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Preface

This volume contains the proceedings of the 22" International Conference on the
Principles and Practice of Constraint Programming (CP 2016), which was held in
Toulouse, France, during September 5-9, 2016. Detailed information about the con-
ference is available at http://cp2016.a4cp.org.

The CP conference is the annual international conference on constraint program-
ming. It is concerned with all aspects of computing with constraints, including theory,
algorithms, environments, languages, models, systems, and applications such as
decision making, resource allocation, scheduling, configuration, and planning. The CP
community is very keen to ensure it remains open to interdisciplinary research at the
intersection between constraint programming and related fields. Hence, in addition to
the usual technical and application tracks, the CP 2016 conference featured the fol-
lowing new thematic tracks: “Computational Sustainability”, “CP and Biology”,
“Preferences, Social Choice and Optimization”, and “Testing and Verification”. Each
track had a specific sub-committee to ensure that specialist reviewers from the relevant
domains vetted papers in the respective tracks. CP 2016 also introduced a challenge
based on a realistic industrial-grade optimization problem.

For the purpose of the conference’s scientific programming, we invited submissions
to all tracks, and we received 154 submissions, including 17 submissions for the
“Journal-First and Sister Conferences Paper” track. The review process for CP 2016
relied on a multi-tier approach involving one senior Program Committee, dedicated
regular Program Committees for all tracks, along with a set of additional reviewers
recruited by Program Committee members. Authors submitted either long or short
papers. All submissions were assigned to a senior Program Committee member and
three members of the relevant track Program Committee. Authors were given an
opportunity to respond to reviews before a detailed discussion was undertaken at the
level of the Program Committees, overseen by the program chair, the senior Program
Committee member, and the track chairs. The “Journal-First and Sister Conferences”
track gives an opportunity to discuss important results in the area of constraint pro-
gramming that appeared recently in relevant journals and sister conferences. Submis-
sions were evaluated by a separate Program Committee for relevance and significance.
A meeting of the senior Program Committee was held at Banff —with participation by
video conference— at the end of May, chaired by the program chair, where the reviews,
author feedback, and discussions on every paper were revisited in detail. The result of
this was that the acceptance rate for the technical track was a little under 45%. The
senior Program Committee awarded the Best Conference Paper Prize to Krishnamurthy
Dvijotham, Pascal Van Hentenryck, Michael Chertkov, Sidhant Misra, and Marc
Vuffray for “Graphical Models for Optimal Power Flow”, the Distinguished Confer-
ence Paper Prize to David Manlove, Iain McBride, and James Trimble for “Almost-
Stable Matchings in the Hospitals/Residents Problem with Couples”, the Best Student
Paper Prize to Clément Carbonnel for “The Dichotomy for Conservative Constraint
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Satisfaction Is Polynomially Decidable”, and the Distinguished Student Paper Prize to
Kyle E.C. Booth, Goldie Nejat, and J. Christopher Beck for “A Constraint Program-
ming Approach to Multi-Robot Task Allocation and Scheduling in Retirement
Homes”. The program chair, the journal publication fast track chair, Willem-Jan van
Hoeve, and the Constraints journal editor-in-chief, Michela Milano, also invited four
papers from the technical and application tracks for direct publication in that journal.
These were presented at the conference like any other paper and they appear in the
proceedings as a one-page abstract.

The conference program featured four invited talks by Pascal Van Hentenryck,
David Manlove, Andrey Rybalchenko, and Zico Kolter. This volume includes
one-page abstracts of their talks. The conference also featured four tutorials and six
satellite workshops, whose topics are listed in this volume. The conference also fea-
tured four tutorials and five satellite workshops, whose topics are listed in this volume.
The Doctoral Program gave PhD students an opportunity to present their work to more
senior researchers, to meet with an assigned mentor for advice on their research and
early career, to attend special tutorials, and to interact with one another.

I am grateful to many people who made this conference such a success. First of all,
to the authors who provided excellent material to select from. Then to the members
of the Program Committees and additional reviewers who worked hard to provide
constructive, high-quality reviews, to members of the senior Program Committee who
helped me ensure that each paper was adequately discussed, wrote meta-reviews for
their assigned papers, and participated in live remote deliberations — for some, quite
early or late in the day. Of course there is a whole team standing with me, who chaired
various aspects of the conference: Thomas Schiex (Conference Chair), Laurent Michel
(Application Track Chair), Carla Gomes, Michela Milano and Christine Solnon
(Computational Sustainability Track Chairs), Agostino Dovier and Alessandro Dal
Palu (CP and Biology Track Chairs), Charlotte Truchet (Music Track Chair), Andreas
Podelski and Arnaud Gotlieb (Testing and Verification Track Track Chair), Michela
Milano (Published Journal and Sister Conferences Paper Track Chair), Willem-Jan van
Hoeve (Journal Publication Fast-Track Chair), Pierre Flener (Workshop and Tutorial
Chair), Pierre Schaus (ACP Challenge Chair), Tias Guns and Laura Climen (Doctoral
Program Chairs), Helmut Simonis (Industry Outreach Chair), and Louis Martin
Rousseau (Publicity Chair).

The conference would not have been possible without the great job done by all the
people involved in the local organization: Lotte Berghman, Paul Gaborit, Simon de
Givry, Emmanuel Hebrard, Elise Vareilles, Matthias Zytnicki, Alain Pérault, Fabienne
Ayrignac, Marie-Jos¢ Huguet, David Allouche, Nathalie Julliand, George Katsirelos,
Pierre Lopez, Alain Hait, Frédéric Maris, Cédric Pralet, Gérard Verfaillie, Nicolas
Barnier, Frédéric Messine, and Vincent Vidal. We also want to thank the institutions
that supported them during the organization: the Toulouse Business School (for hosting
us t00), the “Ecole nationale supérieure des mines d’Albi-Carmaux” (also for website
hosting and management), the National Institute for Agronomical Research (INRA —
MIAT), the National Center for Scientific Research (CNRS — LAAS), the National
Applied Sciences Institute (INSA Toulouse), the Higher Institute for Aeronautics and
Space (ISAE), the Toulouse Computing Research Institute (IRIT — Toulouse Univer-
sity), the National Office for Aerospace Research and Studies (ONERA), the Civil
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Aviation National School (ENAC) and the Toulouse National Polytechnic Institute
(INP Toulouse — ENSEEIHT). Thank you for your dedication!

I acknowledge and thank our sponsors for their generous support: they include, at
the time of this writing, the Artificial Intelligence Journal Division (AIJD) of IJCAI, the
French National Institute for Agronomical Research (INRA), Microsoft Research, the
French National Center for Scientific Research (CNRS — INS2I), Google, Toulouse
Business School, IBM, Cadence, Siemens, Data 61 (CSIRO), Toulouse University,
Springer, the Molecular Bioinformatics GdR (GdR BIM, specifically for the Con-
straints and Biology track), the Toulouse Computing Science Institute, the French
National Office for Aerospace Research and Studies, the Institute for Computational
Sustainability, the European Association for Artificial Intelligence (EurAl), the
Swedish Institute of Computer Science, the French Society for Operations Research
and Assisted Decision Making (ROADEF), N-Side, Cosling (a young startup), Cosytec
and LocalSolver (Innovation24, another startup). We finally want to thank the Occi-
tanie Region, the Toulouse Métropole, for their forthcoming support.

July 2016 Michel Rueher
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Horn Constraints for Software
Verification and Synthesis

Andrey Rybalchenko

Microsoft Research
rybal@microsoft.com

Abstract. We will show how Horn constraints can be used to describe verifi-
cation and synthesis problems, and how such constraints can be solved effi-
ciently. In particular we will demonstrate how cardinality operators help to
reason about quantitative properties and carry out counting-based correctness
arguments, which are useful for the verification of information flow properties
and parametrized systems.



Optimizing Preferences and Social Welfare
in Healthcare-Related Matching Problems

David F. Manlove

School of Computing Science, Sir Alwyn Williams Building,
University of Glasgow, Glasgow G12 8QQ, UK
david.manlove@glasgow.ac.uk

Abstract. Matching problems typically involve assigning agents to commodi-
ties, possibly on the basis of ordinal preferences or other metrics. These prob-
lems have large-scale applications to centralized matching schemes in many
countries and contexts. For example, such schemes are used for the annual
allocation of junior doctors to hospitals in the USA, Canada and Japan, for
higher education admission in China, Hungary and Turkey, and for placing
military cadets to branches in the USA.

In this talk I will describe the matching problems featuring in two centralized schemes
in the UK that have involved collaborations between the National Health Service and
the University of Glasgow. One of these dealt with the allocation of junior doctors to
Scottish hospitals (as part of the Scottish Foundation Allocation Scheme, running from
1999-2012), and the other is concerned with finding kidney exchanges among
incompatible donor-patient pairs across the UK (under the auspices of the National
Living Donor Kidney Sharing Schemes, in operation since 2007).

The case of junior doctor allocation can be modelled by the Hospitals/Residents
problem, where we seek a stable matching. Although the classical problem in its
simplest form is solvable in polynomial time, when couples apply jointly in pairs, and
when preference lists may include ties, as could occur in the Scottish application, the
problem of finding a stable matching becomes NP-hard.

For kidney exchange, the problem can be modelled via cycle packing in a directed
graph, where cycles cannot exceed a given fixed length k. We seek a vertex-disjoint
collection of cycles that covers as many vertices as possible, in order to maximise the
number of potential transplants — again this problem is NP-hard even if £ = 3, as in the
UK application.

In each case I will describe the applications, present the underlying algorithmic
problems, and outline how integer and constraint programming techniques have been
used to tackle these NP-hard problems over the years. I will then give an overview of
computational results arising from executions on real data connected with the associ-
ated matching schemes in recent years.

Supported by Engineering and Physical Sciences Research Council grants EP/K503903/1,
EP/K010042/1 and EP/N508792/1.



Evidence-Based Optimization of Complex
Infrastructures

Pascal Van Hentenryck

University of Michigan
pvanhent@umich.edu

Abstract. For the first time in the history of humankind, we are accumulating
data sets of unprecedented scale and accuracy about physical infrastructures,
natural phenomena, man-made processes, and human behavior. These devel-
opments, together with progress in high-performance computing, predictive
models, and operations research, offer novel opportunities for optimizing
complex infrastructures holistically. We present some exciting projects in evi-
dence-based optimization and highlight some challenges and opportunities for
constraint programming in this space.



Optimization and Control in the Smart Grid
and Beyond

Zico Kolter

School of Computer Science at Carnegie Mellon University
zkolter@cs.cmu.edu

Abstract. The world’s electrical energy system is transforming, evolving from a
“top-down” purely physics-driven process to a digital, interconnected system
with bidirectional control. This new electrical grid, broadly referred to as the
smart grid, offers many opportunities for advanced optimization and Al tech-
niques to play a transformational role. This talk will highlight some general
themes and optimization problems that arise frequently in these settings, and
also discuss some of our work on general stochastic control approaches in these
settings. I will then close by discussing some broad themes in general-purpose
optimization, inspired by the smart grid setting, but with general applicability to
a wide range of problems.
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Abstract. Encoding to SAT and applying a highly efficient modern
SAT solver is an increasingly popular method of solving finite-domain
constraint problems. In this paper we study encodings of arbitrary con-
straints where unit propagation on the encoding provides strong reason-
ing. Specifically, unit propagation on the encoding simulates generalised
arc consistency on the original constraint. To create compact and effi-
cient encodings we use the concept of short support. Short support has
been successfully applied to create efficient propagation algorithms for
arbitrary constraints. A short support of a constraint is similar to a sat-
isfying tuple however a short support is not required to assign every
variable in scope. Some variables are left free to take any value. In some
cases a short support representation is smaller than the table of satis-
fying tuples by an exponential factor. We present two encodings based
on short supports and evaluate them on a set of benchmark problems,
demonstrating a substantial improvement over the state of the art.

1 Introduction

We address the problem of encoding constraint problems into SAT. This is an
important step because it allows us to leverage the rich modelling languages
available in constraints such as MiniZinc [26] and Essence Prime [20]. We have
previously shown that the constraint modelling tool SAVILE Row [17] can be
used to translate constraint problems directly to SAT, exploiting automated
modelling techniques such as common subexpression elimination [21].We add to
the important and growing literature on modelling of constraints in SAT [6].
Most study has been devoted to constraints such as linear constraints including
the special case of cardinality constraints [1,2,8,24].

In this paper we show that we can improve SAT models of table constraints
by exploiting short supports. Table constraints are vital in constraint modelling
as they allow arbitrary constraints to be expressed. Table constraints can be
expressed in SAT in such a way as to ensure that unit propagation in the SAT
encoding performs reasoning equivalent to that done by generalised arc consis-
tency (GAC) in the constraint problem [3]. A short support of a constraint is
similar to a satisfying tuple, but a short support is not required to assign every
© Springer International Publishing Switzerland 2016
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variable: some variables are left free to take any value. Where it is possible,
exploiting short supports has proved to improve efficiency of GAC propagation
[12,19]. We show that Bacchus’s encoding of table constraints into SAT can
be adapted to exploit short supports. This can lead to much smaller encodings
and faster propagation, while still obtaining GAC. We present two encodings
for table constraints with short supports into SAT. We get the advantages of
modern SAT solvers automatically, such as generating explanations of failure
and learning.

Short supports represent one method of compressing table constraints, and
other methods have been proposed: MDDs [7], C-tuples [13] and their generali-
sation [22], and Smart Tables [14]. Uniquely, short supports allow us to directly
improve the encoding of Bacchus without introducing any complications to it.

2 Preliminaries

The Propositional Satisfiability Problem (SAT) is to find an assignment to a set
of Boolean variables so as to satisfy a given Boolean formula, typically expressed
in conjunctive normal form [5]. SAT has many important applications, such
as hardware design and verification, planning, and combinatorial design [15].
Powerful, robust solvers have been developed for SAT employing techniques
such as conflict-driven learning, watched literals, restarts and dynamic heuristics
for backtracking solvers [16], and sophisticated incomplete techniques such as
stochastic local search [23].

A constraint satisfaction problem (CSP) is defined as a set of variables X, a
function that maps each variable to its domain, D : X — 2% where each domain
is a finite set, and a set of constraints C. A constraint ¢ € C is a relation over
a subset of the variables X. The scope of a constraint ¢, named scope(c), is the
set of variables that ¢ constrains. During a systematic search for a solution to
a CSP, values are progressively removed from the domains D. Therefore, we
distinguish between the initial domains and the current domains. The function
D refers to the current domains and D, to the initial domains. A literal is a
variable-value pair (written x +— v). A literal  — v is wvalid if v € D(x). The
size of the largest initial domain is d. For a constraint ¢ we use r for the size
of scope(c). A constraint ¢ is Generalised Arc Consistent (GAC) if and only if
there exists a full-length support containing every valid literal of every variable
in scope(c). GAC is established by identifying all literals  — v for which no full-
length support exists and removing v from the domain of x. We consider only
algorithms for establishing GAC in this paper. A full-length support of constraint
c is a set of literals containing exactly one literal for each variable in scope(c),
such that c is satisfied by the assignment represented by these literals.

A short support is a support containing at most one literal for each vari-
able in scope(c). As a motivating example for short supports, consider the lexi-
cographic ordering constraint <j;., on tuples. We can often know this is true
just based on examining a small number of the variables in the constraint.
Consider (1, x2,23) <jex (T4,Z5,2¢) where variables z1,...2g each have ini-
tial domain Ds = {1,2,3}. A full-length support is necessarily size 6: e.g.
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{1 — 2,292 — 2,29 — 2,24 — 2,25 — 2,26 — 2} is a correct full-length
support since (2,2,2) <j, (2,2,2). In contrast, the set {x1 — 1,24 — 2} is a
correct short support even though it contains only two of the six variables: it
is necessarily true that (1,x*, %) <;., (2,%, ), whatever replaces the stars. Short
supports can be of variable lengths as needed. For example, the short support
{1 — 2,29 — 2,24 — 2,25 — 3} is a correct short support of size 4, but no
literal can be removed from it without leaving at least one extension to a set of
literals breaking the constraint. Following [19] we formally define short support
as follows.

Definition 1 [Short support]. A short support S for constraint ¢ and domains
D; is a set of literals © — v such that x € scope(c), x — v is valid w.r.t Dy,
x occurs only once in S, and every superset of S that contains one valid (w.r.t
Dy ) literal for each variable in scope(c) is a full-length support.*

Note from the definition that any full-length support is also a short support.
In the example the set {x1 — 2,29 +— 2,29 +— 2,24 > 2,25 +— 2,26 — 2} is a
short support and indeed no literal can be omitted to give another short support.
In some cases even an empty set can be a short support. Suppose we change the
motivating example so that Dy(x1) = {0} and other domains are unchanged. All
valid assignments satisfy the lexicographic constraint since the only value of x
is 0 and (0, *, *) <jer (%,%,*), so the empty set is a correct short support.

3 Encoding Table Constraints into SAT

Our encoding of constraint problems into SAT follows that which we have pre-
viously used and reported on [21]. When encoding a CSP variable, SAVILE Row
provides SAT literals for facts about the variable: [v = a], [z # qa], [z < 4]
and [z > a] for a CSP variable 2 and value a. On all benchmarks used here,
CSP variables are encoded in two ways. A variable with domain size 2 is rep-
resented with a single SAT variable. For variables with larger domains we have
one SAT variable representing [z = a] for each value a € Dy(x), and one SAT
variable for each [z < a] except [z < max(Dg(x))] that would always be true.
Also, [r = max(Ds(z))] <« —[r < max(Ds(x)) — 1] saving one more SAT vari-
able. If we have a literal, e.g. [z < a], where a € Dy(x), then the literal is
mapped as appropriate to True, False or an equivalent literal, e.g. [x < b] for
b =max({i € Ds(z)|i < a}). The encoding has 2|D,(x)| — 2 SAT variables and
consistency among them is maintained by the following clause set (sometimes
called the ladder encoding [10]).

Va € Dy(z). [z=al— (z<aA-[z<a+1l]) A [z<a-1]—[z<d]

! The set of short supports depends on the domains Ds. We always use the initial
domains. Elsewhere, short supports are generated using the current domains D but
these sets are not necessarily short supports after backtracking [18,19]. A support
of either type is valid iff all literals in it are valid.
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The only constraint we consider in this paper is the table constraint. This
can be used to encode arbitrary constraints extensionally. The table constraint is
very important in constraint programming, for constraints where no convenient
expression in terms of simpler constraints is available. Suppose we have a con-
straint C' on variables z ...z, represented as a table of satisfying tuples, each
of which is valid w.r.t. initial domains. Bacchus presented an encoding of table
constraints [3]. Each satisfying tuple 7; (where ¢ € {1...m}) is represented with
an auxiliary SAT variable ;. The first clause set ensures that each ¢; becomes
false when the tuple 7; becomes invalid (i.e. a value in 7; has been removed).

Vle{lm} V]E{l?"} ([.’EJZTZ[K]HVﬂtl)

The second clause set states that each domain value of variables x; ...z,
must be supported by a valid tuple.

Vie{l...r}. VYae€ D(z;). ([x;i#a]V \/tj where 7;[i] = a)

Unit propagation (UP) applied to these clauses firstly removes from consid-
eration any invalid tuple 7; by setting ¢; to false, then removes any domain value
a of variable z; (by setting [x; # a]) where no remaining tuples support the
value. Thus UP (re-)establishes GAC. Bacchus observed that the encoding has
size O(mr) which is linear in the size of the table representation of the constraint
and applying UP has the same time complexity as a generic GAC propagator.

4 Short Support Encodings of Arbitrary Constraints

The idea of short support has already been successfully applied in constraint
propagators [12,18,19]. Short support is defined above (Definition 1). Our con-
tribution here is to exploit short supports in a new encoding that is smaller and
more efficient than the Bacchus encoding while keeping the property that unit
propagation establishes GAC. We assume that we already have a short support
set for the constraint we wish to encode. It is often straightforward to construct
a short support set for a constraint. Otherwise, an automated approach may
be used such as the Greedy-Compress algorithm [12] that takes the table of
full-length supporting tuples and compresses them to a short support set. It
is possible that no short supports are available: in this case our encoding will
provide neither harm nor benefit as it is equivalent to the Bacchus encoding.
The encoding for constraint C' on variables z1 ...z, is as follows. Each short
support o; (i € {1...m}) is represented with an auxiliary SAT variable s;. The
first clause set ensures that s; is false when o; contains a literal that is invalid.

Vie{l...m}. Y(z;—a)€o,. (x;j=a]V-s)

The second clause set states that each literal (z; — a) of variables 1 ...z,
must be supported by a valid short support, either ezplicitly (where the short
support simply contains (z; — a)) or implicitly (where the short support con-
tains no literal of the variable x;, meaning x; may take any value).
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Vie{l...r}. Va € Ds(z;).
([zi # a] V'V s; where (z; — a) € 0; or Vb.(x; — b) ¢ 0;)

The two clause sets are sufficient for unit propagation to establish GAC on
the constraint: the first clause set removes from consideration any short support
that is invalid by setting the relevant s; to false, and the second prunes any values
that have no remaining short supports of either type (explicit or implicit).

This encoding has the property that the auxiliary variables s; may not be
uniquely determined when all SAT variables representing CSP variables have
been assigned. This occurs when more than one short support is valid w.r.t. the
CSP assignment. In this case at least one of the corresponding s; must be true,
but otherwise their values float freely. The free variables may cause additional
search, and would cause a problem if we wished to count solutions. We obtain a
second encoding without this issue by including the following additional clause
set, which sets an s; variable to true when all literals in o; are set true.

Vie{l...m}. (\/[x] #a] where (z;—a)€ cr,-) Vs

Compared to the full-length table encoding, the short support encoding has
fewer auxiliary variables, each representing a smaller conjunction of literals of
the primary SAT variables. This is likely to be beneficial for conflict learning,
facilitating more general and reusable explanations for conflicts.

We will refer to the short support encoding without the optional clause set
as ShortTableSAT, and with the optional clause set as ShortTableSAT+.

5 Experimental Evaluation

To show the potential benefit of encoding using short supports, we evaluated
our encodings of them on a number of problem classes. These are not intended
to be an exhaustive or representative sample of possible problems, but a set of
instances where short supports are available and thus show the potential benefit
of our encodings. The instances we study are drawn from three general categories.

5.1 Case Study 1: Rectangle Packing

The rectangle packing problem [25] (with parameters n, width and height) con-
sists of packing all squares from size 1 X 1 to n X n into the rectangle of size
width X height. This is modelled as follows: we have variables xi...x, and
Y1...Yn, where (x;,y;) represents the Cartesian coordinates of the lower-left
corner of the i x ¢ square. Domains of z; variables are {0... width — i}, and for
y; variables are {0... height — i}. The only type of constraint is non-overlap of
squares i and j: (2, +1 < @) V(25 +5 < 23) V(i +1 <) V(g +5 < ).
The domains of x,, and y, are reduced to break flip symmetries [25]. The short
supports of the non-overlap constraints are all of length two. Each short sup-
port satisfies one of the four disjuncts, thus satisfying the constraint. In a given
instance, each constraint has a distinct short supports table because the con-
stants ¢ and j differ.
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We compared the full length table encoding to both short table encodings
on a set of instances taken from Jefferson and Nightingale [12] in addition to
some generated ones. We generated two sets of instances: some small instances
for all combinations of values for n € {2...6}, width € {10,15,20,25}, and
height € {10,15,20,25}; and some larger instances for all combinations of values
for n € {2,4...30}, width € {20,25,30,35}, and height € {20,25,30,35}. For
both of these sets we only kept those instances where width < height and also
filtered out those which were trivially unsatisfiable due to area constraints.

5.2 Case Study 2: The Oscillating Life Problem and Variants
Thereof

We consider the problem of maximum density oscillators (repeating patterns) in
John Conway’s Game of Life. We consider this and three variants. Immigration
has two alive states. When a cell becomes alive, it takes the state of the majority
of the 3 neighbouring live cells that caused it to become alive. Otherwise the
rules of Immigration are the same as those of Life. Quadlife has four alive states.
When a cell becomes alive, it takes the state of the majority of the 3 neighbouring
live cells which caused it to become alive, unless all 3 neighbours have different
colours in which case it takes the colour which none of its neighbours have. Apart
from this the rules are the same as Life. Finally Brian’s Brain has three states:
dead, alive and dying. If a cell is dead and has exactly two alive (not dying)
neighbours, it will become alive, otherwise it remains dead. If a cell is alive, it
becomes dying after one time step. If a cell is dying, it becomes dead after one
time step. We use an n x n grid with ¢ time steps, for all pairs of values (n,t)
where n € {3...7} and t € {2...6}, giving 25 instances.

We use the problem and constraint model as described by Gent et al. [9].
For all four problems, we make one change: we minimise the occurrences of the
value 0 (dead) in all layers. For Immigration, Quadlife and Brian’s Brain we also
add extra domain values for each additional state. For each cell and each time
step, a single constraint links the cell and its eight neighbours to the same cell in
the next time step. Therefore the constraints have arity 10. Short supports arise
from sums in the rules, e.g. a live cell with more than three live neighbours will
die: if the current cell is alive, any four neighbours are alive, and the next cell is
dead then the constraint is satisfied and we have a short support of length 6.

5.3 Case Study 3: The Antichain Problem

The antichain problem is to find a set of multisets under some conditions [11].
Representing a multiset as a vector of integers (giving the cardinality of each
possible value), we find a set of size n of vectors of length [, containing integers
from the set {0...d—1}. For each pair of vectors v1, va, there must exist an index
i where v1[i] < vs[i] and a second index j where v1[j] > v2[j]. The problem is
modelled with a two-dimensional matrix A with size n by [. Each pair of vectors
is linked by a single constraint capturing both the < and > requirements, with
scope size 2[. The constraint linking any two vectors has short supports of length
four. We compared the full length table encoding to both short table encodings
on a set of 50 instances that includes all instances used by Jefferson et al. [11].
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5.4 Experimental Results

For a SAT solver we used the SAT’14 Competition version of Lingeling [4]
(version ayv 86bf266b9332599f1b876e28a02fe8427acaa2db). Each instance was
solved 5 times, with random seeds changing from 1 to 5. We report the median
of the five runtimes reported by Lingeling. Experiments were performed with
32 processes in parallel on a 32-core AMD Opteron 6272 at 2.1 GHz with 256
GB RAM. We set a limit of 1 h for each Lingeling process. Results are in Fig. 1.
The z axis shows instances, ordered by increasing run time of ShortTableSAT+.
Each position on the z axis represents the same instance within a plot. The y
axis shows run time in seconds of Lingeling. Run time of the SAVILE Row trans-
lation process is ignored, except that nothing is plotted if SAVILE ROW overran
its time or space limit. We do plot (in red) the points where Lingeling reported
that it reached its time limit. In some cases Lingeling reported reaching the time
limit but also reported a time substantially less or greater than 1h. We simply
plotted the time Lingeling reported using a red point.

For the packing problem (Fig. 1, top), we see that we benefit greatly from use
of short supports. There are many instances where LongTableSAT is unable to
solve the instance, but both short table encodings are. On most other instances
both short support methods are at least one and often several orders of magni-
tude faster. There is no clear preference between the two short encodings, with
both methods faster on some instances, although ShortTableSAT+ is typically
faster on the instances which can be solved fastest. We see in the antichain
problem (Fig. 1, middle) that again short supports provide improved search per-
formance compared to LongTableSAT, by orders of magnitude. In this case it
seems that ShortTableSAT is the better of the two short table encodings. For the
Life, Immigration, Brian’s Brain and Quadlife problem classes (Fig. 1, bottom),
we see that short supports do improve search but to a much lesser degree than
in the previous cases. There are a small number of cases where LongTableSAT
beats one of the short methods. However, using short tables is still much faster
in most cases.

Our results show that the use of short supports in a SAT encoding can greatly
improve solving performance over the use of full length table constraints.

6 Conclusions

Encoding to SAT and solving with a modern CDCL SAT solver is a very effective
way to solve difficult finite-domain constraint problems. We have studied the
encoding of table constraints, and proposed two new encodings based on the
idea of short supports. These improve upon an existing encoding in both size and
solving efficiency. In our experiments, the new encoding is consistently faster,
frequently by over 10 times and in some cases by over 1000 times.

Acknowledgements. We would like to thank the EPSRC for funding this work
through grants EP/H004092/1, EP/K015745/1, and EP/M003728/1. In addition, Dr
Jefferson is funded by a Royal Society University Research Fellowship.
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Abstract. Integer time series are often subject to constraints on the
aggregation of the integer features of all occurrences of some pattern
within the series. For example, the number of inflexions may be con-
strained, or the sum of the peak maxima, or the minimum of the peak
widths. It is currently unknown how to maintain domain consistency
efficiently on such constraints. We propose parametric ways of system-
atically deriving glue constraints, which are a particular kind of implied
constraints, as well as aggregation bounds that can be added to the
decomposition of time-series constraints [5]. We evaluate the beneficial
propagation impact of the derived implied constraints and bounds, both
alone and together.

1 Introduction

A time series is here a sequence of integers, corresponding to measurements taken
over a time interval. Time series are common in many application areas, such
as the output of electric power stations over multiple days [§8], or the manpower
required in a call-centre [3].

We showed in [5] that many constraints v((Xy,..., X,), N) on an unknown
time series X = (Xj,...,X,) of given length n can be specified by a triple
(0, f,g), where o is a regular expression over the alphabet ¥ = {‘<’ ‘=’ >’}
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(we assume the reader is familiar with regular expressions and automata [12]),
while f € {max,min,one,surface,width} is called a feature, and g €
{Max,Min, Sum} is called an aggregator. Let the sequence S = (S1,...,S,-1),
called the signature and containing signature variables, be linked to X via
the signature constraints (X; < X;41 < S = ‘“<)AN(X; = X1 & S; =
EOAN(X; > X1 < Si =) foralli € [1,n—1]. A o-pattern is a sub-series of
X that corresponds to a maximal occurrence of o within S. Integer variable N
is constrained to be the aggregation, computed using g, of the list of values of
feature f for all o-patterns in X. A set of 20 regular expressions is considered.
We name a time-series constraint specified by (o, f,g) as g _f 0.

Ezample 1. The time series X = (4,4,0,0,2,4,4,7,4,0,0,2,2,2,2,2,2,0) has
the signature § = ‘=>=<<=<>>=<=====>". Consider the regular expres-
sion Peak = ‘<(<|=)*(>|=)*>": a Peak-pattern, called a peak, within a time
series corresponds, except for its first and last elements, to a maximal occur-
rence of Peak in the signature, and the width feature value of a peak is its
number of elements. The time series X contains two peaks, namely (2,4, 4,7, 4)
and (2,2,2,2,2,2), visible the way X is plotted in Fig. 1, of widths 5 and 6 respec-
tively, hence the minimal-width peak, obtained by using the aggregator Min, has
width N = 5: the underlying constraint is named MIN WIDTH PEAK. O

222222L

6 0

Fig.1. miN_wIDTH PEAK(5, (4,4,0,0,2,4,4,7,4,0,0,2,2,2,2,2,2,0))

After recalling in Sect. 2 further required background material on time-series
constraints g f o((Xy,...,X,), N), the contributions of this paper are ways
of systematically deriving parametric implied constraints and bounds:

— We show in Sect. 3 how to derive systematically implied constraints, parame-
terised by aggregator g and feature f, for any regular expression o.

— We give in Sect.4 a methodology for systematically deriving bounds, para-
metrised by o, on the variable N, for any pair of g and f, and then we
demonstrate our methodology on the case when g = Max and f = min.

— We evaluate in Sect. 5 the beneficial propagation impact of the derived implied
constraints and bounds, both alone and together.

In Sect. 6, we conclude and discuss other related work. The implied constraints

and bounds for all time-series constraints are in [2].
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2 Background: Automata for Time-Series Constraints

In [5], we showed how to synthesise a deterministic finite automaton, enriched
with accumulators [7], from any triple (o, f,g) that specifies a time-series con-
straint. We now discuss the required background concepts using an example,
namely the regular expression Peak = ‘<(<|=)*(>|=)*>" of Example 1.

{d:: <Z5f(d75}')}
>

{ (c,d) = {(ps(c, d, 6}),idf> }

<
<, = {{c,d,r) = (id],ids, dg(r,c)) } >
{d:: (bf(dvé})} {<C,d> = <¢f(c7d76})7idf>}

Fig. 2. Synthesised automaton for any g f PEAK constraint

The synthesised automaton for any g f PEAK constraint is in Fig.2. It
returns the aggregation, using g, of the values of feature f for all Peak-patterns
corresponding to the occurrences of Peak within an input word over the alpha-
bet ¥ = {‘<’,*=",‘>}. The start state is k, annotated within braces by the
initialisation of three accumulators: at any moment, accumulator ¢ stores the
feature value of the current Peak-pattern while d stores the feature value of a
potential part of a Peak-pattern, and r stores the aggregated result for the fea-
ture values of the already encountered Peak-patterns. A transition is depicted
by an arrow between two states and is annotated by a consumed alphabet sym-
bol and, within braces, an accumulator update. The constants and operators
appearing in the accumulator initialisation and updates are listed in Table 1;
the binary operators ¢y and ¢, are used with arbitrary arity throughout this
paper, in order to reduce the amount of parentheses. All states are accepting, an
accepting state being marked by a double circle. Hence this automaton accepts
the language 3*, but accepted words may be distinguished by the value of the
returned expression, given within a box linked to all states. Note that the size
of this automaton does not depend on the length of the input word.

In [7], we showed how to use an automaton with accumulators in order to
decompose a constraint such as g f  PEAK((X,...,X,), N) into signature con-
straints, linking (X7, ..., X,) to introduced signature variables (Si,...,S,_1),
as well as arithmetic and TABLE constraints, linking (Si,...,S,—1) and N to
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Table 1. (Left) Features: identity, minimum, and maximum values; operators ¢ and 5}
recursively define the feature value v, of a time series (X, ..., Xu) by ve = ¢ (idy, %)
and v; = ¢y(vi—1,0%) for ¢ > £, where 8} is the contribution of X; to v.. (Right)
Aggregators: operators and identity values relative to a feature f.

Feature f idf minf maxy ¢f 6}

Aggregator g ¢y id)

one 1 1 1 1 1

width 0 0 +o00 + 1 Max max miny
surface 0 —oo +o0o + X Min min maxy
max —00 —oo 400 max X; Sum + 0
min 400 —oco +oo min X;

introduced state variables @; and tuples (C;, D;, R;) of accumulator variables,
respectively denoting the automaton state and accumulator values (c, d, r) after
consuming S;. It is still unknown how to maintain domain consistency efficiently
in general on this decomposition (see [7] for an analysis), hence implied con-
straints can help achieve more propagation, as we already showed in [6,11].

3 Glue Constraints for Time-Series Constraints

In [6] we derived an implied constraint, called a glue constraint, that can be
added to the decomposition of a constraint specified by an automaton with accu-
mulators: the derivation was ad hoc in most cases. In this paper, we introduce
parametric glue constraints and show that they can be derived automatically for
time-series constraints, which we introduced a year later in [5].

Example 2. We can explain the key insight using Example 1. The reverse of
its time series X is X’ = (0,2,2,2,2,2,2,0,0,4,7,4,4,2,0,0,4,4) and has the
signature SM' = ‘c=—====>—c<>=>>=<=" which we will call the mir-
ror of the original signature S. The automaton of Fig.2 returns the same
value whether it consumes a signature or its mirror: the peaks of X are the
reverses of the peaks of X’ and the aggregation of their feature values is the
same because all the operators ¢¢ and ¢, are commutative. We have this prop-
erty for 19 of the 20 regular expressions in [5]. The idea now is to derive an
implied constraint, which we will call a glue constraint, between the three accu-
mulator triples of such an automaton after it has consumed () a signature w,
(#4) a prefix wy of w, and (i4i) the mirror of the corresponding suffix wy of w.
For instance, let us split S into the prefix P = ‘=>=<<=<’ and the suf-
fix T = ‘“>>=<=====>’ which has the mirror 7™ = ‘«—————>— ",
If we instantiate the automaton A of Fig.2 for the MIN WIDTH PEAK con-
straint, that is with f = width and ¢ = Min, then A has the accumulator
triples {(c,d,r) = (6,0,5) after consuming S, and {(c1,d1,r) = (+00,3,+00)
after consuming P, and (cg, d2,72) = (+00, 1,6) after consuming 7™, The value
¢g(r,c) = min(5,6) = 5 returned by A on S can also be computed using the
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formula ¢g(r1,r2,¢f(d1,d2,6})), that is min(+00,6,3 + 1 4+ 1). That formula

computes the minimum width of the following three peaks:

— the minimum-width peak corresponding to P, which actually has no occur-
rence of Peak = ‘<(<|=)*(>|=)*>’, hence r = idy = +o0;

— the minimum-width peak corresponding to 7™ whose only occurrence of

Peak gives width ro = 6;

— the peak that is created by concatenating the following two potential peaks:

e the potential occurrence of Peak at the end of P, giving width d; = 3;

e the potential occurrence of Peak at the end of 7™, giving dy = 1; note
that if we feed T rather than T™ to A, then (co,ds,m2) = (6,0, +00)
and ds reflects information about the end of T, rather than its beginning,
hence the created peak is missed;

but the contribution 5} =1 (with ¢« = |P| 4 1) is required to compensate for

the fact that di + do = 4 under-measures the width 5 of the created peak. O

We now formalise this insight, and add scenarios other than creation.

Definition 1 (mirror). The mirror of a language L over ¥ = {‘<’, ‘=7, >},
denoted by L™, consists of the mirrors of all the words in L, where the mirror
of a word or regular expression has the reverse order of its symbols and has all
occurrences of the symbol ‘<’ flipped into ‘>’ and vice versa.

We denote by £(o) the regular language defined by a regular expression o.

Definition 2 (state language). Let q be a state of an automaton A. The
language accepted by q, denoted by L,, is the regular language accepted when q
is made to be the only accepting state of A.

Ezample 8 Consider the automaton in Fig. 2. We have £ = L((>|=)*), L, =
S*L(<(<]=)%), and L, = E*L(Peak)L(="*), where Peak = ‘<(<|=)*(>|=)*>’
is the regular expression for peaks. Standard algorithms of automata theory [12]
can be used to compute state languages: we use the FAdo tool [1] to do so, as well
as to check the language equalities stated in the following three examples. O

We concatenate two words by writing them side by side, with an implicit infix
concatenation operator between them. The concatenation L, Lo of two languages
L1 and Lo is the language of all words wiws where wy € Ly and ws € Lo.

Definition 3 (extension). We say that the concatenation L1 Lo extends a reg-
ular expression o if and only if for any non-empty words wy € L1 and we € Lo
there exist a non-empty suffiz s of wy and a non-empty prefiz p of wy such that
sp € L(o) and either s starts with the last occurrence of o in wy, where we say
that LyLo extends the last o in Ly, or p ends with the first occurrence of o
in we, where we say that L Lo extends the first o in Lo, or both.

Ezample 4. Consider the regular expression Peak = ‘<(<|=)*(>|=)*>". Every
word wy in L; = ¥*L(Peak)L(=%*) has a suffix in £(Peak)L(=*). Every word ws
in Ly = L((>]|=)*>)X* has a prefix p in £L((>]|=)*>). The concatenation sp is
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in L(Peak)L(=*)L((>]|=)*>), which is a subset of L(Peak), hence L L5 extends
the last Peak in L. Note that p cannot end with any occurrence of Peak, hence
L1Ly does not extend any Peak in Ls. O

Definition 4 (creation). We say that the concatenation Ly Lo creates a regular
expression o if and only if for any non-empty words wi € Ly and ws € Lo,
there exist a non-empty suffix s of wy and a non-empty prefiz p of we such that
sp € L(o) but neither does s start with an occurrence of o in wy nor does p end
with an occurrence of o in ws.

Example 5. Consider again the regular expression Peak = ‘< (<|=)*(>|=)*>

Every word ws in L3 = ¥*L(<(<|=)*), such as P of Example 2, has a suffix in
L(<(<|=)*). Every word wy in Ly = L((>|=)*>)%*, such as T™¥ of Example 2,
has a prefix in L£((>]|=)*>). The concatenation is in L(<(<|=)*(>|=)*>),
which is equal to L(Peak). However, neither can start with an occurrence of
Peak nor can end with an occurrence of Peak: hence L3L, does not extend
Peak, but instead creates Peak. O

We now give the glue constraint for a time-series constraint specified
by (o, f,g): it is specific to regular expression o but generic in f and g. Let

— — = =
an automaton A for o reach state ) and accumulator values (C', D, R) on a

prefix of a word w, as well as state 6 and accumulator values (E, (5, ﬁ) on
the mirror of the corresponding suffix of w. The value N returned by A on the

entire word w is constrained by N = qbg(l—%), <E,F), where T is called the glue
expression and is defined as follows:

. if E—»Lm“ extends o, then:
(a) if Eeﬂ"‘“ extends both the last o in Lz and the first o in E"‘“ then

r_¢f(c C,D,D,s);
(b) if L3 2” extends only the last o in L7z, then I = ¢f(—> B,

(c) if £—> mir extends only the first o in EE”, then I' = ¢4 (C ,B, (57 6});

2. if £—>£m1r creates o, then I' = ngf(D D 6 s
3. if Ea 2“" neither creates nor extends o, then I' = (;Sg(C c )-

Note that these rules are exhaustive and mutually exclusive, because the final
conditions of extension and creation are negations of each other.

Ezample 6. Consider the regular expression Peak = ‘<(<|=)*(>|=)*>’, the

automaton A in Fig. 2, and the languages in Example 3 for the states of A.

— Consider 6 =m and 6 = {: by Example 4, for Ly = £,, and Ly = Em“ we
know that ﬁa g” extends only the last Peak in L,,, so rule 1b apphes

— Consider 6 = /{ and Q = (: by Example 5, for Ly = £, and Ly = LT, we
know that £,L" creates Peak, so rule 2 applies.
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Table 2. Glue expressions for any g f PEAK constraint. A row index refers to the
state of the automaton A in Fig. 2 reached for the prefix, and a column index refers to
the state of A reached for the mirror of the corresponding suffix.

k V4 m
k| ¢,(C.0) 6,(C.C) 6,(C.C)
¢ | ¢,C.C) | ¢,D.,D.8}) | ¢;,(C.D,D,s})
m | $(C,C) | ¢;(C.D,D,s) 64(C.0)

— Consider a = m and (@ = m: we have that £,, = X*L(Peak)L(=*) and
Lmir — [£(=*)L(Peak)¥*; note that there does not exist a non-empty suffix
of any word in L,, that, concatenated with a non-empty prefix of any word
in £ can form a word in £(Peak), so rule 3 applies.

m
—
The other six pairs (@, Q) of states are handled similarly. All nine glue expres-
sions are presented in matrix form in Table 2. O

We derived glue constraints for the covered 19 regular expressions: they can
be shown to be correct. We establish their propagation impact in Sect. 5.

In the next section, in order to exploit glue constraints better, we provide
bounds on their main variables, namely the results of aggregating feature values
on a time series, on a prefix thereof, and on the corresponding suffix thereof.

4 Bounds for Time-Series Constraints

We derive bounds on N for any time-series constraint g f o((X1,...,Xn), N)
from a few general formulae and the structure of ground time series that give
extreme values of N. The bounds are valid regardless of the domain choice,
but their sharpness is guaranteed only if all the X; are over the same interval
domain [a,b]. A bound is sharp if it equals N for at least one ground time series.

For each regular expression, there exists a necessary condition, based on the
domains and number of the X, for it to occur at least once within the signature.

Example 7. An Inflexion-pattern, called an inflexion, within a time series X =
(X1,...,X,) corresponds, except for its first and last elements, to a maximal
occurrence of the regular expression Inflexion = ‘(<(<|=)*>)|(>(>]|=)*<)" in
the signature of X. The necessary condition for having at least one inflexion in
X is b > a An > 3, where [a,b] is the smallest interval containing the union of
the domains of the X;. Figure 3a gives an example of inflexion. O

In Sect. 4.1, we describe a systematic methodology for deriving sharp bounds
on N for any time-series constraint g f o((Xy,...,X,), N), under the assump-
tions that all the X; have the same interval domain and, without loss of general-
ity, that the underlying necessary condition holds. In Sect. 4.2, we illustrate the
methodology on one family of constraints.
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S v W N — S5 9 92 92 2 o\
1 1 1 1 1 1 1 1
(a) (b) (c)

Fig. 3. (a): A time series with an inflexion of shortest width, namely one. (b): A time
series with six inflexions. (c): A time series with one inflexion.

4.1 Methodology

For any time-series constraint g f o((X1,...,Xp), N), our aim is to derive
formulae for lower and upper bounds on N, parametrised only by n and the
domain bounds of the X;. We define a time-series structure that depends only
on g and f, in order to build an optimal time series for the upper (resp. lower)
bound, defined as a ground time series where N is equal to that upper (resp.
lower) bound. We use the following non-mutually-exclusive properties, which
were derived manually, all occurrences of ‘maximal’ and ‘minimal’ being over all
time series of length n over [a, b]:

— Property I holds if the number of o-patterns is maximal.

— Property II"P(resp. IT'°%) holds if there is at least one o-pattern whose length
is maximal (resp. minimal).

— Property ITI'P_ (resp. I111%% ) holds if there is at least one o-pattern and the
absolute difference between b (resp. a) and its maximum is minimal.

— Property IIT:E  (resp. IIT1°% ) holds if there is at least one o-pattern and the
absolute difference between b (resp. a) and its minimum is minimal.

— Property IV holds if there is no o-pattern.

— Property VUP_ (resp. VIo% ) holds if the time series is among those where the
sum of the absolute differences between b (resp. a) and the maxima of the
o-patterns is minimal, and the number of o-patterns is maximal.

— Property VP (resp. VIoW) holds if the time series is among those where the
sum of the absolute differences between b (resp. a) and the minima of the
o-patterns is minimal, and furthermore the number of o-patterns is maximal.

— Property VI'P_ (resp. VIV ) holds if the time series is among those where
the number of o-patterns is maximal, and the sum of the absolute differences
between b (resp. a) and the maxima of the o-patterns is minimal.

— Property VIE (resp. VI ) holds if the time series is among those where the
number of o-patterns is maximal, and furthermore the sum of the absolute
differences between b (resp. a) and the minima of the o-patterns is minimal.

— Property VII'P (resp. VII'®") holds if there is at least one o-pattern of maxi-
mal length among those with only non-negative (resp. non-positive) elements
and the sum of the absolute differences between b (resp. a) and all elements
of such a o-pattern is minimal.

— Property VIII'P (resp. VIII'®) holds if there is at least one o-pattern of
minimal length and the sum of the absolute differences between b (resp. a)

and all elements of such a o-pattern is minimal.
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Table 3. Properties of optimal time series, for feature f and aggregator g.

bound | ¢\ f | max min one | surface width
upper |Max |IIIP, k. VIIUP: VIIT"P IIvp

lower |Min | ITT}OW, 1oy VIIow, VIITow 17w

upper | Sum | IV;VEP VIR I TVVER VI T TV VIR VI | ITYP
lower |Sum |IV;VIoV .VIoW | TV;Viow . yrlow IV;VII'o%, VIITow

Twelve constraints have a more involved optimal time-series structure that
is not described in this paper for space reasons. The formulae for these twelve
constraints take time linear in n to evaluate, whereas the formulae for the con-
straints covered by the given methodology take constant time to evaluate.

Table 3 gives for each feature/aggregator pair the set of properties of optimal
time series. An optimal time series for a property P is a ground time series for
g _f o((Xy1,...,X,), N) where N takes the largest (resp. smallest) value for all
ground time series possessing P. If there are several properties for an (f, g) pair,
then we first need to identify an optimal time series for each of those properties.
An optimal time series for some property is an optimal time series if it has the
maximal (resp. minimal) value of N among the set of optimal time series for

every property for (f, g).

Ezample 8. Consider n = 8 time-series variables over the integer interval [1,2].

— Consider SUM_ ONE__INFLEXION((X1, ..., Xg), N), which constrains N to be
the number of inflexions in (X7, ..., Xg). For an upper bound on N, the time
series in Fig. 3b is optimal, with N = 6 inflexions, and has Property I.

— Consider MAX _MIN _INFLEXION((X1,...,Xs), N), which constrains N to be
the maximum of the minima of all inflexions in (X3, ..., Xs). For an upper
bound on N, the time series in Figs.3b and c are optimal, both with N =

2, and have Property III'E as both have inflexions whose minima have an
absolute difference with b = 2 that is 0, hence their minima are b.

— Consider MAX SURFACE _INFLEXION((X7, ..., Xg), N), which constrains N
to be the maximum of the sums of the elements of all inflexions in
(X1,...,Xs). By Table3, for an upper bound on N, there exists an optimal
time series for Property VII"P or Property VIII'P or both. The time series
in Fig.3c is optimal for Property VII'P, with N = 12: there is an inflexion
of maximal length, namely 6, among those with only non-negative elements,
and all elements of this inflexion have an absolute difference with b = 2 that is
minimal, namely 0. The time series in Fig. 3b is optimal for Property VIII"P,
with NV = 2: there is an inflexion of minimal length, namely 1, whose elements
all have an absolute difference with b = 2 that is minimal, namely 0. Hence
the upper bound is the maximum of these two values of N, that is 12. a
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4.2 Bounds for Constraints that Only Have Property III'%

min
We consider constraints that only have Property III.E | that is with ¢ = Max
and f = min according to Table 3. This pair of feature/aggregator makes sense
for 18 of the 20 regular expressions in [5]. Our goal is to derive an upper bound
on the maximum of the minima of all o-patterns in a time series, where o is any
of those regular expressions. According to Property III'E | in an optimal time
series, there is at least one o-pattern whose minimum is maximal: we use such
a o-pattern to derive this upper bound. For brevity, we do not derive a lower
bound, because it is almost always possible to have no o-patterns at all and the

lower bound is then equal to the identity value of g, namely —oc by Table 1.

Ezxample 9. We can explain the key ideas using Fig. 3b. Consider Inflexion =
(<(<|=)*>)|(>(>|=)*<)’ and time series over an integer interval [a,b]. Our
goal is to maximise the maximum of the minima of all inflexions in the time
series: in other words, the difference between b and the minimum of some inflex-
ion should be minimal. The time series ¢t = (1,2,1,2,1,2,1,2) in Fig. 3b contains
two types of inflexions: the first (resp. second) type corresponds to the signa-
ture ‘<>’ (resp. ‘><); the inflexions are highlighted in grey. Assume the domain
is [-1,42]: the minima of the three ‘< >’-type inflexions equal the domain upper
bound, namely b = 2, hence the difference with b is 0; the minima of the three
‘><’-type inflexions equal 1, that is b — 1, hence the difference with b is 1. Hence
the smallest difference between b and the minima of the inflexions of ¢ equals 0.
Regardless of the value of b, we can always construct a time series with some
inflexion that contains b, provided the necessary condition of Example 7 holds. If
we now consider the domain [—1, 45|, then every element of ¢ can be increased by
three, giving ¢ = (4,5,4,5,4,5,4,5), which has the same signature as ¢. As for ¢,
the minima of all ‘<>’-type inflexions equal the domain upper bound, namely
b =5, and the minima of all ‘><’-type inflexions equal 4, that is b— 1. Hence the
smallest difference between b and the minima of the inflexions of ¢’ also equals 0.
We have shown that the smallest difference between b and the minimum of every
inflexion does not depend on b, due to the signature being ground. We need to
compute the minimum, denoted by Argsiexion, Of these smallest differences for
any signature in £(Inflexion). The sharp upper bound on N for the constraint
MAX_MIN INFLEXION((X7,..., X,), N) equals b — Arpsiexion- m|

We now formalise these ideas.

