which rotation
distances will be calculated. We then create a list of uniformly distributed rota-
tions with a 7.5◦ step for a total of 24 × 48 × 47 + 1 = 54145 rotations. From
this oversampling of the rotational search space we pick the original orientation
as the first element of the set of the selected rotations. Then, iteratively, of all
rotations for which the minimum distance to any in the selected set is larger than
δ, we add the one with the smallest minimum distance to the selected set. We
repeat this until no rotation is left that has a minimum distance to the selected
set that is larger than δ. This method gives us a distribution of rotations that
is more homogeneous in atomic displacement, adapted both to the shape and to
the size of the protein, resulting in fewer orientations for smaller proteins and
more orientations for larger proteins. For the work related here, the δ value for
this rotation constraint was 6Å.

Since this is a greedy optimization, it does not guarantee the maximum pos-
sible number of rotations or the ideal distribution. However, it is fast. Building
the set of rotations takes from a few seconds to a few minutes for each complex,
less than 1% of the total docking time. Nevertheless, we are working on improv-
ing the set of rotations, both by improving the generation algorithm to optimize
the distribution of rotations and to fine-tune the δ value.

The model redundancy constraint is implemented by storing a temporary
list of the best candidate models during the translational search for a given
orientation of the probe. Once the translational search for that orientation is
complete, the sorted candidates are examined starting from the model with
the largest surface contact and, whenever the program adds one model to the
final list of selected models, it removes all models in the temporary list for
which the translation vector is within 2.5Å of the inserted model in all three
coordinates. This parameter also needs to be optimized by experimenting with
different values, as well as the decision to use a cubic neighbourhood instead of
a spherical one. These adjustments are still work in progress.

Figure 1 outlines the BiGGER docking algorithm. The rotational redundancy
constraints are applied in line 2, adjusting the sample of orientations to the
shape of the probe protein, which can significantly reduce the search space in

726 L. Krippahl and P. Barahona

most cases without sacrificing the quality of the results. Then, for each orien-
tation, the probe is rotated appropriately and the main BiGGER constrained
search function is run for the translations (line 7). This translational search uses
information on the shape of the proteins and the minimum score of the models
retained so far to prune the configurations to analyse [8]. The resulting candidate
models are kept in a temporary set to which the model redundancy constraint
is applied (line 8) by keeping only the highest scoring model mt,ρ out of any
set of models that are redundant with respect to mt,ρ, according to Definition 2.
This constraint actually reduces the pruning of the translational search space,
indirectly, because BiGGER prunes this search using the score of the lowest
scoring model and discarding redundant models will keep this value lower than
it would be otherwise. However, the cost of this constraint is small (around 5%
of the total computation time) and is compensated by the improvement in the
results and by the pruning effects of the rotational constraint, in most cases, as
the benchmark tests show.

1: function dock(target, probe)
2: rotations ← constrain rotation(probe)
3: candidates ← []
4: for rotation in rotations do
5: oriented probe ← rotate(probe, rotation)
6: min score ← lowest(candidates)
7: temp set ← constrained translation(target, oriented probe,min score)
8: temp set ← remove redundant(temp set)
9: candidates ← merge(temp set, candidates)
10: end for
11: return candidates
12: end function

Fig. 1. Outline of how the redundancy constraints proposed in this paper (bold) fit
into the BiGGER constraint-based docking algorithm.

2.4 Benchmark Tests

To test our method, we used the protein-protein Docking Benchmark Version 5
[16]. This is a benchmark of 230 cases of unbound docking of protein complexes.
However, these 230 examples only span 225 protein complexes, as five of the
230 examples are additional binary complexes drawn from some large complexes
in the pool of 225. Of these 225 complexes, in 217 the length of the probe was
distributed with an approximately normal distribution with an average of 55Å
and a standard deviation of 13Å, and ranging from 25Å through 86Å. The length
of the probe was measured as the largest distance between any pair of atoms in
the protein. This is an important measure because it affects both the number
of orientations necessary to adequately sample the rotational space and the size

Improving Protein Docking with Redundancy Constraints 727

of the translational search space. In the other eight complexes the probe length
was spread out from 98Å to 141Å. This sparse set of a few but extreme outliers
caused difficulties in aggregating the results as a function of the length of the
probe, which was necessary for judging the effects of the constraints in different
conditions. For this reason, we ended up rejecting these eight complexes, leaving
us with a benchmark set of 217 different complexes, each involving two proteins.

The protein-protein Docking Benchmark provides the unbound structures
and the target complexes recreated by rigidly fitting the unbound partners to the
known complex structure. These were the target complexes we used to evaluate
the performance of the docking algorithm. In some cases, there are significant
conformational changes between the bound and unbound proteins. Using these
target complexes provided by the benchmark, we can evaluate the rmsd2 of the
docking predictions without adding the irreducible remaining error due to the
conformational changes the proteins undergo when interacting, which can be as
high as 8Å. Nevertheless, these conformational changes still add to the difficulty
of the unbound docking, since we are trying to predict the correct fit of proteins
that are not in the ideal conformation for fitting together, as would generally be
the case in a real application. In addition to using the unbound conformations,
we also rotated each probe protein randomly before docking. Other than the
constraints described here, the docking predictions were run with the default
parameters used by BiGGER and retaining a set of 5000 models.

To evaluate the results, we considered a model to be acceptable if the rmsd
value computed for the probe was below 10Å and the rmsd value for the atoms
at the interface was below 4Å. The interface is the set of atoms within 5Å of any
atom of the other partner. These are criteria used in the CAPRI programme for
assessing predictions of protein interactions [6].

3 Results and Discussion

Figure 2 shows the relative effect of using both redundancy constraints compared
to the base search algorithm of uniform rotation sampling and not discarding
redundant models. These relative values are computed dividing the values for
the docking runs with the redundancy constraints by the respective values for
the base docking runs. The lines are smoothed using a Gaussian kernel with 5Å
of standard deviation for each data point. The failure rate is the proportion of
complexes for which no acceptable model was retained in the final set of 5000
candidates. The relative failure rate is always below one, meaning that the redun-
dancy constraints result in a lower failure rate than the corresponding docking
runs using the base algorithm. The relative number of non-redundant acceptable
models is nearly always higher than one, which shows that the redundancy con-
straints increase the average number of acceptable models retained in the final
set. The relative time is below one for the first three quartiles, meaning that, in
75% of the cases, the number of orientations with the fixed displacement of 6Åis

2 The square root of the mean of the squared atomic deviations, in Ångstrom.

728 L. Krippahl and P. Barahona

smaller than the default number of orientations. However, since they are better
distributed, even with a smaller number of orientations to search the results are
better than the results of the base method. For larger probe sizes, the number
of rotations is larger than 6625, the default used by BiGGER. In this quartile,
computation times can increase significantly. However, the average number of
acceptable models retained also increases significantly, suggesting that the base
set of 6625 orientations was inadequate for larger probes.

Fig. 2. The lines show the relative effects of the redundancy constraints on failure rate,
average number of non-redundant acceptable models retained and computation time
as a function of probe length. The values are in proportion to the values obtained with
the base algorithm. The shaded curve shows the length distribution of the probes in the
benchmark examples, divided into quartiles. All plots were smoothed using a Gaussian
kernel with σ = 5Å.

Table 1 shows the values comparing, for each quartile, four different cases.
The Base case is the basic BiGGER algorithm without any redundancy con-
straints. TheModels case uses Constraint 2 to prevent redundancy on the models
retained. Rotations uses Constraint 1 to adapt the set of rotations to the shape
and size of the probe, so that no two different orientations result in a maximum
atomic displacement below 6Å. Finally, Full uses both constraints. The results
are aggregated by each quartile of the distribution of probe lengths, with the
last column showing the averages for all 217 test complexes. Each value is the
average value plus or minus the standard deviation for the average estimated by
bootstrapping [3] with 10,000 replicas.

Improving Protein Docking with Redundancy Constraints 729

Table 1. Effect of redundancy constraints, by quartile

Average number of non-redundant models by complex

Quartile 0-25% 25-50% 50-75% 75-100% All

Base 13.0± 2.7 4.7± 0.7 3.8± 0.7 2.6± 0.4 6.1± 0.8

Model 18.9± 3.8 6.8± 1.2 5.1± 0.9 3.4± 0.5 8.6± 1.1

Rotation 9.3± 1.2 4.1± 0.5 3.6± 0.5 3.1± 0.6 5.1± 0.4

Full 14.6± 1.8 5.9± 0.8 5.3± 0.7 4.1± 0.7 7.5± 0.6

Percentage rate of failed predictions

Quartile 0-25% 25-50% 50-75% 75-100% All

Base 9%± 4% 13%± 5% 28%± 6% 33%± 6% 21%± 3%

Model 9%± 4% 7%± 4% 15%± 5% 24%± 6% 14%± 2%

Rotation 9%± 4% 11%± 4% 22%± 6% 37%± 7% 20%± 3%

Full 5%± 3% 13%± 5% 20%± 5% 28%± 6% 17%± 3%

Average computation time by complex (hours)

Quartile 0-25% 25-50% 50-75% 75-100% All

Base 0.7± 0.0 1.2± 0.1 1.4± 0.1 2.7± 0.2 1.5± 0.1

Model 0.7± 0.0 1.2± 0.1 1.5± 0.1 2.8± 0.2 1.5± 0.1

Rotation 0.2± 0.0 0.5± 0.0 0.8± 0.1 2.9± 0.3 1.1± 0.1

Full 0.2± 0.0 0.6± 0.0 0.9± 0.1 3.2± 0.4 1.2± 0.1
This table compares the basic BiGGER algorithm with docking impos-
ing the constraint on model redundancy, the constraint on rotation
redundancy and both. The results are aggregated by quartile of the
distribution of probe lengths. The last column shows the aggregate
values for all 217 test complexes.

The number of non-redundant complexes retained in the final set of 5000 can-
didates is relevant for estimating the difficulty of identifying the correct models
within this set. Other factors being equal, after the second stage of evaluat-
ing this set with a more detailed scoring function, the greater the number of
acceptable models present the easier it should be to pinpoint the correct com-
plex structure. Looking at the four quartiles in the distribution of probe lengths,
we can see that docking small probes is easier, resulting in around 10 to 20
non-redundant acceptable models. The failure rate, which is the percentage of
complexes for which no acceptable model was retained in this final set of 5000, is
also lowest for smaller probes. Thus, in this quartile, the most significant gain by
combining the two constraints is in computation time, which is reduced to nearly
a quarter of the time for the unconstrained docking. Using the rotation redun-
dancy constraint alone can give us this performance improvement but results in
a lower average number of acceptable models, although the failure rate is not
significantly different.

On the second quantile, the results are similar, differing only in that the time
decrease is less marked, at around 50%, and the increase in the average number

730 L. Krippahl and P. Barahona

of acceptable models seems to be greater, though still not significant. On the
third quartile, however, the average number of non-redundant acceptable mod-
els retained is significantly higher for the dockings with both constraints than
it is with the unconstrained dockings, and slightly higher than any of the con-
straints alone. The best explanation for this seems to be the antagonistic effects
of increasing the sampling of the rotation space. While, on the one hand, such
an increase increases the probability of not missing acceptable models during
the search, on the other hand, increasing the sampling density also increases the
number of incorrect models which can displace acceptable candidates from the
final set of 5000 models to retain. This seems to be why the two constraints
combined outperform either one alone, with the model redundancy constraint
mitigating the negative effects of increasing the rotational sampling as the probe
length increases, while the rotational redundancy constraint leads to a sample
of orientations better suited to the shape and size of the probe.

On the last quartile this improvement in the average number of acceptable
models retained is even more marked, being over 50%. This is particularly rele-
vant because these are the hardest complexes to predict. The tendency for larger
proteins to suffer greater conformational changes and the larger number of mod-
els to filter during the search result in significantly fewer acceptable models being
retained in the final set and increases the chances that none will be retained. This
is clear from the absolute values in the table. In these conditions, the redundancy
constraints provide an important advantage in the slight decrease in failure rate
and, in particular, in the significant increase in the number of acceptable models
retained. In these more difficult complexes, however, the number of orientations
sampled using the rotational redundancy constraint becomes larger than the
default of 6625, and thus the computation time also increases.

4 Conclusions and Future Work

This paper presents an improvement on the search and filtering stage of protein
docking using principles of constraint programming. By imposing constraints
that prevent redundancies in the rotational search and the retention of candi-
date models, the average number of acceptable models increases, failure rates
decrease slightly and computation times decrease in 75% of the cases due to
the pruning of the rotational search space. Of greater advantage, the average
number of acceptable models retained increases significantly in the quartile cor-
responding to the most difficult complexes to model, where an improvement in
the quality of the results is most important. Furthermore, since this is an algo-
rithmic improvement that requires no additional data, it can be combined with
other constraints that BiGGER can use, such as symmetry constraints [10] or
constraints derived from predicted contacts [9].

There are still some open issues that we are currently exploring. The values of
6Å for the displacement in the rotation constraint and 2.5Å for the redundancy
of the models retained seem intuitively reasonable but must be systematically
compared to alternative values in order to optimize these constraints. Further-
more, it is quite possible that the optimal values depend on the size of the probe,

Improving Protein Docking with Redundancy Constraints 731

especially for larger probes. We expect that the results presented here can be
improved by fine-tuning these parameters and, possibly, adapting them to the
size of the proteins involved. This work also focused on the effects of using these
constraints on the search and filtering stage. We are currently working on test-
ing these modifications on the full BiGGER docking pipeline currently under
development, which begins with the prediction of likely contacts from sequence
data, proceeds with the constrained dockings and ends with the screening of the
retained complexes using more detailed scoring function.

The source code for the implementation of the methods described here is
available as part of the Open Chemera Library, at https://github.com/lkrippahl/
Open-Chemera. The source code is published in the public domain and is free
of any copyright restrictions.

Acknowledgements. This work was partially supported by funding from FCT
MCTES and NOVA LINCS, UID/CEC/04516/2013.

References

1. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm.
Proteins Struct. Funct. Bioinf. 52(1), 80–87 (2003)

2. Dominguez, C., Boelens, R., Bonvin, A.M.J.J.: HADDOCK: a protein-protein
docking approach based on biochemical or biophysical information. J. Am. Chem.
Soc. 125(7), 1731–1737 (2003)

3. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26
(1979)

4. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview
of search algorithms and a guide to scoring functions. Proteins Struct. Funct.
Bioinf. 47(4), 409–443 (2002)

5. Hura, G.L., Menon, A.L., Hammel, M., Rambo, R.P., Ii, F.L.P., Tsutakawa, S.E.,
Jenney Jr., F.E., Classen, S., Frankel, K.A., Hopkins, R.C., et al.: Robust, high-
throughput solution structural analyses by small angle x-ray scattering (SAXS).
Nat. Methods 6(8), 606–612 (2009)

6. Janin, J.: Assessing predictions of protein-protein interaction: the CAPRI experi-
ment. Protein Sci. 14(2), 278–283 (2005)

7. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser,
I.A.: Molecular surface recognition: determination of geometric fit between proteins
and their ligands by correlation techniques. Proc. Nat. Acad. Sci. 89(6), 2195–2199
(1992)

8. Krippahl, L., Barahona, P.: Applying constraint programming to rigid body protein
docking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 373–387. Springer,
Heidelberg (2005)

9. Krippahl, L., Barahona, P.: Protein docking with predicted constraints. Algorithms
Mol. Biol. 10(1), 9 (2015)

10. Krippahl, L., Barahona, P.: Symmetry constraints for modelling homo-oligomers.
In: 11th Workshop on Constraint Based Methods for Bioinformatics (2015)

11. Palma, P.N., Krippahl, L., Wampler, J.E., Moura, J.J.: Bigger: a new (soft) docking
algorithm for predicting protein interactions. Proteins 39(4), 372–384 (2000)

https://github.com/lkrippahl/Open-Chemera
https://github.com/lkrippahl/Open-Chemera

732 L. Krippahl and P. Barahona

12. Roberts, V.A., Thompson, E.E., Pique, M.E., Perez, M.S., Ten Eyck, L.: Dot2:
macromolecular docking with improved biophysical models. J. Comput. Chem.
34(20), 1743–1758 (2013)

13. Saff, E.B., Kuijlaars, A.B.: Distributing many points on a sphere. Math. Intell.
19(1), 5–11 (1997)

14. Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I.,
Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., et al.: Taking
geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins Struct.
Funct. Bioinf. 52(1), 107–112 (2003)

15. Taylor, J.S., Burnett, R.M.: Darwin: a program for docking flexible molecules.
Proteins: Struct. Funct. Bioinf. 41(2), 173–191 (2000)

16. Vreven, T., Moal, I.H., Vangone, A., Pierce, B.G., Kastritis, P.L., Torchala, M.,
Chaleil, R., Jiménez-Garćıa, B., Bates, P.A., Fernandez-Recio, J., et al.: Updates to
the integrated protein-protein interaction benchmarks: Docking benchmark version
5 and affinity benchmark version 2. J. Mol. Biol. 427(19), 3031–3041 (2015)

Guaranteed Weighted Counting for Affinity
Computation: Beyond Determinism

and Structure

Clément Viricel1,2, David Simoncini1, Sophie Barbe2, and Thomas Schiex1(B)

1 MIAT, Université de Toulouse, INRA UR 875, Castanet-Tolosan, France
{clement.viricel,david.simoncini,thomas.schiex}@toulouse.inra.fr
2 LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France

sophie.barbe@insa-toulouse.fr

Abstract. Computing the constant Z that normalizes an arbitrary dis-
tribution into a probability distribution is a difficult problem that has
applications in statistics, biophysics and probabilistic reasoning. In bio-
physics, it is a prerequisite for the computation of the binding affin-
ity between two molecules, a central question for protein design. In the
case of a discrete stochastic Graphical Model, the problem of computing
Z is equivalent to weighted model counting in SAT or CSP, known to
be #P-complete [38]. SAT solvers have been used to accelerate guaran-
teed normalizing constant computation, leading to exact tools such as
cachet [33], ace [8] or minic2d [28]. They exploit determinism in the sto-
chastic model to prune during counting and the dependency structure
of the model (partially captured by tree-width) to cache intermediary
counts, trading time for space. When determinism or structure are not
sufficient, we consider the idea of discarding sufficiently negligible con-
tributions to Z to speedup counting. We test and compare this approach
with other solvers providing deterministic guarantees on various bench-
marks, including protein binding affinity computations, and show that it
can provide important speedups.

1 Introduction

Graphical models [12] are sparse representations of highly dimensional multi-
variate distributions that rely on a factorization of the distribution in small
factors. When variables are discrete, graphical models cover a variety of mathe-
matical models that represent joint discrete distributions (or functions) that can
be either Boolean functions (e.g., in propositional satisfiability SAT and con-
straint satisfaction CSP), cost functions (as in partial weighted MaxSAT and
Cost Function Networks [9]) or probability distributions (in stochastic models
such as Markov Random Fields and Bayesian networks).

Typical queries on such graphical models are either optimization or counting
queries (or a mixture of these). In optimization queries, we look for an assignment
that maximizes the joint function, i.e., a model in SAT, a solution in CSP or a

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 733–750, 2016.
DOI: 10.1007/978-3-319-44953-1 46

734 C. Viricel et al.

Maximum a posteriori assignment (MAP) in a Markov Random Field (MRF).
All these problems have an associated NP-complete decision problem.

Counting problems are central in stochastic graphical models because they
capture the computation of marginal probabilities on subsets of variables and
the computation of the normalizing constant Z that is required to define a prob-
ability distribution from the non-normalized distribution of Markov Random
Fields. This difficult problem requires a summation over an exponential number
of elementary terms and is #P-complete [38]. As shown by [37], one call to a
#-P oracle suffices to solve any problem in the Meyer-Stockmeyer polynomial
hierarchy in deterministic polynomial time, an indication that it could be outside
of the PH.

Computing Z is a central problem in statistics (e.g., for parameter estima-
tion in MRFs), for Bayesian network processing (to account for evidence) and
is also crucial in statistical physics where it is called the partition function.
A typical domain where partition function computation can be extremely useful
is computational protein design. Indeed, the affinity of a protein for a specific
target molecule can be estimated by modeling both molecules as MRFs repre-
senting physics force fields and by computing the two partition functions: one
for the bound protein and target and another for the same molecules in unbound
state [35].

For these reasons, various approaches have been designed to tackle this prob-
lem. The Mean-Field algorithm [17], Tree-reweighted Belief Propagation [40] as
well as more recent proposals [25] have been proposed, but they do not offer any
formal guarantee on the quality of the approximation they produce, except in
very special cases. Monte-Carlo methods including Markov Chain Monte Carlo
methods [16] offer asymptotic convergence /s, but convergence is impractically
slow. Indeed, there are recent significant examples showing that the time needed
for Monte Carlo methods to converge can be easily under-estimated [36]. Prac-
tical MCMC based tools also rely on heuristics that destroy these theoretical
guarantees. More recent stochastic methods exploiting universal hashing func-
tions offer “Probably Approximately Correct” (PAC) estimators [7,14]. Here, a
bound δ on the probability that the estimation does not lie within a (1+ε) ratio
of the true value is set and a corresponding estimation produced.

Finally, different methods, mostly based on SAT-solvers, have been defined
that can perform exact weightedmodel counting (#SAT) with deterministic guar-
antees, a problem to which the problem of computing Z can be easily reduced. To
avoid the exponential blowup in the number of terms to add, solvers providing
deterministic guarantees rely on two independent ideas: exploiting determinism
(zero weights) to prune regions of the space that do not contribute to the sum,
and exploiting independence which may be detected at the graphical model struc-
ture level, as captured by its tree-width, but also at a finer level as context-sensitive
independence [33]1. Independence enables caching of intermediate counts that can

1 They may also exploit the fact that counting the number of models of a valid formula
is easy. This requires to check for validity, something that modern CDCL solvers do
not do anymore.

Guaranteed Weighted Counting for Affinity Computation 735

be factored out and lead to exponential time savings at the cost of memory. The
very same ideas are also exploited in knowledge compilers thatmay compile graph-
ical models or SAT formulas to languages on which counting becomes easy [8,28].

In this paper, we explore the possibility of preserving the deterministic guar-
antees of exact solvers and explore a new source of pruning that may be present
even when determinism or independence are too limited to allow for exact count-
ing: detecting and pruning regions for which it is possible to prove, at limited
cost, that they contain an amount of weight which is too small to significantly
change the computed value of Z. Instead of providing a PAC guarantee, our algo-
rithm provides an approximation of the normalizing constant that is guaranteed
to lie within a ratio of 1 + ε of the true value (with probability 1), a guarantee
that none of the PAC randomized algorithms above can provide in finite time.

Our initial motivation for computing Z lies in Computational Protein Design
(CPD). The aim of CPD is to design new proteins that have desirable properties
which are not available in the existing catalog of known proteins. One of these
properties is the affinity between a protein and another molecule (such as another
protein, a peptide, an amino-acid, a small organic molecule, etc. . .). The binding
affinity gives an indication of the likelihood that two molecules will prefer to bind
together rather than remain dissociated and thus that a protein will be likely
to bind to another molecule of interest. Proteins can be described as a set of
bound atoms subjected to a number of atom scale forces captured by a pairwise
force field defining a Markov Random Field [29]. From this MRF, the binding
affinity can be estimated by computing the ratio of the partition functions of
the molecules in bound and unbound states [15,35].

In the rest of the paper, after introducing our notations and the binding
affinity computation problem, we present the Z∗

ε algorithm, a variant of Branch
and Bound targeted at counting instead of optimizing. Z∗

ε relies on the avail-
ability of a local upper bound on Z. We then consider different simple, fast, safe
and incremental upper bounds on Z, integrate them in Z∗

ε and compare them
to exact counting tools on two categories of benchmarks: general benchmarks
extracted from the UAI and Probabilistic Inference (PIC’2011) challenges and
partition function computation problems appearing as sub-problems of binding
affinity computation on real proteins. Surprisingly, despite a very limited caching
strategy, the resulting algorithm is able to outperform exact solvers on a variety
of problems and is especially efficient on CPD-derived problems. Because Z∗

ε

relies on a new source of pruning, its underlying principle and associated bounds
can be immediately used to improve existing SAT-based counters using Max-
SAT bounds, which are closely related to local consistencies in Cost Function
Networks [4,23,24].

2 Background

A Markov Random Field defines a joint probability distribution over a set of
variables as a factorized product of local functions, usually denoted as potential
functions.

736 C. Viricel et al.

Definition 1. A discrete Markov Random Field (MRF) is a pair (X,Φ) where
X = {1, . . . , n} is a set of n random variables, and Φ is a set of potential
functions. Each variable i ∈ X has a finite domain Di of values that can be
assigned to it. A potential function φS ∈ Φ, with scope S ⊆ X, is a function
φS : DS #→ R∪{∞} where DS denotes the Cartesian product of all Di for i ∈ S.
The energy or potential of an assignment t ∈ DX is denoted as E(t) =∑

φS∈Φ φS(t[S]) where t[S] is the projection (or restriction) of t to the variables
in S. Notice that this definition shows that an MRF is essentially equivalent to
a Cost Function Network (or WCSP [9]). A tuple t ∈ DS will be represented as
a set of pairs {(i, t[i]) | i ∈ S}.

The probability of a tuple t ∈ DX is then defined as:

P (t) =
exp(−E(t))∑

t′∈DX exp(−E(t′))

The normalizing constant below the fraction is usually denoted as Z. The poten-
tial φS are called energies, in relation with statistical physics. An assignment
with minimum energy has therefore maximum probability. With pairwise poten-
tials (|S| ≤ 2), an MRF defines a graph with variables as vertices and potential
scopes S as edges. In the rest of this paper, for the mere sake of simplicity and
w.l.o.g., we assume pairwise MRFs including also unary potential functions and
a constant φ∅ potential function. We denote by d the maximum domain size
and e the number of pairwise potential functions. Using table representations, a
pairwise MRF requires O(ed2) space to be represented.

Note that Bayesian networks can be seen as specific MRFs enforcing a local
normalization condition of potentials and a specific DAG-base graph structure,
that together guarantee that Z = 1. As soon as evidence (observations) change
the domain of the variables however, Bayesian networks become unnormalized
and computing Z becomes #P-complete in general.

2.1 Computational Protein Design and Binding Affinity

Proteins are linear chains of small molecules called “amino-acids”. There are 20
natural different amino-acids. All amino-acids share a common core and the cores
of all successive amino-acids in a proteins are linked together to form a linear
chain, called the protein backbone. Each amino-acid also has a variable side-
chain which chemical nature defined the precise amino-acid used. This lateral
chain is highly flexible. The structure of a protein in 3D-space is therefore char-
acterized by the shape of the linear chain itself (the backbone), and the specific
spatial orientation of all side-chains, at each position of the chain. Proteins are
universally present in the cells of all living organisms and perform a vast array of
functions including catalyze, signaling, recognition, transporting, repair. . . Pro-
teins differ from one another primarily in their sequence of amino-acids which
usually results in protein folding into a specific 3D structure that determines its
function. The characteristic of proteins that also allows their diverse set of func-
tions is their ability to bind other molecules, with high affinity and specificity.
See [1,5] for an intrduction to proteins targeted at the CP audience.

Guaranteed Weighted Counting for Affinity Computation 737

Proteins have a relatively stable general shape. The relative stability of a
molecule in a given conformation can be evaluated by computing its energy,
lower energy states being more stable. This energy is derived from various mole-
cular forces including bond angles, electrostatic forces, molecular clashes and
distances. It can be computed using existing force fields such as Amber [29], the
one used in our experiments. Notice that molecular clashes – interpenetrating
atoms – may generate infinite energies i.e., determinism.

Despite a plethora of functionalities of proteins, there is still an ever-
increasing demand for proteins endowed with specific properties of interest for
many applications (in biotechnology, synthetic biology, green chemistry and nan-
otechnology) which either do not exist in nature or have yet not been found in the
biodiversity. To this end, Computational structure-based Protein Design (CPD)
has become a key technology. By combining physico-chemical models govern-
ing relations between protein amino-acid composition and protein 3D structure
with advanced computational algorithms, CPD seeks to identify one or a set of
amino-acid sequences that fold into a given 3D structure and possess the targeted
properties. This in silico search for the best sequence candidates opens up new
possibilities to better guide protein engineering by focusing experimentation on
the relevant sequence space for the desired protein function and thereby reducing
the size of mutant libraries that need to be built and screened. In recent years,
CPD has experienced important success, especially in the design of therapeutic
proteins [27], novel enzymes [31], protein-protein interfaces [18,32], and large
oligomeric ensembles [19]. Nevertheless, the computational design of proteins
with defined affinity for a given molecule (such as a small organic, a peptide,
another protein. . .) which is essential for large range of applications, continues
to present challenges.

A traditional approach to model proteins in CPD is to assume that their
backbone is totally rigid and that only side-chains move, each side-chain being
able to adopt a discrete set of most likely conformations defined in a so-called
“rotamer” library (see Fig. 1). We use the Penultimate rotamer library [26].

Fig. 1. A local view of a protein with a backbone and two acid side-chain reorientations
(rotamers) for a given amino-acid (L = Leucine). A typical rotamer library for another
amino-acid is shown on the right (ARG = Arginine).

738 C. Viricel et al.

With one variable per side-chain, each with a domain equal to the set of
available rotamers for this side-chain and a pairwise decomposable energy func-
tion such as Amber force field, a protein naturally defines a pairwise MRF with
a rather dense graph. The partition function Z of this MRF captures important
properties of the protein. Specifically, the association constant (or binding con-
stant) is used to describe the affinity between a protein and a ligand (a protein
or another molecule of interest). This association constant can be estimated by
computing the partition function of the two molecules in bound and unbound
states. The ratio of these two partition functions being proportional to their
affinity.

From a computational point of view, an important property of proteins of
interest is that their general shape is stable which means that the proportion of
low energy (or high probability) states among the exponential number of possible
states is likely to be very small. On the opposite side of the energy scale, the
infinite energies created by molecular clashes means that there will be states with
0 probability. This is favorable for exact solvers that can exploit determinism
to speedup Z computation. It however means that CPD instances will exhibit
unbounded tilt (defined in [7] as the ratio τ = maxt∈DX P (t)

mint∈DX P (t)). This situation is
not ideal for the WeightMC PAC algorithm which requires a finite upper-bound
on τ to run in finite time.

3 Guaranteed Counting

Because it is rarely (if ever) needed to compute a probability or a partition
function with an absolute precision (which is also inherently limited by finite
representations), we consider the general problem of computing an ε- approxi-
mation Ẑ of Z, i.e., such that:

Z

1 + ε
≤ Ẑ ≤ Z (1)

Such approximation allows us to compute an estimate P̂ (t) = exp(−E(t))

Ẑ
such

that P (t) ≤ ˆP (t) ≤ (1 + ε)P (t). In the context of #-SAT, it has been shown
that providing such relative approximations remains intractable for most of the
known SAT polynomial classes [30]. As we will see, it can however be exploited
to prune during polynomial space depth-first tree-search based counting and
sometimes provide important speedups.

Assuming that for any MRF, and any assignment t of some of its variables,
we can compute an upper bound Ub(t) of the partition function of the MRF
where variables are assigned as in t, the Depth First Branch and Bound schema
used for exactly solving optimization problems on cost function networks [1,9]
can be adapted to compute Z [39].

The algorithm simply explores the tree of all possible assignments of the
MRF, starting with the whole set of unassigned variables (in V), choosing an
unassigned variable (line 1), trying all possible values. When all variables are

Guaranteed Weighted Counting for Affinity Computation 739

Function Z∗
ε (t, V)

if V = ∅ then1

Ẑ ← Ẑ + exp(−E(t));2

else
Choose i ∈ V ;3

for a ∈ Di do
t′ ← t ∪ {(i, a)};
if (U + Ub(t′) + Ẑ ≤ (1 + ε)Ẑ) then4

U ← U + Ub(t′);5

else
Z∗

ε (t
′, V − {i});

Algorithm 1. Guaranteed approximate counting. Initial call: Z∗
ε (∅,X). U

and Ẑ are global variables initialized to 0.

assigned (line 1), the contribution of the complete assignment t is accumulated
in a running count which will eventually define the approximation Ẑ (line 2).
However, branches which provide a sufficiently small mass of probability (as
estimated by Ub(t′)) are pruned and this overestimation of the neglected mass
is accumulated in U (line 5). Because pruning may occur, eventually, Ẑ will be
a lower bound of Z.

Theorem 1. Z∗
ε terminates and returns an ε-approximation of Z.

Proof. The termination follows from the fact that Z∗
ε explores a finite tree.

We now show that the algorithm always provides a ε-approximation. When the
algorithm finishes, all the assignments have either been explored (line 2) and
counted or pruned (line 5). Since U is the sum of all the upper bounds on the
mass of probability in all pruned branches, we have that Ẑ + U ≥ Z. Initially,
Ẑ = U = 0 and the invariant Ẑ ≥ Ẑ+U

1+ε holds. The test at line 4 guarantees that
this invariant still holds at the end of the algorithm. Therefore Ẑ ≥ Z

(1+ε) . ⊓+

While inspired by Depth First Branch and Bound (DFBB) that provides
polynomial space complexity, this algorithm behaves differently from it. In
DFBB, for a fixed order of exploration, when the local bound used for prun-
ing (here Ub(t)) is tighter, less nodes are explored. This property is lost in Z∗

ε .
Indeed, it is easy to imagine a scenario where a tight bound Ub(t) will lead to
more nodes being explored than using a weaker Ub′(t): imagine that search has
started and collected a mass Ẑ = 1 and U = 0 for either bounds. Then comes a
subtree of small size for which Ub(t) = ε while Ub′(t) ≫ ε. This subtree will be
pruned by Ub(t) leading to U = ε but instead will be enumerated with Ub′(t)
preserving U = 0. In this context, the algorithm using the tight Ub(t) is not
allowed to prune anymore in the immediate future: if the forthcoming leaves
all have very small probability mass, it will be forced to visit all of them while

740 C. Viricel et al.

the algorithm using Ub′(t) preserved some margin and may be able to skip a
significant fraction of them.

Indeed, similarly to what happens with the α-β algorithm [20], the order in
which leaves are explored may have a major effect on the algorithm efficiency.
Let us assume that we have a perfect Ub(t) and that the leaves of the tree
have exponentially decreasing mass of probability, the ith visited leaf having a
mass of εi−1, ε < 1 (such an extreme distribution of probability mass may seem
unlikely, but corresponds to linearly increasing energies). In this case, the first
leaf bears more mass than all the rest of the tree and the Z∗

ε algorithm would
visit just one leaf. If the inverse ordering of leaves is assumed, the algorithm
will have to explore all leaves. It seems therefore important to collect highest
masses first. The polynomial space complexity of DFBB comes however with
strict constraints on the order of exploration of leaves and best-first algorithms
that could overcome this restriction would lead to worst-case exponential space
complexity. Interesting future work would be to use the recent highly flexible
any-space Branch and Bound algorithm HBFS [2] to improve the leaf ordering
within bounded space.

However, contrary to what happens with optimization, even an exact upper
bound and a perfect ordering does not guarantee that only one leaf needs to be
explored. If we instead assume a totally flat energy landscape, with all leaves
having the same energy, Z∗

ε will have to explore a 1
1+ε fraction of the leaves just

to accumulate enough mass in Ẑ to prune.
Overall, it is important to realize that Z∗

ε needs to achieve two goals:

1. collect probability masses on a potentially very large number of complete
assignments to compute a suitable approximation

2. exploit its upper bound to prune the largest possible part of the tree

The first goal could be achieved by existing algorithms producing an exhaustive
list of the m-best assignments [13] or all assignment within a threshold of the
optimum (a service that any DFBB-based optimization system provides for free).
These algorithms use bounds on the maximum probability instead of the total
probability mass which leads to stronger pruning and potentially higher efficiency
than Z∗

ε but do not provide any guarantee since the number m of assignments
that would need to be enumerated to provide ε-approximation is unknown.

Because a potentially very large number of probability masses need to be
collected, a very fast search is required. To accelerate it, we equip Z∗

ε with a
very simple form of “on the fly” caching: at any node during the search, we
eliminate any variable which is either assigned or of bounded degree as proposed
initially for optimization [22], but using sum-product variable elimination [11].
This caches all the influence of the eliminated variable in a temporary (trailed)
potential function. This means that the leaves of the search tree will be sub-
problems with bounded tree-width that may represent an exponential number
of assignments. This naturally makes Z∗

ε related to the vec weighted counting
algorithm, an anytime MRF counter based on w-cutsets (vertex cutset which if
assigned leave a w-tree) and variable elimination over w-trees [11].

Guaranteed Weighted Counting for Affinity Computation 741

The second goal is to prune the largest possible part of the tree search. How-
ever, since the first goal requires a very fast search algorithm, using a powerful
but computationally expensive bound is probably doomed to fail. For this reason,
we have considered simple fast incrementally updated upper bounds by borrow-
ing recent optimization bounds [9] which are known to work well in conjunction
with Depth First Search.

3.1 Bounds for Guaranteed Counting

For any MRF, we define a first upper bound on Z denoted by Ub1.

Z ≤ Ub1 =

⎛

⎝
∏

φS ,|S|<2

∑

t∈DS

exp (−φS(t))

⎞

⎠ ·

⎛

⎝
∏

φS ,|S|≥2

exp
(

− min
t∈DS

φS(t)
)⎞

⎠

Proof. By definition, we have that

Z =
∑

t∈DX

⎛

⎝
∏

φS ,|S|<2

exp (−φS(t)) ·
∏

φS ,|S|≥2

exp (−φS(t))

⎞

⎠

Trivially, exp (−φS(t)) ≤ maxt∈DS (exp (−φS(t))) = exp (−mint∈DS φS(t))
(by monotonicity). Applying this to the right term above, and exploiting the
fact that this term now does not depend on t, we get that:

Z ≤

⎛

⎝
∑

t∈DX

∏

φS ,|S|<2

exp (−φS(t))

⎞

⎠ ·

⎛

⎝
∏

φS ,|S|≥2

exp
(

− min
t∈DS

φS(t)
)⎞

⎠

Since the set {φS , |S| < 2} contains only unary or constant functions, dis-
tributivity allows to swap sum and product and the result follows. Notice that
this bound can be computed in linear time. ⊓+

This bound can be strengthened by selecting a subset of all pairwise poten-
tials in Φ defining a partial spanning k-tree T ⊂ Φ. By applying a sum-product
non serial dynamic programming [11] on T ′ = T ∪ {φS ∈ Φ : |S| < 2}, we can
obtain the exact ZT ′ for this sub-MRF in polynomial time. We can multiply ZT ′

by (
∏

φS∈Φ\T ′ exp(−mint∈DS φS(t))) and get a tighter upper bound on Z which
we denote UbT :

Z ≤ UbT =

⎛

⎝
∑

t∈DX

∏

φS∈T ′
exp (−φS(t))

⎞

⎠

︸ ︷︷ ︸
Computed using non serial dynamic programming

·

⎛

⎝
∏

φS∈Φ\T ′
exp
(

− min
t∈DS

φS(t)
)⎞

⎠

742 C. Viricel et al.

Proof. The proof is essentially similar to the previous one, and obtained by just
replacing the set {φS , |S| < 2} and its complement set {φS , |S| ≥ 2}, defining the
ranges of the products by the sets {φS ∈ T ′} (and its complement respectively).
The first item can be simply computed in O(nd2) time using non serial dynamic
programming. ⊓+

These bounds alone are very weak. To further strengthen them, we refor-
mulate the MRF using soft arc-consistencies [9] on its energy representation [1].
Soft arc consistencies essentially shift energy from pairwise potential functions to
unary potential functions and eventually to the constant potential function φ∅
while preserving equivalence. The result of this is an equivalent MRF (defining
the same distribution) with increased unary and constant φ∅ potential func-
tions and pairwise potential functions that satisfy mint∈DS φS(t) = 0. Besides
strengthening the bounds, it removes the need to compute the right term which
is always equal to 1. Ub1 and UbT can then be computed in O(nd) and O(nd2)
instead of O(ed2) (extension to non pairwise potentials would require the use of
partial k-trees instead of trees and change the d2 into a dk+1).

In the rest of the paper we consider spanning trees and try both Existential
Directional Arc Consistency (EDAC) and Virtual Arc Consistency (VAC) [9] as
possible ways of strengthening Ub1 and UbT .

4 Experimental Evaluation and Comparison

To evaluate the ability of the Z∗
ε algorithm to provide guaranteed deterministic

approximations to Z, we implemented it on the top of the open source toulbar2
solver2. The variable and value ordering used are the default weighted-degree and
last conflict variable ordering and the existential support value-ordering [9]. We
enforce EDAC at the root node and during search as usual for optimization.
When VAC is used, it is only enforced at the root node because of its computa-
tional cost. Instead of the k-way branching described in Algorithm 1, we use a
binary branching that either includes or reject a chosen value a at each branch-
ing decision. At each node, all variables of degree ≤ 2 are eliminated. The upper
bound UbT uses a fixed maximum spanning tree with maximum sum of mean
cost after enforcing arc consistencies at the root node. Our implementation is
limited to pairwise potentials.

We compared it to different exact weighted counting approaches in terms
of efficiency and quality of our guaranteed approximation. Four different exact
counters have been considered. The first one is the already described vec
exact counter [11]. The second one is the exact SAT based weighted counting
tool cachet [33]3. cachet relies internally on the Zchaff SAT solver to enu-
merate models with non zero weight and uses context-sensitive independence
to cache intermediate counts. We also used the ace 3.0 compiler [8], using the

2 http://www.inra.fr/mia/T/toulbar2.
3 We thank Jean-Marie Lagniez, CRIL, France for providing us with a patched version

of cachet that can be compiled and run without any issue on recent systems.

http://www.inra.fr/mia/T/toulbar2

Guaranteed Weighted Counting for Affinity Computation 743

UAI competition executable provided in the ace distribution (always using a
pseudo-random generator seed of 0). ace computes a tree decomposition and
based on the obtained width may either perform tabular variable elimination or
encode to CNF and compile in d-DNNF using c2d. We also tested the recent
minic2d Sentential Decision Diagram (SDD) compilation package [28]. SDD are
more constrained than d-DNNF and may therefore lead to larger compiled forms
than d-DNNF, but since we do not need a compiled form and just the value of
Z, we used the -W option of minic2d that performs weighted counting without
compilation hoping to trade space for time. minic2d relies on its own internal
SAT solver which is provided as a compiled binary in the distributed minic2d
package. Because some of the compared solvers (vec, cachet) provide only a
double floating representation of Z (or its logarithm), all software has been used
in double floating point mode.

All executions have been performed on one core of an Intel! Xeon! CPU
E5-2680 v3 @ 2.50GHz (a Q4 2014 cpu) with a limit of 60GB on RAM usage.

4.1 MRF to #SAT Encoding

If ace uses its own internal optimized MRF to SAT encoding, both cachet
and minic2d require specific SAT encoding. Exact #SAT weighted counters use
weighted literals and define the weight of a model as the product of the weights
of all literals which are true in the model. They therefore rely on multiplicative
potentials exp(−φS(t)). To transform an MRF into a literal-weighted CNF for-
mula with a weighted count equal to the partition function, we use the ENC1
encoding of [8], originally described in [10]. This encoding is the CNF version
of the so-called local polytope-based ILP encoding introduced in [34] for MRFs
and [21] for weighted CSPs [9]. For each variable i ∈ X, we use one proposition
di,r for each value r ∈ Di. This proposition is true iff variable i is assigned the
value r. We encode At Most One (AMO) with hard clauses (¬di,r ∨ ¬di,s) for
all i ∈ X and all r < s, r, s ∈ Di, as well as At Least One (f) with one hard
clause (

∨
r di,r) for each i. These clauses ensure that the propositional encoding

allows exactly one value for each variable in each model. For each potential φS ,
and each tuple t ∈ DS , we have a propositional variable pS,t. For non-zero ener-
gies φS(t), we have the literal pS,t with weight exp(−φS(t)). This represents the
multiplicative potential to use if the tuple t is used. ¬pS,t is instead weighted
by 1, the identity for multiplication. For every variable i ∈ S, we have a hard
clause (di,t[i] ∨¬pS,t). These clauses enforce that if tuple t is used, its values t[i]
must be used. Then, for each variable i ∈ S and each value r ∈ Di, we have hard
clauses (¬di,r ∨

∨
t∈DS ,t[i]=r pS,t) that enforces that if a value r ∈ Di is used, one

of the allowed tuples t ∈ DS such that t[i] = r, wS(t) < k must be used.
It is interesting to notice that for pure Constraint Satisfaction Problems

(MRFs having only 0/∞ potentials), it is known that Unit Propagation (UP)
on this encoding enforces arc consistency in the original CSP [3].

We apply obvious optimization steps, explicitly forbidding local assignments
with zero mass (sources of determinism). This encoding can be directly fed into

744 C. Viricel et al.

minic2d. Large problems however could not be encoded because minic2d only
allows to express weights in a one-line list of maximum 100,000 chars in length4.

In cachet, weighted literals l are either such that l and l̄ receive a mass
of 1 that has no effect on final mass, or such that the weights of a variable
and its negation sum to 1. This is sufficient and convenient to express Bayesian
nets because of their local normalization constraint. For arbitrary MRFs, for
every pS,t corresponding to a mass m = exp(−φS(t)) we introduce another
propositional variable nS,t with weights m (positive) and 1 − m (negative) and
a simple implication clause pS,t → nS,t. This extra variable is connected to
the rest of the problem only through this clause and can therefore easily be
eliminated, leading to a multiplicative factor m in models where pS,t is true and
1 = m+ (1 − m) in models where pS,t is false, as required.

4.2 Benchmarks

Two types of benchmarks have been used. The first type of benchmark is made of
instances of partition function computation appearing as sub-problems of bind-
ing affinity computations on molecular systems defined by a protein interacting

Fig. 2. Gap to Z: we represent log(Ub) − log(Ẑ) at the root node for Ub1 and UbT
using EDAC tightening (only negligible difference with VAC on these problems). The
instances on the x axis are sorted in increasing gap size for the strongest UbT bound.

4 This parameter could not be changed, being in the non open-source part on minic2d.

Guaranteed Weighted Counting for Affinity Computation 745

300 310 320 330 340

0
50

0
10

00
15

00

Instance

C
PU

 T
im

e
(s

)

Ub1+EDAC
Ub1+VAC
UbT+EDAC
UbT+VAC

Fig. 3. Cactus plot of the running times of Z∗
ε with our four bounds. A point at (x, y)

indicates that the number of solved problems is x if a deadline of y seconds is imposed
on each resolution.

Fig. 4. Cactus plot of the running times of Z∗
ε with the Ub1+EDAC bound together

with cachet and vec. A point at (x, y) indicates that the number of solved problems
is x if a deadline of y seconds is imposed on each resolution.

with a peptide or an amino-acid. The 3D model of these molecular systems were
derived from crystallographic structures of the proteins in complex with their
ligands, deposited in the Protein Data Bank. Missing heavy atoms in crystal
structures as well as hydrogen atoms were added using the tleap module of the
Amber 14 software package [6]. The molecular all-atom ff14SB force field was
used for the proteins and the ligands (peptides and amino-acids). The molecu-
lar systems were then subjected to 1000 steps of energy minimization with the
Sander module of Amber 14. Next, a portion of the proteins including amino-

746 C. Viricel et al.

acids at the interface between the protein and the ligand as well as surrounding
amino-acids with at least one atom within 8 to 12 Å (according to the molecular
system) of the interface was selected.5

To evaluate the effect of the strength of the upper bound on the algorithm
efficiency, we applied Z∗

ε with ε = 10−3 on a series of 349 systems using the four

Table 1. Time results for UAI/PIC’2011 instances. Three different categories are rep-
resented: Boltzmann machines (rbm) with attractive (ferro) and non attractive cou-
pling, Grids, and graph problems. Running-times are given in seconds. M : Memory
Out (60 GB), T : Time out (1 h). Bold is best.

Instance Z∗
ε minic2d ace vec cachet

smokers 10 < 0.01 0.663 < 0.01 < 0.01 0.264

smokers 20 < 0.01 312.825 < 0.01 < 0.01 332.168

rbm 20 7.46 T 3.376 16.17 941.14

rbm ferro 20 < 0.01 T 3.24 16.18 893.84

rbm 21 13.75 T 6.854 34.35 2041.64

rbm ferro 21 < 0.01 T 6.868 34.17 1975.78

rbm 22 33.75 T 14.411 72.78 T

rbm ferro 22 < 0.01 T 14.418 72.43 T

grid10x10.f10 66.32 < 0.01 < 0.01 < 0.01 T

grid20x20.f10 T T 13.316 2104.57 T

grid20x20.f15 T T 13.665 2099.24 T

grid20x20.f2 T T 13.603 2107.92 T

grid20x20.f5 T T 13.609 2102.32 T

GEOM30a 3 < 0.01 < 0.01 < 0.01 < 0.01 2.668

GEOM30a 4 7.66 78.604 < 0.01 < 0.01 43.77

GEOM30a 5 67.48 368.361 < 0.01 < 0.01 405.38

GEOM40 2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

GEOM40 3 < 0.01 < 0.01 < 0.01 < 0.01 3.62

GEOM40 4 1.42 0.58 < 0.01 < 0.01 616.59

GEOM40 5 12.67 12.801 < 0.01 < 0.01 828.50

myciel5g 3 37.2 T M T T

myciel5g 4 M T M T T

myciel5g 5 M T M T T

queen5 5 3 367.2 T 83.004 945.20 T

queen5 5 4 2423.67 T M T T

5 Each of these systems requires extensive molecular modeling expertise to be properly
defined. We intend to make this benchmark together with the Z∗

ε implementation
available.

Guaranteed Weighted Counting for Affinity Computation 747

different bounds. For each system, the most complex partition function, defined
on the compound system, is computed. The largest problem has 22 variables
and the largest domain size is 34. The gap between our two bounds and the
guaranteed approximation of Z determined by Z∗

ε is shown in Fig. 2. The bound
UbT is clearly stronger than Ub1, as expected.

We then compare the running times of Z∗
ε using these 4 bounds in a cactus

plot in Fig. 3. The best bound in terms of run-time is the lightest Ub1+EDAC
bound confirming that stronger, thus more expensive, bounds may quickly
become counter productive.

We represent the same information with the fastest Ub1+EDAC and two
of the three exact counting tools in Fig. 4. We omit ace and minic2d. Indeed,
ace was able to solve only 17 problems within the time limit and failed on all
remaining problems with a memory exception (despite the explicit allocation of
60GB to the JAVA machine). minic2d was instead unable to model 294 systems
out of the 349 because of its previously mentioned limitation on the length of
the weight line. On the remaining 55 problems, minic2d solved 7 problems in
less than one hour.

In the rest of the experiments we therefore use the Ub1+EDAC upper bound
which seems the most efficient bound. To see how the Z∗

ε algorithm performs on
other types of problems, we used instances extracted from UAI and PIC’2011
challenge instances (PR task)6 that use only pairwise potentials as a second set
of benchmark. Using the same value of ε = 10−3, we again compared Z∗

ε with
vec, cachet, ace and minic2d.

The results clearly show there is no single winner: except for cachet which
is always dominated by one of the other solvers, each algorithm may outperform
others. Specifically, the Z∗

ε algorithm, despite its lack of sophisticated caching
technology, is able to outperform its competitors in various cases. Nevertheless,
minic2d outperformed Z∗

ε on the Grid category (probably because of the combi-
nation of Boolean variables and relatively small treewidth), itself outperformed
by vec and further outperformed by ace (Table 1).