Computing the Bounds. Consider a MAX MIN o((Xy,...,X,),N) time-
series constraint where all the X; are over the same interval domain [a, b]. With-
out loss of generality, for determining an upper bound on N, it suffices to restrict
our focus on time series containing just one o-pattern, because the result of a
Max-aggregation is any of its occurrences of the largest value, whereas smaller
values are absorbed. Let T,, denote the set of ground time series over [a, b] whose
signature is w € L(o). For any ¢ in T, let ¢}, denote the index set of the o-
pattern in t. We want to derive a formula that can be used to evaluate in constant
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time the upper bound u = max, ¢z (,) maxyer, min;eq,, t;, which is equal to the
wanted upper bound on N under the stated focus restriction. Since u depends
also on a and b, its direct computation would not take constant time, because
every |T,,| depends on a and b. In order to compute v in constant time, we refor-
mulate it as an arithmetic expression on b and a parameter that only depends
on o, using the following transformations:

=b—(b—u)=b—(b— in t;
u=b-(b-u) (b= max max min t;)

=b— min (b— max min ¢;)

weL(o) teT, i€t
=b— min min(b— min ¢;) (1)
weL(o) teT, 1€t w

The value of A, = minser, (b —minge,,, ), called the shift of signature w, does
not depend on a and b: every time series t in T}, that gives this minimum must
contain b, which can thus be replaced by maxt; otherwise, every element of ¢
could be incremented by at least 1, as shown in Example 9, thus reducing the
minimal value of b —min;e; , ¢; and contradicting the optimal choice of ¢. Hence
Ay = ming e (o) A, called the shift of reqular expression o, does not depend
on a and b either. The upper bound u on N then is b — A, by (1). In order to
compute A,, we need to compute A, for each signature w € L(0).

We compute each A, as follows, for a ground signature w = (S1,...,S¢)
linked to a time series X = (Xi,..., Xy41) by signature constraints. First, we
rewrite A, as follows:

A, = min(b — min ¢;) = min max (b — ;) (2)
teT, i€ty teT,, i€ty
Let A§ denote b — t;. Note that Af» > 0 because we assume t; < b. Hence a
time series that minimises the sum of the A! also minimises each Af, and thus
the maximum of the A}. So a tuple (Af,..., A}, ) that is minimal for the sum
> ict,e41) A is also minimal for max;e; , A} and we can solve the following
minimisation problem:

£4+1
minimise Z A

i=1
subject to A; >0 Vie [1,0+1] (3)
if $; =‘<’then A;>A;1; Viell,/{] (4)
if S; =‘="then A;=A;1; Viell/{] (5)
if S; =>"then A; <A1 Viell(] (6)

[

A, €7 Vie 1,0+ 1]

The semantics of variable A;, called the shift of variable X;, with ¢ € [1,(+1],
is b — X;. For example, if S; = ‘>’, meaning X; > X,;;1, then b — X; < b— X;11,
hence A; < A;11. Depending on the value of each S;, which is assumed ground,
we post only one of the constraints (4), (5), or (6) for each pair (A;, A;q1).
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Note that A! corresponds to A; = b — X; when X; = ¢;: hence constraint (3).
Therefore, in an optimal solution A* = (Af,... ;A7 ), the value of A} is the
minimal shift of X;. Hence A* is also an optimal solution to the right-hand side
of (2), and so we have A, = max;cx,, A;. Note that the optimal value of the
optimisation problem itself is irrelevant.

Since A, does not depend on a and b, it can be computed once and for all
for any signature w. Hence it does not matter how much time the minimisation
problems take to solve. We show further that the number of minimisation prob-
lems and their numbers of variables and constraints can be bounded by very
small constants.

Ezample 10. Consider Inflexion = ‘(<(<|=)*>)|(>(>|=)*<) and the sig-
nature w = (S1,52) = (‘<’,*>’) € L(Inflexion), linked to the time series
(X1, X2, X3). We solve the following minimisation problem to compute A,;:

minimise A7 + Ay + Asg

subject to A; >0 Vi € [1, 3]
Ay > Ay
Ay < As
AeZ Vi e [1,3]

The unique optimal solution is (A7, A5, A%) = (1,0, 1). The inflexion that cor-
responds to (S1, S2) is (X2), as exemplified in Fig. 3a, thus A, = max;c(2) A} =

5 = 0: this inflexion contains a single element, which can be made to coincide
with the domain upper bound. Figure 3a gives an example of such an inflexion
within a time series of three variables with 2 as domain upper bound. O

We now state a condition when the computed upper bound is sharp.

Theorem 1. Consider a time-series constraint MAX_MIN_o({(X1,...,X,), N)
where all the X; are over the same integer interval [a,b]. If at least one word w
in L(o) with A, = A, may occur in the signature of (X1,...,X,), then the
upper bound b — A, on N is sharp.

Proof. Suppose there exists a word w that satisfies the stated assumption. Hence
there exists a ground time series with an occurrence of w in its signature: the
value of N on such a time series equals b — A, so the bound b — A, on N is
sharp because A, = A,,. a

For any regular expression o in [5] and any time series X over some inter-
val, the assumption of Theorem 1 holds if the necessary condition (such as in
Example 7) for having at least one occurrence of o in the signature of X is met.

Accelerating the Computation of the Shift of a Regular Expression.
For some regular expressions, we do not need to minimise over the entire lan-
guage L(0) when computing A, = mingez () A, . Consider the case when there
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exists a word w in £(o)™", which is the set of the shortest words of £(c), such
that the following equality holds:

A, =A, (7)

We can then replace £(o) with £(c)™™ in the definition of A,. This is the case
for all o in [5], and, additionally, we have |£(c)™"| < 2. Hence computing A,
requires solving at most two optimisation problems over at most four variables.

Ezample 11. Since Inflexion = ‘(<(<|=)*>)|(>(>]|=)*<)’ contains one dis-
junction at the highest level, every word in £(Inflexion) belongs to either Ly =
L(<(<|=)*>") or Ly = L(*>(>|=)*<’). Hence L£(Inflexion)™™" is the union
of the two sets LIM" = {‘<>"} and L" = {*><"}. Consider the word ‘<<>’
in L; obtained from the word ‘<>’ in L¥® by inserting just one ‘<’. In order
to obtain the minimisation problem for computing A__.~, we modify the one
of Example 10 for A.~ = 0 by introducing the new variable A, and replacing
the comparison constraints by the following ones:

A1 >Ny AN Ay >A3 A A3 <Ay

The unique optimal solution is (2,1,0,1), giving A~ =1 > A_<. Similarly,
for the word ‘<=>’ obtained from ‘<>’ by inserting just one ‘=’, we have
A.—s> = A.-. Using these base cases, one can prove by induction that the
shift of any word in L; longer than ‘<>’ is at least A.~. Applying the same
reasoning for the language Lo, we obtain A, > As . =1 for all words w in L.
Hence Arpfiexion = min(Acs,As ) = min(0,1) = 0 and equality (7) holds, so
we can replace £(Inflexion) by £(Inflexion)™" in the definition of A,. DO

5 Evaluation

We evaluate the impact of the methods introduced in the previous sections on
both execution time and the number of backtracks (failures) for all the 200
time-series constraints for which the glue constraint exists.

In our first experiment, we consider a single g f o({X1, Xs,..., Xn), N)
constraint for which we first enumerate N and then either find solutions by
assigning the X; or prove infeasibility of the chosen N. For each constraint,
we compare four variants of Automaton, which just states the constraint, using
the automaton of [3]: Glue adds to Automaton the glue constraints of Sect.3
for all prefixes and corresponding reversed suffixes, which can be done [6] by
just posing one additional constraint, namely g f o™ ((X,,..., X2, X1), N);
Bounds adds to Automaton the bound restrictions of Sect. 4; Bounds+ Glue uses
both the glue constraints and the bounds; and Combined adds to Bounds+ Glue
the bounds for each prefix and corresponding reversed suffix.

In Fig. 4, we show results for two problems that are small enough to perform
all computations for Automaton and all variants within a reasonable time. In
the first problem (first row of plots), we use time series of length 10 over the
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Fig. 4. Comparing backtrack count and runtime for Automaton and its variants for
the first solution (length 10) and all solutions (length 8).

domain [1, 5], and find, for each value of N, the first solution or prove infeasibility.
This would be typical for satisfaction or optimisation problems, where one has to
detect infeasibility quickly. Our static search routine enumerates the time-series
variables X; from left to right, starting with the smallest value in the domain.
In the case of the initial domains being of the same size, this heuristic typically
works best. In the second problem (second row of plots), we consider time series
of length 8 over the domain [1,5], and find all solutions for each value of N.
This allows us to verify that no solutions are incorrectly eliminated by any of
the variants, and provides a worst-case scenario exploring the complete search
tree. Results for the backtrack count are on the left, results for the execution
time on the right. We use log scales on both axes, replacing a zero value by one
in order to allow plotting. All experiments were run with SICStus Prolog 4.2.3
on a 2011 MacBook Pro 2.2 GHz quadcore Intel Core i7-950 machine with 6 MB
cache and 16 GB memory using a single core.

We see that Bounds and Glue on their own bring good reductions of the
search space, but their combinations Bounds+ Glue and Combined in many cases
reduce the number of backtracks by more than three orders of magnitude. Indeed,
for many constraints, finding the first solution requires no backtracks. On the
other hand, there are a few constraints for which the number of backtracks is not
reduced significantly. These are constraints for which values of NV in the middle
of the domain are infeasible, but this is not detected by any of our variants.

The time for finding the first solution or proving infeasibility is also signifi-
cantly reduced by the combinations Bounds+ Glue and Combined, even though
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the glue constraints require two time-series constraints. When finding all solu-
tions, this overhead shows in the total time taken for the three variants using the
glue constraints. The bounds on their own reduce the time for many constraints,
but rarely by more than a factor of ten.

In our second experiment, shown in Fig. 5, we want to see whether the Com-
bined variant is scalable. For this, we increase the length of the time series from 10
to 120 over the domain [1,5]. We enumerate all possible values of N and find
a first solution or prove infeasibility. For each time-series constraint and value
of N, we impose a timeout of 20s, and we do not consider the constraint if there
is a timeout on some value of N. We plot the percentage of all constraints for
which the average runtime is less than or equal to the value on the horizon-
tal axis. For small time values, there are some quantisation effects due to the
SICStus time resolution of 10 ms.

100

Scalability

Automaton, length 10 — — — 4
length20 - - - -
length40 -

Combined, length 10
length20 ——
length 40 ———

ST "7 length60 ——

length 80 ——

Percentage of constraints solved

length 120 ———
n L

0= . . L . . L . . L

1 10 100 1000 10000
Time [ms]

Fig. 5. Scalability results comparing time for Automaton and Combined on problems
of increasing length.

For length 10, we find solutions for all values of N within the timeout, and our
plots for Automaton (dashed) and Combined (solid) reach 100 %, but the average
time of Combined is much smaller. For Automaton, the percentage of constraints
that are solved within the timeout drops to less than 20 % for length 20, and
less than 10 % for length 40. For Combined, we solve over 75 % of all constraints
within the time limit, even for lengths 100 and 120.

The constraints that are not solved by Combined use the feature surface or
the aggregator Sum. The worst performance is observed for constraints combining
both surface and Sum. This is not surprising, as we know that achieving domain
consistency for many of those constraints is NP-hard (encoding of subset-sum).
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6 Conclusion

For the time-series constraints in [5], specified by a triple (o, f,g), we showed
in [3] how to generate simplified automata and linear implied constraints.
Here, we further enhance the propagation of time-series constraints by a
systematic generation of bounds and glue constraints. Rather than finding
bounds and glue constraints for each time-series constraint independently, we
introduce the concepts of parametric bounds and parametric glue constraints.
Our approach differs from existing ones, which design dedicated propagation
algorithms [4,14] and reformulations [9,10] for specific constraints, or propose
generic approaches [13,15] that do not focus on the combinatorial aspect of a
constraint.
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Abstract. We present and evaluate AMPHAROS, a new parallel SAT
solver based on the divide and conquer paradigm. This solver, designed to
work on a great number of cores, runs workers on sub-formulas restricted
to cubes. In addition to classical clause sharing, it also exchange extra
information associated to the cubes. Furthermore, we propose a new
criterion to dynamically adapt both the amount of shared clauses and
the number of cubes. Experiments show that, in general, AMPHAROS
correctly adjusts its strategy to the nature of the problem. Thus, we
show that our new parallel approach works well and opens a broad range
of possibilities to boost parallel SAT solver performances.

1 Introduction

Papers dealing with SAT solvers usually begin by recalling the tremendous
progress achieved on problems coming from industry. Recent results are indeed
very impressive, and a large number of industrial problems are nowadays solved
using a reduction to SAT instead of ad-hoc solvers [11,35,40]. However, playing
the devil’s advocate, one can observe that progress has slowed down noticeably.
It has become harder and harder to improve solvers dramatically. Furthermore,
SAT suffers from its own success, since formulas to solve are more and more
difficult.

At the same time, cloud computing is changing the landscape of computing
science: it is now possible to request a virtually unlimited number of computing
units that can be used within a few seconds. However, as it was pointed out dur-
ing the last competition [37], parallel SAT solvers are not well scalable. Indeed,
the winner of the parallel SAT track chose to only use half of the available cores.
Thus, to benefit from the huge number of computing units, as in a cloud context,
one must design new solvers architectures.

In the case of SAT solving, solvers can be divided into two categories. First
and foremost, portfolio based approaches [1,8,13,23,24,36] run different strate-
gies/heuristics concurrently, each on the whole formula. While computing the
processes exchange information (generally in the form of learnt clauses) to help
each other [1,7,23,24]. The second category of solvers uses the well known
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divided and conquer paradigm [2,15,16,25,26,39,41,42]. In such solvers, the
search space is divided into sub-spaces, which are successively sent to SAT solvers
running on different processors, so called workers. In general, each time a solver
finishes its job (while the others are still working), a load balancing strategy
is invoked, which dynamically transfers sub-spaces to this idle worker [15,16].
The sub-spaces can be defined using the guiding path concept [42], generated
statically, i.e., before the search [25,39], or dynamically, i.e., during the search
process [2,26,41]. As in portfolio solvers, learnt clauses can also be shared [18].

Even though the winners of the parallel track of the last SAT competitions
are based on the portfolio paradigm, solvers based on the divide and conquer
approach become increasingly more efficient (TREENGELING [12] a solver based
on this paradigm was ranked second in the last competition). It is in this context
that we propose AMPHAROS, a new parallel SAT solver, which follows the divide
and conquer approach. Our long term objective is to develop a SAT solver for
the cloud and this paper is a first step in this direction. In our approach, the
formula is partitioned using cubes (as in [41]). One process, named MANAGER, is
dedicated to managing these cubes. Then, solvers work on the formulas induced
by those cubes. In contrast to other divide and conquer approaches, several solver
may work on the same sub-problem and they can stop working before finding a
solution or a contradiction. The latter is to avoid solvers being stuck on instances
that turn out to be too hard for them. In that case, the solver asks the manager
for another sub-problem. This sub-problem can either originate from an existing
cube or from refining the current sub-problem. In our approach, the solvers select
by themselves the dynamically generated cubes they try to solve. Additionally,
two types of learnt clauses are shared: the classical shared clauses and others
that are dependent on the cubes.

Since our goal is to solve SAT with a great number of computing units,
it is important to propose a parallel architecture which adapts its strategy to
the number of workers and the nature of the problem. To this end, we propose
an approach which uses an adaptive algorithm that adjusts simultaneously and
dynamically the number of clauses that are shared and the number of new cubes.
This is possible thanks to a new measure that estimates if the search process has
to be intensified or diversified. As we demonstrate in experiments, this measure
works well and aligns with the stated goal. We show that when the search space
needs to be diversified (resp. intensified), the proposed measure detects that the
number of cubes must be increased (resp. decreased) and the number of shared
clauses decreased (resp. increased).

2 Preliminaries

Due to lack of space, we assume the reader to be familiar with the essentials of
propositional logic and SAT solving. Let us just recall some aspects of CDCL
SAT solvers [30,32]. CDCL solving is a branching search process, where at each
step a literal is selected for branching. Usually, the variable is picked w.r.t. the
VSIDS heuristic [32] and its value is taken in a vector, called polarity vector,
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in which the previous value assigned to the variable is stored [34]. Afterwards,
Boolean constraint propagation is performed. When a literal and its opposite
are propagated, a conflict is reached, a clause is learnt from this conflict [30] and
a backjump is executed. These operations are repeated until a solution is found
or the empty clause is derived.

CDCL SAT solvers can be enhanced by considering restart strategies [20]
and deletion policies for learnt clauses [3,6,19]. Among the measures proposed
to identify the relevant clauses, the literal blocked distance measure (in short
LBD) [6] is one of the most efficient. The clause’s LBD corresponds to the number
of different levels involved in a given learnt clause. Then, as experimentally
shown by the authors of [6], clauses with smaller LBD should be considered
more relevant.

It is well known that for several applications it is necessary to solve many
similar instances [5,9,17]. To make solvers more effective in such a context, it is
particularly useful to use assumptions to keep track of learnt clauses during the
whole search. A set of assumptions is defined as a set of literals that are assumed
to be true [17]. This set can be viewed as a cube, i.e. a conjunction of literals
(in the remainder of this paper, we denote cubes using square brackets, also
we sometimes identify cubes with the formulas they imply), and the search is
restricted to this cube. If during the search process, one needs to flip the assign-
ment of one of these assumptions to false, the problem is unsatisfiable under the
initial assumptions. In such a situation, it is possible to recursively traverse the
implication graph to extract a clause that explains the reason of the conflict.
Even if this problem seems close to the classical SAT problem, a special track of
the last SAT competition has been dedicated to this issue [37] and several exist-
ing studies attempt to improve SAT solvers to deal with assumptions [4,28,33].

3 Tree Management

The performance of divide and conquer approaches depends on both, the quality
of the search space splitting, and how the sub-spaces are assigned to the solvers.

Even if AMPHAROS is a divide and conquer based solver, it is important to
stress that, contrary to [38], it does not use the work stealing strategy. In our case,
the division is done in a classical way as in [2,16]. More precisely, our approach
generates guiding paths, restricted to cubes, that cover all the search space. This
way, the outcome of the division is a tree where nodes are variables and the left
(resp. right) edge corresponds to the assignment of the variable to true (resp.
false). Then, solvers operate on leaves (represented by the symbol NIL) and solve
(under assumptions) the initial formula restricted to a cube which corresponds
to the path from the root to the related leaf. Figure 1a shows an example of a tree
containing three open leaves (cubes [x1, 722, 4], [21, 7@, 7x4] and [-x1, —x3]),
two closed branches (already proven unsatisfiable) and four solvers (S ...Sy)
working on these leaves.

As we will see in Sect. 3.2, in our architecture, solvers can work on the same
cube (as solvers S7 and S in Fig. 1a) and can stop working before finding a solu-
tion or a contradiction. In AMPHAROS, each time a solver shares information or
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asks to solve a new cube, it communicates with a dedicated worker, called MAN-
AGER. Its main mission is to manage the cubes and the communication between
the solvers (here CDCL solvers). Thus, when a solver decides to stop solving
a given cube (without having solved the instance), it can ask the MANAGER to
enlarge this one (see Sect.3.3). Another situation where a solver stops, is once
a branch is proved to be unsatisfiable. In this case, a message informs the MAN-
AGER and the tree is updated in consequence (see Sect. 3.4). In both cases, when
a solver stops it goes through the tree and starts solving a new cube (potentially
the same, see Sect. 3.2). The end of the solving process finally occurs either when
a cube is proved to be satisfiable or when the tree is proved to be unsatisfiable.

This section describes the overall picture of our solver. First, in Sect. 3.1, the
way the tree is initialized is presented. Then, the transmission and extension
processes are respectively explained in Sects. 3.2 and 3.3. Finally a tree pruning
rule is introduced in Sect. 3.4.

3.1 Initialization

At the beginning of the search process, we initialize the workers. This step is
required to setup the activity (related to vSIDS heuristic [32]), the polarity of
variables and to create the root of the tree. To this end, all solvers try to solve the
whole formula concurrently until a given amount of conflicts is reached (10,000
in our implementation). Note that this corresponds to solve an empty cube. In
order to avoid performing the same search, the first descent of each solver (i.e. the
choice of the variables and their polarity on the first branch) is randomized.
Then, in the same manner as [31], the first solver reaching the maximum number
of conflicts communicates its best variable with respect to the vSIDS heuristic to
the MANAGER. This variable becomes the root of the tree. Consequently, the tree
only contains two leaves, i.e. cubes are restricted to a single literal (a variable
and its opposite). Regarding Fig. 1a, the selected variable was x1 and the set of
initial cubes was {[z1], [-21]}.

3.2 Transmission

As already mentioned, a solver may stop the search before solving its instance.
This situation occurs when it cannot solve the sub-problem associated to the
cube with a number of conflicts less than a certain limit (10,000 in our implemen-
tation). The solver then contacts the MANAGER in order to select a potentially
new cube to solve. The originality of our method is that a solver selects by itself
one cube among all unsolved ones in the tree (corresponding to NIL leaves).

Figure 1 shows a diagram sequence (Fig.1b) that illustrates the exchanged
messages when the solver Sy requests a new cube from the MANAGER’s tree
(Fig. 1la).

A first message (GO-ROOT) is sent by the solver to ask for the root of the
tree. It receives x1. Then, at each step of the cube selection, the solver asks for
the children of the previously received variable (with message GIVE-CHILDREN).
The answer is composed of two triplets: one for each polarity of the current
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Fig. 1. Schematic overview of how the solver Ss and the MANAGER interact to select
a cube in the current tree represented (a) (a plain (resp. dotted) line means that the
variable is assigned to true (resp. false)). On the sequence diagram, in (b), we can see
that seven messages are exchanged between the MANAGER and the solver before Sy
starts to solve the sub-problem induced by [z1, —x2, ~24]. The path selectioned by Sa
is represented with black lines in the left picture.

node. Each triplet is composed of the child variable, the number of available
leaves (NIL nodes) and the number of solvers working on these leaves, in that
order. Considering Fig. 1b, the first message returns the triplet (z2,2,2) for the
positive polarity of x; (the left branch contains two leaves and two solvers (S}
and Ss)) and (x3,1,1) for the negative one.

The solver decides to go down either on the left (assigning positively the cur-
rent variable) or on the right (assigning negatively the current variable) branch
according to the values returned in these triplets. By default, it selects the branch
where the number of working solvers is lower than the number of leaves. The
idea is to cover the most of cubes and to dispatch solvers all over the tree. If
this condition is true or false for both branches, the solver selects the branch
according to its polarity vector [34]. Note that in this implementation, we do not
know if some cubes do not contain solvers. After selecting its branch, the solver
informs the MANAGER (with messages GO-LEFT or GO-RIGHT) and assigns the
related literals using assumptions.

Thus, in our example of Fig.1, the solver S; assigns x; (the root) posi-
tively using its polarity (as the condition previously mentioned is false for both
branches). Since the branch related to xs is already proven unsatisfiable, Sy does
not have other alternatives to setting the literal x5 to false. Finally, it has to
set x4 to false since the previous condition holds. Arriving at a leaf, the solver
starts to solve the cube [z, ~xa, 7, 24].

3.3 Extension

Initially, the tree contains only one variable and then two cubes to solve
(see Sect. 3.1). To divide the original formula into subproblems, we propose to
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dynamically extend the tree during the search. Recall that we do not use the
work stealing strategy.

One associates to each leaf an integer variable 3 representing the presumed
difficulty of a subproblem (cube). Each time a solver cancels its search on a
given cube (associated with a leaf of the tree), the variable 8 of this leaf is
incremented. Then, a large value of 3 expresses that a cube is potentially hard
to solve. Note that a solver can increase several times the same variable 5. When
a solver stops its search and requests a new cube, the MANAGER increments the
value (3 associated to the leaf on which the solver was working. When the g3 value
of a leaf is greater or equal than the number of open leaves (i.e. NIL leaves) times
an extension factor f. then the tree is expanded on the given leaf.!

The extension is done in the following way. The last solver increasing the
variable (8 returns its best boolean variable w.r.t. to vSIDS heuristic and two
new leaves are created, extending the related cube. The ( values of the two
leaves are initialized to 0. Taking into account the number of open leaves, the
more unsolved cubes the tree contains, the less extensions are performed. In
this way and contrary to Cube And Conquer [41], our approach does not create
too many cubes, regardless of the number of cubes already proven unsatisfiable.
Since a leaf can contain many solvers, note that after extension, some solvers
can work on a node that is not a leaf.

-

N « . .

1 @ 1 NIL €L 1 e
[5.]

X 3I=»> X X

N

NIL NIL NIL NIL NIL 1L
BB EACA A RO
B=2 p=2 B=2 f=2
(a) Extension requested by the solver S3 (b) Extension accepted by the MANAGER

Fig. 2. The left picture represents the tree before the S3’s extension request was
accepted. Since the value of 3 associated to the node satisfied the extension crite-
rion, the MANAGER accepts this extension and modified the left tree to obtain the right
one. (Color figure online)

Figure 2 shows an example of an extension. The tree (the same as in Fig. 1)
contains 3 open leaves and some solvers work on these leaves. When, solver S3
stop working on cube [-x1, x3] the associated 8 (in red) is incremented and
becomes 3. The condition allowing an extension holds (we suppose that f, is
equal to one) and thus extension is performed. Solver S3 that is responsible
for the extension provides its best variable (x5) to the MANAGER and the cube
[~21, —x3)] is expanded with the variable 5 generating two new cubes. Note that
the (red) 8 value initiator of this extension becomes useless since its associated

1 We will discuss about the definition of the extension factor in Sect. 5.2.
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node is not a leaf anymore. Solver S5 is now free to ask the MANAGER a new
cube to solve (see Sect.3.2). Furthermore, in the next step, no matter which
solver ask for extension, it will not be performed since the number of leaves is
now equal to 4 (we suppose here that f. remains unchanged and is still equal
to 1).

3.4 Pruning

Because each sub-problem is solved under assumptions, when a cube is proved
to be unsatisfiable, the solver (from which unsatisfiability is proved) computes
a conflict clause (which is the negation of a subset of the literal assumptions).
This information is transfered to the MANAGER which is able to compute a cutoff
level in the tree search. The tree is simplified in consequence. Let us remark that
a solver can directly prove the global unsatisfiability of the problem when the
computed conflict clause is empty.

Moreover, if both children of a node are unsatisfiable then this node also
becomes unsatisfiable. In that case, the node can be safely removed and the
unsatisfiability is directly associated to the edge of its parent. Of course, this
process is recursively applied until each node has at least one non-unsatisfiable
child.

4 Clause Exchange

In this section, we discuss the two ways of exchanging information in our solver
AMPHAROS. We first explain how the clauses learnt by a solver are shared with
the others and then we present an original approach to sharing local unit literals
by taking advantage of our tree.

4.1 Classical Clause Sharing

It is well known that clause sharing noticeably improves the performance of
parallel SAT solvers [24]. In our framework, solvers also share learnt clauses.
However, contrary to the classical behavior where the clauses are directly shared
between workers, for us information passes through the MANAGER.

Clause sharing from the solver side. Once a solver reaches a threshold of
conflicts (500 in our implementation), it communicates with the MANAGER to
send and/or receive a set of clauses. Clauses to be sent are saved in a buffer
which is cleared after each communication with the MANAGER. Good clauses
with respect to initial LBD (less or equal to 2) are directly added to the buffer.
Other clauses are also added, as in [7], if they participate in the conflict analysis.
However, because we cannot share as many clauses as SYRUP, only clauses which
obtain a dynamic LBD less or equals to 2 before being used twice in the conflict
analysis procedure are shared.
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In order to deal with imported clauses, solvers manage three buffers: standby,
purgatory and learnt. Received clauses are stored in standby. In this buffer,
clauses are not attached to the solver [3]. Every 4,000 conflicts, clauses are
reviewed: they can be transfered from a buffer to another, or be definitively
deleted or kept in the current buffer. A clause from the standby buffer can
be transfered to the purgatory buffer. Contrary to the standby buffer, clauses
in the purgatory are attached to the solver and then participate to the unit
propagation process. We discuss the criterion allowing a clause to be moved
from standby to purgatoryin Sect.5.2. In the same manner, a clause from the
purgatory can be transfered to the third buffer learnt when it is used at least
once in the conflict analysis process. The temporary buffer purgatory is used to
limit the impact of new clauses on the learnt strategy reduction. The reduction
strategy used to clean these two additional buffers depends on a counter asso-
ciated with each clause. The counter is incremented each time the associated
clause remains in the same buffer. If the counter reaches a threshold (14 in our
implementation), the clause is deleted. Note that the counter is reset each time
a clause is moved from one buffer to another.

Clause sharing from the manager side. MANAGER collects learnt clauses
from every solver and manages them. Learnt clauses are stored in a queue and
the MANAGER periodically checks if they are subsumed or not. In practice, a
single core is dedicated to the MANAGER. Thus, processing all clauses in the
queue at once can be time consuming and can block communications between
MANAGER and solvers. To avoid this situation, MANAGER checks subsumption
by batches of 1,000 clauses each. MANAGER stores the learnt clauses that are not
subsumed in a database and sends them each time a solver requests them. Of
course, sent clauses are those that have not been already sent to the solver and
that are not coming from it.

4.2 Assumptive Unit Literals

A second way of exchanging information in our approach is transferring unit
literals (which are propagated under some assumptive literals) between solvers
and the MANAGER. In the following, we present where these literals originate
from and how they are exchanged and managed.

Assumptive unit literals from the solver side. Let us first recall that each
solver works under an assumption A (this assumption can be empty) representing
the cube to solve. When a literal ¢ ¢ A is propagated thanks to a sub-assumption
A’ C A, this information can be spread to the MANAGER in order to be broad-
casted to other solvers. More precisely, the solver communicates to the MANAGER
that £ can be propagated with A’. From the other side, when a solver selects a
branch (i.e. a literal ¢') during cube transmission, it also receives the set of unit
literals associated with ¢’ that can be propagated. Thus, the transmission of a
cube (see Sect. 3.2) contains these additional messages. Hence, MANAGER takes
care of a decorated tree containing guiding paths and the set of unit literals that
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Fig. 3. The left picture represents a decorated tree with the additional literals (in red)
given by S4. These additional literals are pull up, using the unsat (pull up us) and
identical literals (pull up u4) rules, to obtain the right tree. (Color figure online)

have to be propagated at each branch. Figure 3a shows an example of such a tree.
When solver Sy asks for a branch, it starts by recovering the set of unit literals
{u1}. It also propagates —us (in red) giving this information to the MANAGER.
It selects the branch 21 and then, retrieves the literal —u3 to propagate. In the
same way, it also propagates —uy, providing such assumptive unit literal to the
MANAGER and so on.

As we will see in the experiments later, assumptive literals are very impor-
tant. They are special clauses that clearly reduce the search space of a given
branch. Consequently, the fact that a literal ¢ can be propagated from A’ is
taken into account in the solver by adding, in a dedicated database (this data-
base is different from the aforementioned learnt buffer and is never cleaned
up), a clause built with the negation of A" and the literal ¢'. Remark that when
A’ = () the literal ¢’ is unit and is added to the unit literals of the solver.

Assumptive unit literals from the manager side. When the MANAGER
learns that a literal can be propagated from a subset of literals coming from an
assumption, this information is communicated during cube’s transmission and
can be added in the last branch of the node associated with this sub-assumption.
From this decorated tree, one can pull up unit literals from a branch to higher
branches. This situation occurs either when a branch is proved unsatisfiable or
when both branches of a node contain the same literal [29] (as highlighted Fig. 3).
In the first case, all the literals of the non-unsatisfiable branch are pulled up to
the father branch (as literal us). In the second case, only literals occurring in
both branches are transmitted to the father branch (this is the case for literal
-y ). This process loops recursively until a fix point is reached. Remark that
when no father branch exists (occurring when literals are moved from branches
of the root node) then these literals are proved unit.



An Adaptive Parallel SAT Solver 39

5 The Intensifcation/Diversification Dilemma

When several solvers run concurrently on a problem, they can perform redun-
dant work. Identifying such a situation, it would be beneficial to modify the
solvers’ strategies in order to diversify the search. Nevertheless, due to clause
sharing between solvers, exploring too different search spaces is also a handicap.
Thus, in some situation focusing several solvers on the same part is required
(intensification).

This paradigm, called intensification/diversification dilemma, has already
been studied in the context of portfolio-based parallel SAT solvers. This issue can
be addressed either statically, by using several solvers with orthogonal strate-
gies [1,24,36], or dynamically, by modifying the solvers’ strategies during the
search. However, deciding when a solver must intensify or diversify its search is
not easy and only few publications tried to deal with this problem [21,22]. Thus,
n [21], a master/slave architecture is proposed, where masters try to solve the
original problem (ensuring diversification), whereas slaves intensify their mas-
ter’s strategy. In [22], a measure to estimate the degree of redundancy between
two solvers is presented. It considers that two solvers are closed when they have
approximately the same polarity vector. The diversification process consists in
modifying the way the phase of the next decisions is realized.

To the best of our knowledge, no criterion has been established to identify
that several solvers execute redundant work except the measure based on the
polarity mentioned before [22]. Unfortunately, this criterion is not applicable
with many solvers (this measure has been initially proposed for a portfolio of
four solvers). That is why a more scalable criterion is required.

5.1 Evaluating the Degree of Redundancy

We propose to measure the degree of redundancy by taking into account how
many clauses that are shared between solvers are redundant. We use a list to
store from the beginning the number of received clauses (st,) and a second to
store the number of kept clauses (sty). Kept clauses are those which have not
been removed during the subsumption process. Each time a solver comes back to
the MANAGER (every 1,000 conflicts in our implementation), it shares its clauses.
The number of received (resp. kept) clauses since the beginning is pushed to st,
(resp. st) by the MANAGER.

The redundancy shared clauses measure, in short rscm, is defined for a step
t w.r.t. a sliding window of size m (20,000 in our experiments) as the ratio
between the number of clauses received during the last ¢ — m updates of st,
and the number of clauses kept during the same time. More precisely, we have
Vj <0, st.[j] = stx[j] = 0:

rsemy = F] = stelt = m] , if sti[t] — sti[t —m] #0

ti[t] — st [t —m) (1)
rsemy = st.[t] — st.[t — m], otherwise
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First, note that when several solvers work on the same part of the search
space, there is a high likelihood that learnt clauses by the different solvers are
redundant. This means that the number of subsumed clauses is important and
therefore the rscm value is high. Conversely, when solvers are sparsed in the
search space, there is a high probability that shared clauses are not redundant
and then the rscm value tends to be low. Consequently, a small value of the
rscm indicates that the solver needs to intensify the search, whereas a high
value signifies that the solvers have to diversify their search space.

5.2 Intensification/Diversification Mechanisms Based
on the rscm Measure

It is possible to control in several ways how solvers explore the search space
(shared clauses, solvers’ heuristics, ... ). In AMPHAROS, we choose to solve the
intensification/diversification dilemma by controlling two criteria: the way the
tree is extended (see Sect.3.3) and the number of clauses which are transferred
from the standby to the purgatory buffers (see Sect.4.1). Thus, for us, diver-
sifying (resp. intensifying) the search consists in increasing (resp. decreasing)
these two parameters. Before introducing them, let us a summarize:

Few subsumed Clauses (rscm is low) Many subsumed clauses (rsem is high)

Reduce extension Favour extension
Increase the number of imported clauses Limit the number of imported clauses
Intensification Diversification

Extension guiding by the rscm. First, let us remark that each path from
the root to a leaf represents a unique set of literals that splits the search space
in a deterministic way. Thus, the bigger the tree, the higher the probability to
run two solvers in totally different sub-problems. To control the tree grows, we
define the extension factor fe introduced in the Sect. 3.3 in the following way:

1,000

fet = 3 (2)

rSCMy

Let us recall that this extension factor is used to define the threshold of
misses that a cube can encounter before an extension is accepted. Hence, the
smaller (resp. bigger) the rsem; value is, the bigger (resp. smaller) the fe value
is and then the slower (faster) the tree extension is. Note that the cubic factor
allows to decrease fe rapidly while fe is bounded (by 1,000) since when fe is
high solvers run in concurrently and the tree is never updated. To prevent the
tree from growing too quickly, we also bound the minimum value that fe can
take by 10.

Condition to move from the standby to the purgatory. When a clause
is received by a solver it is possible that it is subsumed by a clause already
present. This becomes highly probable when almost all shared clauses are found
to be subsumed during the clause subsumption process. Thus, it seems natural
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that the number of accepted clauses (i.e. the number of clauses transferred from
the standby to the purgatory) increases (resp. decreases) when the rsem value
decreases (resp. increases).

As already mentioned (Sect.4.1), in AMPHAROS the clauses freshly received
are not directly attached to the solver. Thus, it is important to choose a clause
selection criterion independant from the activation of clauses. To control the
amount of clauses moved from the standby to the purgatory we use the notion
of psm introduced in [3] and already used in the portfolio based SAT solver
PENELOPE [1]. Recall that the psm of a clause represents the number of literals
which are assigned to true by the polarity vector. Thus, a clause can be scored
even if it is not used by the solver.

Then, in order to increase/decrease the number of clauses attached (and then
transferred) in the purgatory, a criterion based on both the psm and rsem
values is proposed. This criterion is motivated by the observation from [3] that
the clauses with a small psm value have a great potential to enter in conflict or
be used during the search. Thus, a clause will be authorized to move from the
standby buffer to the purgatory buffer when its psm value is less or equals than

%&?J, where psmy,q. corresponds to the psm maximum limit accepted (set
to 6 in our experiments). Consequently, clauses with a psm value of zero will
be systematically accepted whatever the value of rscm. Whereas, clauses with a
high psm value will be accepted if and only if they are probably not subsumed.

6 Experiments

We now evaluate AMPHAROS on the 100 benchmarks from the SAT-RACE 2015,
parallel track [37]. During the last competition 53 (resp. 33) instances have been
proved satisfiable (resp. unsatisfiable) by at least one solver and 14 instances
remained unsolved. All experimentations have been conducted on 2 Dell R910
with 4 Intel Xeon X7550. Each node has 32 cores, a gigabit ethernet controller
and 256 GB of RAM. Time limit was set to 1,200s per test (wall clock time).
Then, for experiments executed with 64 cores, we use two different computers.
All log files and additional pictures are available in http://www.cril.univ-artois.
fr/ampharos/.

6.1 Communication Management

Since in AMPHAROS a lot of messages have to be exchanged between the
MANAGER and solvers, the management of the communications has to be very
effective. Thus, we have opted for the open source Message Passing Interface
implementation (Open MPI) to manage the communication on a low level. The
bottleneck imposed by the fact that the MANAGER has to all at once compute
the subsumed clauses and communicate with the solvers, was a major problem.
To avoid that solvers wait too long without work, a round robin architecture
with non-blocking listening of solvers was put in place. Moreover, because the
subsumption process can be time consuming, the clauses received to be checked
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are not treated at once (in our implementation packet of 1,000 clauses are con-
sidered). Thus, the MANAGER communicates with a solver, then checks a set
of clauses, and so on, until the time limit is reached or the problem is proved
satisfiable/unsatisfiable.

6.2 Setup

AMPHAROS is a modular framework that allows to add easily new types of
solvers. For these experiments three sequential SAT solvers have been used:
GLUCOSE [6], MINISAT [17] and MINISATPSM [3]. Only a couple small changes
have been implemented in these solvers. In order to manage the interactions with
the MANAGER, all solvers implement a C+-+ interface. This interface grouped
communication routines and methods used to deal with standby and purgatory
buffers. The core of solvers has also been modified in order to avoid resetting
everything at each call to SAT solver (restart, learnt deletion policies, ...).
Moreover, as for the version of GLUCOSE presented in [4], when a solver restarts
it does not go to decision level 0 but to the level of the last assumption. The
clauses moved from the purgatory to the learnt buffer are simply incorporated
into the learnt clauses database as if they were learnt by solvers themselves.

6.3 Results

The experimental evaluation is divided into four parts. First, we evaluate the
different ingredients of AMPHAROS. Then, we study the scalability of our solver.
Finally, we compare AMPHAROS to the state-of-the-art and study the impact of
the rsem measure.

On the impact of each component. The benefit of the three optional compo-
nents (tree decomposition (Tree), clauses (C) and unit literals exchange (UL))
of AMPHAROS has been studied experimentally. To this end, several versions
of AMPHAROS have been executed on 64 cores. These experiments, reported in
Fig. 4, show gradual improvements when each of these options was taken into
account in a cumulative way. From the Fig. (4a) and the cactus plot (b) several
observations can be made.

First, Fig.4a shows that whatever the combination of options is used,
AMPHAROS is more efficient when the tree decomposition is used (Tree sets
to true in the first column). The versions working on the initial problem in a
competitive way, which could be regarded as portfolio parallel SAT solvers (with
(C) or without (none) clause sharing), solve systematically less instances than
the others running on sub-problem obtained from cubes. This shows the impor-
tance of how AMPHAROS solves the intensification/diversification dilemma using
a tree decomposition.

Second, results show the importance of exchanging information between
solvers. AMPHAROS that does not exchange information systematically solved
less problems than the others which share clauses or unit literals. When we
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NoTree +C  —&— o
No Tree + None  —+— | //
1/

Tree Exchanges SAT UNS Total 1000 - =
il

Yes C+ UL 49 25 74 800 |

Yes C 47 21 68 600 - :

Yes UL 47 18 65
Yes None 41 15 56

No C 43 6 49 2009
No None 4 6 50 ol . a ; - -
20 30 40 50 60 70
(a) Overview table (b) Number of instances solved w.r.t. the time

Fig. 4. Comparing several versions of AMPHAROS on 64 cores. (a) gives the results of
each version in term of solved instances. The columns represent, in that order, the fact
that the tree decomposition is activated (yes/no), the kind of information exchanged
(clauses (C) or/and unit literal (UL)), the number of SAT/UNSAT instances solved.
(b) shows the number of solved instances (x-axis) w.r.t. the time (y-axis).

separately compare the two exchange options (C and UL), we observe that shar-
ing clauses allows (as expected) to improve the solver on unsatisfiable problems.
However, as pointed out in Fig. 4b, activating this option makes the solver slower
on easy problems (solved with less than 600s). This can be explained by the fact
that the communication engendered to share clauses and manage them is signif-
icant and slows down the solvers on ‘easy’ problems.

Finally, as highlighted by these experiments, there is a synergy between the
exchange options. Even if clause sharing drastically reduces the solver perfor-
mance on easy benchmarks, combining this component with the unit literals
allows one to deliver the most significant improvement in terms of number of
successfully solved instances. From now, AMPHAROS is reported as the version
using all components.

Scalability evaluation. To evaluate the
scalability of AMPHAROS we run it on 8§,

1200 4 ¥ X
s X

16, 32 and 64 cores. Figure5 gives the num- b / < Py
ber of solved instances w.r.t. the time by the *°] g o te
different versions of AMPHAROS. It clearly oo+ £l ol £
demonstrates that our approach is highly 4] .4

scalable. The version running on 64 cores , |
64 cores (2x32)

solves 49 SAT and 25 UNSAT benchmarks, 64 cores(88)
that is 15 %, 45 % and 70 % more benchmarks 2 % # ® &
than the one running on 32 (44 SAT and 20

UNSAT), 16 (36 SAT and 15 UNSAT) and 8 Fig. 5. Number of instances solved
(33 SAT and 11 UNSAT) cores, respectively.

In order to show the efficiency of our approach with more computers linked
over the network, we also ran it with 64 cores using 8 computers with 8 cores
each (see the curve 8 x 8 on Fig.5.). This version solves 46 SAT and 24 UNSAT
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benchmarks. Since we restrict the number of messages, we obtain similar results.
Differences can be explain by the indeterminism of our approach.

AmPharoS versus the state-of-the-art. In order to evaluate AMPHAROS
with respect to existing work, we choose to compare our approach with the three
best solvers of the last SAT competition that ran in the parallel track. These
solvers are (in their rank order): SYRUP [7], TREENGELING and PLINGELING [12].
Because they do not run with MPI, and we have no processor with 64 cores, we
execute them on 32 cores. We also compare our solver on 64 cores with the work
stealing parallel SAT solver DoLIUS [2] and the portfolio solver HORDESAT [§]
(Fig. 6 reports results obtained).

Let us first consider the experiments launched on 32 cores. As reported in
Fig. 6a, AMPHAROS solves more instances than the other solvers. It is the best
solver on the satisfiable benchmarks and solves the same number of unsatisfiable
problems as TREENGELING (which is also a divide and conquer based method).
Comparing to SYRUP and PLINGELING, we can see that our solver significantly
outperforms both on satisfiable problems but it is less efficient on unsatisfiable
ones. This can be partially explained by the fact that AMPHAROS essentially
solves the unsatisfiable problems by totally refuting the tree (i.e. by closing
all branches). Consequently, it seems that on 32 cores we do not have enough
workers to achieve this goal within the time limit. When considering the running
time of the solvers, reported in Fig. 6b, we can observe that AMPHAROS is faster
than TREENGELING and PLINGELING but it is slower than SYRUP. This can be
explained by the fact that SYRUP solves several unsatisfiable problems in short
time (the 6s family for instance). If we consider the experiments run on 64 cores,
we can see that our approach is highly competitive. AMPHAROS is significantly
better than Dorius and HORDESAT. Moreover, it is important to notice that
during the competition SYRUP (the winner of the parallel track) only used 32
cores instead of the 64 cores available. Consequently, it is possible to conclude
that AMPHAROS is more efficient than both TREENGELING and PLINGELING on
64 cores. More importantly, as reported in Fig. 6b, AMPHAROS is very effective
since it solves more instances and faster.

Solver #thr. SAT UNS Total ey £~
AMPHAROS 32 44 20 64 B ik [
SYRUP 32 36 26 62 &0 7 i
TREENGELING 32 38 20 58 600 -
PLINGELING 32 31 26 57 ﬂ»; o !
AMPHAROS 64 49 25 74 L e
HORDESAT 64 33 24 57 0 fog
DoLIus 64 33 17 50 - - - - — —

(a) Overview table (b) Number of solved instances w.r.t. the time

Fig. 6. Comparing AMPHAROS versus the state-of-the-art parallel solver. (a) gives
results of each solver in term of solved instances w.r.t. the number of threads (#thr.).
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Table 1. This table presents the obtained results on a representative set of benchmarks.
Each line corresponds to an instance, with its satisfiability, identified by the leftmost
column. The next four columns give the WC time (reported in seconds) to solve the
instance w.r.t. the value of rsem (static (set to 1, 3, 5 and 10) or dynamic (D)). The
rightmost reports stastictics on the value obtained by the dynamic computation of
rsem.

Benchmarks information | Time w.r.t. rscm rscm Statistics

Name Sol. 1 3 5 10 |D |Min | Max | Avg | Med
hitag2-10-60-0-65 | UNS | 563 | 173|120 127|304 |1.20 | 2.36 | 2.11 | 2.28
jgiraldezlevy.109 | UNS |544|243|214|154|260|1.60 |4.32 |3.76 | 4.12
minandmaxor128 | UNS | 788 |IN |IN |IN |972|1.09|1.37 |1.25|1.23
jgiraldezlevy.33 | SAT | 776|339 |386|169 |288|1.63|4.58 |3.323.82
56bits-12.dimacs | SAT | 114 168|180 395|101 |1.25|1.60 | 1.43|1.46
004-80-8 SAT 24841216 |264|110|1.41 4.64 |3.10|3.09

Let us stress that none of these solvers are deterministic. To be fair, we ran
all solvers just once and report the obtained results (as it was done in SAT
competition 2015).

Impact of the rsem value. To conclude this section, we evaluate the impact
of the rsem value on our solver’s performance. To this end, we selected a repre-
sentative set of benchmarks and ran four versions of AMPHAROS with different
values of rsem (1, 3, 5 and 10) and compared them with the dynamically chosen
value. Let us recall that rscm has an impact on both the tree extension and the
amount of exchanged clauses. Moreover, as mentioned in Sect. 5.2, the extend-
ing factor fe is fixed to 10 when rsem > /100. Thus, the difference between
rsem = 5 and rsem = 10 is only the amount of shared clauses. Table 1 shows
that these instances do not have the same comportment with respect to the
rsem value. Some problems need to extend more (jgiraldezlevy) and others
need to extend less and exchange more (minandmaxor128). It is also important
to note some benchmarks are unpredictable (004-80-8). As regards the dynamic
adjustment, we observe that it is in average often close to the best value.

7 Conclusion

We proposed a new parallel SAT solver, designed to work on many cores, based
on the divide and conquer paradigm. Our solver allows two kinds of clause shar-
ing, the classical one and one more linked to the division of the initial formula.
Furthermore, we proposed to measure the degree of redundancy of the search
by counting the number of subsumed shared clauses. With this measure, we
are able to adjust dynamically the search, resulting in a new way of controlling
the dilemma of intensification/diversification of the search. Experiments show
promising results. Our main objective is to deploy a SAT solver among the cloud.
Thus, this paper is a first step towards this goal and leads to many perspectives.
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We plan to run our solver on a cloud architecture using grid computing. For that,
we plan to run several MANAGER’s in parallel letting solvers go from a MANAGER
to another one. For that, we need to choose more carefully variables used for
the division. Many possibilities arise like the notion of blocked literals recently
used for SAT solving [14,27]. Finally, we also need to improve performances on
unsatisfiable instances by paying more attention on shared clauses.
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Abstract. Constraint Programming (CP) standardizes many special-
ized “global constraints” allowing high-level modelling of combinator-
ial optimization and feasibility problems. Current Mixed-Integer Linear
Programming (MIP) technology lacks both a modelling language and a
solving mechanism based on high-level constraints.

MiniZinc is a solver-independent CP modelling language. The solver
interface works by translating a MiniZinc model into the simpler lan-
guage FlatZinc. A specific solver can provide its own redefinition library
of MiniZinc constraints.

This paper describes improvements to the redefinitions for MIP solvers
and to the compiler front-end. We discuss known and new translation
methods, in particular we introduce a coordinated decomposition for
domain constraints. The redefinition library is tested on the benchmarks
of the MiniZinc Challenges 2012-2015. Experiments show that the two
solving paradigms have rather diverse sets of strengths and weaknesses.
We believe this is an important step for modelling languages. It illustrates
that the high-level approach of recognizing and naming combinatorial
substructure and using this to define a model, common to CP modellers,
is equally applicable to those wishing to use MIP solving technology. It
also makes the goal of solver-independent modelling one step closer. At
least for prototyping, the new front-end frees the modeller from consider-
ing the solving technology, extracting very good performance from MIP
solvers for high-level CP-style MiniZinc models.