5 Conclusion

Existing solvers providing deterministic guarantees for partition function com-
putation exploit two sources of efficiency. This first one is caching of local counts
based on context-sensitive independence [33], related to tree-decomposition. The
other one is determinism i.e., the existence of zero probability assignments allow-
ing to prune zero probability mass sub-trees during search. This second source
of efficiency will provide significant speedups only when a significant fraction of
the search space has 0 probability. Such distributions have very low entropy.

In this paper, motivated by the computation of statistical estimate of affin-
ity between bio-molecules, we have proposed to build upon existing optimization
technology to provide a new source of pruning for partition function computa-
tion with deterministic guarantees: a branch and bound-based schema equipped
6 http://www.cs.huji.ac.il/project/PASCAL.

http://www.cs.huji.ac.il/project/PASCAL

748 C. Viricel et al.

with upper bounds derived from soft local consistencies. As existing SAT-based
exact approaches, our algorithm exploits determinism and a much simpler and
less powerful form of caching than those based on tree-decomposition. It is how-
ever able to prune regions of proven negligible mass of probability and is there-
fore able to exploit relatively low entropy distributions having a much wider
support, including those with no determinism. The resulting algorithm offers
an adjustable deterministic guarantee on the quality of the computed partition
function and, despite its limited caching strategy, may already offer interesting
speedups compared to exact solvers.

Z∗
ε includes two crucial ingredients to quickly gather large number of proba-

bility masses: pruning based on very fast incremental upper bounds derived from
optimization bounds and on-the-fly sum-prod elimination. An important point
is that these ingredients can be easily injected into existing SAT-based coun-
ters, including knowledge-compilation based counters using SAT-solver traces.
This could be achieved by defining counting upper bounds from existing Max-
SAT bounds. These bounds have already been related to soft arc-consistency
bounds [4,23,24]. This should extend their range of application to guaranteed
approximate probabilistic inference on problems with limited or no determinism.

From an affinity computation point of view, the next step is now to evaluate
the actual empirical quality of the association constant estimation provided by
the computed ratio of partition functions. Beyond algorithmic approximations,
the modeling may also have important effects on the estimated value based on
different rotamer discretizations, relative positions of molecules in the complex
or weights of different contributions in the energy function. To pursue this tar-
get, we intend to use available databases that provide experimental values of
the association constant of various protein-ligand complexes following various
mutations on one of the partners. To keep the modeling to a reasonable level of
complexity, this will be preferably achieved on protein-protein complexes.

Acknowledgments. We would like to thank Simon de Givry for his help with
toulbar2. We thank the Computing Center of Region Midi-Pyrénées (CALMIP,
Toulouse, France) and the Genotoul Bioinformatics Platform of INRA-Toulouse for
providing computing resources and support. C. Viricel was supported by a grant from
INRA and Region Midi-Pyrénées.

References

1. Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G.,
O’Sullivan, B., Prestwich, S., Schiex, T., Traoré, S.: Computational protein design
as an optimization problem. Artif. Intell. 212, 59–79 (2014)

2. Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M.: Anytime hybrid
best-first search with tree decomposition for weighted CSP. In: Pesant, G. (ed.)
CP 2015. LNCS, vol. 9255, pp. 12–29. Springer, Heidelberg (2015)

3. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 133–147. Springer, Heidelberg (2007)

4. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artif. Intell. 171(8),
606–618 (2007)

Guaranteed Weighted Counting for Affinity Computation 749

5. Campeotto, F., Dal Palu, A., Dovier, A., Fioretto, F., Pontelli, E.: A constraint
solver for flexible protein model. J. Artif. Intell. Res. 48, 953–1000 (2013)

6. Case, D., Babin, V., Berryman, J., Betz, R., Cai, Q., Cerutti, D., Cheatham III,
T., Darden, T., Duke, R., Gohlke, H., et al.: Amber 14 (2014)

7. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Proceedings of the 28th
Conference on Artificial Intelligence, pp. 1722–1730 (2014)

8. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6), 772–799 (2008)

9. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174, 449–478 (2010)

10. Darwiche, A.: A logical approach to factoring belief networks. In: KR 2002, pp.
409–420 (2002)

11. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell.
113(1–2), 41–85 (1999)

12. Dechter, R.: Reasoning with probabilistic and deterministic graphical models:
Exact algorithms. Synth. Lect. Artif. Intell. Mach. Learn. 7(3), 1–191 (2013)

13. Dechter, R., Flerova, N., Marinescu, R.: Search algorithms for m best solutions for
graphical models. In: AAAI. Citeseer (2012)

14. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of
dimensionality: Discrete integration by hashing and optimization. arXiv preprint
arXiv:1302.6677 (2013)

15. Georgiev, I., Lilien, R.H., Donald, B.R.: The minimized dead-end elimination crite-
rion and its application to protein redesign in a hybrid scoring and search algorithm
for computing partition functions over molecular ensembles. J. Comput. Chem.
29(10), 1527–1542 (2008)

16. Gilks, W.R.: Markov Chain Monte Carlo. Wiley Online Library (2005)
17. Jaakkola, T.S.: Tutorial on variational approximation methods. In: Advanced Mean

Field Methods: Theory Practice, p. 129 (2001)
18. Karanicolas, J., Kuhlman, B.: Computational design of affinity and specificity at

protein-protein interfaces. Curr. Opin. Struct. Biol. 19(4), 458–463 (2009)
19. King, N.P., Bale, J.B., Sheffler, W., McNamara, D.E., Gonen, S., Gonen, T.,

Yeates, T.O., Baker, D.: Accurate design of co-assembling multi-component protein
nanomaterials. Nature 510(7503), 103–108 (2014)

20. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1976)

21. Koster, A.: Frequency assignment: Models and Algorithms. Ph.D. thesis, University
of Maastricht, The Netherlands (1999). www.zib.de/koster/thesis.html

22. Larrosa, J.: Boosting search with variable elimination. In: Dechter, R. (ed.) CP
2000. LNCS, vol. 1894, pp. 291–305. Springer, Heidelberg (2000)

23. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: Proceedings of the 19th IJCAI, Edinburgh, Scotland, pp.
193–198 (2005)

24. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artif. Intell. 172(2–3), 204–233 (2008)

25. Liu, Q., Ihler, A.T.: Bounding the partition function using holder’s inequality. In:
Proceedings of the 28th International Conference on Machine Learning (ICML
2011), pp. 849–856 (2011)

26. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penulti-
mate rotamer library. Proteins 40(3), 389–408 (2000). http://www.ncbi.nlm.nih.
gov/pubmed/10861930

http://arxiv.org/abs/1302.6677
www.zib.de/koster/thesis.html
http://www.ncbi.nlm.nih.gov/pubmed/10861930
http://www.ncbi.nlm.nih.gov/pubmed/10861930

750 C. Viricel et al.

27. Miklos, A.E., Kluwe, C., Der, B.S., Pai, S., Sircar, A., Hughes, R.A., Berrondo, M.,
Xu, J., Codrea, V., Buckley, P.E., et al.: Structure-based design of supercharged,
highly thermoresistant antibodies. Chem. Biol. 19(4), 449–455 (2012)

28. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
Proceedings of the 24th International Conference on Artificial Intelligence. AAAI
Press (2015)

29. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt,
S., Ferguson, D., Seibel, G., Kollman, P.: Amber, a package of computer programs
for applying molecular mechanics, normal mode analysis, molecular dynamics and
free energy calculations to simulate the structural and energetic properties of mole-
cules. Comput. Phys. Commun. 91(1), 1–41 (1995)

30. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1), 273–302
(1996)

31. Röthlisberger, D., Khersonsky, O., Wollacott, A.M., Jiang, L., DeChancie, J.,
Betker, J., Gallaher, J.L., Althoff, E.A., Zanghellini, A., Dym, O., Albeck, S.,
Houk, K.N., Tawfik, D.S., Baker, D.: Kemp elimination catalysts by computa-
tional enzyme design. Nature 453(7192), 190–195 (2008). http://www.ncbi.nlm.
nih.gov/pubmed/18354394

32. Sammond, D.W., Eletr, Z.M., Purbeck, C., Kuhlman, B.: Computational design of
second-site suppressor mutations at protein-protein interfaces. Prot. Struct. Funct.
Bioinform. 78(4), 1055–1065 (2010)

33. Sang, T., Beame, P., Kautz, H.: Solving bayesian networks by weighted model
counting. In: Proceedings of the Twentieth National Conference on Artificial Intel-
ligence (AAAI 2005). vol. 1, pp. 475–482 (2005)

34. Schlesinger, M.: Syntactic analysis of two-dimensional visual signals in noisy con-
ditions. Kibernetika 4, 113–130 (1976)

35. Silver, N.W., King, B.M., Nalam, M.N., Cao, H., Ali, A., Kiran Kumar Reddy,
G., Rana, T.M., Schiffer, C.A., Tidor, B.: Efficient computation of small-molecule
configurational binding entropy and free energy changes by ensemble enumeration.
J. Chem. Theory Comput. 9(11), 5098–5115 (2013)

36. Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., Schiex, T.: Guar-
anteed discrete energy optimization on large protein design problems. J. Chem.
Theory Comput. 11(12), 5980–5989 (2015)

37. Toda, S.: On the computational power of PP and ⊕P. In: 30th Annual Symposium
on Foundations of Computer Science, pp. 514–519. IEEE (1989)

38. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979)

39. Viricel, C., Simoncini, D., Allouche, D., de Givry, S., Barbe, S., Schiex, T.: Approx-
imate counting with deterministic guarantees for affinity computation. In: Le Thi,
H.A., Dinh, T.P., Nguyen, N.T. (eds.) Model. Comput. & Optim. in Inf. Syst. &
Manage. Sci. AISC, vol. 360, pp. 165–176. Springer, Switzerland (2015)

40. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: A new class of upper bounds on
the log partition function. IEEE Trans. Inf. Theory 51(7), 2313–2335 (2005)

http://www.ncbi.nlm.nih.gov/pubmed/18354394
http://www.ncbi.nlm.nih.gov/pubmed/18354394

Music Track

Finding Alternative Musical Scales

J.N. Hooker(B)

Carnegie Mellon University, Pittsburgh, USA
jh38@andrew.cmu.edu

Abstract. We search for alternative musical scales that share the main
advantages of classical scales: pitch frequencies that bear simple ratios
to each other, and multiple keys based on an underlying chromatic
scale with tempered tuning. We conduct the search by formulating
a constraint satisfaction problem that is well suited for solution by
constraint programming. We find that certain 11-note scales on a 19-note
chromatic stand out as superior to all others. These scales enjoy harmonic
and structural possibilities that go significantly beyond what is available
in classical scales and therefore provide a possible medium for innovative
musical composition.

1 Introduction

The classical major and minor scales of Western music have two characteristics
that make them a fertile medium for musical composition: pitch frequencies
that bear simple ratios to each other, and multiple keys based on an underlying
chromatic scale with tempered tuning. Simple ratios allow for rich and intelligible
harmonies, while multiple keys greatly expand possibilities for complex musical
structure. While these traditional scales have provided the basis for a fabulous
outpouring of musical creativity, expressive power, and structural sophistication
over several centuries, one might ask whether alternative scales with the same
favorable characteristics—simple ratios and multiple keys—could unleash even
greater creativity.

We take a step toward answering this question by undertaking a systematic
search for musically appealing alternative scales. We restrict ourselves to diatonic
scales, whose adjacent notes are separated by a whole tone or semitone. We
conduct the search by defining a constraint satisfaction model that, for each
suitable diatonic scale, seeks to assign relatively simple ratios to intervals in the
scale. The ratios must be amenable to tuning based on equal temperament. To
the extent that such an assignment of ratios is possible, the scale is a potential
candidate for musical use.

Constraint programming is well adapted to this problem because it naturally
expresses a recursive condition requiring that each note bear simple ratios
with some other notes, but not necessarily with the tonic. The constraint
programming model also solves in a reasonable amount of time.

We find that while the classical 7-note scales deserve the attention they
have received, certain 11-note scales based on a 19-note chromatic stand out
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 753–768, 2016.
DOI: 10.1007/978-3-319-44953-1 47

754 J.N. Hooker

as possibly even more attractive, based on the criteria developed here. To our
knowledge, this is a new result.

After a brief review of previous work, we present a rationale for preferring
the simple ratios and multiple keys that characterize the classical scales. We
then discuss how these characteristics can be precisely formulated as criteria
for nonstandard scales, and we state a constraint programming model that
formulates the criteria. We then present computational results, focusing on scales
based on the 12-note and 19-note chromatics. We exhibit several particular scales
that composers may wish to investigate.

2 Previous Work

Composers have experimented with a number of alternative scales in recent
decades. One of the most discussed is the Bohlen-Pierce scale, which consists of
9 notes on a 13-tone tempered chromatic scale [4,9]. The scale spans a twelfth,
rather than the traditional octave. It treats notes that lie a twelfth apart as
equivalent, much as traditional scales treat notes an octave apart as equivalent.
Composers Richard Boulanger, Ami Radunskaya and Jon Appleton have written
pieces using the Bohlen-Pierce scale [18]. In this paper we focus instead on scales
that span the traditional octave, due to the ear’s strong tendency to identify
tones an octave apart, and the interesting possibilities that remain to be explored
among these scales. Pierce [17] also experimented with a scale that divides the
octave into 8 equal intervals, but we will find this scale to be unappealing due
to the lack of simple pitch ratios.

A number of composers have written music that uses the quarter-tone scale,
in which the octave is divided into 24 equal intervals. Some of the better-
known examples are Béla Bartók, Alban Berg, Ernest Bloch, Pierre Boulez,
Aaron Copeland, George Enescu, Charles Ives, and Henry Mancini. We will
find, however, that quarter tones do not offer significant musical advantages, at
least according to the criteria developed here.

Benson [2] reports that several composers have experimented with “super
just” scales that use only perfect ratios. These include Harry Partch (43-tone
scale), Wendy Carlos (12 tones), Lou Harrison (16 tones), Wildred Perret (19
tones) [16], John Chalmers (a similar 19-tone scale), and Michael Harrison (24
tones). These scales are not fitted to a tempered chromatic scale as are the scales
we discuss here and therefore lack the advantage of providing multiple keys.

Combinatorial properties of scales, keys and tonality have been studied by
Balzano [1], Noll [11–13], and others [6,7,15,22]. The composer Olivier Messiaen
studied “modes of limited transposition” (scales with fewer keys than notes in
the underlying chromatic) [10].

Sethares [20] formulates an optimization problem for finding an instrumental
timbre (i.e. relative strength of upper harmonics) that maximizes the degree to
which the notes of a given scale sound consonant with the tonic when played on
that instrument. The object is to design an instrument that is most suitable for
a given scale, rather than to find possible scales.

Alternative Musical Scales 755

To our knowledge, no previous study conducts a systematic search for scales
with simple pitch ratios and multiple keys, nor formulates an optimization or
constraint satisfaction problem for conducting such a search.

3 Characteristics of Standard Scales

We first provide a rationale for preserving the main characteristics of standard
scales: intervals that correspond to simple frequency ratios, and multiple keys
based on tempered tuning.

3.1 Simple Ratios

A harmonic partial of a tone (or a harmonic, for short) is an equal or higher
tone whose frequency is an integral multiple of the frequency of the original
tone. Two tones whose frequencies bear a simple ratio have many harmonics in
common, and this helps the ear to recognize the interval between the tones. If the
frequency ratio is a/b (where a > b and a, b are coprime), every ath harmonic of
the lower tone coincides with every bth harmonic of the upper tone. For example,
if a/b = 3/2 as in a perfect fifth, every third harmonic of the lower tone coincides
with every other harmonic of the upper tone. This coincidence of harmonics is
aurally important because a tone produced by almost any acoustic instrument is
accompanied by many upper harmonics (or perhaps only odd harmonics, as in
the case of a clarinet). The ear therefore learns to associate a given interval with
the timbre produced by a certain coincidence of harmonics, and this distinctive
timbre makes the interval easier to recognize. In particular, the octave interval
tends to be perceived as a unison, because the upper note adds nothing to the
harmonic series: every harmonic of the upper note is a harmonic of the lower.

This ease of recognition benefits both harmony and counterpoint, which
might be viewed as the two principal mechanisms of Western polyphonic music.
The benefit to harmony is clear. It is hard to distinguish one tone cluster from
another if the pitch frequencies have no discernible ratios with each other, while
if the ratios are simple, a given tone cluster generates a series of harmonics
that reinforce each other in a recognizable pattern. Harmony can scarcely play a
central role in music if listeners cannot distinguish which chord they are hearing.
In addition, harmony adds immeasurably to the composer’s expressive palette.
Because each chord has its own peculiar timbre, shifting from one set of frequency
ratios to another can create a wide variety of effects the listener can readily
appreciate, as does moving from 4:5:6 to 10:12:15 (major to minor triad) or
from 8:10:12:15 to 12:15:18:20 (major seventh to a “softer” major sixth chord).
The expressive use of harmony has been a key element of music at least since J.S.
Bach and became especially important for impressionist and jazz composers.1

1 Simple ratios also tend to produce intervals that are consonant in some sense,
although consonance and dissonance involve other factors as well. One theory is
that the perception of dissonance results from beats that are generated by upper

756 J.N. Hooker

Recognizable intervals are equally important for counterpoint, because with-
out them, simultaneous moving voices are perceived as cacophony. Voices that
create recognizable harmonic relationships, on the other hand, can be perceived
as passing tones from one recognizable chord to another, thus making counter-
point intelligible. This is confirmed by Schenkerian analysis, which interprets
Western music as consisting largely of underlying major and minor triads
connected by passing tones [5,14].

3.2 Multiple Keys

Multiple keys enable a signature trait of Western musical structure: the ability to
begin in a tonic key, venture away from the tonic into exotic keys, and eventually
return “home” to the tonic with an experience of satisfaction and closure.
Multiple keys are implemented by embedding the corresponding 7-note scales
within a single 12-note “chromatic” scale with tempered tuning. For example,
one can play a major scale rooted at any tone of the chromatic scale by sounding
the 1st, 3rd, 5th, 6th, 8th, 10th, and 12th notes of the chromatic scale beginning
at that tone. This results in 12 distinct major keys.

It is remarkable that the frequency ratios that define classical scales are
closely matched by the pitches in a tempered chromatic scale. The pitches are
“tempered” in the sense that they are adjusted so that no key is too far out of
tune. Various types of temperament have been used historically, but the modern
solution is to use equal temperament, in which the kth pitch of the chromatic
scale has a frequency ratio of 2(k−1)/12 with the first pitch. Table 1 shows tuning
errors that result for the major diatonic scale. For example, the fifth note of
the scale is slightly flat when played on a tempered scale, and the third note is
sharp. None of the errors is greater than 0.9%, or about 16 cents.2

Temperament was originally adopted to allow a musical instrument with
fixed tuning (such as a piano or organ) to play in all keys. But it has an equally
important function in musical composition. It allows one to move into a different
key by changing only a few notes of the tonic key, where more “distant” keys
share fewer notes with the tonic. For example, the most closely related keys,
the dominant and subdominant (rooted at the fifth and fourth note) share 6 of
the 7 notes of the tonic key. This allows the composer to exploit a wide range of
possible relationships when moving from one key to another, making the musical
texture richer and more interesting.

harmonics that are close in frequency [18–21]. We will occasionally refer to simple
ratios as resulting in “consonant” intervals, but this is not to deny the other factors
involved.

2 We use the tempered pitch as a base for the percentage error because it is the same
across all scales and so permits more direct comparison of errors. A cent is 1/1200
of an octave, or 1/100 of a semitone. Thus if two tones differ by c cents, the ratio
of their frequencies is 2c/1200. An error of +0.9% is equivalent to +15.65 cents, and
an error of −0.9% to −15.51 cents.

Alternative Musical Scales 757

Table 1. Relative pitch errors of the equally tempered major diatonic scale, as a
percentage of tempered tuning. Positive errors indicate sharp tuning, negative errors
flat tuning.

Note Perfect ratio Tempered ratio Error % Error cents

1 1/1 1.00000 0.000 0

2 9/8 1.12246 −0.226 −3.91

3 5/4 1.25992 +0.787 +13.69

4 4/3 1.33484 +0.113 +1.96

5 3/2 1.49831 −0.113 −1.96

6 5/3 1.68179 +0.899 +15.64

7 15/8 1.88775 +0.675 +11.73

4 Requirements for Alternative Scales

Given the advantages of simple ratios and multiple keys, we will attempt to
generate alternative scales with these same characteristics. In general, a scale will
have m notes on a chromatic scale of n notes. The equally tempered chromatic
pitches should result in intervals with something close to simple ratios.

4.1 Keys and Temperament

The first decision to be made is the tolerance for inaccurate tuning in the
tempered scale. The only reliable guide we have is two centuries of experience
with the equally tempered 12-tone chromatic. It is famous for producing flat
fifths, but the error is much greater for major thirds and sixths, which are sharp.
The tempered major third is in fact quite harsh, although we have learned to
tolerate it, and the error is magnified in the upper partials. It therefore seems
prudent to limit the relative error to the maximum error in the traditional major
scale, namely ±0.9%, or between −15.51 and +15.65 cents.

There are
(n
m

)
scales of m notes on n chromatic pitches, but many of these

scales are aesthetically undesirable. We can begin by considering only diatonic
scales, whose adjacent notes are no more than two chromatic tones (semitones)
apart. Diatonic scales are easier to perform, and restricting ourselves to them
helps keep the complexity of the search within bounds.3

A diatonic scale can be represented by a binary tuple s = (s1, . . . sm), where
si + 1 is the number of semitones between note i and note i+ 1. Because there
are n semitones altogether, s must contain m0 = 2m− n zeros and m1 = n−m
ones. This means that there are

(m
m0

)
=

(m
m1

)
diatonic scales to consider.

We also adopt the aesthetic convention that semitones should be distributed
fairly evenly through the scale rather than bunched up together. One approach is
3 This restriction excludes the classical harmonic minor scale, in which notes 6 and 7
are separated by three semitones, but the harmonic minor scale can be viewed as a
variant of a natural minor scale in which note 7 is raised a semitone for cadences.

758 J.N. Hooker

to require the scales to have Myhill’s property, discussed by Noll [12]. However,
because few scales satisfy this strong property, we require that the scales have a
minimum number of semitone and whole-tone adjacencies. That is, the number
of pairs (si, si+1) in which si = si+1 should be minimized subject to the given
m and n, where sm+1 is cyclically identified with s1. If m0 ≥ m1, the number
k0 of pairs of adjacent zeros can be as few as m0 − m1, and the number k1 of
adjacent ones can be zero. The reasoning is similar if m1 ≥ m0. We therefore
require

k0 = m0 − min{m0,m1}, k1 = m1 − min{m0,m1}

It is not hard to show that the number of diatonic scales satisfying this
requirement is (

max{m0,m1}
min{m0,m1}

)
+

(
max{m0,m1} − 1
min{m0,m1} − 1

)
(1)

For example, among 7-note scales on a 12-note chromatic, we have (m0,m1) =
(2, 5), (k0, k1) = (0, 3), and

(5
2

)
+

(4
1

)
= 14 suitable scales.

The number of keys generated by a given scale s depends on the presence of
any cyclic repetition in s. Let ∆ be the smallest offset that results in the same
0/1 pattern; that is, ∆ is the smallest positive integer such that si = si+∆ for
i = 1, . . . ,m, where sm+1, . . . , s2m are respectively identified with s1, . . . , sm.
Then there are

∆ +
∆∑

j=1

sj

distinct keys. For the classical major scale s = (1, 1, 0, 1, 1, 1, 0), we have ∆ = 7,
and there are 7+

∑7
j=1 sj = 12 keys. When ∆ < m, we have a “mode of limited

transposition” [10]. For example, the whole tone scale favored by Debussy has
s = (1, 1, 1, 1, 1, 1) and ∆ = 1, yielding only 1+s1 = 2 keys, which have no notes
in common.

4.2 Simple Ratios

In the previous section, we geneated scales by considering subsets of notes in a
chromatic scale. For each such scale, we now wish to determine whether relatively
simple ratios can be assigned to the notes of the scale that are within 0.9% of the
tempered pitches. It does not seem necessary that every note be consonant with
the tonic, because many of the harmonies that occur in music do not involve
the tonic. Yet every note should at least be consonant with another note of the
scale, to allow it to take part in harmony at some point.

We therefore propose that possible ratios be obtained by generators, which
are simple ratios that a given note can bear with some other note of the scale
(these are not generators in the formal sense of group theory). Since we identify
notes an octave apart, we consider notes in a two-octave range. Thus if r1, . . . , rp
are the generators and fi the frequency of note i, we require for each note

Alternative Musical Scales 759

i ∈ {1, . . . ,m} that

fi
fj

= rq or
2fj
fi

=rq or
fj
fi

= rq or
2fi
fj

= rq,

for some j ∈ {1, . . . ,m} \ {i}, some q ∈ {1, . . . , p}

This requirement is insufficient, however, because it allows for subsets of notes
that are consonant with others in the same subset but are extremely dissonant
with notes in other subsets. To avoid this outcome, we make the requirement
recursive, beginning with the tonic. That is, a note is acceptable if it bears a
simple ratio with the tonic, or if it bears a simple ratio with another acceptable
note. This can result in notes that are rather dissonant with the tonic, but they
will always be consonant with notes that closely precede it in the recursion.

To express this in notation, we let π = (π1, . . . ,πm) be a permutation
of 1, . . . ,m, where πi is interpreted as the ith note defined in the recursion.
Then frequencies f1, . . . , fm are acceptable if and only if f1 = 1 and there is a
permutation π with π1 = 1 such that for each i ∈ {2, . . . ,m}, 1 < fπi < 2 and

fπi

fπj

= rq or
2fπj

fπi

= rq or
fπj

fπi

= rq or
2fπi

fπj

= rq,

for some j ∈ {1, . . . , i − 1}, some q ∈ {1, . . . , p}
(2)

Whenever fπi/fπj = rq, we also have 2fπj/fπi = 2/rq. Thus there is
no need to consider both rq and 2/rq as generators. That is, we need only
consider reduced fractions with odd numerators. We will order the generators
by decreasing simplicity, beginning with the smallest denominators, and for
each denominator, beginning with the smallest numerator. The first several
generators, in order of decreasing simplicity, are

3
2 ,

5
3 ,

5
4 ,

7
4 ,

7
5 ,

9
5 ,

7
6 ,

11
6 , 9

7 ,
11
7 , 13

7 , 9
8 ,

11
8 , 13

8 , 15
8 , 11

9 , 13
9 , 17

9 (3)

5 Constraint Programming Model

Constraint programming is naturally suited to formulate the problem described
above, because it readily accommodates the variable indices πi that occur in
the expressions fπi of the recursive formulation. To state the model, we write
each frequency ratio fi as a fraction ai/bi in lowest terms. We set f1 = 1, so
that fi is the frequency ratio of note i with the tonic. In the model below,
we treat πi, ai, and bi as integer variables. Constraint (a) ensures that π is
a permutation. Constraint (b) initializes the recursion. Constraint (c) requires
that ai/bi be a valid ratio in lowest terms, where “coprime” is a pre-defined
predicate. Constraint (d) reduces symmetry by requiring that ratios be indexed
in increasing order. Constraints (e) and (f) enforce condition (2), where G is the
set of generators. Constraint (g) requires that temperament lie within tolerance
ϵ (= 0.009), where ti indexes the chromatic tone corresponding to scale note i.
Thus t1 = 1 and ti = ti−1 + si−1 +1 for i = 2, . . . ,m. The domains (h) place an

760 J.N. Hooker

upper bound M on the denominators bi, to limit the search and avoid intervals
that are unreasonably dissonant.

alldiff(π1, . . . ,πm) (a)
π1 = a1 = b1 = 1 (b)
1 <

ai
bi

< 2, coprime(ai, bi), i = 1, . . . ,m (c)
ai−1

bi−1
<

ai
bi
, i = 2, . . . ,m (d)

∨

j<i

[
(πi > πj) ⇒

(aπi/bπi

aπj/bπj

∈ G ∨
2aπj/bπj

aπi/bπi

∈ G
)]

, i = 2, . . . ,m (e)

∨

j<i

[
(πi < πj) ⇒

(aπj/bπj

aπi/bπi

∈ G ∨ 2aπi/bπi

aπj/bπj

∈ G
)]

, i = 2, . . . ,m (f)

|ai/bi − 2(ti−1)/n|
2(ti−1)/n

≤ ϵ, i = 1, . . . ,m (g)
πi ∈ {1, . . . ,m}, ai ∈ {1, . . . , 2M}, bi ∈ {1, . . . ,M}, i = 1, . . . ,m (h)

(4)

Conditions of the form α ∈ G in (e) and (f) are formulated by writing the
constraint

∑
g∈G(α = g) ≥ 1. Fractions are shown in the constraints for

readability, but they are removed in the model given to the solver, for example
by writing a/b < c/d as ad < bc.

6 Computational Results

The search algorithm was implemented in IBM OPL Studio 12.6.2. The OPL
script language was used to search tempered scales s, for given values of n andm.
The number of scales examined is given by (1). For each scale s, the model (4) was
solved by the CP Optimizer to find acceptable ratios that are within tolerance
of the tempered scale.

A key decision is what set G of generators to use. We found that in several
cases, there were no solutions for the simplest generators. We therefore used
a rather large set of generators for all scales, namely those in (3), which
typically resulted in many solutions. Since the first solutions found tend to
have the simplest ratios, we terminated the process after finding 50 solutions.
Distinct solutions (a1/b1, . . . , am/bm) were found by re-solving the problem
with constraints that exclude the solutions already found. The solver generally
obtained each solution in well under a minute, perhaps only a few seconds,
depending on the number of chromatic tones. When the solver could no longer
find a solution, it ran several hours without proving infeasibility. We therefore
set the maximum computation time for finding each solution at 5min, on the
assumption that this suffices to find any remaining solution if it exists.

We focused on solutions (a1/b1, . . . , am/bm) that can be obtained from
relatively small generators. Since a given solution can typically be obtained from
several distinct sets of generators, we computed for each solution and each scale
note i the simplest generator that could derive it from another note. That is,

Alternative Musical Scales 761

we computed for each note i the simplest of the following ratios that fall in the
range [1,2], over all j ̸= i:

ai/bi
aj/bj

,
2aj/bj
ai/bi

,
aj/bj
ai/bi

,
2ai/bi
aj/bj

where simplicity is measured by the size of the denominator when the fraction
is in reduced terms. We will call this resulting ratio the minimal generator for
note i. The minimal generator need not be among the generators actually used
to obtain the scale in the solution of the constraint programming model (4).

Each solution obtained for a given scale s represents one way the ear might
interpret the frequency ratios between the tempered notes of s and the tonic.
The existence of a solution with relatively simple ratios and relatively simple
minimal generators indicates that scale s is a possible candidate for musical use.

6.1 Scales on a 12-Note Chromatic

We began by analyzing scales on the classical 12 chromatic tones, since they can
be performed on traditional instruments. The results for 7-note scales appear
in Table 2, which shows the number of solutions (a, b) found for each of the
14 possible scales.4 Since there are multiple solutions for each scale, the table
displays a solution in which the ratios are simplest (sometimes there are 2 or
3 solutions in which the ratios are more or less equally simple). It also shows
the minimal generators for each scale. Most of these scales correspond to the
classical Greek modes and/or modern major and minor scales, as indicated in
the table. Interestingly, the classical modes are precisely the scales that can be
obtained from the single generator 3/2.5

We also investigated nonclassical scales with 6, 8 or 9 notes (Table 3). The
only 6-note scale is the whole-tone scale, whose musical possibilities are limited.
There are only two 8-note scales, each of which has three keys. The first of the
two might be viewed as superior, because it contains both the major third and
the fifth, neither of which occurs in the second. However, the second has a half-
step leading tone to the tonic (i.e., s8 = 0), which may be viewed as desirable
because it allows for stronger cadences. There are thirty 9-note scales, and these
tend to contain a large number of consonant ratios, giving them a distinctive
sound. Table 3 displays the 10 scales that begin with a whole tone. Scales 22
and 23 seem especially appealing for composition due to their distribution of
semitones and simple ratios. They are identical, except that one has a major
sixth and one a dominant seventh interveral. The author wrote an extended
work for organ using scale 23 [8].

4 We follow the convention of numering the scales in the order of the tuples s treated
as binary numbers.

5 For the Dorian, a solution with generators 3/2 and 5/3 is shown because it results in
simpler ratios. The single generator 3/2 results in ratios 9/8, 32/27, 4/3, 3/2, 27/16,
16/9.

762 J.N. Hooker

Table 2. The fourteen 7-note scales on a 12-note chromatic. The number of solutions
obtained is shown for each scale, followed by one selected solution with relatively
simple ratios and minimal generators. The solutions are generated with a maximum
denominator of M = 32. All scales have 12 keys.

Scale Solns Ratios with tonic Minimal generators

1 0101111 27 1
1

16
15

6
5

5
4

45
32

8
5

16
9

5
3

3
2

3
2

5
4

9
8

3
2

5
3

2 0110111 10 1
1

18
17

6
5

4
3

24
17

8
5

16
9

3
2

3
2

3
2

3
2

3
2

3
2

3
2 Locrian mode

3 0111011 18 1
1

16
15

6
5

4
3

3
2

8
5

16
9

3
2

3
2

3
2

3
2

3
2

3
2

3
2 Phrygian mode

4 0111101 26 1
1

16
15

6
5

4
3

3
2

5
3

16
9

3
2

5
3

5
3

3
2

3
2

5
3

3
2

5 1010111 6 1
1

9
8

6
5

4
3

45
32

8
5

16
9

3
2

5
4

3
2

3
2

5
4

3
2

3
2

6 1011011 6 1
1

9
8

6
5

4
3

3
2

8
5

16
9

3
2

3
2

3
2

3
2

3
2

3
2

3
2 Aeolian mode (natural minor)

7 1011101 10 1
1

9
8

6
5

4
3

3
2

5
3

16
9

3
2

3
2

5
3

3
2

3
2

5
3

3
2 Dorian mode

8 1011110 27 1
1

9
8

6
5

4
3

3
2

5
3

15
8

3
2

3
2

5
3

3
2

3
2

5
3

5
3 melodic minor

9 1101011 14 1
1

9
8

5
4

4
3

3
2

8
5

16
9

3
2

3
2

5
3

3
2

3
2

5
3

9
8

10 1101101 9 1
1

9
8

5
4

4
3

3
2

5
3

16
9

3
2

3
2

3
2

3
2

3
2

3
2

3
2 Mixolydian mode

11 1101110 17 1
1

9
8

5
4

4
3

3
2

5
3

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2 Ionian mode (major)

12 1110101 10 1
1

9
8

5
4

45
32

3
2

5
3

16
9

3
2

3
2

3
2

5
4

3
2

3
2

3
2

13 1110110 16 1
1

9
8

5
4

45
32

3
2

5
3

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2 Lydian mode

14 1111010 34 1
1

9
8

5
4

45
32

8
5

5
3

15
8

5
3

5
3

3
2

3
2

5
4

3
2

3
2

Table 3. The 6-note whole-tone scale, two 8-note scales, and 10 of the 30 9-note scales
on a 12-note chromatic. Solutions are generated with maximum denominator M = 32.

Scale Solns Keys Ratios with tonic Minimal generators

1.111111 6 2 1
1

9
8

5
4

45
32

8
5

16
9

5
4

5
4

5
4

5
4

5
4

9
5

1.01010101 >50 3 1
1

16
15

6
5

5
4

45
32

3
2

5
3

16
9

3
2

5
3

5
3

3
2

9
8

3
2

3
2

5
3

2.10101010 >50 3 1
1

9
8

6
5

4
3

45
32

8
5

5
3

15
8

3
2

5
3

3
2

3
2

3
2

3
2

5
3

3
2

21.100001010 >50 12 1
1

9
8

6
5

5
4

4
3

45
32

8
5

5
3

15
8

3
2

5
3

3
2

3
2

3
2

3
2

3
2

3
2

3
2

22.100010010 >50 12 1
1

9
8

6
5

5
4

4
3

3
2

8
5

5
3

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

23.100010100 >50 12 1
1

9
8

6
5

5
4

4
3

3
2

8
5

16
9

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

24.100100010 >50 12 1
1

9
8

6
5

5
4

45
32

3
2

8
5

5
3

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

25.100100100 >50 4 1
1

9
8

6
5

5
4

45
32

3
2

8
5

16
9

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

9
5

3
2

26.100101000 >50 12 1
1

9
8

6
5

5
4

45
32

3
2

5
3

16
9

15
8

3
2

3
2

5
3

3
2

3
2

3
2

3
2

9
8

3
2

27.101000010 >50 12 1
1

9
8

6
5

4
3

45
32

3
2

8
5

5
3

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

5
3

3
2

28.101000100 >50 12 1
1

9
8

6
5

4
3

45
32

3
2

8
5

16
9

15
8

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

29.101001000 >50 12 1
1

9
8

6
5

4
3

45
32

3
2

5
3

16
9

15
8

3
2

3
2

3
2

3
2

3
2

3
2

5
3

3
2

3
2

30.101010000 >50 12 1
1

9
8

6
5

4
3

45
32

8
5

5
3

16
9

15
8

3
2

5
3

3
2

3
2

3
2

3
2

5
3

3
2

3
2

6.2 Scales on a 19-Note Chromatic

We now consider nonclassical chromatic scales. An obvious question is how
many chromatic notes result in attractive scales. One initial screening is to
investigate which chromatics contain tones with several simple ratios with the
tonic (within tolerance), because these ratios then become available for the
scales. Table 4 shows the simple ratios that occur in various chromatic scales.
The 19-tone scale stands out as clearly superior. It is the the only scale that
strictly dominates the classical 12-tone scale, containing its simple ratios plus
three more. The 24-note scale (quarter tones) obviously contains all the simple
ratios of the classical scale, but no more, and so there is no compelling reason to
move to quarter tones. We therefore concentrate on the 19-note chromatic scale.

Alternative Musical Scales 763

Table 4. Simple ratios (indicated by heavy black dots) that occur in chromatic scales
having 6 to 24 notes.

Ratio 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3/2 · · · · · · • · · · · • · • · · • · •
4/3 · · · · · · • · · · · • · • · · • · •
5/3 · · • · · • • · · • • · · • • · • • •
5/4 • · · • · · • · · • • · • • · • · · •
7/4 · · · · • • · · · • • · · · • • · · ·
6/5 · · · · · • · · · • · · · • · · • • ·
7/5 · · · · · · · · · · · · · • · • · • ·
8/5 • · · • · · • · · • • · • • · • • · •
9/5 · • · · · · · • • · · · · • • • · · ·

In particular, we study 11-note diatonic scales, which contain 3 semitones,
or one more semitone than the classical 7-note scales. Since the 19 chromatic
tones are already rather closely spaced, it seems desirable to limit the number
of semitones in the scale. We therefore rule out 12-note scales, which contain
5 semitones, meaning that almost half of the intervals are semitones. On the
other hand, 10-note scales have only one semitone and are therefore nearly
whole-tone scales and of limited musical interest. Eleven-note scales seem a good
compromise.

There are 77 11-note diatonic scales on a 19-note chromatic that satisfy our
criteria. Since we selected the 19-note chromatic due to its inclusion of many
simple ratios, it is reasonable to concentrate on scales in which most of these
simple ratios occur. Table 5 displays, for each of the 77 scales, the largest subset of
simple ratios that occur in at least one solution. Thirty-seven different subsets
of ratios appear in the scales, corresponding to the columns of Table 5. They
partition the scales into 37 equivalence classes, labeled A–Z and a–k.

As it happens, all of the classes are dominated by the four classes A, E, P
and W (indicated by boldface in Table 5), in the sense that the simple ratios that
occur in any class also occur in one of these four. We therefore concentrate on
these classes, which collectively contain 9 scales. Table 3 displays two solutions
for a selected scale in each of the four classes. The first solution shown is one
with the smallest minimal generators (i.e., one for which the largest minimal
generator is smallest). The second solution is one with the simplest ratios with
the tonic. The two solutions are very similar but indicate alternative ways the
ear can interpret the more complicated pitch ratios.6

Scale 72 (class A) contains the most simple ratios with the tonic, including a
fifth, fourth, major third, major sixth, minor sixth, and two additional intervals
with ratios 7/5 and 9/5. Scale 7 (class E) lacks the fourth and the 9/5 ratio, but

6 A complete list of all 50 solutions found for each of the 77 scales is available
at web.tepper.cmu.edu/jnh/music/scales11notes19.pdf and as electronic supplemen-
tary material published online with this article.

http://www.web.tepper.cmu.edu/jnh/music/scales11notes19.pdf

764 J.N. Hooker

Table 5. Occurrences of simple ratios in 11-note scales on a 19-note chromatic. Each
column corresponds to a class of scales as indicated in the key at the bottom.

Ratio A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k
3/2 • · · · · · · · · · · · · · · ·
4/3 • • • • • • • • • • • • · · · · · · · · · · • • • • • • • • • · · · · · ·
5/3 • • • • · · · · · · · · • • • • • • · · · · • • • • • · · · · • • • • · ·
5/4 • • • • • • • • • • · · • • • · · · • • · · • • • · · • • • · • • · · • ·
7/4 ·
6/5 · · · · • • · · · · • • · · · • • • · · • • • • · • • • · · · · · • • · •
7/5 • • • · • · • • · · · · • • • • • • • • • • · · · · · · · · · • • • • • •
8/5 • · · • • • • • • • • · • · · • · · • • • · · · · · · • • · • · · · · • •
9/5 • • · • · · • · • · · • • • · • • · • · • • • · · • · · • · · • · • · · ·

A - 72 K - 12,43 U - 57 e - 13,29,44
B - 69,70,71 L - 28 V - 42 f - 60,61
C - 68 M - 65,66 W - 26,27 g - 59
D - 74,75 N - 63,64 X - 10,11,25 h - 18,35,36,50,51,54
E - 7,8 O - 62 Y - 5,6 i - 17,34,49
F - 22,23 P - 40,41,55,56 Z - 15,31,32,46,47 j - 58
G - 73 Q - 20,21,38,39,53 a - 14,30,45 k - 16,33,48
H - 2 R - 19,37,52 b - 9,24
I - 76 S - 67 c - 77
J - 3 T - 1 d - 4

it contains a minor third. It also lacks a half-step leading tone. Scale 56 (class P)
contains as many simple ratios as scale 7, but it lacks the major third, which
might be regarded as a weakness. Scale 27 (class W) lacks the fifth, perhaps a
greater weakness.

The key structure of the 11-note scales contrasts significantly with that of
the classical scales, as indicated in Table 7. The table shows the distance of each
key from the tonic, where distance is measured by m minus the number of notes
in common (recall that m is the number of notes in the scale). In the classical
case, the two most closely related keys start on the two most consonant intervals,
the fourth and fifth. In scale 72, the closest key starts on the major sixth, while
the keys starting on the fourth and fifth are among the most distant. In scale 7,

Table 6. Four of the 77 11-note scales on a 19-note chromatic. Each scale has 19 keys.
At least 50 solutions were obtained for each scale, of which 2 are shown. The solutions
were generated with maximum denominator M = 64.

Scale Class Ratios with tonic Minimal generators

7.01101011111 E 1
1

25
24

9
8

6
5

5
4

4
3

7
5

3
2

8
5

12
7

25
18

3
2

5
3

3
2

3
2

5
3

3
3

3
2

3
2

3
2

7
4

3
2

1
1

36
35

9
8

6
5

5
4

4
3

7
5

3
2

8
5

12
7

13
17

3
2

5
3

3
2

3
2

5
3

4
2

7
4

3
2

3
2

5
3

13
7

27.10101111110 W 1
1

15
14

9
8

6
5

5
4

4
3

10
7

54
35

5
3

9
5

27
14

3
2

3
2

5
4

3
2

3
2

3
2

3
2

5
4

3
2

3
2

5
4

1
1

16
15

9
8

6
5

5
4

4
3

10
7

14
9

5
3

9
5

35
18

3
2

5
4

5
4

3
2

3
2

3
2

7
4

5
4

3
2

3
2

5
4

56.11011110110 P 1
1

15
14

7
6

6
5

9
7

7
5

3
2

8
5

5
3

9
5

27
14

3
2

5
3

5
3

3
2

3
2

5
3

3
2

3
2

5
3

3
2

3
2

1
1

13
12

7
6

6
5

9
7

7
5

3
2

8
5

5
3

9
5

35
18

3
2

13
7

5
3

3
2

7
5

5
3

3
2

3
2

5
3

3
2

5
3

72.11110110110 A 1
1

16
15

7
6

5
4

4
3

7
5

3
2

8
5

5
3

9
5

35
18

3
2

3
2

5
3

3
2

3
2

5
3

3
2

3
2

3
2

5
3

5
3

1
1

15
14

7
6

5
4

4
3

7
5

3
2

8
5

5
3

9
5

27
14

3
2

7
5

5
3

3
2

3
2

5
3

3
2

5
3

3
2

5
3

9
5

Alternative Musical Scales 765

the closest key starts a step below the tonic, while in scales 27 and 56, it starts
a step above the tonic. In scale 72, the second closest key starts a step above the
tonic. This means that in all of these 11-note scales, one can wander further from
the tonic (up to a point) by taking steps up or down, as opposed to following
the cycle of fourths or fifths as in the traditional scales. The table also shows
scale 23 discussed earlier, whose key structure is again very different. All of the
alternate keys have a distance 2 or 3 from the tonic key. Some other 11-note
scales have keys with a distance 1 from the tonic key; namely, scales 9, 13, 14,
30, 34, 35, 50, 53, 54, 64, and 66.

Table 7. Key structure of selected scales, showing distance of each key from the tonic.
The interval m3rd is a minor third.

Classical major scale

Note 1 1♯ 2 2♯ 3 4 4♯ 5 5♯ 6 6♯ 7

Interval 2nd 3rd 4th 5th 6th 7th

Distance 0 5 2 3 4 1 5 1 4 3 2 5

Scale 23 of 9 notes on 12-note chromatic

Note 1 1♯ 2 3 4 5 5♯ 6 7 7♯ 8 9

Interval 2nd m3rd 3rd 4th 5th m6th m7th 7th

Distance 0 3 3 2 2 2 3 2 2 2 3 3

Scale 7 of 11 notes on 19-note chromatic

Note 1 2 2♯ 3 3♯ 4 5 5♯ 6 7 7♯ 8 8♯ 9 9♯ 10 10♯ 11 11♯

Interval 2nd m3rd 3rd 4th 5th m6th

Distance 0 8 3 5 5 4 5 5 4 5 5 4 5 5 4 5 5 3 8

Scale 27 of 11 notes on 19-note chromatic

Note 1 1♯ 2 3 3♯ 4 5 5♯ 6 6♯ 7 7♯ 8 8♯ 9 9♯ 10 10♯ 11

Interval 2nd m3rd 3rd 4th 6th

Distance 0 8 3 5 4 6 3 6 4 5 5 4 6 3 6 4 5 3 8

Scale 56 of 11 notes on 19-note chromatic

Note 1 1♯ 2 2♯ 3 4 4♯ 5 5♯ 6 6♯ 7 7♯ 8 9 9♯ 10 10♯ 11

Interval m3rd 5th m6th 6th

Distance 0 8 3 5 6 2 7 3 6 4 4 6 3 7 2 6 5 3 8

Scale 72 of 11 notes on 19-note chromatic

Note 1 1♯ 2 2♯ 3 3♯ 4 4♯ 5 6 6♯ 7 7 ♯ 8 9 9♯ 10 10♯ 11

Interval 3rd 4th 5th m6th 6th

Distance 0 8 3 5 6 2 7 3 6 4 4 6 3 7 2 6 5 3 8

We can also contrast the harmonic structure of the 11-note scales with that
of the classical major scale. The basic triads in the classical scale are the major
triad, with ratios 4:5:6, and the minor triad 10:12:15. The primary quadrads
are the major seven chord 8:10:12:15, the minor seven 10:12:15:18, and the all-
important dominant seven 36:45:54:64. The rather dissonant dominant seven
chord is not so much inspired by harmonic considerations as by the ubiquitous
passing tone from the fifth to the third in cadences, which creates a seven chord
with the dominant triad.

The 11-note scales differ harmonically in two major respects: the disappear-
ance of the dominant seven, and the addition of exotic harmonies with simple
ratios. For definiteness, we focus on scale 72, which contains the largest collection

766 J.N. Hooker

of simple ratios. While the dominant seven chord 36:45:54:64 occurs in some
nonstandard scales (such as 9-note scales 23, 25 and 26 in Table 3), it does not
occur in scale 72. This suggests that cadences could look very different than in
classical scales.

Like the classical major scale, scale 72 contains the major and minor triads
(notes 1-4-7 and 5-8-12) as well as the minor seven chord (9-12-15-18), although
it lacks the major seven chord. It presents several new harmonies with simple
ratios as well. There are three triads that might be viewed as compressed minor
triads, and that extend nicely to quadrads. One has ratios 5:6:7 that extend to
5:6:7:9 (notes 9-12-14-18), a second has ratios 6:7:8 that extend to 6:7:8:10 (notes
1-3-5-9), and a third has ratios 7:8:10 that extend to 7:8:10:12 (notes 3-5-9-12).
The scale also has a quadrad that is similar to a dominant seven chord (notes
5-9-12-15), except that it has a flatter seventh and much simpler ratios 4:5:6:7.

A final question is whether the “tensions” that are widely used in jazz
harmony have a parallel in 11-note scales. Tensions are usually formed by adding
notes that are a major ninth above notes of an existing chord [3]. As an example,
a major seven chord 1-3-5-7 is extended to 1-3-5-7-9-11♯-13. There does in fact
seem to be a parallel to tensions in scale 72, except that they are formed by
adding notes whose ratio to the next lower note is 6/5. In this way, we can extend
the major triad 1-4-7 to 1-4-7-13-15-18-21, with all notes within the same key
(the next note 24♭ moves to a different key). The ratios are exact, except that
we must slightly adjust the tension ratio 54/25 of note 13 to 32/15, which is the
ratio for this note implied by one of the two solutions of Table 6.

7 Conclusion

We developed a method for systematically generating alternative diatonic scales
that share two important characteristics of classical 7-note scales: intervals that
correspond to simple ratios, and multiple keys based on a tempered chromatic
scale. We defined these characteristics mathematically, and in particular we
recursively defined suitable pitch ratios as those that can be obtained from other
ratios using a small set of “generators.” This approach was partially vindicated
by the fact that within the classical 12-note chromatic, the scales that can be
obtained entirely from the simplest generator (3/2) are precisely the classical
Greek modes, which include the modern major and natural minor scales.

We found our criteria to be well suited for formulation in a constraint
satisfaction model and therefore used a constraint programming solver to search
for acceptable scales. We considered tempered chromatic scales having from 6
to 24 tones and observed that two of them stand out as superior with respect
to the number of simple ratios they contain: the classical 12-note chromatic
and the 19-note chromatic. This allowed us to narrow the range of search by
concentrating on scales based on these two chromatics.

We first studied scales on the 12-tone chromatic having 6, 7, 8, and 9 notes
and identified two 9-note scales that, aside from the classical modes, seem
particularly appealing. We focused most of our effort, however, on exploring

Alternative Musical Scales 767

scales on the 19-note chromatic. Scales with 11 notes appear to be the most
promising, and 9 of these 77 scales most deserve attention due to the number of
simple ratios they contain. We found these scales to provide significant musical
resources that are not available in classical scales, including a contrasting and
more complex key structure, as well as a number of new harmonies.

In particular, the most attractive 11-note scale contains, in addition to
the classical major and minor triads, three triads and four quadrads with
simple ratios that do not appear in traditional scales. These provide many new
possiblities for harmonic texture. The scale contains no dominant seven chord,
which suggests that it would inspire very different chord progressions than the
classical major and minor scales. In addition, it supports complex tensions that
are analogous to but harmonically different from those commonly occurring in
jazz arrangements.

We conclude that this and the other 11-note scales we singled out could take
music in an interesting new direction, and we suggest them to composers as
possibly worthy of experimentation. Such experiments would presumably rely
primarily on electronic synthesizers, due to the difficulty of building acoustic
instruments that support nonstandard scales. It is essential, however, not to
generate tones as sine waves or other simplified wave forms. The tones should
carry a full complement of upper harmonics that mimic those that would be
generated by acoustic instruments, because otherwise the exotic intervals and
harmonies of these scales cannot be easily recognized or appreciated.

Appendix

A Chorale and Fugue for organ [8] uses scale 23 on 9 notes. The chorale cycles
through the tonic (A) and the two most closely related keys (C♯, F). The cadences
illustrate that dominant seven chords need not play a role, even though they
occur in the scale. Rather, the cadences use two leading tones and pivot on the
tonic, often by moving from the lowered submediant. The chorale is followed
by a double fugue that again cycles through the three keys A, C♯, F. The first
subject enters on these pitches but without a key change. The second subject
(bar 96) illustrates the expanded possibilities for suspensions and pivots.

References

1. Balzano, G.J.: The graph-theoretic description of 12-fold and microtonal pitch
systems. Comput. Music J. 4, 66–84 (1980)

2. Benson, D.J.: Music: A Mathematical Offering. Cambridge University Press,
Cambridge (2006)

3. Berkman, D.: The Jazz Harmony Book. Sher Music Company, Petaluma (2013)
4. von Bohlen, H.: Tonstufen in der Duodezine. Acustica 39, 76–86 (1978)
5. Brown, M.: Explaining Tonality: Schenkerian Theory and Beyond. University of

Rochester Press, Rochester (2005)
6. Chew, E.: Mathematical and Computational Modeling of Tonality: Theory and

Application. Springer, New York (2014)

768 J.N. Hooker

7. Gould, M.: Balzano and Zweifel: Another look at generalized diatonic scales.
Perspect. New Music 38, 88–105 (2000)

8. Hooker, J.N.: Chorale and fugue on a 9-note scale, for organ (2013).
web.tepper.cmu.edu/jnh/music, with mp3 file

9. Mathews, M.V., Pierce, J.R., Reeves, A., Roberts, L.A.: Theoretical and experi-
mental exploration of the Bohlen-Pierce scale. J. Acoust. Soc. Am. 68, 1214–1222
(1988)

10. Messiaen, O.: The Technique of My Musical Language. Alphonse Leduc, Paris
(1944)

11. Noll, T.: The topos of triads. In: Fripertinger, H., Reich, L. (eds.) Colloquium on
Mathematical Music Theory, pp. 1–26 (2005)

12. Noll, T.: Musical intervals and special linear transformations. J. Math. Music 1,
121–137 (2007)

13. Noll, T.: Getting involved with mathematical music theory. J. Math. Music 8,
167–182 (2014)

14. Oswald, J.: Introduction to the Theory of Heinrich Schenker: The Nature of the
Musical Work of Art. Longman, New York (1982)

15. Pearce, M.: The group-theoretic description of musical pitch systems, City Univer-
sity, London (2002)

16. Perret, W.: Some Questions of Musical Theory. W. Heffer & Sons, Cambridge
(1926)

17. Pierce, J.R.: Attaining consonance in arbitrary scales. J. Acoust. Soc. Am. 40, 249
(1966)

18. Pierce, J.R.: Consonance and scales. In: Cook, P.R. (ed.) Music, Cognition, and
Computerized Sound: An Introduction to Psychoacoustics, pp. 168–184. MIT Press
(2001)

19. Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. J. Acoust.
Soc. Am. 38, 548–560 (1965)

20. Sethares, W.A.: Local consonance and the relationship between timbre and scale.
J. Acoust. Soc. Am. 94, 1218–1228 (1993)

21. Sethares, W.A.: Tuning, Timbre, Spectrum, Scale. Springer, London (2005)
22. Zweifel, P.F.: Generalized diatonic and pentatonic scales: a group-theoretic app-

roach. Perspect. New Music 34, 140–161 (1996)

http://www.web.tepper.cmu.edu/jnh/music

Assisted Lead Sheet Composition
Using FlowComposer

Alexandre Papadopoulos1,2(B), Pierre Roy1, and François Pachet1,2

1 Sony CSL, 6 rue Amyot, 75005 Paris, France
roy@csl.sony.fr, pachetcsl@gmail.com

2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6,
75005 Paris, France

alexandre.papadopoulos@lip6.fr

Abstract. We present FlowComposer, a web application that helps
users compose musical lead sheets, i.e. melodies with chord labels. Flow-
Composer integrates a constraint-based lead sheet generation tool in
which the user retains full control over the generation process. Users
specify the style of the lead sheet by selecting a corpus of existing lead
sheets. The system then produces a complete lead sheet in that style,
either from scratch, or from a partial lead sheet entered by the user. The
generation algorithm is based on a graphical model that combines two
Markov chains enriched by Regular constraints, representing the melody
and its related chord sequence. The model is sampled using our recent
result in efficient sampling of the Regular constraint. The paper reports
on the design and deployment of FlowComposer as a web-service, part
of an ecosystem of online tools for the creation of lead sheets. FlowCom-
poser is currently used in professional musical productions, from which
we collect and show a number of representative examples.

Keywords: Music generation · Graphical models · Belief propagation ·
Sampling · Web-service · User interaction

1 Introduction

Modelling polyphonic music is a particularly challenging task in artificial intel-
ligence. This is probably because music, even in its simplest form, manifests
itself under many interdependent dimensions, such as melody (successions of
notes in time), harmony (simultaneous notes or chord labels) and meter (con-
straints on durations of notes making up a bar for instance). Constraint program-
ming has been extensively studied to model polyphonic music [1]. However CSP
approaches require expert musicians to encode explicitly the rules (e.g. of har-
mony) as constraints, and this task is not always possible nor desirable, as these
constraints usually correspond to a fixed and slightly outdated musical style.

Recent advances in machine-learning and graphical models have managed to
model all these dimensions in single statistical models, such as deep networks [3].
These models have been shown to be able to capture various statistical properties
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 769–785, 2016.
DOI: 10.1007/978-3-319-44953-1 48

770 A. Papadopoulos et al.

of musical style. However, they are difficult to control, and have not developed
into systems mature enough to be used outside specific demos.

In this paper, we address a specific case of polyphonic music: lead sheets.
Lead sheets consist in monophonic melodies, augmented with chord labels (see
Fig. 5). Lead sheets are routinely used in popular music, including pop, rock,
jazz or Brazilian music. Lead sheets also have a strong commercial value as they
are the primary asset of music publishing companies. We describe an applica-
tion called FlowComposer, a lead sheet composition tool. The basic concept is
to provide an online lead sheet editor enriched with style imitation generation
capabilities. With FlowComposer, users can generate fully-fledged lead sheets
based on partially specified information, that conform to the style of a given
composer (or set of lead sheets). Generated lead sheets satisfy several types
of constraints: (1) user constraints, (2) metrical constraints, and (3) style con-
straints. Technically, this paper has three contributions. First, we show how to
sample metrically constrained Markov sequences, using our recently introduced
model [12]. Then, we show how to exploit this framework to enforce stochas-
tic temporal constraints. Finally, we define a two-voice model for chord and
note generation: each voice is a metrically constrained Markov sequence, and
we synchronise the two voices using stochastic temporal constraints, to enforce
harmony. FlowComposer is a working application that is being used in profes-
sional music projects (see Sect. 4.3). The paper describes the technical challenges
addressed in designing and deploying FlowComposer and some interesting uses
of the system.

2 Background on Constrained Markov Models

Markov models have long been used to generate music in the style of a com-
poser [4,8]. A Markov model can be estimated from a musical corpus, by count-
ing transitions between successive elements. A random walk in a Markov model
produces new sequences according to those transition probabilities, but does
not, in general satisfy any other desirable property, such as unary constraints
(specific values imposed at specific indexes of the sequences) or meter.

We have shown that the formulation of Markov processes as constraints opens
the door to fine-grained control over generated sequences [11]. Additional prop-
erties such as unary constraints, meter and many others can then be enforced in
polynomial time [9,15].

2.1 Enforcing Meter on Markov Sequences

Meter is a global constraint that enforces a metrical structure on a sequence of
temporal events [15]. Let X1, . . . , Xn be a sequence of temporal events, such as
notes, words, tasks, etc. Let d(Xi) be the integer duration of the element assigned
to Xi. We define o(Xi), the onset or starting time of Xi in the sequence. It is
equal to 0 if i = 1, or Σi−1

j=1d(Xj) for higher indexes. For example, consider a
sequence X1,X2,X3,X4 of integers [1, 1, 2, 2], where the duration of an element

Assisted Lead Sheet Composition Using FlowComposer 771

is its own value. The onset of X1 is 0, the onset of X2 is 1, the onset of X3 is
d(X1) + d(X2) = 3, and so on.

Meter Constraint: A Meter constraint takes as parameters a total duration D,
and a predicate π(o, e), where o is an integer onset, and e an element from the
domain of the Xi variables. Meter holds on X1, . . . , Xn if Σn

i=1d(Xi) = D, i.e.
the sequence has a total duration of D, and π(o(Xi),Xi) holds for every element
Xi of the sequence, i.e. it is acceptable to start element Xi at time o(Xi), for all
elements of the sequence.

For example, suppose we want to create sequences of integers in {1, 2, 4}
(again, their duration is their own value), summing to 8, and sectioned into
groups summing to 4. A solution is [1, 2, 1, 2, 2]: the total duration is 8, and
it can be sectioned into [1, 2, 1] and [2, 2], each lasting 4. Another solution is
[4, 4]. Conversely, [2, 4, 2] is not a solution because it cannot be sectioned into
subsequences summing to 4. We can encode this problem withMeter, by setting
D = 8, and defining π(o, e) as follows:

π(o, e) ≡
(⌊o

4

⌋
=

⌊
o+ e

4

⌋)
∨

(
o+ e = 4 ·

(⌊o
4

⌋
+ 1

))

Intuitively, the predicate accepts value e at onset o only if e starts and ends
in the same section (first case of the disjunction), or if e ends exactly at the start
of the next section (second case). In general, sequences summing to 8 can involve
a varying number of elements. In order to encode such sequences with a fixed
number of variables, we choose a length sufficient for the longest sequence of
total duration D, and we introduce a dummy element of zero duration, hereafter
called padding element, used to fill the remainder of a sequence when the target
duration is reached with fewer elements. In our example, we need at most 8
variables, to represent the sequence [1, 1, 1, 1, 1, 1, 1, 1]. The previous solutions
are encoded as [1, 2, 1, 2, 2, 0, 0, 0] and [4, 4, 0, 0, 0, 0, 0, 0], respectively. In order
to restrict the padding element to the end of the sequence, we need the predicate
to also satisfy the condition (o = D) ⇒ (e = 0).

We illustrate Meter with “Frère Jacques”, a French nursery rhyme, also
known in English as “Brother John”. We show the first 4 bars of this melody on
Fig. 1. This melody satisfies the following metrical constraints: its total duration,
determined by the number of bars and the time signature, is equal to 16 beats
(4 bars of 4 beats each), and notes do not cross bar lines.

In [15], we showed how to propagate Meter as a global constraint in a CSP.
However, an important observation underlying this work is that Meter can also
be formulated as a Regular constraint. As a result, we can apply the technique

Fig. 1. The first 4 bars of the Frère Jacques melody

772 A. Papadopoulos et al.

described in the next section to correctly sample metrically constrained Markov
sequences, a novel result in this paper.

2.2 Markov Models and Regular Constraints

Recently, we generalised Markov constraints to Regular constraints [13], spec-
ifying that a Markov sequence X1, . . . , Xn should additionally form a word from
a regular language L(A), recognised by an imposed finite-state automaton A. We
use a factor-graph based model to encode this constrained Markov model, and
use belief propagation to sample, with unbiased probabilities, Markov sequences
satisfying Regular, in polynomial time [12]. Belief propagation generalises con-
straint propagation, where instead of propagating information on value consis-
tency, we propagate probabilities associated with values.

A Markov model is a stochastic process, where the probability for state Xi,
a random variable, depends only on the last state Xi−1. Each random variable
Xi takes values amongst an alphabet, denoted X . A Markov model produces
sequence X1, . . . , Xn with probability P (X1) × P (X2|X1) × · · ·× P (Xn|Xn−1).
Given additional unary constraints Pi(Xi) and a Regular constraint specified
by an automaton A, the problem of sampling a Markov sequence subject to
Regular is defined as the problem of sampling from the following distribution:

ptarget(X1, . . . , Xn) ∝
{∏n

i=2 P (Xi|Xi−1)×
∏n

i=1 Pi(Xi) if X1 · · ·Xn ∈ L(A)
0 otherwise

The symbol ∝ (“proportional to”) indicates that the equality holds after
normalisation. The first case indicates that the regular constraint holds (i.e. the
sequence belongs to the specified language), and in the expression, the unary
factors Pi(Xi) are distributions that generalise unary constraints on the vari-
ables Xi. A unary factor merely biases the probability of the overall sequence,
but does not necessarily correspond to the marginal distribution on Xi of the
resulting distribution. In order to sample ptarget , we reformulate it into a distri-
bution preg of Y1, . . . , Yn, where the new Yi variables take values (e, q), where
e ∈ X is a state of the Markov chain, and q is a state of the automaton A
that defines the Regular constraint. Sampling ptarget is equivalent to sampling
preg , and projecting each resulting sequence (e1, q1), . . . , (en, qn) to e1, . . . , en.
We show in [12] that preg can be represented as a tree-structured factor-graph,
and therefore that we can use belief propagation to sample preg in polynomial
time. The time complexity of this procedure is in the size of the alphabet of Yi

times the length of the sequence, i.e. O(|X | · |Q| · n).

2.3 Sampling Metrically Constrained Markov Sequences

In order to sample metrically constrained Markov sequences, we need to build
the Meter automaton M = ⟨Q,Σ, δ, q0, F ⟩ as follows:

– Q is the set of states: for each possible temporal position i, from 0 to the
target duration D, we build a state qi;

Assisted Lead Sheet Composition Using FlowComposer 773

– q0 is the initial state, corresponding to temporal position 0;
– F is the subset of Q of accepting states: it contains only the state qD corre-

sponding to the target duration D;
– Σ is the alphabet of the automaton, and contains the values e in the domains
of variables Xi (i.e. musical events);

– δ is the transition function, mapping a state from Q and a symbol from Σ to
a destination state: for a state qo, corresponding to temporal position o, and
an element e, we reach state qd (i.e. δ(qo, e) = qd), corresponding to temporal
position d, iff d = o+ d(e) and π(o, e) holds.

Figure 2 shows the Meter automaton recognising all two-bar sequences we
can build using the notes from Fig. 1, and subject to the same metrical constraint.
Since Meter expects integer durations, durations are rescaled to match integer
values, i.e. quarter notes have a duration of 1, half notes have a duration of 2,
bars have a duration of 4 and the full melody has a duration of 8.

0 2

G5{2}

1

F5{1}

E5{1}

D5{1}

C5{1}

4

G5{2}

3

F5{1}

E5{1}

D5{1}

C5{1}

F5{1}

E5{1}

D5{1}

C5{1}

G5{2}

6

G5{2}

5

F5{1}

E5{1}

D5{1}

C5{1}

F5{1}

E5{1}

D5{1}

C5{1}

8

G5{2}

7

F5{1}

E5{1}

D5{1}

C5{1}

F5{1}

E5{1}

D5{1}

C5{1}

G5{2}

rest{0}
F5{1}

E5{1}

D5{1}

C5{1}

Fig. 2. The automaton accepting 2-bar melodies with the five notes from the melody
on Fig. 1, with meter. Discretised durations are shown between curly braces.

The procedure for sampling a metrically constrained Markov sequence is
quadratic in the total duration D: the time complexity for sampling a Markov
sequence subject toRegular is O(|X |·|Q|·n), as mentioned in Sect. 2.2. We need
at most D variables to represent a sequence of total duration D (if the smallest
duration is 1), and since each state of the Meter automaton corresponds to a
temporal position bounded by D, we have |Q| = D+1, and therefore the overall
time complexity is O(|X | ·D2).

3 A Two-Voice Statistical Model of Lead Sheets

FlowComposer is based on a two-voice model of lead sheets, which captures
stylistic information concerning the melody, the harmony, and the interaction
between harmony and melody (see Fig. 3). The chord model and the melody
models are both based on a representation of music meter as a regular constraint
as described in the preceding section.

Lead sheets are generated with the following procedure:

1. Generate a chord sequence by sampling the Markov+Meter model on chords,
taking into account imposed sections of melodies as harmonic constraints.

774 A. Papadopoulos et al.

Factor graph

Harmonic synchronisation

on melody
User constraints

on chords
User constraints

for Chords
Factor graph

for Melody

from chords to melody

Fig. 3. The two-voice model for lead sheet generation

Additionally, when sampling, instead of drawing chords with their exact mar-
ginal distribution, we use a variable order heuristic that favours the chords
that tend to replicate longer chord sequences from the corpus [2]. In prac-
tice, for each context size, we compute the entropy of the distribution on the
chords that the context allows, then we choose a context length randomly,
with a probability proportional to this entropy. This increases the impression
of style imitation for the chord sequence, while avoiding risk of downright
plagiarism, since orders with a low entropy are effectively discarded.

2. Generate a melody by sampling the Markov+Meter model on melody, impos-
ing the chord sequence generated in the first step as a harmonic constraint.
Here we do not use variable order, since each chord typically covers many
notes, and the harmonic constraint introduces an amount of higher order
correlation between all notes under a certain chord.

3.1 Markov+Meter Model for Chord Sequence

We generate a Markov sequence X1, . . . , Xn, where Xi is assigned a chord, rep-
resented by a chord label and an integer duration. We train an order 1 Markov
model on the corpus represented as sequences of chords. We use Meter to
impose a total duration equal to the duration of the lead sheet to compose, and
to forbid chords to cross bar lines.

3.2 Markov+Meter Model for Melody

We generate a Markov sequence X1, . . . , Xn, where Xi contains a note, repre-
sented by its MIDI pitch and integer duration. We obtain integer durations by
multiplying all fractional durations with a fixed rescaling factor, equal to the
least common multiple of the denominator of all possible fractional durations.
This ensures that durations are integer, while maintaining proportions. We train
an order 1 Markov model on the corpus represented as sequences of notes. We
useMeter to impose a total duration equal to that of the lead sheet to compose,
multiplied by the rescaling factor, and to forbid notes to cross bar lines.

Assisted Lead Sheet Composition Using FlowComposer 775

3.3 Enforcing Harmonic Synchronisation

To generate convincing lead sheets, our model also captures interactions between
the note and chord models, in a way that is stylistically consistent with the
chosen corpus. Such interactions can be represented in our two-voice model, by
exploiting the structure of the factor graphs. We first build a harmonic model
representing these relations, and then use it to bias sampling.

The Harmonic Model. We define a harmonic model, which gives the proba-
bility ph(n|Ch) of placing note n under chord Ch, trained on the corpus. As a
consequence, every chord defines a distribution on notes, and this distribution
is fully parameterised by the chord label Ch. In order to decrease the amount of
data needed to train this model, we adopt a more abstract representation and
chords are reduced to their structure alone (for example Fm7 is represented by
m7), and we ignore the octave and the duration of a note (for example, A5{2},
the A of the fifth octave, of duration 2, is represented only by A). Technically,
for a given observation, we transpose the observed chord to a chord rooted in C
with the same structure, and we transpose the observed note accordingly by the
same amount of semitones. For example, an observation of a note A5{2} under a
chord F m7 is abstracted as E under m7, since there are five semitones between
C and F (the chord roots), and equally between E and A (the notes).

Enforcing Stochastic Temporal Constraints. We showed in Sect. 2.3 how to
sample Meter. We now show that we can define constraints holding on elements
specified by their temporal position, rather than by their index in the sequence,
a novel result in this paper. We exploit the particular semantics of the Meter
automaton, i.e. states correspond to temporal positions. Temporal constraints
are defined by generalising the Meter predicate π(o, e) to a stochastic predicate
pπ(e|o). The stochastic predicate defines the probability of placing event e at
temporal position o. We then define π(o, e) ≡ (pπ(e|o) > 0).

We enforce pπ by adding a unary factor in the preg model, for every Yi. We
recall that the variables Yi of preg take values of the form (e, q), with e a value in
the alphabet of the Markov chain, and q a state of the automaton. By specifying
a unary factor on all variables Yi, we can bias the probability of an element e
appearing with a state q, i.e. at a particular temporal position. The unary factor
pi applied to each Yi is defined as follows: pi(e, qd) ∝ pπ(e|o)·p(o), where qd is the
state of the Meter automaton corresponding to temporal position d = o+ d(e).
The probability p(o) gives the probability that o is the start time of an element.
We assume it is uniform, but we can also learn this probability from the corpus.

Harmonic Constraints for Melody. Given a chord sequence, we bias the
generation of a melody to comply harmonically with the chords. We define the
stochastic predicate pπ(n|o) ∝ ph(n|Ch), where n is a note, and Ch is the chord
occurring at temporal position o.

776 A. Papadopoulos et al.

Harmonic Constraints for Chords. Inferring chord labels from unlabelled
melodies has been addressed previously, e.g. using Bayesian inference [14]. In our
case, we need to bias the generation of a chord sequence to comply harmonically
with the melody. We use a log-likelihood based approach assuming that notes
are independent observations and follow the distribution given by ph. Let us
assume that we want to compute the probability pπ(Ch|o) of placing chord Ch
at temporal position o. Let n1, . . . , np be the notes of the melody that occur
between temporal positions o and o+d(Ch). The average log-likelihood of chord
Ch given notes n1, . . . , np is:

l̂(Ch;n1, . . . , np) =
1
p

p∑

i=1

log ph(ni|Ch)

In order to introduce variety in the generated lead sheets, we do not choose
the chord with the maximum l̂, but rather use this value to define its probability,
so that more likely chords are closer to the observed distribution of notes. In
practice, we set pπ(Ch|o) ∝ exp{l̂(Ch;n1, . . . , np)}.

Releasing Harmonic Pressure. The approach we described is often too strict
in practice, and, sometimes, we want to relax harmonic pressure. To this end,
we propose two strategies. First, we introduce a parameter called harmonic con-
formance that specifies how biased or uniform the harmonic model ph(n|Ch)
should be. The harmonic conformance is a factor α ranging between 0 and 1,
and we define a new, relaxed, harmonic model as follow:

p′
h(n|Ch) ∝ α · ph(n|Ch) + (1 − α) · puniform

A value of 1 implies strict conformance, a value of 0 results in a uniform
distribution, i.e. no harmonic bias at all. This value can be set by the user in
the GUI in the form of a slider.

Second, we choose to impose harmony on beats only, as a way of approxi-
mating the detection of passing notes, i.e. notes on which harmony is typically
less important. In practice, the stochastic predicates pπ(Ch|o) and pπ(n|o), for
chords and notes, are uniform if o is not the start of a beat.

4 Applications

In this section, we describe FlowComposer, a web service for the composition of
lead sheets based on the algorithms described in Sect. 3. The web service was
implemented using Java. The models for chords, notes and harmony, and the
belief propagation procedure to sample those models, have been implemented
as an in-house solver. FlowComposer is both an autonomous generator and an
interactive music composition application integrated in an ecosystem of online
tools for the creation and manipulation of lead sheets. Lead sheets are repre-
sented as JSON objects stored in a MongoDB database with more than 12,000

Assisted Lead Sheet Composition Using FlowComposer 777

songs in various styles [10]. A graphical lead sheet viewer and editor is imple-
mented as a JavaScript library [7] running in the client web browser. Other
services are provided, such as MIDI and audio rendering tools, harmonic and
pattern analysis. User sessions and persistence is managed on the server side by
a PHP module.

The database covers several genres of popular music: jazz, pop, rock, and
Brazilian music, by hundreds of famous composers. A style is defined as a corpus,
i.e. a selection of songs from the database, for instance, all the songs by a given
composer, in a given genre, or any manual selection. There are 157 types of
chords used at least in one song of the database. Among them, 37 chord types
have more than 1000 occurrences, e.g., major chords, diminished seventh; 43
occur between 100 and 1000 times, e.g., m69 chords; 61 are used between 20 and
100 times, e.g., m7sus4; and 126 occur fewer than 20 times, e.g., M7♯9.

We show three typical scenarios of the general resolution procedure explained
in the preceding section. Section 4.1, describes how FlowComposer can be used as
an autonomous lead sheet generator. Section 4.2, describes how FlowComposer
can harmonise imposed melodies. Section 4.3, describes how FlowComposer may
be used as an online interactive lead sheet composition application.

4.1 Autonomous Generation

The lead sheet generation algorithm may be used to generate lead sheets from
scratch, in the style of a given corpus. In this scenario, we parse each song in the
training corpus, defining the style of the generated lead sheet. Then, we build
and train the Markov+Meter models for the chord and melody generations and
the harmonic model. The generation of the lead sheet follows the procedure
specified in the preceding section. Note that in the first step, the chord sequence
is generated with no harmonic constraints since there is not melody yet. Figure 4
shows an 8-bar lead sheet generated by this procedure in the style of Bill Evans.

Fig. 4. An 8-bar lead sheet generated in the style of Bill Evans

The length of the lead sheet to generate and the training corpus are two
input parameters of the generation algorithm. The generation is also influenced
by other parameters, such as the number of chord changes, the number of notes,
or the harmonic conformance. The ‘Number of chord changes’ and ‘Number
of notes’ are set to match the average number of notes and chord changes in
the corpus. The padding strategy, see Sect. 2.3, allow the system to generate
sequences with approximately the specified numbers of notes and chord changes.
The harmonic conformance α is set by default to its maximum value.

778 A. Papadopoulos et al.

Table 1. Performance of the algorithm for the generation of lead sheet for various
lengths and two corpora; ASW stands for American Songwriters, a corpus with 429
songs by composers such as Richard Rodgers, Lorenz Hart, or Irving Berlin

Corpus Size Parsing Length Training Next sol. Model size

ASW 429 songs
630 chords
356 notes

3′′480 4 bars 4′′ 1′′7 731, 468

8 bars 9′′ 5′′3 2, 922, 436

12 bars 18′′ 12′′5 6, 465, 202

16 bars 30′′ 22′′ 11, 509, 685

Beatles 45 songs
134 chords
199 notes

803 ms 4 bars 600ms 600 ms 245, 948

8 bars 1′′75 1′′4 984, 099

12 bars 3′′9 3′′ 2, 179, 359

16 bars 6′′6 5′′ 3, 939, 752

32 bars 27′′ 24′′ 15, 668, 776

Performance is reported on Table 1. The Parsing time is linear in the number
of notes and chords in the corpus. In practice, this is a linear function of the
total number of bars in the corpus. The Training time indicates the time needed
to build and train the Markov+Meter models and the harmonic models and to
initialise the belief propagation algorithms. The time reported in column Next
sol. is less than the whole training time as the chord model is not retrained. The
generation times increase quadratically with the length of the generated lead
sheet. This experimental observation is consistent with the expected complexity
of the algorithm (see Sect. 2.3) and is reflected in the size of the models.

The reported performance shows that generation becomes slow for lead sheets
longer than 16 bars, especially with a large corpus, such as American Songwrit-
ers. Parsing the corpus uses non-optimised code, and its performance will be
reduced by a substantial amount in the next version. The time needed to train
the model and to find solutions may also be reduced by discarding very small
probabilities in the model.

In general, music composed using statistical-based approaches is locally con-
sistent but lacks a sense of direction, or global structure [6]. Consequently, purely
autonomous generation is usually used to produce short musical sequences to be
used as fragments in a longer piece. We observed that composers using the sys-
tem rarely generate sequences exceeding 8 bars (see Sect. 4.3). The time taken to
generate long lead sheets is therefore not a strong limitation of the system. The
automatic generation of interesting long sequences requires models of large-scale
musical structure including repetition of patterns, variations, and sections.

Assisted Lead Sheet Composition Using FlowComposer 779

4.2 Harmonisation

FlowComposer may be used to harmonise, i.e. infer chord labels for a given
melody in an imposed style. We illustrate such style-based harmonization by
using FlowComposer to reharmonize “Yesterday”, by the Beatles, in four styles:
the Beatles themselves, Cole Porter, Michel Legrand, and Bill Evans.

Table 2 shows the number of songs in the corpus corresponding to each of
these styles. Note that in the case of the Beatles, we did not include “Yesterday”
in the corpus. The first 15 bars of the original harmonisation is shown on Fig. 5.

The re-harmonisation in the style of the Beatles (Fig. 6) uses many chords
appearing in the original lead sheet, e.g., Dm, Gm, B♭. Some chords are simple
harmonic substitutions, such as the Gm in place of B♭ on bar 4. The A7 on bar
7, which is not a substitution of the original harmony B♭-F, is quite surprising
given the F in the melody. However such an augmented fifth is not unusual in
the Beatles, and occurs for example in songs “I Want to Tell You” and “I’m
Only Sleeping”, in this latter case with the same resolution to a Dm chord. The
progression in bars 13 to 14 is equal to the original. Overall, this re-harmonisation
is probably less interesting than the original one, but is new, valid, and can be
considered as in the style of the Beatles.

The harmonisation in Cole Porter’s style (Fig. 7) uses an Eø7 (half diminished
seventh) and an F♯o7 (diminished seventh) chords. Cole Porter is the composer
who uses these chord types the most in the database. The progression DmM7-
Dm-G7 appears identically in Cole Porter song “Do I Love You”.

Fig. 5. The lead sheet of the first 15 bars of “Yesterday” with the original chord labels

Fig. 6. The lead sheet of the first 15 bars of Yesterday with an alternative harmonisa-
tion generated by FlowComposer in the style of the Beatles

780 A. Papadopoulos et al.

Fig. 7. The lead sheet of the first 15 bars of Yesterday with a harmonisation generated
in the style of the Cole Porter

Fig. 8. The lead sheet of the first 15 bars of Yesterday with a harmonisation generated
in the style of the Michel Legrand

Fig. 9. The lead sheet of the first 15 bars of Yesterday with a harmonisation generated
in the style of the Bill Evans

The use of a suspended 7th chord, E7sus in bar 10 in the example in Fig. 8
is typical of Michel Legrand: he is, in our database, the composer using them
the most. The progression B half-diminished 7, Bø7, followed by E7sus actually
occurs in “The Easy Way”, or, transposed, in “Papa Can You Hear Me?”. The
E♭7 chord in bar 12 is a tritone substitution of the original A7 chord.

In the re-harmonisation in the style of Bill Evans (Fig. 9), the opening tran-
sition from E♭69 to A+7 (augmented 7th chord) appears in “Yet Neer Broken”.
Bill Evans is also the composer using 69 and 7♭9sus chords the most.

We encourage the reader to listen to these examples1 to get a feel of the
stylistic differences of the various harmonisations of the system.

1 All examples are available online at: http://www.flow-machines.com/
generation-of-lead-sheets-with-flowcomposer.

http://www.flow-machines.com/generation-of-lead-sheets-with-flowcomposer
http://www.flow-machines.com/generation-of-lead-sheets-with-flowcomposer

Assisted Lead Sheet Composition Using FlowComposer 781

Table 2. Corpus size for several styles and execution times to harmonise the first 15
bars of “Yesterday”. The total time is the time needed to parse the corpus and to train
the model. Solutions are obtained virtually instantaneously by sampling the model

Style Corpus size Parsing time Training time Time next sol. Total time

The Beatles 45 songs 85ms 830ms 15ms 1′′030

Cole Porter 70 songs 203ms 1′′568 15ms 1′′786

Michel Legrand 62 songs 181ms 2′′339 15ms 2′′535

Bill Evans 87 songs 132ms 2′′700 15ms 2′′847

Execution times are reported on Table 2. Most of the time is spent training
the models, and is done only once, thanks to the persistence of user sessions.
The third column reports the total time to get the first solution. Once the
model is trained, it may be sampled virtually instantaneously to produce many
representative solutions.

4.3 Interactive Composition

FlowComposer is not only an automatic generator but also a fully-fledged inter-
active composition tool for professional composers who use it as an active, cre-
ate software collaborator. FlowComposer is integrated with an online lead sheet
editor so that the system never gets in the way of the user’s intentions and
composition habits.

Fig. 10. Selection of two bars in the course of the composition of the song of Fig. 11; the
two selected bars will be replaced by new musical material generated by FlowComposer

The general idea is that the user is responsible for creating the structure of
the lead sheet and FlowComposer is used to generate music for user selected
parts. The general structure of a lead sheet consists of a sequence of sections,
which are played in a sequence with optional repetitions. A typical structure is
AABA followed by a Coda, such as in “Yesterday”. The editor allows the user
to select contiguous fragments of the lead sheet and FlowComposer generates
new music for this fragment; the fragments may contain chord labels, notes, or
both (see Fig. 10).

The selection is not considered as an isolated musical fragment, but rather
as belonging to the context of the current lead sheet. The non-selected parts are

782 A. Papadopoulos et al.

Fig. 11. A song composed by French pop song writer Benôıt Carré with FlowComposer

Fig. 12. The control panel with fields to select composition style and sliders to set
harmonisation conformance, inspiration, and average note duration and chord changes

fixed and imposed as constraints to the system. Technically, the model covers
the user selection extended to the music immediately before and after, to ensure
that transitions between the selection and the surrounding musical context are
in the chosen style.

The front end of the application provides the user with control on the gen-
eration parameters, which can be changed at any time: the training corpus, the
number of notes or chord changes, and the harmonic conformance α (Fig. 12).

The system updates the model with the music entered in the lead sheet being
composed. An additional control, called ‘inspiration’, is used to control the rel-
ative weight in the model of the training corpus and of the current composition.
This control is typically used to put the emphasis on the current composition
when the lead sheet contains already several bars of music to increase the proba-
bility that the music generated by the system will repeat some fragments present
in the non-selected parts of the score.

French songwriter Benôıt Carré is using FlowComposer for a forthcoming
pop music album (see excerpts in Fig. 11). FlowComposer was also used by

Fig. 13. Final sheet of a song composed by Nathan Taylor and Benjamin Till using
FlowComposer, as part of the “Beyond the Fence” musical

Assisted Lead Sheet Composition Using FlowComposer 783

Fig. 14. A lead sheet composed by the authors of this article with FlowComposer,
in the style of Miles Davis, and evaluated (informally) by fellow jazz musicians as
particularly good

professional composers Nathan Taylor and Benjamin Till to compose three songs
for the “Beyond the Fence” musical. For example, the chorus and some chord
progression of “Scratch That Itch” come from FlowComposer. The final score
has then been reworked by the composers. “Beyond the Fence” was the first
musical ever created by software (not only songs, but also lyrics and the story
line itself), and was performed at the Arts Theatre in London in February 2016
(see [5] for discussions about this pioneering experiment). Figure 13 shows the
beginning of one of the songs in its final version. Figure 14 shows a lead sheet
composed by the authors of this paper, using FlowComposer.

5 Conclusion

We presented FlowComposer, an online application for assisted music composi-
tion. The application enables users to compose musical lead sheets from partial
information, and uses a generation algorithm to fill in the missing parts in the
style of a chosen composer. The generation algorithm exploits a representation
of meter as a Regular constraint which enables efficient sampling. Lead sheets
are represented as a couple of meter-constrained Markov chains, synchronised
through a likelihood function learnt from the selected corpus of lead sheets.

We have shown several typical uses of FlowComposer to generate lead sheets
from scratch, from partial information, or to reharmonize existing melodies2.
More work is being done to improve the user experience, notably by storing
statistical models to avoid on-the-fly training, which calls for an incremental
updating of these models.

FlowComposer can be seen as a successful example of an online applica-
tion mixing statistical models with hard constraints. FlowComposer integrates
a number of recent results in constraint programming and sampling, and has
been used successfully in several professional music projects. We believe such a
tool offers unprecedented value to users wanting meaningful assistance in com-
position, thanks to the powerful underlying style modeling approach. We also

2 All the examples presented in this article are available online at http://www.
flow-machines.com/generation-of-lead-sheets-with-flowcomposer.

http://www.flow-machines.com/generation-of-lead-sheets-with-flowcomposer
http://www.flow-machines.com/generation-of-lead-sheets-with-flowcomposer

784 A. Papadopoulos et al.

believe that online applications mixing statistical models and hard constraints
will be a very active thread of development for CP in the near future.

Acknowledgment. This research is conducted within the Flow Machines project
which received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n.
291156. We thank Benôıt Carré and the team of the musical Beyond the Fence for
their insightful comments in using the system. We thank Fiammetta Ghedini for cre-
ating the associated website with audio and video examples.

References

1. Anders, T., Miranda, E.R.: Constraint programming systems for modeling music
theories and composition. ACM Comput. Surv. 43(4), 30:1–30:38 (2011)

2. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order markov
models. J. Artif. Intell. Res. (JAIR) 22, 385–421 (2004)

3. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal depen-
dencies in high-dimensional sequences: application to polyphonic music generation
and transcription, pp. 1159–1166 (2012)

4. Brooks, F.P., Hopkins, A., Neumann, P.G., Wright, W.: An experiment in musical
composition. IRE Trans. Electron. Comput. 3, 175–182 (1957)

5. Colton, S., Llano, M.T., Hepworth, R., Charnley, J., Gale, C.V., Baron, A., Pachet,
F., Roy, P., Gervás, P., Collins, N., Sturm, B., Weyde, T., Wolff, D., Lloyd, J.:
The Beyond the Fence musical and computer says show documentary. In: 7th
International Conference on Computational Creativity (ICCC 2016), Paris, France,
June 2016

6. Eck, D., Schmidhuber, J.: Learning the long-term structure of the blues. In: Dor-
ronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 284–289. Springer, Heidel-
berg (2002)

7. Mart́ın, D., Neullas, T., Pachet, F.: LeadsheetJS: a Javascript library for online lead
sheet editing. In: 1st International Conference on Technologies for Music Notation
and Representation (TENOR 2015), Paris, France, May 2015

8. Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Genera-
tion. Springer, New York (2009)

9. Pachet, F., Roy, P., Barbieri, G.: Finite-length Markov processes with constraints.
In: IJCAI, pp. 635–642 (2011)

10. Pachet, F., Suzda, J., Martinez, D.: A comprehensive online database of machine-
readable lead-sheets for jazz standards. In: de Souza Britto Jr., A., Gouyon, F.,
Dixon, S.(ed.) ISMIR, pp. 275–280 (2013)

11. Pachet, F.: Flow-Machines: CP techniques to model style in music and text. ACP
(Association for Constraint Programming) (2015). http://www.a4cp.org/node/
1066

12. Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for regular
and Markov constraints with belief propagation. In: Pesant, G. (ed.) CP 2015.
LNCS, vol. 9255, pp. 341–350. Springer, Heidelberg (2015)

13. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

http://www.a4cp.org/node/1066
http://www.a4cp.org/node/1066

Assisted Lead Sheet Composition Using FlowComposer 785

14. Rhodes, C., Lewis, D., Müllensiefen, D.: Bayesian model selection for harmonic
labelling. In: Klouche, T., Noll, T. (eds.) MCM 2007. CCIS, vol. 37, pp. 107–116.
Springer, Heidelberg (2009)

15. Roy, P., Pachet, F.: Enforcing meter in finite-length Markov sequences. In: des
Jardins, M., Littman, M.L. (ed.) AAAI. AAAI Press (2013)

Enforcing Structure on Temporal Sequences:
The Allen Constraint

Pierre Roy(B), Guillaume Perez, Jean-Charles Régin,
Alexandre Papadopoulos, François Pachet, and Marco Marchini

Sony CSL Paris, 6, rue Amyot, 75005 Paris, France
roypie@gmail.com

Abstract. Recent applications of constraint programming to entertain-
ment, e.g., music or video, call for global constraints describing the struc-
ture of temporal sequences. A typical constraint approach is to model
each temporal event in the sequence with one variable, and to state
constraints on these indexed variables. However, this approach hampers
the statement of constraints involving events based on temporal posi-
tion, since the position depends on preceding events rather than on the
index. We introduce Allen, a global constraint relating event indexes
with temporal positions. Allen maintains two set-variables: the set of
events occurring at a position defined by an Allen relation, and the set
of their indexes. These variables enable defining structural and temporal
synchronization properties that cannot be stated on indexed variables.
We show that a model based on a local scheduling approach does not
solve the problem, even for very small instances, highlighting the need
for complex filtering. We present a model that uses Multi-valued Deci-
sion Diagrams (MDDs) to compile the Allen constraint. We show that
this model can be used to state and solve two complex musical tasks:
audio track synchronization and musical score generation.

Keywords: Global constraints · Temporal sequences · Music · MDD

1 Introduction

Many difficult combinatorial problems consist in arranging sequences of events
in time, subject to horizontal and vertical constraints. These constraints are
expressed on the temporal position of events. Horizontal constraints relate events
in the same sequence, but occurring at different positions. Vertical constraints
relate events occurring simultaneously, i.e., at the same position in different
sequences. This is similar to shceduling problems, such as job-shop scheduling,
in which tasks are performed on machines according to sequencial and resource
constraints. The combination of horizontal and vertical constraints make these
problems extremely difficult to solve: the job-shop scheduling problem is notori-
ously among the hardest combinatorial problems.

A typical constraint programming approach to generating such sequences is
to define a variable for each item of the sequence, and to post constraints on
c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 786–801, 2016.
DOI: 10.1007/978-3-319-44953-1 49

Enforcing Structure on Temporal Sequences: The Allen Constraint 787

these variables. Temporal sequences challenge this model, since the position of
an event is determined by the duration of all the preceding events, and so is
only weakly dependent on its index. It is therefore difficult, if not impossible, to
express temporal properties using constraints on item variables.

This problem appears naturally in application domains related to enter-
tainment [1–4]. Structural properties usually involve long-range dependencies
between events. Deep learning approaches attempt precisely at capturing these
dependencies in a statistical model, to reproduce them during classification or
sampling. However, the representations of structure in statistical models is not
explicit, making them inappropriate for specifying hard constraints on sequences.
In the next section, we describe a typical example of a structural constraint
occurring in the generation of lead sheets, a type of musical notation.

Lead Sheet Generation

A lead sheet is a representation of a musical piece commonly used in popular
music and consisting of a melody with chord labels on top, as shown on Fig. 1
(extract of A Day in the Life by Lennon/McCartney).

An important aspect of this lead sheet is that melodic patterns are distrib-
uted according to a temporal structure. For example, the pattern of bars 1-2 is
repeated at bars 5-6. This type of structures is commonplace in popular music.
To generate lead sheets with a similar temporal structure similar, a standard
CP approach is to define one variable per note. However, notes have a different
duration: bar 1 contains eight short notes (including the rest) and bar 2 contains
only one long note. Consequently, there is no direct correspondence between the
index of a note and its temporal position. This makes it hard to post constraints
stating that the first two bars should be repeated two bars later, regardless of
their number of notes; or any other constraint of the same kind. In Sect. 6, we
show that our approach yields a practical solution to this problem.

Fig. 1. The first 8 bars of A Day in the Life by John Lennon and Paul McCartney

Automatic Accompaniment Generation

We describe and evaluate our technical contribution on the generation of musical
accompaniment from audio multitrack recordings. We chose this example as it
has immediate applications for computer generated musical improvisation or
accompaniment generation, as mentioned in Sect. 5.1.

The task consists in generating a new multi-track audio accompaniment by
reusing an existing multi-track recording. The original tracks are segmented into

788 P. Roy et al.

chunks, using an onset detector [5]. Then new tracks are generated by recom-
bining chunks, using concatenative synthesis [6]. Chunks in the generated tracks
may appear in a different order than in the original track and may be used any
number of times. Such a scheme involves several types of constraints: On the one
hand, we have to constrain each track to avoid awkward chunk transitions, by
allowing transitions that are similar to the transitions in the training corpus. The
similarity is measured using acoustic features, see Sect. 5.1. On the other hand,
to prevent the tracks from “drifting” from one another, e.g., one track becomes
increasingly louder while another track fades out, we have to synchronize the
tracks at regular points in time, for instance at the onset of every bar.

This problem raises the same issue as lead sheet generation. The chunks have
different durations, therefore the index of a chunk and its temporal position are
not directly depending on one another.

Approaches

In the examples above and, more generally, in many interactive or content gener-
ation applications, we need to specify sequences with structural properties that
cannot be inferred using statistical models. In the first example, the temporal
structure in a lead sheet is not a statistical property that can be inferred from
a set of examples, but is rather explicitly imposed, for instance by a user.

Constraint programming provides an ideal way of enforcing structure on
sequences. However, as we highlighted earlier, we cannot state structural con-
straints on events based on their index alone.

Adopting a position-based model, in which variables represent events of
smaller, atomic duration whereby longer objects are made up of several con-
secutive variables, solves this issue. For a given total duration, a fixed number
of variables are defined and therefore indexes correspond to temporal positions.
This requires discretizing time into a grid of equal-duration slices, small enough
so that all events are aligned with the grid. In this model, the number of variables
is considerably larger than the number of events in the generated sequences: if
durations are expressed as fractions of the longest event, the atomic duration
decreases with the least common multiple of the denominators, whose growth
is exponential [7]. Hence, the size of the grid may be exponentially smaller
than the event lengths, creating an intractable number of variables. Moreover,
the position-based model requires additional horizontal constraints to aggregate
atomic events to form longer objects. These constraints are not easy to specify
in general. This approach is therefore not applicable in many real problems.

Several frameworks using constraint propagation make inferences about tem-
poral relations from a qualitative [8] or quantitative standpoint [9]. The compu-
tational efficiency of these approaches is very limited in the general case, but they
offer a precise and powerful representation of relations between times events.

Enforcing Structure on Temporal Sequences: The Allen Constraint 789

Our Contribution

Allen [8] introduced an algebra with 13 binary relations between time intervals
for temporal reasoning. We use this algebra as a language to express temporal
positions and introduce the Allen global constraint, which defines variables
corresponding to a given Allen relation. Technically, for a given time interval
t and a given Allen relation R, Allen maintains two set-variables: the set of
events and the set of variable indexes satisfying R for t. Temporal properties
of the sequence are represented by constraints defined on these set-variables.
We present two models implementing Allen: the first model is based on a
classical scheduling approach and the second model uses Multi-valued Decision
Diagrams (MDDs). We show that the MDD-based approach, which performs
tighter pruning, is much more efficient on the multitrack generation problem. The
MDD representation and the associated filtering procedures are complex, which
is why we present the first, simpler model. The two approaches are also used to
run experimental comparisons showing that the MDD approach is necessary to
solve actual synchronization problems.

A constraint based on Allen’s algebra [1] takes a set of tasks, a set of Allen
relations, a set of intervals, and checks that every task satisfies at least one rela-
tion for one interval. They apply this work to the generation of video summaries.
In their approach, the checks for every task are independent from one another.
On the contrary, in our approach, we use Allen to enforce explicit structural
temporal properties, defined by Allen relations. Moreover, we take all specified
properties into account in a single, global constraint.

The Meter constraint [10] provides control on the duration and on various
temporal properties of sequences, but is limited to the definition of unary con-
straints on events defined by their temporal position. It does not provide actual
variables representing these events, and cannot be used, for instance, to state
equality or difference constraints between events. Allen generalizes Meter by
defining two additional set-variables that can be used to state arbitrary, e.g.,
binary, constraints enforcing temporal structures on sequences.

Allen is designed to model and solve problems of temporal sequence syn-
chronization and structure. Previous work, including our own on using Regular
[11] for music generation, never addressed this aspect.

2 Constraining Contiguous Temporal Sequences (CTS)

A temporal event e is a symbol with a duration d(e). A contiguous temporal
sequence, CTS for short, is a finite sequence of temporal events (e1, . . . , en). A
CTS is basically a concatenation of events: two consecutive events in a CTS
are considered contiguous. Therefore, for a CTS S = (e1, . . . , en), the duration
d(S) of S is the sum of the duration of the events contained in S, defined by
d(S) =

∑n
i=1 d(ei). The absolute temporal position, or starting time of an event ep

in S is defined by s(ep) =
∑p−1

i=1 d(ei). Note that the absolute temporal position
is not an intrinsic property of a temporal event, it is a property of a temporal

790 P. Roy et al.

event with respect to a CTS. A same temporal event may appear several times
in a same CTS at different starting times.

In this article, we consider only temporal events with integer duration and,
therefore, we address CTS in which all events have integer temporal positions.

Given a set E of temporal events, a model for the generation of CTS is to
represent a CTS containing n temporal events of E as a sequence of n constrained
variables (X1, . . . , Xn), each with domain dom(Xi) = E. With this model, it is
easy to state constraints relating events based on their index in the sequence,
such as X1 = Xn, or Xi ̸= Xi+1. However, the absolute temporal position of an
event in a CTS is not directly related to its index as it depends on the duration
of all preceding events. There is therefore no straightforward way of constraining
the elements of the sequence based on their absolute temporal position.

3 The Global Allen Constraint

The idea behind the Allen constraint is to use Allen relations between temporal
intervals to specify some temporal element(s) of a CTS (the 13 atomic relations
of Allen are given on Table 1). Let S be a CTS (e1, . . . en). An Allen relation R
and a temporal interval t specify a subsequence of S. For instance, if R is d,
i.e., the relation “during”, and t = [a, b], then R and t specify the subsequence
of S containing the events which start after a and end before b.

Let E be a set of temporal events and let X1, . . . , Xn be n constrained vari-
ables, each with domain E. The Xis are the sequence variables. Let t be a tem-
poral interval and let R be a relation of Allen between temporal intervals (see
Table 1). Let I be a set-variable, with domain {1, . . . , n} and E be a set-variable
with domain E. The Allen constraint

AllenR,t(X1, . . . , Xn, I, E) (1)

ensures that I contains the indexes of all sequence variables Xi belonging to the
subsequence of (X1, . . . , Xn) specified by Allen relation R and temporal interval
t. Similarly, the constraint (1) ensures that E contains the values of all sequence
variables Xi belonging to the subsequence of (X1, . . . , Xn) specified by R and t.

The Allen constraint defined above is satisfied if and only if

I = {i ∈ {1, . . . , n} | [s(Xi), s(Xi+1)] R t} and E = {Xi | i ∈ I}

For example, the melody on Fig. 1 contains 36 notes (including rests). We rep-
resent each note as a temporal event and the melody as a CTSM = (n1, . . . , n36),
where ni is the i-th note of the melody. Writing events as (note, duration) ordered
pairs, with duration 1 for eighth-notes, we have:

n1 = (rest , 1);n2 = (B4, 1);n3 = (D5, 1);n4 = (B4, 1);n5 = (E5, 1);

n6 = (B4, 1);n7 = (D5, 1);n8 = (E5, 1);n9 = (B4, 8); . . .

where D4 denotes pitch D and octave 4. Note that n2 = n4 = n6, n3 = n7, and
n5 = n8.