Keywords: Combinatorial optimization - High-level modelling - Auto-
matic reformulation * Linear decomposition - Context-aware reformulation

1 Introduction

Constraint Programming (CP) operates in terms of specialized constraints, from
basic ones such as arithmetic, to high-level “global constraints” [3], and their
filtering/explanation algorithms. A solver which handles a model’s high-level
structure in terms of global constraints, can take advantage of this knowledge
in different ways. When the solver does not provide a handler for a certain
constraint, the latter can be expressed by more basic entities.

© Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 49-65, 2016.
DOI: 10.1007/978-3-319-44953-1_4



50 G. Belov et al.

Current Mixed-Integer Programming (MIP) technology lacks a modelling
language based on global constraints, so that a dedicated MIP modeller has to
hard-code a chosen MIP decomposition of his real problem. Moreover, a MIP
solver might need to reverse-engineer the high-level model information for effi-
ciency [24].

We consider automatic linearization of CP models, producing good quality
MIPs. MiniZinc [21] is a solver-independent Constraint Programming modelling
language. A MiniZinc model is translated into FlatZinc, a low-level language,
and the translation is controlled by a redefinition library. The MiniZinc front-
end is now supported by some 20 solvers, including finite domain solvers, SAT
solvers, Lazy Clause Generation solvers, and even local search solvers [4]. Annual
MiniZinc competitions [27] provide a basis for comparing solvers and exploring
their strengths and weaknesses.

A number of modelling front-ends are available for MIP solvers, including
GAMS [2] and AMPL [10] which focus on general Mathematical Programming.
For combinatorial problems, AMPL supports logical constraints and counters.
A similar functionality is offered by ZIMPL [15]. There are a number of CP
languages offering automatic translation to MIP [1].

Our vision is that MiniZinc becomes an accepted and even widely-used mod-
elling language within the OR community, thus helping to narrow the divide
between OR, CP and SAT researchers, and to simplify prototyping. To this pur-
pose we seek to ensure that pure MIP models, when formulated in MiniZinc,
have similar performance to AMPL and GAMS. This requires no reformulation,
but care needs to be taken in user and solver interfaces. Beyond that, we try
to optimize the MIP-compatible reformulation of CP models to make it flexible
and extensible. This enables the modeller to use the CP style modelling where
combinatorial substructure is captured using global constraints, and obtain good
performance for their problem, using state-of-the-art MIP, CP and SAT solving
technologies on the same models.

In the MiniZinc Challenge [27] MIP solvers have had some success, but MIP
did not appear competitive on most of the Challenge benchmarks. Some models
are inherently more efficient for MIP solving, e.g., assignment problems (see
the example in Sect.2.2), and problems involving network flow. But we were
suspicious that the relatively poor performance of MIP solvers was an artifact
of a naive transformation of CP models to MIP. By improving linearization we
can see the true potential of MIP solvers on the Challenge benchmarks.

In automatic reformulation, it is up to the modelling system to provide effi-
cient translation for the target solver. To yield efficient transformed models it
is important to ensure that auxiliary variables generated during reformulation
are not unnecessarily duplicated [23]. Cire et al. [7] define an interactive system
that aids automatic detection of equivalent auxiliary variables produced in refor-
mulations of various parts of a model. MiniZinc 2.0 takes a different approach
through user-defined functions [28] which are used to avoid duplication in the
first place.
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Refalo [23] presents a system for automatic reformulation of global con-
straints into MIPs. He observes that the reformulations are usually standard and
tight. The system supports dynamic reformulation: as more information about
the model becomes available during solving, the reformulation is updated. How-
ever, the implementation is bound to a hybrid of specific CP and MIP solvers.

Among the “basic” non-linear constraints we consider domain constraints,
restricting an integer variable to take values in a specified set, both in static as
well as reified version (i.e., depending on another condition). Such constraints
can appear on their own in a model, or be produced by the decomposition
of other non-linear constraints, such as disjunction, array element access, and
many others. We propose a coordinated decomposition of domain constraints
which takes into account all those of a group of dependent variables.

The next section gives introductory examples. Section 3 discusses general lin-
earization methods, in particular introducing the new domain constraint decom-
position. Experimental results follow.

2 Basics and Redefinition Examples

This section provides an overview of MiniZinc’s redefinition mechanism and some
motivating examples.
2.1 Basics on MiniZinc and Solver-Specific Redefinitions

MiniZinc [28] is a declarative modelling language. It builds constraint structures
using predicates, here is a toy example:

predicate small(int: m, var int:y) = -m <=y /\ y <= m;
predicate p(int: u, var bool: b, var int: x) =

(b <-> small(u,x));
constraint p(4,false,v);

Global constraints [3], such as the well known alldifferent, are also spec-
ified as predicates.

When the model is compiled for a specific solver, the front-end looks for
a solver-specific redefinition of the global constraints used. If none is provided,
MiniZinc has a default decomposition, for example the standard library definition
for alldifferent is:

predicate alldifferent(array[int] of var int: x) =
forall(i,j in index_set(x) where i < j)

C x[i] !'= x[j]1 )3

However the solver can provide its own redefinition. In particular, it can
forward the predicate call unchanged and use specialized algorithms. The trans-
lated model is converted to the low-level FlatZinc format and can be passed to
the solver, or used directly if the solver is linked in the same executable.

For example, the alldifferent constraint can be redefined in a different
way than given above for a linear solver:
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predicate alldifferent (array [Setl] of var Set2: x) =
forall (j in Set2)( sum(i in Set1)(x[il==j) <= 1 );

This redefinition automatically introduces an auxiliary zero-one variable to
encode the assignment of a variable to a value, x[i]==j, see Sect.3. Note that
this auxiliary variable is re-used whenever this equality is encoded again, see
Sect. 3.1.

The redefinition library for MIP is located in folder share/minizinc/linear
of the MiniZinc distribution. To use this library, the mzn2fzn compiler is called
with options -G linear. In particular, files redefinitions*.mzn re-define the
basic constraints, such as logical connectives and min/max. Most global con-
straints are specified in dedicated files, for example lex_less.mzn. If a library
does not provide a header for some global, its default decomposition is taken
from the standard library share/minizinc/std.

2.2 Linearization Example: Assignment Problem

Consider an assignment problem. Its natural CP model is:

set of int: WORKER ; / workers

set of int: TASK ; % tasks to be assigned to workers

array [WORKER , TASK] of int: value;

array [WORKER] of var TASK: task; / which task worked on by each worker
include"alldifferent.mzn";

constraint alldifferent(task); / each worker works on a different task
solve maximize sum(w in WORKER) (value[w,task[w]]);

The natural MIP formulation of the model is the following one:

set of int: WORKER ; / workers
set of int: TASK ; % tasks to be assigned to workers
array [WORKER , TASK] of int: value;
array [WORKER , TASK] of var 0..1: worker_task;
constraint forall(w in WORKER) % one task per worker
(sum(t in TASK) (worker_taskl[w,t]) = 1);
constraint forall(t in TASK)
(sum(w in WORKER) (worker_task([w,t]) <= 1); 7 alldifferent
solve maximize sum(w in WORKER, t in TASK) (valuel[w,t] * worker_task[w,t]);

Unsurprisingly the MIP solver is effectively “infinitely” faster than a CP solver
on this problem since the MIP solver will effectively implement a polynomial-
time maximal matching algorithm using the linear integer constraints that arise
in its formulation. The challenge for the automatic linearization is to ensure that
the “natural” CP model above results in the MIP formulation being sent to the
MIP solver, so that we can make use of the insights of combinatorial substructure
without being penalized. This is particularly important when we want to solve
assignment problems with other side constraints.

As explained in Sect. 2.1, our automatic linearization of alldifferent pro-
duces the exact equivalent of its “natural” MIP decomposition. For the objective
function, which accesses element task[w] in each row w of matrix value, the
compiler transforms nested matrix access value[w,task[w]] into a standard
array access represented by the global constraint element [3]. The latter is lin-
earized as follows [13]:
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sum (t in TASK) ( valuelw,t] * (task[wl==t) )

Note that the auxiliary binary variable representing the equality task[i]==}
is re-used, which altogether gives the natural MIP formulation. There will be
some overhead for the (now useless) original task variables. However we have
an instance of a 3D orthogonal packing model where such variables improve
search behavior of IBM ILOG CPLEX 12.6.3 [14].

2.3 Linearization Example: Tour Guide Allocation Problem

An application brought to us by a local company is the tour guide allocation
problem. For a set of planned tours with fixed locations and times, the require-
ment is to minimize the total number of guides needed as well as the travel costs
of the guides between their tours.

Let matrix travel_cost contain the travel costs between tours and a 4-
column matrix tour contain start day, duration, start and end location of a
tour in each row. Variable array succ describes the successors of each tour in its
guide’s sequence of tours, as follows:

int: tour_ct; % The total number of planned tours

set of int: C = 1..4; J Columns of tour data structure

int: SDay = 1; dint: Dur = 2; int: SLoc = 3; int: ELoc = 4; /7 Column names
array [1..tour_ct,C] of int: tour;

int: loc_ct; % Number of locations

array [1..loc_ct, 1..loc_ct] of int: travel_cost;

array [1..tour_ct-1] of var 1..tour_ct: succ;

The last tour with index tour_ct is the END tour with a zero distance to all
other tours’ locations. This ensures that in an optimum no two tours have the
same successor (different from END).

The total travel cost is the sum of the cost of traveling from the end of each
tour to the start of its successor (as recorded by succ):

constraint total_travel_cost = sum (t in 1..tour_ct-1)
(travel_cost [tour [t,ELoc],tour[succ[t],SLocl]);

Asin Sect. 2.2, the nested matrix element accesses are simplified by the compiler,
resulting in a linear constraint.

Another array of decision variables is first_tour. It tells us how many tour
guides are to be used. It does this by selecting certain tours to be the first tour
on (some) tour guide’s sequence of duties. Then, every tour must have a tour
guide (either it must be a first tour or it must be the successor of another tour):

array [1..tour_ct-1] of var bool: first_tour;
constraint forall(t im 1..tour_ct-1)
( first_tour[t] \/
( exists (t2 in 1..tour_ct-1) (t = succl[t2]) )
) 8

Again, decisions t==succ[t2] are converted into auxiliary binary variables,
using either unary decomposition or domain refinement (Sect.3). These aux-
iliary variables are automatically the same as in the linearization of the travel
cost.
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Finally, the successor of tour t must have a start date greater than or equal
to the start date of t plus the duration of t:

constraint forall(t in 1..tour_ct-1)
(tour [t,SDayl+tour [t,Dur] <= tour[succ[t],SDayl);

The “every tour must have exactly one tour guide” constraint can be made
explicit by a direct MIP-tailored network flow-type formulation as follows:

constraint forall(t in 1..tour_ct-1)
(first_tour[t] + sum(t2 in 1..tour_ct-1)(t = succ[t2]) =
1);

On an example with 25 locations and 41 tours, CP finds only a subopti-
mal solution in observable time. Previously it was necessary to write a different
MiniZinc model to elicit the efficient performance of a network-flow model with a
MIP solver. Now, with automatic linearization, with or without the “every tour
has exactly one tour guide” constraint, IBM ILOG CPLEX 12.6.3 [14] proves an
optimum without branching.

3 Linearization

This section discusses some basic linearization principles, introduces domain
refinement, and discusses decomposition of the most commonly used global con-
straints.

3.1 Linearization Principles

Linearization by “Big-Ms”. The basic linearization method for complex
constraints is the so-called big-M transformation (see e.g. [13,19]). Given a linear
constraint e < 0 in disjunction with a Boolean b, that is e < 0V b or equivalently
—=b — e < 0, then if M is the largest possible value linear expression e can take,
this can be expressed using the linear constraint e < Mb.

For example, = # y is equivalent to a disjunction between two inequalities:

r>y+1VvVy>z+1 (1)

which can in turn be transformed by introducing a binary variable b into the
conjunction of two implications: b — = >y + 1 and -b — y > x + 1, which can
then be transformed to linear constraints. Assume x and y range over [0, 10] we
can encode the first constraint using the linear constraint y +1 — 2z < 11(1 —b)
and the second by z + 1 —y < 11b.

Linearization of complex constraints consists of breaking them down into
reified linear constraints, and then replacing these with linear constraints using
the big-M method illustrated above, or other methods described in this section.
For space reasons we don’t describe the MIP decompositions of other basic con-
straints, such as logical ones, referring the reader, e.g., to [13,23].

Ezample 1. Consider the model on the left in Fig. 1. Using “big-M”s, we can lin-
earize the two constraints as shown on the right in the same figure. Its continuous
relaxation allows the solution x==5.5; betal==beta2==0.75. O
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var 0..10: x;

2| var bool: betal;

var bool: beta2;
constraint betal <-> x<=4;
constraint betal2 <-> x>=7;

4 <= 6%(1-betal)
-x <= bxbetal
X
6

N

<= 7x(1-beta2)
<= 4x*xbeta2

C N

Fig. 1. Example model and its “big-M” linearization

Linearization with Unary Encoding of the Domain. An alternative app-
roach to linearization of complex constaints is to introduce a binary variable bf
for each value k in the domain D(z) of x [23]. The correspondence between the
binary variables and the original integer variable can be enforced by the linear
constraints

ZkED(r) by =1, (2a)
ZkeDm kby = . (2b)

Unary encoding introduces a lot of auxilliary variables, however it is usu-
ally preferred due to its tighter continuous relaxation. There are many con-
straints which are best transformed using these binary variables, including
alldifferent, element (see [23] and Sect. 2.2), inverse, multiplication of vari-
ables, and some others.

Tight Reformulation Using Common Subexpression Elimination. To
achieve a tight MIP model without duplicate variables and constraints, it is
essential that when a constraint on the same variable is transformed using its
unary encoding, the same binaries are used. When the translation is controlled
by a library, this can be achieved automatically through MiniZinc’s mechanism
of user-definable functions [28].

To introduce these binaries, we use the function eq-encode(var int: x)
(which was named int2array in [28]), returning an array of 0-1 variables and
imposing linear constraints (2). Now every time this function is invoked on a
variable x, MiniZinc’s common subexpression elimination ensures that the same
binaries are reused, even if the function is embedded in a predicate or another
function.

However there still can be information loss. For example, x # y — 5 or y # «
would be linearized using unary encodings of variables 2’ = x — y + 5 and
2" = y — x, respectively. The current capabilities of the MiniZinc language do
not allow it to recognize that we could make use of the same unary encoding for
these cases and we tackle this issue together with unified domain refinement in
Sect. 3.2.

Multiplication. In MiniZinc 1.6, the decomposition for FlatZinc predicate
int_times constraining z = zy was 2 = (TYmin; - - - » TYmax ) y—ymin+1, O €qUIV-
alently, using explicit calls to the global constraint element [3], element
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(Y = Ymin + 1, [TYmin, - - - » TYmax)s 2), Where Ymin, Ymax are the finite bounds of
y. Note this method will also work when «x is real-valued.

In the cases of a small (chosen as 4..20) product domain size |D(x)| x |D(y)|
and no variable domain having the form {0, k}, k € Z\ {0}, experiments proved
that it is advantageous to use the following alternative encoding:

z2=3, 0% jx b, where b7 =1 (b = 1ADY =1). (3)

If |D(z)] = |D(y)| = 2 and 0 € D(x) N D(y), we apply Boolean conjunction
instead. All these decompositions seem reasonably strong because experimenta-
tion with McCormick envelopes [18] did not show better results.

3.2 Linearization of Domain Constraints

A critical class of constraint for linearization are the so called domain constraints.
Under domain constraint for variable x € Z we understand any of the following:

x €S, (4a)
B — xzelb, (4b)

where S C Z is a finite integer set and 8 a Boolean variable. (4a) is a static and
(4b) is a reified domain constraint. In FlatZinc they are imposed by predicates
set_in(_reif).

This class of constraints generalizes some other non-linear constraints, such
as comparisons with a constant: x # a (static and reified, int ne(_reif)), z =a
and z < a (reified, int_(eq/le) reif). Of the two latter, only reified versions
are non-linear. W.l.o.g., FlatZinc doesn’t consider other comparison operations
as they can be reduced to “<” by variable substitution.

Moreover, comparisons between two variables x,y € Z can be transformed
to constraints (4a), (4b) by introducing a variable for their difference: z = z —y.
Then, for example, x # y is equivalent to z # 0.

Domain constraints (4a) and (4b) can be straightforwardly linearized using
the unary encoding (2) by the following constraints (5a) and (5b), respectively:

1= Zkes biv (53)
B=2> kesbi- (5b)

Domain Refinement for Integer Variables. The unary encoding (2) can
introduce a lot of auxilliary variables b for « with a big domain D(z) C Z. We
propose a refined domain structure as follows. Let € S be a constraint of the
form (4a). Let the following list:

SL(S) = argmin {n | S=2Zn U[li,ui], li,u; €5, i= 1,n} (6)

i=1
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be the smallest list of integer-bounded intervals covering S and including no
other integer values. Then, x € S is equivalent to the following system:

S libi < <37 ubs, (7a)
> b =1, (7b)
b €{0,1},  i=1,[SL(9)]. (7c)

System (7) generalizes the unary encoding (2). Note that when the full unary
encoding eq_encode (x) is already introduced for a given variable x, the MiniZinc
transformation ensures that it is used for the domain constraints instead of the
above. This prevents both systems (2) and (7) from being present in the model.

System (7) can be seen as a disjunction of 1D polyhedra. However we are
not aware of any previous results in line with the unified domain refinement
introduced below.

Unified Domain Refinement. We propose a single domain refinement which
can be used to decompose all the domain constraints on a given variable, as well
as those on dependent variables.

Ezample 2. (continued from Example 1). For the model of Fig. 1, consider the
following list of intervals:

SL = (]0,4],[5,6],[7,10]),

and the corresponding system (7). Then we can linearize the model by imposing
the following equivalences:

B = by, (8a)
B2 = bs. (8b)

The solution betal = beta2 = 0.75; x == 5.5; of Example 1 is no longer fea-
sible, in the linear relaxation, simply by (7b). O

W.lLo.g., for a given variable x we have exactly one static domain constraint
(4a) (with S = D(z)) and possibly several reified constraints (4b).

Definition 1. Given an integer variable x and all its domain constraints

x € D(x), (9a)
ﬂj — JTES]‘, jEJw (Qb)

define the unified domain refinement SL, as the list of the isolated intervals of
the set
S, = SLD@) N () (SL(S;) USL(D@)\ Sy). (10)

J€Jz



58 G. Belov et al.

Note that unary encoding (2) represents a special case of domain refinement,
namely it is equivalent to system (7) based on the degenerate interval list
([lk,uk] ‘ lp=ur =k, k€ D(.’ﬂ))

Theorem 1. For an integer variable x, system (7) based on the interval list
SL, correctly linearizes the static constraint (9a). For each j € J,, the reified
constraint (9b) is correctly linearized by the following equation:

@:Z{Biui,uiesj, ie{l,...,7w|}}. (11)

Proof. Note that S, NZ = D(x), which proves correctness for (9a). The sublist
(L, uq] | L, uy € Sj) of SL, covers all elements of S; N D(x), proving (11). O

Theorem 2. For an integer variable x with domain constraints (9), the continu-
ous relazation of the decompositions (7), (11) based on unified domain refinement
SL, as well as that of unary encoding (2), (5b) are equally strong in terms of
the high-level variables (x and f;, j € J).

Proof. Given a continuous solution (Jc, 5j|j€]17b'}g|k€D(m)) of unary encoding, it
is easy to see that (l;l =, bi)uiﬁl‘ fulfills (7) and (11).

Vice versa, given a continuous solution (1’7ﬂj‘jejm,z)i|,‘iill/z‘) of (7), (11), set

r= xleb e [0,1].
dou Zlb

For each ¢ € {1, A , if [; = u; then set bf = b;, otherwise select ) |eL
so that b; = rt, UF (Whlch provides (2a) and (5b)) and

which is in general non-unique. This fulfills (2b):

ISZal |SL.|
ZW_ZZW_Zb DL = O
keD(x) i=1 k=l;

We see that unary encoding can have non-unique equivalents for a solution
of unified refinement, leading to symmetries.

Dependent Variables. When there is a set of variables {z1,...,2,} that are
pairwise linearly dependent (i.e. V1 < i < j < n3a;;b;; s.t.x; = ai;x; + bij), if
at least one of them has a unary encoding generated by a specialized global, it
can be re-used for the domain constraints of all {z;}. Otherwise, all the domain
constraints on {z;} can be projected onto just one of them, using a single unified
domain refinement.
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The unification procedure was implemented as a post-processing step in the
MiniZinc compiler v2.0.10 but still controllable from the redefinition library. It
looks for linearly dependent variables in several ways, for example if two vari-
ables are initialized by linear expressions whose non-constant parts are multiples
of each other. This occurs for various auxiliary variables introduced in reformu-
lations.

3.3 Global Constraint Decompositions

The MiniZinc distribution defines default decompositions for over 100 global
constraints. The reformulations described in Sect. 3.2 above ensure that most of
these default decompositions can be directly re-used for MIP, producing tight
linear reformulations of the global constraints, where duplication of auxiliary
variables has been automatically minimised.

For a few constraints where default decomposition is not MIP-efficient,
we have implemented tailored MIP formulations, listed in the directory
share/minizinc/linear of the MiniZinc distribution.

alldifferent, inverse, alldifferent_except_0: We have already seen how
alldifferent is linearised using the unary encoding. One can linearise inverse
similarly. The constraint alldifferent_except O is a simple variation of
alldifferent and much more pleasing than the constraint programming decom-
position:

predicate alldifferent_except_O(array [Setl] of var Set2: x) =
forall (j in Set2 diff {0})( sum(i in Set1) (x[il==j) <= 1 );

element, table: We have already seen how element is linearised using the unary
encoding. The table constraint table([z1,...,z,], T) is encoded by defining
auxiliary 01 variables A;,1 < ¢ < m for each of the m rows in the table and then
equating z; = Z:’;l AiT;;. This is a direct extension of the element encoding,
minus the index element.

cumulative: The global cumulative constraint, limiting the total amount of
a renewable resource available to all tasks at any moment of time, is frequent
in scheduling problems [25]. It can be used to express alldifferent, as in the
ghoulomb.mzn benchmark, and as a redundant constraint in packing problems [26].

Two forms of reasoning used in the cumulative constraints are reasoning
about the ordering of tasks (“task decomposition”) [25], and reasoning about
the tasks running at each time slot (“time decomposition”) [12].

Transforming the cumulative constraint for MIP can be costly in terms of
both the number of variables and constraints. While the number of variables
resulting from the task decomposition is proportional to the number of tasks
squared, the time decomposition ultimately requires a variable for each task
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indicating its relation to each time slot, which requires a number of variables
proportional to the product of tasks and time slots.

The time decomposition of cumulative is currently the default in MiniZinc,
and thus was solely used by the previous linearization library. We found that
when the product of the number of time slots and the number of tasks exceeds
a certain parameter (chosen as 2000), it is advantageous to use the task decom-
position of cumulative and not the time decomposition.

circuit and subcircuit: The global constraints circuit and subcircuit
take an argument vector x, where x[1] denotes the successor of node i (or just
i if it is not included in the subcircuit). They ensure that there are no separate
cycles and each node is in exactly (for subcircuit, in at most) one loop.

The previous linearization library had no special translation for them, re-
sulting in the usage of standard decompositions. As an example, for subcircuit
they involved ordering constraints of the type

({ordering condition)) => order[x[il] = order[i] + 1

where auxiliary variable order[i] is the order of node i in the subcircuit,
starting from the least-index node. The order of excluded nodes is not con-
strained. Expression order [x[i]] is a variable subscript (flattened as predicate
array_var_int_element) and hard to linearize efficiently.

These globals are now encoded as variants of the Miller-Tucker-Zemlin formu-
lation [20]. Interestingly, in an experiment with the lifted MTZ cuts of Desrochers
and Laporte [9], we observed inferior behaviour when we tested them using IBM
ILOG CPLEX 12.6.1 [14].

regular: Probably the most difficult global constraint for the previous lineariza-
tion library is regular. It requires that the sequence of values in the control vec-
tor x satisfies a deterministic finite automation defined by the acceptable states
vector a and a transition function d mapping the current state and the control
value into the next state: a[i+1] = d[a[i], x[i]]. The default decomposition
just uses the latter prescription directly, resulting in a series of element’s.

Specialized propagation algorithms for regular, cf. [8], construct the graph of
achievable/feasible states for each step, called layered graph. Its nodes correspond
to the unary encodings of the state variables a[i] for each step i: node (i, k)
means a[i]==k, and arcs denote the transitions between the nodes of the con-
secutive steps (layers). A network-flow approach in [8] uses such a graph, imple-
mented by an external procedure, and formulates the network-flow constraints
in a MIP-typical way, namely with binary variables A(; 1), (i+1,k,) € 10,1} for
the flow on each arc ((i, k1), (i + 1, k2)).

We implemented this reformulation in MiniZinc, iteratively tightening the
domains of the state variables a[i] and introducing the above-mentioned arc
flow variables.
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4 Experiment

To validate the MIP reformulations described above, we tested them on leading
commercial and free MIP solvers, and compared them with the best solvers based
on results from the MiniZinc Challenge.

As test instances we used 400 instances from MiniZinc Challenges 2012-2015.
Naturally these instances are advantageous for the solvers proven on the very
same test set!

The MIP solvers we tested were:

— commercial solver Gurobi 6.5.1 [11],
— commercial solver IBM ILOG CPLEX 12.6.3 [14],
— free solver COIN-OR Branch-and-Cut (CBC) 2.9.8 [17].

We tested the MIP solvers each under three configurations: default (with all
linearization approaches), “no DR” (without domain refinement, Sect. 3.2), and
“old” (with the old linearization library from MiniZinc 1.6 however supplemented
with MIP-tailored globals alldifferent, table, and inverse, Sects.2 and 3).
The multi-pass compilation of models suggested in [16] was not considered as it
currently fails on 15 instances.

The best solvers from the MiniZinc Challenge we used for comparison were:

— Opturion CPX [22], overall official winner of the Challenges 2013 and 2015,
— Chuffed [5,6], not prize-eligible in the Challenge.

For these solvers we used the search strategy specified by the model.

All solvers were executed sequentially (1 thread) on an Intel i7-4771 CPU @
3.50 GHz with a memory limit of 12 GB per process. MiniZinc 2.0.13' was used
to flatten the models. The actual FlatZinc-to-solver interfaces are going to be
released as part of the upcoming MiniZinc 2.1. Solving time was limited to 5 min
total CPU time per method/instance. Flattening time was not limited.

In Table 1 we report the following data for each solver and configuration: the
number of optimal (opt), feasible but not optimal (feas), satisfied (sat), proven
infeasible (inf), not flattened (nofzn), failed (fail) (solver crashed or did not stop
normally in 500s), and other cases (other) — where none of the previous results
were achieved. i.e., the solver ran without finding feasible solutions and did not
crash.

1. Note from Table 1 that sometimes the MiniZinc-to-FlatZinc compilation can-
not produce a working model (columns nofzn and fail). For MIP, the main
causes were the globals cumulative, regular and table involving variables
with large domains, leading to huge decompositions and thus to big MIP
models where MIP solvers run out of memory or just stop responding. The
same happens to the CP solvers when they don’t handle a global constraint
directly and it has to be decomposed, in this case cumulative with variable
durations and resource demands in 2 instances of mznc2013/f jsp.

! minizinc.org.
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Table 1. Comparison of solvers and configurations

Solver+config | opt | feas | sat | inf | nofzn | fail | other
Gurobi 160113 (48 |3 |5 1 70
Gurobi, noDR | 157|115 {45 |2 |5 2 |74
Gurobi, old 1331118 |28 |5 |16 4 |96
CPLEX 139121 46 |2 1 86
CPLEX, noDR | 141 | 124 |47 |3 0 |80
CPLEX, old 1241118 126 |4 |16 2 110
CBC 86 182 (24 |2 32 1169
CBC, noDR 78 |69 |20 |1 40 | 187
CBC, old 61 |58 |8 |1 |16 51 | 205
Chuffed 157142 |54 |5 0 |40
Opturion CPX | 130|159 |37 |5 67

2. The linear solvers successfully find and prove optimality - Gurobi beats both
Chuffed and Opturion CPX in terms of number of optimal solutions.

3. The new domain refinement is definitely beneficial to Gurobi and more so for
CBC, while strangely it is disadvantageous for CPLEX. We believe it may
interfere with some presolve simplifications in CPLEX.

Even the free MIP solver CBC, with helpful support from its developers, now
runs bug-free and gives results on nearly half the instances. Moreover, as revealed
in Table 2 CBC sometimes succeeds where the Challenge solvers fail.

In Table2 we present pairwise set difference analysis for the solvers’ best
configurations. For each comparison of two solvers/configurations, we report the
following numbers: Oopt is the number of cases where only that solver proved
optimality (and the other solver had at best feasibility); Ofea is the number
of cases where only that solver found a feasible solution (and the other nomne);
0inf is the similar value for infeasible cases; Bpri and Bdua are the numbers of
instances for each solver when it has found a better primal/dual bound if both
had one, respectively.

Gurobi outperforms Chuffed on over 100 instances, and even CBC outper-
forms Chuffed on over 50 instances. The differences between the MIP solvers
and the Challenge solvers are particularly evident on proofs of optimality and
feasibility (Oopt and Ofea). In this comparison, CBC outperforms Chuffed on
30 instances, while CPX only outperforms Chuffed on 8 instances.

What emerges from these tests is that, now that the linearization of CP
models has been improved, MIP shows complementary strengths in contrast
with the Challenge solvers. Given a new MiniZinc model it makes sense to try
evaluating it with different classes of solvers, including MIP.
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Table 2. Comparison of difference sets

Solver+config | Oopt ‘ Ofea ‘ Oinf‘ Bpri ‘ Bdua
Gurobi vs Chuffed

Gurobi 52 22 0 41 -
Chuffed 49 45 2 23 -
CPLEX(noDR) vs Chuffed
CPLEX(noDR) | 40 19 |0 42 |-

Chuffed 56 50 |2 29 |-
CBC vs Chuffed
CBC 21 9 0 25 |-
Chuffed 92 112 |3 24 |-
Gurobi best cfg vs CPLEX best cfg
Gurobi 21 19 |0 46 |98

CPLEX(noDR) | 3 14 |0 33 |31
Chuffed vs Opturion CPX
Chuffed 30 26 |0 49 |-
CPX 3 5 0 37 -

The work that has been done ensuring the behaviour of CBC is sound can
also pay off by enabling constraint programmers to have immediate access to a
free MIP solver adding an additional weapon to the CP modeller’s armoury.

5 Conclusion

The results show that MIP solvers are highly competitive with CP solvers on
MiniZinc benchmarks, which are, for the most part, written with CP solvers
in mind. This is good news since it validates the constraint programming view
of modelling: that the model should be written in the highest level possible,
and it should be up to tools to map this to a suitable form for the solver if
needed (of course the CP perspective is that the preferred mapping would be to
a global propagator, but also MIP solvers might start providing global constraint
handlers). This is also a challenge to CP since it illustrates that MIP solvers can
be used out of the box to tackle problems that we often consider are suited to the
CP solving technology. Of course there is a place for both CP and MIP solving
technology, and one of the aims of a solver-independent modelling language is to
avoid users committing early to the wrong technology. Better linearization makes
MiniZinc a more attractive modelling language for the general OR community,
which may then make them more aware of the CP view of modelling and solving.

There is plenty of scope for further improvement of automatic linearization
of MiniZinc models. Issues that we plan to investigate are: better continuous
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relaxations of nonlinear expressions, avoiding symmetry creation in decomposi-
tions, providing a declarative interface to domain refinement to allow the user
to control the process using annotations.

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

A list of constraint languages (2016). http://www.csplib.org/Languages/

Andrei, N.: Introduction to GAMS Technology. Nonlinear Optimization Applica-
tions Using the GAMS Technology. Springer Optimization and Its Applications,
vol. 81, pp. 9-23. Springer, New York (2013)

Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
past, present and future. Constraints 12(1), 21-62 (2007)

. Bjordal, G., Monette, J.-N., Flener, P., Pearson, J.: A constraint-based local search

backend for MiniZinc. Constraints 20(3), 325-345 (2015)

Chu, G.: Improving combinatorial optimization - extended abstract. In: Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence 1JCAI
2013, Beijing, China, pp. 3116-3120 (2013)

Chu, G.: Constraint Programming solver Chuffed (2016). https://github.com/
geoffchu/chuffed. Accessed 16 Mar 2016

Cire, A.A., Hooker, J.N., Yunes, T.: Modeling with metaconstraints and semantic
typing of variables. INFORMS JoC 28(1), 1-13 (2016)

Coté, M.-C., Gendron, B., Rousseau, L.-M.: Modeling the regular constraint with
integer programming. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR, 2007.
LNCS, vol. 4510, pp. 29-43. Springer, Heidelberg (2007)

Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Oper. Res. Lett. 10(1), 27-36 (1991)
Fourer, R., Gay, D.M.: Extending an algebraic modeling language to support con-
straint programming. INFORMS J. Comput. 14(4), 322-344 (2002)

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual Version 6.5. Hous-
ton, Texas: Gurobi Optimization (2016)

Hardin, J.R., Nemhauser, G.L., Savelsbergh, M.W.P.: Strong valid inequalities for
the resource-constrained scheduling problem with uniform resource requirements.
Discrete Optim. 5(1), 19-35 (2008)

Hooker, J.N.: Integrated Methods for Optimization. International Series in Oper-
ations Research & Management Science, vol. 170. Springer, US (2012)

IBM Software. IBM ILOG CPLEX optimizer. Data sheet, IBM Corporation (2014)
Koch, T.: Rapid mathematical prototyping. Ph.d. thesis, Technische Universitat
Berlin (2004)

Leo, K., Tack, G.: Multi-pass high-level presolving. In: International Joint Confer-
ence on Artificial Intelligence (IJCAI) (2015)

Linderoth, J., Ralphs, T.: Noncommercial software for mixed-integer linear pro-
gramming. Technical report, Lehigh University (2004)

McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part I - convex underestimating problems. Math. Program. 10(1), 147-175
(1976)

McKinnon, K., Williams, H.: Constructing integer programming models by the
predicate calculus. Ann. Oper. Res. 21, 227-245 (1989)

Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7(4), 326-329 (1960)


http://www.csplib.org/Languages/
https://github.com/geoffchu/chuffed
https://github.com/geoffchu/chuffed

21.

22.
23.

24.

25.

26.

27.

28.

Improved Linearization of Constraint Programming Models 65

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Mini-
Zinc: towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529-543. Springer, Heidelberg (2007)

Opturion Pty Ltd. Opturion CPX user’s guide: version 1.0.2 (2013)

Refalo, P.: Linear formulation of constraint programming models and hybrid
solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369-383. Springer,
Heidelberg (2000)

Salvagnin, D.: Detecting semantic groups in MIP models. In: Quimper, C.-G.,
Cavallo, M. (eds.) CPAIOR 2016. LNCS, vol. 9676, pp. 329-341. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33954-2_24

Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250-282 (2011)

Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69-84. Springer, Heidelberg (2011)

Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Con-
straints 15(3), 307-316 (2010)

Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268-283. Springer, Heidelberg (2013)


http://dx.doi.org/10.1007/978-3-319-33954-2_24

Impact of SAT-Based Preprocessing
on Core-Guided MaxSAT Solving

Jeremias Berg™®) and Matti Jarvisalo

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Helsinki, Finland
jeremias.berg@cs.helsinki.fi

Abstract. We present a formal analysis of the impact of Boolean sat-
isfiability (SAT) based preprocessing techniques on core-guided solvers
for the constraint optimization paradigm of maximum satisfiability
(MaxSAT). We analyze the behavior of two solver abstractions of the
core-guided approaches. We show that SAT-based preprocessing has no
effect on the best-case number of iterations required by the solvers. This
implies that, with respect to best-case performance, the potential bene-
fits of applying SAT-based preprocessing in conjunction with core-guided
MaxSAT solvers are in principle solely a result of speeding up the individ-
ual SAT solver calls made during MaxSAT search. We also show that, in
contrast to best-case performance, SAT-based preprocessing can improve
the worst-case performance of core-guided approaches to MaxSAT.

1 Introduction

Real-world applications [1-18] of maximum satisfiability (MaxSAT) [19-21], the
optimization counterpart of the famous Boolean satisfiability problem (SAT)
[22,23], are increasing in numbers as recent breakthroughs in MaxSAT solvers
[24-32] are making MaxSAT more and more competitive as a constraint opti-
mization paradigm.

A great majority of state-of-the-art MaxSAT solvers for solving optimiza-
tion problems from the real world are core-guided [20,21], heavily relying on
the power of SAT solvers as very effective means of proving unsatisfiability of
subsets of soft constraints, or unsat cores, in an iterative fashion towards an
optimal solution. Thus new breakthroughs in techniques for speeding up SAT
solvers also have the potential of directly speeding up MaxSAT solvers further.
One particularly fruitful line of research on speeding up SAT solvers has been
the development of effective preprocessing techniques [33-35], applied most typ-
ically before search, as well as most recently also as inprocessing [34], i.e., during
SAT search. Compared to SAT, preprocessing for MaxSAT has seen some but
arguably less progress so far [26,30,36-39]. Recently, ways of employing pre-
processing techniques developed for pure SAT in the context of MaxSAT have
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been explored [26,30,40]. However, the impact of SAT-based preprocessing for
MaxSAT solving seems to often be somewhat more modest than in the context
of SAT solving [26,30,40]. The exact reasons for this difference are currently
unclear; specifically, we are not aware of studies towards fundamental under-
standing on the potential of SAT-based preprocessing in the context of MaxSAT.

In this paper, we aim at providing further understanding on the potential
of SAT-based preprocessing techniques in speeding up modern MaxSAT solvers.
More specifically, we formally analyze the impact of SAT-based preprocessing
techniques on the best-case and worst-case behavior of core-guided MaxSAT
solvers [41-43]. As the basis of our analysis, we focus on two abstractions of
MaxSAT solvers which together cover a number of modern core-guided MaxSAT
solvers [25,30,42]. As the formal metric, we focus on the impact of SAT-based
preprocessing on the best-case and worst-case number of iterations, which—
although not the only possible metric—is a natural choice of metric applied in
the literature for analyzing iterative SAT-based approaches in various problem
settings [41-45] and which has also been subjected to some extent to empirical
analysis for understanding specific MaxSAT solving approaches [46].

As the main contributions, considering best-case performance of the abstract
core-guided solvers, we show that SAT-based preprocessing has no effect on the
number of iterations required by the solvers. In fact, this is true regardless of
assumptions on the type of cores (guaranteed-minimal or not) the underlying
SAT solver (unsat core extractor) provides to the MaxSAT solvers; thus our
analysis also sheds light on the impact of core minimization on the performance
of the abstract core-guided solvers. Essentially, our results imply that, in terms
of best-case performance—assuming optimal search heuristics—the potential
benefits of applying SAT-based preprocessing in conjunction with core-guided
MaxSAT solvers are solely a result of speeding up the individual SAT solver calls
made during MaxSAT search. Furthermore, contrasting the results for best-case
behavior, we also show that SAT-based preprocessing does, in cases, improve
worst-case performance of core-guided MaxSAT solvers (without ever having a
negative effect on the worst-case number of iterations).

This paper is organized as follows. After preliminaries on MaxSAT and SAT-
based preprocessing for MaxSAT (Sect. 2), we detail abstractions of core-guided
MaxSAT solvers we focus on (Sect. 3). Before detailed proofs of our results (pro-
vided in Sects. 5 and 6), we present a detailed overview of the main contributions
(Sect. 4).

2 Preliminaries

Maximum satisfiability. For every Boolean variable x there are two literals:
the positive literal z and the negative literal —z. A clause C is a disjunction
of literals, and a CNF formula F' is a conjunction of clauses. When convenient,
we treat a clause as a set of literals and a CNF formula as a set of clauses. We
denote by VAR(F) the set of variables appearing in F. A truth assignment is
a function 7: VAR(F) — {0,1}. A clause C is satisfied by 7 if 7(I) = 1 for a
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positive literal or 7(I) = 0 for a negative literal [ € C. A CNF formula F' is
satisfied by 7 if 7 satisfies all clauses C' € F'. A formula F' is satisfiable if there
is a truth assignment that satisfies it, otherwise it is unsatisfiable.

A (weighted partial) MaxSAT instance F' = (Fy, Fs,w) consists of two CNF
formulas, F} (hard clauses) and Fy (soft clauses), together with a function
w: Fs — N assigning a positive weight w(C) to each C € F;. If w(C) =1
for all C € F, the instance is unweighted. An (unsatisfiable) core of a MaxSAT
instance F'is a subset k C F, such that x A F}, is unsatisfiable. A core is minimal
(a MUS) if no ks C k is a core of F. We denote the set of all MUSes of F' by
mus(F). For a subset S C F; and clause C € S, C' is necessary for S if F, A S
is unsatisfiable and Fj, A (S \ {C}) is satisfiable.

An assignment 7 that satisfies F}, is a solution to a MaxSAT instance F'.
For a solution 7, let COST(F,7) = > pcp w(C) - (1-7(C)), ie., the sum of
the weights of soft clauses in F' not satisfied by 7. A solution 7 is optimal if
COST(F, ) < CcosT(F,7’) for every solution 7’; we denote the cost of F, i.e., the
value COST(F, 7) for optimal solutions 7, by COST(F). Given a MaxSAT instance
F, the MaxSAT problem asks to find an optimal solution to F.

SAT-Based Preprocessing for MaxSAT. Preprocessing is today an integral
part of SAT solving [33,34]. Consisting of applying a combination of satisfiability-
preserving simplification (or rewriting) rules on the input CNF formula F to
obtain a preprocessed CNF formula pre(F), a central aim of preprocessing is to
speed up the runtime of a SAT solver so that the combined preprocessing time
and solving time on pre(F') is shorter than the runtime of the solver on F. Sev-
eral preprocessing techniques for SAT have been proposed. In this work we will
focus on bounded variable elimination, subsumption elimination, self-subsuming
resolution, and blocked clause elimination, as perhaps the most common pre-
processing techniques in modern SAT solving.

Resolution. Given two clauses C = C; VI and D = Dy V —l of F, the resolution
rule states that the clause C ><; D = C1V D1, called the resolvent, can be inferred
by resolving on the literal [. This is lifted to two sets S; C F and S—; C F of
clauses that contain the literal [ and —i, respectively, by S; >y S-y = {C' > D |
CeS;,DeS, and C < D is not a tautology}.

Bounded Variable Elimination (BVE) [33]. For a variable x € VAR(F'), denote
by F, (F-.) the clauses of F' containing the literal z (—x). If |F, >, F_;| <
|F U F-;|, the BVE rule allows converting the formula F to (F\ (F, UF_;))U
(Fyp<p Fop).

Subsumption Elimination (SE). A clause C' € F subsumes another clause D € F
if C C D. The SE rule allows for removing subsumed clauses from F'.

Self-Subsuming Resolution (SSR). Given two clauses C,D € F st. C = Cy VI,
D = D;V-lforaliteral [ and D, C C4, the SSR rule allows for replacing C by C}.

Blocked Clause Elimination (BCE) [47]. A clause C' € F is blocked if it contains
a literal [ € C s.t C <y D is a tautology for all D € F_;. BCE allows removing
blocked clauses from F'.
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Ezample 1. Consider the CNF formula
F={(xVy),(-tV-z),(-zVy),(-yVz2),(zVit),(x),(yVt),(zViVz)} Due to
the clause (z), SE allows for removing (z V y) and (z V¢t V x). After this, using
BVE to eliminate z, results in the formula pre(F) = {(=t V ~y), (¢t Vy), (z)}.

As shown in [26], many important SAT preprocessing techniques, including
BVE, SE, and SSR, cannot be used directly on MaxSAT instances. However,
a correct lifting on these techniques for MaxSAT is enabled by the so-called
labelled CNF (LCNF) framework [26,48]. The LCNF framework enables correct
applications of SAT-based preprocessing techniques on a MaxSAT instance F' =
(Fy, Fs,w) using the procedure outlined in Fig. 1. Each soft clause C' € F; is
augmented with a fresh label variable lc (Step 1). Then SAT preprocessing is
applied on the CNF formula Fj, U F® (Step 2). To ensure correctness in terms
of MaxSAT, the preprocessor needs to be restricted from resolving on any of
the label variables. The hard clauses of pre(F') are the clauses output by the
SAT preprocessor on Fj, UF? (Step 3). The soft clauses of pre(F') contain a unit
negation of each label variable that has not been eliminated by preprocessing;
the weight function w? assigns to each (—lc) the same weight as was assigned
to C by w (Step 4). Finally, the procedure returns the preprocessed instance
pre(F) = (pre(F)p, pre(F)s, w?) (Step 5). The soft clauses of pre(F) are all unit
soft clauses (—l¢) where the variable I~ was added to some soft clause C' € F of
the original instance F' in Step 1. Due to BVE, the variable [ might appear in
more than one hard clause of pre(F) and there might be literals that have been
eliminated entirely from the formula during preprocessing.

1. F¢ ={(CVlc)|C € Fs, lc is a fresh variable}.

2. Run VE, SSR, SE, and BCE on F}, U F until fixpoint to obtain pre (F')y,.
3. pre (F)s = {(=l¢) | 3C" € pre (F)p,lc € C'}.

w((=le)) = w(C) for all (—~lo) € pre (F)s.

5. Return pre (F') = (pre (F)p, pre (F)s, w”) .

>

Fig. 1. Applying SAT-based preprocessing to MaxSAT instance F' = (Fj, Fs, w).

Ezample 2. Let F = (F},, F) be an unweighted MaxSAT instance with

F, = {(zVy),(2),(zVi)} and Fs = {(-z),(—y), (—t)}. Augmenting the soft
clauses with the label variables [, lo, and I3 to form F = {(-z V l1),(-y V
l2), (=t Vi3)}, and applying SAT-based preprocessing (BVE and SE) results in
the instance pre(F') with pre(F), = {(l1 V l2), (2)} and pre(F)s = {(—l1), (—l2)}.
Notice that preprocessing eliminates the label I3.

Correctness of SAT-based preprocessing for MaxSAT is summarized as fol-
lows [26].

Theorem 1 ([26]). Let F' be a MazSAT instance and pre(F') the instance result-
ing from preprocessing F according to the procedure in Fig. 1. The following
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hold: (i) cOST(F) = cosT(pre(F)); (ii) any optimal solution to pre(F') restricted
to VAR(F) is an optimal solution to F; and (iii) {C1,...,Cn} € mus(F) iff
{(Hley), .-, (Hle,)} € mus(pre(F)).

3 Core-Guided MaxSAT Algorithms

In this section we detail the two abstractions of MaxSAT algorithms we analyze
in this work: CG and HS. Both are examples of so-called core-guided MaxSAT
solvers, one of the most successful current MaxSAT solving approaches with
several variants, e.g. [28,31,42,49-52]. CG (Fig.2 left) is the same abstrac-
tion as studied in [53]. CG works by iteratively calling a SAT solver to extract
unsatisfiable cores and ruling out each of the found cores by exploiting cardi-
nality constraints. HS (Fig. 2 right) follows the implicit hitting set approach to
MaxSAT [54,55], iteratively using a SAT solver to extract unsatisfiable cores,
and an exact minimum-cost hitting set algorithm to compute hitting sets over
the found cores.

In more detail, at each iteration 7, CG checks the satisfiability of a working
formula F! | which initially contains all clauses in the input formula, using a SAT
solver. If F! is satisfiable, CG returns the satisfying assignment 7 returned by the
SAT solver restricted onto the variables of F'. Otherwise, the SAT solver returns
a core k' of F . Finally, CG forms the next working formula F" by processing
the core x°. The exact method in which CG processes ' is left abstract. Follow-
ing [53], we consider algorithms that extend soft clauses with blocking variables
and impose hard linear (in)equalities over the blocking variables. More precisely,
CG is allowed to modify the soft clauses C' € F! by two operations: Relax(C)
and Clone(C, w).

CG: HS:
Fl «— F,UF;s JC«— O /] set of found unsat cores of F’
for i=1... do _ Fy — (Fn UFs)
(result, k,7) < SATSOLVE(Fy,) while true do
if result="satisfiable” then H «— MINCOSTHITTINGSET(K)
| return T // optimal solution Fy «— F,U(Fs\ H)
else (result, k,7) <— SATSOLVE(F),)
/[ SAT sqlver returned unsat core if result="satisfiable” then
Fy = (Fu \ &) ) | returnT // optimal solution
Fit! « PROCESS(FY, k) else
end /I SAT solver returned unsat core
end K~ KU {fi}
end
end

Fig. 2. Abstractions of MaxSAT solvers: CG (left) and HS (right), given a MaxSAT
instance F' = (Fy, Fs,w) as input.
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-~ Relax(C) allows replacing C' by C Vb where b is a new blocking variable not
appearing anywhere else in the formula.

— Clone(C, w) allows adding a soft duplicate C’ of C to the formula and relaxing
C’ by calling Relax(C"). The (relaxed) clone C” is assigned weight w, and w
is subtracted from the weight of C' (C' is discarded once it has weight 0).

In addition to these operations, CG is also allowed to add hard linear
(in)equalities (cardinality, or more precisely, pseudo-Boolean, constraints) over
the blocking variables. Given a cardinality constraint Y w; - x; o K over variables
x;, constants w;, and o € {=, <, <}, we denote by CNF(>_ w; - z; 0o K) a CNF
encoding of such a constraint. Following most core-guided MaxSAT algorithm
implementations, we place two important restrictions on how CG can process the
cores it encounters. First, the cardinality constraints are not allowed to mention
any of the variables in the initial formula F'. Second, if the algorithm extracts n
cores during solving an instance F, and w, is the smallest weight over all clauses
in the ith core extracted, the optimum cost of F' is cOST(F) = > | wi . A con-
crete example of an algorithm fitting the CG model is the WPM1 algorithm [50],
concurrently proposed as WMSUT1 [51], as an extension of the classical Fu-Malik
algorithm [49] to weighted MaxSAT. Given a core k!, WPMI first computes w?,.
Then it calls Clone(C?, w?,) for each C* € £ and adds an ezactly-one constraint
over the blocking variables added during the cloning operation.

HS is a hybrid algorithm, instantiated in [25,55], that uses a SAT solver for
core extraction from a working formula F,, initially all clauses of the working
formula. Given a collection K of extracted cores, HS uses an exact algorithm (an
integer programming solver in practice) to find a minimum-cost hitting set hs
over K. The working formula is then updated to contain all clauses of F' except
for the soft clauses in hs, and the SAT solver invoked again. If the working
formula is satisfiable, the satisfying assignment obtained is an optimal solution
to F. Otherwise another core is obtained and the search continues with hitting
set computation.

4 Overview of Results

In this section we give an overview of the main contributions of this paper. The
algorithm-dependent formal proofs are provided after this overview in Sects. 5
and 6.

We start by first defining the metric with respect to which we perform the for-
mal analysis. The definition, intuitively matching with the number of iterations
made by the abstract MaxSAT solvers considered, relies on the concept of core
traces. Informally, a core trace T is a finite sequence of MaxSAT cores match-
ing a possible execution of a core-guided MaxSAT solver. More formally, given
a MaxSAT instance F and A € {CG, HS}, a sequence (k!,... k") of cores is an
A core trace on F if there exists an execution of A on F such that (i) the core
extracted by A at iteration 4 is x; and (ii) .A terminates after having encountered
all cores in the sequence (i.e., the (n+1)th SAT solver call is satisfiable). For a core
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trace T', we denote by |T'| the number of cores in T', i.e., the length of T. Whenever
appropriate, we refer to A core traces on F simply as A traces on F'.