Enforcing Structure on Temporal Sequences: The Allen Constraint 791

Table 1. The 13 atomic relations of Allen. The lower bound of a time interval ti is
denoted by ti− and the upper bound by ti+.

Relation Symbol Example Semantics Inverse

t1 before t2 < t1 t2 t1+ < t2− >

t1 equal t2 eq t1 t2 t1− = t2− and t1+ = t2+ eq

t1 meets t2 m t1 t2 t1+ = t2− mi

t1 overlaps t2 o t1 t2 t1− < t2− and t2− < t1+ < t2+ oi

t1 during t2 d t1 t2 t1− > t2− and t1+ < t2+ di

t1 starts t2 s t1 t2 t1− = t2− and t1+ < t2+ si

t1 finishes t2 f t1t2 t1− > t2− and t1+ = t2+ fi

Consider the relation of Allen “during” and the time interval defined by the
first bar, i.e., the interval starting at temporal position 1 and ending at temporal
position 8 (as we count 1 for an eighth-note). The Allen constraint

Allend[1,8](n1, . . . , n36, I, E)

is satisfied if, and only if I = {1, 2, . . . , 8} and E = {(rest, 1), (B4, 1), (D5, 1),
(E5, 1)}. Note that although the note (B4, 1) appears three times in the first
bar, it appears only once in E , as temporal events do not have a starting time.

4 Implementing the Allen Constraint

We now describe two implementations of the Allen constraint. The first one is
a simple model, based on scheduling, and performing only local propagations.
We show in Sect. 5 that this model performs poorly. This justifies the need for
a more elaborated model, using an MDD to represent the sequences explicitly,
which makes it possible to prune more values during the search. This second
model is presented in Sect. 4.2.

In both models, the sequence variables X1, . . . , Xn take temporal event
values.

4.1 A First Model

The Allen constraint can be seen as a non-preemptive scheduling problem
with unary resources where variables correspond to activities having a variable
duration. In this model, each variable Xi is associated with two variables Si and
Di. Variable Si represents the absolute temporal position of Xi in the CTS, and
Di represents the duration of Xi. The start and duration variables are related
via a set of constraints

Si+1 = Si +Di,∀i = 1, . . . , n − 1 (2)

792 P. Roy et al.

with S1 = 0.
In order to define the propagation rules, we will use the following five predi-

cates:

– HoldsR,t(s, d)
def⇐⇒ [s, s + d]R t, where s is a start time (i.e., absolute

temporal position) and d a duration
– PossibleR,t(i, e)

def⇐⇒ e ∈ dom(Xi) and ∃s ∈ dom(Si), HoldsR,t(s, d(e))
– PossibleR,t(i)

def⇐⇒ ∃e ∈ dom(Xi) such that PossibleR,t(i, e)
– RequiredR,t(i, e)

def⇐⇒ Xi = e and ∀s ∈ dom(Si), HoldsR,t(s, d(e))
– RequiredR,t(i)

def⇐⇒ ∀e ∈ dom(Xi),∀s ∈ dom(Si), HoldR,t(s, d(e))

Variables I and E are set-variables [12]. We will use the notation lb(.) for the
lower-bound of a set-variable domain and ub(.) for its upper-bound. Intuitively,
during the filtering procedure, the lower-bound lb(I) (resp., lb(E)) is the set of
required values for I (resp., E). Similarly, the upper-bound ub(I) (resp., ub(E))
is the set of possible values for I (resp., E). The filtering rules presented below
rely on the equivalences:

i ∈ ub(I) ⇐⇒ PossibleR,t(i) (3)
i ∈ lb(I) ⇐⇒ RequiredR,t(i) (4)
e ∈ ub(E) ⇐⇒ ∃i,PossibleR,t(i, e) (5)

Note that e ∈ lb(E) is more difficult to express in terms of the predicates, which
is why Rule (15) is more complex. In fact, reasoning on lb(E) is the most complex
operation for maintaining the consistency between the sequence variables and
the set-variables. In the next section, we use an MDD model, which is sufficiently
rich to infer the exact lower-bound lb(E).

The consistency between the event, start, and duration variables, and the
lower and upper bounds of the Allen set-variables, is maintained with a set of
filtering rules.

When Si is modified, i.e., a value was removed from its domain, the following
rules may apply:

i ∈ ub(I) : ¬PossibleR,t(i) ⇒ i ̸∈ ub(I)
RequiredR,t(i) ⇒ i ∈ lb(I) (6)

i ∈ lb(I) : e ∈ dom(Xi) ∧ (∀s ∈ dom(Si),¬HoldsR,t(s, d(e)))
⇒ e ̸∈ dom(Xi) (7)

i ̸∈ ub(I) : e ∈ dom(Xi) ∧ (∀s ∈ dom(Si),HoldsR,t(s, d(e)))
⇒ e ̸∈ dom(Xi) (8)

e ∈ ub(E) : ̸ ∃j,PossibleR,t(j, e) ⇒ e ̸∈ ub(E) (9)
e ̸∈ ub(E) : (∀s ∈ dom(Si),HoldsR,t(s, d(e)))

⇒ e ̸∈ dom(Xi) (10)

Enforcing Structure on Temporal Sequences: The Allen Constraint 793

Let us explain the first rule, Rule (6), in detail. Rule (6) is applied when a value
is removed from the domain of Si and if i ∈ ub(I). The predicate PossibleR,t(i)
is evaluated, and if it does not hold true, index i is removed from ub(I). The
predicate RequiredR,t(i) is also evaluated, and if it holds true, index i is added
to lb(I). The variable Si represents the starting times of the i-th event in the
CTS. The property i ∈ ub(I) means exactly that predicate PossibleR,t(i) holds
true (by Equivalence (3)). A possible consequence of removing a value from the
domain of Si is that there may be no more starting time s in Si such that
[s, s+ d(e)]R t. Therefore, we reevaluate PossibleR,t(i), and if it does not hold
true anymore, we remove i from ub(I). Another possible consequence of removing
a value from Si is that all remaining values s ∈ dom(Si) are such that [s, s +
d(e)]R t for any event e ∈ dom(Xi), which means that RequiredR,t(i) holds
true. Equivalence (4), we add index i to lb(I).

When Xi is modified, we apply the following rules:

i ∈ ub(I) : ¬PossibleR,t(i) ⇒ i ̸∈ ub(I)
RequiredR,t(i) ⇒ i ∈ lb(I) (11)

i ∈ lb(I) : dom(Xi) = {e} ⇒ e ∈ lb(E)
s ∈ dom(Si) ∧ (∀e ∈ dom(Xi),¬HoldsR,t(s, d(e)))
⇒ s ̸∈ dom(Si) (12)

i ̸∈ ub(I) : s ∈ dom(Xi) ∧ (∀e ∈ dom(Xi),HoldsR,t(s, d(e)))
⇒ s ̸∈ dom(Si) (13)

e ∈ ub(E) : ̸ ∃j,PossibleR,t(j, e) ⇒ e ̸∈ ub(E) (14)
e ∈ lb(E) : ∃i ∈ ub(I) s.t.

PossibleR,t(i, e)∧
∀j ∈ ub(I) s.t. j ̸= i, (e ̸∈ dom(Xj) ∨ ¬PossibleR,t(j, e))

⇒ dom(Xi) = {e} ∧ i ∈ lb(I) (15)

When I is modified: if i ∈ lb(I), apply Rule (7) and Rule (12); if i ̸∈ ub(I)
apply Rule (8) and Rule (13). When E is modified: if e ∈ lb(E) apply Rule (15);
if e ̸∈ ub(E), ∀i ∈ ub(I), apply Rule (10).

Most of those rules are straightforward implications of the predicate defin-
itions, except rule (15). The first line of Rule (15) says that it is possible to
have value e in the sequence. The following lines express the fact that if a only
one variable Xi may take value e, we perform the assignment Xi ← e. We can
easily verify that no rule removes any consistent value, i.e., the rules are sound.
However, this model does not remove all inconsistent values, i.e., it does not
achieve arc-consistency for Allen.

4.2 MDD-Based Model

This model uses an MDD constraint to represent the extension of theAllen con-
straint. By using propagators for MDDs, we can therefore achieve arc-consistency

794 P. Roy et al.

of the whole Allen constraint. In fact, we show that we can even combine sev-
eral Allen constraints into a single MDD and thus achieve arc-consistency for
a set of Allen constraints. An MDD, in constraint programming, is a directed
acyclic graph with one layer of nodes per constrained variable plus a final layer
containing the single true node [13]. Defining the Allen constraint with MDDs
can be decomposed into two steps:

– We first represent temporal constraint by a transition function computing
the set of all temporal positions reachable from a given temporal position.
The MDD is defined, starting from a root node associated to position 0, by
successive applications of the transition function to determine all reachable
temporal positions. An arc is associated to a duration, i.e., time difference
between the temporal position of its ending node and its origin node, i.e., for
and arc a = (i, j), we have t(j) = t(i)+d(a), where t(.) denotes the temporal
position of a node. The MDD constructed this way simply represents a sum
function. We use the MDD Pattern construction defined in [14], which allow
us to build an MDD based on a function of the node. Here the function node
is the transition function between durations. Events are introduced in the
MDD as follows: for each arc associated to a duration, we create as many
arcs as there are events with this duration. Each arc in the resulting MDD is
therefore labelled with a couple (event, duration).

– Then, for a given Allen relation, we identify all the arcs in the MDD that
satisfy this relation. We can do this by noting that an arc a = (i, j) occupies
the temporal interval [t(i), t(j)]. These are the red arcs in Fig. 2.

0

1

a

2

b

2

a

3

b a

4

b

4

b

5

b

6

b

a b

a b a b

b b

Fig. 2. The graph (left) and MDD (right) representations of the constraint
Allend∨s∨fi∨eq[2,5] (see Table 2). Red labels correspond to values satisfying the con-
straint. Numbers in the graph on the left represent the temporal position. (Color figure
online)

To illustrate this with an example, consider two events a and b with d(a) =
1 and d(b) = 2 and a sequence of three variables X1,X2,X3 with domains
dom(X1) = dom(X2) = {a, b} and dom(X3) = {b}. Let R denote the relation
d ∨ s ∨ f ∨ eq, which is similar to d except it is not strict. The extension of

Enforcing Structure on Temporal Sequences: The Allen Constraint 795

Table 2. The extension of AllenR[2,5] for the example. Events that are, not strictly,
during [2, 5] are in red.

X1 X2 X3 I E
a a b {3} {b}
a b b {3} {b}
b a b {2, 3} {a, b}
b b b {2} {b}

AllenR[2,5]([X1,X2,X3], I, E) is shown in Table 2, where events that occur, not
strictly, during [2,5] are in red.

The list of valid sequences of the constraint may be represented by the
graph in Fig. 2 (left). Each layer represents one sequence variable (X1 is the
top layer, X2 is the middle layer, and X3 the bottom layer). Node labels rep-
resent start times and edge labels are events. Edges corresponding to events
satisfying AllenR[2,5] are in red.

Note that the Allen relation does not change during search. As a consequence,
one can ignore the temporal information in the nodes and apply the MDD reduc-
tion operation to the graph. This yields the reduced MDD in Fig. 2 (right). Note
that the reduction distinguishes between black and red labels.

The algorithm presented in [15] is used to filter the domains of the sequence
variables in the constraint represented by the MDD. The set-variables I and E
must satisfy the following properties:

1. if ∀a ∈ Ai, a is red, then i ∈ lb(I);
2. if ∃a ∈ Ai such that a is red, then i ∈ ub(I) and label(a) ∈ ub(E).

where Ai denotes the i-th layer of the MDD, and a denotes an arc. By using the
arcs deleted from the MDD, we maintain these properties incrementally.

When an event e is added to lb(E), it means that all complete path in the
MDD contains at least one red arc labelled with e. We modify the current MDD,
notated MDDc, to integrate this new information. This is done by generating a
new MDD, MDD(-e) containing all paths of MDDc that do not go through a red
arc labelled with e. Then, we substract MDD(-e) from MDDc. This is efficient as
MDD(-e) is a subgraph of MDDc. To generate MDD(-e), we duplicate MDDc,
suppress all red arcs labelled with e, and propagate the suppression until every
node belongs to a complete path (from the root node to a terminal node). This
procedure is described in an article by Perez and Régin [16]. The complexity of
these filtering operations is bounded by the size of the MDD.

In practice, the MDD representation is efficient because the bottom layers
are highly compressed. This approach solves problems with up to 150 variables,
which is enough for the targeted applications (see Sect. 5.3).

An important aspect of this approach it that we represent several Allen
constraints stated on the same sequence in a single MDD. Then, we implement
channeling relations between the MDD and the set-variables for each relation.

796 P. Roy et al.

This allows us to achieve arc-consistent of the conjunction of all the Allen
constraints. Note that integrating the set-variables in the MDD would require
the definition of one MDD per Allen relation, and would sacrifice compression
without improving filtering.

5 Evaluation

We evaluated the two models on an instance of the audio multitrack synchro-
nization problem described in the introduction. The evaluation was implemented
using the OR Tools1 solver. Benchmark data will be made available online.

5.1 Description of the Benchmark

We use a three-track recording (guitar, bass, and drum) of the first 32 bars of
song Prayer in C (Lilly Wood & The Prick). Each track is segmented using
standard onset detection and quantized to 1/24th of a beat (see Fig. 3).

Fig. 3. A graphical representation of the guitar (top), bass (center), and drum (bottom)
tracks of Prayer in C. Each track contains 32 bars and each triangle represents a chunk.
Vertical lines indicate bar separations.

Chunks are categorized into clusters according to harmonic similarity (for
pitched instruments) and timbre similarity for drums. The timbre is represented
by Mel Frequency Cepstral Coefficients (MFCC) with 13 coefficients; the har-
monic similarity is computed using the Harmonic Pitch-Class Profile (HPCP)
with 36 divisions of the octave [17].

The guitar track contains 128 chunks with duration ranging from an eighth-
note (half a beat) to a dotted quarter-note (1.5 beats), categorized into 13 har-
monic clusters. The bass track contains 81 chunks (duration from half a beat
to 1.5 beats) categorized into 9 bass clusters (harmonic similarity). The drum
track contains 94 chunks with duration from half a beat to 20/3 beats, that is a
full bar plus two thirds of a bar. There are 40 timbre-based drum clusters.

We state the problem of creating new multitracks as the generation of three
sequences of chunks, each with an imposed total duration of n bars. Each bar
1 OR Tools is open source and available at https://github.com/google/or-tools.

https://github.com/google/or-tools

Enforcing Structure on Temporal Sequences: The Allen Constraint 797

has four beats, and the duration of the shortest chunks is 1/8 of a bar, therefore
each sequence contains at most p = 32n chunks.

We define a sequence of p chunk variables: G1, . . . , Gp (guitar), B1, . . . ,
Bp (bass), and D1, . . . , Dp (drums). The domain of each variable is the set of
chunks in the corresponding recorded track, plus a dummy chunk with duration
0, called the padding element, which we explain below.

For each track, all chunk transitions, e.g., Gi → Gi+1, are such that the asso-
ciated cluster transition exists in the original track. Additionally, we synchronize
the tracks together at the beginning of every bar. More precisely, let Gi, Bj ,Dk

be the three chunks playing at the beginning of bar b, and C(GI), C(Bj), C(Dk)
be the corresponding clusters. We enforce that the same cluster “signature”
exists somewhere in the original multitrack, not necessarily at the beginning of
a bar. The underlying idea is that the cluster signatures of the original track
are musically acceptable. Intuitively, this constraint imposes that the generated
multitrack uses acceptable chunk signatures at the beginning of every bar but
can “invent” new cluster signatures (new sounds) between bar lines.

It is easy to impose the total duration of 4n to each track by simply removing
all nodes of the graph (see Fig. 2, left) whose label is greater than 4n and every
node of the final layer whose label is different from 4n. Every node with label
4n that is not in the final layer receives a new arc, labeled with the padding
element, going to the next layer to a new node with the same label 4n, since
the padding element has a 0 duration. We repeat this process to the final layer.
This allows us to generate sequences with fewer than p “actual” variables, the
padding value being assigned to the “extra” variables.

The variables are subject to the binary constraints on chunk cluster transi-
tions. These constraints are expressed as simple table constraints between con-
secutive chunk variables in each track. For example, (C(Gi) → C(Gi+1)) ∈ Cg,
where Cg is the set of all cluster transitions in the original guitar track. The same
applies to the two other instruments.

The vertical synchronization constraints are represented by an Allen con-
straint for each track and for each bar. To specify the events that are playing
at the beginning of bar i, we use the Allen relation o ∨ s applied to the time
interval [4(i−1),+∞). In our context, this relation, one of the 213 combinations
of Allen relations, specifies exactly the intervals which “contain” the temporal
point 4(i − 1), the onset of bar i.

The Allen constraints for the guitar track are

Alleno∨s [4(i−1),∞)([C
g
1 , . . . , C

g
p], I

g
i , E

g
i)

where Cg
i is the variable cluster(Gi). The synchronization itself is enforced by

an ad hoc table constraint between Eg
i , Eb

i , and Ed
i , where accepted triplets are

cluster signatures of the original multitrack.
This approach applies to the generation of automatic accompaniment of an

imposed melody in a given style. A demo video2 is available online. Note that
2 Video available online, https://www.youtube.com/watch?v=buXqNqBFd6E, exam-
ples at seconds 140, 176, and 216.

https://www.youtube.com/watch?v=buXqNqBFd6E

798 P. Roy et al.

in this case, we enforce additional harmonic constraints to match a target chord
sequence, in the case of the video above, the Ode to joy.

5.2 Evaluation of the First Model

We evaluate two implementations of the scheduling model, depending on how
we implement constraint (2), which links start times and durations (defined in
Sect. 4.1). First, we enforce arc-consistency on this ternary sum constraint. The
model solves the problem for two bars in 8.4 seconds. It does not solve the prob-
lem for more than two bars in less that 30min, which we consider a timeout. It is
interesting to observe that the set of ternary sum constraints models a Regular
constraint enforcing the graph on Fig. 2 (left). Furthermore, by enforcing AC for
the ternary sum constraints, we also achieve AC for this Regular, since we
obtain a model equivalent to the Berge acyclic decomposition of Regular [18].
The more complex MDD-based model differs from this approach by the com-
pression applied to this graph, and its exploitation to obtain a tighter filtering
on the set-variables.

We also implemented a lighter version where the ternary sums constraints
only perform bound-consistency, based on the intuition that propagating infor-
mation about the bounds of event duration offers a good trade off between sim-
plicity and pruning. This model solves the problem for two bars in 5.4 seconds,
but does not scale either to larger instances.

5.3 Evaluation of the MDD-Based Model

We use MDD4R [15] to perform the operations on the MDD constraint repre-
senting each Allen constraint. The code is implemented using the OR Tools
solver. Note that, as said in Sect. 4.2, all the Allen constraints for a same track
are represented by a single MDD.

The comparison with the performance of the simple model for Allen is
clearly in favor of the MDD approach (see Table 3). The simple model does not
solve problems longer than two bars in less than 30min. In contrast, the MDD-
based model solves the 14-bar problem in less than 2min. The extra cost of

Table 3. The size of the MDDs and the execution time to find 5 solutions for various
multitrack lengths

n MDD size (#Vertices, #Edges) Time

Guitar Bass Drum (ms)

6 2382 41 k 848 13667 1864 73 k 2301

8 4199 74 k 1493 24 k 3817 156 k 7219

10 6530 117 k 2388 39 k 6513 275 k 23 k

12 9374 169 k 3623 61 k 9957 429 k 57 k

14 12 k 231 k 5085 87 k 14 k 617 k 112 k

Enforcing Structure on Temporal Sequences: The Allen Constraint 799

performing the MDD construction and operations is more than compensated for
by the higher pruning offered by this model, especially regarding the treatment
of the set-variable E .

6 Generation of Lead Sheets

To complete our presentation, we now address the problem of generating a
melody, given a chord sequence, using Allen. This task, involving a single
sequence, is a particular application of a general framework for lead sheet com-
position that we have developed. In this section, we sketch out the problem and
how to state it using Allen. We do not report computation times as they vary
considerably depending on the corpus and on the imposed chord sequence.

The melody is defined as a sequence of note variables, where a note is an
event with a pitch and a duration, subject to constraints enforcing: (1) the dura-
tion of the melody matches that of the chord sequence, (2) the note transitions
form acceptable musical intervals, (3) the notes match the current harmony (the
chord), and (4) the melody satisfies an imposed pattern structure. We explain
these constraints in detail on the example on Fig. 4.

Fig. 4. A 12-bar lead sheet generated using an Allen constraint.

For a 12-bar melody with a 4/4 time signature, we define a sequence of note
variables [N] = [N1, . . . , Np], with p = 96. The total duration is 48 = 12 × 4
beats. The melodic interval constraints are stated as binary table constraints
between the pitch of any two consecutive notes. The allowed pitch intervals are
collected from a corpus of 12000 lead sheets of popular music.

To enforce the harmonic constraints, we state an Allen constraint for each
chord. For instance, on Fig. 4, the first chord, CM7, occupies the time interval
[1,3] (half of the first bar). We define Allens∨d∨eq∨f [1,3](ECM7, ICM7), and use
a unary constraint on ECM7, restricting its set-domain to the notes whose pitch
is harmonically compatible with CM7. The allowed pitch for a given chord are
extracted from our corpus.

Figure 4 shows a 12-bar lead sheet generated using an Allen constraint
enforcing the equality between the patterns of bars 1-2 and bars 5-6, and between
bars 3 and 9. Let P1 denote the pattern of bars 1-2; P2 that of bar 3; P3 that of
bars 5-6; and P4 for bar 9. We state one Allen constraint for each pattern

800 P. Roy et al.

– P1 corresponds to Allens∨eq∨d∨f [1,9]([N], E1, I1),
– P3 corresponds to Allens∨eq∨d∨f [9,13]([N], E2, I2),
– P3 corresponds to Allens∨eq∨d∨f [17,25]([N], E3, I3),
– P4 corresponds to Allens∨eq∨d∨f [33,37]([N], E4, I4).

However, the relations between patterns are relations between sub-sequences.
They cannot be stated straightforwardly in terms of E1 and E3, as these do not
maintain the order of the values.

For two index set-variables I = {i1, . . . , ik} and J = {j1, . . . , jk} with the
indexes sorted by increasing order. We define the sub-sequence equality con-
straint

SeqEq([X1, . . . , Xn], I,J) ⇐⇒ Xi1 = Xj1 ∧ · · · ∧ Xik = Xjk

This constraint is expensive to filter as the domains of I and J are not known
in advance. We add a redundant constraint to speed up the propagation:

Equal(E ,F)

where E and F are the even set-variables corresponding to I and J respec-
tively. The filtering procedure for the equality constraint between set-variables
(Equal) is quite standard; the filtering procedure for SeqEq is not presented
here. Basically, the filtering operation starts only once the first index in I and
in J are known or, similarly, once the last index in I and in J are known.

7 Conclusion

We have presented the Allen global constraint. Allen maintains set-variables
representing events in a temporal sequence in two ways: one variable is the set of
events occurring at a given position, defined by an Allen relation with a reference
time interval; the other variable is the set of indexes of these events. In practice,
Allen offers the possibility to control the generation of temporal sequences by
constraining events defined by their index and temporal position.

We proposed two models for Allen: a simple model using local propagation
and a model based on MDDs and shown that the MDD representation, which
achieves the global AC of the constraint, performs much better than the simple
model on a temporal sequence synchronization problem.

Allen makes it possible to model and solve new types of problems involving
structural constraints on patterns, represented by sub-sequences. We illustrated
Allen on the task of synchronizing several audio tracks. Another application
is the generation of structured lead sheets with pattern repetition. Such tasks
could hardly be addressed using standard global constraints. More generally we
believe thatAllen addresses an increasing need for enforcing complex structural
constraints in content generation for the entertainment domain.

Acknowledgment. This research is conducted within the Flow Machines project
which received funding from the European Research Council under the European
Unions Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n.
291156.

Enforcing Structure on Temporal Sequences: The Allen Constraint 801

References

1. Derrien, A., Fages, J.-G., Petit, T., Prud’homme, C.: A global constraint for a
tractable class of temporal optimization problems. In: Pesant, G. (ed.) CP 2015.
LNCS, vol. 9255, pp. 105–120. Springer, Heidelberg (2015)

2. Galvane, Q., Christie, M., Lino, C., Ronfard, R.: Camera-on-rails: automated com-
putation of constrained camera paths. In: ACM SIGGRAPH Conference on Motion
in Games, Paris, France, November 2015

3. Galvane, Q., Ronfard, R., Lino, C., Christie, M.: Continuity editing for 3D anima-
tion. In: AAAI Conference on Artificial Intelligence. AAAI Press, Austin, January
2015

4. Berrani, S.A., Boukadida, M.H., Gros, P.: Constraint satisfaction programming for
video summarization. In: IEEE International Symposium on Multimedia, Anaheim,
California, United States. IEEE, December 2013

5. Dixon, S.: Onset detection revisited. In: Proceedings of the 9th International Con-
ference on Digital Audio Effects, Citeseer, vol. 120, pp. 133–137 (2006)

6. Maestre, E., Ramı́rez, R., Kersten, S., Serra, X.: Expressive concatenative synthesis
by reusing samples from real performance recordings. Comput. Music J. 33(4), 23–
42 (2009)

7. Nair, M.: On chebyshev-type inequalities for primes. AMM 89, 126–129 (1982)
8. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM

26(11), 832–843 (1983)
9. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell.

49(1–3), 61–95 (1991)
10. Roy, P., Pachet, F.: Enforcing meter in finite-length markov sequences. In: des

Jardins, M., Littman, M.L. (eds.) AAAI. AAAI Press (2013)
11. Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for regular

and markov constraints with belief propagation. In: Pesant, G. (ed.) CP 2015.
LNCS, vol. 9255, pp. 341–350. Springer, Heidelberg (2015)

12. Puget, J.F.: PECOS: a high level constraint programming language. In: Proceed-
ings of Singapore International Conference on Intelligent Systems, SPICIS 1992,
pp. 137–142 (1992)

13. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010)

14. Perez, G., Régin, J.C., Antipolis, U.N.S., Umr, I.S.: Efficient operations on MDDs
for building constraint programming models. In: IJCAI International Joint Con-
ference on Artificial Intelligence, Buenos Aires, Argentina, pp. 374–380 (2015)

15. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Heidelberg
(2014)

16. Perez, G., Régin, J.C.: Relations between MDDs and Tuples and Dynamic Modi-
fications of MDDs based constraints. arXiv preprint (2015). arXiv:1505.02552

17. Gómez, E.: Tonal Description of Music Audio Signals. Ph.D. thesis, Universitat
Pompeu Fabra (2006)

18. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

http://arxiv.org/abs/1505.02552
http://arXiv.org/abs/1505.02552

Constraint Programming Approach
to the Problem of Generating Milton Babbitt’s

All-Partition Arrays

Tsubasa Tanaka1(B), Brian Bemman2, and David Meredith2

1 STMS Lab: IRCAM, CNRS, UPMC, Paris, France
tsubasa.tanaka@ircam.fr

2 Aalborg University, Aalborg, Denmark
{bb,dave}@create.aau.dk

Abstract. Milton Babbitt (1916–2011) was a composer of twelve-tone
serial music noted for creating the all-partition array. One part of the
problem in generating an all-partition array requires finding a covering
of a pitch-class matrix by a collection of sets, each forming a region
containing 12 distinct elements and corresponding to a distinct integer
partition of 12. Constraint programming (CP) is a tool for solving such
combinatorial and constraint satisfaction problems. In this paper, we
use CP for the first time to formalize this problem in generating an all-
partition array. Solving the whole of this problem is difficult and few
known solutions exist. Therefore, we propose solving two sub-problems
and joining these to form a complete solution. We conclude by presenting
a solution found using this method. Our solution is the first we are aware
of to be discovered automatically using a computer and differs from those
found by composers.

Keywords: Babbitt · All-partition array · Computational musicology ·
Constraint programming

1 Introduction

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted
for developing highly constrained and often complex musical structures. Many
of his pieces are organized according to one such structure known as the
all-partition array [1]. An all-partition array is a covering of a matrix of pitch-
class integers by a collection of sets, each of which forms a region in this matrix
containing 12 distinct pitch classes from consecutive elements in its rows and
that corresponds to a distinct integer partition of 12 (to be clarified in the next
section). This unique structure imposes a strict organization on the pitch classes
in his works, and it serves as both a method of musical composition and musical
form. Moreover, the all-partition array allowed Babbitt one of many ways to
achieve maximal diversity in his music.1

1 Maximal diversity is the presentation of as many musical parameters in as many
different ways as possible [2].

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 802–810, 2016.
DOI: 10.1007/978-3-319-44953-1 50

CP Approach to the Problem of Generating Milton Babbitt’s All-Partition 803

In this paper, we formulate one part of the problem in generating an all-
partition array, beginning from a given matrix of pitch-class integers, using
constraint programming (CP) and with a particular focus on its mathemati-
cal aspects. Using our model and a method for dividing this matrix into smaller,
sub-problems, we obtained a solution, which, we believe, is the first to be discov-
ered automatically using a computer and differs from those found by composers.
CP is a programming paradigm that has been successfully applied to the solving
of various constraint satisfaction problems in music [3–7]. It seems natural then,
that CP could be used in the problem we address here. Moreover, having such a
model could, for example, be used as a basis for generating new musical works.

1.1 The Structure of an All-Partition Array

In this section, we describe the structure of an all-partition array in a way
that assumes the reader has a basic understanding of pitch class set theory.
Constructing an all-partition array begins with the construction of an I × J
matrix, A, whose elements are pitch-class integers, 0, 1, . . . , 11, where each row
contains J/12 twelve-tone rows. The dimensions of this matrix constrain the
most important requirement of the structure of an all-partition array, however,
Babbitt generally limited himself to sizes of 4×96, 6×96, and 12×72 [2]. In this
paper, we consider only matrices where I = 4 and J = 96, as matrices of this
size figure prominently in Babbitt’s music [2]. This results in a 4× 96 matrix of
pitch classes, containing 32 twelve-tone rows from the possible 48 related by any
combination of transposition, inversion and retrograde (i.e., reversal). In other
words, A will contain an approximately uniform distribution of 32 occurrences
of each of the integers from 0 to 11.2 On the musical surface, rows of this matrix
become expressed as ‘musical voices’, typically distinguished from one another
by instrumental register [2].

A complete all-partition array is a covering of matrix, A, by K sets, each of
which is itself a partition of the set {0, 1, . . . , 11} whose parts (1) contain con-
secutive row elements from A and (2) have cardinalities equal to the summands
in one of the K distinct integer partitions of 12 (e.g., 6 + 6 or 5 + 4 + 2 + 1)
containing I or fewer summands greater than zero.3 Figure 1 shows a 4 × 12
excerpt from a 4 × 96 pitch-class matrix, A, and two such sets forming regions
in A each containing every pitch class exactly once and corresponding to two
distinct integer partitions, whose exact “shapes” are more precisely represented
as the integer compositions, IntComp12(4, 4, 4, 0) and IntComp12(0, 6, 3, 3).4

2 For a more detailed description of the constraints governing the organization of
matrices in Babbitt’s music, see [2,8].

3 We denote an integer partition of an integer, L, by IntPartL(s1, s2, . . . , sI) and define
it to be an ordered set of non-negative integers, ⟨s1, s2, . . . , sI⟩, where L =

∑I
i=1 si

and s1 ≥ s2 ≥ · · · ≥ sI .
4 We define an integer composition of a positive integer, L, denoted by

IntCompL(s1, s2, . . . , sI), to also be an ordered set of I non-negative integers,
⟨s1, s2, . . . , sI⟩, where L =

∑I
i=1 si.

804 T. Tanaka et al.

Fig. 1. A 4×12 excerpt from a 4×96 pitch-class matrix with two distinct integer parti-
tion regions represented precisely by the integer compositions, IntComp12(4, 4, 4, 0) (in
dark gray) and IntComp12(0, 6, 3, 3) (in light gray), each containing every pitch class
exactly once.

Note, in Fig. 1, that each summand (from left to right) in IntComp12(4, 4, 4, 0),
gives the number of elements in the corresponding row of the matrix (from top
to bottom) in this region. Unlike common tiling problems using, for example,
polyominoes, these regions need not have connected interiors, as demonstrated
by the second region in Fig. 1 between rows 3 and 4. On the musical surface,
the distinct shape of each region helps contribute to a progression of ‘musical
voices’ that vary in textural density, allowing for relatively thick textures in, e.g.,
IntComp12(3, 3, 3, 3) (with four participating parts) and comparatively sparse
textures in, e.g., IntComp12(11, 0, 1, 0) (with two participating parts).

There exist a total of 34 distinct integer partitions of 12 into 4 or fewer
non-zero summands [2]. An all-partition array with four rows will thus contain
K = 34 regions, each containing every pitch class exactly once and each with
a distinct “shape” determined by an integer composition defining a distinct
integer partition. However, the number of pitch classes required to satisfy this
constraint, 34 × 12 = 408, exceeds the size of a 4 × 96 matrix containing 384
elements, by 24. In order to satisfy this constraint, contiguous regions may share
pitch classes, with the added constraint that only horizontal overlaps of at most
one pitch class in each row are allowed for each of the 34 integer partition
regions. Figure 2 shows a third region, IntComp12(5, 1, 0, 6) (in medium gray),
in the matrix shown in Fig. 1, where two of its elements result from overlapped
pitch classes from previous regions. Note, in Fig. 2, the two horizontal overlaps
of pitch class, 7 (in row 1 and belonging to the first region) and 8 (in row 4 and
belonging to the second region), required to have each pitch class occur exactly
once in the third integer partition region. This means that while contiguous
regions may share pitch classes, such regions need not be necessarily adjacent in
sequence.

Composers have primarily relied on constructing all-partition arrays by hand
and at least some of their methods have been published [1,9,10]. Algorithms for
automating this task have also been proposed [8,11]. However, generating an all-
partition array is a large combinatorial problem and satisfying the constraints of
its structure is difficult. To date, none of these algorithms have been able to solve
this problem automatically. This observation motivates our decision here to look
for alternative programming paradigms and methods for possibly better address-
ing this problem. In Sect. 2, we present our CP constraints for implementing the
problem of generating an all-partition array from a given matrix. As solving for

CP Approach to the Problem of Generating Milton Babbitt’s All-Partition 805

Fig. 2. A 4 × 12 excerpt from a 4 × 96 pitch-class matrix with a third integer compo-
sition, IntComp12(5, 1, 0, 6) (in medium gray), sharing one pitch class from each of the
two previous regions.

the entire matrix directly is difficult, in Sect. 3, we present a method of divid-
ing this matrix into two smaller matrices, choosing integer partitions based on
how frequently they appear in solutions to one of these smaller matrices, and
re-joining them to form a complete solution. We conclude here with a solution
discovered using this method.

2 CP Constraints for the Problem of Generating
an All-Partition Array from a Given Matrix

We begin the discussion of our CP constraints for generating an all-partition
array, with a given matrix found in one of Babbitt’s works based on the all-
partition array.5 Let (Ai,j) be this (4, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows and columns by I
and J , respectively. Let xi,j,k (1 ≤ i ≤ I, 1 ≤ j ≤ J) be a binary variable
corresponding to each location (i, j) in A and a subset (i.e., a region) identified
by the integer k, where 1 ≤ k ≤ K and K = 34. There are then 34 sets of 384
such variables. Each of these variables will indicate whether or not a location
(i, j) belongs to a candidate set, which we denote, Ck, for the kth position in
the sequence of 34 regions. For Ck to be a candidate set, it must form a region
in A (as described in Sect. 1), by satisfying two conditions, consecutiveness and
containment, which we will introduce below. Having satisfied these conditions,
Ck will be a candidate set in a possible solution to our problem, in which its
elements correspond to 12 distinct pitch classes inA and whose “shape” is defined
by an integer composition. Additional constraints e.g., ensuring that each of these
candidate sets is then a distinct integer partition and that their overlaps do not
exceed one in each row, will then complete our formulation of this problem.

2.1 Consecutiveness

The condition of consecutiveness states that pitch classes belonging to the same
region and row in A must lie adjacent to one another with no gaps between. We
ensure this is the case by placing constraints on the strings of 0’s and 1’s that
are allowed in the rows formed by ⟨xi,1,k, xi,2,k, . . . , xi,J,k⟩ for each (i, k). If, for
5 Examples of this matrix can be found in Babbitt’s My Ends are My Beginnings

(1978) and Beaten Paths (1988), among others.

806 T. Tanaka et al.

example, the string ⟨. . . , 0, 1, . . .⟩ appears in the ith row for some k, then there
can be no 1 occurring before 0. This is expressed by the following:

∀i ∈ [1, I],∀j ∈ [3, J],∀k ∈ [1,K],

(xi,j−1,k = 0 ∧ xi,j,k = 1) =⇒
j−2
∧

j′=1
(xi,j′,k = 0). (1)

On the other hand, if ⟨. . . , 1, 0, . . .⟩ appears in this row, then there can be no 1
after 0. This is expressed by the following:

∀i ∈ [1, I],∀j ∈ [1, J − 2],∀k ∈ [1,K],

(xi,j,k = 1 ∧ xi,j+1,k = 0) =⇒
J
∧

j′=j+2
(xi,j′,k = 0). (2)

In other words, all 1’s in ⟨xi,1,k, xi,2,k, . . . , xi,J,k⟩ for each (i, k) must be consec-
utive, with any 0’s lying to the left or right end points of this string.

2.2 Containment

The condition of containment states that regions in A must contain 12 distinct
pitch classes. Let Bp (0 ≤ p ≤ 11) be the set of all locations (i, j) of pitch class
p in matrix A. From this, we can express the condition of containment by the
following:

∀p ∈ [0, 11],∀k ∈ [1,K],
∑

(i,j)∈Bp

xi,j,k = 1, (3)

where for each k, xi,j,k is equal to 1 at one and only one location (i, j) whose
pitch class is p in A. When this is the case, Ck will contain one of each pitch
class.

2.3 Covering All (i, j) in A

A solution to our problem requires that every one element in A is covered by
at least one of the regions, Ck. We can express this condition by the following
constraint:

∀i ∈ [1, I],∀j ∈ [1, J],
K
∨

k=1
(xi,j,k = 1). (4)

2.4 Restrictions on the Left-to-right Order of Candidate Sets
and Their Overlaps

As discussed in Sect. 1, adjacent regions need not be contiguous in each row in A,
however, there are restrictions on their left-to-right order and allowed overlaps.
The number of overlaps in each row between these regions must not exceed 1.
We can express this restriction by the following constraint:

∀i ∈ [1, I],∀j ∈ [2, J],∀k ∈ [1,K − 1],

(xi,j,k = 1) =⇒
K
∧

k′=k+1
(xi,j−1,k′ = 0). (5)

CP Approach to the Problem of Generating Milton Babbitt’s All-Partition 807

When combined with the constraint of consecutiveness, constraint 5 means that
if xi,j,k is equal to 1, the ith row of Ck′ , whose k′ is greater than k, is either (1)
located at the right-hand side of (i, j) without overlapping the ith row of Ck or
(2) has only one overlap at the right-most element of the ith row of Ck.

2.5 Candidate Sets as All Different Integer Partitions

In order to determine that the integer composition “shape” of Ck is a distinct
integer partition, we introduce two variables, yi,k,l and zk,l. Let yi,k,l be a binary
variable that indicates whether or not the length of the ith row of Ck is greater
than or equal to l (1 ≤ l ≤ L,L = 12), by introducing the following two con-
straints:

∀i ∈ [1, I],∀k ∈ [1,K],
J∑

j=1

xi,j,k =
L∑

l=1

yi,k,l (6)

∀i ∈ [1, I],∀k ∈ [1,K],∀l ∈ [2, L], (yi,k,l = 1) =⇒ (yi,k,l−1 = 1). (7)

Equation 6 states that the sum of all elements in ⟨yi,k,1, yi,k,2, . . . , yi,k,L⟩ is equal
to the length of the ith row of Ck while Eq. 7 states that its elements equal to
1 begin in the first position and are consecutive. For example, when the length
of the ith row of Ck is 3, ⟨yi,k,1, yi,k,2, . . . , yi,k,L⟩ is ⟨1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0⟩.
The total number of rows in Ck whose lengths are greater than or equal to l is
given by

∑I
i=1 yi,k,l. Let zk,l (0 ≤ zk,l ≤ I) be an integer variable that is equal

to
∑I

i=1 yi,k,l (1 ≤ l ≤ L) with the following constraint:

∀k ∈ [1,K],∀l ∈ [1, L], zk,l =
I∑

i=1

yi,k,l. (8)

The ordered set of twelve values zk,l (1 ≤ l ≤ L) will then identify the
type of integer partition corresponding to Ck. For example, when zk,l is
⟨4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0⟩, Ck is IntPart12(5, 3, 2, 2). We denote this set zk,l
corresponding to an integer partition n by Pn = ⟨Pn,1, Pn,2, . . . Pn,L⟩ (1 ≤ n ≤
N,N = 34), where integer partitions appear in reverse lexicographical order,
meaning that those containing the fewest parts and largest part lengths appear
first. For example, P1 is IntPart12(12, 0, 0, 0) and P34 is IntPart12(3, 3, 3, 3). From
this, we determine the integer composition shape of Ck to be the integer partition
n by the following constraint:

∀k ∈ [1,K],∀n ∈ [1, N], (wk = n) ⇐⇒
L
∧
l=1

(zk,l = Pn,l), (9)

where wk (1 ≤ wk ≤ N) is an integer variable that indicates to which Pn Ck

corresponds. We can now express the condition that all integer partitions are
distinct by the constraint, AllDifferent(w1, w2, . . . , wK).

808 T. Tanaka et al.

3 Solution

In order to confirm that our formulation of this problem is accurate, we imple-
mented our constraints described in Sect. 2 and supplied these to a CP solver
(Sugar v2-1-0 [12,13]). We first tried to solve for the whole matrix directly, how-
ever, we were unable to obtain a solution after a day of calculation. We decided
instead, to divide the matrix into two, equally-sized halves and try solving for
each in such a way that their re-joining would form a complete solution to the
original problem. We made this division of the original matrix at [1, I]× [1, J/2].
Columns 1 to (J/2) then correspond to the first smaller matrix we denote by A1

and columns (J/2) + 1 to J correspond to the second smaller matrix we denote
by A2. We allocated 34/2 = 17 integer partitions to be found in each.

With little modification, our constraints can be adapted to the solving of
these sub-problems. These changes include modifying Bp (in Eq. 3) to contain
only the locations of pitch classes in either A1 or A2, setting K to be the new
number of partitions in each (i.e., 17) and J to be their new column lengths
96/2 = 48. Solutions to A1 and A2 in which no integer partition is used more
than once and contains only pitch classes from one or the other matrix (but not
both), collectively form a solution to the original problem. Due to its smaller
size, we were able to find solutions beginning with A1 over the course of a day,
in which 506 were found. Naturally, solving for A1 makes finding a solution in
A2 more difficult as the number of available partitions is now fewer, and in fact,
all 506 solutions to A1 made A2 unsatisfiable. We noticed, however, that certain

Table 1. A generated all-partition array corresponding to a complete solution to our
problem, represented in the way used by music theorists [2]. Each column contains the
elements in A belonging to Ck, where a dash indicates those that overlap. Note, that
partitions are denoted using a shorthand notation, e.g., 43, where the base indicates
the length of a part and the exponent denotes its number of occurrences. For clarity,
the integers 10 and 11 have been replaced by the letters t and e, respectively.

et37 62 4581 90 7 t6e 23510498 -867 2t e31 -1094
8940 15 32e6t7 859410t23 e67 549 10 -0 8te27365
2516 9t 0 87e4365t 219 e 03847 1t2 9653 784

74830e 9 12 t56e07348 6 5291 t 03e -e478 t6592

43 623 6412 822 93 913 543 831 34 4222 5321 84

85637 -72e t8 01945 32 7et6890 514 -4e2 -2t36795481
-58 49013 -3et276 450891et7 26 3 -30 -0

-4e09t -t5126 430 7e 8 6 95t1 -124 0e3872 16t9578 e
(vacant) -21 4380e79 -9t16 -625 304e87 5 9t6

522 75 4322 5322 651 921 642 7312 632 732 10 12

023t67e -e 9 8504 1 2e3t76 48 9501
9185 42673te10598 -84 67 -7 t3e29 -908145 73 26et
4 0396t5 -5 21 e3 40785 619t20e 837 4

127 83e0421t -t5964738e0 2t916 -6 5 4 380e79t1625

741 12 6321 8212 10 2 5421 5212 62 7221 4231 11 1

CP Approach to the Problem of Generating Milton Babbitt’s All-Partition 809

partitions in these 506 solutions e.g., IntPart12(3, 3, 3, 3) and IntPart12(4, 3, 3, 2)
occurred far less frequently than others. It would be reasonable then to conclude
that solutions in A1 which contain the greatest number of these less frequently
occurring partitions will make solving for A2 more likely, as the fewer available
partitions in A2 now consist of a proportionally greater number of frequently
occurring partitions. Therefore, we solved again for A1, this time by arbitrarily
restricting the domain of wk to exclude the top 6 most frequently occurring
partitions and include the top 5 least frequently occurring partitions.

If we denote the subset of integers from [1, 34] corresponding to the partitions
found in this solution to A1, S, then the domain of wk for possible solutions to
A2 becomes [1, 34] \ S. We then tried solving for A2, under the assumption that
its proportionally greater number of more frequently occurring partitions would
make finding a solution easier. While this means we exclude possible solutions
e.g., ones in which a rarely occurring partition occurs in A2 or where a partition
contains pitch classes from both A1 and A2, we were able to generate a complete
solution in this way. Solving for A1 took approx. 4 minutes while solving for A2

took approx. 28 minutes. Table 1 shows the complete solution found using this
method of re-joining A1 and A2.

4 Conclusion

In this paper, we have introduced a novel formulation of one part of the problem
of generating an all-partition array, beginning from a given matrix, using con-
straint programming (CP). Solving for the whole of this matrix directly proved
too difficult using our constraints. Therefore, we introduced a method of dividing
the matrix into two halves, solving for each and then re-joining them to form
a complete solution. Using this method, we were able to discover a solution.
This solution is the first we are aware of to be automatically generated by a
computer. Moreover, it is an all-together new all-partition array from those pre-
viously discovered by Babbitt and other composers. In future work, we hope to
examine in more detail how to make finding solutions in larger matrices possible
and without excluding potential solutions.

Acknowledgments. The work of Tsubasa Tanaka reported in this paper was sup-
ported by JSPS Postdoctoral Fellowships for Research Abroad. The work of Brian
Bemman and David Meredith was carried out as part of the project Lrn2Cre8, which
acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European
Commission, under FET grant number 610859.

References

1. Babbitt, M.: Since Schoenberg. Perspect. New Music 12(1/2), 3–28 (1973)
2. Mead, A.: An Introduction to the Music of Milton Babbitt. Princeton University

Press, Princeton (1994)

810 T. Tanaka et al.

3. Anders, T., Anagnostopoulou, C., Alcorn, M.: Strasheela: design and usage of a
music composition environment based on the Oz programming model. In: Van Roy,
P. (ed.) MOZ 2004. LNCS, vol. 3389, pp. 277–291. Springer, Heidelberg (2005)

4. Laurson, M., Kuuskankare, M.: A constraint based approach to musical textures
and instrumental writing. In: Proceedings of the 7th International Conference on
Principles and Practice of Constraint Programming, Musical Constraints Work-
shop (2001)

5. Carpentier, G., Assayag, G., Saint-James, E.: Solving the musical orchestration
problem using multiobjective constrained optimization with a genetic local search
approach. Heuristics 16(5), 681–714 (2010). Springer

6. Chemillier, M., Truchet, C.: Two musical CSPs. In: Proceedings of the 7th Interna-
tional Conference on Principles and Practice of Constraint Programming, Musical
Constraints Workshop (2001)

7. Puget, J.F., Régin, J.C.: Solving the All Interval Problem. https://ianm.host.cs.
st-andrews.ac.uk/CSPLib/prob/prob007/puget.pdf

8. Bemman, B., Meredith, D.: Generating Milton Babbitt’s all-partition arrays. J.
New Music Res. 45(2), (2016a). http://www.tandfonline.com/doi/full/10.1080/
09298215.2016.1172646

9. Starr, D., Morris, R.: A general theory of combinatoriality and the aggregate, part
1. Perspect. New Music 16(1), 3–35 (1977)

10. Starr, D., Morris, R.: A general theory of combinatoriality and the aggregate, part
2. Perspect. New Music 16(2), 50–84 (1978)

11. Bazelow, A.R., Brickle, F.: A combinatorial problem in music theory: Babbitt’s
partition problem (I). Ann. N. Y. Acad. Sci. 319(1), 47–63 (1979)

12. http://bach.istc.kobe-u.ac.jp/sugar/
13. Naoyuki, T., Mutsunori, B.: Sugar: A CSP to SAT translator based on order encod-

ing. In: Proceedings of the 2nd International CSP Solver Competition, pp. 65–69
(2008)

https://ianm.host.cs.st-andrews.ac.uk/CSPLib/prob/prob007/puget.pdf
https://ianm.host.cs.st-andrews.ac.uk/CSPLib/prob/prob007/puget.pdf
http://www.tandfonline.com/doi/full/10.1080/09298215.2016.1172646
http://www.tandfonline.com/doi/full/10.1080/09298215.2016.1172646
http://bach.istc.kobe-u.ac.jp/sugar/

Preference, Social Choice
and Optimization Track

A Dynamic Programming-Based MCMC
Framework for Solving DCOPs with GPUs

Ferdinando Fioretto1,2(B), William Yeoh1, and Enrico Pontelli1

1 Department of Computer Science, New Mexico State University, Las Cruces, USA
{ffiorett,wyeoh,epontell}@cs.nmsu.edu

2 Department of Mathematics and Computer Science,
University of Udine, Udine, Italy

Abstract. The field of Distributed Constraint Optimization (DCOP)
has gained momentum in recent years, thanks to its ability to address
various applications related to multi-agent coordination. Nevertheless,
solving DCOPs is computationally challenging. Thus, in large scale, com-
plex applications, incomplete DCOP algorithms are necessary. Recently,
researchers have introduced a promising class of incomplete DCOP algo-
rithms, based on sampling. However, this paradigm requires a multi-
tude of samples to ensure convergence. This paper exploits the property
that sampling is amenable to parallelization, and introduces a general
framework, called Distributed MCMC (DMCMC), that is based on a
dynamic programming procedure and uses Markov Chain Monte Carlo
(MCMC) sampling algorithms to solve DCOPs. Additionally, DMCMC
harnesses the parallel computing power of Graphical Processing Units
(GPUs) to speed-up the sampling process. The experimental results show
that DMCMC can find good solutions up to two order of magnitude faster
than other incomplete DCOP algorithms.

1 Introduction

In a Distributed Constraint Optimization Problem (DCOP), multiple agents
coordinate assignments of values to their variables to maximize the sum of the
resulting constraint utilities [18,32]. DCOP is a powerful paradigm to describe
and solve many practical problems in a variety of application domains, such
as distributed scheduling, coordination of unmanned air vehicles, smart grid
electrical networks, and sensor networks [10,24,28,34]. DCOP researchers have
proposed a wide variety of solution approaches, from distributed search-based
algorithms [15,18,31] to distributed inference-based algorithms [21,30], as well
as solvers that use GPUs [3,4] and logic programming [12,13] formulations. Com-
plete DCOP algorithms find optimal solutions at the cost of large runtimes, while

This research is partially supported by the National Science Foundation under grants
1345232 and 1550662. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations, agencies, or the U.S.
government.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 813–831, 2016.
DOI: 10.1007/978-3-319-44953-1 51

814 F. Fioretto et al.

incomplete approaches trade optimality for faster execution. Since finding opti-
mal DCOP solutions is NP-hard, incomplete algorithms are often necessary to
solve larger problems. A further challenge to the applicability of DCOPs to more
general classes of problems is the common assumption that each agent controls
exactly one variable during problem resolution, which is often unrealistic. To
cope with such restrictions, reformulation techniques are commonly adopted to
transform a general DCOP into one where each (pseudo-)agent controls exclu-
sively one variable [1,33]. This transformation can be inefficient in terms of agent
computation and coordination, as it may limit the agents’ ability to interact in
pruning the search space [5]. While one can trivially extend existing algorithms
to allow each agent to solve its local sub-problem (i.e., the value assignment of its
local variables) in a centralized fashion, each sub-problem is still NP-hard, and
can require a large amount of time if solved naively. This concern is true espe-
cially for application domains where agents may control a large number of local
variables with large numbers of local constraints. We explore meeting scheduling
problems as one such application domain in our experimental evaluations.

In this paper, we introduce a general framework, called Distributed MCMC
(DMCMC), which is based on a Dynamic Programming-based DCOP proce-
dure [21]; the framework allows each agent to solve its local sub-problem using
Markov Chain Monte Carlo (MCMC) sampling algorithms and uses general-
purpose Graphical Processing Units (GPUs) to parallelize and speed up this
process. We demonstrate the generality of this framework using two popular
MCMC algorithms, the Gibbs [6] and Metropolis-Hastings [8,17] algorithms.
Our experiments show that our framework is able to find better solutions up to
two orders of magnitude faster than MGM and MGM2 (two incomplete DCOP
algorithms). Additionally, it finds solutions that are within a 5% error of the
optimum for problems that can be solved optimally. While the description of
our solution focuses on DCOPs, our approach is also suitable to solve Weighted
Constraint Satisfaction Problems (WCSPs).

2 Background

WCSPs: AWeighted Constraint Satisfaction Problem (WCSP) [11,27] is a tuple
⟨X ,D,F⟩, where X = {x1, . . . , xn} is a finite set of variables, D = {D1, . . . , Dn}
is a set of finite domains for the variables in X , with Di being the set of possible
values for the variable xi, F is a set of weighted constraints (or utility functions).
A weighted constraint fi ∈ F is a function, fi :

Ś
xj∈xfi Di → R+∪{−∞}, where

xfi ⊆ X is the set of variables relevant to fi, referred to as the scope of fi. A
solution σ is a value assignment to a set of variables Xσ ⊆X that is consistent
with the variables’ domains. The utility U(σ)=

∑
f∈F,xf⊆Xσ

f(σ) is the sum of
the utilities of all the applicable utility functions in σ. A solution is said complete
if Xσ =X . The goal is to find an optimal complete solution σ∗=argmaxσ U(σ).

DCOPs: When the elements of a WCSP are distributed among a set of
autonomous agents, we refer to it as a Distributed Constraint Optimiza-
tion Problem (DCOP) [18,21,32]. Formally, a DCOP is described by a tuple

A Dynamic Programming-Based MCMC Framework 815

⟨X ,D,F ,A,α⟩, where X , D and F are the set of variables, their domains, and
the set of utility functions, defined as in a classical WCSP, A = {a1, . . . , am}
(m ≤ n) is a set of autonomous agents, and α : X → A is a surjective function,
from variables to agents, which assigns the control of each variable x ∈ X to an
agent α(x). The goal in a DCOP is to find a complete solution that maximizes
its utility: σ∗=argmaxσ U(σ).

Fig. 1. Example DCOP

Given a DCOP P , G =
(A, E) is the constraint
graph of P , where (i, j)∈E
iff ∃f ∈F , where ∃xi, xj ∈X
with α(xi)=ai and α(xj)=
aj s.t. {xi, xj}⊆xf . A DFS
pseudo-tree arrangement for
G is a spanning tree T =
⟨A, ET ⟩ of G s.t. if f ∈
F and ∃xi, xj ∈ X with
α(xi) = ai and α(xj) = aj
s.t. {xi, xj} ⊆ xf , then x
and y appear in the same
branch of T . Edges of G that are in (resp. out of) ET are called tree edges
(resp. backedges). Tree edges connect a node with its parent and its children,
while backedges connect a node with its pseudo-parents and its pseudo-children.
We write ai ≻T aj if agent ai is an ancestor of aj in the pseudo-tree T . We use
Ci, Pi, and sep(ai) to refer to, respectively, the set of child agents, the parent
agent, and to the separator of agent ai in the pseudo-tree. The latter is the set of
variables owned by the ai’s ancestor agents that are constrained with variables
owned by ai or by its descendant agents.

Definition 1. For each agent ai∈A, Li={xj ∈ X | α(xj)=ai} is the set of its
local variables. Bi={xj ∈Li | ∃xk ∈X ∧ ∃fs∈F : α(xk) ̸= ai ∧ {xj , xk}⊆xfs}
is the set of its interface variables.

Definition 2. For each agent ai ∈A, its local constraint graph Gi =(Li, EFi)
is a subgraph of the constraint graph, where Fi={fj ∈F | xfj ⊆Li}.

Figure 1(a) shows the constraint graph of a sample DCOP with 3 agents a1, a2,
and a3, where L1 = {x1, x2}, L2 = {x3, x4}, L3 = {x5, x6}, B1 = {x2}, B2 =
{x4}, and B3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}. Figure 1(b)
shows one possible pseudo-tree (the dotted line is a backedge). Figure 1(c) shows
the constraints.

DPOP: Distributed Pseudo-tree Optimization Procedure (DPOP) [21] is a com-
plete DCOP algorithm. composed of three phases:1

[Phase 1] Pseudo-tree Generation: DPOP agents constructs a pseudo-tree
using existing distributed pseudo-tree construction methods [7].
1 It is a distributed variant of Bucket Elimination [2].

816 F. Fioretto et al.

Fig. 2. Example UTIL phase computations

Algorithm 1. Metropolis-Hasting(z)
1 z(0) ← Initialize(z)
2 for t = 1 to T do
3 z∗ ← Sample(q(z∗ | z(t−1)))

4 z(t) ←
{

z∗ with p=min(1, π̃(z∗)q(z(t−1),z∗)

π̃(z(t−1))q(z∗,z(t−1))
)

z(t−1) with 1−p

5 for i = 1 to n do
6 zti ← Sample(1

Zπ
π̃(zi | zt1, . . . , zti−1, z

t−1
i+1 , . . . , z

t−1
n))

[Phase 2] Utility Propagation: Each agent, starting from the leafs of the
pseudo-tree, computes the optimal sumof utilities in its subtree for each value com-
bination of variables in its separator. The agent does so by summing the utilities of
its constraints with the variables in its separator and the utilities in the UTILmes-
sages received from its children agents, and then projecting out its own variables
by optimizing over them. In our example problem, agent a3 computes the optimal
utility for each value combination of variables x2 and x4 (see Fig. 2(a)), and sends
the utilities to its parent agent a2 in a UTIL message. Agent a2 then computes the
optimalutility for eachvalue of thevariablex2 (seeFig. 2(b)), and sends theutilities
to its parent agent a1 in a UTIL message. Finally, agent a1 computes the optimal
utility of the entire problem (see Fig. 2(c)).

[Phase 3] Value Propagation: Each agent, starting from the root of the
pseudo-tree, determines the optimal value for its variables. The root agent does so
by choosing the values of its variables from its UTIL computation. In our exam-
ple, agent a1 determines that the values for both its variables leading to the largest
utility are both 0 (with a overall utility of 120). It then sends the value of variable
x2 to its child agent a2 in a VALUEmessage. Upon receiving the VALUEmessage
from its parent agent, agent a2 determines that the value with the largest utility
for both its variables, assuming that x2 = 0, is 0, with a utility of 100. In turn, it
sends the value of variables x2 and x4 to its child agent a3 in another VALUEmes-
sage. Finally, upon receiving the VALUE message from its parent agent, agent a3
determines that the value with the largest utility for both its variables, assuming
that x2 = 0 and x4 = 0, is 0, with a utility of 60.

A Dynamic Programming-Based MCMC Framework 817

MCMC Sampling Algorithms: Markov Chain Monte Carlo (MCMC) sam-
pling algorithms are commonly used to solve the Maximum A Posteriori (MAP)
estimation problem. Recently, Nguyen et al. [19] have shown that DCOPs can
be mapped to MAP estimation problems, allowing the use of MCMC algorithms
to solve DCOPs. However, this mapping assumes that the constraint utilities
are bounded, as they are normalized into distribution functions that MCMC
algorithms aim to approximate. Therefore, MCMC algorithms cannot be used
to solve DCOPs with hard constraints. Let us describe two popular MCMC
algorithm—Gibbs [6] and Metropolis-Hastings [8,17].

Suppose we have a joint probability distribution π(z) over n variables, z=
z1, z2, . . . , zn, that we would like to approximate. Moreover, suppose that it is
easy to evaluate π(z) for any given z up to some normalizing constant Zπ,
such that: π(z) = 1

Zπ
π̃(z), where π̃(z) can be easily computed but Zπ may be

unknown. In order to draw the samples z to be fed to π̃(·), we use a proposal
distribution q(z|z(τ)), from which we can easily generate samples, each depending
on the current state z(τ) of the process. The latter can be interpreted as saying
that when the process is in the state z(τ), we can generate a new state z from
q(z | z(τ)). The proposal distribution is thus used to generate a sequence of
samples z(1), z(2), . . ., which forms a Markov chain.

Algorithm 1 shows the pseudocode of the Metropolis-Hastings algorithm. It
first initializes z(0) to any arbitrary value of the variables z1, . . . , zn (Line 1).
Then, it iteratively generates a candidate z∗ for z(t) by sampling from the pro-
posal distribution q(z∗ | z(t−1)) (Line 3). The candidate sample is then accepted
with probability p (Line 4). If the sample is accepted, then z(t) = z∗, otherwise
z(t−1) is left unchanged. This process continues for a fixed number of iterations
or until convergence [25] is achieved.

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings
algorithm, where Line 3 is replaced by Lines 5–6. Additionally, note that Gibbs
requires the computation of the normalizing constant Zπ while Metropolis-
Hasting does not, as the calculation of the proposal distribution does not require
that information. This is desirable when the computation of the normalizing con-
stant becomes prohibitive (e.g., with increasing problem dimensionality). In this
paper, we describe how one could parallelize the operations of MCMC sampling
algorithms using GPU hardware.

GPUs: Modern Graphics Processing Units (GPUs) are multiprocessor devices,
offering thousands of computing cores to support graphical processing. In this
paper, we use the Compute Unified Device Architecture (CUDA) programming
model proposed by NVIDIA [26], which enables the use of the multiple cores of
a graphic card to accelerate general (non-graphical) applications by providing
programming models and APIs that enable the full programmability of the GPU.
The underlying model of parallelism supported by CUDA is Single-Instruction
Multiple-Thread (SIMT), where the same instruction is executed by different
threads that run on identical cores, while data and operands may differ from
thread to thread.

818 F. Fioretto et al.

A typical CUDA program is a C/C++ program that includes parts meant
for execution on the CPU (referred to as the host) and parts meant for par-
allel execution on the GPU (referred as the device). A parallel computation is
described by a collection of kernels, where each kernel is a function to be exe-
cuted by several threads. To facilitate the mapping of the threads to the data
structures being processed, threads are grouped in blocks, and have access to
several memory levels, each with different properties in terms of speed, organi-
zation (e.g., multiple banks that can be concurrently accessed), and capacity.
Each thread stores its private variables in very fast registers. Threads within a
block can communicate by reading and writing a common area of memory (called
shared memory). Communication between blocks and communication between
blocks and the host (i.e., the CPU) is realized through a large (but slow) global
memory.

3 Distributed MCMC Framework

We now describe our Distributed MCMC (DMCMC) framework, which extends
centralized MCMC sampling algorithms and DPOP. At a high level, its opera-
tions are similar to those of DPOP, except that the computation of the utility
tables sent by agents during the UTIL phase is done by sampling with GPUs.
Notice that the computation of each row in a utility table is independent of the
computations in the other rows. Thus, DMCMC exploits this independence and
samples the values in each row in parallel.

Algorithm 2 shows the pseudocode of DMCMC for an agent ai. It takes as
inputs R, the number of sampling runs to perform from different initial value
assignments, and S, the number of sampling trials. Like DPOP, DMCMC also
exhibits three phases. The first phase is identical to that of DPOP (Line 7). In
the second phase:

• Each agent ai calls GPU-Initialize() to set up the GPU kernel specifics (e.g.,
number of threads and amount of shared memory to be assigned to each block,
and to initialize the data structures on the GPU device memory) (Line 8). The
GPU kernel settings are decided according to the shared memory requirements
and the number of registers used by the successive function call, in order to
maximize the number of blocks that can run in parallel—this step can be
automated.

• Each agent ai, in parallel, calls GPU-MCMC-Sample() which performs the
local MCMC sampling process to compute the best utility and the correspond-
ing solution (value assignments for all non-interface local variables xj

i ∈ Li\Bi)
for each combination of values of the interface variables xk

i ∈ Bi (Line 9). This
computation process is done via sampling with GPUs and the results are then
transferred from the device to the host (Line 10). In our example in Fig. 1,
agent a3 determines that its best utility is 20 if its interface variable x6 = 0,
and 8 if x6 = 1. This utility table is stored in UTILai . Note that all the
agents call this procedure immediately after the pseudo-tree is constructed. In

A Dynamic Programming-Based MCMC Framework 819

Algorithm 2. DMCMC(R,S)
7 Generate pseudo-tree
8 GPU-Initialize()

9 ⟨M1
i , U

1
i ⟩, . . . ,⟨MR

i , UR
i ⟩←GPU-MCMC-Sample(R,S)

10 UTILai ← Get-Best-Sample(⟨M1
i , U

1
i ⟩, . . . , ⟨MR

i , UR
i ⟩)

11 if Ci = ∅ then
12 UTILai ← CalcUtils()
13 Send UTIL message (ai,UTILai) to Pi

14 Activate UTILMessageHandler(·)
15 Activate VALUEMessageHandler(·)

Procedure VALUEMessageHandler(ak,VALUEak)
16 VALUEai ← VALUEak

17 for xj
i ∈ Li do dj∗

i ← ChooseBestValue(VALUEai) ;
18 for ac ∈ Ci do
19 VALUEai ← {(xj

i , d
j∗
i) | xj

i ∈ sep(ac)}∪ {(xk, d
∗
k) ∈ VALUEak | xk ∈ sep(ac)}

20 Send VALUE message (ai,VALUEai) to ac

contrast, agents in DPOP compute the best utility only after receiving UTIL
messages from all children agents.

• Each agent ai computes the utilities for the constraints between its interface
variables and variables in its separator, joins them with the sampled utilities
(Line 12), and sends them to its parent (Line 13). The agent repeats this
process each time it receives a UTIL message from a child (Lines 20–27).

At the end of the second phase (Line 23), like in DPOP, the root agent will
know the overall utility for each combination of values of its variables xj

i ∈
Bi. It chooses its best value combination that results in the maximum utility
(Line 25), and starts the third phase by sending to each child agent ac the values
of variables xj

i ∈ sep(ac) that are in the separator of the child (Lines 26–28).
The MessageHandlers of Lines 14 and 15 are activated for any new incoming
message.

3.1 GPU Data Structures

In order to fully capitalize on the parallel computational power of GPUs, the data
structures need to be designed in such a way to limit the amount of information
exchanged between the CPU host and the GPU devices. Each DMCMC agent
stores all the information it needs in the GPU global memory. This allows each
agent running on a GPU device to communicate with the CPU host only once,
which is at the end of the sampling process, to transfer the results. Each agent
ai maintains the following information:

• Its local variables Li ⊆ X (including its interface variables Bi ⊆ Li).
• The domains of its local variables, Di (assumed to have all equal size for
simplicity).

820 F. Fioretto et al.

Procedure UTILMessageHandler(ak,UTILak)
21 Store UTILak

22 if received UTIL message from each child ac ∈ Ci then
23 UTILai ← CalcUtils()
24 if Pi = NULL then
25 for xj

i ∈ Li do dj∗
i ← ChooseBestValue(∅) ;

26 for ac ∈ Ci do
27 VALUEai ← {(xj

i , d
j∗
i) | xj

i ∈ sep(ac)}
28 Send VALUE message (ai,VALUEai) to ac

29 else Send UTIL message (ai,UTILai) to Pi ;

Function CalcUtils()
30 UTILsep ← utilities for all value comb. of xi ∈ Bi ∪ sep(ai)
31 UTILai ← Join(UTILai ,UTILsep,UTILac) for all ac ∈ Ci

32 UTILai ← Project(ai,UTILai)
33 return UTILai

• A matrix Mi of size |Di||Bi| × |Li|, where the j-th row is associated with
the j-th permutation of the interface variable values, in lexicographic order,
and the k-th column is associated with the k-th variable in Li. The matrix
columns associated with the local variables in Li are initialized with random
value assignments in [0, |Di|−1]. At the end of the sampling process it contains
the converged domain values of the local variables for each value combination
of the interface variables.

• A vector Ui of size |Di||Bi|, which stores the utilities of the solutions in Mi.
• The local constraint graph Gi, which includes the constraints in Fi.

The GPU-Initialize() procedure of Line 8 stores the data structures above for
each agent on its CUDA device. All the data stored on the GPU devices is orga-
nized in mono-dimensional arrays, so as to facilitate coalesced memory accesses.
The set of local variables Li are ordered, for convenience, in lexicographic order
and so that the interface variables Bi are listed first.

3.2 Local Sampling Process

The GPU-MCMC-Sample procedure of Line 9 is the core of the local sampling
algorithm, and can be performed by any MCMC sampling method. It executes
S sampling trials for the subset of non-interface local variables Li \Bi of agent
ai. Since the MCMC sampling procedure is stochastic, we can run R parallel
sampling processes with different initial value assignments and take the best
utility and corresponding solution across all runs. Each parallel run is executed
by a group of CUDA blocks. Independent operations within each sample are also
exploited in parallel using groups of threads within each block. For example, the
proposal distribution adopted by Gibbs is computed using |Di| parallel threads.

A Dynamic Programming-Based MCMC Framework 821

Procedure GPU-MCMC-Sample(R,S)
34 ⟨z, z∗, [q, Zπ], Gi⟩ ← AssignSharedMem()
35 rid ← the thread’s row index of Mi

36 z
|Li|⇔ Mi[rid]

37 ⟨z∗, util∗⟩ ← ⟨z,
∑

fj∈Fi
fj(z|xfj)⟩

38 for t = 1 to S do

39 z
k

⇔ sample(q(z | z(t−1))) w/ prob. min{1, π̃(z)

π̃(z(t−1))
}

40 util ←
∑

fj∈Fi
fj(z|xfj)

41 if util > util∗ then ⟨z∗, util∗⟩ ← ⟨z, util⟩ ;

42 ⟨MR
i [rid], U

R
i [rid]⟩ ← ⟨z∗, util∗⟩

Figure 3 illustrates the different parallelizations performed by the GPU-MCMC-
Sample process with Gibbs.

Fig. 3. Parallelization illustration

The general GPU-MCMC-Sample
procedure is shown in Lines 34–42 and

we use the symbols← and
k
⇔ to denote

sequential (single thread) and paral-
lel (k threads) operations, respectively.
We also denote with n the size of the
state z being sampled, with n = |Li|−
|Bi|. The function takes in as inputs
the number of desired sampling tri-
als S and the number of parallel sam-
pling runs R. It first assigns the shared
memory allocated to the arrays z and z∗, which are used to store the current and
best sample of value assignments for all local variables, respectively; the local
constraint graph Gi; and, if the MCMC sampling algorithm requires computing
the normalization constant of the proposal distribution explicitly, the array q and
Zπ, which are used to store the probabilities for each value of the non-interface
local variables and the normalization constant, respectively (Line 34).

Each thread identifies its row index rid of the matrix Mi, initializes its sample
with the values stored in Mi[rid], calculates the utility for that sample, and
stores the initial sample and utility as the best sample and utility found so far
(Lines 35–37). It then runs S sampling trials, where in each trial, it samples
a new state z from a proposal distribution q(z | z(t−1)) and updates that state
according to the accept/reject probabilities described in the MCMC background
(Line 39).

The proposal distribution q and the accept/reject probabilities depend on
the choice of MCMC algorithm. We now describe them for Metropolis-Hasting
and Gibbs.

• Metropolis-Hastings: The proposal distribution that we adopt is a multi-
variate normal distribution q∼N (µ,Σ), with µ being a n-dimensional vector

822 F. Fioretto et al.

Procedure CUDA Gibbs Proposal Distribution Calculation
43 did ← the thread’s value index of Di

44 for k = |Bi| to |Li| − 1 do

45 q[did]
|Di|⇔ exp

[∑
fj∈Fi

fj(z|xfj)
]

46 Zπ ←
∑|Di|−1

i=0 q[i]

47 q[did]
|Di|⇔ q[did] · 1

Zπ

48 z ← sample(q(z | z(t−1)))

of mean values, whose elements µ(t)
j have the value of the corresponding com-

ponent in the previous sample z(t−1)
j and Σ is the covariance matrix defined

with the only non-zero elements being their diagonal ones and set to be all
equal to

√
Di. We compute the proposal distribution q using n parallel threads.

The proposal distribution for Metropolis-Hastings is symmetric and, thus, the
accept/reject probabilities are simplified as shown in Line 39.

• Gibbs: For Gibbs, Line 39 needs to be replaced with Lines 43–48. Gibbs
sequentially iterates through all the non-interface local variable xk ∈ Li \ Bi

and computes in parallel the probability q[did] of each value did according to
the equation:

q(xk =did | xl ∈ Li \ {xk}) =
1
Zπ

exp
∑

fj∈Fi

fj(z|xfj)

where z|xfj is the set of value assignments for the variables in the scope of
constraint fj , and Zπ is the normalizing constant. We compute q using |Di|
parallel threads.

To ensure that the procedure returns the best sample found, we verify whether
there is an improvement on the best utility (Lines 40–41). At the end of the
sampling trials, it stores its best sample and utility in the rid-th row in the
matrix Mi and vector Ui, respectively (Line 42).

4 Theoretical Properties

We now relate the quality of DCOP solutions to MCMC sampling strategies,
and provide some complexity analyses of the DMCMC algorithms.

Let us first introduce some background on Markov Chains and on the struc-
tural properties that they need to satisfy to guarantee convergence to a station-
ary distribution.

Let Z=(z0, z1, . . . , zt, . . .), with zt ∈ D ⊆ R be a Markov chain with finite
state space S= {s1, s2, . . . , sL} and a L × L transition matrix T whose entries
define the probability of transitioning from one state to another as P (zt+1 =
sj | zt = si) = Tij .

The Markov chain Z converges to a stationary distribution if it is irreducible
and aperiodic. These two concepts are introduced as follows.

A Dynamic Programming-Based MCMC Framework 823

Definition 3 (Irreducibility). A Markov chain is irreducible if it is possible to
reach any state from any other state using only transitions of positive probability.
That is, ∀si, sj ∈ S,∃m < ∞ : P (zt+m = sj |zt = si) > 0 for a given instance t.

Definition 4 (Periodicy). A state si ∈ S has a period k if any return of the
chain in it is possible with multiple of k time steps. The period of a state is
defined as k = gcd{t : P (zt = si | z0 = si) > 0}, where gcd is the greatest
common divisor. A state is said to be aperiodic if k = 1, that is, visits of the
Markov chain to such state (i.e., P (zt = si | z0 = si) > 0) can occur at irregular
times. A Markov chain is said to be aperiodic if every state in S is aperiodic.

Note that for an irreducible Markov chain, if at least one state is aperiodic, then
the whole Markov chain is aperiodic.

We now provide bounds on convergence rates for the DMCMC algorithms
based on MCMC sampling.

Definition 5 (Top αi-Percentile Solutions). For an agent ai the top αi-
percentile solutions Sαi is a set containing solutions for the local variables Li

that are no worse than any solution in the supplementary set Di \ Sαi , and
|Sαi|
|Di| = αi. Given a list of agents a1, . . . , am, the top ᾱ-percentile solutions Sᾱ

is defined as Sᾱ = Sα1 × . . .× Sαm .

Property 1. AfterNi= 1
αiϵi

samples with an MCMC algorithm T , the probability
that the best solution found thus far zNi is in the top αi for an agent ai is at
least 1− ϵi:

PT

(
zNi ∈ Sαi |Ni =

1
αi · ϵi

)
≥ 1− ϵi.

Definition 5 and Property 1 are introduced by Nguyen et al. [19] and can be
generalized to any MCMC sampling algorithm whose Markov chain generated
is irreducible and aperiodic as convergence is guaranteed in a finite number of
time steps.

Theorem 1. Given m agents a1, . . . , am ∈ A, and a number of samples Ni =
1

αi·ϵi (i = 1, . . . ,m), the probability that the best complete solution found thus
far zN is in the top ᾱ-percentile is greater than or equal to

∏m
i=1(1− ϵi), where

N =
∧m

i=1 Ni. In other words,

PT (zN ∈ Sᾱ |N) ≥
m∏

i=1

(1− ϵi).

Proof. Let zN denote the best solution found so far in the process resolution and
zNi denote the best partial assignment over the variables held by agent ai found
after Ni samples. Let Si be a random variable describing whether zNi ∈ Sαi .
Thus:

824 F. Fioretto et al.

PT(zN ∈ Sᾱ |N) (1a)
= PT(zN ∈ Sᾱ |N1, . . . ,Nm) (1b)
= PT(zN ∈ Sα1 × . . .× Sαm |N1, . . . ,Nm) (1c)
= PT(S1, . . . ,Sm |B1, . . . ,Bm,N1, . . . ,Nm) (1d)

where each Bi (i=1, . . . ,m) is a random variable describing a particular value
assignment associated to the interface variables Bi for the agent ai. They are
introduced to relate each of the zNi to each other, which are sampled indepen-
dently.

Since the values sampled in the local variable of ai are dependent only of the
values of the interface values Bi, it follows that Si is conditionally dependent of
Bi but conditionally independent of all other Bj , with j ̸= i:

Si ⊥⊥ Bj |Bi

for all j = 1 . . .m and j ̸= i. Noticing that, given random variables a, b, c,
whenever a ⊥⊥ b | c we can write: P (a | b, c) = P (a | c), and that P (a, b | c) =
P (a | b, c), it follows that Eq. (1d) can be rewritten as:

PT(S1 |B1,N1) · . . . · PT(Sm |Bm,Nm)
= PT(zN1 ∈ Sα1 |B,N) · . . . · PT(zNm ∈ Sαm |B,N) (2a)
≥ (1− ϵ1) · . . . · (1− ϵm) (2b)

=
m∏

i=1

(1− ϵi). (2c)

for any of the assignments of the variables in Bi, as the utility functions involving
variables in the interface of any two agents are solved optimally. "

Theorem 2. The number of messages required by DMCMC is O(|A|).

Proof. DMCMC agents exchange |A|−1 UTIL messages (one through each tree-
edge) and |A|−1 VALUE messages. Thus, the total number of messages required
by the algorithm is O(|A|). "

Note that, unlike DPOP, which requires O(|X |) messages, no message exchange
is required to solve the constraints defined over the scope of the local variables
each agent, which is achieved via local sampling.

Theorem 3. The memory complexity of each DMCMC agent ai ∈ A is
O(|Di||Si\Bi|), where Si = {x|x ∈ sep(ai) ∧ α(x) ≻T ai ∧ ∃f ∈ F .x ∈
xf ∧ xf ∩ Bi ̸= ∅}, is the set of the ancestors agent’s variables in its separa-
tor which are involved in a constraint with some variable in Bi.

Proof. Each agent ai ∈ A needs to store its own utilities and the corresponding
solution (value assignment for all non-interface local variables xj

i ∈ Li \ Bi) for
each combination of values of the interface variables xk

i ∈ Bi, thus requiring

A Dynamic Programming-Based MCMC Framework 825

O(|Di||Bi|) space. Moreover during the UTIL propagation phase, each agent
ai stores the UTIL messages of each of its children ac ∈ Ci, which also sends
messages of size O(|Di||Sc\Bc|). Joint and projection operations can be performed
efficiently withinO(|Di||Si\Bi|) space. Thus the memory complexity of each agent
is exponential in its induced width, O(|Di||Si\Bi|). "

One can bound the maximum message size and serialize large messages by
letting the backedge handlers ask explicitly for solutions and utilities for a subset
of their values sequentially. Moreover, one could reduce the memory requirements
at cost of sacrificing completeness, by propagating solutions for a bounded set
of value combinations rather than all combination of values of the interface vari-
ables. Several approaches have been proposed to reduce the memory requirement
of DPOP [3,22,23].

5 Related Work

To the best of our knowledge, there are only two sampling algorithms developed
to solve DCOPs thus far, namely DUCT [20] and Distributed Gibbs [19]. DUCT
is a distributed version of the UCT algorithm [9]. It maintains and uses upper
confidence bounds on each value of a variable to determine which value to choose
during the sampling process. It updates the bounds to make them more informed
after each sampling trial.

Like DMCMC (with Gibbs as the MCMC algorithm), Distributed Gibbs is
also a distributed version of Gibbs. However, Distributed Gibbs uses different
communication protocols and computation procedures, which results in slow
convergence due to high network load requirements [19]. More specifically, Dis-
tributed Gibbs performs the Gibbs sampling process on the entire space of all
variables (i.e., in each sampling trial, it assigns a value to each variable sequen-
tially until all variables are assigned a value), while DMCMC performs multiple
sampling processes in parallel, one for each subset of local variables of an agent.
As a result, DMCMC is able to better exploit the parallel processes with the use
of GPUs.

6 Experimental Results

We implemented CPU and GPU versions of the DMCMC framework with Gibbs
(Gibbs) and Metropolis-Hastings (MH) as the MCMC sampling algorithms. The
CPU versions sample sequentially, while the GPU versions sample in parallel
with GPUs. We compare them against DPOP [21] (an optimal algorithm), MGM
and MGM2 [15] (sub-optimal algorithms). We use publicly-available implementa-
tions of these algorithms, which are implemented in the FRODO framework [14].
We run our experiments on a Intel(R) Xeon(R) CPU, 2.4GHz, 32GB of RAM,
Linux x86 64, equipped with a Tesla C2075, 14SM, 448-core, 1.15 clock rate,
CUDA 2.0. Note that we do not parallelize at the level of CPU cores, thus the

826 F. Fioretto et al.

number of cores in the CPU is immaterial. We measure the algorithms’ run-
time using the wall clock (wct) and the simulated time (st) [29] metrics, and
perform evaluations on random graphs and meeting scheduling problems. All
reported results are averaged among 100 runs. The underlying constraint graphs
are generated as follows: We create an n-node network, whose local constraint
graphs density pℓ

1 produces ⌊|Li|(|Li|− 1)pℓ
1⌋ edges among the local variables of

each agent ai, and whose (global) density pg1 produces ⌊b(b− 1)pg1⌋ edges among
non-local interface variables, where b is the total number of interface variables
of the problem. All constraints utilities are randomly chosen from the interval
[1, 1000].

We first evaluate the effect of the initial parameters R and S for our DMCMC
algorithms in a setting in which DPOP could terminate its execution, and thus
report its (optimal) solution. We fix the number of agents to 5, the number of
local variables for each agent to 10, their domain sizes to 10, and the graph
densities pg1 = pℓ

1 = 0.5. Figure 4(left) illustrates the runtime (in seconds) for
the CPU and GPU implementations of our DMCMC algorithms for a range
of the initial parameters R ∈ [1, 100] and S ∈ [10, 10000]. These results shows
that there is a clear benefit to parallelize the sampling operations with GPUs,
exhibiting more than one order of magnitude speed up.

In the rest of the experiment, we show the GPU version only. Figure 4(right)
reports the ratio of the quality of the solutions returned by Gibbs and MH at
varying of the parameters S and R, over that returned by DPOP. Additionally,
we report the average (solid line) and variance (dotted lines) solution qual-
ity returned by MGM2. We observe that the prediction quality increases with
increasing R and T . Gibbs is slower than MH, as it requires the computation
of the normalization constants, which are computationally expensive even when
parallelized. However, Gibbs finds better solutions than MH. Additionally, Gibbs
finds better solutions than MGM2 for S > 20, and MH finds solutions whose
quality is comparable to those returned by MGM2.

Next, we evaluate our algorithms at varying of several problem parameters
on meeting scheduling problems. In these problems, meetings need to be sched-
uled between members of a hierarchical organization, (e.g., employees of a com-
pany; students, faculty members, and staff of a university), taking restrictions
in their availability as well as their priorities into account. We used the Private
Events as Variables (PEAV) problem formulation, which is commonly used in
the literature, where the variables model the meetings, their domains are the
time slots when they can be held, and the constraints are between meetings
that share participants [16]. In our experiments, we vary the number of agents
|A| = {5, 10, 25, 50}, the number of variables |Xi| = {5, 10, 25, 50} of each agent
ai, the domain size |Di| = {12, 24, 48, 96} of each variable xi, the density of
the local constraint graph pℓ

1 = {0.25, 0.5, 0.75, 1.0} of each agent ai. For each
of the experiments below, we vary only one parameter and fix the rest in their
“default” values: |A| = 10, |Xi| = 10, |Di| = 24, pℓ

1 = 0.5. We set the number of
samples for the D-MCMC algorithms to 100.

A Dynamic Programming-Based MCMC Framework 827

Fig. 4. Experimental results: random graph instances

Table 1 reports the runtime (in seconds) and solution qualities for all algo-
rithms, where oot indicates that the algorithm timed out after 5min of wall-clock
time. The best runtimes and solution qualities are shown in bold. We make the
following observations:

• In all parameter settings, DMCMC with Gibbs finds better solutions than
MGM and MGM2. Additionally, while the runtime for GibbsCPU are compa-
rable to those of MGM and MGM2, GibbsGPU found those solutions by one
order of magnitude faster than MGM and MGM2.

• The solutions quality reported by DMCMC with MH are comparable to those
reported by MGM and MGM2, and MHGPU is at least one, and up to two
order of magnitude times faster than MGM and MGM2.

• The GPU versions of our DMCMC algorithms are in general up to one order
of magnitude faster than their CPU counterparts, and up to two orders when
the local problem size increases. This result indicates that the GPUs can take
advantage of the inherent parallelism present in the algorithm as a result of
the partitioning of the problem into independent subproblems.

• Finally, for the problems for which DPOP successfully terminated within the
time limit, we could measure the error in the quality of solutions found by
DMCMC with Gibbs, which is only up to 5%.

Due to the unavailability of a public implementation, we did not compare
our approaches against DUCT, however, Nguyen et al. [19] showed that DPOP

828 F. Fioretto et al.

Table 1. Experimental results: meeting scheduling problems

|A| 5 10 25 50

wct st quality wct st quality wct st quality wct st quality

DPOP 125.39 94.98 1661 oot oot - oot oot - oot oot -

MGM 7.435 0.435 1379 11.910 0.446 2766 24.211 0.417 6692 45.771 0.462 13802

MGM2 8.939 0.979 1389 23.903 1.526 2783 56.035 1.629 7116 112.54 1.788 14145

GibbsCPU 6.146 1.101 1638 12.093 1.190 3.319 31.031 1.347 8344 62.411 1.489 16577

GibbsGPU 0.162 0.033 1635 0.301 0.034 3338 0.708 0.041 8344 1.416 0.048 16550

MHCPU 0.561 0.113 1131 1.091 0.121 2775 2.281 0.176 6921 3.921 0.185 12112

MHGPU 0.047 0.014 1143 0.102 0.016 2663 0.196 0.017 6925 0.360 0.022 11856

|Xi| 5 10 25 50

wct st quality wct st quality wct st quality wct st quality

DPOP 6.720 0.668 1136 oot oot - oot oot - oot oot -

MGM 5.260 0.242 947 11.910 0.446 2766 46.861 1.581 11652 180.05 5.749 35972

MGM2 8.701 0.602 941 23.903 1.526 2783 184.63 9.477 11889 oot oot -

GibbsCPU 2.336 0.489 1115 12.093 1.190 3319 182.68 2.446 13811 oot oot -

GibbsGPU 0.098 0.014 1104 0.301 0.34 3338 1.896 0.368 13874 12.707 1.384 42124

MHCPU 0.351 0.048 986 1.091 0.121 2775 4.982 0.879 9850 56.077 6.506 33114

MHGPU 0.050 0.011 972 0.102 0.016 2663 0.146 0.022 9716 0.489 0.046 32405

|Di| 12 24 48 96

wct st quality wct st quality wct st quality wct st quality

DPOP 22.230 9.996 1332 oot oot - oot oot - oot oot -

MGM 11.300 0.222 1077 11.910 0.446 2766 13.317 0.560 6133 18.177 1.106 13058

MGM2 19.723 0.541 1134 23.903 1.526 2783 53.972 5.314 6660 148.40 10.954 13866

GibbsCPU 3.348 0.530 1323 12.093 1.190 3319 51.669 5.716 7343 200.53 21.546 16769

GibbsGPU 0.214 0.029 1319 0.301 0.034 3338 0.763 0.090 7357 3.149 0.364 16278

MHCPU 0.321 0.047 1086 1.091 0.321 2775 2.030 0.712 6135 6.081 1.306 12277

MHGPU 0.051 0.010 1102 0.102 0.016 2663 0.159 0.041 6147 0.218 0.146 12189

pℓ
1 0.25 0.50 0.75 1.00

wct st quality wct st quality wct st quality wct st quality

DPOP 10.850 0.885 2305 oot oot - oot oot - oot oot -

MGM 8.037 0.231 1835 11.910 0.446 2766 16.124 0.435 3342 19.832 0.605 3974

MGM2 12.908 0.708 1906 23.903 1.526 2783 47.258 2.554 3364 46.270 3.035 4091

GibbsCPU 7.991 0.981 2.269 12.093 1.190 3319 19.004 2.347 4032 25.691 2.821 4751

GibbsGPU 0.216 0.024 2300 0.301 0.034 3338 0.389 0.043 4074 0.451 0.053 4706

MHCPU 0.775 0.101 1983 1.091 0.121 2775 1.225 0.135 3454 1.491 0.179 3921

MHGPU 0.090 0.013 1931 0.102 0.016 2663 0.170 0.021 3458 0.215 0.027 3814

outperforms DUCT especially when the problem sizes are small. In contrast, our
approach consistently outperforms DPOP even on small problems. Additionally,
they show that Distributed Gibbs [19] requires a large number of iterations to
converge since it is estimating the joint distribution of the entire problem. In
contrast, our MCMC framework with Gibbs requires a much smaller number
of iterations, since it is only estimating the joint distribution of agent’s local
variables.

A Dynamic Programming-Based MCMC Framework 829

7 Conclusions

Our work is motivated by several factors: (i) the assumption in most DCOP
algorithms that each agents owns exactly one variable; (ii) the recent introduc-
tion of sampling-based DCOP algorithms, which have been shown to outperform
existing incomplete DCOP algorithms; and (iii) the advances in GPUs. These
combination of factors provides a unique opportunity for us to harness the power
of parallel computation of GPUs to solve general DCOPs with multiple variables
per agent. In this paper, we introduce the Distributed MCMC framework, which
decomposes a DCOP into independent sub-problems that can each be sampled
in parallel by GPUs. Our experimental results show that it can find good solu-
tions up to one order of magnitude faster than MGM and MGM2. These results
demonstrate the potential for using GPUs to scale up DCOP algorithms, which
is exciting as GPUs provide access to thousands of computing cores at a very
affordable cost. While the description of our solution focuses on DCOPs, our
approach is also suitable to solve WCSPs. In the future, we plan to explore this
direction, as well as extending the proposed framework to reduce its memory
requirement similar to MB-DPOP [23].

References

1. Burke, D., Brown, K.: Efficiently handling complex local problems in distributed
constraint optimisation. In: Proceedings of the European Conference on Artificial
Intelligence (ECAI), pp. 701–702 (2006)

2. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell.
113(1–2), 41–85 (1999)

3. Fioretto, F., Le, T., Yeoh, W., Pontelli, E., Son, T.C.: Improving DPOP with
branch consistency for solving distributed constraint optimization problems. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 307–323. Springer, Heidelberg
(2014)

4. Fioretto, F., Le, T., Pontelli, E., Yeoh, W., Son, T.C.: Exploiting GPUs in solving
(distributed) constraint optimization problems with dynamic programming. In:
Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 121–139. Springer, Heidelberg
(2015)

5. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agent decomposition for
DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
(2016)

6. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

7. Hamadi, Y., Bessière, C., Quinqueton, J.: Distributed intelligent backtracking. In:
Proceedings of the European Conference on Artificial Intelligence (ECAI), pp.
219–223 (1998)

8. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

9. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

830 F. Fioretto et al.

10. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with struc-
tured resource constraints. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930 (2009)

11. Larrosa, J.: Node and arc consistency in weighted CSP. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 48–53 (2002)

12. Le, T., Fioretto, F., Yeoh, W., Son, T.C., Pontelli, E.: ER-DCOPs: a framework for
distributed constraint optimization with uncertainty in constraint utilities. In: Pro-
ceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (2016)

13. Le, T., Son, T.C., Pontelli, E., Yeoh, W.: Solving distributed constraint optimiza-
tion problems with logic programming. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI) (2015)

14. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: an open-source framework for
distributed constraint optimization. In: Proceedings of the Distributed Constraint
Reasoning Workshop, pp. 160–164 (2009)

15. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a
graphical game-based approach. In: Proceedings of the International Conference
on Parallel and Distributed Computing Systems (PDCS), pp. 432–439 (2004)

16. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking
DCOP to the real world: efficient complete solutions for distributed event schedul-
ing. In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 310–317 (2004)

17. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21, 1087
(1953)

18. Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

19. Nguyen, D.T., Yeoh, W., Lau, H.C.: Distributed gibbs: a memory-bounded
sampling-based DCOP algorithm. In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 167–174 (2013)

20. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: an upper confidence bound
approach to distributed constraint optimization problems. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 528–534 (2012)

21. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimiza-
tion. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1413–1420 (2005)

22. Petcu, Adrian, Faltings, Boi V.: Approximations in distributed optimization. In:
van Beek, Peter (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg
(2005)

23. Petcu, A., Faltings, B.: MB-DPOP: a new memory-bounded algorithm for dis-
tributed optimization. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1452–1457 (2007)

24. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.: Agent-based control
for decentralised demand side management in the smart grid. In: Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 5–12 (2011)

25. Roberts, G.O., Smith, A.F.: Simple conditions for the convergence of the Gibbs
sampler and Metropolis-Hastings algorithms. Stochast. Processes Appl. 49(2), 207–
216 (1994)

A Dynamic Programming-Based MCMC Framework 831

26. Sanders, J., Kandrot, E.: CUDA by Example. An Introduction to General-Purpose
GPU Programming. Addison Wesley, Reading (2010)

27. Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE
Trans. Pattern Anal. Mach. Intell. 5, 504–519 (1981)

28. Stranders, R., Farinelli, A., Rogers, A., Jennings, N.: Decentralised coordination of
mobile sensors using the max-sum algorithm. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 299–304 (2009)

29. Sultanik, E., Lass, R., Regli, W.: DCOPolis: a framework for simulating and deploy-
ing distributed constraint reasoning algorithms. In: Proceedings of the Distributed
Constraint Reasoning Workshop (2007)

30. Vinyals, M., Rodŕıguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory
of dynamic programming DCOP algorithms via the generalized distributive law.
J. Auton. Agents Multi-Agent Syst. 22(3), 439–464 (2011)

31. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)

32. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Mag. 33(3), 53–65 (2012)
33. Yokoo, M. (ed.): Distributed Constraint Satisfaction: Foundation of Cooperation

in Multi-agent Systems. Springer, Heidelberg (2001)
34. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed

constraint optimization. Artif. Intell. 212, 1–26 (2014)

Morphing Between Stable Matching Problems

Ciaran McCreesh, Patrick Prosser(B), and James Trimble

University of Glasgow, Glasgow, Scotland
pat@dcs.gla.ac.uk

Abstract. In the stable roommates (SR) problem we have n agents,
where each agent ranks all other agents in strict order of preference. The
problem is then to match agents into pairs such that no two agents prefer
each other to their matched partners, and this is a stable matching. The
stable marriage (SM) problem is a special case of SR, where we have
two equal sized sets of agents, men and women, where men rank only
women and women rank only men. Every instance of SM admits at least
one stable matching, whereas for SR as the number of agents increases
the number of instances with stable matchings decreases. So, what will
happen if in SM we allow men to rank men and women to rank women,
i.e. we relax gender separation? Will stability abruptly disappear? And
what happens in a stable roommates scenario if agents do not rank all
other agents? Again, is stability uncommon? And finally, what happens
if there are an odd number of agents? We present empirical evidence to
answer these questions.

1 Introduction

In the Stable Roommates (SR) problem [6,7,9] we have n agents, where each
agent ranks all n − 1 other agents in strict order of preference. The problem is
then to match pairs of agents in a one-one correspondence (bijection) such that
the matching is stable. A matching is stable if there does not exist a blocking pair
of agents (agenti and agentj) in the matching such that agenti and agentj find
each other acceptable (i.e. they rank each other) and (a) agenti is unmatched or
prefers agentj to his matched partner and (b) agentj is unmatched or prefers
agenti to his matched partner (see [9], 1.4.2).

The Stable Marriage problem (SM) [3,4,6,9,16,17] is a specialized instance
of SR where agents have gender, such that we have two sets of agents, namely
men and women, both the same cardinality. A stable matching is a one-one
correspondence between the men and women such that the matching admits no
blocking pair (as defined above, also see [9] 1.3.4). Figure 1 shows (on the left)
an instance of SR with 6 agents (sr6), and (in the middle) an instance of SM
with three men and three women (sm3).

SM instance sm3 can be represented as an instance of the Stable Roommates
Problem with Incomplete lists (SRI), i.e. we have incomplete lists where some

C. McCreesh—Supported by the Engineering and Physical Sciences Research Coun-
cil [grant number EP/K503058/1].

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 832–840, 2016.
DOI: 10.1007/978-3-319-44953-1 52

Morphing Between Stable Matching Problems 833

agents find each other unacceptable (see [9], 1.4.2). This is shown on the right
of Fig. 1 (sri6), where agents 1 to 3 represent the men in sm3, and agents 4 to
6 represent the women in sm3. Therefore the matching {(1, 1), (2, 2), (3, 3)} in
sm3 corresponds to the matching {(1, 4), (2, 5), (3, 6)} in sri6.

1: 6 3 5 2 4
2: 3 5 1 6 4
3: 2 6 1 5 4
4: 5 1 2 3 6
5: 6 1 2 3 4
6: 4 2 5 1 3

1: 1 2 3 1: 1 2 3
2: 2 3 1 2: 1 3 2
3: 1 3 2 3: 3 1 2

1: 4 5 6
2: 5 6 4
3: 4 6 5
4: 1 2 3
5: 1 3 2
6: 3 1 2

Fig. 1. A Stable Roommates (SR) instance on the left sr6, with 6 agents. In the
middle an instance of Stable Marriage (SM) with three men and three women,
sm3. On the right, sm3 is represented as an instance of Stable Roommates with
Incomplete lists (SRI), instance sri6. Instance sr6 has two stable matchings, namely
{(1, 5), (2, 3), (4, 6)} and {(1, 4), (2, 3), (5, 6)}. Instance sm3 has a single stable match-
ing {(1, 1), (2, 2), (3, 3)}. Instance sri6 has only one stable matching {(1, 4), (2, 5), (3, 6)}
and this corresponds to the stable matching for sm3.

The underlying structure of SR is a simple graph [10], where an edge cor-
responds to a pair of agents who find each other acceptable. The SR graph is
therefore a clique Kn and preference lists of agents are permutation of their
adjacency lists. The SM graph is a complete biclique, with two sets of vertices
(men and women), each of size n/2 with n2/4 edges. In SRI the underling graph
is again a simple graph, but not complete. Every instance of SM admits at
least one stable matching [3], but this is not the case for SR [7], where some
instances admit no stable matching (the same is true of SRI). As the number
of agents increase the proportion of SR instances with stable matchings falls
[7,11,12,14,15].

Therefore, we have a spectrum of stable matching problems. At one extreme
we have SM, highly structured (a biclique), always with stable matchings and
at the other extreme we have SR, unstructured, with a falling number of stable
matchings as the number of agents increases [3,6,7,9]. Therefore, what happens
as we replace some of the structure in SM with randomness from SR, i.e. what
happens when we blend SM and SR? Will there be an abrupt change in behav-
iour, where the average number of instances with stable matchings falls, or will
it be smooth and gradual with stability declining slowly?

There is also a spectrum of stable roommates problems. At one extreme we
have SRI instances with empty preference lists, where every agent finds every
other agent unacceptable, and corresponds to the edgeless graph. This instance
has one stable matching, where every agent is happy to be unmatched1. At the
other extreme we have SR, where every agent finds every other agent acceptable,
1 We assume that every agent ranks himself in last position and can potentially be

self-matched.

834 C. McCreesh et al.

not always admitting a stable matching, and this corresponds to the complete
graph. Therefore we can move across this spectrum, gradually increasing the
number of acceptable pairs (edges in the graph). As we do so, will the proportion
of instances with stable matchings fall gradually, or will it fall abruptly?

And finally, it is tacitly assumed that the number of agents is even. Why
should that be so? Imagine we had a conference where delegates share rooms
in the students’ halls of residence, two to a room. Would it be possible to limit
attendance to only an even number of delegates? And if delegates rank one
another in order of preference, is it more likely to be an unstable scenario when
the number of delegates is odd? We investigate this also.

In the following section we describe how we can mix SM and SRI in a con-
trolled manner (problem generation). We then present empirical results for mix-
ing SM and SRI followed by experiments on gradually moving from SRI with
no acceptable pairs to SR, where the number of agents is even and when the
number of agents is odd.

2 Problem Generation

Given a graphG = (V,E), where V is the set of vertices and E the set of edges, we
can create a stable matching problem from G as follows. The set of vertices corre-
spond to the set of agents and an edge (i, j) is inE if and only if agenti and agentj
are an acceptable pair (i.e. they rank each other). Assume vertex neighbourhood
is represented as an adjacency list. Given an edge (u, v) ∈ E, add u to the list
adjacent[v] and add v to the list adjacent[u]. Once this has been done for all edges,
perform a Knuth shuffle2 [2] on each adjacency list and treat these as preference
lists. This is essentially the technique used in Sect. 2 of [10].