As the metric under analysis, we consider both the minimum and mazimum
length over all possible A traces for different choices of A. More specifically, for
A € {CG, HS}, we analyze the relative minimum and maximum lengths of core
traces for the following variants of A.

— Ape: A applied after SAT-based preprocessing (recall Fig. 1).

— A™: A using a SAT solver that is guaranteed to return a MUS when invoked
on an unsatisfiable formula (notice that an A™" trace contains only MUSes).

— Amus: AMUs applied after SAT-based preprocessing.

pre

For a MaxSAT instance F', we denote by minlen(A, F) and maxlen(A, F) the
minimum and maximum length A traces on F, respectively, or in other words,
the best-case and worst-case number of iterations required by A for solving F'.

Corollary 2,
Corollary 5
_
Corollary 2,
. Corollary 5 .
Proposition 2, Proposition 2,
.. Observation 1 .. Observation 1
Proposition 6 Proposition 6

Observation 2,

Proposition 5

mus /\) mus
P e —-

Observation 2,

Proposition 5

Fig. 3. Best-case performance in the number of iterations of A € {CG,HS}. Here
X — Y iff minlen(X, F) < minlen(Y, F) for all instances F.

Results. We provide a full characterization of the effect of preprocessing on the
maximum and minimum length of core traces on F'. The results on the best-case
performance (minimum lengths of core traces) are summarized in Fig. 3 for A €
{CG, HS}. In the figure, an edge X — Y indicates that, for any MaxSAT instance
F', the shortest X core trace on F' is at most as long as the shortest Y core trace
on F'. Analogously, our results for the worst-case performance (maximum lengths
of core traces) are summarized in Fig. 4. Here the edge X — Y indicates that, for
any MaxSAT instance F, the longest X core trace on F' is at most as long as the
longest Y core trace on F'; X - Y indicates that X — Y does not hold. In words,
we will provide in the following sections detailed proofs for the fact that SAT-
based preprocessing cannot lower the minimum number of iterations required
by CG or HS. For some intuition, we will show that for A € {CG, HS}, one of
the shortest A core traces on any MaxSAT instance F is also a A™ trace, and
that preprocessing cannot alter the MUS structure nor the A™"® traces on F.
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Fig. 4. Worst-case performance in the number of iterations of A € {CG,HS}. Here
X — Y iff maxlen(X, F') < maxlen(Y, F) for all F, and X - Y indicates that X — Y
does not hold.

In contrast, we will also show that preprocessing can improve the worst-case
performance of both of the algorithms. Intuitively, this is due to the fact that
preprocessing can remove soft clauses that are not members of any MUSes of
F and hence do not contribute to the unsatisfiability of F', but still might force
either algorithm to iterate unnecessarily many times.

We proceed now throughout Sects.5 and 6 by providing formal proofs for
all of the results summarized in Figs. 3 and 4. Before the more involved proofs,
we start with an algorithm-independent observation and an auxiliary result that
makes the remaining proofs simpler by allowing us to assume MaxSAT instances
to have a specific form without loss of generality.

Observation 1. For A € {CG, HS} and any MazSAT instance F, any A™S
trace on F is also an A trace on F. Hence maxlen(A™, F) < maxlen(A, F) and
minlen(A™, F') > minlen( A, F).

Finally, in the remaining proofs, we will use the fact that Theorem 1 guar-
antees that SAT-based preprocessing does not affect the set of MUSes of F' in
terms of of the mapping (—l¢) — C between the soft clauses of pre(F) and F.
In order to avoid explicitly referring to this mapping in every proof, we will
employ a technical observation from [40]. More specifically, we will assume for
the remaining part of this paper that the soft clauses C' € F, of each MaxSAT
instance F' have already been augmented with label variables [o to form the
hard clause C' V I and the soft clause (—l¢). In other words, we will assume
that all soft clauses of F' are unit negative literals (—l¢) with the variable I not
appearing negatively in any other clause and only appearing positively among
the hard clauses. Under this assumption, the literals appearing in the soft clauses
of F' can be reused as label variables while preprocessing [40], thus removing the
need of adding any new variables. Hence pre(F); C Fs, and Theorem 1 can be
simplified.
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Corollary 1 (of Theorem 1). Let F be a MaxSAT instance and pre(F') the
instance resulting after preprocessing F'. Then mus(F') = mus(pre(F)).

Most importantly, our assumption on the form of MaxSAT instances does not
affect core traces. A proof for this auxiliary result is provided in Appendix A.

Proposition 1. Let F = (Fy,, F,w) be a MazSAT instance, and F¥ = (F, UF2,
FF wl) the MazSAT instance with F* = {C Ve | C € F, lo is a fresh
variable}, F¥ = {(=lg) | C € Fi}, and wP((=lc)) = w(C). The following
observations hold.

1. cosT(F) = cosT(FT), and the optimal solutions of F are the same as the
optimal solutions of FT restricted to VAR(F).

2. For A € {HS, CG}, there is a one-to-one mapping between the A core traces
on F and F¥ of equal length.

5 Impact of Preprocessing on HS

We continue with formal proofs of our main results for HS. An essential intuition
for these proofs is that HS only extracts cores of the original instance. In other
words, an HS core trace on any F' only contains cores of the original instance F'.

We first analyze best-case performance. The first observation shows that
preprocessing does not affect the lengths of HS MUS traces in a significant way.

Observation 2.
For any MazSAT instance F, minlen(HS™, F) = minlen(HS;.°, F).

pre

Proof. (Sketch) By Corollary 1 we obtain £ € mus(F') iff K € mus(pre(F’)). The
fact that an HS™® trace on F' only contains MUSes of F' implies that T is an
HS™* trace on F iff it is an HS%® trace on F'. O

pre
Next we show that executions of HS™® are always shortest executions of HS.

Proposition 2.
For any MazSAT instance F, minlen(HS,F) > minlen(HS™"*, F) and
minlen(HSpre, F') > minlen(HS; .S, F).

pre

Proof. We will show that minlen(HS, F) > minlen(HS™*, F') for any F, and

thus minlen(HSpre, F') > minlen(HSJ°, F) as well. Let T' = (k',...,x") be an
arbitrary HS core trace on F'. Let hs* be a minimum-cost hitting set over
{k!, ..., k"} for which F'\ hs* is satisfiable. The statement follows by construct-
ing an HS™* trace T, on F s.t. |T),| < |T|. As each x* € T is a core of F, all
contain at least one MUS m C k*. Consider the set M of at most n MUSes of F
constructed as follows. (1) Let M! = {m'}, where m! is any MUS contained in
k1 (2) let MP = M=t U {m'}, where m® C ' is a MUS such that m’ ¢ M1
if any exist, else let M*® = M*~1. We obtain M"™ = M of size |[M| = k < n such
that each m € M is a subset of some s’ € T.
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We show that M can be ordered to form an HS™* trace on F of length at
most k, since if a minimum-cost hitting set hs over any proper subset My C M
hits all m € M, then hs* is also a minimum-cost hitting set over M, and HS™"*
can terminate. As F'\ hs* is satisfiable, hs* is also a hitting set over M and over
M. Furthermore, as each m € M is a subset of some x* € T and each k' € T
contains a MUS in M, hs* is a minimum-cost hitting set of M. Finally, as hs
is a hitting set over M the cost of hs is not less than the cost of hs*. Hence hs*
is a minimum-cost hitting set of My, so the hitting set computation could have
returned hs*, thus allowing HS™® to terminate. O

A simple corollary is that shortest executions of HS and HS,e are of equal
length.

Corollary 2. For any MaxSAT instance F', minlen(HS, F') = minlen(HSpre, F).

Proof.
Observation 1 and Proposition 2 establish minlen(HS, F') = minlen(HS™*, F') and
minlen(HSpre, F') = minlen(HSJ.®, F). Together with Observation 2 this implies

minlen(HS, F') = minlen(HS™*, F') = minlen(HS[.°, F') = minlen(HS,., F). O

pre »

We move on to the worst-case results. Corollary 1 can be used to show that
valid executions of HSy. are also valid executions of HS on any MaxSAT instance.

Observation 3.
For any MaxSAT instance F', maxlen(HSpre, F') < maxlen(HS, F).

Proof. As pre(F)s C Fs and any MUS of pre(F) is a MUS of F, any core of
pre(F) is a core of F. O

Finally for this section, we prove the three X - Y edges in Fig.4 for HS. For
this, we need as a witness a family of MaxSAT instances F'(n) and a X core
trace T on F(n) s.t. |T| > maxlen(Y, F'(n)).

Proposition 3.
There is a family of MaxSAT instances F(n) with O(n) soft clauses s.t.
maxlen(HS, F(n)) > n and maxlen(HS™, F(n)) = maxlen(HSpe, F(n)) = 1.

Proof. Fix n and let F(n), = {(z Vy)tU{(zVyVz)]|i=1,...,n} and
F(n)s = {(-2), (=)} U{(=z) [ 7 = 1,...,n} with w((-z)) = w((~y)) = n and
w((—z;)) = 1 for all i. Now coST(F(n)) = n and mus(F(n)) = {{(-z), (-y)}},
explaining why maxlen(HS™* F(n)) = 1. A linear-length HS core trace on
F(n) is (k',...,k"™), where k' = {(-z),(-y),(=2;)}. HS cannot terminate
before extracting all n cores. To see this, consider an earlier iteration i < n.
The weight of the hitting set {(—z;) | j = 1,...,i} over K = {x!,... s’}
isi < n=w({(-z) = w((~y)) and as such any minimum-cost hitting set
over K' can not contain (—x) or (—y), preventing HS from terminating. Hence
maxlen(HS, F'(n)) > n.
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However, due to the clause (z V y), SE allows the removal of the clause
(x VyV z) for all i. Hence pre(F(n)) has pre(F(n)), = {(z V y)} and
pre(F(n))s = {(—x), (—y)}. The only core of pre(F(n)) is {(—z), (—y)}, and thus
maxlen(HSpre, F'(n)) = 1. O

Proposition 4. For any n, there is a family of MaxSAT instances F(n) with
O(n) soft clauses s.t. maxlen(HSpre, F(n)) > n and maxlen(HS,,°, F) = 1.

pre

Proof. Fix n and let

F(n)h = {(1'1,2 VsV —\28273), (E \Y .%'2,3)} @] (1)
n+3

U {(331,2 Ve ;V ﬁl‘lﬂ'), (xl,i Vi3V ﬁ33'3,1')7 (xS,i Vo,V ﬁ3:2,3)} U (2)
i=4

{(z7,2 V Ta,y V 21y, (12 V Ty V Tay) | 1 < z,y <n+ 3} (3)

and F(n)s = {(-z12),(—213), 0E)} U {(-z2;) | i = 4,...,n + 3} with

s )

w((—z12)) = w((-z13)) = w((—-F)) = n and w((-we;)) = 1 for all i.
The hard clauses on row 3 are included in order to prevent preprocessing
from simplifying F(n) in any way. Intuitively, F'(n) encodes hard transitiv-
ity constraints over an undirected graph with each node having degree at
least 4. Hence pre(F'(n)) = F(n) at it suffices to show maxlen(HS, F'(n)) > n
and maxlen(HS™* F) = 1. Both arguments are similar to Proposition 3. As
mus(F(n)) = {{(-z1,2), (-z1,3), (FE)}}, it follows that maxlen(HS™®, F) = 1. A
linear-length HS core trace on F(n) is (k',..., k™), where k' = {(=z12), (-21,3),
(—E), (m22,i43)} O

6 Impact of Preprocessing on CG

We start the analysis for CG by linking CG core traces with optimum cost.

Observation 4. Let T = (k',...,k") be a CG or CG™ core trace on a
MazSAT instance F, and w' = min{w(C?) | C* € k'}. The cost of F is
cosT(F) = Y1 | w'.

An important corollary of Observation 4 is that no proper subsequence of a CG
or CG™* core trace on F' can in itself be a CG or CG™* trace on F.

The proofs on CG, in contrast to HS, need to consider the fact that the ith
core k' in a CG core trace on F is not a core of F, but rather, of the working
formula F? instead. Following this, a relationship between the cores of F* and
the cores of F' was derived in [53]. After necessary definitions and restatement
of the result of [53], we will prove an analogous result regarding the relationship
between the MUSes of F¥ and F, which proves useful for obtaining our main
results for CG.
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6.1 Cores and MUSes of Working Formulas of CG

We follow here definitions from [53]. Let F' be a MaxSAT instance and F* the
working formula of CG on iteration i when invoked on F. Let card’ be the set
of all cardinality constraints added to F' by CG during iterations 1,...,¢. Thus
the hard clauses of F' are F} = Fj U card’. We denote by soln(card’) the
set of truth assignments satisfying card’ and not assigning any of the variables
in F. Given any 7: VAR(F) — {0,1} and « € soln(card"), (7:) is the truth
assignment over the variables of F that assigns all variables of F' according to
7 and the rest according to «; (7:) is well-defined as the auxiliary cardinality
constraints are not allowed to mention variables in F. For any 3 € soln(card’)
and S C F!, the reduction of S* wrt 3, S?|5 is obtained by (1) removing from
S all clauses satisfied by 3; (2) removing from each remaining clause C* € S°
all blocking variables, i.e., all literals falsified by 3; and (3) setting the weights
of each C* € S back to their original weights in F (removing duplicates). The
restriction R(C?) € Fs of a soft clause C* € F! is obtained by (1) removing
all added blocking variables from C? (2) removing all clones of C* from the
instance; and (3) setting the weight of C*® back to its original weight in F.
Restriction is lifted to a set S* C F! by R(S?) = {R(C?) | C* € S?}. Notice that
St|g € R(S?) C F,. With these definitions we can now restate a central result
from [53].

Theorem 2 (Adapted from [53]). '
A set k' C F! is a core of F* iff k'|5 is a core of F for all 3 € soln(card).

We will now prove an analogous characterization of the MUSes of F.

Theorem 3. A set M* C F; is a MUS of F' iff there is a collection Y C
mus(F) s.t.

1. R(M*) = Uprexr M;

2. for each M € Y, there is an o € soln(card’) s.t. M C M|, and M' ¢ M?|,
for all other M" € T; and

3. for each a € soln(card'), there is an M € Y s.t. M C M¢|,.

Note that condition 3 is equivalent to the requirement of Theorem 2 for the set
M? being a core of F', since M*|, C R(M?) and M|, should be unsatisfiable
for all a.

Before proving Theorem 3, consider the following example for more intuition.

Ezample 3. Consider the unweighted MaxSAT instance F' = (F}, Fy) with
F, = {(z1 V22 V x3),(x3 V 24 V z5), (x5 V 26 V 27),(x3)} and Fy =
US_{(—z;)}. Invoke WPM1 [50] on F and assume that it first processes
the core {(—x3),(—z4), (—z5)}. Afterwards the working formula F? is F? =
Fy U{CNF(ry + r2 +r3 = 1)} and F? = {(-x1), (~x2), (—z3 V r1), (-4 V
), (mxs V 73), (mx6), (m27)(—28)}. Now card® = {CNF(r; + ro + r3 =
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1)} and the set soln(card?) contains three assignments o', i = 1,...,3,
assigning 7; to 1 and the others to 0. By Theorem 2, the set w2 =
{(=z1), (mz2), (mz3 V 1), (75 V 13), (=26), (m27)} is a core of F? as each
k2|4 is a core of F. For example, k2|1 = {(—x1), (—22), (m5), (—26), (m27)}.
In order to use Theorem 3 to show that x2 is also a MUS of F?, note
that R(k?) = {(-z1), (-22), (~23), (-ws), (—26), (~a7)} = {(-1), (—22), (~w3)} U
{(=75), (~7e), (~7)}, where {(—z1), (~22), (723)} and {(-2s5), (-26), (—a7)} are
MUSes of F. Condition 2 of Theorem 3 follows since the only MUS in x2|,s is
{(~21), (~2), (~3)} and the only MUS in £2|os is {(~zs), (~z6), (~7)}.

Next we prove Theorem 3. We begin by some lemmas. Assume for each of
them that CG is invoked on an instance F' and that F* is the working formula
on iteration 7.

Lemma 1. Let M? be a MUS of F* and C* € M*. There is an o € soln(card?)
s.t. R(C?) is necessary for M'|,.

Proof. By Theorem 2, M?|, is a core of F for all o/ € soln(card’). Hence
it suffices to show that M?¢|, \ R(C?) is not a core for some a. Consider the
assignment (7:v) satisfying Fj A(M*\{C"}), guaranteed to exist as M* is a MUS
of F'. Now 7 satisfies Fj, A (M*\ {C})]o = Fi A (M?, \ R(C?)) as required. O

Corollary 3. For any MUS M*® of F', R(M*) C |J mus(F).

Corollary 4. For any MUS M* of F*, there is an irreducible T C mus(F)s.t.
R(M") = Uprer M.

Proof. Take Y as the smallest collection of MUSes of F for which R(M?) C
UMQf M; by Corollary 3 such a collection exists. We claim that (J;c+ M C
R(M"), from which irreducibility follows directly by minimality of Y. Fix an
arbitrary C., € M in some M € Y. By minimality of T, there is a clause C* € M
for which the only MUS of T containing R(C?) is M. By Lemma 1, there exists
a ( for which R(C") is necessary for M'|z. As M'|3 C R(M") C U;ey M and
the only MUS in T containing R(C") is M, we have C. € M C M*|3 C R(M"),
establishing C. € R(M?") and J;ev M C R(M?). O

We are now ready to prove Theorem 3.

Proof (of Theorem 3). A collection T C mus(F) satisfying condition 1 exists
by Corollary 4. For condition 2, we use the fact that the set Y is irreducible.
Let M € Y be arbitrary. Similarly to the proof of Corollary 4, we can find a
C' € M' € Y and « € soln(card’) s.t R(C?) ¢ M’ for any other M’ € T and
R(C?) is necessary for M‘|,, implying that the only MUS in M?|, is M. Finally,
condition 3 follows from M being a core of F* and Theorem 2.

What remains is to show that subset M*® C F! satisfying conditions 1-3 is
a MUS of F*. By condition 3 and Theorem 2, M® is a core of F*. Hence we
only need to show that it is minimally unsatisfiable, i.e., Fj A (M®\ {C?}) is
satisfiable for all C* € M. Fix C* € M* and let Y be the collection of MUSes of
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F for which R(M*) = {J,;ey M. Consider any MUS M¢ € T s.t. R(C?) € Mc.
By condition 2, there is an a € soln(card’) for which the only MUS (of F) in
M, € R(M?) is Mc. For such a, Fy, A M?|, \ {R(C;)} is satisfied by some 7.
Hence (7:a) satisfies Fj A card’ A (M?\ {C?}) = F} A (M*\ {C)). O

Finally, we note that each condition in Theorem 3 is necessary.

Example 4. Consider again the MaxSAT instance F' from Example 3. The set
{(=z1), (mz2), (mz3 V r1)} is an example of a non-MUS of F! satisfying condi-
tions 1-2 and the set {(—x1), (mx2), (-x3 V 1), (25 V 1r3), (mxe), (m27), (m28)}
is an example of a non-MUS of F! satisfying conditions 1 and 3.

6.2 Results on Core Trace Lengths

We proceed with proofs on the number of iterations for CG. With respect to
best-case, preprocessing does not affect the lengths of CG™® traces significantly.

Proposition 5.
For any MaxSAT instance F, minlen(CG™*, F') = minlen(CGy’, F).

pre

Proof. We show that a Ty, = (m',...,m") is a CG™* trace on F iff it is a CGpa®
trace on F'. We prove the left-to-right direction, the other is similar. We will show
that there is an execution of CGJle® on F for which the ith MUS extracted is m/
and which terminates only after extracting all MUSes of T},,. The termination
follows from no proper subset of a CG™"* trace being a core trace in itself.

We show that each m! is a MUS of pre(F)* by induction. By Corollary 1,
m! is a MUS of pre(F). Assume that CG™® has extracted and processed the
MUSes (m!,...,m*"!) from pre(F) and consider the ith iteration. As m® is a
MUS of F?, by Theorem 3 there is an T C mus(F) s.t. R(m') = Upeym.
For m® € mus(pre(F)?), we show that T satisfies the conditions of Theorem 3
in pre(F) as well. By Corollary 1, each m € T is a MUS of pre(F). For the
other two conditions, note that by induction, the set of cardinality constraints

card; added to pre(F) after processing the MUSes m?, ..., mi~! is the same as

the set card’ added to F' after processing the same sequence of MUSes. Hence
a € soln(card,) iff a € soln(card’), which implies the two other conditions of
Theorem 3. a

Next we show that some shortest execution of CG is also an execution of
CGmus.

Proposition 6.

For any MazSAT instance F, minlen(CG™ F) < minlen(CG,F) and
minlen(CGpe, F') < minlen(CGopye, V).

Proof. (Sketch) We prove minlen(CG™*, F) < minlen(CG, F'); the same proof
works for minlen(CGRe*, F) < minlen(CGypyre, F) as well. Let T = (x!,...,£")
be a CG trace on F. We construct a CG™* trace T,,, = (m!,...,m*) on F of
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at most the same length recursively. For intuition, on each iteration ¢ CG™"®
processes a subset of the clauses CG would have processed on the ith iteration
of the execution corresponding to T'. Hence, if cardin and card’ are the set of
cardinality constraints added to F' by the ith iteration on the execution corre-
sponding to T}, and T', respectively, then any a € soln(cardfn) can be extended
to a solution to card’ by assigning the remaining variables to 0.

Let m! be an MUS of F contained in x!. Assume that CG™" has extracted
the MUSes m/ for j = 1,...,i—1s.t each m? C x7. Consider the ith iteration and
the current working formula F? . As k' is a core of F*, the ith working formula
on the execution corresponding to 7', by Theorem 2 K'g is a core of F' for all
B € soln(card’). Hence £'|g is also a core of F for all 3 € card,,. Applying
Theorem 2 gives that £ is a core of F!,. Hence it also contains a MUS m® of F!,.
For termination of CG™", note that mingic,: {w(C?)} < mingic,,: {w(C*)} for
every i. Since Y1 mingic i {w(C*)} = cosT(F), termination of CG™* occurs
at the latest after n iterations on the execution corresponding T,. a

Finally, we show that the shortest executions of CG and CGy,. are of the same
length.

Corollary 5. For any MaxSAT instance F', minlen(CG, F) = minlen(CGpre, F').

Proof. Proposition 6 and Observation 1 imply minlen(CG, F') = minlen(CG™*, F')
and minlen(CG %, F') = minlen(CGye, F'). Together with Proposition 5 we obtain

minlen(CG, F') = minlen(CG™*, F') = minlen(CG[,°, F') = minlen(CGypye, F'). O

pre

We move on to worst-case results for CG. We begin by showing that valid exe-
cutions of CGyye are also valid executions of CG.

Proposition 7.
For any MaxSAT instance F, maxlen(CG, F') > maxlen(CGpye, F).

Proof. We show that a CGpe trace T = (xk',...,k") on F is also a CG trace
on F. The termination of CG only after n iterations follows from the cost-
preserving properties of preprocessing and Observation 4. We show that each &°
is a valid core of F* by induction. The case i = 1 follows from pre(F), C Fj
and Corollary 1. Assume next that all 7 for j < i have been cores of FJ and
consider k'. By Theorem 2, x?|3 is a core of pre(F') for all 3 € soln(card;)7 where
card; is the set of cardinality constraints added to pre(F') after processing cores
k', ..., &1 By induction, this set is exactly the same as set of cardinality
constraints card’ added to F after processing the same cores. As any core of
pre(F) is a core of F, it follows that |5 is a core of F for all § € soln(card’).
We conclude that x' is a core of F*. a

Finally, two families of instances witness the - edges in Fig. 4 for CG.

Proposition 8.
There is a family of MaxSAT instances F(n) with O(n) soft clauses s.t.
maxlen(CG, F(n)) > n and maxlen(CG™*, F(n)) = maxlen(CGpre, F'(n)) = 1.
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Proof. (Sketch) Consider again the instance F'(n) constructed in the proof of
Proposition 3. We showed that maxlen(HS™*, F) = maxlen(HSpe, F) = 1.
This also holds for CG. A linear-length CG core trace (x',...,x"), on F
can be constructed iteratively as follows: k! = {(-x), (~y), (—21)} and k% =
{(m2)5_1, (=y)5_1, (—z;)} where (—z)$_; and (—y)$_; are duplicates of the orig-
inal clauses added on iteration ¢ — 1. The existence of such duplicates for all n
iterations follows from w((—x)) = w((—y)) = n and w((—z;)) = 1. The termi-
nation of CG after the nth iteration follows from Observation 4 as the smallest
weight among the clauses in each x? is 1. a

Proposition 9. There is a family of MazSAT instances F(n) with O(n) soft
clauses s.t. maxlen(CGpre, F'(n)) > n and maxlen(CG, F) = 1.

pre

Proof. (Sketch) F(n) is the same as for HS and the proof follows Proposition 4.
A linear-length CG core trace can be constructed similarly to Proposition 8 by
replacing clauses in the linear-length HS trace from Proposition 4 with duplicates
of original clauses where required. O

7 Conclusions

We formally analyzed the effect of SAT-based preprocessing, as well as core
minimization, on the performance of core-guided MaxSAT solvers. As a main
result, we showed that SAT-based preprocessing has no effect on the best-case
number of iterations required by the solvers but can improve on the worst-
case. In terms of best-case performance, the potential benefits of applying SAT-
based preprocessing in conjunction with core-guided MaxSAT solvers are thus in
principle—assuming optimal search heuristics—solely in speeding up individual
SAT solver calls made during MaxSAT search. Simultaneously, our analysis also
revealed an analogous result on the impact of core minimization in core-guided
MaxSAT solvers. Our results motivate further work on developing MaxSAT-
specific preprocessing techniques capable of affecting the MaxSAT algorithms
on a more general level. In contrast, SAT-based preprocessing does in cases have
a positive effect on the worst-case number of iterations. Of independent interest,
we established a formal characterization of how the underlying MUS structure
is altered by iterative revisions performed by CG solvers on MaxSAT instances
(Theorem 3), thus sharpening the main results of [53].

Appendix
A Proof of Proposition 1
(1) If an optimal solution 7 to F assigns 7(C) = 0, then an optimal solution

7P to Fp has to assign Fp(lg) = 1. Similarly, if 7(C) = 1, then 7¥ can assign
TP(lc) =0.
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(2) We sketch the conversion of an A core trace Tp = (kb,...,£%) on Fp into
a core trace T = (k',...,k™) on F, the other direction is similar. For A = HS,
every kb is a core of Fp. The corresponding core trace of F' is obtained by
exchanging each % = {(=l¢,) |i=1,...,n} with s* = {C; | i =1,...,n}. Now
k% is a core of Fp iff k' is a core of F. To see this, note that if x* is not a core of F,
then it can be satisfied by some assignment 7. The same 7 extended by setting all
lc, variables to 0 to satisfies both k% and the hard clauses {C1 Vic,,...,ChVic, }.
Hence k% is not a core of Fp either. A similar argument shows the other direction.
Finally the termination of HS after n iterations follows by a similar argument
showing that F \ hs is satisfiable for some hs = {C1,...,C;} iff FP\ hs? is
satisfiable for hs? = {(=l¢,), ..., (=lc,)}. Hence the trace T = (k!,..., ") is a
HS trace on F' of the same length as Tp.

For A = CG the argument is similar but inductive. To form a CG trace T' on
F, every occurrence of a (—l¢,) in a clause C* € k% is replaced by C; to form a
core k' of F*. For i > 0, each such C* may have been augmented with blocking
variables, i.e., C* = (=lg, V\/ b) for some set of blocking variables. However, the
substitution (—lg, V V/b) — C; V \/ b is still valid as, by induction, if CG adds
\/ b to (—l¢,) on the execution corresponding to Tp, then it also adds \/ b to C;
on the execution corresponding to 7. a
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Abstract. In this paper we present a technique for solving multiobjec-
tive discrete optimization problems using decision diagrams. The pro-
posed methodology is related to an algorithm designed for multiobjective
optimization for dynamic programming, except utilizing decision diagram
theory to reduce the state space, which can lead to orders of magnitude
performance gains over existing algorithms. The decision diagram-based
technique is applied to knapsack, set covering, and set partitioning prob-
lems, exhibiting improvements over state-of-the-art general-purpose mul-
tiobjective optimization algorithms.

Keywords: Decision diagrams - Multiobjective optimization - Multi-
criteria decision making - Multicriteria shortest path

1 Introduction

Automated decision making, by its very nature, requires the consideration of
a multitude of objectives. Multiobjective optimization, also known as multi-
objective programming, vector optimization, multi-criteria optimization, multi-
attribute optimization or Pareto optimization, has a rich history, dating back to
the emergence of rigorous mathematical programming [21]. Several books have
been written on the topic [11,14,28], and many in-depth surveys [12,13,15,34,37].

The present paper concerns multiobjective discrete optimization problems
(MODO), where the variables of the problem are discrete and the number of
objectives is p > 2. An efficient solution to a MODO is one in which there is
no other solution that improves, simultaneously, on each of the objectives. The
vector corresponding to the objectives of an efficient solution is called a nondom-
inated solution. The set of efficient solutions is known as the efficient set and the
set of all nondominated solution is known as the nondominated set. The goal of
a MODO, for the purposes of this paper, is to enumerate the nondominated set.

Perhaps the most commonly studied technique for identifying all nondomi-
nated solutions for MODOs is the e-constraint method [18], having well-known
properties for more than two objectives [11]. The e-constraint method was first
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M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 86-95, 2016.
DOI: 10.1007/978-3-319-44953-1_6



Multiobjective Optimization by Decision Diagrams 87

used by Laumanns et al. [24], where an adaptive search over weighted objectives
was proposed. Ozlen et al. [27,29] and Kirlik and Saymn [23] provide algorithmic
improvements and are the basis for the comparison in the computational results
presented in this paper. Other utilized scalarization techniques include Benson’s
method [3] (a combination of the weight-sum technique and the e-constraint
method) and the augmented weighted Chebychev method [32]. The main draw-
back of these techniques is that a discrete optimization problem, often NP-hard
in practice, must be solved several times so as to enumerate the necessary scalar-
izations, leading to the bottleneck of their procedures.

In this paper, we propose an alternative method that creates a single binary
decision diagram (BDD) [1,9,10,25] which represents all feasible solutions to the
problem as a directed acyclic graph, and then employs multicriteria shortest path
problem (MSP) algorithms to enumerate the nondominated set. This technique
therefore transforms the problem into that of (1) finding the exact BDD for the
constraint set of the MODO, and (2) using MSP algorithms to find the set of
nondominated solutions.

The utilization of decision diagrams in optimization is recent and focusses on
the use of BDDs for a variety of purposes [5]. In this research stream, top-down
compilation methods for set covering problems [6,7] and set packing problems
[4,6] have been investigated, along with methods for creating BDDs for knap-
sack problems [2]. On the other hand, published articles on MSP are abundant.
Research on MSP started in the 1970s [19,35] and has typically concentrated
on two objectives (see Raith and Ehrgott [30] for details). A survey on exact
methods for the MSP is provided by Garroppo et al. [17].

Our methodology is primarily based on the work by Loui [26], who proposes
a multidimensional labeling technique for dynamic programming (DP) models
with stochastic or multidimensional weights. Such techniques have been con-
sidered in several papers [30] and are known in the DP community (see, e.g.,
Bertsekas [8], Sect. 2.3.4), often being applied to multiobjective knapsack algo-
rithms, as by Figueira et al. [31]. Nonetheless, labeling algorithms are typically
prohibitive in practice due to the curse of dimensionality of DP models, as the
state space often grows too quickly in practice.

BDDs are closely related to dynamic programming and, as in DPs, they also
reduce discrete optimization to shortest path problems. However, it has been
shown that the state-space associated with a BDD can be much more compact
than that of a similar DP model [20], which is key to our methodology. Our
major contribution, hence, is the introduction of a MSP labeling algorithms for
decision diagrams. This yields an alternative, simple method for enumerating the
nondominated set of a multiobjective problem. The technique is applicable to
a number of discrete optimization problems, and our numerical study indicates
that it can be orders of magnitude faster than state-of-the-art techniques.

2 Multiobjective Discrete Optimization

A MODO M is specified by a set of p objective functions f/ : R® — R,
for j = 1,...,p, and a feasible set X. In this paper it is assumed that
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each objective function is additively separable or, more simply, linear, so that
fi(z) = Y, clx;. The feasible set X is discrete — this paper will focus on
binary optimization problems so that X C B™, although the techniques are eas-
ily generalizable. Each x € X is said to be a feasible solution.

Let f be the set of objective functions f : R™ — RP (assumed to be maximized
unless otherwise specified). Each solution « € X’ is mapped through the function
f into a corresponding objective vector y = f(x) € RP. The set of objective
vectors Y = {f(x) : x € X} resulting from feasible solutions is the objective
space. A solution x* is called an efficient solution if there exists no other feasible
solution ' such that, for all j, f7 (') > f7(«*) with f7'(2') > f7' («*) for some
j'. For an efficient solution z* the vector f(z*) is referred to as a nondominated
solution. The efficient set, denoted by Xg, is the set of all efficient solutions and
its image, denoted by Yx = {y : y = f(z) for some z € X}, is the nondominated
set. The (typical) goal of MODO and the focus of this paper is to obtain Vx.

3 Binary Decision Diagrams

A binary decision diagrams BDD B = (n,U, A, ¢,d) is a layered-acyclic digraph
composed of node set U and arcs A. The mapping ¢ : U — {1,2,...,n + 1}
partitions the nodes into n+1 layers L; := {u € U : (u) =i},i =1,2,...,n+1.
Layers Ly and L, have cardinality one, with the single nodes in these layers
denoted by root r and terminal t, respectively. Each arc a € A leaves a tail
node t(a) and enters a head node h(a), where t(a), h(a) € U. It is assumed that
£(h(a)) = £(t(a)) + 1, so that each arc connects nodes in adjacent layers. Also,
each node u has at most one out-directed arc a with arc-domain d € {0,1}. An
arc leaving node u is denoted by ag(u) if d = 0 and by a1 (u) otherwise. The width
of a layer is w(L;) := |L;|, and the width of B is w(B) := max;e(1,... nt1y w(Ls).
Finally, the size of a BDD is |U]|.

A BDD represents a set of binary vectors in the following way. Each arc-
specified path p = (a1, as, .. ., ax) represents the vector z(p) = (d(a1),d(az),. ..,
d(ay)). Any path from r to t thereby corresponds to a vector in B™. Let P(B)
be the set of arc-specified paths from r to t. Define Sol(B) as the set of binary
vectors (called solutions) corresponding to arc-specified r — t paths:

Sol(B) = {z(p) e B" : p € P(B)}.

BDDs can be used to represent the feasible set of a MODO M through
relating Sol(B) with the set of feasible solutions X of M. BDD B is said to be
an ezact BDD for M if Sol(B) = X.

Fix u,v € U for which ¢(u) < {(v). Let B, , be the BDD obtained by
removing from B any nodes and arcs that do not lie on any directed path from
u to v. A BDD is said to be reduced if for all ¢ = 1,...,n and any two nodes
u, v’ € L;, the BDDs B, ¢ and B, 4 are such that Sol(B, ) # Sol(By ¢).

It is well-known that for any set of solutions X', with a specified ordering of the
variables given, there is a unique reduced BDD [9]. The reduction of a BDD can
be performed efficiently by a simple bottom-up O(|U|log(|U]|)) algorithm [36].
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It often has dramatic effects on the size of the BDD and the calculation of the
nondominatecj set.
Suppose X C B* is given by the following set of solutions

X ={(0,0,0,0)(0,0,0,1)(0,0,1,0)(0,1,0,0)(0,1,0,1)(0,1,1,0)
(1,0,0,0)(1,0,0,1)(1,0,1,0)(1,1,0,0)(1,1,1,0)}
Consider the BDD B, depicted in Fig. 1. Dashed/solid arcs correspond to arcs
with arc-domain 0/1. B is an exact BDD for & — each path from r to t corre-
sponds to a solution in X and vice versa so that Sol(B) = X.

We refer the reader to the work by Bergman et al. [5] for BDD compilation
procedures for general optimization problems.

Tl
2
r3

T4

Fig. 1. Exact BDD for X

4 Determining the Nondominated Set

In this section we propose a technique which generalizes previous works on single-
objective optimization problems using BDDs [5]. Namely, suppose a MODO M
has one objective function (i.e., p = 1) with fl(z) = 31, clz;, and assume
X is represented by a BDD B. To optimize f!, we associate an arc-value v(a)
with each arc a € L;, i = 1,...,n, where v(a) = ¢} if d(a) = 1, and v(a) = 0
otherwise. Any longest r to t path p with respect to v yields an optimal solution
2(p), with the corresponding optimal value equal to the length of the path.

Let M be a MODO with p > 2. Given an exact BDD B for X', we apply
Algorithm 1 to determine Y. The algorithm traverses B in a top-down fashion
and associates a state s with each node u, representing the set of nondominated
solutions in R€W—1 contained in B, ; at the end of the execution, s(t) = Vn.

The algorithms initializes s(u) for each node v € U\{r} to 0, and initializes
s(r) to {0} (the p-dimensional vector with Os in each coordinate). Having set
the states of each node in L; the algorithm proceeds to determine the states
for the nodes in L;y;. For each node in L; and each arc directed out of w,
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Algorithm 1. Find Yy for MODO M

1: procedure FINDNDS(M, B) > X is the feasible set for M and
2: objectives f7,j=1,...,p
3: for all u € U do
4: s(u) — 0
5: s(r) < {0} > 0 is the p-dimensional 0 vector
6: fori=1,...,ndo
7. for all u e L; do
8: if ao(u) exists then
9: for all s’ € s(u) do
10: if s’ is not dominated in s (h(ao(u))) then
11: s (h(ao(u))) < s (h(ao(u))) U s’
12: for all s” € s(h(ao(u))) dominated by s" do
13: s (h(ao(w))) < s (h(ao(u))) \{s"}
14: if a1 (u) exists then
15: for all s’ € s(u) do
16: Increase state values of s’ by cZ, foreach j=1,...,p
17: if s’ is not dominated in s (h(a1(u))) then
18: s(h(a1(w))) < s (h(ai(uw)))Us’
19: for all s” € s(h(a1(u))) dominated by s’ do
20: s (h(a1(w))) < s (h(a1(u))) \{s"}

21: return s(t)

the algorithm checks whether or not a nondominated solution will arise from
extending solutions ending at u with the arc domain of the arc.

For each layer L;, if the arc under consideration is a 0-arc, then any non-
dominated solution will not be affected by setting x; = 0. Therefore, each non-
dominated solution in s(u) is considered as a possible nondominated solution in
s(h(a)). If it is nondominated, the solution is added to s(h(a)), and otherwise
omitted. The process is analogous for the case of a 1-arc, except that any poten-
tial nondominated solution will have its objective value increased by ¢! for each
j =1,...,p. Finally, if a solution s’ is added to the state of a node, we must
verify if any solutions s” in that same state are now dominated by s’, removing
them if that is the case.

Suppose, for example, that a MODO M’ is specified with X defined as above
and 2 objective functions, f1(z) = 221 + dxo + 23 + Tag, f2(x) = 421 + 22 +
4x3+4xy. Figure 1 shows the result of applying Algorithm 1 to the BDD in Fig. 1.
Each node u is labeled with a set of vectors in the objective space. Those marked
with a v' compose s(u) and those marked with a x are those candidates for s(u)
that are determined to be dominated by some solution in s(u). As a concrete
example, consider the node u marked with the three vectors (0,0),(5,1) and
(2,4). (0,0) is first added to s(u) because of the zero-arc directed at u from
the node immediately above it. Then, when the one-arc from that same node
is considered, it generates the vector (0,0) + (5,1) = (5,1), eliminating (0,0)
because (5,1) dominates it. Then, the zero-arc from the right-most node on the
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previous layer is examined, generating vector (2,4) + (0,0) = (2,4). The set
{(5,1),(2,4)} is a collection of vectors, none of which dominate any other, and
so (2,4) is added to s(u). At the conclusion of the algorithm, t is labeled with
s(t) = {(12,5),(9,8),(8,9)}, the set Yx for M’. The proof of correctness of
Algorithm 1 follows immediately, e.g., from the results of Figueira et al. [31] and
Loui [26].

5 Numerical Study

In this section we evaluate the empirical performance of the proposed multi-
objective methodology on three classical optimization problems: knapsack, set
covering, and set packing. Our key performance metric is the time to enumer-
ate the complete set of nondominated solutions. We compare our approach with
another general-purpose MODO solver developed by Kirlik and Saymn [23], an
e-constraint scalarization method which is currently regarded as one of the state
of the art approaches for MODOs. We note in passing that we have also inves-
tigated other MODO solvers, such as the one proposed by Ozlen et al. [29], but
the method by Kirlik and Sayin was the best performing and numerically stable
method across all solvers tested in our empirical setting.

The experiments ran on an Intel(R) Xeon(R) CPU E5-2640 v3 at 2.60 GHz
with 128 GB RAM. The BDD method was implemented in C++ and compiled
with GCC 4.8.4. Our source code and all tested instances are available at http://
www.andrew.cmu.edu/user/vanhoeve/mdd/. The source code for the technique
by Kirlik and Saym was downloaded from http://home.ku.edu.tr/~moolibrary/
and linked with ILOG CPLEX 12.6.3 [22]. A time limit of 3,600s was allotted
in all cases.

Multicriteria Knapsack. Given n items, a capacity W > 0, and for each item i a
weight w; > 0 and p profits v}, v2 v? > 0, the multicriteria knapsack problem

U s
(MKP) is: max{zyzl v, j=1,...,p: > wiz; < W, z € {0, 1}”} )

We generated random MKP instances following the procedure by Kirlik and
Saym [23]. The values v} and w; were drawn uniformly at random from the set
{1,...,1000}, and W = [0.53_"_; w;]. Due to the growth of the nondominated
set, for p = 3, we considered n = {10,...,100}; for p = 4, n € {10,...,70}; for
p=>5,6, and 7, n € {20,30,40}. We generated 10 instances per pair (n,p).

Table 1 presents the average cardinalities of the nondominated sets (|]Vx|)
and average solution times (within solved instances) for p = 3,4, 5, where Kirlik
and BDD denotes the method by Kirlik and Saymn [23] and the BDD technique,
respectively. Figure2(a) depicts a scatter plot comparing solution times for all
instances, where the size of a point is proportional to n. The BDD method is
substantially faster and more robust than Kirlik, in particular when p is large.
In all cases, the time to create the BDD is only 5% of the total BDD time,
and therefore the bottleneck is the computation of Algorithm 1. Finally, Fig. 2(b)
depicts a scatter plot comparing solution times of reduced and nonreduced BDDs
for n € {40,50,60} and p = 4, emphasizing the importance of reducing the
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Table 1. Average solution times (in seconds) for knapsack problems for p = 3,4,5.
Number in parentheses indicate instances unsolved within the time limit (out of 10).

p=3 p=4 p=>5
n | |Wn| |Kirlik |BDD ||Vn| |Kirlik |BDD ||Vn| |Kirlik BDD
10 9 0.10 0.01 |14 0.28 0.01 |22 |0.04 0.01
20 (37 |0.85 0.03 |79 7.22 0.04 |241 [1,319.48( |0.04
30 113 4.95 0.17 397  466.40Y 0.26 |972 | (10) 0.47
40 1370 2471 095 1,278 |217.38( 239 4,943 (10) 18.06
50 598 5047 |3.64 |3,374 | (10) 27.87
60 1,080 120.21 1252 6,624 | (10) 166.34
70 1,325 154.50 | 32.69 | 14,696  (10) 1,164
80 2,575 454.46 | 120
90 | 3,847 912.47 | 350
100 | 4,248 | 1,070 | 551D

number of nodes of the BDD before performing Algorithm 1 (which, on average,
take less than a second on all tested cases). This saves approximately a half of
an order of magnitude on the total computation time.

Multicriteria Set Covering and Set Packing. Let A be a 0-1 m X n constraint
matrix, and let ¢!, .. ., c? be the p cost vectors in R™. The multicriteria set covering
problem (MSCP) is defined as min {(cj)T:c,j =1,...,p: Az > 1,2 € {0, 1}”}
The multicriteria set packing problem (MSPP) is similar to the MSCP and is

1000
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(a) Solution times.
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(b) Reduced and non-reduced.

Fig. 2. (a) Solution time comparison between Kirlik and BDD (in logarithmic scale),
and (b) Solution times for reduced and non-reduced BDDs for the MKP.
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written as max {(cj)Tac,j =1,...,p: Az < 1,z € {0, 1}”} The multiobjective
variants pose a considerably more difficult challenge [16].

We performed experiments on random instances generated as in Stidsen
et al. [33]. Specifically, we considered n € {100,150}, m = n/5, and in our
case we fixed 10 variables per constraint, i.e., for every £k = 1,...,m, 10 ele-
ments of the k-th row of A were chosen to be equal to one uniformly at random.
10 instances were created per pair (n,p). The objective coefficients were gener-
ated as they were for the MKP. The reduced BDDs for the MSPP and MSCP
were compiled according to Bergman et al. [5,7].

Table 2 presents the average cardinalities of the nondominated sets and the
average solution times. As before, BDD is substantially faster and more robust
than Kirlik, especially as the number of objective function increases. The BDDs
performed particularly well for set packing problems, since they are typically
much more compact when compared to the BDD representing MSCPs instances.
The time to compile the BDDs was also less than 5 % of the total BDD time, as
in the MKP case.

Table 2. Average solution times (in seconds) for MSCPs and MSPPs problems. Num-
ber in parentheses indicate instances unsolved within the time limit (out of 10).

Set Covering (MSCP) Set Packing (MSPP)
n |p||Ix| Kirlik | BDD | Vx| Kirlik  BDD
10013 117 | 5.91 5.46 164 5.61 5.07
41428 | 282.19 7.03 551.10 | 321.64 5.12
51,171 8279 | 7.87 1,211.90 | (10) 5.35
150 |3 305 | 23.99 110.50 | 336.00 | 12.81 8.37
411,1781,228.18® | 248.44® | 4557 | 3,025.52() | 22.24
54,711 (10) 329.49%) 19213 | (10) 49.18

6 Conclusions

This paper proposes an algorithm for solving general multiobjective discrete
optimization problems using decision diagrams. We utilize decision diagrams to
represent, exactly, the feasible set of the problem, and then uses a multicrite-
ria shortest path algorithm for finding the set of nondominated solutions. The
algorithm is applied to three classical discrete optimization problems, and com-
putational methods indicate that the proposed method is superior to a state-of-
the-art multiobjective technique, often providing orders of magnitude speedups.
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Abstract. We study the parametrisation of QBF resolution calculi by
dependency schemes. One of the main problems in this area is to under-
stand for which dependency schemes the resulting calculi are sound.
Towards this end we propose a semantic framework for variable inde-
pendence based on ‘exhibition’ by QBF models, and use it to express
a property of dependency schemes called full exhibition that is known
to be sufficient for soundness in Q-resolution. Introducing a generalised
form of the long-distance resolution rule, we propose a complete para-
metrisation of classical long-distance Q-resolution, and show that full
exhibition remains sufficient for soundness. We demonstrate that our
approach applies to the current research frontiers by proving that the
reflexive resolution path dependency scheme is fully exhibited.

1 Introduction

The excellent success of SAT solvers in the realm of propositional Boolean formu-
lae has motivated much interest in the corresponding search problem for quanti-
fied Boolean formulae (QBF). The greater expressiveness of QBF, afforded by its
PSPACE-completeness [22], presents novel challenges in solving, and the array
of emerging techniques is motivating a wealth of research in the closely-related
field of proof complexity [3-8,11-13,24].

There is a natural correspondence between QBF practice and proof theory;
when a solver concludes the falsity of an instance, the trace can be interpreted as
a formal refutation. Understanding the refutational proof system that underpins
a particular solving method, and thereby accounts for its correctness, motivates
the proof-theoretic study of specific calculi. Recent work has led to a complete
understanding of the relative strength of resolution-based QBF systems [3,6],
including Q-resolution (Q-Res) [14], universal Q-resolution (QU-Res) [24], and
long-distance Q-resolution (LD-Q-Res) [1].

Implemented in the state-of-the-art solver DepQBF [15,16], one of the recent
and exciting developments in QBF solving has seen the introduction of depen-
dency schemes: algorithms that gather information on variable independence by
prior appeal to the syntactic form of an instance. The quantifier prefix of a QBF
(in prenex normal form) imposes a total order on the variables; due to the nesting
of quantifier scopes, the value of a Boolean variable z can be dependent upon the
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variables to its left in the prefix. Naturally, this entails some restrictions on solv-
ing methods, and on the rules of the related formal systems. In general, however,
z does not necessarily depend on all of the variables to its left. By identifiying
variable independence, a dependency scheme attempts to replace the linear order
of the prefix with a partial order, which more accurately reflects the dependency
structure of the formula. This approach allows some sets of instances to be solved
more effeciently, despite the compuational overhead incurred in computing the
dependency scheme [15].

Independence itself is presented as a semantic concept [15,17]. The truth of
a QBF @ is witnessed by a Skolem-function model, a set of Boolean functions
{fz} that produce a proposition tautology when substituted for the existential
variables. The arguments to f, are the universal variables U, left of x in the
quantifier prefix, but it may occur that some circuit computes f, without using
u € U, as an input. In this case we say that x is independent of u — and a dual
notion for false QBFs provides for independence of universals on existentials —
even though the Skolem-function model is in general not unique.

This lack of uniqueness has consequences for soundness in QBF calculi. The
impact of a dependency scheme in the proof system is to allow some logical
steps which previously were prohibited; specifically, the V-reduction rule of Q-Res
receives greater reign. This motivated the proposal of Q(D)-Res by Slivovsky and
Szeider [21], a parametrisation of the classical calculus by dependency schemes.
Some schemes that were previously put forward in the literature, such as the tri-
angle [18] and resolution path [23] dependency schemes, have proved too aggres-
sive for soundness in Q(D)-Res, admitting refutations of true QBFs. The reflexive
resolution path dependency scheme [21] is currently the strongest known scheme
for which Q(D)-Res is sound, a result which was proved by means of a difficult
transformation of a Q(D)-Res refutation into a Q-Res refutation [21].

What is currently absent in the literature is a deeper understanding of sound-
ness based on classification of dependency schemes; moreover, the lack of gen-
eral methods may frustrate future developments. It is natural to propose the
parametrisation by dependency schemes of stronger QBF calculi, of the other
CDCL-based QBF resolution systems and QBF Frege [4], whereupon methods
for proving soundness based on properties of dependency schemes will carry over.
In this paper we demonstrate that semantic notions of independence are indeed
equipped for this; our contributions are summarized below.