We now describe two techniques for creating a blended graph, with m edges,
from two input graphs. Consider simple graphs G1 and G2, both of the same
order n (number of vertices), where G1 is the complete bipartite graph Kn/2,n/2

andG2 is the cliqueKn. Assume we have a mixing proportion p, where 0 ≤ p ≤ 1.
We can mix these two graphs to produce a new graph G3 with (1 − p)m edges
taken from G1 and p.m edges taken from G2. This can be done in two ways.
The first is similar to the rewiring technique of Watts and Strogatz [8]. This
is presented in Algorithm 1 and will be refered to as model A. The algorithm
returns a set of edges E, i.e. acceptable pairs, where that set is of size m = n2/4,
the same size as the biclique.

Algorithm 2 corresponds to the type-B morph described in [5], where again
m = n2/4 edges are to be produced (line 3). The set E1 contains m randomly
selected edges from Kn, the set E2 contains all edges in Kn/2,n/2 and set E is
the intersection of these two sets (lines 4, 5 and 6). The remaining number of
edges to be added to E is δ = m − |E|, where p.δ edges are randomly selected

2 To permute an array of n elements, vary i from n down to 2, randomly select j in the
range i to 1 inclusive, then swap the ith and jth array elements.

Morphing Between Stable Matching Problems 835

Algorithm 1. modelA: select m.(1− p) from biclique and m.p from clique
1 Set⟨Edge⟩ modelA(int n, real p)
2 begin
3 int m ← n2/4
4 E1 ← {(i, j) | 1 ≤ i < j ≤ n}
5 E2 ← {(i, j) | 1 ≤ i ≤ n/2 , n/2 < j ≤ n}
6 E ← select((1 − p).m,E2)
7 E ← E ∪ select(p.m,E1 \ E)
8 return E

Algorithm 2. modelB: a type B morph
1 Set⟨Edge⟩ modelB(int n, real p)
2 begin
3 int m ← n2/4
4 E1 ← select(m, {(i, j) | 1 ≤ i < j ≤ n})
5 E2 ← {(i, j) | 1 ≤ i ≤ n/2 , n/2 < j ≤ n}
6 E ← E1 ∩ E2

7 δ ← m − |E|
8 E ← E ∪ select(p.δ, E1 \ E) ∪ select((1 − p).δ, E2 \ E)
9 return E

from E1 \ E and (1 − p).δ edges are randomly selected from E2 \ E. Therefore
when p = 0 both models deliver an instance of SM, and when p = 1 both deliver
an instance of SRI with p.n2/4 edges drawn at random from Kn.

3 The Empirical Study

The majority of the study used a constraint programming formulation of the
stability constraint proposed in [15]. In all our models each agent ranks himself
in last position. Consequently an agent can self-match, if and only if this results
in stability. The exp eriments were run on an Intel Xeon CPU E5-2660 processor
at 2.2GHz with 20Mb of cache and 128Gb of RAM. In many of the studies
the control parameter is p (as an edge probability or mixing proportion), and is
varied in steps of 0.001 with a sample size of 1,000.

3.1 Morphing from SM to SRI

The first experiment investigates what happens as wemorph from SM to SRI using
models A and B, and what happens as we increase the number of agents. This is
shown in Fig. 2. On the x axis we have p, the mixing parameter, and when p = 0
all instances are bipartite and when p > 0 instances are non-bipartite. On the y
axis we have the average percentage of instances that admit a stable matching, i.e.
the percentage that were satisfiable. On the left we have two contours, both for

836 C. McCreesh et al.

n = 100, one for model A the other for model B. This shows that there is only
a small difference in the behaviours of the two models, i.e. they produce similar
behaviour, with model B preserving the SM properties (bipartite) slightly longer
than model A.

On the right are contours for n varying from 50 to 400, using only model
A. At p = 0 all instances are satisfiable, as expected, but what is surprising
is how rapidly behaviour changes with a small degree of mixing and that this
becomes more abrupt as the number of agents increases. Although not shown,
as p increases, the number of stable matchings per instance falls rapidly. In
summary, a small degree of within-gender acceptability results in a rapid loss of
stability.3

Fig. 2. Morphing from SM to SRI. The x-axis is p, the mixing proportion, and the
y-axis is the percentage of instances admitting a stable matching. On the left, model
A and model B with n = 100. On the right, contours for a variety of n, 50 to 400.

3.2 Morphing Between SR and SRI

In [10] Mertens empirically investigated SR (measuring Pn, the probability of
a stable matching existing in Kn), SRI where agents exist on a grid (and rank
only their Moore neighbourhood) and SRI on graphs with a given average degree
(where random graphs were generated with increasing order but with an average
degree of only 35, 45 or 60). We now investigate what happens in the stable
roommates problem as we vary the amount of acceptability between agents,
i.e. we vary average degree. Again, viewing the problem as a simple graph, we
vary the edge probability p and with that the degree of the graph, and this
corresponds to the average length of preference lists. When edge probability is
one every agent finds every other agent acceptable and problem instances are
SR, when p is zero every agent finds every other agent unacceptable and agents
are happy to be alone (i.e. self-matched), and when 0 < p < 1 preference lists
are incomplete and we have SRI instances. Figure 3 shows, on the left, contours
for n = 100 and n = 101, with probability of acceptability on the x axis and
3 We leave any social interpretation of these observations to others.

Morphing Between Stable Matching Problems 837

percentage of stable instances on the y axis. On the right is the average size
of a stable matching when one exists4, and it should be noted that for a given
instance all its matchings are the same size [16].

Fig. 3. Increasing the proportion p of agents found to be acceptable in stable room-
mates. On the x axis p, probability that two agents find each other acceptable. On the
left, the y axis is percentage of instances that admit a stable matching. On the right,
y axis is average size of stable matching when one exists. Note that when an instance
admits a stable matching, all its stable matchings are the same size [6]. Contours are
shown for even (n = 100) and odd (n = 101) number of agents.

The shape of these curves are surprising. All instances are stable when p = 0
(i.e. all agents are happy to be alone) and this then falls away. Tabulated results
for SRI predict that this will happen [7,11–15]. But what was not predictable
was the shape of the n = 100 contour: falling sharply, climbing abruptly and
then tapering off to its final value when SRI becomes SR. Note that the “knee”
in the contour on the left of Fig. 3 comes some time after the point where random
graphs G(n, p) become a single component. Therefore the “knee” is not due to
the emergence of a giant component.

When n is odd there are indeed stable matchings in our model (an odd
number of agents must self-match), but these stable matchings are typically
either small or rare. However, the shape of the odd contour on the left is perhaps
not so surprising. For n = 101, suppose all preference lists are complete, and
without loss of generality suppose that agent 101 is unmatched. Then for agent
101 not to block the matching, every other agent must have a better partner
than him, which is unlikely to be satisfied in general. Obviously the longer the
preference lists in general, the more chances agent 101 has to block the matching,
hence the shape of the n = 101 contour (on the left)5.

Figure 4 separates even (contours on the left) from odd (contours on the
right) for various number of agents. This time the x axis is n.p and that is the
average degree of the underlying graph, and is then the average size of preference
lists. For compactness, the x-axis is shown on a log scale.

4 The x axis is cut short due to small sample size for odd n and large p.
5 We thank David Manlove for this explanation.

838 C. McCreesh et al.

Fig. 4. Percentage of SRI instances with stable matchings as we vary probability that
agents find each other acceptable. On the left n is even and on the right n is odd. The
x-axis is a logscale of n.p, i.e. average degree.

Fig. 5. Increasing the proportion p of agents found to be acceptable. On the x axis the
log of average degree (p.n), the y axis is percentage of instances that admit a stable
matching. The red contour is for an even number of agents n and the blue contour for
odd number of agents n + 1.

The experiments were then repeated for larger values of even n and odd n+1.
Graphs were generated using the algorithm of Batagelj and Brandes [1], which
allows much faster generation of large, sparse graphs than simple quadratic-
time methods. Each instance was solved using both Irving’s algorithm [7] and a
simple SAT encoding using MiniSat, to verify correctness of our implementation.
Sample size varied from 2,000 to 1,000,000. We ran our program for values of
np up to 896; these results are shown in Fig. 5. In addition, for large even values
of n the figure shows results for p = 1 from [12]; these appear as the rightmost

Morphing Between Stable Matching Problems 839

points. It appears that when n is even and n increases, its odd partner hugs onto
it for longer and longer, leading us to expect that in the limit both curves will
be indistinguishable. That is, when there are a large number of agents it will not
matter if that number is odd or even.

4 Conclusion

Stable marriage problems always admit a stable matching but this is not true for
stable roommates. In our experiments, a certain amount of disorder was added to
SM such that we permit within-gender matching. This brought about an abrupt
change in the behaviour of the problem, with an abrupt fall in the proportion of
instances with stable matchings.

In the roommates problem, with a small number of agents, it appears to
matter if the number of agents is odd or even. If the number of agents is odd,
stable matchings tend to be small or scarce. When the number of agents is
even, the proportion of instances with stable matchings falls as acceptability
increases then abruptly climbs, and this climb then gradually tapers off as the
instances tend to SR with complete preference lists. However, when n is large,
we conjecture that behaviour will tend to be that observed when n is odd.

Acknowledgements. We would like to thank David Manlove, Augustine Kwanashie,
Rob Irving, Ian Gent and Craig Reilly.

References

1. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys.
Rev. E 71, 036113 (2005)

2. Durstenfeld, R.: Algorithm 235: random permutation. CACM 7, 420 (1964)
3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.

Math. Mon. 69, 9–15 (1962)
4. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete

Appl. Math. 11, 223–232 (1985)
5. Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: combining structure and

randomness. In: Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pp. 654–660 (1999)

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. The MIT Press, Cambridge (1989)

7. Irving, W.R.: An efficient algorithm for the stable roommates problem. J. Algo-
rithms 6(4), 577–595 (1985)

8. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393, 440–442 (1998)

9. Manlove, D.: Algorithmics of Matching under Preferences. Theoretical Computer
Science, vol. 2. World Scientific, Singapore (2013)

10. Mertens, S.: Random stable matchings. J. Stat. Mech. Theory Exp. (10), P10008
(2005)

11. Mertens, S.: Small random instances of the stable roommates problem. J. Stat.
Mech. Theory Exp. 2015(6), P06034 (2015)

840 C. McCreesh et al.

12. Mertens, S.: Stable roommates problem with random preferences. J. Stat. Mech.
Theory Exp. 2015(1), P01020 (2015)

13. Ng, C., Hirschberg, D.S.: Lower bounds for the stable marriage problem and its
variants. SIAM J. Comput. 19, 71–77 (1990)

14. Pittel, B., Irving, R.W.: An upper bound for the solvability of a random stable
roommates instance. Random Struct. Algorithms 5(3), 465–487 (1994)

15. Prosser, P.: Stable roommates and constraint programming. In: Simonis, H. (ed.)
CPAIOR 2014. LNCS, vol. 8451, pp. 15–28. Springer, Heidelberg (2014)

16. Roth, A.E.: The evolution of the labor market for medical interns and residents: a
case study in game theory. J. Polit. Econ. 92(6), 991–1016 (1984)

17. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monographs, vol. 18. Cambridge Uni-
versity Press, Cambridge (1990)

Testing and Verification Track

Using Graph-Based CSP to Solve the Address
Translation Problem

Merav Aharoni1, Yael Ben-Haim1(B), Shai Doron1, Anatoly Koyfman1,
Elena Tsanko2, and Michael Veksler3

1 IBM Research, Haifa, Israel
{merav,yaelbh,dshai,anatoly}@il.ibm.com

2 IBM Systems, Austin, TX, USA
etsanko@us.ibm.com

3 Haifa, Israel
mickey.veksler@gmail.com

Abstract. The hardware address translation mechanism is an essential
part of modern microprocessor memory management. The ever-growing
demand for performance and low power of integrated circuits makes this
mechanism exceptionally complex, and its verification requires sophisti-
cated test generation tools. This paper presents a solution, based on con-
straint satisfaction, to generate stimuli for testing address translation.

The address translation process passes through a sequence of steps
and can therefore be naturally described as a directed acyclic graph. We
developed a framework that we call graph-based constraint satisfaction
problems (GCSP). These problems consist of a directed graph, combined
with a CSP, where each variable and constraint of the CSP is linked to a
particular node or edge of the graph. A solution to the problem is a path
in the graph, such that all constraints defined along this path must be
satisfied. We base our algorithm for solving GCSPs on conditional CSP.
We successfully used this technology to verify the memory management
units of several industrial microprocessors.

Keywords: Constraint programming · Graph · Address translation ·
Memory management unit · Processor verification · Conditional CSP ·
Network · Path · Dynamic CSP · Graphplan · Planning

1 Introduction

Hardware designs are most commonly verified by generating stimuli using ded-
icated test generators. Many of these test generators use constraint solvers to
solve complex constraint satisfaction problems (CSPs) [18]. One of the most

E. Tsanko and M. Veksler—Work done while this author was at IBM Research.

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-44953-1 53) contains supplementary material, which is available to
authorized users.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 843–858, 2016.
DOI: 10.1007/978-3-319-44953-1 53

http://dx.doi.org/10.1007/978-3-319-44953-1_53
http://dx.doi.org/10.1007/978-3-319-44953-1_53

844 M. Aharoni et al.

complex mechanisms in modern designs is the address translation mechanism
[5,20], which is part of the memory management unit (MMU). The mapping
of addresses from virtual memory to physical memory passes through several
stages and access tables. There are usually several alternative mappings depend-
ing on the application, state of the machine, page size, memory region and more.
Thorough verification of this mechanism requires sophisticated test-generation
methods [15].

To solve the address translation test-generation problem, we modeled it as
a graph-based constraint satisfaction problem or GCSP. A GCSP consists of a
graph combined with a constraint satisfaction problem (CSP), such that each
of the variables and constraints of the CSP are linked to particular nodes and
edges of the graph. A solution to a GCSP is a subgraph, along with a solution to
a sub-CSP consisting of those variables and constraints that are linked to edges
and nodes that belong to the subgraph.

In this paper, we discuss directed graphs with a single source and target,
where the solution is a path from source to target. We show how this con-
cept is used in IBM to generate tests for the verification of address translation
units in several designs, for a variety of architectures, including IBM R⃝ Power
SystemsTM1, IBM R⃝ z SystemsTM, and ARM. The concept is generic and ele-
mentary and can be applied to other problems that can be modeled as a selection
of a random path in a graph, where every path is subject to given constraints.

The novel contribution of this paper is:

1. Modeling the address translation test-generation problem as a graph-based
CSP.

2. GCSP is converted internally to activity CSP [13], a variant of conditional
CSP, by translating graph constraints to activity variables and constraints.
This enables efficient solving of the GCSP.

3. Solving the challenging problem of generating constrained-random test-cases
for verifying the address translation mechanism.

The remainder of this paper is organized as follows: in the next section, we
provide a formal definition of graph-based CSP along with an example. Section 3
presents related work from the domain of constraint satisfaction. Sections 4 and 5
describe the address translation test-generation problem and its modeling as a
GCSP respectively. In Sect. 6, we offer a brief background on activity CSP, a
variant of conditional CSP, based on [13]. In Sect. 7, we explain how we trans-
late a GCSP to an activity CSP. Section 8 presents our results from industrial
applications. We conclude in Sect. 9.

1 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter-
national Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies. A cur-
rent list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com
www.ibm.com/legal/copytrade.shtml

Graph-Based CSP 845

2 Graph-Based Constraint Satisfaction Problems

In the definition that follows, we use the expression graph entity to refer to a
node or an edge, since we will often refer to both entities in the same context.

We define a graph-based constraint satisfaction problem (GCSP) as follows:

Definition 1. GCSP = ⟨V,D,C,G⟩ is a constraint satisfaction problem
CSP = ⟨V,D,C⟩, combined with a directed graph G = ⟨N,E⟩. Every variable
v ∈ V and every constraint c ∈ C is linked to a particular node n ∈ N or to an
edge e ∈ E in the graph. Thus CSP variables and constraints are linked to graph
entities. D denotes the variables’ initial domains.

A solution to a GCSP is a subgraph G′ = ⟨N ′, E′⟩ ⊆ G, where N ′ ⊆ N and
E′ ⊆ E, and an assignment to the variables linked to graph entities in G′, such
that all constraints linked to graph entities in G′ are satisfied.

Note the following:

1. Variables and constraints that are not linked to graph entities in G′ are
ignored.

2. Although in the above definition each variable and constraint is linked to
a graph entity, in practice we actually allow some of the variables and con-
straints to be unlinked to graph entities. These variables and constraints must
be satisfied in any solution. To simplify the discussion, we will assume no such
variables and constraints. There is no loss of generality, because we can link
these to a node that must be part of any solution.

3. If a constraint has one or more parameters that are linked to a graph entity
that is not part of the solution, the constraint need not be satisfied. Specifi-
cally, a constraint must be satisfied if its parameters and the constraint itself
are all linked to graph entities that are part of the solution.

For the purposes of this paper, we focus on a particular type of graphs and
solutions: we are interested in directed graphs with a single source and target.
We are looking for solutions comprising a single path from source to target in
this graph. We note that the proposed solution is applicable to any directed
graph, although in the application of address translation, the graph is always
acyclic.

We demonstrate the concept of a GCSP with the following example.

Example 1. The graph in Fig. 1 consists of four nodes, ns, n1, n2, nt. The goal is
to select a path in the graph from ns, the source node, to nt, the target node.
Thus ns and nt are part of any solution. There are two possible paths in the
graph: p1 = (ns, n1, nt) and p2 = (ns, n2, nt). We define four CSP variables in
this GCSP: x, y, z, w, each with initial domain {1, 2, 3, 4}. These variables are
linked to respective nodes ns, n1, nt, n2, as portrayed in Fig. 1. We define four
constraints in this problem, each linked to an edge of the graph. If p1 is selected,
then variable y must be in the solution, and constraints y = x+1 and z = y+2
must be fulfilled. Thus a possible solution is x = 1, y = 2, z = 4. Note that w and

846 M. Aharoni et al.

its related constraints are ignored. If p2 is selected, variable w must be part of
the solution, and constraints w = x− 2 and z = w must hold. Possible solutions
are x = 4, w = 2, z = 2 and x = 3, w = 1, z = 1.

We now assume that the initial domains of all variables are changed to
{1, 2, 3}. In this case, p1 is not possible, and the only solution is p2, with
x = 3, w = 1, and z = 1. This example demonstrates that propagation can
occur from the CSP to the graph entities. If a domain becomes empty during
propagation, it may force the exclusion of a particular edge or node from the
solution path.

Fig. 1. Example of a simple GCSP

3 Related Work

We cite some of the most relevant research on combining graphs into CSPs.
Fages, in his Ph.D. dissertation [12], provides an excellent survey of the existing
work. Le Pape et al. [19] define a graph extension to constraint programming,
which introduces variables that represent a path in a graph. The graph here is
weighted and the focus is on routing in networks with optimization, where the
goal is to find the shortest path. Dooms et al. [11] describe several propagators
on graph variables, in particular a path propagator. Cambazard and Bourreau
[9] also discuss a path propagator and model the graph with a Boolean variable
for every edge.

In our model, we do not explicitly define a graph variable, but rather a
Boolean variable for each graph entity. Our solution approach is based on activity
CSP, and maps graph entities to activity variables, as shown in Sect. 7.

Many of the problems in the literature can be described as seeking a path in
a graph. Problems of this type include configuration and planning problems [21].
The notion of planning graphs, often referred to asGraphplan, was first introduced
by Blum and Furst [8] and is often used to describe problems of this category.

A planning graph is a method to represent an action plan. It can be described
intuitively in the form of a level graph, where the nodes (proposition lists) repre-
sent states of a system, and the edges (action lists) represent transitions between

Graph-Based CSP 847

states. An initial level represents an initial state and a final level represents the
final state(s). Each state has pre-conditions and actions have post-conditions.
A path from the initial state to the final state represents a particular choice of
plan, such that all actions along this path are taken, and all conditions along this
path hold. Planning graphs are often solved using dynamic CSP [17], as shown
in [10].

A graph-based approach to create stimuli for verification is also used by
Hamid [14]. This work defines target nodes that correspond to verification goals.
Paths from a single source to the target nodes define scenarios to achieve the
verification goals. The emphasis in Hamid’s work is on selecting the correct path
toward hitting a particular test case by inspecting the graph. It does not mention
allowing constraints on the various paths in the graph.

Our solution approach differs from dynamic CSP because we represent the
entire problem graph from the start, and do not build the solution gradually.
There are two advantages to our approach. The first is the ability to reach a
more uniform distribution of the solution space. The second is that constraints
and conflicts appearing “late” along a solution path, can in our approach, be
propagated early, to affect the possible paths chosen, thus avoiding backtracks.
The drawback of our approach is that the entire problem must be represented
at once. For huge problems, this may be impossible.

4 Background on Address Translation

The memory management units (MMU) of modern hardware architectures pro-
vide a virtual address space for their applications. The operating system uses
address translation mechanisms to map the virtual addresses used by a program
to actual hardware resources. The operating system maintains these resources
through software, and the hardware carries out the translation itself. Address
translation provides several benefits, such as allowing the applications to be
oblivious of the actual memory accesses, higher security by isolating applica-
tions that use shared memory, and conceptually increasing the memory size by
paging. For more information about memory management and address transla-
tion specifics see [7].

The ever-growing demand for performance causes these translation mecha-
nisms to become more complex, thereby increasing the risk for manufacturing
defects. Traditionally, simulation-based techniques have played a major role in
functional verification. Current practices foster the use of automatic constrained-
random stimuli generators to provide high quality tests. The verification engineer
has a full range of control over the generated test, from fully constrained to fully
random [18]. These generators typically consist of a model for the architecture,
a general purpose test generator, and an internal constraint solver. The test gen-
erator receives as input test templates that describe the particular scenario for
which the verification engineer wishes to create a test instance. The constraints
stemming from the architecture model along with the test template are com-
bined to create a constraint satisfaction problem. The constraint solver creates
a random instance, which is the desired test.

848 M. Aharoni et al.

Several special features are required from a constraint solver used for hard-
ware verification. The first is generation of uniformly distributed random solu-
tions. Although it is sufficient to generate a single solution in many types of CSPs,
in the domain of verification it is essential to generate many random solutions for
any problem instance. This is because no one can predict where the bugs may
reside. The second feature is the support for CSP variables of type bit vectors.
These are used to represent registers and memory locations and may be 64 or 128
bits wide. Support for this data type includes special propagators such as addi-
tion, concatenation, and bit operations between bit vectors. A third important
feature is support for soft constraints. Soft constraints add higher probability of
hitting interesting corner cases that were not explicitly defined by the user. The
solver will try to add these cases when possible, but will not fail if these cannot be
generated.

Address translation is one of themost complexmechanisms in processor design.
For verification purposes, we are interested in scenarios such as targeting a certain
physical address, covering all types of walks among the translation tables, or tar-
geting corner cases. This led to the development of specialized address translation
generation schemes as part of the general purpose test generators. Kornykhin [16]
describes an algorithm to generate interesting tests for cache events and address
translation. His approach is to define the interesting cache events, such as miss and
hit, and to generate tests to create the required events. To our understanding, this
approach is more limited in scope than ours. For example, one cannot define a con-
straint on the physical address. The work described in our paper is based on an ear-
lier version, described by Adir et al. [4,5]. They too use conditional CSP to solve
the problem. However, they did not explicitly define the graph as a separate entity
of the CSP. Separating the graph entities from the rest of the CSP allowed us to
create a much simpler, more general and maintainable model.

The address translation scheme can be described as a directed acyclic graph
(DAG). Each node in the DAG represents a step in the translation. The edges
represent transformations that occur between steps, and are determined by the
processor state. A translation instance will be a path along this DAG, such
that all constraints introduced by the overall processor state are satisfied. This
problem introduces a special challenge to a constraint solver; constraints along
a given path have to be satisfied if and only if this path is indeed selected for
the solution instance.

5 Modeling Address Translation as Graph-Based CSP

In this section, we give a basic description of the translation process in ARM
architecture. The translation process is similar in other architectures, and we
refer the user to [7] for an in-depth explanation of this process. To verify the
translation mechanism using test generation, we model the translation as a
graph-based CSP. To generate interesting stimuli, we constrain various elements
in this model to generate relevant tests cases. In the scope of this paper, we
present the idea of how this graph-based CSP is constructed. For a more detailed
description of the model, please refer to this paper’s supplementary material.

Graph-Based CSP 849

TheARMvirtual memory system architecture (AArch64 VMSAv8-64) defines
a table lookup scheme for the translation of virtual address (VA) to physical
address (PA) [2]. Addresses are translated in chunks of pages, each one a consecu-
tive address space of a fixed size. The smallest resolution for addresses is a single
byte. The physical address marks the beginning of the page. The scheme is divided
into two translation stages known as stage-1 and stage-2. These two stages can be
nested, so that stage-1 translation invokes stage-2 translation. The architecture
allows a variety of VA and PA sizes, and a lookup scheme with tables of different
sizes: 4KBytes, 16KBytes or 64KBytes (a.k.a.Granule size). In addition, there are
several different options of page sizes. The following example shows a single stage
translation from a 48 bit VA to a 48 bit PAwhere the granule size and page size are
both 4KB. Although in the actual solution, we handle all the specified combina-
tions, for the sake of simplicity we limit ourselves in this paper only to a single stage
of 4KB granule. Figure 2 outlines the translation sequence from a virtual address
to a physical address.

Fig. 2. Example for ARM translation scheme

For our discussion, the MMU consists of:

1. 4 translation tables, level 0 to level 3, each of size 4KB. These tables are
divided into 512 entries of size 8 bytes each.

2. A 64 bit wide translation table base register (TTBR), which contains the
location of the level 0 table in memory. The TTBR is aligned to 4KB; in
other words, its lower 12 bits are all 0.

3. Various registers that affect the context of the translation, such as what region
of physical memory can be accessed (e.g., secure or non-secure), what page
size to use, and more.

Given a 48 bit VA, the MMU returns a PA as follows: The VA is divided into 5
fields, of width 9, 9, 9, 9, and 12 bits, which we refer to as VA[47..39], VA[38..30],
VA[29..21], VA[20..12] and VA[11..0], respectively. Bits VA[47..39] indicate the
table entry to be selected in the level 0 table. Note that 9 bits encode 512 entries.

850 M. Aharoni et al.

Since these entries are 8 bytes wide, they are encoded by 12 bits, the top 9 bits com-
ing from VA[47..39] and the lower 3 being all 0. Consequently, the address of this
entry is computed by a bit-or operation between the TTBR and these 12 bits.

The 64 bit entry selected from the level 0 table serves as the base address
for the level 1 table. An entry in the level 1 table is selected in a similar manner
using VA[38..30]. The process is repeated for levels 2 and 3. Finally, the entry
selected from the level 3 table serves as the base address for the designated 4KB
page in the physical memory space. The actual address in memory is accessed
by VA[11..0]. The address is computed by bit-or between the 64 bit entry from
the level 3 table with VA[11..0]. Note that although all entries are 64 bits wide,
physical addresses are 48 bits wide and the base addresses must be aligned on
the 12 lower bits for 4KB tables (or pages). Therefore, only 36 bits in the entry
are needed to indicate a base address, and the remaining 28 bits in the entry are
used for other means and ignored for the address computation.

The above describes the basic lookup sequence for traversing from level 0
to level 3. The general scheme also allows starting directly from level 1 or from
level 2 (Table Concatenation) and ending at level 1 or at level 2 (Block Trans-
lation). These translation paths can support VA sizes smaller than 48 bit and
produce translations of different page sizes.

Fig. 3. Example for graph-based CSP model for ARM translation scheme

Figure 3 shows the graph constructed to model the translation. Our graph-
based model for this problem consists of:

1. A node for the VA (source)
2. A node for the PA (target)
3. A node for each table at levels x, x = 0, 1, 2, 3
4. An edge from VA to table at levels x, x = 0, 1, 2
5. An edge from level x table to PA, x = 1, 2, 3
6. An edge from level x to level x+ 1, x = 0, 1, 2

Graph-Based CSP 851

The CSP consists of the following:

1. For each level x node, x = 0, 1, 2, 3, we have the following variables:
(a) Base address of table
(b) Address of entry in table
(c) Data of entry in table
Each of the above variables is of type 64-bit wide bit-vector. The initial
domain may be universal, or some subset, depending on user inputs and
previous translations. For example, physical addresses are 48 bits wide and
entry addresses are aligned to 8-bytes (lower 3-bits are 0). Therefore, the
initial domain of entry addresses is 0x0000 XXXX XXXX XXX8 in hexadecimal
notation, where X signifies a don’t care.

2. Additional variables that represent the state of the processor (set of registers)
and a snapshot of physical memory where the translation tables are allocated.
These variables are not linked to any specific graph entities. Because the full
description of the translation tables is huge, we only need to book-keep entries
that have already been initialized in previous translations, and entries that
are affected by the current translation. Note that during test generation, the
program may generate hundreds or thousands of translations. Every subse-
quent translation must be consistent with previous translations.

3. For every x = 0, 1, 2, 3, we have the following constraints linked to each edge
from level x to level x+ 1:
(a) A constraint to calculate address of entry in the table at each level. For

example, the constraint to calculate the entry address in the table at level
1 is:
FirstLevelEntryAddress = (FirstLevelBaseAddress bit_or
shiftl(extend(sub_field(VirtualAddress,38,30),ZERO),3))
where we use the following propagators, operating on bit vectors:
sub field(A, i, j) refers to bits i to j of variableA; extend(A,ZERO) means
extend A with zeros to the left; shiftl(A, k) takes the variable A shifted
left by k bits, filling in 0 s on the right; A = B bit orC means A is the
bitwise-or between B and C. Note that all of the above are CSP propaga-
tors, affecting the domains of CSP variables A, B, and C. In this context,
i, j and k are indices, not CSP variables.

(b) A constraint to synchronize the data in entries of table at level x with
physical memory.

(c) Similar constraints as above for the edges VA to level x for x = 0, 1, 2,
and for the edges level x to PA for x = 1, 2, 3.

In addition to the basic model, the user may add constraints to specify par-
ticular attributes of the desired solution. These can be hard or soft constraints.
For example, the user can specify the desired page size. The user can also request
access to a certain area of the memory by defining part of the bits in VA or PA,
or request access to a certain entry in one of the tables. In practice, users create
tests of thousands of assembly instructions, with many translations. Although

852 M. Aharoni et al.

each translation is solved in a separate CSP, existing translations add complex-
ity to the available memory space and to the available entries because each
translation must be consistent with previous translations.

Soft constraints are generally used by the user to randomly insert more direc-
tion toward particular corner cases. One such example is to request some portion
of the translations to share part of the translation tables with previous transla-
tions, but not the entire path. Another example is to invoke particular exceptions
(interrupts) at a high rate.

6 Background on Activity CSP

In Sect. 7, we show how to translate GCSP to activity CSP (ACSP). We give an
introduction to ACSP in this section. See [13] for more details2.

ACSP is a variant of conditional CSP [21]. Informally, ACSP is a CSP where
some Boolean variables, called activity variables, are special; the existence of
parts of the CSP depends on the value assigned to the activity variables. We
illustrate this concept using the following example:

Example 2. An ACSP consisting of:

– Six variables a, a1, a2, v, v1, v2. The initial domain of a is {True}, of a1 and
a2 is {True, False}, and of v, v1, v2 is {1, 2, 3, 4}.

– a1 and a2 are activity variables. As for the rest of the variables, v is linked to
a, v1 is linked to a1, and v2 is linked to a2.

– Two constraints c1 and c2. Constraint c1 is: v > v1, constraint c2 is: v < v2.
c1 is linked to a1 and c2 is linked to a2.

Examples of possible solutions:

– a = True, a1 = True, a2 = True, v = 2, v1 = 1, v2 = 3 (a1 = True,
therefore v1 participates in the solution, and c1 must be satisfied. Similar for
a2).

– a = True, a1 = True, a2 = False, v = 2, v1 = 1 (a2 = False, therefore v2
does not participate in the solution, and c2 does not have to be satisfied).

– a = True, a1 = False, a2 = False , v = 3.

To simplify, we assume that every variable and constraint is linked to an
activity variable. If we want a variable to be independent, and unlinked to any
graph entity, we can create a dummy activity variable whose initial domain is
{True}, and link the variable to it. In example 2, v is such a variable and it is
linked to activity variable a.

2 The definition for ACSP that we provide here is slightly different, yet equivalent to
the definition in [13].

Graph-Based CSP 853

6.1 Formal Definition of ACSP

An ACSP is defined as a tuple ⟨V, VA,D,C,M⟩, where:

– V is the set of variables.
– VA ⊆ V is the set of activity variables. All variables in VA have Boolean
domains.

– D are the domains of the variables in V .
– C is the set of constraints.
– M is a mapping from (V \ VA) ∪ C to VA. We say that v is linked to a if

M(v) = a. In Example 2, we have M(v) = a, M(v1) = M(c1) = a1 and
M(v2) = M(c2) = a2.

An assignment to an ACSP is an assignment of values to variables in V . Not
all the variables in V are assigned a value, only the active variables, defined as
follows:

1. Every activity variable is active, hence assigned a value: True or False (we
recall that activity variables are always Boolean).

2. For every v ∈ V \ VA, v is assigned a value if and only if M(v) is assigned
True.

For a constraint c ∈ C, define the activity set AS(c):

AS(c) := M(c) ∪
⋃

{v∈V \VA constraint parameter}

M(v)

Note that AS(c) is a set of activity variables, (i.e., AS(c) ⊆ VA). Given an
assignment, we say a constraint is active if all the activity variables in its activity
set are assigned True. We say that an assignment is a solution if it satisfies all
the active constraints.

6.2 Solving ACSPs

Geller and Veksler [13] introduced a solving mechanism based on the notion
of shadow variables. The mechanism relies on systematic search with a MAC
algorithm.

For each constraint c ∈ C and v ∈ V \ VA parameter of c, we create a new
variable, which is a copy of v. We denote the new variable by v[AS(c)] and say
that v[AS(c)] is a shadow of v3. We then replace v by v[AS(c)] (i.e., c will operate
on v[AS(c)] instead of v). We also create a new propagator that propagates as
follows:

– Set D(v[AS(c)]) to be D(v[AS(c)]) ∩ D(v).
– If the domains of all the activity variables in AS(c) are {True} then set D(v)

to be equal to D(v[AS(c)]).
3 For two constraints c1, c2 such that AS(c1) = AS(c2), and a variable v which is a
parameter of both constraints, it is sufficient to create one shadow variable.

854 M. Aharoni et al.

– If D(v[AS(c)]) becomes empty; and the domains of all the activity variables in
AS(c) are {True}, except for one variable a, whose domain is {True, False}:
then set the domain of a to {False}.

The new propagator is invoked during MAC, as long as the domains of all the
activity variables in AS contain True. If the domain of one of these variables
becomes {False}, the propagator is disabled, and the shadow v[AS(c)] is ignored
for the rest of the execution.

Shadow variables allow the solver to run all the possible activity configura-
tions in parallel, before knowing which configuration will eventually end up in
the solution. This has the risk of deteriorating run time, since we add many
variables and constraints to the problem, and perform propagations that will
eventually turn out to have originated in an inactive constraint. However, as
shown in [13], various optimizations can reduce the number of shadows. More-
over, the ACSP can be enhanced with smart propagators over activity variables,
which make the early propagation even more powerful.

7 Modeling Graph-Based CSPs as Activity CSPs

Given a GCSP ⟨V,D,C,G⟩, we create an ACSP ⟨V ′, VA,D′, C ′,M⟩: for every
graph entity t, we create an activity variable, denoted ac(t). We obtain the
following ACSP:

– Va = {ac(t) : t entity in G}.
– V ′ = V ∪ VA.
– D′(v) = D(v) for v ∈ V ; D′(a) = {True, False} for a ∈ VA, except for

D′(ac(source)) and D′(ac(target)), which are {True}.
– C ′ = C ∪ P , where the set P of new constraints is defined below.
– For v ∈ V linked to graph entity t, we have M(v) = ac(t). Same for c ∈ C.

It remains to define P — a new set of constraints, to ensure that a valid path
is selected (we denote this set by the letter P since it is the first letter in the
word “path”).

– For every edge e from n1 to n2, we add a constraint ac(n1)∧ ac(n2), and link
it to ac(e). These two constraints ensure that if an edge is part of a solution,
then the two nodes at its ends are also part of the solution.

– For every node n that is not the target, we add a new constraint, which we
link to ac(n): exactly one of ac(e1), . . . , ac(ek) is True, where e1, . . . , ek are
the outgoing edges of n.

– We add a similar constraint for incoming edges.

Example 3. This is the ACSP obtained from the GCSP depicted in Fig. 1:

– VA = {ac(ns), ac(nt), ac(n1), ac(n2)}
– V ′ = {x, y, z, w, ac(ns), ac(nt), ac(n1), ac(n2)}, where M(x) = ac(ns),M(y) =

ac(n1),M(z) = ac(nt),M(w) = ac(n2)

Graph-Based CSP 855

– The initial domains of x, y, z, w are identical to the domains in the GCSP.
For the activity variables: D′(ns) = D′(nt) = {True}, D′(n1) = D′(n2) =
{True, False}.

– The constraints, where eij denotes the edge from ni to nj :
• Linked to ac(es1): y = x+ 1; ac(ns) ∧ ac(n1).
• Linked to ac(e1t): z = y + 2; ac(n1) ∧ ac(nt).
• Linked to ac(es2): w = x − 2; ac(ns) ∧ ac(n2).
• Linked to ac(e2t): z = w; ac(n2) ∧ ac(nt).
• Linked to ac(ns): exactly one of ac(es1), ac(es2) is True.
• Linked to ac(nt): exactly one of ac(e1t), ac(e2t) is True.
• Linked to ac(n1): ac(es1) = True; ac(e1t) = True.
• Linked to ac(n2): ac(es2) = True; ac(e2t) = True.

8 Results

We augmented the IBM Research Constraint Solver [1] with an interface capable
of reading GCSPs and translating them to activity CSPs, as described in Sect. 7.
Two general purpose test generators use this solution.

IBM Genesys Professional Edition Test Generator(Genesys-Pro) [3], uses the
IBM Research Constraint Solver for instruction generation for pre-silicon verifi-
cation. Address translation is an essential part of the process of generating both
instruction and operand addresses. This technology enhancement serves not only
to ensure correct translation, but also enables generating interesting scenarios
by adding hard and soft constraints that target corner cases, thus achieving wide
and thorough coverage. We model the translation problem as a separate CSP
from the main test generation problem, which is also modeled as a CSP. At
run-time, the two problems are connected to create one large CSP. This solution
was first deployed on IBM z Systems, enabling Genesys-Pro to test the complex
virtual memory management. More recently, this solution was deployed for the
IBM Power Systems, and it is currently being developed for ARM architecture.

IBM Threadmill Post-Silicon Exerciser (Threadmill) [6] is a leading IBM
solution for post-silicon processor verification. Threadmill is a bare-metal appli-
cation. Once it is loaded to the system, it continuously generates test-cases,
executes them, and checks their results, all on the hardware. To achieve opti-
mal utilization of the silicon platform, it is important to minimize the portion
of time spent on test-generation to allow more time for the execution of the
test. CSP engines cannot be executed effectively on the silicon, because they
are generally implemented in software. However, generating interesting address
translation scenarios is also necessary for post-silicon verification. Threadmill
generates address translation data in advance, and uses this data later for the
on-silicon test-generation. Thus the CSP engine is used offline to generate address
translation data. The address translation CSP models used by Threadmill are
typically smaller than those used by Genesys-Pro, since they exclude some of
the architecture mechanisms (e.g., exceptions), thus reducing the graph size.

We conducted experiments using our solver on a 64 bit Linux machine with
228GBytes of memory and performance of 2.4Ghz. Table 1 displays the results

856 M. Aharoni et al.

for address translation instances coming from five models: PnoEx is the Power
model without exceptions, used for post-silicon validation; P is the full Power
model, used for pre-silicon verification; ARM is the full ARM model; Zhost and
Zguest represent the two stages of z13 models. All data is for a single stage of the
translation. The two stages are implemented in a similar manner, but the CSPs
are solved separately. The graphs for the two stages are almost identical; however
the guest CSP is more complex, because it has many additional constraints, some
that stem from the main problem of instruction generation, and others are used
for the invocation of the host translation.

To explain the table’s columns, we recall the three steps from a GCSP to a
solution:

1. Translate the GCSP to an ACSP (Sect. 7). This step adds new activity vari-
ables and new constraints, to ensure that the resulting subgraph is a valid
path.

2. Create shadow variables and propagators operating on them (Sect. 6).
3. Solve the resulting CSP.

The first four columns provide information about the GCSP: number of
nodes, number of edges, number of variables, and number of constraints. The
next two columns refer to the generated ACSP, before the creation of shadow
variables (see Step 1 above). The solver adds shadow variables and propagators
(Step 2). The seventh and eighth columns give the total number of variables
and constraints. The run time, displayed in milliseconds in the last column, is
the total run time for all three steps, averaged over 100 executions. Run time of
ARM is not optimized since the model is still under development.

Table 1. Performance of the IBM Constraint Solver on a selection of GCSPs used for
address translation of several processors

Model GCSP ACSP w/o shadows ACSP with shadows Time (ms)

nodes edges vars constraints vars constraints vars constraints

PnoEx 7 7 42 69 53 91 103 162 7

P9 8 14 92 151 112 197 294 396 12

ARM 8 19 181 264 206 321 663 814 41

Zhost 16 39 273 450 326 574 1051 1330 31

Zguest 16 38 523 822 575 945 1623 2023 37

9 Conclusions

Wepresented the solution we developed for generating test cases to verify the com-
plex address translation mechanism. The solution involves modeling the address
translation algorithm as a graph-based CSP. We showed how GCSP can be imple-
mented efficiently using activity CSP. The GCSP model is specific for each hard-
ware architecture. Once the architecture is modeled, the user can request various
scenarios for verification by adding both hard and soft constraints.

Graph-Based CSP 857

We chose to build our solution on the basis of Constraint Programming (CP)
mainly because this technology has proven successful for our test generation
tools. CP has several advantages in this domain: a rich, high-level constraint
language; support for various variable types such as integers, strings, bitvectors
and enumerated types; support for user-defined C++ propagators; soft con-
straints; and random variable and value ordering. Measuring the quality of test
case distribution is a subject of study in itself. We have not made such a study
in the scope of this work. However, it is our strong feeling that allowing a level
of randomness in their generation is critical to finding bugs in places no one
thought to define. By not employing dedicated heuristics to improve the solv-
ing process, we allow a level of randomness which we believe, contributes to a
good distribution over the solution space. This is very important for generating
multiple random-constrained test cases for verification. It may be beneficial to
explore usage of other technologies for this problem. In particular, the reviewers
suggested examining SMT with bitvector theory. To the best of our knowledge,
it is more difficult to introduce random solutions into the SMT process, however
this seems like an interesting direction for future study.

In all the sections above, we defined how to model the GCSP so as to provide
a path from source to target as the solution. GCSP does not contain anything
specific for paths, thus can readily support other types of solutions to select a
cycle, or a clique, an independent set, or any other type of subgraph that can
be defined using constraints on nodes and edges. Due to this generic aspect of
GCSP, we believe that additional applications may suggest problems that can
be naturally modeled as GCSPs. These are problems in which the CSP itself —
variables and constraints — depends on the selected subgraph. We suggest the
search for these new applications as a promising direction for future work.

Acknowledgments. Many people helped in discussions and in implementation of
models for different architectures. In particular, we would like to warmly thank Ahmed
Issa, Adi Dagan, Asaf Slilat, Elad Venezian, Oz Hershkovitz, Michal Rimon, Karen
Holtz, and Alexandra Skolzub for using our technology and providing important
insights.

References

1. http://www.research.ibm.com/haifa/dept/vst/csp.shtml
2. ARM architecture reference manual, ARMv8 for ARMv8-A architecture profile
3. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:

Genesys-Pro: innovations in test program generation for functional processor ver-
ification. IEEE Des. Test Comput. 21(2), 84–93 (2004)

4. Adir, A., Emek, R., Katz, Y., Koyfman, A.: DeepTrans - a model-based approach
to functional verification of address translation mechanisms. In: Fourth Interna-
tional Workshop on Microprocessor Test and Verification, Common Challenges and
Solutions (MTV 2003), pp. 3–6 (2003)

5. Adir, A., Fournier, L., Katz, Y., Koyfman, A.: DeepTrans - extending the model-
based approach to functional verification of address translation mechanisms. In:
HLDVT, pp. 102–110. IEEE Computer Society (2006)

http://www.research.ibm.com/haifa/dept/vst/csp.shtml

858 M. Aharoni et al.

6. Adir, A., Golubev, M., Landa, S., Nahir, A., Shurek, G., Sokhin, V., Ziv, A.:
Threadmill: a post-silicon exerciser for multi-threaded processors. In: DAC, pp.
860–865. ACM (2011)

7. Anderson, T., Dahlin, M., Systems, O.: Principles and Practice. Memory Manage-
ment, vol. 3. Recursive Books (2015)

8. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1–2), 1636–1642 (1997)

9. Cambazard, H., Bourreau, E.: Conception d’une contrainte globale de chemin. In:
JNPC, pp. 107–121 (2004)

10. Do, M.B., Kambhampati, S.: Planning as constraint satisfaction: solving the
planning-graph by compiling it into CSP. Artif. Intell. 132(2), 151–182 (2001)

11. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): introducing a graph computa-
tion domain in constraint programming. In: Beek, P. (ed.) CP 2005. LNCS, vol.
3709, pp. 211–225. Springer, Heidelberg (2005)

12. Fages, J.G.: Exploitation de structures de graphe en programmation par con-
traintes. Ph.D. thesis, Ecole des Mines de Nantes (2014)

13. Geller, F., Veksler, M.: Assumption-based pruning in conditional CSP. In: Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 241–255. Springer, Heidelberg (2005)

14. Hamid, A.: Surveying the verification landscape. http://electronicdesign.com/eda/
surveying-verification-landscape

15. Kamkin, A., Protsenko, A., Tatarnikov, A.: An approach to test program genera-
tion based on formal specifications of caching and address translation mechanisms,
vol. 27, pp. 125–138 (2015)

16. Kornykhin, E.V.: Generation of test data for verification of caching mechanisms
and address translation in microprocessors. Program. Comput. Softw. 36(1), 28–35
(2010)

17. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: AAAI,
pp. 25–32. AAAI Press (1990)

18. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. In: IAAI,
pp. 1720–1727. AAAI Press (2006)

19. Le Pape, C., Régin, J.-C., Shaw, P.: Robust and parallel solving of a network
design problem. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 633–648.
Springer, Heidelberg (2002)

20. Romanescu, B.F., Lebeck, A.R., Sorin, D.J.: Specifying and dynamically verifying
address translation-aware memory consistency. In: ASPLOS, pp. 323–334. ACM
(2010)

21. Sabin, M., Freuder, E.C., Wallace, R.J.: Greater efficiency for conditional con-
straint satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663.
Springer, Heidelberg (2003)

http://electronicdesign.com/eda/surveying-verification-landscape
http://electronicdesign.com/eda/surveying-verification-landscape

Finding Unsatisfiable Cores of a Set of
Polynomials Using the Gröbner Basis Algorithm

Xiaojun Sun1, Irina Ilioaea2, Priyank Kalla1(B), and Florian Enescu2

1 Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
{xiaojuns,kalla}@ece.utah.edu

2 Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
iilioaea1@student.gsu.edu, fenescu@gsu.edu

Abstract. Finding small unsatisfiable subformulas (unsat cores) of
infeasible propositional SAT problems is an active area of research. Anal-
ogous investigations in the polynomial algebra domain are, however,
somewhat lacking. This paper investigates an algorithmic approach to
identify a small unsatisfiable core of a set of polynomials, where the
corresponding polynomial ideal is found to have an empty variety. We
show that such a core can be identified by employing extensions of the
Buchberger’s algorithm. By further analyzing S-polynomial reductions,
we identify certain conditions that are helpful in ascertaining whether
or not a polynomial from the given generating set is a part of the unsat
core. Our algorithm cannot guarantee a minimal unsat core; the paper
describes an approach to refine the identified core. Experiments are per-
formed on a variety of instances using a computer-algebra implementa-
tion of our algorithm.

1 Introduction

The Boolean Satisfiability Problem (SAT) is formulated as finding solutions
satisfying a set of Boolean equations, or to show that no such solutions exist
(unsat). Such problems are often represented in Conjunctive Normal Form
(CNF), whereby sets of literal-disjunctions (clauses) must be simultaneously sat-
isfied through some variable assignment. When no solutions exist, it is possible
to identify a subset Cc of the original set of clauses C such that Cc is unsat too.
This set Cc is called the unsat core of the problem. Unsat cores find application
in many areas such as artificial intelligence [1], hardware synthesis [2], formal
verification [3], among others [4]. A minimal unsat core is a minimally unsatisfi-
able subformula (MUS) when any of its subsets is satisfiable. Various unsat core
extractors are available [5,6] that can identify smaller/minimal unsat cores from
very large unsat problems, and this is an active area of research.

The problem has analogous manifestations in the commutative algebra and
algebraic geometry domains. Suppose that we are given a set of polynomials

This research is funded in part by the US National Science Foundation grants CCF-
1320335 and CCF-1320385.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 859–875, 2016.
DOI: 10.1007/978-3-319-44953-1 54

860 X. Sun et al.

F = {f1, . . . , fs} with coefficients from any field. Suppose, further, that the
system of polynomial equations f1 = f2 = · · · = fs = 0 has no common zero –
i.e. the system of polynomial constraints is infeasible (or unsat). Can we identify
a subset Fc ⊆ F such that the set of polynomials of Fc also has no common
zeros? In this paper, we devise algorithmic techniques to identify such infeasible
or unsat cores Fc of a set of polynomials F .

Contributions: Computational algebraic geometry – particularly the theory and
technology of Gröbner bases (GB) [7] – provides a mechanism to answer the
polynomial unsat core question. The given set of polynomials F generates an
ideal, and the celebrated Hilbert’s Nullstellensatz [8] provides all the tools to
characterize the zero-set (varieties) of polynomial ideals. Most Nullstellensatz-
related polynomial decision questions can be answered using Gröbner bases.
This motivates our investigation into extraction of infeasible cores of the set of
polynomials F using Buchberger’s algorithm [9] for GB computation.

We apply Buchberger’s algorithm on the given set F to first deduce whether
or not F has common zeros, by generating the unit ideal from the polynomials.
We perform book-keeping of specific information generated during the execution
of Buchberger’s algorithm – such as the critical pairs used, the polynomials
used in reduction of the basis, quotients of polynomials generated, etc. Analysis
of this data allows us to identify the unsat core Fc ⊂ F . We identify certain
conditions that help us ascertain whether a polynomial fi ∈ Fc can be discarded
from the unsat core. Our approach cannot guarantee a minimal core, so we
further present a technique to refine the unsat core. Experiments are performed
on a variety of hardware equivalence checking and combinatorics benchmarks.
In many instances, our approach delivers a minimally infeasible subset Fc.