1. New QBF Calculi Parametrised by Dependency Schemes. We extend
the parametrisation by dependency schemes to all the CDCL-based resolu-
tion calculi for QBF: with the new long-distance calculus LD-Q(D)-Res, with
universal resolution QU(D)-Res, and with their combination LQU(D)-Res. Our
new long-distance calculus presents the greatest challenge. Of the two inference
rules employed classically, parametrisation of V-reduction can be lifted straight
from Q(D)-Res; here we investigate the additional effects of parametrising the
long-distance resolution rule as well, by relaxing the conditions under which
so-called ‘merged literals’ can be introduced. Progressing from Q-resolution,
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we demonstrate that variable independence and merging have a more subtle
interaction; in LD-Q(D)-Res, we must supplant merged literals with annotated
literals, which record existential pivots to prevent unsound V-reduction steps.

2. A Semantic Framework for Independence and Soundness. We unify
some existing approaches in the literature towards a more fruitful understanding
of the interplay between Q-resolution and dependency schemes. Building on the
work of Samer [17] and Lonsing [15] we propose a semantic framework for variable
independence. Central to the framework is a property of dependency schemes
called full exhibition, which was shown to be sufficient for soundness in Q(D)-Res
by Slivovsky [20]. We further the potential of this approach to show that full
exhibition is sufficient for soundness in all the dependency calculi we introduce.
To that end, we handle the semantic obstacles of long-distance resolution by
incorporating techniques from strategy extraction due to Balabanov et al. [2].

3. Demonstrating Full Exhibition. We conclude by proving Slivovsky’s con-
jecture [20, p. 37] that the reflexive resolution path dependency scheme D™*
is fully exhibited. Currently, D™ is arguably the most important dependency
scheme, capable of revealing more cases of independence than any other tractable
scheme known to be sound for Q(D)-Res. As such, we show that everything cur-
rently known about soundness in this setting can be explained by full exhibition.
On the technical level, the result is obtained by an algorithmic transformation of
an arbitrary model for a true QBF @ into a model that exhibits all the required
independencies. We therefore reveal the possibility for QBF solving to implement
long-distance techniques fully parametrised by D'*, or any other fully exhibited
scheme.

Organisation of the Paper. After providing the necessary fundamentals in
Sect. 2, we present our semantic framework based on ‘exhibition’ in Sect.3. In
Sect. 4, we present the new long-distance calculus and corresponding soundness
results, while Sect. 5 covers the proof that D™ is fully-exhibited. Finally, some
conclusions are offered in Sect. 6.

2 Preliminaries

Quantified Boolean Formulas. A Quantified Boolean Formula (QBF) @ over
aset V =1{z1,...,2,} of n variables is a formula in quantified Boolean logic with
variables ranging over {0,1}. We consider only formulas in prenez conjunctive
normal form (PCNF), denoted @ = Q. ¢, in which all variables are quantified
either existentially or universally in the quantifier prefix Q = Q121 Qnzn,
Q,; € {3,V} for i € [n], and ¢ is a propositional conjunctive normal form (CNF)
formula called the matriz. A CNF matrix is a conjunction of clauses, each clause
is a disjunction of literals, and a literal is a variable or its negation. Whenever
convenient, we refer to a clause as a set of literals and to a matrix as a set of
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Fig. 1. An assignment tree T' for a PCNF Vu;3z1Vue3zs . ¢, with arbitrary matrix ¢.

clauses. We typically write = for existential variables, u and v for universals,
and z for either. We denote the sets of existentially and universally quantified
variables of @ by V3 = {2, ¢ V | Q; = 3} and Vg = {2z, € V | Q; = V}
respectively. The prefix Q imposes a linear ordering <g on the variables of @,
such that z; < z; holds whenever 7 < j, in which case we say that z; is right of
z;, or that z; is left of z;. The sets of variables right and left of z are denoted
Re(z)={2" €V ]|z<g 2} and Lo(z) ={2' € V| 2 < 2}.

Assignment Trees and Models. Assignment trees for PCNF's were first intro-
duced in [19]. We represent an assignment tree formally as a set of paths. Let &
be a PCNF over variables V = {z1,...,2,} and let V& = {uq,...,ur}. A path
is a set of literals P = {ly,...,l,} with var(l;) = z; for all i € [n], and we write
Plz;] = l;. A set of paths T is well-formed for @ iff (1) for all u € V4 and for
all P,Q € T, if Plv] = Q[v] for all v € Lg(u) N Vi, then Pz] = Q[z] for each
x € Lg(u) N V3, and (2) for each set of literals U = {l1,. .., 1} with var(l;) = u;
for i € [k], there is a unique path P € T with U C P. A set of paths that is
well-formed for @ is an assignment tree for @. We also use P to denote the total
assignment P : V. — {T,1} given by P(z;) = L if [; = -z and P(z;) = T
if I; = z;, and extend this notation to literals with P(-z;) = —P(z;), where
T = =1 and vice versa. An assignment tree for @ is a model for @, typically
denoted M, iff P(C) = T for all paths P € T and all clauses C' € ¢, where
P(C) =T iff P(I) = T for some [ € C. A PCNF which has a model is true,
otherwise it is false. An assignment tree is depicted as a tree with root r, as
shown in Fig. 1.

Dependency Schemes. The trivial dependency scheme DYV is a mapping
which associates each PCNF @ = Q127 -+ - Q, 2, . ¢ over variables V to the trivial
dependency relation DFY = {(z;,2;) | i < j and Q; # Q;}. A proto-dependency
scheme!® D is a function that maps each PCNF & to a binary relation Dg C DY
called the dependency relation. If (2;,2;) € Dg, then (z;,2;) is a D-dependency

! The term ‘dependency scheme’ was first introduced to denote a subset of proto-
dependency schemes with a more technical definition [18]; for consistency with the
literature we will use ‘proto-dependency scheme’ in technical portions of this paper.
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and z; is a D-dependent of z;, otherwise z; is D-independent of z;. A proto-
dependency scheme D’ is said to be at least as general as another D if D), C Dy
for all PCNFs @, and is strictly more general if the inclusion is strict for some
formula. For a PCNF & over variables V and u € Vg, we write Dg(u) = {(u, z) |
x € Vg and (u,x) ¢ Dg}.

QBF Resolution Calculi. We give a brief overview of four resolution-based
CDCL QBF calculi — see [6] for a more detailed survey. Their formal definitions
are presented in Sects. 3 and 4 as special cases of the corresponding ‘dependency’
systems. A refutational QBF calculus is sound iff the empty clause cannot be
derived from any true formula.

Q-resolution (Q-Res) introduced in [14] is the standard refutational calculus
for PCNF. In addition to resolution over existential pivots with non-tautologous
resolvents, the calculus has a universal reduction rule which allows a clause C to
be derived from C' U{u}, where u is a universal literal and all existential literals
in C are left of u. QU-resolution (QU-Res) [24] is a natural extension of Q-Res
that allows universal resolution pivots.

Long-distance resolution, which was introduced in [25] and formalised as
the calculus LD-Q-Res [1], allows tautologous resolvents under certain condi-
tions, using the special merged literal u* to represent the tautology {u,—u}.
The resulting system is exponentially stronger than Q-Res [12]. Finally, the cal-
culus LQU-Res [3] combines naturally the features of QU-Res and LD-Q-Res,
allowing merged literals and resolution over universal pivots.

3 Dependency Schemes, Q-resolution and Semantics

3.1 Dependency Schemes and Q-resolution

It is natural to try to strengthen a classical QBF calculus using a dependency
scheme, and the starting point for the ‘dependency version’ is the identification
of the trivial dependency relation in the rules of a calculus. Restrictions are
inevitably imposed by the linear ordering of the quantifier prefix. Dependency
calculi can relax these restrictions, replacing the implicit reference to D%V with
an explicit reference to a more general dependency scheme D.

Figure 2 recalls the rules of Q(D)-Res, the dependency version of Q-Res, intro-
duced in [21] to account for the behaviour of the QDPLL-based solver DepQBF
[9,15]. In Q-Res, the universal reduction rule allows a universal u to be dropped
from a clause C' containing only existential variables left of u. By comparison,
Q(D)-Res allows u to be dropped whenever C' contains no D-dependents of w.
Note that Q-Res and Q(D™)-Res are identical. Whether or not Q(D)-Res is
sound depends on the strength of the dependency scheme. For example, in [21]
it is shown that Q(D)-Res is sound for D™, but unsound for the strictly more
general scheme D',

It is natural to extend Q(D)-Res by allowing resolution over universal pivots.
The resulting new system QU(D)-Res, also presented in Fig. 2, is the dependency
version of QU-Res.
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el (Axiom) C is a clause in the matrix of &.
DU {l,} Literal [, is universal. If [ € D and
D (V-Red) var(l) = v, then (u,v) ¢ Ds.

If | € Cy, then I ¢ C5. In Q(D)-Res,
G U {v} Co U {7} (Res)  variable v is existential; in QU(D)-
C1u Res, v is existential or universal.

Fig. 2. The rules of Q(D)-Res [21] and QU(D)-Res

3.2 A Semantic Framework for Independence

We reformulate the definition of independence in terms of assignment trees from
[15,17]; we feel our notation is better suited to the aims of the current work.
We first introduce the new idea of complementary paths in an assignment tree,
whose universal literals differ for exactly one variable.

Definition 1 (Complementary path). Let ¢ be a QBF over variables V,
let U be a non-tautologous set of literals such that var(U) = Vy, let T be an
assignment tree for @ and let P € T be the unique path such that U C P.
Then, for any u € Vy, P, € T is the unique path such that U' C P,, where
U =U\{l})U{=l}, 1 €U and var(l) = u.

It is fortunate that, throughout this paper, we need only consider the dependence
of existentials on universals. This simplification, seen in the definition below, is
the result of our dealing exclusively with refutational calculi, the rules of which
remain unaffected by the (in)dependence of universals on existentials.

Definition 2 (Independence of existentials from universals [15,17]).
Let @ be a true QBF over variables V and let uw € Vy, x € V3. We say that x is
independent of u in @ if there exists a model M for ® in which P(x) = P,(x)
for all paths P € M. For such a model M we write M < (u,x), and we say that
M exhibits the independence of x from u in ®.

Remark 3. Tt is not necessary for us to consider false QBF's in Definition 2, since,
by definition, a false formula has no models. For a false formula, the condition for
independence is satisfied vacuously, confirming our intuition that no existential
variable can be dependent on any universal in such a formula.

As noted in [21], Definition 2 alone is too weak for soundness in Q(D)-Res. The
problem lies in the possibility for different models to exhibit different indepen-
dencies, which are then used together in the same refutation. It is therefore
natural to seek a model which exhibits all the independencies that may be used
in a refutation.
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Definition 4 (Fully exhibited dependency scheme). Let D be a proto-
dependency scheme. We say that D is fully exhibited iff for each true PCNF &
there is a model M for @ such that M < (u,x) for each pair (u,z) ¢ Dg, with
u € Vy and x € V3.

In [20], it was proved that Q(D)-Res is sound for fully exhibited® D, and this
was combined with the fact that the standard dependency scheme D' is fully
exhibited (attributed to [10]). In the next section, we show that this approach
scales up to the dependency versions of stronger QBF calculi.

4 Dependency Schemes and Long-Distance Q-resolution

In this section, we introduce the new long-distance calculi LD-Q(D)-Res and
LQU(D)-Res, the respective dependency versions of LD-Q-Res and LQU-Res.

Long-distance Q-resolution was formalised as a calculus [1] to account for
solving techniques due to [25]. The resulting system is exponentially stronger
than Q-Res [12]. The salient feature of the system is that tautological clauses are
allowed under certain conditions. Specifically, resolving clauses C7 and Cs over
an existential pivot x, a ‘merged literal’ u* appears in the resolvent clause C' if
—u € C1, u € Cy and T <g u. In successive resolution steps, a merged literal
u* may be merged again with another merged literal u*, or with non-merged
literals u and —u, provided that the existential pivot is left of u. Both merged
and non-merged literals may be dropped from a clause by V-reduction under the
usual conditions.

Whereas the parametrisation of V-reduction can be lifted directly from
Q(D)-Res, parametrisation of long-distance resolution, which relaxes the con-
ditions under which merging is allowed, presents a novel challenge.

4.1 Defining LD-Q(DP)-Res and LQU(D)-Res

Although the method of generalising the reference to the trivial dependency
scheme remains, more care must be taken when defining LD-Q(D)-Res. Para-
metrising long-distance resolution means relaxing the conditions under which
merging may take place, which in turn entails some new notation. Replacing
2z <g u with the condition (u,z) ¢ Dg in the dependency version, one must
annotate merged literals with the corresponding pivot set X, producing an anno-
tated literal uX € C, where X consists of all the existential variables over which
u has been merged in the derivation of the clause C. Annotations are needed to
keep track of the pivot sets to prevent unsound V-reduction steps — we explain
this in greater detail shortly.

The rules of LD-Q(D)-Res are given in Fig. 3. We observe that LD-Q(D™)-Res
is precisely the classical long-distance calculus LD-Q-Res, except that the
merged literals of the latter are annotated. Since the dependency conditions
of LD-Q(D)-Res are identical to the classical long-distance conditions if D is

2 Full exhibition is treated equivalently, as a property of models.
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DUV replacing all annotated literals u* in an LD-Q(D')-Res refutation with
merged literals u* produces an LD-Q-Res refutation, and vice versa — replac-
ing all merged literals v* in an LD-Q-Res refutation with annotated literals u~
produces an LD-Q(D™)-Res refutation. Similarly as for Q(D)-Res, it is natural
to extend LD-Q(D)-Res by allowing resolution over universal pivots. The result-
ing new system LQU(D)-Res, also given in Fig. 3, is the dependency version of
LQU-Res.

el (Axiom) C'is a clause in the matrix of @.

Varaible w is universal. If [ € D and
var(l) = z, then (u,z) ¢ Dg, and if

X ’
M (V-Red) I = 2% then (u,z) ¢ Dg for all x €
D X', If X = () then literal u* is either

u or —u.

01UU1U{$} CQUUQU{ﬁw}
CituCUU

(Res)

If for I; € Ci,lx € Ca,var(l1) = var(l2), then Iy = l2 is not annotated.
var(Uy) = var(Usz) C Vo, and (z,u) ¢ D¢ for each uw € var(Ui). If for
ur € Ur,uz € Uz, var(ui) = var(uz) = u, then u1 = —us, or at least one
of u1,us is annotated. U is defined as {u™ | u € var(U1)}, where X is
the union of {z} with any annotations on u in Uy U Us. In LD-Q(D)-Res
var(z) is existential. In LQU(D)-Res, var(z) is existential or universal.

Fig. 3. The rules of LD-Q(D)-Res

The purpose of annotating literals is to prevent unsound V-reduction steps,
by checking that the pivot sets in the clause are D-independent of the reduced
universal variable. Annotations were never necessary in LD-Q-Res; the fact that
a merged literal ©* in the clause is always right of its corresponding existential
pivots is enough to ensure soundness. However, in LD-Q(D)-Res, we must explic-
itly forbid V-reduction of v € C if any = € X is not D-independent of v, for
any annotation X in the clause C. The following example shows that allowing v
to be reduced under such conditions is unsound in general for a fully-exhibited
proto-dependency scheme D.

Ezxample 5. Take the true QBF ¥ = Vu3dzr,VvIxodxs. ¢ with the matrix ¢ =
{{u, xo, —x3}, {-u, "xa, "3}, {z1, v, 23}, {21, W, xg}} and the proto-depende-
ncy scheme Dy = {(u,z1), (v,x2), (u,z3), (v,x3)} if & = ¥, and D = DY
otherwise. First observe that D’ is fully exhibited; Fig. 4 depicts a model M for
¥ which exhibits the independence of x5 on wu.
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U u
\ \
T T1
VRN VRN
-v v - v
\ \ \ \
X2 ) X2 T2
\ \ \ \
x3 T3 X3 x3

Fig. 4. A model M for ¥ for which M < (u,z2).

However, if we allow variable v to be reduced alongside the annotated literal
ul™} | noting that x5 is not D’-independent of v, we obtain the following refu-
tation of ¥.

{u, zo, a3} {~u, ~x9, a3} {z1,v,23} {—21,-w,x3}
{ul®2} —g3) {vlz} 25}
{u{w’z}’ U{m}}
(b
1

4.2 Soundness of LD-Q(D)-Res and LQU(D)-Res

In this subsection, we prove that LD-Q(D)-Res is sound for a fully exhibited
D, and our method entails the following evaluation of annotated literals under
assignment. We define annotated literal functions, which are based on the ‘phase
functions’ and ‘effective literals’ introduced by Balabanov et al. [2].

Informally, it is demonstrated in [2] that any assignment o to the existential
variables ‘induces’ the phase of a merged literal «* in an LD-Q-Res refutation of a
PCNF @&, such that for the purpose of strategy extraction it may be interpreted
as either non-merged literal w or —u. In a given model M for @, every path
P contains a particular assignment to the existential variables. Therefore, for
any annotated literal uX in some LD-Q(D)-Res derivation from &, we can use
the phase function to associate a non-annotated literal u or —u with P. This
allow us to evaluate annotated literals, and the nature of the phase function
ensures that the rules of LD-Q(D)-Res are logically correct for each path in
a fully exhibiting model. For a given annotated literal, our annotated literal
function uses the same method as Balabanov et al. to identify the correct phase
induced by some existential assignment. However, since we are not concerned
with strategy extraction, we are able to simplify the construction considerably
compared to [2]3. For that reason, we proceed as follows.

3 We can prove what we need to from the definition of such functions; we need not
represent them explicitly as circuits as in [2].
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As a starting point, consider the following resolution step in an LD-Q-Res
refutation of a QBF @& = Q. ¢ over variables V| where var(l,) = v € Vi and
r € Va.

cCi U {l‘} U {lu} Cy U {—L’ﬂ} U {ﬁlu}
Cl U CQ U {’U,*}

Let M be any model for the conjunction of the antecedent clauses prefixed by
Q, and let P € M. For any universal v which is right of u, we must have
r <g u <g v; therefore P(x) = P,(x), meaning that at least one of C; U {u}
and Cy U {—wu} is satisfied by both P and P,. In either case we can then choose
a single literal u or —u for u* such that C; U Cy U {u*} is satisfied by both P
and P,.

Generalising, let M be a model for @. We observe that any resolution step
producing u* from complementary literals gives rise to a well-defined function
fi: M — {u,—u}, with rule

. )l if P(z) =L,
f(P)_{ﬁzu if P(z)=T.

We observe two features of such a definition. First, f¥ simply reads the truth
value of P(z), selects the antecedent clause in which the pivot variable z is
falsified, and takes the universal literal from that clause. In this way, any path
P € M made to satisfy C; U Cy U f(P). Second, if v is any universal right of
u, then P(z) = P,(x); hence v satisfies the complementary property fi(P) =
f¥(Py) for all P € M.

Moreover, the above discussion does not consider ‘successive merging’. Mov-
ing forward to the annotated literals of LD-Q(D)-Res, we therefore present a
recursive definition based on the preceeding discussion.

Definition 6 (Annotated literal function). Let uX € U be a literal intro-
duced by merging universal literals Iy € Uy and la € Us in a resolution step

01UU1U{17} CQUUQU{—L’E}
CiuCyuUU
of an LD-Q(D)-Res refutation of a formula @. Let X1, Xo be the resolution sets

of l1,1ls respectively, and let M be a model for @. Then the annotated literal
function fX : M — {u,—u} for M is given by

Iy if P(z) = 0,
fX(P) if P(x)= L and X; #0,
lo if P(x) =T and X5 =0
fX2(P) if P(z) =T and X, # ()

1 and X1 =

f(p)=

b

)

where X = X7 U X U {z}.
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The following lemma states that the complementary property holds for anno-
tated literal functions.

Lemma 7. Let @ be a QBF over variables V, let u,v € Vi, let X C V3 and let
M be a model for @ for which M < (v,z) for all x € X. Then any annotated
literal function fX for M satisfies X (P) = fX(P,) for all paths P € T.

Proof. The lemma follows from the observation that, throughout the recursive
definition of the annotated literal function f;X, complementary paths P and P,
always map to the same case, since P(x) = P,(z) for all x € X and for all
PcM. O

Evaluation of Annotated Literals. We defined annotated literal functions
for a model M specifically so that any P € M satisfying both antecedents of
a resolution step also satisfies the resolvent. For that reason, we define uX to
have the same truth value as the concrete literal f;X(P) when evaluated under
the assignment represented by path P; that is, we define (u™)|o = (fX(P))|a-
Representing assignments by paths, this would be written P(u”) = P(fX(P)).
The expression P(fX(P)) is always well-defined because f;X can be computed
for any given model M, so fX (P) is a well-defined non-annotated literal, which
can then be evaluated under P in the usual way. We are now in a position to
prove the following theorem.

Theorem 8. Let D be a fully exhibited proto-dependency scheme. Then
LD-Q(D)-Res is sound.

Proof. Let @ = Q. ¢ be a QBF over variables V', suppose that 7 = {C4,...,C;}
is a LD-Q(D)-Res refutation of @, and let

5= 1) ifi=0,
L dNCyN---NC; otherwise,

fori=1,...,1. Since D is fully exhibited, if ¢ is true there exists a model M for
@ for which M < Di*(u) for all u € V3. We prove by induction on i that if @ is
true, M is a model for Q. ¢;, so Q. ¢; is true. Hence at step i = I, we deduce
that @ = Q. ¢; is true, a clear contradiction since ¢; contains the empty clause
Cj. Since Q.¢ = Q. ¢y, if @ is true then M is a model for Q. ¢¢, thus the base
case ¢ = 0 is established. We only need confirm that if M is a model for Q. ¢;,
then M is a model for Q. ¢; 41, for i € [[ —1].

Suppose that C;1 = C1UC2UU is the resolvent of clauses C; = C1UU;U{z}
and Cp, = Co U Uy U {~a} for j,k < i+ 1, and let P be an arbitrary path in
M. By the inductive hypothesis, P satisfies C; and C}. Assume without loss
of generality that P(x) = L. Then P satisfies C; U U;. If P satisfies C; then
P satisfies Cj41. Otherwise, P(l,) = T for some (annotated or non-annotated)
literal [,, € Uy with var(l,,) = u. The recursive definition of the annotated literal
function ensures that P(l,) = T = P(u¥) = T for some annotated literal
uX € U, and so P satisfies C;, 1. Therefore M is a model for Q. ¢; 1.
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On the other hand, suppose that C;1; was obtained from Cj,j < i + 1,
by V-reduction on a non-annotated universal literal u. Then C;y1 = C;\{l,},
where var(l,) = u, (u,z) ¢ Dg for all x € C; NV3 and for all € X, where
X is the union of the resolution sets of all universal literals in C;. Suppose
that there exists some path P in M which satisfies C'; but falsifies ;1. Let
z € Ciy1; then P(z) = 1, and since M <g (u,z) for all (u,x) ¢ Dg, we
have P,(z) = P(z) = L whenever z is a non-annotated literal. On the other
hand, suppose that z = v¥, where v # wu; then, since M <g (u,z) for all
xr € X, Lemma 7 gives fX(P) = fX(P,) = l, with var(l,) = v, which implies
Pt(vX) = P(vX) = L. Also, since P(u) = T, we have P,(u) = L, and we
deduce that P,(C;) = L, contradicting that M is a model for Q.¢;. It follows
that P satisfies C;11, and that M is a model for Q. ¢;11.

The same argument applies to an annotated literal u*. Since M <45 (u,x)
for all x € X, the special case of Lemma 7 with v = u gives fX (P) = fX(P,),
hence P(uX) = T implies P,(u™) = L. This completes the proof. O

Since the proof of Theorem 8 makes no use of the fact that the pivot is
existential, it also shows the soundness of LQU(D)-Res, the ‘dependency version’
of LQU-Res, for any fully exhibited D.

Theorem 9. Let D be a fully exhibited proto-dependency scheme. Then
LQU(D)-Res is sound.

Also, since LQU(D)-Res clearly simulates QU(D)-Res simply by disallowing long-
distance resolution steps, we obtain same result for QU(D)-Res.

Theorem 10. Let D be a fully exhibited proto-dependency scheme. Then
QU(D)-Res is sound.

Theorems 8, 9 and 10 together constitute the generalisation to all the CDCL
QBF calculi of Slivovsky’s result [20] that Q(D)-Res is sound for fully exhibited
D. Whereas full exhibition is a sufficient condition for each calculus, it is not a
necessary condition for any of them, witnessed by the following counter example.

Ezxample 11. Consider the formula ¥ = YuiVus3dzi13Izs . ¢ with matrix

Y o= {{Ul,fﬂh ﬁ$2}17 {Uh ﬁ3317332}27 {ﬁu17u2,3€17 ﬁ$2}37 {ﬁU17U27 ﬁﬂf17$2}4,

{~u1, ug, 21, 2 }5, {—ug, ~uz, ~2q, ﬂﬂ«“z}e} ;

and the dependency scheme D’ defined by D' (®) = {(u1, 1), (uz,z2)} if & =W
and D' (P) = D'V (P) otherwise. It can be verified that ¥ is true, but there is no
model for ¥ which exhibits both independencies (u1,x2) and (ug,z1) simulta-
neously, and hence D’ is not fully exhibited. However, there is no LQU(D’)-Res
refutation of ¥. One may resolve clauses 1 and 3 over wu; to obtain {us, z1, "@2},
and resolve over clauses 2 and 4 to obtain {us, 721, 22}. Beyond these two steps,
no more LQU(D)-Res steps can be made.
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5 Demonstrating Full Exhibition

In this section, we demonstrate that the reflexive resolution path depen-
dency scheme D™ [21] is fully exhibited, thereby proving the conjecture of
Slivovsky [20, p. 37]. This result provides a better understanding of soundness
in Q-resolution with dependency shemes; since D' is the most general scheme
known to be sound in Q(D)-Res, what is already known about soundness for
that calculus can subsequently be explained entirely by full exhibition.

The scheme D™ uses the notion of ‘resolution paths’ introduced in [23],
which define connections through the matrix with respect to a particular set of
variables. For convenience, we represent the connections used in D™ as a binary
relation Cg.

Definition 12. Let @ = Q. ¢ be a PCNF over variables V and let 1,1' be literals
such that (var(l),var(l')) € DEY. Then (I,I') € Cq iff there is a sequence of
clauses C1,...,C, € ¢ and a sequence of literals l1,...,l,—1 € V3N Re(var(l))
such that l; € CZ, =l € Ciqq and var(l;) # var(liy1) for i€n—1].

Definition 13 (Reflexive resolution path dependency scheme [21]). The
reflexive resolution path dependency scheme D™ maps each PCNF @ to the
dependency relation

Dg® = {(21,22) € D" | (21, 22), (—21,722) & Co or (21, 722), (—21,22) ¢ Co} -

The proof is obtained by showing that an arbitrary model for a true PCNF
can be transformed to exhibit all the required independencies. We begin by
defining an operation ref,(P), which reforms a model path P based on the
assignments of its complementary path with respect to a given universal variable
u. We then prove that the resulting path does not falsify any clauses. For the
remainder of this section, we extend the notion of exhibition of independence
from pairs to sets of pairs; if S = {(z1, 2}),..., (zn, 2},)} we take M < S to mean
M < (z,7) for i € [n].

Definition 14 (Reformed path). Let M be a model for a PCNF & over
variables V, let P € M, let u € Vg and put I, = Plu]. The reformed path
ref, (P) of P with respect to u is given by

ref, (P)[z] = {Pu[z] if z€ V5,P,[z] = 1., and (—ly,l;) ¢ Cs ,

P[z] otherwise.

Lemma 15. Let M be a model for a PCNF @ = Q.¢ over variables V, let
P e M and let u € Vy. Then ref,(P)(C) =T for all C € ¢.

Proof. Towards a contradiction, suppose that ref, (P)(C) = L for some C € ¢,
and assume without loss of generality that ref, (P)[u] = —u and P,[u] = u. Since
M is a model for @ and P € M, there is an existential literal [ € C for which
Plvar(l)] = [ but ref, (P)[var(l)] = -, so by Definition 14 we have P,[var(l)] = -l
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and (u,l) ¢ Cp. The latter implies that (u, —l") ¢ Cg for all existential literals I €
C' such that I’ # I. Hence, by Definition 14, if P, [var(l")] = I’, then ref, [var(l")] =
U'; but ref,[var(l’)] = -, so we must have P,[var(l’)] = —l’. It follows that P,
falsifies all existential literals in C. Since ref,, (P) and P, agree on all universal
variables except u, and literal u = P[u] ¢ C (because (u,l) ¢ Cg), P, also falsifies
all universal literals in C'. Therefore P,(C) = L, contradicting the premise that
M is a model for @. O

We proceed to define ref, (M), the extension of the reformation operation
from paths to models, in which all pairs of complementary paths P and P, in
some model M are reformed. The resulting model enjoys the useful properties
stated in the subsequent lemma.

Definition 16 (Reformed model). Let M be a model for a PCNF & over
variables V, let u € Vi, let G = {P € M | Plu] = ~u} and let M' = (M\G)UG,
where G = {ref,(P) | P € G}. Then the reformed model of M with respect
to u is ref, (M) = (M’ \ G')U G, where @' = {P € M’ | Plu] = u} and
G’ = {ref,(P) | P € G'}.

Lemma 17. Let M be a model for a PCNF @ over variables V', and let u € V.
Then

(a) ref, (M) is a model for @,
(b) ref, (M) < Dg*(u), and
(c) if M < (v, z), withu € Vg and (v',u) € Rg, then ref, (M) < (u, ).

Proof. Let M’ be defined as in Definition 16, and use the alias M" = ref, (M).
Let P € M such that Plu] = —u and let U be the set of universal literals in P.
We denote by P’ € M’ and P’ € M" the unique paths with U C P’ and
U C P”. Observe that, by Definition 16, P = P’ = ref,,(P), P,/ = ref, (P),) and
P =P,

(a) We prove that M’ is a model for ¢. By Lemma 15, every path in M’ satis-
fies ¢. To show that M’ is well-formed for @, let v € V&, let U’ = Lg(v) N4
and let S” € M’ such that S’[v'] = P’[v'] for all o' € U’. Let « € V3 such
that € Ly(v), and let S € M such that S’ = ref,(S). Since M is well-
formed and S, [v'] = P,[v] for all v’ € U’, we must have S, [z] = P,[z] for all
x € V3N Lg(v). Then S’[z] = P’[x] by Definition 14. By construction, every
universal assignment defines a unique path in M’, so M’ is well-formed for
@. A similar argument shows that M" is a model for .

(b) Let x € V3 such that (u,x) ¢ DY, It is sufficient to show that P"[z] = P//[z]
follows from Definition 14; to do this we consider two cases. (1) Suppose
that Plz] = P,[z] = l;. Then P'[z] = P)[z] = I, and P"[z] = P][z] = I,.
(2) Suppose instead that Plx] = I, and P,[z] = —l;. Since (u,x) ¢ Dg°,
we must have either (u,l;) ¢ Cg or (—u,—ly) ¢ Cs. If (u,l;) ¢ Cs, we have
both P'[z] = P![z] = —l, and P”[x] = P/[z] = —l,. On the other hand, if
(u,l;) € Cp, P'[x] =l and P/[x] = —l,, whereupon (—u,—l;) ¢ Cg yields
P'z] = P[z] = l,.
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(¢) Suppose that M < (v/,x), with v’ € V5 and (v/,u) € Rg, and put Q = P, .
Similarly as for the path P above, let U, be the set of universal literals in @,
and denote by Q' € M’ and Q" € M” the unique paths such that U, C Q’
and U, C Q". Observe that, again by Definition 16, Q" = Q' = ref,(Q),

Q! = ref,(Q)) and Q! = Q. Since we assume Plu] = —u, to deduce
M" < (v,x) we must show that P"[z] = Qi [z] and that P)[z] = QI [x].
The observation that Plr] = Q[z] and P,[z] = Qu[z], in combination

with Definition 16, leads easily to the result. Firstly, this guarantees that
ref, (P)[z] = ref, (Q)[z], that is P'[x] = Q'[z], therefore P"[z] = Q" [x]. Sec-
ondly, using P’'[z] = Q'[x], it also guarantees that ref, (P))[z] = ref, (Q!,)[z],
that is P//[z] = QI [x]. O

The main result of this section follows quickly.
Theorem 18. D™ is fully exhibited.

Proof. Let My be a model for a PCNF & over variables V, let Vo = {uy, ..., u,}
with w; < u;y1 for ¢ € [n — 1], and let M;1 = ref,, (M;) for i € [n — 1]. We
claim that M, is a model for @ such that M,, < D%*(u) for all u € V4.

By induction on i € [n], we prove that M; is a model for ¢ such that M; <
U;‘:1 D3 (u;), and hence at step ¢ = n we prove the claim and the theorem.
For the base case i = 1, observe that M; is model for & by Lemma 17(a), and
that M; < D¥5(u;) by Lemma 17(b). For the inductive step, let i € [n — 1]
and suppose that M; is a model for @ and that M; < U;’:l DFs(uj). Then

M1 = ref,,(M;) is a model for & by Lemma 17(a), M;1; < U;:1 DS (uy)
by Lemma 17(c), and M;41 < D¥5(ui4+1) by Lemma 17(b). Therefore M;y1 <
USEL DS (uy). O
Our concluding result now follows immediately from Theorems 8, 9 and 10.
Corollary 19. QU(D™)-Res, LD-Q(D")-Res and LQU(D™)-Res are sound.

6 Conclusions and Open Problems

As we have shown, the parametrisation by dependency schemes can be extended
to all four CDCL QBF calculi, and the property of full exhibition — which is
possessed by the reflexive resolution path dependency scheme — is sufficient for
soundness in each case. Showing by counterexample that full-exhibition is not
a necessary condition, our work leads naturally to the open problem of finding
a characterisation for soundness in this setting. Another interesting question
concerns proof complexity. The practical motivation to incorporate schemes into
QBF solvers suggests that the use of suitable dependencies will shorten proofs.
While it is not difficult to construct artificial schemes that yield a speed-up on
specific formulas, the real question would be to understand the proof complexity
impact of natural schemes like D',
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Abstract. Many real world cyclic scheduling problems involve applica-
tions that need to be repeated with different periodicity. For example,
multirate control systems present multiple control loops that are orga-
nized hierarchically: the higher-level loop responds to the slower system
dynamics and typically its period can be a few orders of magnitude longer
than the lowest level. Cyclic scheduling problems can be cast into classi-
cal RCPSP instances via a technique called unfolding [4, 6], which causes
graph expansion. In the case of multirate applications, this expansion can
be significantly large. In this context, finding a high-quality allocation
and schedule could be very challenging. In this paper, we propose a new
Multirate Resource Constraint, modeling unary resources, that avoids
graph expansion by exploiting the multirate nature of the schedule in its
filtering algorithm. In an experimentation on synthetic and real-world
instances, we show that our method drastically outperforms approaches
based on state-of-the-art unfolding and constraint based scheduling.

1 Introduction

The increasing number of functionalities delivered in advanced control solutions
employed in different domains (e.g. process automation, automotive industry and
so on) requires more and more hardware resources in order to compute optimal
control strategies to feed to the controlled system. The number of functional
blocks forming such advanced control solutions can be in the order of thousands
or ten of thousands and they are organized in hierarchical feedback loops. The
higher levels (or outer loop) provide supervisory control functions for high-level
management and the setpoints for the lower levels; the middle levels feature
direct process control of the plant or system actuators; the lower levels (or inner
loop) typically present the fail-safe, protection and safety functions ensuring that
the plant remains within specifications avoiding possibly irreversible responses.
All the levels run periodically: the inner loops have the highest priority and
very short periods (in order to respond to the fast dynamics of the system) and
the outer loops have the lowest priority and much longer periods (in order to
address the slower dynamics of the system). Such approach is typically referred
to as multirate control system.

© Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 113-129, 2016.
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In the recent past, the embedded hardware running the control solutions
offered a single CPU on which all the control loops were executed. Nowadays,
control companies are introducing additional computational power under the
form of multi-core CPUs (or system-on-a-chip presenting also FPGA or DSPs).
The control engineer is therefore facing new challenges as he needs to master not
only the control technologies and underlying mathematical algorithms, but also
the deployment of the control solutions on multiple - possibly heterogeneous -
computational resources. Optimizing the allocation and scheduling of the control
functions on multi-core heterogeneous hardware becomes key for leveraging the
power offered by such hardware architectures (see for example [7,12,16-18]).

From an optimization viewpoint, the challenge of the resource allocation and
multirate periodic scheduling problem resides on the fact that the longest con-
trol loop period may easily be two or three orders of magnitude longer than the
shortest period. Consequently, tackling the problem as a whole can be compu-
tationally very demanding.

The contribution of this paper is twofold: we present a constraint program-
ming model for the multirate periodic scheduling problems and we introduce
a new global constraint - the multirate resource constraint - that captures the
specific sub-structure of multirate systems. The paper is organized as follows:
Sect. 2 formalizes the problem; in Sect. 3 we present the model employed to solve
the problem; in Sect.4 we introduce the novel multirate cumulative constraint
and the related filtering algorithm; Sect.5 shows the experimental results and
finally conclusions are drawn in Sect. 6.

2 Problem Description

The problem at hand consists of a resource allocation and multirate periodic
scheduling on r unary resources, where r € R. For the rest of the paper, we will
refer to the control feedback loops as applications.

A set of m periodic applications A : {ag, . .., amn—1} is given. Each application
a; has a priority value, corresponding to the index i (where ¢ = 0 stands for
the highest priority and ¢ = m — 1 for the lowest), and fixed period A;. Each
application a; 11 has a period \;; multiple of the period A; of the application a;.
Formally, A\;11 = n-\; for some n € NT. The application with the lowest priority
has the longest period, which is called the reference period and is noted as A\y,q4-
The application with the highest priority has the shortest period, which is called
the base period. Since different applications can have periods of different lengths,
two applications may execute a different number of times within the same time
window. Each execution of an activity is called repetition. Considering A\,,q; as
the time window, an application a; will have rep(a;) = ’\’j\# repetitions.

Each application a; is composed by a different set of activities V;
{x,...,x5 _1}; V is the set of all activities V. = U;—o__m—1V;. Note that each
application has its own number of activities. In the most general case, the dura-
tion of an X; can be allocation-dependent, i.e. it may vary depending on which
resource r it is assigned to. In this work each activity x; has a fixed duration
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d(x ]T,) for each resource r € R. We assume that there are no transition times
between two activities running on the same resource and we discard the com-
munication overhead of two activities running on two different resources. Please
note that the multirate resource constraint introduced in Sect.4 can be easily
extended to account both for allocation-dependent activity durations and tran-
sition times. Finally, activities within the same application can be subject to a
set of precedence constraints where x}, < xj, indicates that activity ¢ must finish
before activity k starts. We assume that there are no precedence constraints
across different applications. Finally, the objective is to minimize the lexico-
graphic composition of all the application makespans, i.e. to minimize first the
makespan of ag, followed by a; and so on.

3 Constraint Model and Search Strategy

Each activity x} is modeled with a set of |R\ (i.e. one for each resource r € R)
conditional interval variables s%,. : [0, \j—d(x},.)], where si, and ), are the lower
and the upper bound, rebpectlvely The varlable sj, models the j- th activity of
the i-th application if executed on resource r. The conditional interval variables,
introduced in [8,9], can easily model activities that can execute on a set of
alternative resources with different execution times. Each conditional interval
variable has an execution status ex(sjr) which is equal to 1 if the variable is
executed, or equal to 0 if the variable is non-executed. The concept of execution
status is strictly related to the allocation of an activity on a resource r. We can
therefore model the allocation with the following constraint which states that
each activity must be executed on a single resource:

D ex(si,)=1 VicAandVjeV; (1)

TER

In the paper, the notation s;'»r will be used to refer both to the interval variable
and to its associated start time. The set of the interval variables for the activities
of the application a; is S; : {sf ,,...,s,_;,} Vr €R, while S is the set of all the
interval variables, i.e. S = UZ S; V0 <i<m.An interval variable is bound if a
decision has been taken, namely its start time value and execution status have
been fixed; otherwise the variable is called free (or unbound).

Note that the applications are periodic, therefore we can focus only on the
start time s of the activities belonging to the first repetition; all the execution
times of the remaining repetitions can be derived by shifting the first one by w
times the period. Therefore the start time of first and the w-th repetition are:

start(xé-,O) = sé-T and start(xé-,w) = s;-T Fw-A

The precedence constraints between activities are modeled through classical
temporal constraints where the start time of the sink activity cannot be lower

than the end time of the source activity. If (x}, ; ) is a precedence from x; to
x%, we model the constraint as follows:

s, +d(x},) <sb,. Vr,r' €R (2)
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The limited resource capacities are handled with the Multirate Resource
Constraint (MRC). Its definition and propagation algorithm are described in
Sect. 4. It is indeed possible to use traditional resource constraints (e.g. both
unary [15] and cumulative [13]), but only at the price of modeling each repetition
of each activity via a distinct variable. By exploiting the intrinsic periodicity of
the problem and taking advantage of modular arithmetic, the MRC constraint
allows us to model all the repetitions with a single variable.

The objective is to minimize the makespan of each application (considering
the first repetition), where MK; = max(s’, + d(x/,)) is the makespan of the
application a;; namely it is the distance between the greatest end time and the
initial value 0. Since one of the restrictions imposed by the problem is that the
execution of an activity of a high priority application cannot be delayed for the
execution of an activity of a lower priority application, we decided to decompose
the problem into a sequence of optimization subproblems. Each subproblem is
solved to optimality and consists of the minimization of the makespan of a sin-
gle application. The subproblems are solved in order of application priority (i.e.
from the smallest period to the largest one). Note that the model of the i-th
subproblem has to include the variables of the previously solved subproblems
(i.e. with ¢/ < 7). The activities of the applications of each solved subproblem
are crucial for the resource constraint filtering and are modeled through initially
bound start time variables. If a traditional resource constraint is used, each of
those activities has to be replicated several times, depending on the multiplying
factor between the periods. As the experiments highlight, this causes an explo-
sion in the model size and, as a consequence, in the number of variables that
a resource constraint must handle. Conversely, by using the Multirate Resource
Constraint our approach requires only the first execution of each activity, dras-
tically reducing the size of the model.

3.1 The Search

We have developed an ad-hoc search strategy, called precedence search.

The strategy aim is to avoid the choice of activities whose predecessors have
not yet been scheduled. This is done by carrying out a preliminary search in the
list of activities to be scheduled, and populating a list called ready, with only the
activities that, if scheduled, do not violate the precedence constraints. In other
words, the list is populated with activities whose predecessors have already been
scheduled. The choice of the activity is then carried out by selecting the one that
appears on top of the ready list (in FIFO order).

The algorithm then attempts to schedule the activity by choosing, between
its interval variables (one for each resource), the one that can be executed with
the lowest earliest start time, assigning it to its minimum value. On backtrack,
the activity is postponed, i.e. marked as non selectable until its earliest start
time is modified by propagation. This is analogous to what is done in the clas-
sical schedule-or-postpone strategy for the RCPSP [10] and can be done since
we enforce resource restrictions by means of the Multirate Resource Constraint
(which filters on the lower bounds).
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4 The Multirate Resource Constraint

The Multirate Resource Constraint MRC has the following signature:

MRC([s], ], [d(x].)], [As], [Va])
where [sér] is a vector of (conditional) interval variables, [d},] is the vector of
corresponding durations, [\;] and [V;] are the period and the set of activities for
application 7. In the rest of the paper, as the constraint models a single resource,
we refer to the variables and the durations as s and d(z}), respectively.

The aim of the filtering algorithm is to update the Earliest Start Time (EST)
of each interval variable by eliminating time points where the available resource
capacity is not sufficient. Similarly to timetable filtering [1], ou algorithm prunes
the EST so that it corresponds the first time point where there is no conflict with
the compulsory parts of other activities. Note that this is weaker then Bound
Consistency, which would be NP-hard to enforce for the MRC as it is the case
for the classical cumulative constraint.

An activity x; has a compulsory part if and only if there exists a time span
where the activity is necessarily executing. This happens if the latest start time
(i.e. LST) of a start time variable is smaller than its earliest end time (i.e. EET),
where the EET is the earliest start time summed with the activity duration:
EST; + d(z:;) > LST;.

In the first subsection we define some concepts and some operators used
in the algorithm itself. Then we presents the main rules and the steps of the
algorithm. We conclude the section with an example. In the rest of this section
we suppose that we are filtering on the variable s; modeling the activity xz of the
application a; on the resource of the constraint; we call it the selected variable.

4.1 Definitions
Here we present some definitions used in the rest of the section.

Definition 1. Let t be a time point, A(t) is the set of applications having a
period ending at time t, formally:

We can now define the modularization of a variable!.

Definition 2. The modularization mk(sg) w.r.t. period \ is defined on the
bounds of the variable S; as follows:

my(sh) = §§ mod A\
mk(s ) = 53- mod g

! In the whole paper we assume that the durations and the periods are positive values.
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Note that if the duration of an activity X; is longer or equal than the period
of another application ay (i.e. d(x}) > M), no activities of the application aj can
be scheduled since they would conflict with xé-, and the constraint is infeasible.

Classical and modular resource constraints (such as [3] and [5], respectively)
run their filtering algorithms on a time window coinciding with the horizon of the
schedule, in our case the reference period Ap,q.. The key idea of our algorithm is
to exploit the potential of the periodicity, focusing on time windows of increasing
size and considering subsets of activities.

Definition 3. Given a selected variable x;-, we define Ay, as the resource pro-
file over the period Ay (with k < i) accounting for the compulsory parts of the
following activities:

Vi ifk<i (3)
U Vi Zf k=i (4)

k'=i,....m—1

The algorithm processes the profile A, by increasing k (therefore with increas-
ing period size) up to A;, the level of the application of the selected activity xé
(k=0,..,i). Each resource profile A, with k& < ¢ accounts only for the compul-
sory parts of activities V.

When 4; is considered, activities belonging to applications with longer period
(k > i) may not appear within the first repetition of x§ and yet conflict with
subsequent repetitions of x; Therefore, they should be taken into account in a
modularized manner (see Definition 2) with the respect to the period A; of the
application a;. In other words, while the algorithm is performing filtering on sz-,
it has to avoid that a start time ¢’ is considered feasible for an activity x; if there
exists an activity x;“,/ , belonging to an application having a longer period (i.e.
k' > i), whose execution is in conflict with the w-th repetition of the activity
x; Formally if at least one of the following conditions is verified there exists a
conflict:

k

sh+w- A sj:<s§+d(x§)+w-/\i, Vw e Nt (5)
j/l + d(xf/l) < sé +d(x}) +w-X;, VYweNT (6)

<
s§+w~>\i < s*
> % AND b +d(x) > si +d(xi) +w- A, YweNt  (7)

sé-—i—w-)w

Consider as example Fig.1. The schedule depicts a state of the profile of
a resource during search. The problem is composed by three applications with

| |

0 5 10 15 20

Periods . period 5 ! period 10 period 20 Activity x !

Fig. 1. Example with a partial solution. (Color figure online)



The Multirate Resource Constraint 119

different periods denoted by colors and numbers. Suppose that we are filtering
on a variable s} of the Orange(1) application (having period A; = 10) and that
the variable has execution time 1. The first feasible start time could erroneously
considered to be 2, in fact there is a time window of length 1 between the
first executing activity and the next one. Unfortunately an activity s?, of the
Yellow(2) application, which has longer period (i.e. Ay = 20), is scheduled at
time 12 (i.e. s3, = 12). This conflict is identified by both conditions (5) and (7),

;‘: is s?,, the activity of the Yellow(2) application, and sg- is the selected

where s
activity s; (and w = 1). In fact, if the activity s} would be scheduled at 2 (i.e.
s} = 2) during its second repetition it would conflict with si, since s} + A =

2410 = 12 (recall that A\; = 10).
We can now define a feasibility function used in the filtering algorithm.

Definition 4. Let feas(sé-, k,t) be a function that checks if an activity x; can
be scheduled at time t.

feas(sj—,k,t) =< [true| false], m > wherem >t

The function returns a pair composed by a boolean value and a time instant. The
boolean is true iff t is feasible when considering resource profiles Ag, ..., Ag. If
the boolean is false, the time instant w corresponds to the maximum end time
between all the activities conflicting with xé (i.e. the first feasible start time).

The function feas(sz-,k,t) checks the feasibility of ¢ in each period A\ with
k' < k; this can be done efficiently by computing ¢ mod A and checking if the
modularized time instant overlaps with a compulsory part in Az/. As explained
above, if k = 4, the function considers A; by modularizing the compulsory parts
of activities belonging to applications with longer period (k' > 7).

In the worst case this function has to check 7 — 1 activities (7 is the total
number of the activities) hence its asymptotic computational complexity is O(7).

Let O = {og,..,om—1} be a set storing a value for each application a;; these
values are referred to as offsets.

Definition 5. The offset o, = [0..)\;] is a value representing the minimum fea-
sible start time considering the resource conflicts arising from resource profiles
Ag, ..., A;.

Intuitively it represents the minimum feasible start time within each period:
0; = 2 means that in each repetition w of application a;, no activity can be
scheduled before the instant 2+w-\;. Note also that the offsets are non-decreasing
(0;41 > 0;) as the set of activities considered in level i is a subset of the activities

in level 7 + 1 (Uogkgi a, C UO§k§i+1 ag).

4.2 Algorithm Rules

Let o be a time value (also referred to as sweeping-line in the literature [11]) used

to compute the minimum feasible start time for the selected activity (i.e. x;)
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In the following we illustrate the rules used in the filtering algorithm in order to
update the sweeping line o and the offsets O. The algorithm leverages three rules
declaring how to update the offsets and o, how to recognize an infeasibility, and
how to exploit the periodicity for jumping over large time windows with proven
resource conflicts.

Rule 1. Suppose the algorithm is considering level k, if the feasibility function
returns a failure then the offset o and the sweeping line o are updated to the
time value returned by the feasibility function. Formally:

feas(sé,k,t) =< false, 7> = o=op=m (8)

Intuitively this rule states that if the selected activity cannot be scheduled
at time ¢, then time 7 should be considered next as it coincides with the latest
end time of the conflicting activities. Please note that Rule 1 is superseded by
Rule 3 in the specific case the latter applies.

Rule 2. If an offset is greater or equal to its relative period, the algorithm fails.
o, >N\ = fail, Vk|ap€A (9)

If for the current activity there is no feasible space in level Ay, and this is due to
conflicts with activities of applications having index k' < k, there will be no space
at all, since the conflicts will be replicated periodically. Before defining the third
rule, we explain how it intuitively works with an example. Consider Fig. 2 which
is also used as example in Sect. 4.4. Suppose that we are filtering on an activity
s? with duration 2 of the Yellow(2) application (we recall that each application
is depicted with a color and a number and has a different period). Suppose now
that the algorithm has already found that before t = 7 there is no feasible space,
and that this is due to conflicts with activities of the Red(0) and the Orange(1)
applications (which have shorter periods w.r.t. the Yellow(2) one). The already
scheduled Yellow(2) activity at time ¢ = 7 prevents the selected activity xj2 to
be scheduled. So the algorithm should, in principle, proceed, step by step, up to
instant ¢ = 17 in order to find a feasible time window. The algorithm can exploit
the application periodicity and, as the first 7 instants of time of the period of the
Orange(1) application contain conflicts, whenever the search crosses the end of
the Orange(1) period (i.e. Ay = 10), it can jump directly to instant 10 +7 = 17.
Formally:

Rule 3. If an activity a:; cannot be scheduled within a period ending at t the
sweeping line o can be shifted forward to the mazimum between:

2]

0 5 10 15 20

Periods ! period 5 . period 10 period 20 ! period 80 Activity X

Fig. 2. Example with a partial solution. (Color figure online)
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~ t+ Omaz, Where o,qy 18 the greatest offset of all the applications in A(t)
— the time w computed by the feasibility function.

if feas(sé-,fc,a) =< false, ™ > and w>1t Yk <i (10)
= o =max(m, t+ omag) (11)
where Omaz = max({op | k' € A(t)})

As a consequence the offset is updated: o; = o.