Previous Work: GB techniques have been employed to tackle SAT problems.
Nullstellensatz based proof systems, such as the polynomial calculus [10], used
GB as a means to derive proof refutation, and to derive complexity lower bounds
[11]. GB techniques have also been used in SAT formula preprocessing [12] and
for clause learning [13]. Increasing interest in solving Boolean problems with
algebraic reasoning has led to algorithm and tool developments for Boolean
Gröbner basis [14,15]. While investigations of unsat cores have been made for
linear programs [16,17], to the best of our knowledge they have not been explored
for a system of polynomial constraints using Gröbner bases.

2 Preliminaries

Let F be any field, F its algebraic closure, and R = F[x1, . . . , xd] the polyno-
mial ring in variables x1, . . . , xd with coefficients from F. A monomial in vari-
ables x1, . . . , xd is a power product of the form X = xe1

1 · xe2
2 · · ·xed

d , where
ei ∈ Z≥0, i ∈ {1, . . . , d}. A polynomial f ∈ R is written as a finite sum
of terms f = c1X1 + c2X2 + · · · + ctXt. Here c1, . . . , ct are coefficients and
X1, . . . , Xt are monomials. To systematically manipulate the polynomials, a
monomial order > (or a term order) is imposed on the ring — i.e. a total order on
the monomials s.t. multiplication with another monomial preserves the ordering.

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 861

The monomials of f = c1X1 + c2X2 + · · · + ctXt are ordered w.r.t. to >, such
that X1 > X2 > · · · > Xt. Subject to >, lt(f) = c1X1, lm(f) = X1, lc(f) = c1,
are the leading term, leading monomial and leading coefficient of f , respectively.
While our approach works for any permissible term order, in the paper, we con-
sider terms ordered degree-lexicographically (DEGLEX), where the monomials
are ordered according to their descending total degree, with ties broken lexico-
graphically.

Polynomial Reduction: Let f, g be polynomials. If a non-zero term cX of f is
divisible by the leading term of g, then we say that f is reducible to r modulo g,
denoted f

g−→ r, where r = f− cX
lt(g) ·g. Similarly, f can be reduced (divided) w.r.t.

a set of polynomials F = {f1, . . . , fs} to obtain a remainder r. This reduction is
denoted f

F−→+ r, and the remainder r has the property that no term in r is
divisible by the leading term of any polynomial fi in F . The division algorithm
(e.g. Algorithm 1.5.1 [7]) records the data related to both the remainders and
the quotients in the division process. We will utilize this data to identify the
core.

Ideals, Varieties and Nullstellensatz: Let F = {f1, . . . , fs} denote the given set
of polynomials. An ideal J ⊆ R generated by polynomials f1, . . . , fs ∈ R is:

J = ⟨f1, . . . , fs⟩ = {
s∑

i=1

hi · fi : hi ∈ F[x1, . . . , xd]}.

The polynomials f1, . . . , fs form the basis or the generators of J .
The set of all solutions to a given system of polynomial equations f1 = · · · =

fs = 0 is called the variety, which depends upon the ideal J = ⟨f1, . . . , fs⟩
generated by the polynomials. The variety is denoted by V (J) = VF(J) =
VF(f1, . . . , fs) and defined as:

VF(J) = VF(f1, . . . , fs) = {a ∈ Fd : ∀f ∈ J, f(a) = 0},

where a = (a1, . . . , ad) ∈ Fd denotes a point in the affine space.

Theorem 1 (The Weak Nullstellensatz [8]). Let J = ⟨f1, . . . , fs⟩ be an ideal
in the ring F[x1, . . . , xd] and VF(J) be its variety over F. Then VF(J) = ∅ ⇐⇒
J = F[x1, . . . , xd] ⇐⇒ 1 ∈ J .

The Weak Nullstellensatz provides a mechanism to ascertain whether or not
a given system of polynomials has a feasible solution. This is deduced by testing
whether the unit element is a member of the ideal J . This ideal membership test
requires the computation of a Gröbner basis.

Definition 1 (Gröbner Basis [7]). For a monomial ordering >, a set of non-
zero polynomials G = {g1, g2, · · · , gt} contained in an ideal J , is called a Gröbner
basis for J iff ∀f ∈ J , f ̸= 0 there exists i ∈ {1, · · · , t} such that lm(gi) divides
lm(f); i.e., G = GB(J) ⇔ ∀f ∈ J : f ̸= 0,∃gi ∈ G : lm(gi) | lm(f). Equiva-
lently, G = {g1, g2, · · · , gt} is a Gröbner basis for J iff division by G of any poly-
nomial in J gives the remainder 0; i.e. G = GB(J) ⇐⇒ ∀f ∈ J, f

g1,...,gt−−−−−→+ 0.

862 X. Sun et al.

Buchberger’s algorithm [9], shown in Algorithm 1, takes as input the given
polynomials F = {f1, . . . , fs}, and computes the Gröbner basis G = {g1, . . . , gt}.
The algorithm takes pairs of polynomials (fi, fj), and computes their S-
polynomial (Spoly(fi, fj)):

Spoly(fi, fj) =
L

lt(fi)
· fi − L

lt(fj)
· fj

where L = LCM(lm(fi), lm(fj)). Spoly(fi, fj) cancels the leading terms of

fi and fj . The computation Spoly(fi, fj)
G′
−→+ gij results in a remainder gij ,

which if non-zero, provides an element with new leading term in the generating
set. The algorithm terminates when for all pairs (fi, fj), Spoly(fi, fj)

G′
−→+ 0.

Algorithm 1. Buchberger’s Algorithm
Input: F = {f1, . . . , fs}
Output: G = {g1, . . . , gt}
G := F ;
repeat

G′ := G;
for each pair {fi, fj}, i ̸= j in G′ do

Spoly(fi, fj)
G′

−→+ gij ;
if gij ̸= 0 then

G := G ∪ {gij} ;
end

end

until G = G′;

A Gröbner basis G may contain redundant elements. To remove these redun-
dant elements, G is first made minimal and subsequently reduced. Subject to
the given term order >, the reduced GB Gr = {g1, . . . , gt} is a unique, canoni-
cal representation of ideal J . In the context of Nullstellensatz, VF(J) = ∅ ⇐⇒
Gr = GB(J) = {1}. This implies that for ideals with empty variety, there exists
a sequence of Spoly(fi, fj) reductions in the reduced GB computation that leads
to the unit element. We now show that by analyzing this data, the unsat core
Fc of the given generating set F = {f1, . . . , fs} can be identified.

3 Motivating the Search for an Unsat Core

Problem 1. Let F = {f1, . . . fs} be a set of multivariate polynomials in the
ring R = F[x1, . . . , xd] that generate ideal J = ⟨f1, . . . , fs⟩ ⊂ R. Suppose that it
is known that V (J) = ∅, or it is determined to be so by applying the Gröbner
basis algorithm. Identify a subset of polynomials Fc ⊆ F, Jc = ⟨Fc⟩, such that
V (Jc) = ∅ too. We call Fc the infeasible core or the unsat core of F .

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 863

It is not hard to motivate that an unsat core should be identifiable using the
Gröbner basis algorithm: Assume that Fc = F − {fj}. If GB(F) = GB(Fc) =
{1}, then it implies that fj is a member of the ideal generated by (F − {fj}),
i.e. fj ∈ ⟨F −{fj}⟩. Thus fj can be composed of the other polynomials of Fc, so
fj is not a part of the unsat core, and it can be safely discarded from Fc. This
can be identified by means of the GB algorithm for this ideal membership test.

A näive way (and inefficient way) to identify a minimal core using the GB
computation is as follows: select a polynomial fi and see if V (Fc −{fi}) = ∅ (i.e.
if reduced GB(Fc−{fi}) = {1}). If so, discard fi from the core; otherwise retain
fi in Fc. Select a different fi and continue until all polynomials fi are visited for
inclusion in Fc. This approach will produce a minimal core, as we would have
tested each polynomial fi for inclusion in the core. This requires O(|F |) calls to
the GB engine, which is really impractical.

3.1 The Refutation Tree of the GB Algorithm: Find Fc from F

We investigate if it is possible to identify a core by analyzing the
Spoly(fi, fj)

F−→+ gij reductions in Buchberger’s algorithm. Since F is itself
an unsat core, definitely there exists a sequence of Spoly reductions in Buch-
berger’s algorithm where Spoly(fi, fj)

F−→+ 1 is achieved. Moreover, polynomial
reduction algorithms can be suitably modified to record which polynomials from
F are used in the division leading to Spoly(fi, fj)

F−→+ 1. This suggests that
we should be able to identify a core by recording the data generated by Buch-
berger’s algorithm — namely, the critical pairs(fi, fj) used in the Spoly com-
putations, and the polynomials from F used to cancel terms in the reduction
Spoly(fi, fj)

F−→+ 1. The following example motivates our approach to identify
Fc ⊆ F using this data:

Example 1. Consider the following set of polynomials F = {f1, . . . , f9}:

f1 : abc+ ab+ ac+ bc

+ a+ b+ c+ 1
f2 : b
f3 : ac
f4 : ac+ a

f5 : bc+ c

f6 : abd+ ad+ bd+ d

f7 : cd
f8 : abd+ ab+ ad+ bd+ a+ b+ d+ 1
f9 : abd+ ab+ bd+ b

Assume >DEGLEX monomial ordering with a > b > c > d. Let F =
{f1, . . . , f9} and J = ⟨F ⟩ ⊂ F2[a, b, c, d] where F2 = {0, 1} is the finite field of 2
elements. Then V (J) = ∅ as GB(J) = 1. The set F consists of 4 minimal cores:
Fc1 = {f1, f2, f3, f4, f7, f8}, Fc2 = {f2, f4, f5, f6, f8}, Fc3 = {f2, f3, f4, f6, f8},
and Fc4 = {f1, f2, f4, f5}.

Buchberger’s algorithm terminates to a unique reduced GB, irrespective of
the order in which the critical pairs (fi, fj) are selected and reduced by operation
Spoly(fi, fj)

F−→+ gij . Let us suppose that in the GB computation corresponding

864 X. Sun et al.

to Example 1, the first 3 critical Spoly pairs analyzed are (f1, f2), (f3, f4) and
(f2, f5). It turns out that the Spoly-reductions corresponding to these 3 pairs lead
to the unit ideal. Recording the data corresponding to this sequence of reductions
is depicted by means of a graph in Fig. 1. We call this graph a refutation tree.

c• f2

f5

f3

f4

f1

ac• f2

“1”

a• f2
f3

c• f2

f2

f10

f11

Fig. 1. Generating refutation trees to record unsat cores.

In the figure, the nodes of the graph correspond to the polynomials utilized
in Buchberger’s algorithm. The leaf nodes always correspond to polynomials
from the given generating set. An edge eij from node i to node j signifies that
the polynomial at node j results from polynomial at node i. For example, con-
sider the computation Spoly(f1, f2)

F−→+ f10, where f10 = a + c + 1. Since
Spoly(f1, f2) = f1−ac ·f2, the leaves corresponding to f1 and ac ·f2 are created.
The reduction Spoly(f1, f2)

F−→+ f10 is carried out as the following sequence
of 1-step divisions: Spoly(f1, f2)

a·f2−−→ f3−→ c·f2−−→ f2−→ f10. This is depicted as the
bottom subtree in the figure, terminating at polynomial f10. Moreover, the mul-
tiplication a · f2 implies that division by f2 resulted in the quotient a. The
refutation tree of Fig. 1 shows further that Spoly(f3, f4)

f10−−→ f11 = c + 1 and,
finally, Spoly(f5, f2)

f11−−→ 1.
To identify an Fc ⊂ F , we start from the refutation node “1”, and traverse

the graph in reverse, all the way up to the leaves. Then, all the leaves in the
transitive fanin of “1” constitute an unsat core. The polynomials (nodes) that
do not lie in the transitive fanin of “1” can be safely discarded from Fc. From
Fig. 1, Fc = {f1, f2, f3, f4, f5} is identified as an unsat core of F .

4 Reducing the Size of the Infeasible Core Fc

The core Fc obtained from the aforementioned procedure may contain redun-
dant elements which could be discarded. For example, consider the core Fc =
{f1, . . . , f5} generated in the previous section. While Fc is a smaller infeasible
core of F , it is not minimal. In fact, Example 1 shows that Fc4 = {f1, f2, f4, f5}

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 865

is the minimal core, where Fc4 ⊂ Fc. Clearly, the polynomial f3 ∈ Fc is a redun-
dant element of the core and can be discarded. We will now describe techniques
to further reduce the size of the unsat core by identifying such redundant ele-
ments. For this purpose, we will have to perform a more systematic book-keeping
of the data generated during the execution of Buchberger’s algorithm and the
refutation tree.

4.1 Identifying Redundant Polynomials from the Refutation Tree

We record the S-polynomial reduction Spoly(fi, fj)
F−→+ gij that give a non-zero

remainder when divided by the system of polynomials F at that moment. The
remainder gij is a polynomial combination of Spoly(fi, fj) and the current basis
F ; thus, it can be represented as:

gij = S(fi, fj) +
m∑

k=1

ckfk, (1)

where 0 ̸= ck ∈ F[x1, . . . , xd] and {f1, . . . , fm} is the “current” system of poly-
nomials F . For each non-zero gij , we will record the following data:

((gij)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl)) (2)

In Eqs. (1) and (2), gij denotes the remainder of the S-polynomial
Spoly(fi, fj) modulo the current system of polynomials f1, . . . , fm, and we
denote by

hij :=
LCM(lm(fi), lm(fj))

lt(fi)
, hji := −LCM(lm(fi), lm(fj))

lt(fj)

the coefficients of fi, respectively fj , in the S-polynomial Spoly(fi, fj). Further-
more, in Eq. (2), (ck1, . . . ckl) are the respective quotients of division by polyno-
mials (fk1, . . . , fkl), generated during the Spoly reduction.

Example 2. Revisiting Example 1, and Fig. 1, the data corresponding to
Spoly(f1, f2)

F−→+ g12 = f10 reduction is obtained as the following sequence
of computations:

f10 = g12 = f1 − acf2 − af2 − f3 − cf2 − f2.

As the coefficient field is F2 in this example, −1 = +1, so:

f10 = g12 = f1 + acf2 + af2 + f3 + cf2 + f2

is obtained. The data is recorded according to Eq. (2):

((f10 = g12), (f1, 1)(f2, ac)|(a, f2), (1, f3), (c, f2), (1, f2))

866 X. Sun et al.

Our approach and the book-keeping terminates when we obtain “1” as the
remainder of some S-polynomial modulo the current system of generators. As
an output of the Buchberger’s algorithm, we can obtain not only the Gröbner
basis G = {g1, . . . , gt}, but also a matrix M of polynomials such that:

⎡

⎢⎢⎢⎣

g1
g2
...
gt

⎤

⎥⎥⎥⎦
= M

⎡

⎢⎢⎢⎣

f1
f2
...
fs

⎤

⎥⎥⎥⎦
(3)

Each element gi of G is a polynomial combination of {f1, . . . , fs}. Moreover,
this matrix M is constructed precisely using the data that is recorded in the
form of Eq. (2). We now give a condition when the matrix M may identify some
redundant elements.

Theorem 2. With the notations above, we have that a core for the system of
generators F = {f1, . . . , fs} of the ideal J is given by the union of those fi’s
from F that appear in the data recorded above and correspond to the nonzero
entries in the matrix M .

Proof. In our case, since the variety is empty, and hence the ideal is unit, we
have that G = {g1 = 1} and t = 1. Therefore M = [a1, . . . , as] is a vector. Then
the output of the algorithm gives: 1 = a1f1 + · · · + asfs. Clearly, if ai = 0 for
some i then fi does not appear in this equation and should not be included in
the infeasible core of F .

Example 3. Corresponding to Example 1 and the refutation tree shown in Fig. 1,
we discover that the polynomial f3 is used only twice in the division process. In
both occasions, the quotient of the division is 1. From Fig. 1, it follows that:

1 = (f2 + f5) + · · ·+ 1 · f3 + · · ·+ 1 · f3 + · · ·+ (f1 + f2) (4)

Since 1+ 1 = 0 over F2, we have that the entry in M corresponding to f3 is 0,
and so f3 can be discarded from the core.

4.2 The GB-Core Algorithm Outline

The following steps describe an algorithm (GB-Core) that allows us to compute
a refutation tree of the polynomial set and corresponding matrix M .

Inputs: Given a system of polynomials F = {f1, . . . , fs}, a monomial order >
on F[x1, . . . , xd].

S-polynomial Reduction: We start computing the S-polynomials of the sys-
tem of generators {f1, . . . , fs}, then divide each of them by the current basis
G = {f1, . . . , fs, . . . , fm}, which is the intermediate result of Buchberger’s algo-
rithm. In this way, we obtain expressions of the following type:

gij = hijfi + hjifj︸ ︷︷ ︸
Spoly(fi,fj)

+
m∑

k=1

ckfk (5)

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 867

If the remainder gij is non-zero, we denote it by fm+1 and add it to the current
set of generators G. We also record the data as in Eq. (2):

((fm+1 = gij)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl))

This data forms a part of the refutation tree rooted at node fm+1.

Recording the Coefficients: In Eq. (5) we obtain a vector of polynomial coef-
ficients ck where k > s. These coefficients are associated with new elements
(remainders) in the Gröbner basis, that are not a part of the unsat core. Since
each polynomial fk, (k > s) is generated by {f1, . . . , fs}, we can re-express fk in
terms of {f1, . . . , fs}. Thus, each fk, k > s can be written as fk = d1f1+· · ·+dsfs.
This process adds a new row (d1, . . . , ds) to the coefficient matrix M .

Termination and Refutation Tree Construction: We perform S-polynomial
reductions and record these coefficients generated during the division until the
remainder fm = 1 is encountered. The corresponding data is stored in a data-
structure D corresponding to Eq. (2). The matrix M is also constructed. From
this recorded data the refutation tree can be easily derived.

We start with the refutation node “fm = 1”:

((fm = 1)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl))

and recursively substitute the expressions for the polynomials fk (k > s) until
we obtain the tree with all the leaf nodes corresponding to the original set
of polynomials {f1, . . . , fs}. Algorithm 2 describes this data recording through
which the refutation tree T and the matrix M is derived.

Algorithm 2. GB-core algorithm (based on Buchberger’s algorithm)
Input: F = {f1, . . . , fs} ∈ F[x1, . . . , xd], fi ̸= 0
Output: Refutation tree T and coefficients matrix M
1: Initialize: list G ← F ; Dataset D ← ∅; M ← s × s unit matrix
2: for each pair (fi, fj) ∈ G do
3: fsp, (fi, hij)(fj , hji) ← Spoly(fi, fj) {fsp is the S-polynomial}
4: gij |(ck1, fk1), . . . , (ckl, fkl) ← (fsp

G−→+ gij)
5: if gij ̸= 0 then
6: G ← G ∪ gij
7: D ← D ∪ ((gij)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl))
8: Update matrix M
9: end if

10: if gij = 1 then
11: Construct T from D
12: Return(T,M)
13: end if
14: end for

868 X. Sun et al.

Notice that the core can actually be derived directly from the matrix M .
However, we also construct the refutation tree T as it facilitates an iterative
refinement of the core, which is described in the next section.

5 Iterative Refinement of the Unsat Core

As with most other unsat core extractors, our algorithm also cannot generate a
minimal core in one execution. To obtain a smaller core, we re-execute our algo-
rithm with the core obtained in the current iteration. We describe two heuristics
that are applied to our algorithm to increase the likelihood of generating a
smaller core in the next iteration.

An effective heuristic should increase the chances that the refutation “1” is
composed of fewer polynomials. In our GB-core algorithm, we use a strategy to
pick critical pairs such that polynomials with larger indexes get paired later in
the order:

(f1, f2) → (f1, f3) → (f2, f3) → (f1, f4) → (f2, f4) → · · ·

Moreover, for the reduction process Spoly(fi, fj)
F−→+ gij , we pick divisor

polynomials from F following the increasing order of polynomial indexes. There-
fore, by relabeling the polynomial indexes, we can affect their chances of being
selected in the unsat core. We use two criteria to affect the polynomial selection
in the unsat core. One corresponds to the refutation distance, whereas the other
corresponds to the frequency with which a polynomial appears in the refutation
tree.

Definition 2 (Refutation Distance). Refutation distance of a polynomial fi
in a refutation tree corresponds to the number of edges on the shortest path from
refutation node “1” to any leaf node that represents polynomial fi.

On a given refutation tree, polynomials with shorter refutation distances are
used as divisors in later stages of polynomial reductions; which implies that
they may generally have lower-degree leading terms. This is because we impose
a degree-lexicographic term order, and successive divisions (term cancellations)
reduce the degree of the remainders. However, what is more desirable is to use
these polynomials with lower-degree leading terms earlier in the reduction, as
they can cancel more terms. This may prohibit other (higher-degree) polynomials
from being present in the unsat core.

Similarly, the motivation for using the frequency of occurrence of fi in the
refutation tree is as follows: polynomials that appear frequently in the refutation
tree may imply that they have certain properties (leading terms) that give them
a higher likelihood of being present in the unsat core.

We apply both heuristics: after the first iteration of the GB-core algorithm,
we analyze the refutation tree T and sort the polynomials in the core by the
refutation distance criterion, and use the frequency criterion as the tie-breaker.
The following example illustrates our heuristic.

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 869

Example 4. Consider a set of 6 polynomials over F2 of an infeasible instance.

f1 : x1x3 + x3; f2 : x2 + 1
f3 : x2x3 + x2; f4 : x2x3

f5 : x2x3 + x2 + x3 + 1; f6 : x1x2x3 + x1x3

After the first iteration of the GB-core algorithm, the core is identified as
{f1, f2, f3, f4}, and we obtain a refutation tree as shown in Fig. 2(a).

x3• f2

“1”

(a) (b)

x2• f1

x1• f4

f2

x3• f2

f3

f2

“1”

x3• f2

f3

x3• f2

f4

Fig. 2. Refutation trees of core refinement example

The refutation distance corresponding to polynomial f2 is equal to 2 levels.
Note that while three leaf nodes in Fig. 2(a) correspond to f2, the shortest dis-
tance from “1” to any f2 node is 2 levels. The refutation distance and frequency
measures of other polynomials are identical – equal to 3 and 1, respectively – so
their relative ordering is unchanged. We reorder f2 to be the polynomial with the
smallest index. We re-index the polynomial set f ′

1 = f2, f ′
2 = f1, f ′

3 = f3, f ′
4 = f4

and apply our GB-core algorithm on the core {f ′
1, f

′
2, f

′
3, f

′
4}. The result is shown

in Fig. 2(b) with the core identified as {f ′
1, f

′
3, f

′
4} = {f2, f3, f4}. Further itera-

tions do not refine the core – i.e. a fix point is reached.

6 Refining the Unsat Core Using Syzygies

The unsat core obtained through our GB-core algorithm is by nature a refutation
polynomial that equals to 1, i.e. 1 =

∑s
i=1 ci · fi, where 0 ̸= ci ∈ F[x1, . . . , xd]

and the polynomials F = {f1, . . . , fs} form a core. Suppose that a polynomial
fk ∈ F can be represented using a combination of the rest of the polynomials of
the core, e.g.: fk =

∑
j ̸=k c

′
jfj . Then we can substitute fk in terms of the other

polynomials in the refutation. Thus, fk is redundant and can be dropped from the
core. One limitations of the GB-core algorithm and the re-labeling/refinement

870 X. Sun et al.

strategy is that they cannot easily identify such polynomials. We present an
approach targeted to identify such combinations to further refine the core.

During the execution of Buchberger’s algorithm, many critical pairs (fi, fj)
do not add any new polynomials in the basis when Spoly(fi, fj)

F−→+ 0 gives
zero remainder. Naturally, for the purpose of the GB computation, this data
is discarded. However, our objective is to gather more information from each
GB iteration so as to refine the core. Therefore, we further record the quotient-
divisor data from S-polynomial reductions that result in the remainder 0. Every
Spoly(fi, fj)

F−→+ 0 implies that some polynomial combination of {f1, . . . , fs}
vanishes: i.e. c1f1 + c2f2 + · · · + csfs = 0, for some c1, . . . , cs. These elements
(c1, . . . , cs) form a syzygy on f1, . . . , fs.

Definition 3 (Syzygy [8]). Let F = {f1, . . . , fs}. A syzygy on f1, . . . , fs is an
s-tuple of polynomials (c1, . . . , cs) ∈ (F[x1, . . . , xd])s such that

∑s
i=1 ci · fi = 0.

For each Spoly(fi, fj)
F−→+ 0 reduction, we record the information on cor-

responding syzygies as in Eq. (6), also represented in matrix form in Eq. (7):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c11f1 + c12f2 + · · ·+ c1sfs = 0
c21f1 + c22f2 + · · ·+ c2sfs = 0

...
cm1 f1 + cm2 f2 + · · ·+ cms fs = 0

(6)

⎡

⎢⎢⎢⎣

c11 c12 · · · c1s
c21 c22 · · · c2s
...

...
. . .

...
cm1 cm2 · · · cms

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

f1
f2
...
fs

⎤

⎥⎥⎥⎦
= 0 (7)

Here {f1, f2, . . . , fs} is the given core. Take one column of the syzygy matrix (e.g.
the set of polynomials in j-th column c1j , c

2
j , . . . , c

m
j) and compute its reduced

Gröbner basis Gr. If Gr = {1}, then it means that there exists some polynomial
vector [r1, r2, . . . , rm] such that 1 = r1c1j + r2c2j + · · ·+ rmcmj =

∑m
i=1 ric

i
j . If we

multiply each row i in the matrix of Eq. (7) with ri, and sum up all the rows,
we will obtain the following equation:

[∑m
i=1ric

i
1 · · · 1 · · ·

∑m
i=1ric

i
s

]

⎡

⎢⎢⎢⎣

f1
f2
...
fs

⎤

⎥⎥⎥⎦
= 0 (8)

This implies that

m∑

i=1

ric
i
1f1 + · · ·+ fj + · · ·+

m∑

i=1

ric
i
sfs = 0,

or that fj is a polynomial combination of f1, . . . , fs (excluding fj). Subsequently,
we can deduce that fj can be discarded from the core. By repeating this proce-
dure, some redundant polynomials can be identified and size of unsat core can
be reduced further.

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 871

Example 5. Revisiting Example 1, execute the GB-core algorithm and record the
syzygies on f1, . . . , fs corresponding to the S-polynomials that give 0 remain-
der. The coefficients can be represented as entries in matrix shown below. For
example, the first row in the matrix corresponds to the syzygies generated by
Spoly(f1, f3)

F−→+ 0.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

Spoly(f1, f3) 1 a+ c+ 1 b+ 1 0 0 0 0 0 0 1
Spoly(f2, f3) 0 ac b 0 0 0 0 0 0 0
Spoly(f1, f4) 1 c+ 1 1 b 0 0 0 0 0 1
Spoly(f2, f4) 0 ac+ a 0 b 0 0 0 0 0 0
Spoly(f1, f5) 1 a+ c+ 1 0 0 a 0 0 0 0 1

(9)

Usually, we need to generate extra columns compared to the syzygy matrix
of Eq. (7). In this example, we need to add an extra column for the coefficient of
f10. This is because f10 is not among the original generating set; however, some
S-polynomial pairs require this new remainder f10 as a divisor during reduction.
In order to remove this extra column, we need to turn the non-zero entries in
this column to 0 through standard matrix manipulations.

Recall that we record f10 in M as a nonzero remainder when reducing S-
polynomial pair Spoly(f1, f2)

F−→+ f10. We extract this information from the
coefficient matrix M :

(1 ac+ a+ c+ 1 1 0 0 0 0 0 0)

It represents f10 is a combination of f1 to f9:

f10 = f1 + (ac+ a+ c+ 1)f2 + f3

It can be written in the same syzygy matrix form (with column f10 present) as
follows:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
()Spoly(f1, f2) 1 ac+ a+ c+ 1 1 0 0 0 0 0 0 1 (10)

By adding this row vector (Eq. (10)) to the rows in Eq. (9) corresponding to
the non-zero entries in the column for f10, we obtain the syzygy matrix only for
the polynomials in the core:

f1 f2 f3 f4 f5 f6 f7 f8 f9⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

Spoly(f1, f3) 0 ac b 0 0 0 0 0 0
Spoly(f2, f3) 0 ac b 0 0 0 0 0 0
Spoly(f1, f4) 0 ac+ a 0 b 0 0 0 0 0
Spoly(f2, f4) 0 ac+ a 0 b 0 0 0 0 0
Spoly(f1, f5) 0 ac 1 0 a 0 0 0 0

There is a “1” entry in the f3 column. The last row implies that f3 is a
combination of f2, f5 (f3 = acf2 + af5), so f3 can be discarded from the core.

872 X. Sun et al.

While the syzygy heuristic gathers extra information from the GB compu-
tation, it is still not sufficient to derive all polynomial dependencies. In Buch-
berger’s algorithm, many S-polynomials reduce to zero, so the number of rows
of the syzygy matrix can be much larger than the size of original generating
set. Full GB computation on each column of the syzygy matrix can become pro-
hibitive to apply iteratively. For this reason, we only apply the syzygy heuristic
on the smaller reduced core given by our iterative refinement algorithm.

Overall Approach for Unsat Core Extraction: (i) Given the set F =
{f1, . . . , fs}, we apply the GB-core algorithm, record the data D,M (Sect. 4)
and the syzygies S on f1, . . . , fs. (ii) From M , we obtain a core Fc ⊆ F . (iii)
Iteratively refine Fc (Sect. 5) until |Fc| cannot be reduced further. (iv) Apply the
syzygy-heuristic (Sect. 6) to identify if some fk ∈ Fc is a combination of other
polynomials in Fc; all such fk are discarded from Fc. This gives us the final
unsat core Fc.

7 Experiment Results

We have implemented our core extraction approach (the GB-Core and the refine-
ment algorithms) using the Singular symbolic algebra computation system [v.
3-1-6] [18]. With our tool implementation, we have performed experiments to
extract a minimal unsat core from a given set of polynomials. Our experiments
run on a desktop with 3.5GHz Intel CoreTM i7–4770K Quad-core CPU, 16GB
RAM and 64-bit Ubuntu Linux OS. The experiments are shown in Table 1.

Gröbner basis is not an efficient engine for solving contemporary industry-size
CNF-SAT benchmarks, as the translation from CNF introduces too many vari-
ables and clauses for GB engines to handle. In order to validate our approach, we
use a somewhat customized benchmark library: (i) “aim-100” is a modified ver-
sion of the random 3-SAT benchmark “aim-50/100”, modified by adding some
redundant clauses; (ii) The “subset” series are generated for random subset
sum problems; (iii) “cocktail” is similarly revised from a combination of fac-
torization and a random 3-SAT benchmark; (iv) and “phole4/5” are generated
by adding redundant clauses to pigeon hole benchmarks; (v) Moreover, SMPO
and RH benchmarks correspond to hardware equivalence checking instances of
sequential Galois field normal basis modulo multiplier circuits [19,20], compared
against a golden model spec. Similarly, the “MasVMon” benchmarks are the
equivalence checking circuits corresponding to Mastrovito multipliers compared
against Montgomery multipliers [21]. Some of these are available as CNF for-
mulae, whereas others were available directly as polynomials over finite fields.
The CNF formulae are translated as polynomial constraints over F2 (as shown
in [12]), and the GB-Core algorithm and the refinement approach is applied.

In Table 1, #Polys denotes the given number of polynomials from which a
core is to be extracted. #MUS is the minimal core either extracted by PicoMUS
(for CNF benchmarks) or exhaustive deletion method (for non-CNF bencmarks).
#GB-core iterations corresponds to the number of calls to the GB-core engine to

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 873

Table 1. Results of running benchmarks using our tool. Asterisk(∗) denotes that the
benchmark was not translated from CNF. Our tool comprises 3 parts: part I runs a
single GB-core algorithm, part II applies the iterative refinement heuristic to run the
GB-core algorithm iteratively, part III applies the syzygy heuristic.

Benchmark # Polys # MUS Size of core # GB-core

iterations

Runtime (sec) Runtime of

PicoMUS

(sec)

I II III I II III

5 × 5 SMPO 240 137 169 137 137 8 1222 1938 1698 < 0.1

4 × 4 SMPO∗ 84 21 21 21 21 1 125 0.3 29 -

3 × 3 SMPO∗ 45 15 15 15 15 1 6.6 0.2 5.7 -

3 × 3 SMPO 17 2 2 2 2 1 0.07 0.01 0.01 < 0.1

4 × 4 MasVMont∗ 148 83 83 83 83 1 23 139 12 -

3 × 3 MasVMont∗ 84 53 53 53 53 1 4.3 4.6 0.9 -

2 × 2 MasVMont 27 23 24 23 23 2 1.3 1.0 80 < 0.1

5 × 5 RH∗ 142 34 48 35 35 4 997 1.0 80 -

4 × 4 RH∗ 104 35 43 36 36 3 96 5.7 0.6 -

3 × 3 RH∗ 50 20 20 20 20 1 2.9 3.5 10 -

aim-100 79 22 22 22 22 1 43 0.7 0.2 < 0.1

cocktail 135 4 6 4 4 2 51 0.01 0.01 < 0.1

subset-1 100 6 6 6 6 1 2.4 0.01 0.01 < 0.1

subset-2 141 19 37 23 21 2 12 1.6 1.1 < 0.1

subset-3 118 16 13 12 11 2 8.6 0.2 0.07 < 0.1

phole4 104 10 16 16 10 1 4.3 0.2 0.5 < 0.1

phole5 169 19 30 25 19 3 12 3.2 2.7 < 0.1

arrive at the reduced unsat core. The second last column shows the improvement
in the minimal core size by applying the syzygy heuristic on those cases which
cannot be iteratively refined further. We choose PicoMUS as a comparison to
our tool because it is a state-of-art MUS extractor, and the results it returned for
our set of benchmarks are proved to be minimal. The data shows that in most of
these cases, our tool can produce a minimal core. For the subset-3 benchmark,
we obtain a different core of smaller size than the one obtained from PicoMUS.
The results demonstrate the power of the Gröbner basis technique to identify
the causes of unsatisfiability.

8 Conclusions

This paper addresses the problem of identifying an infeasible core of a set of
multivariate polynomials, with coefficients from a field, that have no common
zeros. The problem is posed in the context of computational algebraic geometry
and solved using the Gröbner basis algorithm. We show that by recording the
data produced by the Buchberger’s algorithm – the Spoly(fi, fj) pairs, as well
as the polynomials of F used in the division process Spoly(fi, fj)

F−→+ 1 – we
can identify certain conditions under which a polynomial can be discarded from
a core. An algorithm was implemented within the Singular computer algebra
tool and experiments were conducted to validate the approach. While the use

874 X. Sun et al.

of GB engines for SAT solving has a rich history, the problem of unsat core
identification using GB-engines has not been addressed by the SAT community.
We hope that this paper will kindle interest in this topic which is worthy of
attention from the SAT community – particularly when there is a renewal of
interest in the use of Gröbner bases for formal verification [21–24].

References

1. de Siqueira, J.L., Puget, J.-F.: Explanation-based generalization of failures. In:
Proceedings of European Conference Artificial Intelligence, pp. 339–344 (1988)

2. Jiang, J.-H.R., Lee, C.-C., Mishchenko, A., Huang, C.-Y.: To SAT or Not to SAT:
scalable exploration of functional dependency. IEEE Trans. Comp. 59(4), 457–466
(2010)

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

4. Marques-Silva, J.: Minimal unsatisfiability: models, algorithms and applications.
In: IEEE International Symposium on Multi-Valued Logic, pp. 9–14 (2010)

5. Nadel, A., Ryvchin, V., Strichman, O.: Accelerated deletion-based extraction of
minimal unsatisfiable cores. J. Satisfiability Boolean Model. Comput. 9, 27–51
(2014)

6. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

7. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. American
Mathematical Society, Providence (1994)

8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, New
York (2007)

9. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-
klassen-ringes nach einem nulldimensionalen Polynomideal, Ph.D. Dissertation.
Philosophiesche Fakultat an der Leopold-Franzens-Universitat, Austria (1965)

10. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Gröbner basis algorithm to
find proofs of unsatisfiability. In: ACM Symposium on Theory of Computing, pp.
174–183 (1996)

11. Beame, P., Impagliazzo, R., Krajiček, J., Pitassi, T., Pudlák, P.: Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. Proc. Lond. Math. Soc. 73,
1–26 (1996)

12. Condrat, C., Kalla, P.: A Gröbner basis approach to CNF-formulae preprocessing.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631.
Springer, Heidelberg (2007)

13. Zengler, C., Küchlin, W.: Extending clause learning of SAT solvers with Boolean
Gröbner bases. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2010. LNCS, vol. 6244, pp. 293–302. Springer, Heidelberg (2010)

14. Brickenstein, M., Dreyer, A.: Polybori: a framework for Gröbner basis computa-
tions with Boolean polynomials. J. Symbolic Comput. 44(9), 1326–1345 (2009)

15. Vardi, M.Y., Tran, Q.: Groebner bases computation in Boolean rings for symbolic
model checking. In: IASTED (2007)

16. van Loon, J.N.M.: Irreducibly inconsistent systems of linear inequalities. Eur. J.
Oper. Res. 8(3), 283–288 (1981)

Finding Unsatisfiable Cores of a Set of Polynomials Using the GB Algorithm 875

17. Chinneck, J.W., Dravnieks, E.: Locating minimal infeasible constraint sets in linear
programs. INFORMS J. Comput. 3(2), 157–168 (1991)

18. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3–1-3 — A com-
puter algebra system for polynomial computations (2011). http://www.singular.
uni-kl.de

19. Agnew, G.B., Mullin, R.C., Onyszchuk, I., Vanstone, S.A.: An implementation for
a fast public-key cryptosystem. J. Cryptology 3(2), 63–79 (1991)

20. Reyhani-Masoleh, A., Hasan, M.A.: Low complexity word-level sequential normal
basis multipliers. IEEE Trans. Comput. 54(2), 98–110 (2005)

21. Lv, J., Kalla, P., Enescu, F.: Efficient Gröbner basis reductions for formal ver-
ification of Galois field arithmetic circuits. IEEE Trans. CAD 32(9), 1409–1420
(2013)

22. Gao, S., Platzer, A., Clarke, E.M.: Quantifier elimination over finite fields using
Gröbner bases. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 140–157.
Springer, Heidelberg (2011)

23. Kalla, P.: Formal verification of arithmetic datapaths using algebraic geome-
try and symbolic computation. In: Invited Tutorial, Proceedings of FMCAD,
p. 2 (2015). http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/slides/
fmcad15-tutorial-kalla.pdf

24. Sayed-Ahmed, A., Große, D., Kühne, U., Soeken, M., Drechsler, R.: Formal verifi-
cation of integer multipliers by combining Gröbner basis with logic reduction. In:
Proceedings of Design Automation and Test in Europe, pp. 1048–1053 (2016)

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/slides/fmcad15-tutorial-kalla.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/slides/fmcad15-tutorial-kalla.pdf

The Power of Propagation: When GAC Is
Enough

David A. Cohen1 and Peter G. Jeavons2(B)

1 Department of Computer Science, Royal Holloway,
University of London, London, UK

d.cohen@rhul.ac.uk
2 Department of Computer Science, University of Oxford, Oxford, UK

peter.jeavons@cs.ox.ac.uk

Considerable effort in constraint programming has focused on the development of
efficient propagators for individual constraints: reducing the current domains of
the variables of each constraint without removing any allowed assignments. The
strongest consistency that such a reduction can establish is when each value in
the current domains of every variable is part of an allowed assignment: assigning
each other variable of the constraint a value from its current domain. When
this condition holds the domains are said to satisfy the property of generalised
arc-consistency (GAC) for that constraint.

The development of efficient GAC propagators for individual global con-
straints does not help determine the effectiveness of GAC propagation when
applied to a network of overlapping global constraints. In this paper, we pre-
cisely characterise the classes of constraint problems where such propagators
can decide the existence of a solution on their own, without the need for any
additional search. We say that such classes are decided by GAC.

Sporadic examples of such classes have previously been identified, including
classes based on restricting the structure of the problem, restricting the con-
straint types, and some hybrid examples. However, there has previously been no
unifying theoretical framework which characterises all of these classes: structural,
language-based and hybrid. In this paper we develop such a unifying approach
based on the notion of tree-duality described in [1]. We then show how all of the
known classes fit into this common framework.

One important application area for our results is to particular global con-
straints which can themselves be decomposed into combinations of smaller con-
straints. If the instance formed by these smaller constraints is decided by GAC,
and retains this property when we add an arbitrary unary constant constraint,
then we have an effective GAC propagator for the original global constraint.

Another application area is the identification of sub-problems of a given prob-
lem that can be solved efficiently by existing solvers, that can be used as targets
for problem reduction or pre-processing strategies.

Abstract of Technical Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 877–878, 2016.
DOI: 10.1007/978-3-319-44953-1

878 D.A. Cohen and P.G. Jeavons

Reference

1. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput. 28, 57–104 (1998)

Constraint Programming for Planning Test
Campaigns of Telecommunication Satellites

Emmanuel Hebrard1(B), Marie-José Huguet1, Daniel Veysseire1,
Ludivine Boche Sauvan1,2, and Bertrand Cabon2

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
hebrard@laas.fr

2 Airbus Defense and Space, Toulouse, France

Abstract. The payload of a satellite is the equipment that actually per-
forms the mission, it receives, amplifies and emits back the signal. Before
launch, the equipment of the payload must be tested under a simulated
space environment. A set of tests are necessary for certifying that the
payload can perform its mission in space. Each test is characterized by
a set of activated equipment units and several thermal constraints limit
the number of equipment units that can be activated simultaneously. The
duration of the tests themselves is incompressible. However, activating
some equipment takes time as each equipment unit much reach a given
temperature and the temperature of the entire payload must be stabi-
lized before tests can resume. Then, the transition time between tests
depends on the order in which tests are sequenced.

Sequencing these tests in a way that ensures the thermal stability of
the payload and minimizes the overall duration of the test campaign is
a very important objective for satellite manufacturers.

To achieve these goals, we want first to minimize the number of times
the configuration of the payload has to be changed at all, which can be
modeled as a packing problem. Moreover, we also want to minimize the
total number of times an equipment unit has to be activated. We model
this second aspect using the constraint Switch, where the set of active
equipment is viewed as a buffer with a capacity and switches of buffered
items are to be minimized.

We introduce implied constraints that improve the lower bound of the
model for the number of configurations, and an efficient search strategy
for this problem. Moreover, we propose an improvement of the propaga-
tion algorithm for Switch which takes into account items that must
necessarily be visited, however at possibly unknown positions in the
sequence.

Finally, we experimentally evaluate the different contributions and
assess the benefit of our method with respect to the approach currently
implemented at Airbus.

Abstract of Application Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 879, 2016.
DOI: 10.1007/978-3-319-44953-1

Graphical Models for Optimal Power Flow

Krishnamurthy Dvijotham1(B), Pascal Van Hentenryck2,
Michael Cherkov1,2,3, Sidhant Misra1,2,3, and Marc Vuffray3

1 Computing and Mathematical Sciences,
California Institute of Technology, Pasadena, USA

dvij@cs.washington.edu
2 Industrial and Operations Engineering,
University of Michigan, Ann Arbor, USA

3 T-division, Los Alamos National Lab, Los Alamos, USA

As the penetration of renewable energy sources in the power grid increases,
the availability of generation capacity becomes increasingly stochastic (as it
depends on unpredictable weather conditions like wind and sunlight). Oper-
ating a reliable power grid in this scenario will require smart management of
demand-side resources (in order to achieve balance between generation and
demand in real time), leading to the need for efficient optimization algorithms
that can quickly compute the best utilization of distributed flexible demand-
side resources. The core underlying mathematical problem is the Optimal power
flow (OPF) problem: Minimize the cost of resources used subject to network
constraints. Although solved routinely in the course of power grid operations,
it is known to be strongly NP-hard in general, and weakly NP-hard on tree-
structured networks. Further, it is typically solved in a centralized manner that
is not suitable for distributed energy resources whose availability and cost is
unpredictable.

In this paper, we take initial steps towards developing an efficient distrib-
uted optimization framework for OPF. We focus on tree networks, because
power distribution networks which connect power consumers to the high-voltage
transmission network are typically tree-structured. We formulate the OPF prob-
lem over tree networks (power distribution networks linking consumers to the
main transmission grid as an inference problem over a tree-structured graphical
model (GM) where the nodal variables are low-dimensional vectors. We adapt
the dynamic programming (DP) algorithm for inference over a tree-structured
GM to the OPF problem. The resulting DP formulation is intractable, due to
the need to pass infinite-dimensional messages (functions of the nodal variables).
We remedy this problem by performing an interval discretization of the nodal
variables and use CP techniques to adaptively tighten bounds on variables as the
DP algorithm proceeds up the tree. The final result is an algorithm that com-
putes an ϵ-feasible (all constraints are satisfied upto tolerance ϵ) super-optimal
(objective value better than the true optimum) solution to the OPF problem
in time linear in the network size and polynomial in 1

ϵ . The algorithm can be
implemented in a distributed manner that only requires communication between

Abstract of Computational Sustainability Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 880–881, 2016.
DOI: 10.1007/978-3-319-44953-1

Graphical Models for Optimal Power Flow 881

neighboring nodes in the network. Compared to previous algorithms that solve
OPF with optimality guarantees using convex relaxations, our approach is able to
work for arbitrary distribution networks and handle mixed-integer optimization
problems. We evaluate our technique numerically on several benchmark networks
and show that practical OPF problems can be solved efficiently using this app-
roach. We outline other applications of the framework (probabilistic analysis of
power grids, for example) and ideas to extend the approach to meshed networks.

“Almost-Stable” Matchings in the
Hospitals/Residents Problem with Couples

David F. Manlove(B), Iain McBride, and James Trimble

School of Computing Science, Sir Alwyn Williams Building,
University of Glasgow, Glasgow G12 8QQ, UK

david.manlove@glasgow.ac.uk

Abstract. The Hospitals/Residents problem (hr) models the problem of
allocating junior doctors (or residents) to hospitals, where residents have
preferences over the hospitals they would like to work in, and vice versa,
hospitals have preferences over the residents that they would employ. The
Hospitals/Residents problem with Couples (hrc) is an extension of hr in
which couples (comprising pairs of residents) are allowed to submit joint
preference lists over pairs of (typically geographically close) hospitals. In
this context we seek an allocation of residents to hospitals that is stable,
which guarantees that no resident and hospital, and no couple and pair of
hospitals, have an incentive to deviate from their assignments and become
assigned to each other outside of the matching.

It is known that a stable matching need not exist in an instance of
hrc, and moreover, the problem of determining whether an instance of
hrc admits a stable matching is NP-complete. To cope with the possible
non-existence of a stable matching, we consider the problem of finding a
matching that is “as stable as possible”, i.e., admits the minimum num-
ber of blocking pairs. We denote this problem by min bp hrc.

We show that min bp hrc is NP-hard and very difficult to approxi-
mate, even in the highly restricted case that each couple finds only one
hospital pair acceptable. However if we further assume that the prefer-
ence list of each single resident and hospital is of length at most 2, we give
a polynomial-time algorithm for min bp hrc. We then present the first
Integer Programming (IP) and Constraint Programming (CP) models for
the general case ofmin bp hrc. Finally, we discuss an empirical evaluation
of these models applied to randomly-generated instances of min bp hrc.
We find that on average, the CP model is about 1.15 times faster than
the IP model, and when presolving is applied to the CP model, it is on
average 8.14 times faster. We further observe that the number of block-
ing pairs admitted by a solution is very small, i.e., usually at most 1, and
never more than 2, for the (28,000) instances considered.

The full version of this paper has been submitted for fast track pub-
lication in Constraints.

D.F. Manlove and J. Trimble—Supported by Engineering and Physical Sciences
Research Council grants EP/K010042/1 and EP/N508792/1.
I. McBride—Supported by a SICSA Prize PhD Studentship.
Abstract of Preference, Social Choice and Optimization Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 882, 2016.
DOI: 10.1007/978-3-319-44953-1

Mixed-Integer and Constraint Programming
Techniques for Mobile Robot Task Planning

Kyle E.C. Booth(B), Tony T. Tran, Goldie Nejat, and J. Christopher Beck

Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, ON M5S 3G8, Canada

{kbooth,tran,nejat,jcb}@mie.utoronto.ca

In this work we investigate the application of optimization-based scheduling
technologies to two mobile robot task planning problems. We develop and apply
mixed-integer programming (MIP) and constraint programming (CP) techniques
to model and solve these problems, demonstrating through simulation that our
methods outperform those previously proposed in the robotics literature. Our
simulation further indicates that the inference-based search of CP is the superior
approach for the problems studied. Additionally, we implement our CP approach
for the second problem as a task planning module within a real robotics platform
on the social robot Tangy, validating the physical utility of the method.

In the first task planning problem, a robot plans a set of tasks each with
temporal constraints identifying when a task is available for execution and when
it must be completed. The task planning module must determine a feasible plan
while minimizing the sum of task completion times. Existing approaches use
heuristic decisions aimed at reducing problem complexity and improving runtime
performance at the cost of optimality. Our methods provide better solutions in
shorter runtimes without sacrificing completeness. The second task planning
problem involves a socially-assistive robot facilitating everyday activities for
retirement home residents. The robot must create task plans while reasoning
about temporal constraints, human user timetables, and robot energy levels. We
show that our optimization-based methods outperform a previously proposed
forward-chaining temporal planning approach, and integrate our CP technique
into a task planning module within a mobile robotics platform architecture.

Overall, our results indicate that these optimization-based techniques are
promising for solving mobile robot task planning problems. A primary direc-
tion for our future research is to investigate the role of these methods for the
development of re-planning and plan repair techniques, in efforts to enhance the
capability of our task planning module. We plan to further investigate robot task
planning problems in order to understand the point at which such problems will
require more sophisticated strategies, such as customized search manipulations
and problem decompositions.

This abstract summarizes the main results in: Booth, K.E.C., Tran, T.T., Nejat, G.,
& Beck J.C., Mixed-Integer and Constraint Programming Techniques for Mobile
Robot Task Planning, IEEE Robotics and Automation Letters, 1(1), 500–507, 2016.
This research has been funded by the Natural Sciences and Engineering Council of
Canada (NSERC), Dr. Robot Inc., and the Canada Research Chairs (CRC) Program.
Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 883, 2016.
DOI: 10.1007/978-3-319-44953-1

The Power of Arc Consistency for CSPs Defined
by Partially-Ordered Forbidden Patterns

Martin C. Cooper1 and Stanislav Živný2(B)

1 IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

2 Department of Computer Science, University of Oxford, Oxford, UK
standa.zivny@cs.ox.ac.uk

Characterising tractable fragments of the constraint satisfaction problem
(CSP) is an important theoretical challenge. Forbidding patterns (generic sub-
instances) provides a means of defining CSP fragments which are neither exclu-
sively language-based nor exclusively structure-based. It is known that the class
of binary CSP instances in which the broken-triangle pattern (BTP) does not
occur, a class which includes all tree-structured instances, are decided by arc con-
sistency (AC), a ubiquitous reduction operation in constraint solvers. We provide
a characterisation of simple partially-ordered forbidden patterns which have this
AC-solvability property. It turns out that BTP is just one of five such patterns
The four other patterns allow us to exhibit new tractable classes, including one
which strictly generalises binary max-closed CSPs (the pattern EMC).