Proof. From Definition 5 we recall that the offset defines, for each application a;,
the minimum feasible time instant. Its value is updated anytime the feasibility
function returns a failure (see Rule 2).

Let t = w- A\, be a time instant coinciding with the end time of the period of
some applications. A(t) is the set of these applications. If their period is ending
at t, t+1 is the first time instant of a new repetition of each application of A(¢).
We also know by definition that the first o;-th time instants of each repetition
of the period of the application a; are infeasible. Focusing only on the offsets,
we can therefore affirm that the longest infeasible time window starting at time
t corresponds to the biggest offset between the ones related to the applications
of A(t). Since 0,41 > o; and A;y1 > A;, the biggest offset corresponds to the
application of A(t) having the longest period.

From Definition 4, the feasibility function returns a time value 7 correspond-
ing to the maximum end time between all the activities conflicting with the
selected activity. We can therefore declare that the longest infeasible time win-
dow is the maximum between the value m computed by the function feas() and
the biggest offset of the applications of A(t).

4.3 Algorithm Steps

The filtering algorithm executes for each free start time variable. These variables
are stored in a queue ordered by application (increasing order of the indices).
The pseudo-code of the algorithm is in Algorithm 1.
Initially we set (lines 2-3):
o=5s;
and 0,=0 Vi|a; €A

As stated before, the algorithm proceeds focusing on one level at time with increas-
ing size order (line 4). The starting value for the offset is the o value (line 5), which
represents the minimum time where the infeasibility has not been proved. In other
words, the selected activity cannot be scheduled before o. At line 6 the algorithm
starts searching for a feasibility window. For each time ¢, starting from the initial
value ¢ and up to the end of the current level & (i.e. \i), the algorithm checks the
feasibility.
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Algorithm 1. Consistency - Start Time Filtering Algorithm

Data: Let s? be a free start time variable of the application a;
1 begin

// Initialization

2 o —sh

3 0; — 0 Vil|a; €A

4 for k=0;k<i;k=k+1do

// For each level with no greater period

5 o — o;

6 fort =o;t < Ag;t=t+1do

7 Let < 3,¢ > be a pair <[truel|false], time> storing the result of feas();
8 < B, >— feas(s;,k,t);

9 if B is true then

// Setting the new lowerbound

10 sj. > oy

11 | break;

12 else

// t is not feasible

13 if m > A, then

14 L fail();

15 Let < 6,k’,t’ > be a triple storing the result of findPeriod();
16 < 8, k',t' > findPeriod(t,m);
17 if 0 is true then

18 L t < max(m,t’ + oys);

19 else
20 L t — m;
21 o — t;
22 | o<1

If ¢ is feasible, the lower bound of the variable is updated and the algorithm
proceeds to another level k+ 1 or it ends if & = ¢ (lines 9-11). On the other side,
if ¢ is not feasible, the algorithm applies the three rules.

At the beginning the Rule 2 is evaluated (lines 13-14). If the minimum feasible
time 7 is not lower than the current period A it means that there is no space
for the activity and the constraint fails.

Then we have to check if the computed time 7 has crossed the end of some
periods (line 16). The function findPeriod(t,t) returns a triple <[true|false], k,
time>, where the first element states if between ¢ and ¢ (with ¢t < ¢’) there
exists the end of at least a period, the second element is the index of the appli-
cation with the longest period ending in the analyzed time window, and the
third element is the period end time. Exploiting the modular algebra this is
asymptotically done in O(m), where m = |A|. If the function returns a success
the algorithm applies Rule 3 (lines 17-18) otherwise it executes the Rule 1 (line
19-20). At the end the offset and the o values are updated.

4.4 Example

In this section we apply the filtering algorithm to the example depicted in Fig. 3.
The schedule (A) shows a partial solution. We have 4 Applications: Red(0),
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Orange(1), Yellow(2) and Green(3) with periods 5,10,20 and 80 respectively. We
are filtering on s? : [0..18] : a yellow(2) activity with duration 2. The algorithm
initially sets o = 0 and o = {0,0,0,0}.

Periods .I period 5 . period 10 period 20 . period 80 Activity x

0 5
o[l
0 5 10
v
o 22 Z l..
0 5 10 15 20

Fig. 3. Example with a partial solution (A) and the representation of three levels
(0),(1),(2) as (B), (C), and (D), respectively. (Color figure online)

The method focuses on the resource profiles Ay, A1, and As depicted in Fig. 3
(B), (C), and (D) respectively. Note that in the schedule (A), at time 20, there’s
an activity of the application Green(3) which has a period longer than the Yel-
low(2) one. This activity is modularized and folded back at time 0 in the profile
(D) (20 mod Az). The algorithm starts by processing Ag and checking whether
o is feasible for the activity m;

feas(sé-,O, 0) =< false, 2 >

The result means that time 0 is infeasible, and that there exists at least a conflict-
ing activity executing up to time 2 (the first Red(0) activity executing 1 — 2).
The system therefore updates o and the relative offset value (following Rule 1):

c=2 0=1{2,0,0,0}
The algorithm reiterates on the feasibility check with the new o:
feas(s},0,2) =< true, 2 >

and it finds that time 2 is feasible w.r.t. the resource profile Ay. The algorithm
therefore proceeds with the resource profile A; starting at time o = 2.

feas(s;v, 1,2) =< false, 4 >

As an Orange(1) activity scheduled at 2 is conflicting, the function returns false.
The method then applies Rule (1) and updates o and the offset value:

o=4 o=1{2,4,0,0}
A new feasibility check iteration returns a new conflict:

feas(s}, 1,4) =< false, 5 >
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by checking in decreasing order the profiles A; and Ay, the activity Red(0)
scheduled at 4 is found as conflicting. As the new 7 = 5 is equal to g, Rule (3) is
applied: o = max (Ag + 0g,5) = max (5 + 2,5) = 7. In fact, the second repetition
of the application Red(0) will cause infeasibility up to time 7. The relative offset
value and o are then updated accordingly:

c=7 o0={27,00}

A further feasibility check returns a positive outcome for time 7 w.r.t. resource
profile A; and Ag:

i

feas(s}, 1,7) =< true, 7>

therefore the algorithm starts processing Ao after updating the sweeping-line
o = 7. The feasibility function finds an activity of the Yellow(2) application
executing in 7 — 8 as conflicting:

feas.(sﬁ7 2,7) =< false, 8 >
consequently the filtering algorithm updates o and the offset value:
=238 0=1{2,7,8,0}
Time 8 is again infeasible:
feas(sé—, 2,8) =< false, 10 >

due to the second repetition of a Red(0) activity. The time instant 10 coincides
with the end time of two periods, namely the second repetition of the Red(0)
application (i.e. 2- \g) and the first repetition of the Orange(1) one (i.e. 1- A1).
Therefore, Rule (3) is applied again. The longest between the two periods is the
Orange(1) one, hence its offset is used to updated the sweeping line:

o =max (1- A1 +o01,10) = max (104 7,10) = 17 02 =17

Note that the algorithm was able to forward the sweeping-line by a time win-
dow of length 9 which is proved to contain conflicting parts and no space for
scheduling. The feasibility function at time 17 returns a success: the algorithm
stops and the domain of s’ is modified in [17..18].

A)

0 5 10 15 20

Fig. 4. Partial Solution representing an infeasible situation. (Color figure online)

Suppose now that an activity (with duration 1) of the application Yellow(2)
is scheduled at 17 (see the schedule in Fig.4). In this case the feasibility function
at time 17 would have failed:

feas(sé, 2,17) =< false, 18 >
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because of the newly placed Yellow(2) activity. The function would have failed
also at time 18 (due to the fourth repetition of a Red(0) activity) and the
sweeping-line and offsets would have been updated as follows:

o =20 o =1{2,9,20,0}

and, since o2 = 20 > Ay = 20, the filtering algorithm would have failed (following
Rule (2)).

5 Experimental Results

The aim of the experimental section is to show that the proposed algorithm
is efficient and scalable and outperforms both state of the art approaches and
industrial solutions. The solver and the constraint have been implemented using
the or-tools framework, supported and developed by Google [14]. The exper-
iments can be structured into two parts: the former considers various sets of
synthetic but realistic instances, the latter considers two industrial instances.
The synthetic instances were built by means of an internally developed genera-
tor?, designed to produce instances with realistic structure and parameters. Qur
generation algorithm builds application graphs which are connected, consistent,
and cycle-free. A user specifies in a configuration file the instance parameters.
In this work we have generated instances with two different graph structures:
(1) graphs with a sequential structure, with few long chains, and (2) graphs with
a more parallel form.

The Multirate Resource Constraint (referred to as M in the tables) is com-
pared with two different resource constraints: the former (labelled T&E) is a
combination of the Time Table and the Edge Finder resource constraints, while
the latter (labelled DJ) is the Disjunctive resource constraint (see [2] for an
overview of these algorithms). All the algorithms achieve the same filtering but
substantially different performance on unary resources. For all the approaches
we used the same ad-hoc search strategy, described in Sect. 3.1.

All the experiments presented are for problems with two resources, since the
real-world instances are defined for two CPU cores. We also performed tests with
more resources (i.e. 4 and 8), but they did not add much information since the
overall trend was (scaled but) similar.

Synthetic Benchmarks. The experiments on synthetic benchmarks have been
organized: the aim of the first experimental evaluation is to show the perfor-
mance of the Multirate Resource Constraint in instances where (almost) all the
approaches find the optimal solution within the time limit® (300s). The second

2 The generator and the synthetic instances solved in this work can be found at
https://github.com/alessioBonfietti/ Multirate- Resource- Constraint- Repo.

3 The time limit value refers to the limit we use for the subproblem of the last appli-
cation (the hardest). The previous subproblems were solved with a time limit halved
at each step (e.g. if we have three applications, the limits would be 75,150,300,
respectively).
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part includes more challenging instances, highlighting the performance of the
approach in terms of time and solution quality. We have generated various sets
of instances with 2,3, and 4 applications. Each set is characterized by (1) the
number of applications, (2) the period multiplying factor, and (3) the graph
structure of the instances (e.g. a set with 2 applications, factor 4, and parallel
structure will be denoted as (2,4)par.). The performance are presented as the
arithmetic average of the gaps of two metrics, where the gap is computed as
follows: Gap = 100 * X); ! (where M is the value of the MRC approach and X is
the value of the other one).

Table 1. Small synthetic instances results

Mem Gap (%) Tot.Time Gap(%) Opt.Sol.Time (ms)

Set | Struct. | Avg.# Act. Mvs. T&E | Mvs. DJ |[Mvs. T&E |Mvs. DJ | M T&E | DJ
(2,2) | ser. 10.28 1.47% 0.72% 62.00 % 62.00 % 0.00 0.32 0.34
par. 10.64 0.65 % 0.94 % 60.17 % 60.18 % 0.02 0.62 0.62
(2,4) | ser. 19.96 1.84% 1.52% 89.23 % 89.21 % 0.86 8.46 8.40
par. 21.76 3.01 % 1.32% 73.21% 73.90% | 28.90 | 64.68| 66.00
(3,2) | ser. 31.22 3.36 % 4.92% 92.42 % 92.48 % 0.26 4.00 4.08
par. 25.12 5.04 % 3.03 % 88.18 % 88.06 % 0.24 4.34 4.44
(4,2) | ser. 56.74 6.16 % 9.01 % 94.71% 94.74% | 47.84 | 173.56 | 197.94
par. 56.18 10.23% 7.23% 88.52 % 88.47% | 96.61 | 419.28 | 475.87

Table 1 reports the results of the first experimental part. Each line corre-
sponds to a set of 50 instances. The fourth and the fifth columns present the aver-
age memory consumption gap while the sixth and the seventh report the average
total time gap (the total time includes the optimality proof). The columns from
8 to 10 show the average time spent finding the optimal solution (without the
proof time). The third column reports the average number of activities. The per-
formance of the proposed method increases as the instance size grows. The last
line refers to the hardest experimental set of Table 1. Our approach requires up to
10 % less memory, computes the optimal solution with a speed up of over 4x and
closes the search in nearly 10 % of the time. Note that our approach found and
prove always the optimal solution in time, while both T&E and DJ where not
able to prove the optimality in 4 instances (in the (4,2)par set). Figure 5 shows
the performance profiles of the three approaches in the hardest sets (i.e.(4,2)ser
and (4,2)par) of the first experimental part. Both graphics represent the per-
centage (y-axes) of optimal solutions found over time (x-axes). In the (4,2)ser
set every approach concludes the search in less then 75s, but note that we close
the 88 % of the instances before 0.1s (while T&E closes only the 30 % of the
instances and DJ the 32%). In the (4,2)par, both T&E and DJ close only the
92 % of the instances within the timelimit (300s) while we close the 98 % of the
instances before 75s.

Table 2 reports the results of the second part of the synthetic experiments.
The table reports the time gap spent in finding the first solution (which is
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Fig. 5. Performance profiles of sets (4,2)seq. and (4,2)par.

obviously the same for all the approaches) and the solution value gap w.r.t.
another approach called BaseLine. This approach is actually used in the indus-
trial context when working with challenging instances. It consists in forcing all
the activities of an application to be allocated on the same resource. The search
is therefore very fast, but the solution lacks of quality. As reported in Table 2,
our approach takes less then 1% of the time w.r.t. T&E and DJ to find the first
feasible solution solving challenging instances.

Table 2. Big synthetic instances results

1st Sol.Time Gap (%) | Sol. Gap (%)
Set Struct. | Avg.# Act. |M vs T&E |M vs DJ vs BaseLine
(3,10) | ser. 525.13 99.172% 199.179 % 57.66 %
par. 544.40 99.301% 199.304% | 57.50%
(4,6) |ser. 1578.80 99.030% 199.030% | 30.25%
par. 1419.93 99.408 % 199.410% 43.23%

Industrial Benchmarks. The real world instances come from the automation
control system industry and were provided by ABB. Both instances are composed
by three applications. The first instance, labelled Reall, consists of a 2353 activ-
ities and has been solved with a timelimit of 300 s. The second instance, labelled
Real2, consists of 177646 activities and has been solved with a time limit of 2h
(i.e.7200s). Table 3 reports some details of the instances (in the upper part) and
the results of the experiments (in the bottom part). We recall that our approach,
thanks to the multirate resource constraint, considers only a single repetition of
each application, while any classical approach have to model each repetition as
a variable. Hence, the MRC model of the Real2 instance consists of only 205
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interval variables, while both T&E and DJ models have 177646 variables. As a
consequence our approach has a memory consumption less than 3% w.r.t. to
T&E and DJ and is able to find a solution in 159 ms, four orders of magnitude
faster than T&E and DJ, which need 1827 and 2468 s, respectively. This has a
huge impact over the search space explored, where the MRC approach within
the time limit solved over 38 millions of branches, while T&E and DJ 2278 and
1522, respectively.

Table 3. Industrial instances and results

Reall Real2
Period(p-sec) 325000 50000
App 0 Act. Number 10 87
App 1 Period(p-sec) 1950000 2000000
PP 2| Act. Number 332 72
A 9 Period(p-sec) 11700000 100000000
PP 2| Act. Number 1 46
Total | Act. Number 2353 177646
| Metric [ W [T&B [ DJ [ W | T&E | DJ_|
Sol. Time(ms) 5 | 521 [ 496 150 [1827187[2468504
Z Sol. 7 7 7 9 9 8
Mem (MB) 14.9 27.4 29.2 34.4 1258.3 | 1253.8
N branches 2 2 2 38484544 2278 1522
Sol.Gap vs Base(%) [50.85%50.85%50.85%| 11.1% 11.1% | 11.1%

6 Concluding Remarks

In this work we have presented a Constraint Programming approach for the
multirate periodic scheduling problems. Key for the efficiency of the method is
the ad-hoc search strategy and the multirate resource constraint which lever-
ages on the modular algebra to enforce resource restrictions on the activities
of the periodic applications. In the proposed algorithm the requirements and
the resources are considered unary. We plan to investigate how to extend the
algorithm considering cumulative resources.

Acknowledgements. We would like to show our gratitude to William Aeby for his
assistance in extracting the industrial instances.
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Abstract. Given a fixed constraint language I', the conservative CSP
over I' (denoted by c-CSP(I")) is a variant of CSP(I") where the domain
of each variable can be restricted arbitrarily. In [5] a dichotomy has been
proven for conservative CSP: for every fixed language I', ¢c-CSP(I) is
either in P or NP-complete. However, the characterization of conserva-
tively tractable languages is of algebraic nature and the recognition algo-
rithm provided in [5] is super-exponential in the domain size. The main
contribution of this paper is a polynomial-time algorithm that, given
a constraint language I' as input, decides if ¢-CSP(I") is tractable. In
addition, if I" is proven tractable the algorithm also outputs its coloured
graph, which contains valuable information on the structure of I.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a powerful framework for solving
combinatorial problems, with many applications in artificial intelligence. A CSP
instance is a set of variables, a set of values (the domain) and a set of constraints,
which are relations imposed on a subset of variables. The goal is to assign to
each variable a domain value in such a way that all constraints are satisfied. This
problem is NP-complete in general.

A very active and fruitful research topic is the non-uniform CSP, in which
a set of relations I is fixed and every constraint must be a relation from I
For instance, if I" contains only binary Boolean relations then CSP(I") is equiv-
alent to 2-SAT and hence polynomially solvable, but if all ternary clauses are
allowed the problem becomes NP-complete. The Feder-Vardi Dichotomy Con-
jecture states that for every finite I, CSP(I") is either in P or NP-complete [10]
(hence missing all the NP-intermediate complexity classes predicted by Ladner’s
Theorem [15]).

While this conjecture is still open, a major milestone was reached with
the characterization of all tractable conservative constraint languages, that is,
languages that contain every possible unary relation over their domain [5].
Conservativity is a very natural property since it corresponds to the languages
that allow arbitrary restrictions of variables domains, a widely used feature in
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practical constraint solving. It also includes as a particular case the well-studied
problem List H-Colouring for a fixed digraph H.

Now that the criterion for the tractability of conservative languages has been
established, an important question that arises is the complexity of deciding if a
given conservative language is tractable. An algorithm that decides this criterion
efficiently could be used for example as a preprocessing operation in general-
purpose constraint solvers, and prompt the use of a dedicated algorithm instead
of backtracking search if the instance is over a conservative tractable language.

This meta-problem can be phrased in two slightly different ways. The first
would take the whole language I" as input and ask if CSP(I") is tractable. How-
ever, conservative languages always contain a number of unary relations that
is exponential in the domain size, which inflates greatly the input size for the
meta-problem without adding any computational difficulty. A more interesting
question would take as input a language I' and ask if c-CSP(I) is tractable,
where ¢-CSP(I") allows all unary relations in addition to I" (this is the conserva-
tive CSP over I'). Designing a polynomial-time algorithm for this meta-problem
is more challenging, but it would perform much better as a structural analysis
tool for preprocessing CSP instances.

Bulatov’s characterization of conservative tractable languages is based on the
existence of closure operations (called polymorphisms) that satisfy a certain set
of identities. While the algebraic nature of this criterion makes the meta-problem
delicate to solve, it also shows that the meta-problem is in NP and can be solved
in polynomial time if the domain size is fixed. This hypothesis is however very
strong because there is only a finite number of constraint languages of fixed arity
over a fixed domain. If the domain is not fixed this algorithm becomes super-
exponential, and hence is polynomial for neither flavour of the meta-problem.

The contribution of our paper is twofold:

(i) We present an algorithm that decides the dichotomy for ¢-CSP in polynomial
time. This is the main result of this paper.

(ii) As a byproduct, we exhibit a general connection between the complexity of
the meta-problem and the existence of a semiuniform algorithm on classes of
conservative languages defined by certain algebraic identities known as linear
strong Mal’tsev conditions. We obtain as a corollary a broad generalization
of the result about conservative Mal’tsev polymorphisms found in [7].

The necessary background for our proofs will be given in Sect. 2. In Sect. 3 we
will then present the proof of the contribution (i¢), and in Sect.4 we will show
how this result can be used to derive an algorithm that decides the dichotomy for
¢-CSP in polynomial time. Finally, we will conclude and discuss open problems
in Sect. 5.

2 Preliminaries

2.1 Constraint Satisfaction Problems

An instance of the constraint satisfaction problem (CSP) is a triple (X, D,C)
where X is a set of variables, D is a finite set of values and C is a set of constraints.
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A constraint C of arity k is a pair (S¢, R¢) where R¢ is a k-ary relation over
D and Sc € X% is the scope of C. The goal is to find an assignment ¢ : X — D
such that for all C' = (S¢, R¢) € C, ¢(Sc) € Rc. In this definition, variables do
not come with individual domains; any variable-specific domain restriction has
to be enforced using a unary constraint.

Given a constraint C = (S¢, Re) and X; C X, we denote by C[X;] the
projection of C onto the variables in X; (which is the empty constraint if S
does not contain any variable in X1). The projection of a CSP instance I onto a
subset X1 C &, denoted by I|x,, is obtained by projecting every constraint onto
X7 and then removing all variables that do not belong to X;. A partial solution
to I is a solution (i.e. a satisfying assignment) to I|x, for some subset X; C X
A CSP instance is 1-minimal if each variable z € X has an individual domain
D(z) (represented as a unary constraint) and the projection onto {z} of every
constraint C' € C whose scope contains z is exactly D(z). l-minimality can be
enforced in polynomial time by gradually removing inconsistent tuples from the
constraint relations until a fixed point is reached [16].

Throughout the paper we shall use R(.) and S(.) as operators that return
respectively the relation and the scope of a constraint. A constraint language over
a set D is a set of relations over D, and the constraint language £(I) of a CSP
instance I = (X,D,C) is the set {R(C) | C € C}. Given a constraint language
I" over a set D, we denote by I' the conservative extension of I', that is, the
language comprised of I" plus all possible unary relations over D. Finally, given
a constraint language I we denote by CSP(I") (resp. ¢-CSP(I)) the restriction
of CSP to instances I such that £(I) C I" (vesp. L(I) C T).

The algorithms presented in this paper will take constraint languages as
input, and the complexity analysis depends crucially on how relations are
encoded. While practical constraint solvers often represent relations intention-
ally through propagators, we shall always assume that every relation is given as
an explicit list of tuples (a very common assumption in theoretical papers).

2.2 Polymorphisms

Given a constraint language I', the complexity of CSP(I") is usually studied
through closure operations called polymorphisms. Given an integer k and a con-
straint language I" over D, a k-ary operation f : D*¥ — D is a polymorphism of
I if for all R € I" of arity r and tq,...,tx € R we have

(f2 1], t[1]), o f(Ralr) o ti[r])) € R

A polymorphism f is idempotent if Vo € D, f(z,...,x) = x and conserva-
tive if Vai,...,2, € D, f(x1,...,21) € {21,...,21}. It is known that given
a constraint language I', the complexity of CSP(I") is entirely determined by
its polymorphisms [13]. On the other hand, the conservative polymorphisms
of I' are exactly those that preserve all unary relations, and hence deter-
mine the complexity of ¢c-CSP(I"). A binary polymorphism f is a semilattice

if Vo,y,z € D, f(z,2) = x, f(z,y) = f(y,2) and f(f(2,9),2) = f(=z, f(y,2)).
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A majority polymorphism is a ternary polymorphism f such that Va,y € D,
flx,z,y) = f(z,y,z) = f(y,x,x) = z and a minority polymorphism is a ternary
polymorphism f such that Va,y € D, f(z,z,y) = f(z,y,2) = f(y,z,z) = y.

2.3 Conservative Constraint Satisfaction

In general, if I' is a conservative language and there exists {a,b} C D such that
every polymorphism of I" is a projection when restricted to {a, b} then CSP({R})
is polynomially reducible to CSP(I") [14], where

abbd
R=|babd
bba

It follows that CSP(I") is NP-complete as CSP({R}) is equivalent to 1-in-3 SAT.
The Dichotomy Theorem for conservative CSP states that the converse is true:
if for every B = {a,b} C D there exists a polymorphism f such that f|p is
not a projection, then ¢-CSP(I") is polynomial-time. By Post’s lattice [17], the
polymorphism f can be chosen such that fip is either a majority operation, a
minority operation or a semilattice.

Theorem 1 ([5]). Let I' be a fized constraint language over a domain D. If
for every B = {a,b} C D there exists a conservative polymorphism f such that
fiB s either a majority operation, a minority operation or a semilattice then
¢-CSP(T') is in P. Otherwise, c-CSP(I") is NP-complete.

This theorem provides a way to determine the complexity of ¢-CSP(I"), since
we can enumerate all ternary operations over D and list those that are polymor-
phisms of I'. However, this procedure is super-exponential in time if the domain
is part of the input. Our paper presents a more elaborate, polynomial-time algo-
rithm that does not impose any restriction on I.

Three different proofs of Theorem 1 have been published [1,5,6], and two of
them rely heavily on a construction called the coloured graph of I' and denoted
by Gp. The definition of G is as follows. The vertex set of G is D, and there
is an edge between any two vertices. Each edge (a,b) is labelled with a colour
following these rules:

— If there exists a polymorphism f such that fif, ;) is a semilattice, then (a,b)
is red;

— If there exists a polymorphism f such that f|¢, ;) is a majority operation and
(a,b) is not red, then (a,b) is yellow;

— If there exists a polymorphism f such that fi;, s} is a minority operation and
(a,b) is neither red nor yellow, then (a,b) is blue.

Additionally, red edges are directed: we have (a — b) if there exists f such
that f(a,b) = f(b,a) = b. It is possible to have (a < b). By Theorem 1, Gp
is entirely coloured if and only if ¢-CSP(I") is tractable. The next theorem,
from [5], shows that the tractability of ¢-CSP(I") is always witnessed by three
specific polymorphisms (instead of O(d?) in the original formulation).
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Theorem 2 (The Three Operations Theorem [5]). Let I' be a language
such that c-CSP(T") is tractable. There exist three conservative polymorphisms
f*(z,y), g"(z,y,2) and h*(x,y, z) such that for every two-element set B C D:

- fl*}g is a semilattice operation if B is red and f*(x,y) = x otherwise;

- g‘*B 18 a magority operation if B is yellow, gl*B(m,y,z) = z if B is blue and
9ip @y, 2) = f*(f*(2,y),2) if B is red;

- h‘*B 18 a minority operation if B is blue, h‘*B(x,y,z) = x if B is yellow, and
h‘*B(:c,y,z) = f*(f*(x,y),2) if B is red.

The original theorem also proves the existence of other polymorphisms, but
we will only use f*, g* and h* in our proofs.

2.4 Meta-Problems and Identities

Given a class T of constraint languages, the meta-problem (or metaquestion [8])
for T takes as input a constraint language I and asks if I" € T. In the con-
text of CSP and c-CSP, the class T is often defined as the set of all languages
that admit a combination of polymorphisms satisfying a certain set of identities;
in this case the meta-problem is a polymorphism detection problem. We will be
interested in particular sets of identities called linear strong Mal’tsev conditions.
Given that universal algebra is not the main topic of our paper, we will use a
simplified exposition similar to that found in [8]. A linear identity is an expres-
sion of the form f(z1,...,7%) =~ g(y1,...,¥Yc) or f(z1,...,75) = y; where f,g
are operation symbols and z1,...,Tg,y1, .., Y. are variables. It is satisfied by
two interpretations for f and g on a domain D if the equality holds for any
assignment to the variables. A strong linear Mal’tsev condition M is a finite set
of linear identities. We say that a set of operations satisfy M if they satisfy every
identity in M. A strong linear Mal’tsev condition is said to be idempotent if it
entails f;(x,...,z) & x for all operation symbols f;. For a given linear strong
Mal’tsev condition, the number of operation symbols and their maximum arity
are constant.

Example 1. The set of identities

flz,z,y) =
flz,y,x) = x
fly,z,x) = x

is the idempotent linear strong Mal’tsev condition that defines majority opera-
tions. On the other hand, recall that semilattices are binary operations f satis-

fying
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which does not form a linear strong Mal’tsev condition because the identity
enforcing the associativity of f is not linear.

By extension, we say that a constraint language satisfies a linear strong
Mal’tsev condition M if it has a collection of polymorphisms that satisfy M. The
definability of a class of constraint languages by a linear strong Mal'tsev condi-
tion M is strongly tied up with the meta-problem, because for such classes we
can associate any constraint language I" with a polynomial-sized CSP instance
whose solutions, if any, are exactly the polymorphisms of I' satisfying M [8].
We will describe the construction below.

Given a constraint language I" and an integer k the indicator problem of order
k of I', denoted by I’Pk(F), is a CSP instance with one variable xf(q, . a,)
for every (di,...,dy) € D* and one constraint C}:f;’__’tk) for each R* € I,
t1,...,tx € R*. The constraint Cﬁ;,...,tk) has R* as relation, and its scope S is
such that for all i < [S|, S[i] = Zf(,[,... 4[i])- Going back to the definition of a
polymorphism, it is simple to see that the solutions to ZP* (I') are exactly the
k-ary polymorphisms of I" [13].

Now, let M denote a linear strong Mal’tsev condition with symbols fi,..., fm
of respective arities ay,...,a,. We build a CSP instance P (I") that is the
disjoint union of ZP*(I'),...,ZP*(I'). By construction, each solution ¢ to
Pam(I) is a collection of polymorphisms (f1,..., fim) of I'. We can force these
polymorphisms to satisfy the identities in M by adding new constraints. If & €
M is of the form fj(z1,...,2q;) = fp(y1,--.,¥a,), we add an equality constraint
between the variables Tfi($(1)ernrd(wa,)) and T, (6(y1),ensd(Yap)) for every possible
assignment ¢ to {x1,...,%q;,¥Y1,---,Ya,}. Otherwise (i.e. if & is of the form
fi(z1,...,2x) = y;) we can enforce & by adding unary constraints. Note that
the language of Paq(I") is I together with possible equalities and unary relations
with a single tuple. This construction will be used frequently throughout the

paper.

2.5 Uniform and Semiuniform Algorithms

Let M denote a strong linear Mal’tsev condition, and let CSP(M) denote the
CSP restricted to instances whose language satisfies M.

Definition 1. A uniform polynomial-time algorithm for M is an algorithm that
solves CSP(M) in polynomial time.

The term “uniform” here refers to the fact that the language is not fixed (as
in the Feder-Vardi Dichotomy conjecture), but may only range over languages
that satisfy M. The existence of a uniform algorithm implies that CSP(I") is in
P for every I' that satisfies M, but the converse is not guaranteed to be true. For
instance, an algorithm for CSP(M) that is exponential only in the domain size
is polynomial for every fixed I" that satisfies M, but is not uniform. A weaker
notion of uniformity called semiuniformity has been recently introduced in [§],
and will be central to our paper.
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Definition 2. A semiuniform polynomial-time algorithm for M is an algorithm
that solves CSP(M) in polynomial time provided each instance I is paired with
polymorphisms f1,..., fm of L(I) that satisfy M.

Observe that semiuniform algorithms are tied to the identities in M rather
than the class of languages it defines; even if CSP(M;) and CSP(M,;) denote
the exact same set of instances, the polymorphisms satisfying My can be more
computationally useful than those satisfying M;.

The following observation has been part of the folklore for some time (see
e.g. [2,4]) and has been recently formalized in [8].

Proposition 1 ([8]). Let M be an idempotent strong linear Mal’tsev condition.
If M has a uniform algorithm, then the meta-problem for M is polynomial time.

We give here the proof sketch. The idempotency of M ensures that we have a
uniform algorithm for the search problem (i.e. decide if the instance is satisfiable
and produce a solution if one exists) because idempotent polymorphisms always
preserve assignments to variables, which can be seen as unary relations with a
single tuple. Given a relational structure I, to check if I" satisfies M we build
the instance Pap(I) as in Sect.2.4 and invoke the uniform search algorithm.
Since the language of Paq(I") is I' plus equalities and unary relations with a
single tuple, L(Paq(I")) satisfies M if and only if I" does. If Pa(I") is satisfiable
then I' satisfies M and the algorithm must produce a solution (which can be
easily verified), and whenever the algorithm fails to do so we can safely conclude
that I" does not satisfy M.

There is no intuitive way to make this approach work with semiuniform
algorithms because they will not run unless given an explicit solution to Pa(I")
beforehand.

3 Semiuniformity in Conservative Constraint Languages

As seen in Sect. 2.5, in the case of idempotent linear strong Mal’tsev conditions
a uniform algorithm implies the tractability of the meta-problem. We will see
that if the problem is to decide if I satisfies M (i.e. to decide if I" has conserva-
tive polymorphisms f1,. .., f,, that satisfy M) then semiuniformity is sufficient.
This implies that, surprisingly, uniformity and semiuniformity are equivalent for
classes of conservative languages definable by a strong linear Mal’tsev condition.

The general strategy to solve the meta-problem assuming a semiuniform algo-
rithm is to cast the meta-problem as a CSP and then compute successively partial
solutions ¢1, ..., ¢, of slowly increasing size until a solution to the whole CSP is
obtained. The originality of our approach is that ¢; 1 is not computed directly
from ¢;, but by solving a polynomial number of CSP instances whose languages
admit ¢; as a polymorphism. This algorithm can be seen as a treasure hunt,
where each chest contains the key to open the next one.

Let M be a strong linear Mal’tsev condition with operation symbols
f1,..., fm of respective arities a1, ...,a,,. Let I' be a constraint language over
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D and Py (') be the CSP whose solutions are exactly the polymorphisms of I"
satisfying M (as described in Sect. 2.4). Recall that for every symbol f; in M and
(di,...,d,,) € D% we have a variable Tfy(dy,nrda,) that dictates how f; should
map dy,...,ds,, and for every R* € I' and a; tuples t1,...,ta, € R* we have a
constraint Cf}?(*th...,tai) that forces the tuple fi(t1, ..., ta,) to belong to R* (where

f; is the operation on tuples obtained by componentwise application of f;). Our
goal is to decide if I satisfies M, which requires the polymorphisms of I" satisfy-
ing M to be conservative. The solutions to Paq(I”) can easily be guaranteed to be
conservative by adding the unary constraint (4, .4, ) € {dy,...,dq,} on each
variable z f, (4, ....4, ) € X. We will denote this new problem by Pf, (I'), and each
solution ¢ to P§,(I") is a collection (f1,..., fm) of conservative polymorphisms
of I' satisfying M.

We need one more definition. Given a CSP instance Z, a consistent restriction
of 7 is an instance obtained from Z by adding new constraints that are either
unary or equalities and then enforcing l-minimality. We will be interested in
the consistent restrictions of P§,(I"), and we will keep the same notations for
constraints that already existed in P§,(I"). The next lemma is a variation of
([7], Observation 2) adapted to our purpose.

Lemma 1. Let P = (X,D,C) be a consistent restriction of PS,(I"). Let f;
and f; be operation symbols in M. If C’flf(*tl ot € C and t1,.. by €

R(cg(*tlw,tai)) then
R(Cfl'j{(t’l,“wt;j)) c R(Ci{f(tl,“”tai))
Proof. Let S = S(C’é%(*tl’_“’ta.)) and S’ = S(Oé?;tg,...,t’,))' Before 1-minimality
was enforced, we had R(Cf?(ll,...,ta.)) = R(Cf(*t/l o )) = R*. Thus,
i SIS ERELEN

after enforcing 1-minimality we have 72(6'5(11 b)) = RN (meesD())
and R(C’é?(*t, ¢ )) = RN (meesD(x)). However, since tj,....t; €
10 ay

R(Cf'(*t " )), the conservativity constraints ensure that for each k,
ilbt1,..-,ta

D(S'IK]) = D@, 5 4),...t5, 1)) < {t2[K], -t []} € D(S[R])

Therefore, R(C’flf ) C R(CE ).

Bt £i(t1,.. ba;)

Given two sets of variables X7, Xo C X, we write X; < X3 if for each symbol
Jiin M, Vo € Xy and t € D(x)* we have xy, ) € X;1. If X1 < Xy, we say that
X is closed.

Proposition 2. Let P = (X,D,C) be a consistent restriction of P,(I"). If X1
and Xy are subsets of variables such that X1 < Xo, then every solution to Pix,
is a collection of polymorphisms of L(P)|x,).
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Proof. Let fi, f;j € {f1,...,fm} be operation symbols in M. Let R* € I,

t1,...,ta, € R*, C3 = (S2,Rz) € Px, be the projection of 05(11 )

onto X, and t2,... ,tgj € Ry. By the nature of projections, there must exist
...ty € R(Cg(*tl,...,tai)) such that t,...,t3 is the projection of t7,...,t;
onto Xs. Then, by Lemma 1 we have

R(CH 1) € RICKe 1)

and in particular R(Cé%(*

!
ey

t;j)[XQD C R(Cf}?(*th__,tai)[XQ]) = Ry. Now, note

that because X; < X5 and P is 1-minimal, every variable zy ¢/ x],... ¢ [x)) In the
J

scope of Ct{j%(*t'l,...,t' .)[Xg] also belongs to X;. We denote this constraint by Cj.

Let us summarize what we have: for every symbol f;, every relation Ry €
L(P|x,) other than equalities and unary relations (which are preserved by all
conservative polymorphisms) and t2, ... ,tgj € R,, there is a constraint C; =
(S1, R1) € Pix, such that |Si| = |S2], R1 € Ry and for every k we have Si[k] =
T £ (62 [k),...£2, k])- It follows that for every solution (fi,..., fm) to P(I')x,, f;

is also a solution to the indicator problem of order a; of L(P(I')x,) and is
therefore a polymorphism of L(P(I')x,)-

Closed sets of variables allow us to turn partial solutions into true polymor-
phisms of a specific constraint language, hence enabling us to make (limited) use
of semiuniform algorithms. A variable of P§,(I) is a singleton if it is of the form
Tf,(v,...,v) for some v € D. The sets of variables corresponding to singletons and
X constitute two closed sets; the next Lemma shows that many intermediate,
regurlarly-spaced closed sets exist in P§,(I") between these two extremes.

Lemma 2. Let P,(I') = (X,D,C) after applying 1-minimality. There exist
Xo C ... C X, = X such that Xg is the set of all singleton variables, each X; is
closed and | X,;11 — X;| < ma®, where a and m denote respectively the mazimum
arity and number of operation symbols in M.

Proof. Let (Dy,...,D,) denote an arbitrary ordering of the subsets of D of size
a. We define
Xo = {2y, v;,...0) | [ € M,v; € D}

and for all i € [1..0]
Xi=Xi1U{zyg) | fj € Mt € (D)™}

It is clear that X, is the set of all singleton variables and for all 4,
| Xiv1 — Xi| < m|(D;)% = ma®. Tt remains to show that each set is closed.
Let £ > 1 and suppose that Xj_; is closed. By induction hypothesis, we only
need to verify that X <0 X\ Xx_1. Let Tfy(v1,00va,) be a variable in X\ Xg_1.
Because P§,(I") is 1-minimal, we have D(xfj(vl’”:,ua]_)) C {v1,...,vq;} € Dy.
By construction Xj contains all variables of the form xy 4) where t € (Dy)%
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and because D(J:fj(vl,m’yaj)) C {v1,...,vq;} € Dy it contains in particular all

variables z ¢ (4) such that ¢ C D(zfj(,uh__ ). This implies that X < Xp\Xp—_1

~Vay)
and concludes the proof.

We now have every necessary tool at our disposal to start solving P§,(I).
It is straightforward to see that if a subset of variables X' is closed in P, (I),
then it is closed in every consistent restriction as well.

Proposition 3. If a solution to P§,(I")|x, is known, then a solution to
Psa(I)x,., can be found in polynomial time.

Proof. Let (f1,..., f%,) be asolution to PS5, (I")x,. We assume that 1-minimality
has been enforced on P§,(I"). This ensures, in particular, that the domain of
each xy (r) € Xip1\X; contains at most a elements. It follows that X;1\X;
has at most s = a™%" possible assignments ¢1, ..., ¢,. For every j € [1..s], we
create a CSP instance P; that is a copy of P§,(I") but also includes the con-
straints corresponding to the assignment X; 1\ X; «— ¢;(X;41\X;). We enforce
1-minimality on every instance P;.

Now, observe that each P; is a consistent restriction of P, (I"), so X is still
closed in P;. Moreover, every variable € X;41\X; has domain size 1 in P;;
since X; contains all singleton variables, if follows that in P; we have X; < X;41.

By Proposition 2, (fi,..., f¢,) is a collection of polymorphisms of £(P; Xii1 ).
We can then use the semiuniform algorithm to find in polynomial time a solution
to le Xi if one exists by backtracking search (every f! is idempotent, so we
can invoke the semiuniform algorithm at each node to ensure that the algorithm
cannot backtrack more than one level). A solution to P§,(I')x,,, exists if and
only if Pj . has a solution for some j € {1,...,s}.

The above proof balances on the fact that every complete instantiation of
the variables in X;;1\X; (followed by l-minimality) yields a residual instance
over a language that admits (f},...,f.,) as polymorphisms. In other terms,
PSa(I)x,,, has a backdoor [19] of constant size to (f{,..., f%,)-

Theorem 3. Let M be a linear strong Mal’tsev condition that admits a semiu-
niform algorithm. There exists a polynomial-time algorithm that, given as input
a constraint language I', decides if T’ satisfies M and produces conservative
polymorphisms of I satisfying M if any exist.

Proof. The algorithm starts by building P§,(I") and computes the sets
Xo,...,Xq as in Lemma 2. We have a solution to Pg,(I")|x, for free because
of the conservativity constraints, and we can compute a solution to P§,(I") by
invoking repeatedly (at most a < |X| < md® times) Proposition 3.

Corollary 1. If M is a linear strong Mal’tsev condition that has a semiuniform
algorithm for conservative languages, then M has also a uniform algorithm for
conservative languages.
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Proof. The uniform algorithm simply invokes our algorithm to produce the con-
servative polymorphisms satisfying M, and then provides these polymorphisms
to the semiuniform algorithm to solve the CSP instance.

An immediate application of Theorem 3 concerns the detection of conserv-
ative k-edge polymorphisms for a fixed k. A k-edge operation on a set D is a
(k + 1)-ary operation e satisfying

e, 2,4, Y, Ys -, Y, Y) R Y
e, Y, 0,9, Ys -, Y, Y) XY
e(T, Y, Yy T, Y5 -, Y5 Y) R Y
(T, Y, Y, Ys Ty oo, YY) R Y
(T, Y, Y Y5 Yy - T,Y) XY
(T, Y Yy Ys Uy -1 Y, T) R Y

These identities form a linear strong Mal’'tsev condition. The algorithm given
in [12] is semiuniform, but in addition to e it must have access to three other
polymorphisms p, d, s derived from e and satisfying

plz,y,y) =

p(z,z,y) ~ d(z,y)

d(z,d(z,y)) = d(z,y)

$(2, 9,9, Y5 -+, U5 y) = d(y, x)
S(U T Y, Yy YY) R Y
(U U T, Ys -, YY) R Y
(U Y Y Y- Y, T) R Y

The authors provide a method to obtain these three polymorphisms from e that
requires a possibly exponential number of compositions. However, conservative
algebras are much simpler and we can observe that

,Ik) = 6(5627901,172,953, e 7~’Ck)
d(z,y) = e(z,y,7,...,7)

p($7y72) = e(y,d(y,Z),J], A 7{E)

s(x1,za, ...

satisfy the required identities and are easy to compute. It follows that in the con-
servative case their algorithm is semiuniform even if only a k-edge polymorphism
e is given.

Corollary 2. For every fixed k, the class of constraint languages admitting a
conservative k-edge polymorphism is uniformly tractable and has a polynomially
decidable meta-problem.
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Since conservative 2-edge polymorphisms are Mal’tsev polymorphisms, this
corollary is a broad generalization of the result obtained in [7] concerning con-
servative Mal’tsev polymorphisms.

4 Deciding the Dichotomy

While the criterion for the conservative dichotomy theorem can be stated as a lin-
ear strong Mal’tsev condition [18], none of the algorithms found in the literature
are semiuniform. Still, Theorem 3 gives a uniform algorithm for constraint lan-
guages I" whose coloured graph contains only yellow and blue edges: if g* (z, y, 2)
and h*(z,y, z) are the polymorphisms predicted by the Three Operations The-
orem, then m*(z,y,z) = h*(¢*(z,v,2),9"(y, 2, x),9"(2,2,y)) is a generalized
majority-minority polymorphism of I' (see [9] for a formal definition), which
implies that I" has a 3-edge polymorphism [3].

Our algorithm will reduce the meta-problem to a polynomial number of CSP
instances over languages with conservative 3-edge polymorphisms using a refined
version of the treasure hunt algorithm and a simple reduction rule. This reduc-
tion rule is specific to indicator problems and allows us to avoid the elabo-
rate machinery presented in [6] to eliminate red edges in CSP instances over a
tractable conservative language.

We start by the reduction rule. Recall that the Three Operations Theorem
predicts that if I" is tractable then it has a conservative polymorphism f* such
that for every 2-element set B, f‘*B is a semilattice if B is red and fﬁg(x, y)=2x
otherwise.

Proposition 4. If f* is known, then for every non-red 2-element subset B of D
it can be decided in polynomial time if there exists a conservative polymorphism
p such that p|p is a majority (resp. minority) operation.

Proof. We are looking for a ternary polymorphism p, so we start by building the
instance ZP*¢(I"), which is the indicator problem of order 3 of I" with conserv-
ativity constraints. For i € {1,2,3}, let 7; be the solution to ZP3¢(I") given by
i (g vg,05) = ; for all vy, ve,v3 € D. These solutions correspond to the three
ternary polymorphisms of I' that project onto their ith argument. We enforce
1-minimality and apply the algorithm Reduce.

We denote by ZP% (I") the resulting CSP instance. An important invariant
of this algorithm is that at the end of every iteration of the loop in Reduce, for
every x € X and v € D(x) there exists s € {s1, 2, 53} such that s(z) = v. This is
straightforward, since we only remove v from D(x) if none of s1(x), sa(x), s3(x)
takes value v. It then follows from the loop condition that at the end of Reduce,
no x € X may have a domain that contains a red pair of elements.

We now show that if ZP3¢(I") has a solution that is majority (resp. minority)
on a non-red pair of values B, then so does ZP%C(I’ ). We proceed by induction.
Suppose that at iteration i of the loop of Reduce, a solution p; that is majority
(resp. minority) on B exists. Let D;(x) denote the domain of a variable z at step
i. We set pi+1 = f*(ps,s;). Because f always projects onto its first argument
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Algorithm 1. Reduce

S§1 < T1
§2 < T2 ;
83 T3 ;
while There ezist 1,5 and © € X such that {s;(x),s;(x)} is red and
f*(si(z),s;(x)) = s;(z) do

51 f(s1,85) ;

s2 < ["(s2,85) ;

83 f*(3375j) 3

for all z € X and v € D(z) s.t. Vk, si(z) # v do

| D(x) — D(z)\v;

B W N

© 0w N o o

on non-red pairs, a value v can only be removed from D;(x) at iteration i + 1
if {v,s;(x)} is red and f(v,s;j(z)) = s;j(x). Therefore, if p;(x) is removed at
iteration ¢ then p;11(x) = f*(pi(x),s;j(z)) = sj(x), and otherwise p;41(z) €
{pi(z),s;j(z)} C D;y1(z); in any case pj+1(x) € Dit1(z). Furthermore, since B
is not red, Pi1(2f(vy,v5,05)) = Pi(Tf(0y,00,05)) for all {vi,v2,v3} € B and we can
conclude that p;11 is still majority (resp. minority) on B.

Now, we enforce 1-minimality again. We can ensure that every solution is a
majority (resp. minority) polymorphism when restricted to B by assigning the 6
variables concerned by the majority (resp. minority) identity. Since the remaining
instance I is red-free in G, either ¢-CSP(I") is intractable or £(I) admits a 3-
edge polymorphism. We test for the existence of a 3-edge polymorphism using
Theorem 3. If one exists we use the uniform algorithm given by Corollary 2
to decide if a solution exists and otherwise we can conclude that c-CSP(I") is
intractable.

With this result in mind, the last challenge is to design a polynomial-time
algorithm that finds a binary polymorphism f* that is commutative on as many
2-element subsets as possible, and projects onto its first argument otherwise. We
call such polymorphisms mazimally commutative. This can be achieved using a
variant of the algorithm presented in Sect.3 and the following Lemma.

Lemma 3. Let P = (X,D,C) denote an I-minimal instance such that Vx € X,
|D(z)| < 2. Suppose that we have a conservative binary polymorphism f of L(P)
and a partition (V1,Va) of the variables such that f(a,b) = f(b,a) = f(D(z))
whenever x € Vi, and f projects onto its first argument otherwise. Then, every
variable x € Vi can be assigned to f(D(x)) without altering the satisfiability
of P.

Proof. Let C = (S,R) € C. Let Sy = SNV, So =SNV, and t € R. We assume
without loss of generality that no variable in S is ground (i.e. has a singleton

domain). If z € S, let t[z] = D(z)\t[z]. Because P is 1-minimal, for every = € S



The Dichotomy for Conservative Constraint Satisfaction 143

there exists t, € R such that ty[z] = t[z]. Let x1,...,z, denote an arbitrary
ordering of S;. Then, let t(®) =t and for i € {1,...,s},

t@ = £t ¢,.)

It is immediate to see that if z € Sa, then t)[x] = t[x] since f will project onto
its first argument at each interation. On the other hand, if x; € S; and there
exists j such that tW[zy] = f(D(zy)) then tW[z] = f(D(xy)) for all i > j.
This is guaranteed to happen for j < k, as either

— tlzg] = f(D(xk)), in which case it is true for j = 0, or
(k1)

- [xx] = f(D(zr)), in which case it is true for j =k — 1, or
k Ulzp] = tlzx] # f(D(xp)), in which case t®™[z,] = ft&D[zy],
txk[ k) = f(t[zg], t[zk]) = f(D(zx)) and thus it is true for j = k.

It follows that t(®) is a tuple or R that coincides with t on S, and t(®)[z] =
D(f(x)) whenever x € Sq. Therefore, assigning each z € S; to D(f(x)) is always
compatible with any assignment to S3; since this is true for each constraint, it
is true for P as well.

We denote by ZP?**(I") the CSP instance obtained from ZP*(I") by adding
the unary constraints enforcing conservativity. We can interpret ZP*¢(I) as the
meta-problem associated with an unconstrained conservative binary operation
symbol f and reuse the definitions and lemmas about closed sets of variables
seen in the last section. In the hierarchy of closed sets given by Lemma 2 applied
to ZP%*(I'), X,41 contains the variables of X; plus two variables T f(a,b)> Tf(ba)
for some B;y1 = {a,b} C D.

Proposition 5. Suppose that we know a solution f; to IPQC(F)DQ that is maz-
imally commutative if c-CSP(I") is tractable. A solution fi11 to TP*(I')x,,,
with the same properties can be found in polynomial time.

Proof. The strategy is similar to the proof of Proposition 3. The two differences
are that we do not have a semiuniform algorithm in general, which can be handled
by Lemma 3, and the fact that we are not interested in any solution but in one
that is maximally commutative.

Observe that if c-CSP(I) is tractable and ZP**(I')|y, ., is l-minimal, then its
language is conservatively tractable as well and the order-2 conservative indicator
problem of E(IPzC(F)|Xi+1) is IP%(F)DQH itself plus unconstrained variables
(because X4 is closed). Therefore, by the Three Operations Theorem, a max-
imally commutative solution to ZP?(I" )|X.;, 18 commutative on some {u,v}
if and only if there is a solution to I772C(F)‘Xi+1 that is also commutative on
{u,v}. It follows from this same argument applied to X; instead of X;;; that if
fi is not commutative on some (u,v) € D? then either c-CSP(I") is NP-complete
or I" has a ternary conservative polymorphism p, , that is either a majority or
a minority operation on {u,v}.
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Let X1 = XiU{Zf(a,b), Tf(b,a) }- We have only three assignments to examine
for (2 f(a,p); Tf(b,a)): (@,a), (b,0) and (a,b). The fourth assignment (b,a) is the
projection onto the second argument, which does not need to be tried since we
are only interested in the maximally commutative solutions to ZP?(I" )| Xiss -
For each of these assignments, we build the CSP instances P!, P2, P? by adding
the constraints corresponding to the possible assignments to (), Tf(,a)) t0
TP*(I') and enforcing 1-minimality.

For every j € {1,2,3} and every pair {u,v} of elements in the domain of
P|in+1 we create an instance P, by adding the constraint Ty, ) = Tf(yu) t0

PJ and enforcing 1-minimality. Since the variables in X; 1\ X; are ground in PJ,,
X, is closed and X; contains all singleton variables, we have X;; < X; in Pﬂv.
By Proposition 2, f; is a polymorphism of £(7?1{'v‘ Xi+1). Now, if a variable z in
PZU‘ Xist has domain size 2 and f; is commutative on D(z), by Lemma 3 we
can assign z to f;(D(x)) without losing the satisfiability of the instance. Once
this is done, we can enforce 1-minimality again; the polymorphisms p, ., guar-
antee that if c-CSP(I") is tractable, the remaining instance has a conservative
generalized majority-minority polymorphism and hence a conservative 3-edge
polymorphism. Using Corollary 2, we can decide if the language of Pﬁv‘ Xiir
has a conservative 3-edge polymorphism. If it does not then ¢-CSP(I") is NP-
complete, and otherwise we can decide if a solution exists in polynomial time.

At this point, for every pair (u,v) of elements in the domain of some vari-
able in TP*°(I')|x,,, we know if a solution to ZP*°(I')x,,, that is commu-
tative on (u,v) exists, except if (u,v) = (a,b). This problem can be fixed by
checking if any of P\kX,;H or P\TSC:H has a solution, where P* and P" are the
subproblems corresponding to the assignments (2f(q.), Z¢v,q)) < (a,a) and
(Tf(ab)s Tfba)) < (b,D).

We then add the equality constraint xjf(,.) = . to I’PQC(F)DQJrl
for every pair (u,v) (including (a,b) if applicable) such that a solution to
IPQC(F)DQH that is commutative on (u,v) exists. On all other pairs, we know
that f;11 must project on the first argument, so we can ground the correspond-
ing variables. If ¢-CSP(I") is tractable, then this new CSP instance P has a
solution and it must be maximally commutative. We can solve P by branching
on the possible assignments to (2 f(4,5), Zf(s,q)) and the usual arguments using
fi, Proposition 2 and Lemma 3.

Theorem 4. There exists a polynomial-time algorithm A that, given in input a
constraint language I", decides if c-CSP(I) is in P or NP-complete. If c-CSP(T")
1s in P, then A also returns the coloured graph of I.

Proof. We use Proposition 5 to find in polynomial time a conservative polymor-
phism f* of I' that is maximally commutative if c-CSP(I") is tractable. If the
algorithm fails, then we know that c-CSP(I) is not tractable and the algorithm
stops. Otherwise, we label every pair {a,b} of domain elements with the colour
red if f* is commutative on {a, b}, and otherwise we use Proposition 4 to check if
there is a conservative ternary polymorphism that is either majority or minority
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on {a,b}. If a majority polymorphism is found then we label {a,b} with yellow,
else if a minority polymorphism is found then {a,b} is blue, and otherwise we
know that ¢-CSP(I") is NP-complete. The orientation of the red edges can be
easily computed from ZP?*(I") using Lemma 3 and f*.

5 Conclusion

We have shown that the dichotomy criterion for conservative CSP can be decided
in true polynomial time, without any assumption on the arity or the domain
size of the input constraint language. This solves an important question on the
complexity of ¢c-CSP among the few that remain. On the way, we have also
proved that classes of conservative constraint languages defined by linear strong
Mal’tsev conditions admitting a semiuniform algorithm always have a tractable
meta-problem. This result is a major step towards a complete classification of
meta-problems in conservative languages and complements nicely the results
of [8].

It is known that Proposition 1 does not hold in general if the linearity
requirement on the Mal’tsev condition is dropped, as semilattices are NP-hard to
detect even in conservative constraint languages despite having a uniform algo-
rithm [11]. The same happens if the idempotency of the Mal’tsev condition is
dropped instead [8]. However, the mystery remains if the requirement for a uni-
form algorithm is loosened since no tractable idempotent strong linear Mal’tsev
condition is known to have a hard meta-problem. This prompts us to ask if our
result on conservative constraint languages can extend to the general case.

Question 1. Does there exist an idempotent strong linear Mal’tsev condition M
that has a semiuniform polynomial-time algorithm but whose meta-problem is
not in P, assuming some likely complexity theoretic conjecture?

A negative answer would imply a uniform algorithm for constraint languages
with a Mal’tsev polymorphism, whose potential existence was discussed in [7].

Finally we believe that our algorithm, by producing the coloured graph in
polynomial time, would be very helpful in the design of a uniform algorithm that
solves every tractable conservative constraint language (should one exist).

Question 2. Does there exist a uniform polynomial-time algorithm for the class
of all tractable conservative constraint languages?
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Abstract. The technique of kernelization consists in extracting, from
an instance of a problem, an essentially equivalent instance whose size
is bounded in a parameter k. Besides being the basis for efficient para-
meterized algorithms, this method also provides a wealth of information
to reason about in the context of constraint programming. We study the
use of kernelization for designing propagators through the example of the
Vertex Cover constraint. Since the classic kernelization rules often corre-
spond to dominance rather than consistency, we introduce the notion of
“loss-less” kernel. While our preliminary experimental results show the
potential of the approach, they also show some of its limits. In partic-
ular, this method is more effective for vertex covers of large and sparse
graphs, as they tend to have, relatively, smaller kernels.

1 Introduction

The fact that there is virtually no restriction on the algorithms used to reason
about each constraint was critical to the success of constraint programming. For
instance, efficient algorithms from matching and flow theory [2,14] were adapted
as propagation algorithms [16,18] and subsequently lead to a number of success-
ful applications. NP-hard constraints, however, are often simply decomposed.
Doing so may significantly hinder the reasoning made possible by the knowl-
edge on the structure of the problem. For instance, finding a support for the
NVALUE constraint is NP-hard, yet enforcing some incomplete propagation rules
for this constraint has been shown to be an effective approach [5,10], compared
to decomposing it, or enforcing bound consistency [3].

The concept of parameterized complexity is very promising in the context of
propagating NP-hard constraints. A study of the parameterized complexity of
global constraints [4], and of their pertinent parameters, showed that they were
a fertile ground for this technique. For instance, a kernelization of the NVALUE
constraint was introduced in [12], yielding an FPT consistency algorithm. A
kernel is an equivalent instance of a problem whose size is bounded in a para-
meter k. If a problem has a polynomial-time computable kernel, then it is FPT
since brute-force search on the kernel can be done in time O*(f(k)) for some
computable function f. Moreover, kernelization techniques can provide useful
information about suboptimal and/or compulsory choices, which can be used to
propagate. In this paper we consider the example of the vertex cover problem,
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where we want to find a set of at most k vertices S of a graph G = (V, E) such
that every edge of G is incident to at least one vertex in S. This problem is a
long-time favourite of the parameterized complexity community and a number of
different kernelization rules have been proposed, along with very efficient FPT
algorithms (the most recent being the O(1.2738% + k|V|) algorithm by Chen,
Kanj and Xia [7]).

Since the complement of a minimum vertex cover is a maximum indepen-
dent set, a VERTEXCOVER constraint can also be used to model variants of the
maximum independent set and maximum clique problems with side constraints
modulo straightforward modeling tweaks. Among these three equivalent prob-
lems, vertex cover offers the greatest variety of pruning techniques and is there-
fore the most natural choice for the definition of a global constraint. Through
this example, we highlight the “triple” value of kernelization in the context of
constraint programming:

First, some kernelization rules are, or can be generalized to, filtering rules.
Since the strongest kernelization techniques rely on dominance they cannot be
used directly for filtering. Therefore, we introduce the notion of loss-less ker-
nelization which preserves all solutions and can thus be used in the context of
constraint propagation. Moreover, we show that we can use a more powerful
form of kernel, the so-called rigid crowns to effectively filter the constraint when
the lower bound on the size of the vertex cover is tight. We discuss the various
kernelization techniques for this problem in Sect. 3.

Second, even when it cannot be used to filter the domain, a kernel can be
sufficiently small to speed up lower bound computation, or to find a “witness
solution” and sometimes an exact lower bound. We also show that such a support
can be used to obtain stronger filtering. We introduce a propagation algorithm
based on these observations in Sect.4. Along this line, the kernel could also be
used to guide search, either using the witness solution or the dominance relations
on variable assignments.

Third, because a kernel guarantees a size at most f(k) for a parameter k,
one can efficiently estimate the likelihood that these rules will indeed reduce the
instance. We report experimental results on a variant of the vertex cover problem
in Sect. 5. These experiments show that, as expected, kernelization techniques
perform better when the parameter is small. However, we observe that the over-
head is manageable, even in unfavorable cases. Moreover, one could dynamically
choose whether costly methods should be applied by comparing the value of the
parameter k (in our case, the upper bound of the variable standing for the size
of the cover) to the input size.

2 Background and Notations

An undirected graph is an ordered pair G = (V, E) where V is a set of vertices
and F is a set of edges, that is, pairs in V. We denote the neighborhood N(v) =
{u ]| {v,u} € E} of a vertex v, its closed neighborhood N*(v) = N(v) U {v}
and N(W) = U,cw N(v). The subgraph of G = (V, E) induced by a subset of
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vertices W is denoted G[W] = (W, 2" N E). An independent set is a set [ CV
such that no pair of elements in I is in E. A clique is a set C C V such that
every pair of elements in C is in E. A clique cover T of a graph G = (V, E) is a
collection of disjoint cliques such that (Joc, C = V. A matching is a subset of
pairwise disjoint edges. A vertex cover of G is a set S C V such that every edge
e € F is incident to at least one vertex in S, i.e., SNe # (). The minimum vertex
cover problem consists in finding a vertex cover of minimum size. Its decision
version is NP-complete [11].

The standard algorithm for solving this problem is a simple branch and
bound procedure. There are several bounds that one can use, in this paper we
consider the minimum clique cover of the graph (or, equivalently, a coloring of
its complement). Given a clique cover T of a graph G = (V, E), we know that all
but one vertices in each clique of T' must be in any vertex cover of G. Therefore,
|[V| —|T] is a lower bound of the size of the minimum vertex cover of G. The
algorithm branches by adding a vertex to the cover (left branch) or adding its
neighborhood to the cover (right branch).

A constraint is a predicate over one or several variables. In this paper we
consider the vertex cover problem as a constraint over two variables: an integer
variable K to represent the bound on the size of the vertex cover, and a set
variable S to represent the cover itself. The former takes integer values in a
domain D(K) which minimum and maximum values are denoted K and K,
respectively. The latter takes its values in the sets that are supersets of a lower
bound S and subsets of an upper bound S. Moreover, the domain of a set variable
is also often constrained by its cardinality given by an integer variable |S|. We
consider a constraint on these two variables and whose predicate is the vertex
cover problem on the graph G = (V, E) given as a parameter:

Definition 1 (VERTEXCOVER constraint). VERTEXCOVER[G](K,S) <
S| < K & V{v,u} e E, ve SVuels

A bound support for this constraint is a solution of the VERTEXCOVER prob-
lem. Since enforcing bound consistency would entail proving the existence of two
bound supports for each element in S\ S and one for the lower bound of K, there
is no polynomial algorithm unless P=NP. In this paper we consider pruning rules
that are not complete with respect to usual notions of consistencies.

3 Kernelization as a Propagation Technique

3.1 Standard Kernelization

A problem is parameterized if each instance x is paired with a nonnegative integer
k, and a parameterized problem is fized-parameter tractable (FPT) if it can be
solved in time O(|z|°M f(k)) for some function f. A kernelization algorithm
takes as input a parameterized instance (z, k) and creates in polynomial time a
parameterized instance (a’, k') of the same problem, called the kernel, such that
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(i) (2', k') is satisfiable if and only if (x, k) is satisfiable;
i) || < g or some computable function g, an

i1 ! k) f ble f i d

111 < or some computable function h.

iii) k' < h(k) f ble fi ion h

While this formal definition does not guarantee that the kernel is a subin-
stance of (z, k), in graph theory kernelization algorithms often operate by apply-
ing a succession of dominance rules to eliminate vertices or edges from the graph.
In the case of vertex cover, the simplest dominance rule is the Buss rule: if a
vertex v has at least k 4+ 1 neighbors, then v belongs to every vertex cover of
size at most k; we can therefore remove v from the graph and reduce k by one.
Applying this rule until a fixed point yields an elementary kernel that contains
at most k% edges and 2k? non isolated vertices [6]. A more refined kernelization
algorithm works using structures called crowns. A crown of a graph G = (V, E)
is a partition (H,W,T) of V such that

(i) I is an independent set;
(ii) There is no edge between I and H, and
(iii) There is a matching M between W and I of size |W|.

Every vertex cover of G[W U I] has to be of size at least |IW| because of the
matching M. Since [ is an independent set, taking the vertices of W over those
of I into the vertex cover is always a sound choice: they would cover all the edges
between W and I at minimum cost and as many edges in G[H U W] as possible.
A simple polynomial-time algorithm that finds a crown greedily from a maximal
matching already leaves an instance G[H| with at most 3k vertices [1]. A stronger
method using linear programming yields a (presumably optimal) kernel of size
2k [15].

3.2 Loss-Less Kernelization

The strongest kernelization rules correspond to dominance relations rather than
inconsistencies. However, the Buss rule actually detects inconsistencies, that is,
vertices that must be in the cover. We call this type of rules loss-less as they
do not remove solutions. We can extend this line of reasoning by considering
rules that do not remove solutions close to the optimum: for the VERTEXCOVER
constraint, the variable K is likely to be minimized and the situation where all
solutions are close to the optimum will inevitably arise. This can be formalized
in the context of subset minimization problems, which ask for a subset S with
some property 7 of a given universe U such that |S| < k. In the next definition
we denote by opt the cardinality of a minimum-size solution.

Definition 2. Given an integer z and a subset minimization problem parame-
terized by solution size k, a z-loss-less kernel is a partition (H,F,R,I) of the
universe U where

— F is a set of forced items, included in every solution of size at most opt+z;
— R is a set of restricted items, intersecting with no solution of size at most
opt+z;
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— H is a residual problem, whose size is bounded by a function in k and
— I is a set of indifferent elements, i.e., if i € I, then ¢ is a solution of size at
most k — 1 if and only if p Ui is a solution.

An oo-loss-less kernel is simply said to be loss-less. The Buss kernel is a loss-
less kernel for vertex cover that never puts any vertices in R (F' contains vertices
of degree strictly greater than k, and I contains isolated vertices). In the case of
vertex cover, the set R is always empty unless z = 0. Note that loss-free kernels
introduced in the context of backdoors [17] are different since they only preserve
minimal solutions; for subset minimization problems those kernels are called full
kernels [9].

A kernel for vertex cover that preserves all minimum-size solutions has been
introduced in [8]. In our terminology, this corresponds to a 0-loss-less kernel.
Interestingly, this kernelization is based on a special type of crown reduction
but yields a kernel of size 2k (matching the best known bound for standard
kernelization). The idea is to consider only crowns (H, W, I) such that W is the
only minimum-size vertex cover of G[W U I], as for this kind of crown vertices
of W are always a strictly better choice that those of I. Those crowns are said
rigid. The authors present a polynomial-time algorithm that finds the (unique)
rigid crown (H, W, I) such that H is rigid crown free and has size at most 2k.
Their algorithm works as follows. First, build from G = (V, E) the graph Bg
with two vertices vy, v, for every v € V' and two edges {v;, u, }, {u, v, } for every
edge {v,u} € E. Compute a maximum matching M of B¢ (which can be done in
polynomial time via the Hopcroft-Karp algorithm [14]). Then, if D is the set of
all vertices in B¢ that are reachable from unmatched vertices via M-alternating
paths of even length, a vertex v in G belongs to the independent set I of the
rigid crown if and only if v; and v, belong to D. This algorithm is well suited to
constraint propagation as bipartite matching algorithms based on augmenting
paths are efficient and incremental.

3.3 Witness Pruning

Last, even if the standard kernel uses dominance relations, it can indirectly be
used for pruning. By reducing the size of the problem it often makes it possible
to find an optimal vertex cover relatively efficiently. This vertex cover gives a
valid (and maximal) lower bound. Moreover, given an optimal cover S we can
find inconsistent values by asserting that some vertices must be in any cover of
a given size.

Theorem 1. If S is an optimal vertex cover of G = (V,E) such that there
eristsv € S, J C N(v)\ S with N(J) C N (v) then any vertex cover of G either
contains v or at least |S| + |J| — 1 vertices.

Proof. Let k be an upper bound on the size of the vertex cover, v € S be a vertex
in an optimal vertex cover S. Consider J C N(v) \ S such that N(J) C NT(v).
Suppose there exists a vertex cover S’ such that |S’| < |S|+|J|—1and v ¢ 5.
S’ must contain every node in N(v) and hence in J. However, we can build a
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vertex cover of size at most |S| — 1 by replacing J by v, since V' \ S and thus .J
are independent sets. a

If we can manage to find a minimum vertex cover S, for instance when
the kernel is small enough so that it can be explored exhaustively, Theorem 1
entails a pruning rule. If we find a vertex v € S and a set J € N(v) \ S with
N(J) € N*(v) and |J| > k — |S| then we know that v must be in all vertex
covers of size < k.

4 A Propagation Algorithm for VERTEXCOVER

In this section we give the skeleton of a propagation algorithm for the
VERTEXCOVER constraint based on the techniques discussed in Sect. 3.

Algorithm 1. PropagateVertexCover(S, K,G = (V, E), \,w)
S—SUN(V\S);

H",F" « BussKernel(G[S \ S]);

ifwZS V wuS|> K then

H*, W* « Kernel(H");

if X\ > 0 then w «— F" U W*U VertexCover(H", \);

if w is optimal then K «— |w| ;

| else K « max(K, |F"| + |F*|+LowerBound(H")) ;

if K = K then

H",F",R" « RigidKernel(GI[S \ S));

10 | S« S\R";

11 else if w is optimal & K — K < 2 then S,S « WitnessPruning(G,w) ;
12 S— SUF";

N O otk W

© w

Algorithm 1 takes as input the set variable S standing for the vertex cover,
an integer variable K standing for the cardinality of the vertex cover, and three
parameters: the graph G = (V, E), an integer A, and a “witness” vertex cover w
initialised to V.

The pruning in Line 1 is a straightforward application of the definition: the
neighborhood of vertices not in the cover must be in the cover. Then, in Line 2,
we apply the co-loss-less kernelization (Buss rule) described in Sect. 3.2 yielding
a pair with a residual graph H" and a set of nodes F” that must be in the cover.

Next, if Condition 3 fails, there exists a vertex cover (wUS) of size strictly less
than K. As a result, the pruning from rigid crowns cannot apply. When the cover
witness is not valid, we compute, in Line 4, a standard kernel with the procedure
Kernel(() using crowns, as explained in Sect.3.1. We then use this kernel to
compute, in Line 5, a new witness using the procedure VertexCover(G, \) which
is the standard brute-force algorithm described in Sect. 2. We stop the procedure
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when we find a vertex cover whose size is stricly smaller than the current upper
bound, or when the search limit of A, in number of nodes explored by the branch
&bound procedure, is reached. In the first case, we know that the lower bound
cannot be tight hence the constraint cannot fail nor prune further than the loss-
less kernel. The second stopping condition is simply used to control the amount
of time spent within the brute-force procedure.

If the call to the brute-force procedure was complete, we can conclude that the
witness cover is optimal and therefore a valid lower bound (Line 6). Otherwise,
we simply use the lower bound computed at the root node by VertexCover,
denoted LowerBound in Line 7. If the lower bound is tight, then we can apply
the pruning from rigid crowns as described in Sect. 3.2. Algorithm RigidKernel
returns a triple H”, F", R” of residual, forced and restricted vertices, respectively.
Finally we apply a restriction to pairs of the pruning corresponding to Theorem 1
in Line 11, and apply the pruning on the lower bound of S corresponding to the
forced nodes computed by BussKernel and/or RigidKernel.

5 Experimental Evaluation

We experimentally evaluated our propagation algorithm on the “balanced ver-
tex cover problem”. We want to find a minimum vertex cover which is balanced
according to a partition of the vertices. For instance, the vertex cover may rep-
resent a set of machines to shut down in a network so that all communications
are interrupted. In this case, one might want to avoid shutting down too many
machines of the same type, or same client, or in charge of the same service, etc.
By varying the degree of balance we can control the similarity of the problem
to pure minimum vertex cover. We used a range of graphs from the dimacs
and snap repositories. For each graph G = (V, E), we post a VERTEXCOVER
constraint on the set variable  C S C V.

Then, we compute (uniformly at random) a balanced 4-partition
{s1, s2, 83, 84} of the vertices and we post the following constraints: max({|s;NS| |
1 <i<4})—min({|s; N S| |1 < i < 4}) < b For each graph instance, we
generated 3 instances for b € {0,4,8} denoted “tight”, “medium” and “loose”
respectively. However, the classes p2p and ca- are much too large for these val-
ues to make sense. In this case we used three ratios 0.007,0.008 and 0.009 of the
number of nodes instead.

We compared 5 methods, all implemented in Mistral [13] and ran on CORE
17 processors with a time limit of 5 min:

Decomposition is a simple decomposition in 2-clauses and a cardinality
constraint. Clique Cover uses only Buss kernelization and the clique cover
lower bound. It corresponds to non-colored lines in Algorithm 1. The witness is
initialised to V' and never changes, and Line 4 is replaced by a simple identity
H* — H". Kernel Pruning uses kernelization, but no witness cover. It corre-
sponds to Algorithm 1 minus the instruction line 11, with A set to 0. Kernel
& witness uses kernelization, and the witness cover for the lower bound K. It
corresponds to Algorithm 1 minus the instruction line 11, with A set to 5000.
VERTEXCOVER is Algorithm 1 with A set to 5000.
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Table 1. Comparison of approaches on the “Balanced Vertex Cover” problem.

Decomposition Clique Cover Kernel Pruning Kernel & witness VERTEXCOVER
[#s  gap cpu #nd|#s  gap cpu #nd|#s gap cpu #nd|#s gap cpu #nd|#s  gap cpu #nd
balancing constraint: tight

3 kel| 2 200 9.704M| 2 20010.602M| 2 200 9.102M| 2 2.00 26.60.1M| 2 2.00 41.0 0.IM
I15p-h |12 573 8.605M|10 520 15.6 1.IM[11 520 11.2 0.6M|11 4.67 27.7 0.4M|11 4.67 28.8 0.4M
12 bro| 9 3.67 0.1 11K| 9 3.67 0.1 4K|9 3.67 0.1 3K| 9 367 0.1 2K 9 367 02 2K
4 djoh| 1 000 0.1 10K/ 1 0.00 00 1K| 1 0.00 00 IK| I 000 00 971 1 0.00 0.0 937
15 san|15 10.87 12.2 1.8M|11  9.80 13.3 1.9M|11 9.80 13.7 I.IM|I11  9.80 10.8 0.6M|11  9.80 12.4 0.6M
7 c-f| 3 1029 02 O9K| 3 1029 02 18K| 3 1029 0.1 7K| 3 1029 0.1 7K| 3 1029 0.1 7K
6 ham| 4 9.0026322M| 3 9.00 3.103M| 3 9.00 3402M| 3 9.00 5.102M| 3 9.00 5.102M
32 gra|29 40.47 24.6 2.5M|28 40.47 19.8 3.5M |28 39.22 17.6 2.0M |28 40.47 18.9 1.5M|28 41.22 9.8 0.5M
4 man| 3 91.00 1.1 33K| 3 91.00 1.1 51K| 3 91.00 0.9 31K| 3 91.00 14 31K| 3 91.00 1.5 30K
5 mul| 5 840 72 18M| 4 7.6041.463M| 3 7.6024.621M| 3 7.60 25.121M| 3 7.60 19.2 1.7M
3 fps| 3105.00 0.1 7K| 3 103.67 40.5 42M| 3 103.67 56.0 3.2M| 3 103.67 61.0 3.2M| 3 103.67 14.9 0.8M
3 zer| 3 44.67 119 2.6M| 3 44.67 11.4 1.6M| 3 44.67 147 1.4AM| 3 44.67 139 1.4M| 3 44.67 8.2 0.9M
3 ini| 3 191.33 57.5 6.1M| 3 191.33 72.7 6.IM| 3 191.33 82.3 6.IM| 3 191.33 82.6 6.1M| 3 191.33 82.6 6.1M
5 p2p| 5 38.60 1.0 B8K| 5 22.8036.1 23K| 2 11.80 2.8 1IK| 2 11.80 3.1 11K| 2 11.80 3.4 11K
5 ca-| 5 144031.6 02M| 4 9.00 35.6 0.2M| 4 1.8099.3 0.2M| 3  2.60 102.3 0.2M| 3  1.80 96.1 0.2M
balancing constraint: medium
3 kel| 2 1.6724112M| 2 0.67 359 1.0M| 2 0.67 547 1.0M| 2 0.00 328 2K| 2 0.0032.1 2K
15p-h |12 3.07 21.5 1.2M|10  1.27 243 0.7M|11  1.27 344 0.6M|10 0.87 18.6 60K|10 0.87 18.8 59K
12bro| 9 0.8315619M| 8 0.17 17.8 1.0M| 8 0.17 254 1.0M| 8 0.17 239 451| 8 0.17 222 450
4 jon| 1 000 00 11/ 1 0.00 00 11| 1 000 00 11} 1 000 00 11| 1 0.00 0.0 11
15 san|15 83335.650M| 7 2.6730424M| 7 2733351.6M| 7 153 428 04M| 7 1.53 43.1 0.4M
7 c-£f| 3 414 00 40| 3 414 00 40|/ 3 414 00 40/ 3 414 00 40| 3 414 00 40
6 ham| 4 4.67 0.2 53K| 2 4.67 00 1K|2 4.67 00 360 2 467 0.0 359 2 467 0.0 359
32 gra|26 29.28 32.8 2.7M|22 26.50 21.9 22M |22 24.44 23.8 1.4M|22 24.25 21.5 0.9M|22 24.2523.0 0.9M
4 man| 3 89.0029.3 1.3M| 3 88.7544.6 1.6M| 3 88.7521.1 0.6M| 2 88.50 29.6 0.6M| 2 88.50 33.4 0.6M
5 mull| 5 120 03 61K| 1 120 00 1K|1 120 00 682/ 1 120 0.0 682 1 120 0.0 560
3 fps| 3103.00 0.0 250| 1102.67 0.0 429| 1102.67 0.0 404| 1102.67 0.0 404| 1102.67 0.0 261
3 zer| 3 33337482M| 1 3.0011.6 1.5M| 1 3.00254 1.5M| 1 3.00 145 1.5M| 1 3.00 14.5 1.5M
3 ini| 3 189.00 0.6 65K| 1 189.00 0.0 4K| 1189.00 0.0 3K| 1189.00 0.0 3K| I189.00 0.0 3K
5 p2p| 5 3540 1.0 B8K| 5 1580383 26K| 1 440 33 1IK| I 440 35 11K| 1 440 38 11K
5 ca-| 5 1440 0.7 5K| 4 860 23 8K|3 040726 18K| 2 120 741 16K| 2 0.4064.0 15K
balancing constraint: loose
3 kel| 2 1.6743318M| 2 0.6720.1 0.6M| 2 0.67 30.4 0.6M| 2 0.00 27.7 447| 2 0.00 28.0 419
15p-h (12 240 20.6 1.2M|10  0.73 32.1 1.0M|11 0.73 47.1 1.0M| 9 027 18.0 3K| 9 02718.0 3K
12 bro| 9 0.67 162 1.9M| 8 0.00 10.6 0.7M| 8 0.00 15.8 0.7M| 8 0.00 13.6 264| 8 0.00 13.6 264
4 jonh| 1 000 00 11/ 1 0.00 00 11| 1 0.00 00 11} 1 000 00 11| 1 000 0.0 11
15 san|15 8.2028.14.0M| 7 2.1340923M| 7 22729.614M| 5 027 368 3K| 5 027368 3K
7 c-£/ 2 071 00 1K| 0 0.00 06 98K| 0O 0.00 0.1 7K/ 0 000 02 7K/ 0 000 02 7K
6 ham| 4 200 0.0 118 2 200 00 118 2 200 00 118 2 200 0.0 118 2 200 0.0 118
32 gra|23 1897 29.4 19M|17 12.84 129 0.8M|17 12.06 15.6 0.5M|17 11.56 14.5 66K|17 11.50 17.3 0.1M
4 man| 3 88.50 38.1 0.8M| 3 88.50 8.50.3M| 3 87.75 30.6 0.8M| 2 87.00 43.5 0.8M| 2 86.50 52.4 0.8M
5 mull 5 000 00 93 0 0.00 00 92{0 000 00 910 000 00 910 000 00 91
3 fps| 3 1.67 1.10.IM| I 1.0012.6 1.0M| 1 1.0013.405M| 1 1.00 13.90.5M| I 0.67 53.5 2.1M
3 zer| 3 200 02 48K| 0 1.00 2.604M| 0 100 2.702M| 0 1.00 2602M| 0 1.00 0.6 58K
3 ini| 3 0.67 6905M| 0 0.00209 13M| 0 0.00289 1.0M| 0 0.00 31.9 1.0M| 0 0.00 11.6 0.5M
5 p2p| 5 33.00 1.0 B8K| 5 1340383 26K| 1 200 34 11K/ I 200 35 11K| 1 200 39 11K
5 ca-| 5 1440 0.7 5K| 4 860 25 8K|3 040740 18K| 2 120 739 16K| 2 0.2069.2 16K

The results of these experiments are reported in Table 1. Instances are clus-
tered by classes whose cardinality is given in the first column. These classes are
ordered from top to bottom by decreasing ratio of minimum vertex cover size
over number of nodes. We report four values for each class and each method:
‘#s’ is the number of instances of the class that were not solved to optimality,
‘gap’ is the average gap w.r.t. the smallest vertex cover found, ‘cpu’ and ‘#nd’
are mean CPU time in seconds and number of nodes visited, respectively, until
finding the best solution. Notice that CPU times and number of nodes are then
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only comparable when the objective values (gaps) are equal. We color the tuples
(#s, gap, cpu, #nd) that are lexicographically minimum for each class®.

Instances with same value of b are grouped in the same sub-table. The “shift”
of colored cells from left to right when going from top to bottom in each subtable
was to be expected since the kernelization is more effective on instances with
small vertex cover. It should be noted that many instances from the dimacs
repository are extremely adverse to our method as they tend to have very large
vertex covers. On the other hand, kernelization is very effective on large graphs
from snap.

We can also observe another shift of colored cells from left to right when
moving to a subtable to the next. This was also an expected outcome since the
pruning on this constraint becomes more prevalent when the problem is closer
to pure vertex cover.

Last, we can observe that every reasoning step (0-loss-less kernels, lower
bound from the witness and pruning from the witness) improves the overall
results.

6 Conclusion

We have shown that the kernelization techniques can be an effective way to
reason about NP-hard constraints that are fixed parameter tractable. In order
to design a propagation algorithm we introduced the notion of loss-less kernel and
outlined several ways to benefit from a small kernel. Our experimental evaluation
on the VERTEXCOVER constraint shows the promise of this approach.
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Abstract. Symmetry breaking is an essential component when solving
graph search problems as it restricts the search space to that of canon-
ical representations. There are an abundance of powerful tools, such as
nauty, which apply to find the canonical representation of a given graph
and to test for isomorphisms given a set of graphs. In contrast, for graph
search problems, current symmetry breaking techniques are partial and
solvers unnecessarily explore an abundance of isomorphic parts of the
search space. This paper is novel in that it introduces complete symme-
try breaking for graph search problems by modeling, in terms of con-
straints, the same ideas underlying the algorithm applied in tools like
nauty. Whereas nauty tests given graphs, symmetry breaks restrict the
search space and apply during generation.

1 Introduction

Many problems, particularly in combinatorics, reduce to asking whether some
graph with a given property exists. Such “graph search” or “graph existence”
problems are notoriously difficult, in no small part due to the extremely large
number of symmetries in graphs. General approaches to graph search problems
involve either explicitly enumerating all (non-isomorphic) graphs and checking
each for the given property, or encoding the problem for some general-purpose
discrete satisfiability solver (i.e. SAT, integer programming, constraint program-
ming), which does the enumeration implicitly. In this paper, we are largely con-
cerned with this second approach.

To avoid symmetries in explicit enumeration approaches, ideally one designs
a procedure which generates exactly one graph in each equivalence class. The
classic “orderly generation” approach, due to Read [1], imposes a lexicographic
order over matrix elements and systematically constructs canonical adjacency
matrices of size n+1 from the canonical matrices of size n. For an example, in [2],
the authors address the problem: does there exist a graph with 11 vertices which
has a total magic labeling (TML)? To provide the negative answer the authors
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test each one of the 1,018,997,864 canonical graphs with 11 vertices and report
that this task requires 13,595 days of CPU computation. Given that there are
165,091,172,592 canonical graphs with 12 vertices it clear that canonical graph
enumeration based approaches cannot scale.

In contrast, symmetry breaking in SAT or CP [3-6] is done by adding
additional constraints to eliminate non-canonical graphs.! Existing symmetry-
breaking predicates are typically based on variants of the lexicographic order-
ing [4]. Incomplete symmetry breaks under this ordering are straightforward
and compact, but leave many non-canonical graphs in each equivalence class.
Complete symmetry breaks, on the other hand, are extremely large. Indeed, as
deciding lexicographic canonicity of an adjacency matrix is NP-hard, the exis-
tence of a compact complete symmetry break seems unlikely.

By looking at vertex degrees and related properties, it is often possible to
very quickly conclude that two graphs are not isomorphic. In fact, most non-
isomorphic graphs may be distinguished in this way. It turns out that exploit-
ing structural properties of graphs is critical in testing equivalence or finding
canonical representations, and gave rise to a family of astonishingly effective
isomorphism and canonical labeling tools. Many graph search problems instead
generate candidate solutions, which are then reduced to canonical form using
canonical label-ling tools such as nauty [9], bliss [10], or saucy [11]. This app-
roach can be highly effective since these tools are amazingly efficient, but it
can be overwhelmed by generating enormous numbers of copies of isomorphic
graphs. For example there are 36,028,797,018,963,968 adjacency matrices on 11
vertices which is considerably more than the number of canonical graphs.

Ideally we would like to impose constraints defining the properties of the
graph we are searching for together with a compact constraint on the structural
properties of the graph to eliminate all non-canonical solutions. Then we could
exploit state of the art declarative solvers, to solve graphs problems with arbi-
trary constraints and objective functions without being overwhelmed by sym-
metry in the search.

This paper makes two contributions. First, we introduce a polynomial sized
SAT encoding of a partial symmetry-breaking predicate which exploits structural
information in the style of nauty which eliminates many more non-canonical
graphs than standard lex-based approaches. When combined with lexicographic
symmetry breaking this predicate remains polynomial and breaks even more
symmetries. Second, we illustrate how a technique, first presented in [12], can be
generalized to compute complete symmetry-breaking predicates which enhance
the nauty style structural break. While these predicates could be exponential
in size, we show that they are very small in practice. We present experimental
results to demonstrate the impact of both types of nauty style symmetry breaks:
partial and complete.

The computations throughout the paper are performed using the finite-
domain constraint compiler BEE [13] which compiles constraints to CNF, and

1 'We restrict our consideration here to static symmetry breaking, rather than dynamic
approaches such as SBDS [7] or LDSB [8].
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solves it applying an underlying SAT solver. We use Glucose 4.0 [14] and Clasp
3.1.3 [15] as the underlying SAT solvers and specify for each computation which
solver was used. All computations were performed on a cluster of Intel E8400
cores, each clocked at 2 GHz, able to run a total of 790 parallel threads. Each
of the cores in the cluster has computational power comparable to a core on a
standard desktop computer. Each SAT instance is run on a single thread.

In Sect.2 we present preliminaries on graphs, graph isomorphism, on the
nauty approach to graph isomorphism, and on symmetry breaking in graph
search problems. Section3 describes a symmetry breaking predicate which
exploits structural information, emulating the nauty algorithm. This section also
presents an experimental evaluation comparing the new symmetry breaks with
other existing techniques. Finally, Sect. 4 concludes.

2 Preliminaries

2.1 Graphs, Permutations, Graph Isomorphism, Canonical Graphs

Throughout this paper we consider finite and simple graphs (undirected with no
self loops). The set of simple graphs on n nodes is denoted G,,. We assume that
the vertex set of a graph, G = (V, E), is V = {1,...,n} and represent G by its
n x n adjacency matrix A defined by A; ; = (1 if (4,7) € E else 0). We write A;
to denote the i*" row of A.

The set of permutations 7 : {1,...,n} — {1,...,n} is denoted S,. For
convenience, we shall use m; ; to denote the permutation swapping ¢ with j that
maps every other element to itself.

For G = (V,E) € G, and 7 € S,,, we define 7(G) = {V, {(7(u), 7(v))|(u,v) €
E)}. Permutations act on adjacency matrices in the natural way: If A is the
adjacency matrix of a graph G, then w(A) is the adjacency matrix of 7(G)
obtained by simultaneously permuting with 7 the rows and columns of A.

Two graphs G1, G2 € G, are isomorphic, denoted G1 ~ G, if there exists a
permutation 7 € S, such that Gi = 7(G3). Sometimes we write G1 ~, G2 to
emphasize that 7 is the permutation such that G; = 7(G3). For sets of graphs
Hy, Hy, we say that Hy &~ Hs if for every G; € H; (likewise in Hy) there exists
Gy € Hs (likewise in Hjp) such that G; &~ Ga. The equivalence classes of G
modulo = is denoted G7.

It is usual to define the canonical representation of (an equivalence class of)
a graph in terms of some total ordering. A classic choice is the lexicographic
ordering on graphs.

Definition 1 (lex ordering graphs). Let G1,Gy € G, and let s1,s2 be the
strings obtained by concatenating the rows of the upper triangular parts of their
corresponding adjacency matrices Ay, As respectively. Then, G1 =ier Go if and
only if 1 ez S2. We also write Ay <jep As.

The canonical representation of a graph, with respect to a given total order,
is then the minimal element of its equivalence class.
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Definition 2 (canonicity). The canonical representation of a graph G € G,
with respect to a total ordering < is can<(G) = min< { 7(G) |7T €S, }.

The combination of Definitions 1 and 2 provides a simple notion of canon-
icity defined in terms of lexical ordering of graphs which is often attributed to
Read [1]. However, this definition completely ignores all of the structural infor-
mation present in the graphs. A simple example of structural information is to
focus on the degrees of vertices. Definitions that take advantage of structural
properties of graphs simplify the processes of testing for graph isomorphism and
testing for canonicity.

A structural property of a graph G is one which is invariant under permuta-
tion. In particular, if the property holds for a vertex v of G, then for a permuta-
tion 7, it will hold also for 7(v) of 7(G). For simplicity, we will view a structural
property of G as a mapping g of graph vertices to integers such that for any
permutation 7 and vertex v, ug(v) = pr ) (7(v)). We often omit the subscript
and write pu. For intuition, consider the structural property of vertex degree
i = deg where deg.(v) is the degree of v in G. For a structural property, pq,
on a graph G with vertices V = {1,...,n}, we denote fig = (uc(1),...,uc(n)).
Given u, we introduce a total ordering <, on graphs defined as follows.

Definition 3 (¢ ordering graphs). Let p be a structural property and
G1,G2 € Gyu. Then, Gi =2, Gy = (g, >iex Bic,) V (e, = fa,) A
(Gl jlew GQ))

It follows, from Definitions 2 and 3 that the canonical graph G’ = can<, (G)
has the property that pugs is sorted in decreasing order. Hence, throughout the
paper, when given a structural property u, we will focus on graphs G such that
ue is sorted in decreasing order. The reason that we take the reverse lexico-
graphic order on the integer vectors in Definition 3 is to be consistent with the
notion of a degree sequence [16]. When p = deg and G is canonical, then ug is
the degree sequence of G.

Definition 4 (graph partitioning). A partitioning P of (vertex set) V =
{ 1,... ,n} is a sequence of k disjoint sets (Py,..., Py) such that V=P U---U
P,. We refer to these sets as parts (rather than partitions) to avoid possible
confusion. We also represent P as a sequence of integer values, P = (p1,...,Pn)
such that 1 < p; < k for 1 < i < n. Here, p; = j means that vertex i is in
part j. So, for 1 < j < k we have P; = { i€ V!pi =7 } To remove ambigu-
ity from this representation, we assume that P is the smallest sequence (in the
reverse lexicographic order) defining the given partitioning. We shall use P(i) to
denote the part containing vertex i (that is, p; ). When referring to a sequence of
partitionings, P* shall be used to denote the k" element of the sequence.

The following example illustrates how structural information can be applied
to partition the nodes of a graph. In the example, one can view the degree
sequence of the graph as inducing a partitioning.
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vy 001117 3

vi [00110] |2 1

vs [11000] [2] |0

vy [11000] [2] |0

vs [10000] [1] [1
(b)

Fig. 1. (a) A graph with partitions induced by degree, and (b) its canonical adjacency
matrix under <q4eg with its degree sequence and binary partitioning to the right.

Ezample 1. Consider the graph G shown in Fig. 1(a). Discriminating vertices by
degree establishes the partitioning ({vs}, {v1, v2,v3}, {vs}). The canonical graph
candeg(G) will contain these parts in order. Finding the canonical representa-
tion of G requires finding the permutation of {v1,vs,v3} which minimises the
adjacency matrix. The resulting canonical matrix is shown in Fig. 1(b) together
with the corresponding degree sequence. On the right is a binary representation
of the partitioning. A one at row ¢ < n indicates that vertex i + 1 starts a new
part, and a zero, that it is in the same part. a

2.2 The Nauty Approach

The dominant approach for constructing canonical representations of graphs is
the nauty algorithm, due to McKay [9,17]. Our approach draws on the design of
this algorithm. The algorithm consists of three phases applied in alternation to
find a canonical representation of a given graph. Taking a very simplified view
of the algorithm, we describe it in terms of two phases. The third phase, called
automorphism detection [9,17], is not detailed in our presentation. First, nauty
partitions the vertices of the graph based on structural information. Then, it
searches for a canonical representation given the partitioning of the first phase.

Phase One. Structural information in nauty: For a given graph, G = (V, E),
The algorithm extracts structural information derived from vertex degrees to
incrementally refine a partitioning of the vertices starting from a single part,
P = (V). We first introduce the notion of degree by partition.

Definition 5 (degree by partition). Let G = (V,E), V. = {1,...,n}, P =
(Py,...,P) be a partitioning of V, and v € V. Then, deg(v,P) = (d1,...,dx)
where d; = |{ u € P | (u,v) € E H counts the degrees of v into the parts of P.

Algorithm 1 is what happens in the first phase of nauty. In the terminology
of [9,17], the partitioning computed by Algorithm 1 is said to be equitable; and
a partitioning is said to be discrete if every equivalence class is a singleton.
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Algorithm 1. nauty phase 1: partitioning

1: procedure PARTITION-REFINEMENT(G = (V, E))
2: init P = (V)

3 while P # REFINE(G,P) do
4: P «— REFINE(G,P)
5

return P

6: procedure REFINE(G,P)

7 denote P = (P1, P>... Py)

8: for P, € P do

9 replace P; by its partitioning (Ui, ...Ux) s.t Yu,v € P; :
0 u,v € U; iff degy (u, P) = degq (v, P)

11: return P

Ezample 2. Recall the graph described in Example 1. The nauty algorithm,
starting with P° = ({v1,...,v5}), first distinguishes vertices by degree, obtain-
ing the partitioning P! = ({v1,vs,v3}, {vs},{vs}) as in Example 1. Observe
that deg(vy, P!) = (2,0,0) and deg(ve, P') = deg(vs, P') = (1,1,0). Hence, in
P? = ({v1}, {va,v3}, {va}, {vs}), the vertex vy is separated from vy and vs. The
partitioning P? is equitable — deg(vs, P?) = deg(vs, P?) = (1,0,1,0). O

Fig. 2. The graph from Fig. 1 with (a) its partitioning P' of vertices by degree, and
(b) its refined partitioning 2. The partitioning in (b) is equitable.

Note that the order in which possible refinements are applied will not
affect the composition of the resulting partitioning, but may change the order
of parts. Any such order is acceptable, but it must be uniquely determined.
In the following, we shall assume that at each step ¢ > 0, listing the vari-
ables in P from left to right as (vj,,...,v;,) then the sequence of vectors,
deg(v;,, P*71), ..., deg(v;,,Pi~1) is sorted in decreasing lexicographic order.

If the partition P?~! is derived from a structural property, then the compo-
sition and order of its parts must be invariant under permutation. So then is
each vector deg(v;, P*~!), as permuting vertices within a part has no effect on
the degrees — thus P? is also structural.
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Phase Two. Searching for a canonical representation: In the following we
denote by P the equitable partitioning resulting from phase one. If P is discrete,
then a canonical labeling of vertices has been established. However, this is rarely
the case. Indeed, for regular graphs all vertices have the same degree, and are
thus indistinguishable. In search for a canonical representation, nauty artificially
selects some vertex in a non-singleton set P € P to be made distinct from the
other vertices of P. However, as these vertices are thus far indistinguishable, this
cannot be done in a label-invariant fashion. So, each vertex in P is tentatively
selected in turn, and a candidate discrete partitioning recursively constructed
for each. The canonical labeling is then the candidate partitioning which yields
the smallest graph under some total ordering.

We do not elaborate on the details of how this search is made as efficient as
possible in nauty as the encodings introduced in this paper will take an alterna-
tive approach to search for a canonical representation given a partitioning P.

2.3 Graph Search Problems and Breaking Symmetry

Graph search problems are about the search for a graph that satisfies certain
properties. We will focus on properties that relate to the structure of the graph
that ignore the particular names of the vertices. So if G is a solution to a graph
search problem, then so is any G’ that is isomorphic to G. More formally, an n-
vertex graph search problem is a predicate, ¢(A), on an nxn matrix A of Boolean
variables which is closed under isomorphism. A solution to ¢(A) is a satisfying
assignment of the conjunction p(A) Aadj™(A) where adj™(A) constrains A to be
an n X n adjacency matrix. In Constraint (1), the left conjuct states that there
are no self loops, and the right conjunct, that the edges are undirected.

adj"(A):/\{—'Ai,i|1§i§n} A /\{Ai,jHAj,i|1§i<j§n} (1)

The set of solutions of graph search problem ¢ is denoted sol(y) and to make
the variables explicit we write sol(p(A)). Viewing sol(y) as a set of graphs, note
that sol(true) = G,,. The set sol(¢) may include many isomorphic graphs; we
write solx () to denote the set of solutions modulo graph isomorphism.

Ezample 3. The n vertex graph search problem @y, (,)(G) is about the search for
a Total Magic (TM) graph with n vertices. A graph G = (V, E), with |V| = n and
|E| = m, is TM if there exist a one-to-one labeling A\: VUE — {1,...,n+m}
and two integer values h, k which satisfy the constraints below. The graph is
modeled as an n X n adjacency matrix A of Boolean variables. The edges are the
unknown, hence m is unknown. The labeling is modeled as a length n vector AV
of integer variables for the vertices, and an n x n matrix A¥ of integer variables
for the edges. Note that both A and A\¥ are symmetric. Let M = n(n —1)/2 be
the maximum number of edges. Values in AV are between 1 and n + M. Values
in AF are between 0 and n + M where 0 is the value for “non-edges”: )\fj is zero
if and only if A; ; is false.

Constraint (2) enforces that A is an adjacency matrix, and that m is the num-
ber of edges in the graph. Constraint (3) enforces that node labels are between
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1 and n+ M, that edge labels are between 0 and n + M and are non-zero if the
edge exists, and A\¥ is symmetric. Constraint (4) enforces that nodes and edges
are labeled differently (the )\5 with label 0 are non-existing edges), and that the
maximum label used is n + m, hence there is a bijection from vertices and edges
to {1, N m}. We uset++ to denote vector concatenation. Constraint (5)
ensures the sum of the labels of each edge and its endpoints is k£ and the sum of
the labels of each node and its incident edges is h.

v E
G Am =S A, (2 (1 <AV < M) A0 < A5 < ntM)
i<j 1<i<j<n

alldifferent_except_0(\ "4+ [/\5|2 < ]]) A max(A\VHHAF) =n4+m (4)
Ao =00 25 =0 A AW+ =1 6)

i<j eV jEV
There are only 6 TM graphs with up to 9 vertices and there exist no 10-11 vertex
TM graphs [2]. The only known TM graphs, with >11 vertices, are composed
of an odd number of triangles, or of an even number of triangles with a path of
length 2. It is unknown if there exist other TM graphs with >11 vertices. a

Example 4. Several interesting relaxations of Total Magic graphs weaken the
TM conditions. A graph is TM modulo p [2] if we replace the magic conditions
with equality modulo p, that is replace Eq. (5) by

/\Aij—>()\y+)\y+)\5)5k mod p /\ /\()\Y—FZ)\ZEJ‘)Eh mod p (%)

i<y iev jev
We are often interested in finding graphs which are TM modulo several radices:
P1,DP2,- - Pk- O

Solutions of a graph search problem are closed under permutations of the
vertices. When solving graph search problems, it is essential to restrict the search
space to break the symmetry between isomorphic solutions. Ideally, we would
like to restrict the space to canonical representations.

Note however that we face a different problem to the methods described in
Sect. 2.2. Canonicalization methods such as nauty take a fixed graph G, and com-
pute some canonical representation can(G). Here, we must find some unknown
graph satisfying ¢, but wish to restrict our search to canonical representatives —
that is, we wish to only accept graphs satisfying G = can(G).