An ordered pattern is a binary CSP instance in which the consistency of some
assignments to pairs of variables is undefined, with an order on the domains and

Supported by EPSRC grant EP/L021226/1. S. Živný was supported by a Royal Soci-
ety University Research Fellowship. Extended abstract of M.C. Cooper & S. Živný,
The Power of Arc Consistency for CSPs Defined by Partially-Ordered Forbidden
Patterns, LICS 2016.
Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 884–885, 2016.
DOI: 10.1007/978-3-319-44953-1

The Power of Arc Consistency for CSPs 885

the variables. A pattern P occurs in an instance (or pattern) I if there is a
homomorphism from P to I via an injective renaming of variables. CSPSP (P)
denotes the set of binary CSP instances in which the pattern P does not occur.

Theorem 1. If P is a simple pattern with a partial order on its domains and/or
variables, then CSPSP (P) is AC-solvable if and only if P occurs in one of the
patterns EMC, BTX, BTI, LX or BTP (or patterns which are equivalent).

DASH: Dynamic Approach for Switching
Heuristics

Giovanni Di Liberto1, Serdar Kadioglu2(B), Kevin Leo3, and Yuri Malitsky1

1 Cork Constraint Computation Centre, University College Cork, Cork, Ireland
dilibert@dei.unipd.it, yuri.malitsky@gmail.com
2 Oracle Corporation, Burlington, MA 01803, USA

serdar.kadioglu@oracle.com
3 Faculty of IT, Monash University, Melbourne, Australia

kevin.leo@monash.edu

Complete tree search is a highly effective method for tackling combinatorial
optimization and satisfaction problems. Over the years, a plethora of branch-
ing heuristics have been introduced to further refine the technique for varying
problems. Yet while each new approach continued to push the state-of-the-art,
parallel research began to repeatedly demonstrate that there is no single method
that would perform the best on all problem instances. Tackling this issue, port-
folio algorithms took the process a step further, by trying to predict the best
heuristic for each instance at hand. However, the motivation behind algorithm
selection can be taken further still, and used to dynamically choose the most
appropriate algorithm for each encountered sub-problem.

In this paper [1], we introduce a method that advances the idea of instance-
specific algorithm configuration to the fine-grained level of sub-instance config-
uration and generalized dynamic heuristic selection. We identify a feature space
that captures both the evolution of the problem in the branching tree for Mixed-
Integer Programming (MIP) problems and the similarity among sub-problems of
instances from the same model. We monitor the tree-search and present empirical
evidence that MIP instances gradually change structure as branching heuristics
are applied. Tracing the sub-problems during search allows dynamic heuristic
selection and we show how to exploit this information on-the-fly in order to
decide the best time to switch the branching variable selection heuristic.

Experiments on a highly heterogeneous collection of hard MIP instances show
significant gains over the standard pure approach which commits to a single
heuristic throughout the search. We conclude that dynamic heuristic selection
can be very beneficial, yet the existence of complementary heuristics, diverse set
of instances, and descriptive features are also important. Since our method is
generally applicable to complete tree search, it can be readily extended to closely
related paradigms such as Constraint Programming and Boolean Satisfiability.

Reference

1. Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: Dynamic approach for
switching heuristics. Eur. J. Oper. Res. 248(3), 943–953 (2016)

Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 886, 2016.
DOI: 10.1007/978-3-319-44953-1

AHP Based Portfolio Selection with Risk
Preference Modeling

Cristinca Fulga(B)

Bucharest University of Economic Studies,
Piata Romana 6, 010374 Bucharest, Romania

fulga@csie.ase.ro

Abstract. We propose a methodology for defining, measuring and opti-
mizing risk that addresses some of the conceptual shortcomings of the
Mean-Risk framework for the portfolio problem such as the disregard of
the investor’s attitude towards risk and implicit assumption of neutral-
ity to loss aversion, see Fulga (2016). Firstly, we define a risk measure
that, for continuous return distribution functions, can be represented in
terms of the conditional expectation of the distribution tail, where the
tail is determined by the critical return level θ characterizing the loss-
averse investor. We give equivalent forms of the proposed risk measure
and point out the relations with CVaR, and LPM of first order (LPM1),
establish its properties and study the link with stochastic dominance
criteria. We discuss practical aspects regarding the calculation in the
case of scenario-based portfolio optimization. Secondly, we propose a
new methodology for portfolio selection in which investor’s loss aversion
is fully taken into consideration. Three types of investors characterized
by different classes of utility functions with loss aversion are considered.
Thirdly, we perform an empirical study which is targeted on assessing
the differences between the efficient frontier of the proposed model and
the classical Mean-V ariance, Mean-CV aRα and Mean -LPM1 fron-
tiers. We analyze the loss of welfare incurred by using another model
instead of the proposed one and measure the gain/loss of utility incurred
by choosing it. We use a proximity index of the welfare gain/loss. Then,
we assess how much the portfolios really differ in terms of their compo-
sitions and use a dissimilarity index based on the 1-norm. Two methods
are used to evaluate the proximity of two efficient frontiers. We describe
and interpret the optimal solutions obtained with the proposed model
and emphasize the role and influence of loss aversion parameters values
and of constraints.

Acknowledgement. This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-RU-TE-
2012-3-0007.

Reference

1. Fulga, C.: Portfolio optimization under loss aversion. Eur. J. Oper. Res. 251(1),
310–322 (2016). doi:10.1016/j.ejor.2015.11.038

Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 887, 2016.
DOI: 10.1007/978-3-319-44953-1

http://dx.doi.org/10.1016/j.ejor.2015.11.038

STR3: A Path-Optimal Filtering Algorithm
for Table Constraints

Christophe Lecoutre1,2(B), Chavalit Likitvivatanavong1,2,
and Roland H.C. Yap1,2

1 CRIL-CNRS UMR 8188, Université d’Artois, 62307 Lens, France
2 School of Computing, National University of Singapore, Central Area, Singapore

lecoutre@cril.fr, likitchav@gmail.com, ryap@comp.nus.edu.sg

Constraint propagation is fundamental to Constraint Programming (CP). Many
algorithms have been proposed over the years to enforce the property called Gen-
eralized Arc Consistency (GAC) — the most used form of propagation on many
types of constraints, including table constraints. Out of the many GAC algo-
rithmic ideas for table constraints, an approach called simple tabular reduction
(STR) which maintains the tables of constraints by removing invalid tuples has
been show to be effective. In particular, STR2, a refined STR variant is among
the most efficient GAC algorithms for positive table constraints.

In this paper, we revisit this approach by proposing a new GAC algorithm
called STR3 that is specifically designed to enforce GAC during backtrack search.
Thus, STR3 is a maintaining (generalized) arc consistency (MAC) algorithm,
making it different from most other propagation algorithms, including STR2.
STR3 employs different data structures from the STR2 (and STR1) algorithm
which allows a tuple to be found with respect to a domain value without visiting
irrelevant tuples.

Most of the GAC algorithms for table constraints previously introduced in the
literature suffer from having to repeatedly traverse the same tables or related
data structures during search. STR3 is designed specifically to be interleaved
with backtracking search, it’s main goal is to maintain the consistency while
minimizing the cost of backtracking. An important property of STR3 is that it
can completely avoid unnecessary traversal of tables, making it optimal along any
path of the search tree, i.e. path-optimal. We also study a variant of STR3, based
on an optimal circular way for traversing tables, and discuss the relationship
of STR3 with two other optimal GAC algorithms introduced in the literature,
namely, GAC4 and AC5TC-Tr.

Finally, we demonstrate experimentally how STR3 is competitive with the
state-of-the-art. In particular, our experiments show that the effectiveness of
STR3 is complementary to STR2. STR2 is faster than STR3 where simple tab-
ular reduction can eliminate a large number of tuples from the tables that they
become small. STR3, by contrast, outperforms STR2 when constraint relations
do not shrink as much during search.

This is a summary of the paper: C. Lecoutre, C. Likitvivatanavong, R.H.C. Yap.
STR3: A path-optimal filtering algorithm for table constraints. Artificial Intelligence
220: 1–27, 2015.
Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 888, 2016.
DOI: 10.1007/978-3-319-44953-1

Boosting Symmetry Breaking During Search
in Constraint Programming

Jimmy H.M. Lee(B) and Zichen Zhu

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{jlee,zzhu}@cse.cuhk.edu.hk

1 Extended Abstract

Symmetries can be broken statically or dynamically. Advantages of dynamic
symmetry breaking methods include ability to break symmetries of arbitrary
kinds and compatibility with variable and value heuristics. When considering
runtime, dynamic methods often lose out to widely used static methods, such as
the LexLeader method and value precedence. The focus of this paper is dynamic
symmetry breaking, in particular the symmetry breaking during search (SBDS)
method that adds conditional symmetry breaking constraints during search.

We first propose Recursive SBDS (ReSBDS) [1] to improve the pruning power
of partial SBDS. The main idea is to add extra symmetry breaking constraints
during search recursively to prune also symmetric nodes of some pruned subtrees.
Our proposal features a careful tradeoff between the number of constraints added
and the benefits of extra pruning. We give theoretical characterization on the
soundness and termination of our method, and comparisons on pruning strengths
against other well-known symmetry breaking methods, such as LDSB and the
LexLeader method.

Symmetry breaking constraints added by SBDS and its variants are actu-
ally nogoods. To reduce the overhead of nogood propagation, we propose weak-
nogood consistency (WNC) [2], a weaker consistency notion than generalized
arc consistency (GAC) for nogoods to trade pruning power for efficiency. We
present an efficient lazy propagator to enforce WNC for SBDS (and its variants)
using one watched literal. A similar weaker consistency, generalized weak-incNGs
consistency (GWIC), together with a lazy propagator is also proposed for the
incNGs constraint. By exploiting the increasing property of the nogoods in inc-
NGs, our lazy propagator watches also one literal for each global constraint, and
operates and benefits from a similar lazy principle. We give formal characteri-
zation of the pruning strengths of the proposed propagators, and also the space
and time complexities.

Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 889–890, 2016.
DOI: 10.1007/978-3-319-44953-1

890 J.H.M. Lee and Z. Zhu

References

1. Lee, J., Zhu, Z.: Boosting SBDS for partial symmetry breaking in constraint pro-
gramming. In: AAAI 2014, pp. 2695–2702 (2014)

2. Lee, J., Zhu, Z.: Filtering nogoods lazily in dynamic symmetry breaking during
search. In: IJCAI 2015, pp. 339–345 (2015)

Enhancing Partial Symmetry Breaking
in Constraint Programming

Jimmy H.M. Lee(B) and Zichen Zhu

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{jlee,zzhu}@cse.cuhk.edu.hk

1 Extended Abstract

Symmetries are common in many constraint problems. They can be broken sta-
tically or dynamically. Static methods alter the original problem by adding new
constraints to remove symmetric solutions. In contrast, dynamic methods mod-
ify the search procedure to exclude exploration of symmetric regions. Practi-
cal symmetry breaking methods often trade completeness for efficiency by only
breaking a subset of symmetries. The pruning power of partial symmetry break-
ing depends on the given subset of symmetries to break as well as the extra
composition symmetries that are broken by the interactions among symmetry
breaking constraints.

In the context of Partial Symmetry Breaking During Search (ParSBDS), the
search order affects the extra composition symmetries. In this paper [1], we give
the first formal characterization of the pruning behavior of ParSBDS and its
state-of-the-art variants. Relying on a generalization of (symmetry) dominance,
we prove that ParSBDS and variants prune all and only nodes that are dom-
inated. We introduce the notion of Dominance-Completeness (DC-ness), show
that ParSBDS and variants eliminate the symmetry group of the given subset
of symmetries if the resultant search tree is DC, and give a situation where this
happens. Unfortunately, building a DC tree is not always possible. We approxi-
mate it using two search heuristics.

LexLeader, the state of the art static method, adds lex ordering constraints
to break symmetries. We propose a new total ordering, reflex [2], and also a
reflex ordering constraint for breaking variable symmetries. An efficient GAC
filtering algorithm is given for reflex ordering. Based on this reflex ordering, the
ReflexLeader method is thus proposed by adding one reflex ordering constraint
for every variable symmetry of the problem or a subset. We show empirically that
given the same subset of symmetries, ReflexLeader can break more composition
symmetries than LexLeader. We prove that ReflexLeader is safe to combine with
Precedence and multiset ordering constraints.

Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 891–892, 2016.
DOI: 10.1007/978-3-319-44953-1

892 J.H.M. Lee and Z. Zhu

References

1. Lee, J.H.M., Zhu, Z.: Breaking more composition symmetries using search heuris-
tics. In: AAAI 2016, pp. 3418–3425 (2016)

2. Lee, J.H.M., Zhu, Z.: Static symmetry breaking with the reflex ordering. In: IJCAI
2016 (2016, to appear)

Decomposition of the Factor Encoding for CSPs

Chavalit Likitvivatanavong(B), Wei Xia, and Roland H.C. Yap

School of Computing, National University of Singapore, Singapore, Singapore
likitchav@gmail.com, {xiawei,ryap}@comp.nus.edu.sg

Generalized arc consistency (GAC) is one of the ways for reducing the search
space when solving constraint satisfaction problems (CSPs). With so many GAC
algorithms having been developed, GAC is invariably implemented in most
solvers in one form or another. Consistencies stronger than GAC can further
reduce the search space and have also been shown useful, but designing and
implementing such algorithms to be competitive with the state-of the-art solvers
employing GAC turns out to be a challenge. Higher-order consistency proper-
ties include relational consistency, max-restricted pairwise consistency, and full
pairwise consistency (FPWC).

An alternative approach to avoid the need for an efficient implementation
is to convert a CSP into another CSP and apply existing GAC propagators
on the result, such that it is equivalent to enforcing the stronger consistencies
on the original CSP. Several such CSP transformations have been proposed.
Among them, the factor encoding (FE) [2], which extracts commonly shared
variables between pairs of constraints forming new variables called factor vari-
ables, achieves FPWC on the original CSP. However, although FE is an efficient
way of achieving FPWC, many new factor variables can be added which can
substantially increase the size of the CSP along with increased overheads.

In [1], we address the shortcoming of the FE with the factor-decomposition
encoding (FDE). FDE decomposes constraints such that factor variables and
their corresponding original variables are taken out to form new constraints. We
show that the FDE preserves the main property of the FE. In many instances,
the FDE also decreases the arity of the CSP compared with FE. We perform
an experimental study on FE and FDE using multiple search heuristics. Our
experiments show that the change in constraint network from FDE can benefit
dynamic search heuristics. The FDE is competitive with the FE on a majority
of problem instances. It can reduce the search space and speed up the solving
on some structured problems by orders of magnitude compared with GAC.

References

1. Likitvivatanavong, C., Xia, W., Yap, R.H.C.: Decomposition of the factor encoding
for CSPs. In: IJCAI, pp. 353–359 (2015)

2. Likitvivatanavong, C., Xia, W., Yap, R.H.C.: Higher-order consistencies through
GAC on factor variables. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp.
497–513. Springer, Heidelberg (2014)

This is a summary of paper [1].
Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, p. 893, 2016.
DOI: 10.1007/978-3-319-44953-1

Tightness of LP Relaxations for Almost
Balanced Models

Adrian Weller1(B), Mark Rowland1, and David Sontag2

1 University of Cambridge, Cambridge, UK
{aw665,mr504}@cam.ac.uk

2 New York University, New York, NY, USA
dsontag@nyu.edu

We examine Boolean binary weighted constraint satisfaction problems and derive
sufficient conditions for when certain linear programming (LP) relaxations are
guaranteed to return an integer solution, in which case the solution is exact and
we say that the relaxation is tight.

Specifically, we are interested in the problem of finding a configuration of
variables x = (x1, . . . , xn) ∈ {0, 1}n that maximizes a score function, defined
by unary and pairwise rational terms f(x) =

∑n
i=1 ψi(xi)+

∑
(i,j)∈E ψij(xi, xj).

In the machine learning community, this is typically known as MAP (or MPE)
inference, yielding a configuration of variables with maximum probability.

We derive sufficient hybrid conditions (combining restrictions on both struc-
ture and on the allowed language of cost functions [1]) for guaranteed tightness
of (i) the basic LP relaxation on the local polytope LP+LOC, and (ii) the LP
relaxation on the triplet-consistent polytope LP+TRI (the next level in the
Sherali-Adams hierarchy). We provide simple new proofs of earlier results and
derive significant novel results including that LP+TRI is tight for any model
where each block is balanced or almost balanced, and a decomposition theorem
that may be used to break apart complex models into smaller pieces.

A balanced (sub-)model contains no frustrated cycles. An almost balanced
(sub-)model contains no frustrated cycles except through one privilegedbreak
variable.

LP+TRI was known to be tight for any model with treewidth 2. Combining
results shows that LP+TRI dominates a recent method involving a reduction
to the maximum weight stable set problem on a derived graph related to the
microstructure complement of the dual representation (featured in the published
journal paper track of CP 2015 [2, 3, 4]), in the sense that LP+TRI is guaranteed
to solve a strict superset of problems for any valid score functions in polynomial
time.

This is a summary of the paper “A. Weller, M. Rowland and D. Sontag. Tightness
of LP Relaxations for Almost Balanced Models. JMLR, Volume 51, pages 47–55,
2016”.
Abstract of Journal-First and Sister Conferences Track.

c⃝ Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 894–895, 2016.
DOI: 10.1007/978-3-319-44953-1

Tightness of LP Relaxations for Almost Balanced Models 895

References

1. Cooper, M., Živný, S.: Hybrid tractability of valued constraint problems. Artif.
Intell. 175(9), 1555–1569 (2011)

2. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: AAAI, pp. 731–736 (1993)

3. Larrosa, J., Dechter, R.: On the dual representation of non-binary semiring-based
CSPs. In: CP 2000 Workshop on Soft Constraints (2000)

4. Weller, A.: Revisiting the limits of MAP inference by MWSS on perfect graphs.
In: Artificial Intelligence and Statistics (AISTATS) (2015)

Author Index

Aharoni, Merav 843
Akgün, Özgür 3
Arafailova, Ekaterina 13
Arbelaez, Alejandro 575
Audemard, Gilles 30

Bagley, Claire 666
Barahona, Pedro 721
Barbe, Sophie 733
Beck, J. Christopher 316, 539, 883
Beldiceanu, Nicolas 13
Belov, Gleb 49
Bemman, Brian 802
Ben-Haim, Yael 843
Bent, Russell 369
Berg, Jeremias 66
Bergman, David 86
Bessiere, Christian 333
Beyersdorff, Olaf 96
Blinkhorn, Joshua 96
Boche Sauvan, Ludivine 879
Boizumault, Patrice 333
Bonfietti, Alessio 113
Booth, Kyle E.C. 539, 883
Bouchard, Mathieu 405

Cabon, Bertrand 879
Carbonnel, Clément 130, 147
Carlsson, Mats 13
Cheong, Hyunmin 618
Cherkov, Michael 880
Cire, Andre A. 86
Codish, Michael 157
Cohen, David A. 877
Colena, Mike 666
Cooper, Martin C. 173, 884

Davies, Ian 701
de Uña, Diego 189
Dejemeppe, Cyrille 520
Demeulenaere, Jordan 207
Di Alesio, Stefano 556
Di Liberto, Giovanni 886

Díaz, Juan Francisco 575
Doron, Shai 843
Duque, Robinson 575
Dvijotham, Krishnamurthy 880

El Mouelhi, Achref 173
Enescu, Florian 859

Feydy, Thibaut 224
Fink, Daniel 701
Fioretto, Ferdinando 813
Flener, Pierre 13
Francisco Rodríguez, María Andreína 13
Fulga, Cristinca 887

Gange, Graeme 157, 189
Ganian, Robert 233
Gao, Xin 650
Garcia de la Banda, Maria 455
Gent, Ian P. 3
Gerault, David 584
Giles, Katherine 602
Goffinet, Jack 251
Gomes, Carla P. 701
Goulet, Vincent 618

Hartert, Renaud 207
Hebrard, Emmanuel 147, 879
Hertli, Timon 421
Hijazi, Hassan 683
Hooker, J.N. 753
Huguet, Marie-José 879
Hunsberger, Luke 268
Hurbain, Isabelle 421

Ignatiev, Alexey 287, 473
Ilioaea, Irina 859
Iorio, Francesco 618
Itzhakov, Avraham 157

Janota, Mikoláš 473
Jeavons, Peter G. 877
Järvisalo, Matti 66

Jefferson, Christopher 3
Jégou, Philippe 298
Jin, Jiwei 650

Kadioglu, Serdar 666, 886
Kalla, Priyank 859
Kanso, Hanan 298
Koyfman, Anatoly 843
Krippahl, Ludwig 721
Ku, Wen-Yang 316

Lagniez, Jean-Marie 30
Lazaar, Nadjib 333
Lebbah, Yahia 333
Lecoutre, Christophe 207, 888
Lee, Jimmy H.M. 889, 891
Leo, Kevin 886
Lemière, Valentin 333
Li, Wei 618
Likitvivatanavong, Chavalit 888, 893
Lim, BoonPing 683
Liu, Hai 650
Lombardi, Michele 113
Lorca, Xavier 636
Loudni, Samir 333
Lu, Mowen 369

Ma, Feifei 650
Maamar, Mehdi 333
Malitsky, Yuri 886
Manlove, David F. 882
Manquinho, Vasco 473
Marchini, Marco 786
Marques-Silva, Joao 287
McBride, Iain 882
McCreesh, Ciaran 350, 832
Mears, Christopher 455
Meredith, David 802
Miguel, Ian 3
Milano, Michela 113
Millius, Sebastian 421
Minier, Marine 584
Misra, Sidhant 880
Monette, Jean-Noël 520
Moser, Robin A. 421

Nagarajan, Harsha 369
Naik, Mayur 473
Ndiaye, Samba Ndojh 350
Nejat, Goldie 539, 883
Nightingale, Peter 3

Pachet, François 769, 786
Palmieri, Anthony 388
Pan, Linjie 650
Papadopoulos, Alexandre 769, 786
Pearson, Justin 13
Perez, Guillaume 207, 786
Perron, Laurent 207
Picard-Cantin, Émilie 405
Pontelli, Enrico 813
Posenato, Roberto 268
Previti, Alessandro 287
Prosser, Patrick 350, 832
Prud’homme, Charles 636

Questel, Aurélien 636
Quimper, Claude-Guy 405, 618

Ramanujan, M.S. 233
Ramanujan, Raghuram 251
Régin, Jean-Charles 207, 388, 786
Rottembourg, Benoît 636
Rowland, Mark 894
Roy, Pierre 769, 786

Schachte, Peter 189
Schaus, Pierre 207, 388, 520
Scheder, Dominik 421
Schiex, Thomas 733
Schutt, Andreas 438, 483
Sebbah, Samir 666
Shishmarev, Maxim 455
Si, Xujie 473
Simoncini, David 733
Simonis, Helmut 13
Solnon, Christine 350, 584
Sontag, David 894
Stuckey, Peter J. 49, 157, 189, 224, 438
Sun, Xiaojun 859
Sweeney, Jason 405
Szczepanski, Nicolas 30

898 Author Index

Szedlák, May 421
Szeider, Stefan 233
Szeredi, Ria 483

Tabary, Sébastien 30
Tack, Guido 49, 455
Tanaka, Tsubasa 802
Terrioux, Cyril 173, 298
Tesch, Alexander 493
Thiébaux, Sylvie 683
Tran, Tony T. 883
Trimble, James 832, 882
Tsanko, Elena 843

Van Cauwelaert, Sascha 520
van den Briel, Menkes 683
Van Hentenryck, Pascal 880
van Hoeve, Willem-Jan 602
Veksler, Michael 843
Veysseire, Daniel 879

Viricel, Clément 733
Vuffray, Marc 880

Wallace, Mark 49
Weller, Adrian 894
Wood, Christopher 701

Xia, Wei 893
Xue, Yexiang 701

Yamangil, Emre 369
Yap, Roland H.C. 888, 893
Yeoh, William 813
Yin, Minghao 650

Zanarini, Alessandro 113
Zhang, Jian 650
Zhang, Xin 473
Zhu, Zichen 889, 891
Živný, Stanislav 884

Author Index 899

	Preface
	Tutorials and Workshops
	Conference Organization
	Invited Talks
	Horn Constraints for Software Verification and Synthesis
	Optimizing Preferences and Social Welfare in Healthcare-Related Matching Problems
	Evidence-Based Optimization of Complex Infrastructures
	Optimization and Control in the Smart Grid and Beyond
	Contents
	Technical Track
	Exploiting Short Supports for Improved Encoding of Arbitrary Constraints into SAT
	1 Introduction
	2 Preliminaries
	3 Encoding Table Constraints into SAT
	4 Short Support Encodings of Arbitrary Constraints
	5 Experimental Evaluation
	5.1 Case Study 1: Rectangle Packing
	5.2 Case Study 2: The Oscillating Life Problem and Variants Thereof
	5.3 Case Study 3: The Antichain Problem
	5.4 Experimental Results

	6 Conclusions
	References

	Systematic Derivation of Bounds and Glue Constraints for Time-Series Constraints
	1 Introduction
	2 Background: Automata for Time-Series Constraints
	3 Glue Constraints for Time-Series Constraints
	4 Bounds for Time-Series Constraints
	4.1 Methodology
	4.2 Bounds for Constraints that Only Have Property IIIupmin

	5 Evaluation
	6 Conclusion
	References

	An Adaptive Parallel SAT Solver
	1 Introduction
	2 Preliminaries
	3 Tree Management
	3.1 Initialization
	3.2 Transmission
	3.3 Extension
	3.4 Pruning

	4 Clause Exchange
	4.1 Classical Clause Sharing
	4.2 Assumptive Unit Literals

	5 The Intensifcation/Diversification Dilemma
	5.1 Evaluating the Degree of Redundancy
	5.2 Intensification/Diversification Mechanisms Based on the rscm Measure

	6 Experiments
	6.1 Communication Management
	6.2 Setup
	6.3 Results

	7 Conclusion
	References

	Improved Linearization of Constraint Programming Models
	1 Introduction
	2 Basics and Redefinition Examples
	2.1 Basics on MiniZinc and Solver-Specific Redefinitions
	2.2 Linearization Example: Assignment Problem
	2.3 Linearization Example: Tour Guide Allocation Problem

	3 Linearization
	3.1 Linearization Principles
	3.2 Linearization of Domain Constraints
	3.3 Global Constraint Decompositions

	4 Experiment
	5 Conclusion
	References

	Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving
	1 Introduction
	2 Preliminaries
	3 Core-Guided MaxSAT Algorithms
	4 Overview of Results
	5 Impact of Preprocessing on HS
	6 Impact of Preprocessing on CG
	6.1 Cores and MUSes of Working Formulas of CG
	6.2 Results on Core Trace Lengths

	7 Conclusions
	A Proof of Proposition 1
	References

	Multiobjective Optimization by Decision Diagrams
	1 Introduction
	2 Multiobjective Discrete Optimization
	3 Binary Decision Diagrams
	4 Determining the Nondominated Set
	5 Numerical Study
	6 Conclusions
	References

	Dependency Schemes in QBF Calculi: Semantics and Soundness
	1 Introduction
	2 Preliminaries
	3 Dependency Schemes, Q-resolution and Semantics
	3.1 Dependency Schemes and Q-resolution
	3.2 A Semantic Framework for Independence

	4 Dependency Schemes and Long-Distance Q-resolution
	4.1 Defining LD-Q(D)-Res and LQU(D)-Res
	4.2 Soundness of LD-Q(D)-Res and LQU(D)-Res

	5 Demonstrating Full Exhibition
	6 Conclusions and Open Problems
	References

	The Multirate Resource Constraint
	1 Introduction
	2 Problem Description
	3 Constraint Model and Search Strategy
	3.1 The Search

	4 The Multirate Resource Constraint
	4.1 Definitions
	4.2 Algorithm Rules
	4.3 Algorithm Steps
	4.4 Example

	5 Experimental Results
	6 Concluding Remarks
	References

	The Dichotomy for Conservative Constraint Satisfaction is Polynomially Decidable
	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problems
	2.2 Polymorphisms
	2.3 Conservative Constraint Satisfaction
	2.4 Meta-Problems and Identities
	2.5 Uniform and Semiuniform Algorithms

	3 Semiuniformity in Conservative Constraint Languages
	4 Deciding the Dichotomy
	5 Conclusion
	References

	Propagation via Kernelization: The Vertex Cover Constraint
	1 Introduction
	2 Background and Notations
	3 Kernelization as a Propagation Technique
	3.1 Standard Kernelization
	3.2 Loss-Less Kernelization
	3.3 Witness Pruning

	4 A Propagation Algorithm for VertexCover
	5 Experimental Evaluation
	6 Conclusion
	References

	Breaking Symmetries in Graphs: The Nauty Way
	1 Introduction
	2 Preliminaries
	2.1 Graphs, Permutations, Graph Isomorphism, Canonical Graphs
	2.2 The Nauty Approach
	2.3 Graph Search Problems and Breaking Symmetry

	3 The Nauty Encoding
	3.1 Encoding the First Phase of Nauty
	3.2 Encoding the Second Phase of Nauty

	4 Conclusion
	References

	Extending Broken Triangles and Enhanced Value-Merging
	1 Introduction
	2 Preliminaries
	3 Weakly Broken Triangles
	3.1 1-wBTP-Merging
	3.2 m-wBTP-Merging

	4 A Maximal Value-Merging Condition
	5 wBTP and Variable Elimination
	6 wBTP and Tractability
	7 Experimental Results
	8 Conclusion
	References

	A Bounded Path Propagator on Directed Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Directed Graphs
	3.2 Lazy Clause Generation
	3.3 Graph Propagators with Explanations

	4 Bounded Path Propagator
	4.1 Propagating Simple Distances
	4.2 Propagating Combined Distances
	4.3 Stronger Bounding Using Dynamic Programming
	4.4 Improving the Explanations

	5 Experimental Results
	5.1 Node Constrained Shortest Paths
	5.2 Metabolic Networks
	5.3 Task Constrained Shortest Path
	5.4 Profitable Tourist Path

	6 Conclusion
	References

	Compact-Table: Efficiently Filtering Table Constraints with Reversible Sparse Bit-Sets
	1 Introduction
	2 Related Work
	3 Technical Background
	4 Reversible Objects and Implementation Details
	5 Reversible Sparse Bit-Sets
	6 Compact-Table (CT) Algorithm
	6.1 Fields
	6.2 Methods
	6.3 Improvements

	7 Experiments
	8 Conclusion
	References

	Interval Constraints with Learning: Application to Air Traffic Control
	1 Introduction
	2 Preliminaries
	2.1 Finite Domain Constraint Programming
	2.2 Lazy Clause Generation for Integers
	2.3 Interval Arithmetic
	2.4 Interval Constraints Solving

	3 Lazy Clause Generation for Intervals
	3.1 Propagation with Learning

	4 Mixed Models
	4.1 Horizontal TCAS Model
	4.2 Horizontal Human Controller Model

	5 Experiments
	6 Related Work and Conclusion
	References

	Backdoors to Tractable Valued CSP
	1 Introduction
	2 Preliminaries
	2.1 Valued Constraint Satisfaction
	2.2 Valued Constraint Languages
	2.3 Parameterized Complexity

	3 Backdoors into Tractable Languages
	4 Backdoors into Scattered Classes
	4.1 Scattered Classes
	4.2 Finding Backdoors to Scattered Classes

	5 Concluding Remarks
	References

	Monte-Carlo Tree Search for the Maximum Satisfiability Problem
	1 Introduction
	2 Related Work
	3 The UCTMAXSAT Algorithm
	4 Results
	4.1 The Exploration-Exploitation Trade-Off
	4.2 Allocating the Computational Budget
	4.3 UCTMAXSAT Against Baseline SLS Algorithms
	4.4 [C] Against CCLS
	4.5 Summary

	5 Future Work
	6 Conclusions
	A Appendix: The Uctmaxsat Algorithm
	References

	A New Approach to Checking the Dynamic Consistency of Conditional Simple Temporal Networks
	1 Introduction
	2 Background
	3 Conditional Simple Temporal Networks
	4 A New Approach to DC Checking for CSTNs
	5 Empirical Evaluation
	6 Conclusion
	References

	On Finding Minimum Satisfying Assignments
	1 Introduction
	2 Preliminaries
	3 Computing One MSA with Implicit Hitting Sets
	4 Preliminary Experimental Results
	4.1 Original Benchmark Instances
	4.2 Hardened Benchmarks

	5 Conclusions
	References

	Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size
	1 Introduction
	2 Preliminaries
	3 Decomposition Controlling Separators
	3.1 A General Framework to Compute Specific Tree-Decompositions
	3.2 A Heuristic for Controlling Separators

	4 The Dynamic Decomposition
	4.1 Context
	4.2 The Algorithm BTD-MAC+RST+Merge
	4.3 Theoretical Foundations

	5 Experiments
	5.1 Experimental Protocol
	5.2 H5 vs Other Decompositions
	5.3 Dynamic Decompositions vs Static Decompositions
	5.4 BTD-MAC+RST+Merge Versus MAC+RST

	6 Conclusion
	References

	Constraint Programming for Strictly Convex Integer Quadratically-Constrained Problems
	1 Introduction
	2 Background
	2.1 The Strictly Convex Integer Quadratically-Constrained Problem (IQCP)
	2.2 Discrete Ellipsoid-Based Search (DEBS)

	3 The Ellipsoid Constraint
	4 Filtering Algorithms for the Ellipsoid Constraint
	4.1 A Direct Quadratically-Constrained Programming (QCP) Formulation
	4.2 Axis-Aligned Tangent Box Filtering (BOX)
	4.3 Approximate Bounds Consistency (ABC) Filtering
	4.4 Relative Strength of the Three Filtering Algorithms

	5 Branching Rules
	6 Experimental Results
	6.1 Problem Sets
	6.2 Results of Experiment 1
	6.3 Results of Experiment 2

	7 Conclusion
	References

	A Global Constraint for Closed Frequent Pattern Mining
	1 Introduction
	2 Background
	2.1 Closed Frequent Pattern Mining
	2.2 CFPM Under Constraints
	2.3 CSP and Global Constraints

	3 Context and Motivations
	4 CLOSEDPATTERN Constraint
	4.1 Definition and Filtering
	4.2 CLOSEDPATTERN Filtering Algorithm
	4.3 Data Structures

	5 Running Example
	6 Experiments
	7 Conclusion
	References

	Clique and Constraint Models for Maximum Common (Connected) Subgraph Problems
	1 Introduction
	1.1 Definitions and Notation
	1.2 Overview

	2 Existing Complete Approaches for MCS
	2.1 Constraint Programming Models for MCS
	2.2 Reformulation of MCS to a Maximum Clique Problem
	2.3 Extension to Labelled or Directed Graphs

	3 Re-evaluating the Clique Model for MCS
	4 Finding Maximum Common Connected Subgraphs
	4.1 Ensuring Connectedness in CP
	4.2 Experimental Comparison of CP Connectedness Techniques
	4.3 Ensuring Connectedness in a Clique-Based Approach
	4.4 Experimental Comparison of the CP and Clique Approaches

	5 Conclusion
	References

	Tightening McCormick Relaxations for Nonlinear Programs via Dynamic Multivariate Partitioning
	1 Introduction
	2 Problem Definition
	2.1 Standard Convex Relaxations for Multi-linear Terms

	3 CP-DTMC Algorithm
	3.1 Sequential Bound Tightening Procedure
	3.2 Algorithm for Global Optimization of MINLPs

	4 Computational Results
	4.1 NLPs
	4.2 MINLPs

	5 Conclusions
	References

	Parallel Strategies Selection
	1 Introduction
	2 Selection Principles
	3 Background
	3.1 Statistics
	3.2 Embarrassingly Parallel Search [25]

	4 Method
	4.1 Simple Random Sample
	4.2 Comparison of Strategies

	5 Related Work
	6 Experiments
	6.1 Main Results
	6.2 Comparison with a Sequential Approach
	6.3 Comparison with Multi-armed Bandit (MAB) Approach
	6.4 Comparison with Portfolio
	6.5 Timeout, Sample Size and Simple Impact

	7 Conclusion
	References

	Learning Parameters for the Sequence Constraint from Solutions
	1 Introduction
	2 Problem Description
	3 Background
	3.1 Constraint Acquisition
	3.2 Solution Counting
	3.3 Markov Chains

	4 Constraint Acquisition
	4.1 Listing Candidates
	4.2 Prior Probabilities
	4.3 Constraints Ordering
	4.4 Multiple Examples
	4.5 Constraint Dominance
	4.6 Classifier
	4.7 Soft Constraints

	5 Experiments
	6 Conclusion
	References

	The PPSZ Algorithm for Constraint Satisfaction Problems on More Than Two Colors
	1 Introduction
	1.1 Previous Results
	1.2 Our Contribution
	1.3 Notation

	2 The PPSZ Algorithm
	3 Understanding |A(x,0,,)|: Proof of Lemma 2.5
	3.1 Construction of Critical Clause Trees

	4 General (d,k)-ClSP
	4.1 Definitions and Notation
	4.2 A Distribution over Satisfying Assignments

	5 Conclusion and Open Problems
	References

	Explaining Producer/Consumer Constraints
	1 Introduction
	2 Preliminaries
	2.1 Lazy Clause Generation
	2.2 Global Difference Logic Propagator

	3 The Producer/Consumer Constraint
	3.1 Immediate Maximal Resource Level Before Event
	3.2 Other Resource Levels Regarding an Event

	4 Explanations
	4.1 Explanation of the Resource Level and Inconsistency
	4.2 Explanation for Time Bounds Filtering
	4.3 Explanation for Consumption and Production Level Filtering

	5 Global Reservoir Propagators
	5.1 Bounds Propagator
	5.2 Order Propagator
	5.3 Timetable Propagator

	6 Models
	7 Experiments
	7.1 Results

	8 Conclusion
	References

	Learning from Learning Solvers
	1 Introduction
	2 Background
	3 Exploring the Most Effective Learnt Clauses
	3.1 First Case Study: freepizza.mzn
	3.2 Second Case Study: radiation.mzn
	3.3 Third Case Study: Golomb Ruler

	4 Profiling Statistics
	5 Conclusions
	References

	On Incremental Core-Guided MaxSAT Solving
	1 Introduction
	2 Preliminaries
	3 Sequential Maximum Satisfiability
	3.1 Background: Fu&Malik MaxSAT Algorithm
	3.2 Our Approach: Solving Sequential MaxSAT Incrementally
	3.3 Extending Sequential MaxSAT Solving with Restarts

	4 Empirical Evaluation
	5 Discussion and Future Work
	6 Conclusion
	References

	Modelling and Solving Multi-mode Resource-Constrained Project Scheduling
	1 Introduction
	2 MRCPSP Model
	2.1 Solver Independent Model

	3 Experiments
	3.1 Comparison of Models
	3.2 Comparison of Search Strategies
	3.3 Comparison of Solvers
	3.4 Comparison to the State of the Art

	4 Conclusion
	References

	A Nearly Exact Propagation Algorithm for Energetic Reasoning in O(n2 logn)
	1 Introduction
	2 Energetic Reasoning
	3 The Energetic Reasoning Polyhedron
	4 Dynamic Overload Checking Algorithm
	5 Energetic Reasoning Propagation
	6 Sweep Line Algorithm
	7 Exact Intervals
	8 Computational Results
	9 Conclusion
	A Proofs
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3
	A.3 Proof of Theorem 2
	A.4 Proof of Lemmas 4--7
	A.5 Proof of Lemma 8
	A.6 Proof of Lemmas 9--12

	B Algorithms
	References

	Efficient Filtering for the Unary Resource with Family-Based Transition Times
	1 Introduction
	2 Background
	2.1 Propagator for the Unary Resource
	2.2 Propagator for the Unary Resource with Transition Times

	3 Filtering with Families of Activities
	3.1 Adapting the Algorithms
	3.2 Extending the -tree with Families
	3.3 Extending the --tree with Families

	4 Related Work
	5 Experimentations
	6 Conclusion
	References

	Application Track
	A Constraint Programming Approach to Multi-Robot Task Allocation and Scheduling in Retirement Homes
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Parameters
	3.2 Objective

	4 Task Allocation and Scheduling Models
	4.1 Constraint Programming Model
	4.2 Mixed-Integer Programming Model
	4.3 Modeling Considerations

	5 CP Search Manipulations
	5.1 Grouped Variable Ordering Heuristics
	5.2 Large Neighbourhood Search

	6 Experimental Results and Analysis
	7 Conclusions and Future Work
	References

	Optimal Performance Tuning in Real-Time Systems Using Multi-objective Constrained Optimization
	1 Introduction: Performance Tuning in Safety-Critical Systems
	2 Motivating Case Study: The Fire and Gas Monitoring System
	3 Related Work
	4 Performance Tuning with Constrained Optimization
	4.1 Description of the Constrained Optimization Problem
	4.2 Modeling Task Activities and Infinite Loops

	5 Industrial Experience: Context, Process, Results, and Discussion
	6 Concluding Remarks
	References

	SABIO: An Implementation of MIP and CP for Interactive Soccer Queries
	1 Introduction
	2 CP Model for Interactive Soccer Queries
	3 Extended CP Model
	4 Empirical Evaluation
	5 Conclusions
	References

	Constraint Programming Models for Chosen Key Differential Cryptanalysis
	1 Introduction
	2 Problem Statement
	2.1 AES Block Cipher
	2.2 Differential Cryptanalysis
	2.3 Chosen Key Differential Cryptanalysis
	2.4 Two Step Solving Process for Chosen Key Differential Cryptanalysis

	3 First CP Model for Step 1
	3.1 Variables
	3.2 Constraints
	3.3 Objective Variable
	3.4 Ordering Heuristics
	3.5 Limitations of the First CP Model for Step 1

	4 Additional Constraints for Step 1
	4.1 Propagation of MDS at the Byte Level
	4.2 Constraints on Equality Variables
	4.3 Constraints Derived from KS

	5 CP Model for Step 2
	6 Experimental Evaluation
	7 Discussion and Conclusion
	A Solution with obj=12 Active S-Boxes for AES with r=4 Rounds and l=128 Bits
	References

	Solving a Supply-Delivery Scheduling Problem with Constraint Programming
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Constraint Programming Model
	4.1 Aimms Syntax for Constraint-Based Scheduling
	4.2 Modeling the Location Visits and Inventory Levels
	4.3 Modeling the Tows
	4.4 Additional Sequencing Constraints
	4.5 Linking Pickup and Delivery Amounts with Visits
	4.6 Objective

	5 Evaluation
	6 Conclusion
	References

	Four-Bar Linkage Synthesis Using Non-convex Optimization
	1 Introduction
	2 Related Work
	2.1 Mechanical Assembly
	2.2 Path Synthesis of Four-Bar Linkage

	3 Preliminaries
	3.1 Mechanical Linkage
	3.2 Non-convex Global Optimization

	4 Contribution
	4.1 Fitness Metric
	4.2 Curve Sampling Technique
	4.3 Model
	4.4 Constraint on Area
	4.5 Simple Design Software

	5 Experimentation
	5.1 Benchmark
	5.2 Results
	5.3 Discussion
	5.4 Future Work

	6 Conclusion
	References

	Using Constraint Programming for the Urban Transit Crew Rescheduling Problem
	1 Context and Opportunities
	2 Related Works and Operational Context
	3 Constraint Programming Model
	3.1 Modeling the Shift Constraint
	3.2 A Constraint-Based Model for the UTCSP
	3.3 A Constraint-Based Model for the UTCRP

	4 Search Strategy
	5 Practical Experiments
	5.1 Solving the UTCSP
	5.2 Solving the UTCRP

	6 Conclusion and Further Works
	References

	Optimizing Shortwave Radio Broadcast Resource Allocation via Pseudo-Boolean Constraint Solving and Local Search
	1 Introduction
	2 Problem Description
	2.1 Background
	2.2 Shortwave Radio Broadcast Resource Allocation
	2.3 NP-hardness of SRBRA

	3 Pseudo-Boolean Formulation
	3.1 Encoding

	4 The Local Search Algorithm
	4.1 Consistency Checking
	4.2 Greedy Randomized Construction
	4.3 Operations in the Improvement Phase
	4.4 The Local Search Procedure

	5 Empirical Evaluation
	6 Related Works
	7 Conclusion
	References

	Availability Optimization in Cloud-Based In-Memory Data Grids
	1 Introduction
	2 The DCDP in the Oracle Coherence IMDG
	2.1 Architecture
	2.2 Requirements

	3 The CP-Based Solution Approach
	3.1 Motivation
	3.2 The Replication Map
	3.3 The Warm-Starting Heuristic
	3.4 The Re-sizable Decomposition
	3.5 The CP Model
	3.6 The Replication Problem
	3.7 Discussions

	4 Computational Results
	5 Incrementality Advantages
	6 Conclusions
	References

	Computational Sustainability Track
	Online HVAC-Aware Occupancy Scheduling with Adaptive Temperature Control
	1 Introduction
	2 Related Work
	3 Online Occupancy Scheduling
	4 HVAC Control Model
	4.1 Variable-Air-Volume Systems
	4.2 Objective Function
	4.3 Building Thermal Dynamics
	4.4 Adaptive Temperature Control

	5 Experimental Results
	5.1 Problem Sets
	5.2 Solution Method
	5.3 Online Vs. Offline Scheduling
	5.4 Energy Savings of Adaptive Temperature Control
	5.5 Model Feasibility

	6 Conclusions and Future Work
	References

	Behavior Identification in Two-Stage Games for Incentivizing Citizen Science Exploration
	1 Introduction
	2 Two Stage Game for Bias Reduction
	3 Probabilistic Behavior Model
	3.1 Identification Problem
	3.2 Pricing Problem

	4 Experiments
	4.1 Applying the Behavioral Model to Avicaching
	4.2 Evaluation of the Probabilistic Behavioral Model for the Identification Problem
	4.3 Phase Transition on the Pricing Problem
	4.4 Benefit of Avicaching on Species Modeling

	5 Conclusion
	References

	CP and Biology Track
	Constraining Redundancy to Improve Protein Docking
	1 Introduction
	1.1 Uniform Rotational Search
	1.2 The Search Dilemma

	2 Method
	2.1 Redundancy in Retained Models
	2.2 Defining the Constraints
	2.3 Implementing the Constraints
	2.4 Benchmark Tests

	3 Results and Discussion
	4 Conclusions and Future Work
	References

	Guaranteed Weighted Counting for Affinity Computation: Beyond Determinism and Structure
	1 Introduction
	2 Background
	2.1 Computational Protein Design and Binding Affinity

	3 Guaranteed Counting
	3.1 Bounds for Guaranteed Counting

	4 Experimental Evaluation and Comparison
	4.1 MRF to #SAT Encoding
	4.2 Benchmarks

	5 Conclusion
	References

	Music Track
	Finding Alternative Musical Scales
	1 Introduction
	2 Previous Work
	3 Characteristics of Standard Scales
	3.1 Simple Ratios
	3.2 Multiple Keys

	4 Requirements for Alternative Scales
	4.1 Keys and Temperament
	4.2 Simple Ratios

	5 Constraint Programming Model
	6 Computational Results
	6.1 Scales on a 12-Note Chromatic
	6.2 Scales on a 19-Note Chromatic

	7 Conclusion
	References

	Assisted Lead Sheet Composition Using FlowComposer
	1 Introduction
	2 Background on Constrained Markov Models
	2.1 Enforcing Meter on Markov Sequences
	2.2 Markov Models and Regular Constraints
	2.3 Sampling Metrically Constrained Markov Sequences

	3 A Two-Voice Statistical Model of Lead Sheets
	3.1 Markov+Meter Model for Chord Sequence
	3.2 Markov+Meter Model for Melody
	3.3 Enforcing Harmonic Synchronisation

	4 Applications
	4.1 Autonomous Generation
	4.2 Harmonisation
	4.3 Interactive Composition

	5 Conclusion
	References

	Enforcing Structure on Temporal Sequences: The Allen Constraint
	1 Introduction
	2 Constraining Contiguous Temporal Sequences (CTS)
	3 The Global Allen Constraint
	4 Implementing the Allen Constraint
	4.1 A First Model
	4.2 MDD-Based Model

	5 Evaluation
	5.1 Description of the Benchmark
	5.2 Evaluation of the First Model
	5.3 Evaluation of the MDD-Based Model

	6 Generation of Lead Sheets
	7 Conclusion
	References

	Constraint Programming Approach to the Problem of Generating Milton Babbitt's All-Partition Arrays
	1 Introduction
	1.1 The Structure of an All-Partition Array

	2 CP Constraints for the Problem of Generating an All-Partition Array from a Given Matrix
	2.1 Consecutiveness
	2.2 Containment
	2.3 Covering All (i,j) in A
	2.4 Restrictions on the Left-to-right Order of Candidate Sets and Their Overlaps
	2.5 Candidate Sets as All Different Integer Partitions

	3 Solution
	4 Conclusion
	References

	Preference, Social Choice and Optimization Track
	A Dynamic Programming-Based MCMC Framework for Solving DCOPs with GPUs
	1 Introduction
	2 Background
	3 Distributed MCMC Framework
	3.1 GPU Data Structures
	3.2 Local Sampling Process

	4 Theoretical Properties
	5 Related Work
	6 Experimental Results
	7 Conclusions
	References

	Morphing Between Stable Matching Problems
	1 Introduction
	2 Problem Generation
	3 The Empirical Study
	3.1 Morphing from SM to SRI
	3.2 Morphing Between SR and SRI

	4 Conclusion
	References

	Testing and Verification Track
	Using Graph-Based CSP to Solve the Address Translation Problem
	1 Introduction
	2 Graph-Based Constraint Satisfaction Problems
	3 Related Work
	4 Background on Address Translation
	5 Modeling Address Translation as Graph-Based CSP
	6 Background on Activity CSP
	6.1 Formal Definition of ACSP
	6.2 Solving ACSPs

	7 Modeling Graph-Based CSPs as Activity CSPs
	8 Results
	9 Conclusions
	References

	Finding Unsatisfiable Cores of a Set of Polynomials Using the Gröbner Basis Algorithm
	1 Introduction
	2 Preliminaries
	3 Motivating the Search for an Unsat Core
	3.1 The Refutation Tree of the GB Algorithm: Find Fc from F

	4 Reducing the Size of the Infeasible Core Fc
	4.1 Identifying Redundant Polynomials from the Refutation Tree
	4.2 The GB-Core Algorithm Outline

	5 Iterative Refinement of the Unsat Core
	6 Refining the Unsat Core Using Syzygies
	7 Experiment Results
	8 Conclusions
	References

	The Power of Propagation: When GAC Is Enough
	Reference

	Constraint Programming for Planning Test Campaigns of Telecommunication Satellites
	Graphical Models for Optimal Power Flow
	``Almost-Stable'' Matchings in the Hospitals/Residents Problem with Couples
	Mixed-Integer and Constraint Programming Techniques for Mobile Robot Task Planning
	The Power of Arc Consistency for CSPs Defined by Partially-Ordered Forbidden Patterns
	DASH: Dynamic Approach for Switching Heuristics
	Reference

	AHP Based Portfolio Selection with Risk Preference Modeling
	Reference

	STR3: A Path-Optimal Filtering Algorithm for Table Constraints
	Boosting Symmetry Breaking During Search in Constraint Programming
	1 Extended Abstract
	References

	Enhancing Partial Symmetry Breaking in Constraint Programming
	1 Extended Abstract
	References

	Decomposition of the Factor Encoding for CSPs
	References

	Tightness of LP Relaxations for Almost Balanced Models
	References

	Author Index