A symmetry break is a predicate o(A) which is satisfied by at least one graph
in each isomorphism class; a complete symmetry break is satisfied by exactly one
graph in each equivalence class. A canonizing predicate, with respect to a total
order < on graphs, is satisfied by exactly the set of minimal representations
under <. We shall use solZ(A) to denote the set of solutions to ¢(A) which
satisfy the symmetry breaking predicate o(A).

Example 5. The following is a complete symmetry break, and a canonizing pred-
icate with respect to =<.,. It constrains A to be minimal with respect to all
permutations of A.
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gae(A) = N\ A Zier m(A) (6)

TESn
Unfortunately the set S, is prohibitively large, so this predicate is not at all
practical. a

Ezample 6. The following is a partial symmetry break, introduced in [18]. Tt is
a relaxation of ogex. It constrains A to be minimal with respect to all those
permutations of A which swap a pair of elements.

Jplex(A) = /\ A Slex 4,5 (A)
1<i<j<n
In practice this breaks many symmetries, and is of manageable size, and hence

is often practically useful. O

In the following let P = (p1,...,pn) be an unknown partitioning of the
vertices V' = {1,...,n} of a graph expressed in terms of integer variables (so,
when p; = p; then vertices ¢ and j are in the same part). We will make use of
the following predicates:

The predicate mono(P) specifies that P, represents a non-increasing sequence
of values.

mono(P /\73 >P(i+1)

The predicate plex(A, P) specifies that an adjacency matrix A is minimal with
respect to permutations that swap pairs of vertices in the same part of P.

plex(A,P) =\ P(i) =P() > A Ziex mi ;(A)
1<i<j<n
The predicate clex(A4, P) specifies that an adjacency matrix A is minimal with
respect to permutations that preserve the partitioning P.
clex(A,P) = /\ T(P) =P — A Siex 7(A4) (7)
TESn

Note that plex(A, P) and clex(A, P) are not symmetry breaks unless we also
constrain A to have a structural property with the corresponding partitioning P.
We illustrate this in the following example.

Ezample 7. Consider a structural property p and a predicate u(A,P) which
encodes that A is an n x n adjacency matrix (of Boolean variables) and P =
(p1,-..,Dn) is a vector of integer variables such that p; = u4(¢). For instance,
when p = deg we have

deg(A,P) /\ P(i
1<i<n

The following are respectively partial and complete symmetry breaks:

ol (A) = IP. (A, P) A mono(P) A plex(A, P)

m

o“"(A) = 3P. (A, P) A mono(P) A clex(A, P) 0
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3 The Nauty Encoding

In this section we describe a SAT encoding to break symmetries in graph search
problems inspired by the way that nauty is applied to map a given graph to a
canonical representation. We introduce a complete symmetry breaking predicate,
Onauty(k)s Which similar to the nauty algorithm consists of two “phases” and takes
the form:

h h
Fnauty(k) (A) = FP- 00l (A, P) A 0diiltyy (A P)

phase;
nauty(k)
and a partitioning P such that executing the first phase of the nauty algorithm

with k iterations on A results in the partitioning represented by P, and the vertex
order of A respects that partitioning. It further restricts A applying plex(A4, P).

phase,
nauty (k)
of graphs isomorphic to A which preserve the structural information in P. The

predicate opauty(k) (A) accepts canonical adjacency matrices with respect to the
structural information derived in the first phase of the nauty algorithm (k iter-
ations). It is a complete symmetry break.

The essential difference between the encoding, cpauty(x)(A4), and the nauty
algorithm presented in Sect. 2.2 is that the nauty algorithm performs on a given
graph where as the encoding, Unauty(k)(A), specifies constraints on an unknown
graph A, restricting solutions for A to be canonical.

A partitioning P is represented as a vector (pi,...,p,) of integer variables
such that vertices v; and v; are in the same part if and only if p; = p;. When
P is constrained to be monotone (i < j — P(i) < P(j)) it may alternately
be represented as a vector A of n — 1 of Boolean variables, such that A; <
P(i) < P(i+1). Then v; and v, are in the same part if and only if A; = A;4q =
... = A;_1. The Boolean representation is more compact and performs better in
our applications. Therefore, the nauty encoding is presented using the Boolean
representation. Under the Boolean encoding, the predicate plex becomes:

plex(A, A) = /\ ( /\ Ay) = A Rex i 5 (A)

1<i<j<n i<k<j

The predicate o (A, P) accepts pairs consisting of an adjacency matrix A

The predicate o (A, P) accepts a pair (A, P) if A is minimal in the class

3.1 Encoding the First Phase of Nauty

phase;

nauty(k)’ }
an n x n adjacency matrix and let A* be the Boolean representation of the parti-
tioning at step i of the nauty algorithm. We define a predicate refine(A?, A, A*+1)

that specifies the partitioning, A**! at the next step of the algorithm. We then
phase
nautyzk)

the initial partition A® = (0,...,0).

To encode o we emulate the iterative refinement of partitionings. Let A be

specify the predicate o as an iteration of this refinement, starting from

oPhaser (A, A) = iteratex (A%, A, A) A plex(A, A)

nauty(k)

. JA”. refine(A, A, A”) Niterate—1 (A", A, A") it k>0
/ ) k) ) )

iterater (A, A, A') = { \ X k<0
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As the graph is a “variable” (not given), we do not know in advance how
many iterations are required to reach a fixpoint with respect to the structural
information. However, as each non-trivial refinement must split some equivalence
class, this process must reach a fixpoint after, at most, n iterations.

To facilitate the formal specification of the predicate refine(A, A, A") we first
introduce several “helper” predicates.

The predicate P<(A, L): To compute structural information, it will be useful
to identify those vertices appearing in parts up to the part containing some
vertex v. The Boolean matrix L encodes this information.

B Li; ifj <i
PS(A,L) = 1</\< {Li,j — L j_1 AN—A; otherwise
S1Isn

The predicate lex(A, M): This predicate specifies that the n rows of matrix M
are non-increasing in the lexicographic order following the length n — 1 vector
A. The intention is that A specifies a partitioning.

leX(A7M) = /\ (_|A’L - Mz tlex Mi+1)

1<i<n

The predicate deg(A, A, M): This predicate defines a relationship between: an
n x n matrix, A, of Boolean variables (representing an unknown graph), a length
n — 1 vector, A, of Boolean variables (representing a partitioning of the vertices
in A), and an n x n matrix, M, of integer variables such that M, ; represents the
number of edges from vertex ¢ to vertices in or before the part number containing
vertex j. The rows of M are ordered lexicographically within each component
of P. The predicate is specified as:

deg(A, A, M) = J\ (Mi,jZAi,kALj,k> A lex(A, M)

1<i,j<n k=1

The predicate refine(A, A, A’): This predicate states that A’ is a refinement
of the partitioning A of graph A obtained from a single iteration of partition
refinement. The matrix M represents structural information of the vertices with
respect to the partitioning A. Vertices are distinguished in the refinement A’:
either because they were already distinguished in A, or else because they are
distinguished by the corresponding structural information in M.

reﬁne(A,A,A’) _ (HM. deg(A7A7M) A /\ (A; — AV IM; e Mi+1)>
1<i<n

The encoding of predicate JE:jfj(lk) is polynomial in the number of both

clauses and variables. The dominating component of refine is deg, which intro-

duces O(|V|?) order-encoded integer variables whose definitions are sums of

Booleans, which have standard polynomial-size encodings (e.g. [13]).
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Table 1. Enumerating graphs using Unp:j::(lk) Column “sat” is Clasp solving time (sec).
" 1971 | 2hauo) = “ptes 18 “aemyl1) paen(2)
Cls | Vars Sat Sols Cls | Vars Sat Sols Cls | Vars Sat Sols
3 4 2 3 0.00 4 76 21 0.00 4 357 91 0.00 4
4 11 20 10 0.00 11 243 56 0.00 11 1142 279 0.00 11
5 34 70 24 0.00 43 551 110 0.01 34| 2618 610 0.01 34
6 156 | 165 48 0.00 276 | 1048 | 192 0.01 158 | 5113|1165 0.06 156
7 1,044 | 320 85 0.02 3,158 | 1765 | 301 0.06 1,141 | 8870|1969 0.45 1,048
8 12,346 | 550| 138 0.32 66,595 | 2741 | 440 0.59 14,745 | 14196 | 3067 6.63 12,642
9 274,668 870 | 210 12.13 2,587,488 | 4015 | 612 12.51 355,294 | 21422 | 4504 159.40 284,041
10|12,005,168 | 1295 | 304 |1035.51 | 184,192,329 | 5646 | 830 |819.93|16,255,967 | 31123 | 6435 | 6511.07 | 12,442,095

Table 1 illustrates the impact of structural information when breaking sym-
metries and enumerating the graphs obtained with n vertices. The column
headed by |G| indicates the number of non-isomorphic graphs with n vertices.
These numbers correspond to sequence A000088 of the OEIS [19]. The next

columns, in groups of 4, are headed by JE:j:;(lk) for 0 < k < 2. Each such four-

some details the size of the SAT encoding (number of clauses and variables), sat
solving time (for all solutions in seconds), and the number of solutions found.
When k = 0 there is no structural information and the encoding corresponds to
the one introduced in [18]. When k = 1, the nodes of the graph are partitioned
according to degree information. When k& > 0, the symmetry breaks are more
refined than the one introduced in [18]. Notice that as we add structural infor-
mation in the encoding (as k increases), the number of graphs decreases. For
example, when n = 10, using k£ = 0 there are circa 184 million solutions, when
k = 1, circa 16 million, and k = 2, circa 12million (close to the true number
|G5])- Note that as we add structural information, the cost of the solving time
increases considerably. In the following we will show how to counter this increase.

Table 2 summarizes an application of symmetry breaking with the first phase
of nauty to search for all TM graphs (modulo 2,3) (see Example 4). The columus,

Egjf;(lk) for 0 < k < 3. Each such foursome details

the size of the SAT encoding (number of clauses and variables), sat solving time
in seconds unless indicated otherwise, and the number of solutions generated.
The table illustrates the high cost of the nauty encoding: we can solve up to
n =9, and then only for £k = 1. We will come back to resolve this problem below
by decomposing the instances to consider given nauty partitionings.

in groups of 4, are headed by o

3.2 Encoding the Second Phase of Nauty

phase,

We present a symmetry break predicate, o, auty(k)?

which eliminates isomorphic

graphs that have not been ruled out by the first phase predicate, as:j:ye(lk). 1

the second phase of nauty, the graph G is given, and so is the partitioning P,
from its first phase computation. In our case, we seek a predicate that states
that an unknown graph, G, is canonical. The search strategy applied in nauty
is not easily modeled as a propositional formula when G is unknown and so we
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Table 2. TM (modulo 2,3) graphs using UE:;’:;gk) (48 h timeout using Clasp).
Spauml0) ™" ptes 18] 0PN paen(2) paen(3)

n Cls | Vars Sat | Sols Cls | Vars Sat Sols Cls | Vars Sat | Sols Cls | Vars Sat | Sols
3 791 | 216 0.00 3 852 | 231 0.00 3| 1139| 290 0.00 3| 1426 349 0.00 3
4| 1645| 422 0.01 4| 1817| 459 0.02 4| 2702| 626 0.02 4| 3587 793 0.02 4
5| 3024 717 0.16 16| 3379| 785 0.13 13| 5398|1139 0.15 13| 7417|1493 0.29 13
6| 4973|1105 2.03 60| 5606|1219 1.49 39| 9574|1896 1.75 39|13542|2573 3.89 39
7| 7705|1590 36.06| 426| 8715|1761 24.27 179|15658 | 2908 72.60| 171|22601|4055 140.68| 171
81114382180 |6891.22|7087|12936 2419 |1795.15| 1647 |24154|4217|9799.19|1447|35372|6015|15828.39|1430
9116275 |2881 T.O -|18385|3200| 39.71 h | 36984 | 35456 | 5844 T.O -|52527| 8488 T.O

introduce an alternative approach, assuming that the partitioning P, from the
first phase, is given. As a starting point, consider clex(A4, P) given as Eq. (7).

This predicate provides a complete symmetry break when combined with 0223551.

However, its implementation is inefficient as the encoding must consider each of
the permutations in S,, which preserve P, and their number may be huge.

In [12] the authors show that complete symmetry breaks for graph isomor-
phism with n vertices can be obtained using only a small fraction of the required
n! permutations. For example, [12] reports that a complete symmetry break for
n = 10 vertices involves only 7853 permutations whereas the complete symme-
try break ocex(A) introduced as Eq. (6) in Example 5 involves 10! = 3,628,800
permutations. In this paper we enhance the approach of [12] to consider parti-
tionings expressed by encodings of the first stage of the nauty algorithm.

A common approach for improving performance of combinatorial existence
checking is decomposition: splitting the problem into a manageable set of disjoint

subproblems, each of which can (ideally) be solved more easily. We can decom-
phase
nauty(lk)'

This results in a decomposition to 2"~ subproblems, one for each partitioning.
To compute a concise and complete symmetry break for a partitioning P cor-

responding to the first phase U.fgj:;(lk) we apply the same approach as advocated

pose a graph search problem with respect to the partitioning inferred by o

n [12], but restricted to break symmetries on graphs which have the structural
information P after k iterations of the nauty first phase algorithm. This com-
putation is performed by application of Algorithm 2 where we denote: (a) S
the set of permutations that preserve a partitioning P, and (b) for I C S,
ming (G) = A{ G =2n(G)|re}.

For a given partitioning P and value k, Algorithm 2 starts with an empty
set of permutations IT and iterates adding permutations as long as the condition
in Line 3 holds. The condition seeks a pair (G, ) such that 7(G) =< G, where

G e sol(asgjf;(lk) (A,P)) and 7 preserves P. Such a graph violates clex(P, G) and
hence 7 is added to II. The implementation performs this check by invoking a
SAT solver, the same as in [12].

We say that II is redundant if there exists m such that for all G,
ming (G) < minp (»3(G). The set computed by the while-loop at Line 3 may

be non-minimal, as an existing permutation may become redundant in view of
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Algorithm 2. Compute Canonizing Set

1: procedure COMPUTE-CANONIZING-SET(P, k)
2: Init: [T =10

3 while 3(G,7) € (sol(0hmmty (A, P)), ST) s.t ming (G) A7(G) < G do
4: II=1u{r}

5: for each m € II do

6: if VG € sol(0hmmty (A, P)): mingg () (G) = G X 7(G) then

7: II=1n\{r}

8:

return I/

permutations added later. Thus the algorithm then iterates to remove redundant
permutations applying the for-loop at Line 5.

Table 3 is about computing the permutations to make the nauty partitionings
complete (phase2). For each n (number of vertices), we indicate (“parts”) the
number of partitions. We detail separately the cost of computing the permuta-
tions for the regular partitioning (“regular part”) where degree-based structural
information has no impact. These have the most permutations and are the most
costly to compute. Then for onauty (1), Tnauty(2) a0d Tnauty(3) We detail the number
of permutations and the time to compute them using Algorithm 2. For the num-
ber of permutations we detail 2 /y where x is the largest number of permutations
computed for a single partitioning, and y is the total number. For the time we
detail z/y where x is the longest time to compute for a single partitioning and
y is the total time.

Notice how the required number of permutations decreases as structural
information is added (k increases). For n = 10 we have 8608 permutations with
k =1, 3703 with k£ = 2, and 1497 when k£ = 3. Recall that without structural
information 7853 permutations were required [12], and computation beyond 10
vertices was not possible. Moreover note that because of the decomposition to

partitionings we require no more than 37 permutations to break all symmetries
phase

nauty(13) .
puted here provide complete symmetry breaks for any graph search problem with

up to 12 vertices.

on 10 vertices given a partitioning derived from o The permutations com-

Table 3. Canonizing sets per partitioning. Time in seconds except under the line (for
n = 11,12) where in hours. Timeout is 48 h using Glucose.

n | Parts | Regular part Tnauty(1) T hauty(2) Tnauty(3)
Perms | Time Perms Time Perms Time Perms Time
6 32 0 0.22 1/2 0.09/1.73 0/0 0.12/2.60 0/0 0.18/3.87
7 64 2 0.14 5/49 0.25/6.24 1/2 0.24/10.75 0/0 0.37/15.68
8 128 12 1.22 18/330 2.49/35.11 5/93 1.29/62.21 6/40 2.33/82.52
9 256 20 4.54 44/1875 | 22.38/303.19 13/640 4.16/400.65 14/225 7.88/512.03
10 512 144 | 447.48 215/8608 | 750.2/4649.30 51/3703|67.16/3309.17 37/1497 | 95.83/4576.36
11| 1024 346 0.84|1030/44521 8.36/44.9|169/16391 0.22/9.62 171/6718 0.19/12.91
12| 2048 | 213139 16.32 - T.O | 718/77158 3.08/99.44 | 577/33182 2.22/116.2

& To stay within the time-out, the computation of these permutations omits the removal of redundant
permutations, skipping the for-loop at Line 5 in Algorithm 2.
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Table 4. Enumerating TM (modulo 2,3) graphs using opauy(x) complete symmetry
breaks. Time in seconds except under the line (for n = 9,10) where in hours. Column
1 computed with Clasp, column 2,3 computed with Glucose. (120 h timeout).

"] %es Tnauty(1) Tnauty(2 sols
Cls| Vars|Sat | Inst.| Cls| Vars Sat Inst.| Cls | Vars Sat
3 791 216 0.00 4 346 80 0.00/0.00 4 346 80 0.00/0.00 3
4| 1640 421| o0.02| 11| 935| 218| 0.00/0.02 11| 1053 233 0.00/0.02 4
5| 3179| 7as| 0.13| 31| 1783] 409  0.01/0.18 33| 2163 466 0.01/0.21 13
6| 5093| 1120| 1.03| 102 3088| 699 0.06/1.52| 143 | 4254 | 882 0.04/1.92 39
7 8710 1791 14.49 342 4794 | 1060 1.07/26.19 755 7293 | 1462 0.33/28.24 171
8 21633 4219 | 304.20 1213 7091 | 1524 | 18.16/766.32 4817 | 11503 | 2220 5.87/678.68 1425
9 105030 20632 11.91 4361 | 10079 | 2104 0.17/11.73 32883 | 16863 | 3140 0.07/12.71 29415
10 | 1428281 | 284565 T.0O | 16016 | 14466 | 2925 T.O | 223554 | 23572 | 4233 | 114.51/2215.12 | 1099398

A first attempt to enumerate all TM graphs modulo 2,3 using the complete
symmetry breaks opnauty (k) per partitioning failed. The instances are simply too
hard. To this end, we took a second approach where the encoding for each
partitioning was enhanced with additional information on the degree sequences
of solutions. Namely, the implementation considers for each partition all possible
relevant degree sequences and solve each instance separately.

Table4 summarizes the results. For each n we detail the results obtained
using the complete symmetry breaks of [12] denoted by o, (these symmetry
breaks are equivalent to o (A) but are much compact), and then the results
for onauty(k) with & = 1,2. Here we detail the total number of instances (on all
partitionings). For time we detail 2 /y where z is the time for the hardest instance
and y is the total time. The number of solutions is the same as this is, in all
three cases, the number of canonical solutions.

4 Conclusion

This paper presents polynomial-size static symmetry breaking predicates which
encode structural properties in the same way that nauty exploits information
when it maps graphs to their canonical representations. These structural breaks
apply to strengthen existing incomplete symmetry-breaking predicates, and can
be extended into complete symmetry breaks. These structural properties also
yield a natural strategy for problem decomposition. We have described a SAT
encoding for the structural symmetry-breaking predicates, and applied these to
compute compact, complete symmetry breaks for graphs of up to 12 vertices. We
also demonstrated the effectiveness of these structural techniques in accelerating
the enumeration of TM graphs modulo 2, 3. Ongoing work focuses on an encoding
that exploits on richer structural properties than the current focus on vertex
degree. As described in [17], this is expected to improve the situation when
breaking symmetries on regular graphs. We also plan to apply the same technique
to compute sets of permutations with which to break symmetries for a given
graph search problem. We expect to then be able to apply the technique for
larger instances than those we can do now.
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Abstract. Broken triangles constitute an important concept not only
for solving constraint satisfaction problems in polynomial time, but also
for variable elimination or domain reduction by merging domain val-
ues. Specifically, for a given variable in a binary arc-consistent CSP, if
no broken triangle occurs on any pair of values, then this variable can
be eliminated while preserving satisfiability. More recently, it has been
shown that even when this rule cannot be applied, it could be possible
that for a given pair of values no broken triangle occurs. In this case, we
can apply a domain-reduction operation which consists in merging these
values while preserving satisfiability.

In this paper we show that under certain conditions, and even if there
are some broken triangles on a pair of values, these values can be merged
without changing the satisfiability of the instance. This allows us to
define a stronger merging operation and a new tractable class of binary
CSP instances. We report experimental trials on benchmark instances.

1 Introduction

Identifying tractable classes constitutes an important research goal in con-
straint programming. The broken-triangle property (BTP) defines a hybrid
tractable class [6,7]. This class has some interesting characteristics, both from
a theoretical and practical viewpoint: it generalises existing language-based
and structural classes and is solved in polynomial time by the algorithm
MAC which is omnipresent in constraint solvers [20]. Besides, many exten-
sions of the broken-triangle property have led to the definition of new tractable
classes [8,10,11,14,18,19]. Local versions of the BTP have also given rise to novel
reduction operations for CSP instances. In particular, in arc-consistent binary
CSP instance, if no broken triangle occurs on any pair of values in the domain
of a variable, then this variable can be eliminated without changing the satis-
fiability of the instance [2]. Even when this variable-elimination rule cannot be
applied, it can nevertheless happen that no broken triangle occurs on a particu-
lar pair of values. In this case, these two values can be merged into a single value
without changing the satisfiability of the instance [5]. This domain-reduction
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operation, known as BT-merging, was found to be applicable in diverse bench-
mark domains, although extensive experimental trials would seem to indicate
that it is not useful, in terms of total solving time, as a preprocessing operation
in a general-purpose solver [4].

In the light of these results, in this paper we study a lighter version of BTP-
merging which allows the presence of some broken triangles on the pair of values
to be merged, thus giving rise to a stronger domain-reduction operation.

In the following section we recall basic definitions and notations used in the
rest of the paper. In Sect.3 we introduce a new generic rule, called m-wBTP,
which allows us to merge two values even in the presence of some broken triangles.
We then show in Sect. 4 that, for sufficiently large m, this rule is maximal. We
go on to show, in Sect. 5, that this merging rule does not allow the elimination
of variables. Nevertheless, in Sect.6 we show that it does allow us to define a
tractable class. We also compare m-wBTP with certain other generalisations of
BTP, such as k-BTP [8] and WBTP [19]. In Sect. 7 we report experimental trials
to evaluate the practical interest of 1-wBTP-merging.

2 Preliminaries

Constraint satisfaction problems (CSPs [17]) are at the heart of numerous appli-
cations in Artificial Intelligence and Operations Research. In this paper, we study
only binary CSP instances, defined formally as follows:

Definition 1. A binary CSP instance is a triple [ = (X, D,C), where X =
{21,...,2,} is a finite set of n variables, D = {D(x1),...,D(x,)} is a set of
domains containing at most d values, a domain for each variable, and C is a
set of binary constraints. Each constraint C;; € C is a pair (S(Cy;), R(Cij))
with:

o S(Cyj) ={zi,z;} C X, the scope of the constraint,
o R(C;5) C D(z;) x D(x;), the relation specifying the compatibility of values.

If the constraint C;; is not defined in C, then we consider Cy; to be a universal
constraint (i.e. such that R(C;;) = D(x;) x D(z;)).

The interaction between the values of each variable through the relations associ-
ated to constraints can be represented graphically by a microstructure graph [13].
The vertices of this graph are thus the variable-value pairs (z;,v;) (v; € D(x;))
and the edges are the tuples authorized by the constraints (that is, there is an
edge between the vertices (z;,v;) and (z;,v;) iff (v;,v5) € R(Cj;)). Given a
binary instance I, deciding whether I has a solution (an assignment (v1,...,v,)
such that Vi, v; € D(x;) and Vi # j, (vs,v;) € R(Cjj;)), is well known to be
NP-complete. However, by imposing some restrictions on the constraint scopes
and/or relations, we can define tractable classes of instances which can be solved
in polynomial time. The BTP (Broken Triangle Property) tractable class, is an
important tractable class since it generalises certain previously known classes
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based exclusively on properties of the constraint scopes or the constraint rela-
tions and has been the inspiration for a new branch of research on tractable
classes of CSPs based on forbidden patterns [1,4,9,11,18]. The Broken Triangle
Property imposes the absence of so-called broken triangles. Formally, BTP is
defined as follows:

Definition 2 (Broken-Triangle Property [6,7]). Let I be a binary CSP
instance with a variable order <. A pair of values v}, vy € D(x) satisfies BTP
if, for each pair of variables (x;,x;) such that x; < z; < zx, Yv; € D(xz;),
Yv; € D(z;), if (vi,v;) € R(Cyj), (v, v;,) € R(Cix) and (vj,v}) € R(Cji), then
either (v;,v)) € R(Cix), or (vj,v;,) € R(Cjr).

A wariable xy satisfies BTP if each pair of values in D(xy) satisfies BTP.
An instance satisfies BTP if all its variables satisfy BTP.

This definition can be represented graphically in the microstructure of I as
shown in Fig. 1. Throughout this paper, we represent an unauthorized assign-
ment (a tuple which violates the constraint) either by a dashed line or by the
absence of a line.

Fig. 1. (a) A broken triangle (v;, vj, vy, vy ). (b) The assignments (v;, v, v, vy, ) do not
form a broken triangle.

In Fig. 1(a), the CSP instance is not BTP relative to the order z; < z; <
because the tuples (v;,v}) and (v;,v)) are not authorized. In this example,
(vs,v5,v5,vy) constitute a broken triangle on the values v}, and v}. Because of
this broken triangle, we say that there is a broken triangle on zj relative to
z; and x;. On the other hand, if (v;,v})) € R(Ci) or (vj,vy) € R(Cji), as
illustrated in Fig. 1(b), then the broken-triangle property is satisfied.

We now define the merging of domain values before recalling the merging
operation based on BTP.

Definition 3 [4]. Merging the values v}, v) € D(zy) in a binary CSP instance
I consists of replacing v, vy in D(zx) by a new value v which is compatible
with all values which are compatible with at least one of the values v;, or vy..
A wvalue-merging condition is a polytime-verifiable property such that when
it holds on a pair of values vi,v) € D(zy), the CSP instance obtained after
merging the values v}, and vy is satisfiable if and only if I was satisfiable.
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In binary CSP instances, the absence of broken triangles on a pair of values
is a valid value-merging condition [4]. For example, in Fig. 1(b), the values v,
and v; are mergeable.

3 Weakly Broken Triangles

The absence of broken triangles on a pair of values allows them to be merged
while preserving satisfiability. In this section, we show that it is possible to merge
certain pairs of values even in the presence of some broken triangles. This idea
was inspired by recent work by Naanaa [19] on a new extension of BTP. We call
our new property m-wBTP: the parameter m defines the number of variables
supporting the weakly broken triangles.

3.1 1-wBTP-Merging

We start with the simplest case (m = 1) based on a new concept called weakly
broken triangles supported by one other variable.

Definition 4. A pair of values vy, v), € D(zy) satisfies 1-wBTP if for each
broken triangle (v;,v;, v}, vy ) with v; € D(z;) and vj € D(xj), there is at least
one variable xp € X \ {z;,z;,xr} such that: ¥ vy € D(xy) if (vi,v,) € R(Cip)
and (vj,ve) € R(Cjr) then

[ ) (’U;C,Ug) ¢ R(CM) and
o (v),ve) & R(Che).

If this is the case, (vi,vj,v},,vy) is known as o weakly broken triangle sup-
ported by the variable xy.

This definition can be represented by the microstructure graph, as shown in
Fig.2. There is a broken triangle (v;,vj, vy, v ). Since for each value vy of the
variable xg, v, is compatible with v; and v; and we have (v}, v;) ¢ R(Cye) and
(v, ve) ¢ R(Cre), this triangle is a weakly broken triangle supported by z.

The notion of weakly broken triangles allows us to generalise BTP-merging.

Proposition 1. In a binary CSP, merging two values vy, v) € D(xy) which
satisfy 1-wBTP does not change the satisfiability of an instance.

Proof. Let I be the original instance and I’ the new instance in which v}, v}/
have been merged into a new value vy, (which replaces vy, v} in D(xy)). Clearly,
if I is satisfiable then so is I’. Hence, it suffices to show that if I’ has a solution
s which assigns vy to zg, then I also has a solution.

Let s’, s” be two assignments which are identical to s except that s’ assigns
v}, to x, and s assigns v} to xy. Suppose, for a contradiction, that neither s’
nor s” is a solution to I. Then there are two variables x;,z; € X \ {zx} such
that (s(z;),v;,) € R(Ci,) and (s(x;),v)) ¢ R(Cji). Since s is a solution to I’
assigning vy, to xx, we must have (s(z;),v}) € R(Ci) and (s(z;), v;,) € R(Cjk).
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Fig. 2. A triangle which is weakly broken since (vy,, v¢) ¢ R(Cke) and (vy,, v¢) & R(Che).

Obviously, we also have (s(z;),s(z;)) € R(C;;) since s is a solution to I’. So
(s(x;), s(xj), v}, vy) is a broken triangle in I.

By the definition of 1-wBTP, there is a variable z, € X \ {z;,z;, 2} such
that Yve € D(x) if (s(x;),v¢) € R(Ci¢) and (s(xj),vs) € R(Cj¢) then

(vgv¢) & R(Cre) and
(vii,ve) & R(Cre)-

As s(zy) is compatible with s(z;) and s(x;), it cannot be compatible with either
v}, or vy It follows that s(z¢) is not compatible with vy, which implies that s
is not a solution to I’. But this contradicts our initial hypothesis. Thus, this
merging rule preserves satisfiability. a

Fig.3. A CSP instance in which all values are arc consistent (in bold, the weakly
broken triangle).

At first sight, there appears to be an obvious link between this definition
and arc consistency [16]. Indeed, imposing that the tuples (v}, v¢) and (v}, ve)
are unauthorized seems to imply that the goal is to render the values v}, and vy,
arc-inconsistent. But the example in Fig. 3 shows that this is not always the case.
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Indeed, although the two values v}, v} € D(zy) in this figure satisfy 1-wBTP,
establishing arc consistency deletes no values (and obviously no tuples). Thus,
arc consistency does not delete the broken triangle (v;,vj, v}, vy).

3.2 m-wBTP-Merging

In Definition 4, thanks to the supporting variable(s) z,, merging values on which
there are only weakly broken triangles leaves the satisfiability of the instance
invariant. In terms of the microstructure, the variable x, prevents the creation
of a new clique in the microstructure of size n (i.e. a new solution) which did
not exist before merging. This principle can clearly be extended to m variables

(m <n-23).
An assignment (vg,,...,vs,,) € D(zg) X ... x D(zy,,) is a partial solution
if it satisfies all constraints C;; such that {x;,x;} C {z¢,,..., 2, }-

Definition 5. A pair of values v}, v, € D(z) satisfies m-wBTP where m <
n — 3 if for each broken triangle (v;,v;, vy, v)) with v; € D(x;) and vj € D(x;),
there is a set of r < m support variables {zy,,...,z¢ } € X \{z;, z;,z1} such
that for all (ve,,...,ve,.) € D(xg,)X...xXD(xyg,), if (Vey, - - ., e, v5,0;5) s a partial
solution, then there is « € {1,...,r} such that (ve,,v},), (ve,,v}) & R(Ce k). We
say that x4, is the shield variable for this partial solution.

Figure4 shows two configurations illustrating Definition 5. In the first, the
pair of values v,v; € D(xy) satisfies 2-wBTP because for the unique partial
solution (ve,,ve. ,vs,v5) we have (ve,,vy), (ve,,v)) & R(Ce, k). In the second,
there is no partial solution on the set of variables {xy_, 2, ,2;,z;}; thus vy, v} €
D(xy) trivially satisfies 2-wBTP.

Fig. 4. Two different cases of two values v, and v}, which satisfy 2-wBTP.

We now generalise Proposition 1 to the merging of values satisfying m-wBTP.

Proposition 2. In a binary CSP, merging two values v}, vy € D(xy) which
satisfy m-wBTP does not change the satisfiability of an instance.
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Proof. Let I be the original instance and I’ the new instance in which v}, v}/
have been merged into a new value vy, (which replaces v}, v} in D(zy)). Clearly,
if I is satisfiable then so is I’. Hence, it suffices to show that if I’ has a solution
s which assigns vi to xx, then I also has a solution.

Let s, s” be two assignments which are identical to s except that s’ assigns
v}, to zx and s assigns v} to zy. Suppose, for a contradiction, that neither s’
nor s’ is a solution to I. Then there are two variables z;, z; € X\ {x}} such that
(s(zi),vy.) ¢ R(Cix) and (s(x;),vy) ¢ R(Cjx). Since s is a solution to I’ assigning
v to xy, we must have (s(x;),v)) € R(Cy) and (s(z;),v;,) € R(Cjx). We also
have (s(z;),s(z;)) € R(Cj;) since s is a solution to I. So (s(x;), s(x;), vy, vy) is
a broken triangle in 1.

The values v}, and v} satisfy m-wBTP, so, by definition, there is a set of
r < m variables {z¢,, ...,z } € X \ {2, z;, 2z, } such that for all (vy,,...,ve,.) €
D(xp,) % ... x D(xy,), if (ve,,...,ve,.,v;,v;) is a partial solution, then there is
a €{1,...,r} such that (v, ,v}), (ve,,v}) & R(Cr k).

Since s is a solution of the instance I', (s(z¢,),...,s(ze, ), s(z;),s(z;)) is
necessarily a partial solution, so there is @ € {1,...,r} such that we have
(s(ze,),vp)s (s(ze,),v)) ¢ R(Co, k), which implies (s(zy, ), vi) ¢ R(Cy, k). This
is a contradiction since s is a solution of the instance I’ with s(z) = vg.

We can deduce that m-wBTP-merging preserves satisfiability. a

The BTP-merging rule [4] can be seen as 0-wBTP-merging since it is based
on zero support variables. The following proposition establishes the link between
the different versions of merging based on BTP.

Proposition 3. In an n-variable binary CSP, if a pair of values vy, v} € D(xzy)
satisfies m-wBTP then it satisfies (m + 1)-wBTP (for 0 <m <mn —4).

The BTP-merging rule generalises both neighbourhood substitution [12] and
virtual interchangeability [15]. As m-wBTP-merging generalises BTP-merging
for all m > 0, the following result follows immediately:

Corollary 1. m-wBTP-merging generalises neighbourhood substitution and vir-
tual interchangeability.

Besides the fact that m-wBTP-merging preserves satisfiability, it is also pos-
sible to reconstruct in polynomial time all solutions to the original instance
I from the solutions from an instance I’ obtained by applying a sequence of
m-wBTP-mergings. What is more, the reconstruction of a solution to I from a
solution to I’ can be achieved in time which is linear in the size of I. It suffices
to apply the same algorithm as in the case of BTP-merging [4].

4 A Maximal Value-Merging Condition

It is well known that any pair of values which satisfies BTP can be merged
while preserving satisfiability [4]. We have shown that a pair of values which
does not satisfy BTP can nevertheless be merged while preserving satisfiability
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if this pair satisfies m-wBTP. Thus, in an obvious sense, BTP-merging is not a
maximal value-merging condition. A value-merging condition is mazimal if the
merging of any other pair of values not respecting the condition necessarily leads
to a modification of the satisfiability of some instance. In this section, we show
that m-wBTP is a maximal value-merging condition when m =n — 3.

Theorem 1. In an unsatisfiable n-variable binary CSP instance, there is no
pair of values not satisfying m-wBTP for m = n — 3 and which can be merged
while preserving satisfiability.

Proof. Let I be an unsatisfiable n-variable CSP instance and let v}, v}, € D(zy)
be a pair of values which does not satisfy m-wBTP for m = n — 3. By the
definition of m-wBTP-merging, there is a broken triangle (v;,v;, v}, v}y), with
v; € D(x;) and v; € D(z;), and there is (v, , ..., ve,,) € D(xp,) X ... X D(z¢,,),

where {zy,,...,xe,, } = X\{2i, zj, x1}, such that (ve,, ..., ve,,,v;,v,) is a partial
solution and for all & € {1,...,m} we have (v, ,v},) € R(Ce k) or (ve,,v)) €
R(Cy k)-

We have a broken triangle, and so: (v;,v}) ¢ R(Cit), (vj,v;,) ¢ R(Cjk),
(vi,vy,) € R(Cyy) and (vj,vy) € R(Cji). We also have, for all £ € {{y,...,0p}:

o (’Ug,?);c) S R(C@k) or
° (’Ug,vg) S R(Cgk).

After merging, and by definition of merging, the new merged value v, satisfies
(ve,v) € R(Cyi) for all £ € {t1,..., 0} U {4, }. We obtain a solution given by
Vey, .-, ,,i,v; and vi. Thus, we have introduced a solution which did not
exist in the original instance since (v;,vy) ¢ R(Cix) and (vj,v,) ¢ R(Cj). It
follows that the merging of any pair of values which does not satisfy m-wBTP
does not preserve satisfiability. a

A wvalid value-merging condition has to guarantee that an unsatisfiable
instance does not become satisfiable after merging. We can therefore deduce
the following corollary.

Corollary 2. (n — 3)-wBTP is a maximal value-merging condition.

5 wBTP and Variable Elimination

BTP allows value-merging [4], variable elimination [2,3] and the definition of a
tractable class [7]. There are several distinct generalisations of BTP according
to the desired property. m-wBTP is a generalisation of BTP which allows us
to reduce the size of domains via value-merging. m-wBTP is a less restrictive
condition than BTP and thus allows more mergings than BTP. On the other
hand, this gain in the number of mergings is counterbalanced by the fact that
m-wBTP does not allow variable elimination.

In [2], it was shown that, for a given variable xj of an arc-consistent binary
CSP instance I, if there is no broken triangle on any pair of values of D(xy),
then eliminating the variable xj from I preserves satisfiability. We now show
that this is not the case for m-wBTP when m > 0.
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Proposition 4. Given a variable xi of an arc-consistent binary CSP instance I,
even if each pair of values in D(xy) satisfies m-wBTP, where m > 1, eliminating
variable xi can change the satisfiability of I.

Proof. Let I be the binary CSP instance defined on four variables zi,..., x4
with D(z;) = {0,1,2} (i = 1,...,4) and the following constraints: z; = o,
To = 23, T3 = 21, 1 = (x4 + 1) mod 3, 9 = (x4 — 1) mod 3, x3 = x4. This
instance is arc-consistent. There are three partial solutions (0, 0,0), (1,1,1) and
(2,2,2) on variables x1,za,x3, but I does not have a solution. Therefore, the
elimination of variable x4 does not preserve the satisfiability of the instance (see

Fig. 5).
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Fig. 5. An unsatisfiable CSP instance in which each pair of values in D(z4) satisfies
1-wBTP but the elimination of x4 introduces three solutions.

Let x;, zj, z; be the variables 1, x2, z3 (in any order). There are three broken
triangles (v;,v;,v),v)) on the variables x;,x;, x4 (the weakly broken triangles
are represented by three different colours in Fig.5): in each of these broken
triangles, we have v; = v;. For each of these broken triangles, there is exactly
one partial solution of the form (vg, v;,v;) on the variables xy, z;, x; because we
necessarily have vy, = v; = v;. By the choice of constraints, the values vg, v;, v;
are compatible with three different values in D(z4). We can deduce that (ve, v)),
(ve,vy) ¢ R(Cy4) since, by the definition of a broken triangle, each of the values
v}, vj is compatible with one of the values v;, v;. Thus, each pair of values
vy, vy € D(z4) satisfies 1-wBTP.

We have exhibited an instance I such that each pair of values in D(x4)
satisfies 1-wBTP, but eliminating the variable x4 changes the satisfiability of I.
For values of m > 1, it suffices to add m — 1 other non-constrained variables to
the instance I. O

In the instance I in the proof of Proposition 4, each pair of values in the
domain D(xz4) satisfies 1-wBTP. However, after having performed the merging
of two values, the two remaining values no longer satisfy 1-wBTP and cannot
be merged.
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6 wBTP and Tractability

In order to compare m-wBTP and other generalisations of BTP defining
tractable classes, we extend the definition of m-wBTP in a natural way to
instances.

Definition 6. Given a constant m < n — 3, a binary CSP instance I with
a variable-order < satisfies m-wBTP relative to this order if for all variables
Zk, each pair of values in D(xy) satisfies m-wBTP in the sub-instance of I on
variables x; < x},.

A lighter version of BTP, called k-BTP, which allows certain broken triangles,
has recently been defined [8]. Binary CSP instances which satisfy both strong
k-consistency and k-BTP constitute a tractable class.

Definition 7 (k-BTP [8]). A binary CSP instance I satisfies the k-BTP prop-
erty for a given k (2 < k < n) relative to a variable order < if, for all subsets
of variables T, T4y, . .., T4y, such that x; < x4, <--- <4, there is at least
one pair of variables (v;;,x;,) with 1 < j < j' <k such that there is no broken
triangle on xiy1 relative to T, and T,

Unfortunately, and unlike m-wBTP, the k-BTP property cannot be used for
merging values when k is strictly greater than 2 (we recall that 2-BTP = BTP).
As an example, the instance of Fig. 6(a) satisfies 3-BTP. To see this, observe that
there is no broken triangle on x; relative to x; and z,. But, if we merge U;C and
v}, this CSP instance becomes satisfiable whereas it was not initially. Therefore,
k-BTP (for k strictly greater than 2) is not a valid value-merging condition. We
can also note that k~-BTP (k > 2) and m-wBTP (m > 0) are incomparable, since
it can happen that m-wBTP-merging can authorize more broken triangles than
k-BTP. For example, the instance in Fig. 6(b) satisfies 1-wBTP but not 3-BTP:
there are broken triangles on the variable xj, for each pair of other variables, but
in each case the fourth variable is a support variable.

Naanaa has given two other generalisations of BTP which define tractable
classes [18,19]. It has been shown [8] that the notion of directional rank k—1 [18]
strictly generalises k-BTP. We can deduce that the example of Fig.6(a) has
directional rank 2, which shows that directional rank & (for £ > 2) cannot be
used to merge values (knowing that the case k = 1 corresponds to BTP).

The notion WBTP [19] inspired our definition of 1-wBTP, but is different.
We first give the definition of WBTP before showing that it can be seen as a
strictly stronger condition than 1-wBTP (and thus leads to less mergings).

Definition 8 (WBTP [19]). A binary CSP instance equipped with an order <
on its variables satisfies WBTP (Weak Broken Triangle Property) if for each
triple of variables x; < x; < x and for all v; € D(x;), v; € D(x;) such that
(vi,v;) € R(Cyj), there is a variable x; < 1, such that when v, € D(zy) is
compatible with v; and v;, then Y, € D(zy),

(ve, vk) € R(Cex) = ((vi,vx) € R(Cir) N (vj,vx) € R(Cji))
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Fig. 6. (a) An instance which does not satisfy 1-wBTP but does satisfy 3-BTP, for the
variable ordering z, < z; < z; < zx. (b) An instance which satisfies 1-wBTP but does
not satisfy 3-BTP, for the variable ordering =, < z; < x; < x.

Proposition 5. If a binary CSP instance equipped with an order < on its vari-
ables satisfies WBTP, then it satisfies 1-wBTP for each pair of values in the
domain of the last variable (relative to the order <).

Proof. Suppose that the binary CSP instance I satisfies WBTP for the variable
order < and let zj be the last variable of I according to this order. Suppose, for a
contradiction, that I does not satisfy 1-wBTP on a pair of values v}, v}/ € D(zy).
Then, by the definition of 1-wBTP, there is a broken triangle (v;,v;,v;,v))
with v; € D(z;), v; € D(z;), vi,vy € D(xx) such that there is no variable
x¢ € X\ {z;, z, 1} such that V v, € D(x,) compatible with v; and v;, we have
(ves0}), (ve, ) € R(Cur):

But WBTP guarantees the existence of a variable x, < xj such that Vv, €
D(z¢) compatible with v; and v;, we have Vv, € D(xy),

(ve,vr) € R(Cex) = ((vi,vr) € R(Cir.) N (vj,vx) € R(Cjx))

The existence of the broken triangle (v;,v;,v;,,v)) implies that z, ¢ {x;,z;}
and so xy € X \ {z;, 2,z }. On the other hand, since (v;, v;, v}, v}) is a broken
triangle,

(vi,vk) S R(Clk) A (Uj, Uk) S R(Cjk)

is false for vy, € {v},v]}. We can deduce that (v, v}), (ve,v)) ¢ R(Ce), a
contradiction. O

Imposing WBTP is strictly stronger than imposing 1-wBTP. WBTP imposes
a condition on each value v, € D(xy) relative to the same variable x;, whereas
1-wBTP (for each pair of values v}, v}, € D(x)) imposes an equivalent condition
but for which the variable x, can vary according to the values v}, v;/. The instance
in Fig. 7 satisfies 1-wBTP but not WBTP because:

e only variable x4, supports (v;,vj, vy, vy),
e only variable zy, supports (v;, v, v}, vy),
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Fig. 7. An instance that satisfies 1-wBTP but not WBTP.

Therefore, there is no variable which supports at the same time the broken
triangles (v, v;, vy, vy) and (v, v;, v, 7).
WBTP defines a tractable class [19]. We now show that this is also true for

m-wBTP.

Definition 9. Let I be a m-wBTP binary CSP instance on variables x1, ..., Ty
ordered by <.

— The BT-variable set By of xi is the set of the variables x; < xp such
that there is a broken triangle on xy relative to x; (and some other variable
zj < k).

— A shield set Sy of xy is a set of variables xp < xj such that for each broken
triangle (vi, v, v}, v ) on xy relative to variables x;,x; < xj, each partial
solution (ve,, ..., Ve, Vi, ;) of its support variables, has a shield variable z, €
Sk.

— The BT-width of xy, is the smallest value of | By N Si| among all shield sets
Sk of xy. The BT-width of I is the maximum BT-width of its variables.

Observe that for constants b and m, it is possible to determine in polynomial
time whether a given instance (with a fixed variable order) has BT-width less
than or equal to b (by exhaustive search). The BT-width provides an upper
bound on the minimum level of consistency required to solve an instance, as
demonstrated by the following theorem.

Theorem 2. If a m-wBTP binary CSP instance I has BT-width b and is strong
directional max(2,b + 1)-consistent, then I has a solution.

Proof. Let I be a binary CSP instance which has BT-width b and is direc-
tional (b + 1)-consistent. For simplicity of presentation, we suppose that the
variable order is z; < ... < z,. We suppose that it has a partial solution
o = (v1,...,U5—1) on the variables (x1,...,25—1). We will show that this par-
tial solution can be extended to a partial solution on (z1,...,zx). The base
case of the induction is easily seen to be true, since by arc consistency there is
necessarily a partial solution on the first two variables.
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Let B; be the set of the BT-variables of x; and let S;. be a shield set of xy
such that |Bp N Sk| < b. By directional (b + 1)-consistency, any partial solution
on the variables By N Sk can be extended to variable x. Therefore Jvy, € D(xy)
such that

Vx; € By NSy, (’Ui,Uk) € R(Cik) (1)

Denote by By(o) the variables z; € By such that there is a broken triangle of
the form (v;, v, v, v)) on x (where v;,v; are assignments from o). Similarly,
let Si(o) be the variables of Sy which shield such broken triangles. Let Ny (o)
be the variables x; < zj such that x; ¢ By(c). The sub-instance of I on vari-
ables Ni (o) U {x} has no broken triangles on xj. Therefore, Juy € D(xy) such
that (vi,ur) € R(Cy) for all z; € Ni(o) [7]. If Nk(o) = 0, then wuy is simply
an arbitrary element of D(xy). We will show that one of (v1,...,vp_1,vk) Or
(v1,...,Vk—1,ux) is a partial solution.

Suppose, for a contradiction, that this is not the case. Then Jz;, z; < xi
such that (v;,ur) ¢ R(Cix) and (vj,vr) ¢ R(Cji). We must have z; € By(o)
and z; ¢ By N Sy. Since x; € By(0), there is a broken triangle (v;, vy, v}, vy)
on xy with (v;,v},) € R(Cy). This broken triangle must have a shield variable
x¢ € S(0). If x4 € Ni(0), then (ve, ug) € R(Cyy). We also have (vg,v;) € R(Cix)
(by the definition of a partial solution) and (ve,v;,) ¢ R(Cy) (by definition of
a support variable). Since, by assumption, (v;,ux) ¢ R(Cix), we have a broken
triangle (v;,ve, v}, ug) which is impossible since z; € Ni(o) and hence cannot
participate in such a broken triangle. So the shield variable xy belongs to By (o)N
Sk(0). By (1), we have (vg,vi) € R(Cox). Suppose now that (v;,vr) ¢ R(Cik).
Then we have a broken triangle (v;, ve, v}, vg). This broken triangle must have a
shield variable x,,. By the same argument as for x;, we can deduce that z,, €
By(0) N Sk(o). However, this contradicts (1) since we have (vp,,vr) ¢ R(Cimk)
(since x,, is a shield variable of the broken triangle (v;,ve, v}, vg)). It follows
that (v;, vg) € R(Cix). Indeed, we have shown

Vx; € Bg(o), (vi,ur) & R(Cir) = (vi,vr) € R(Cix) (2)

Now, if ; € Ni(o) we have a broken triangle (v;,v;, vk, ur), which is in
contradiction with the definition of Ny(c), so we must have z; € Bj(o).
Now, by (2) and our assumption that (v;,v) ¢ R(Cji), we can deduce that
(vj,ug) € R(Cji). We then have a broken triangle (v;,v;, vy, ux). This bro-
ken triangle must have a shield variable x,. By definition of a shield vari-
able, we must have (vp,uvg), (vp,ur) ¢ R(Cpr). But this is impossible since
zp € Ni(0) = (vp,u) € R(Cpi) and, by (2), xp, € Bi(o) = (vp,ur) € R(Cp)
V (vp,v) € R(Cpp).

This contradiction shows that one of (vq,...,vx_1,vx) or (v1,...,V5—1,Ug)
is a partial solution. By induction, I has a solution. a

Naanaa showed that a binary arc-consistent CSP instance satisfying WBTP
always has a solution [19]. We can observe that this is a special case of Theorem 2
since a WBTP instance has BT-width of 1.
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An open question is whether it is possible to determine, in polynomial time,
the existence of some variable order for which a given instance has BT-width b
even for b = 1.

7 Experimental Results

In order to test the applicability of our merging rules, and in particular 1-wBTP-
merging, we carried out an experimental study on all the binary benchmark
instances of the 2008 international CSP solver competition® (a total of 3,795
instances). The 1-wBTP-merging algorithm is similar to the algorithm for BTP-
merging [5]. More specifically, given a variable zj, we check for each pair of
values vy, v) € D(xy) if these two values are mergeable by 1-wBTP-merging.
Once a broken triangle on v}, v} is found, we search over the other n — 3 vari-
ables to see if there exists a variable x; which supports this broken triangle. If
we find one, we continue the search for other broken triangles; if not, the test
is finished for these two values. Finally, if there are no broken triangles or only
weakly broken triangles on the pair v}, v}/, we merge them. We do not attempt to
maximize the number of merges since we know that this is an NP-hard problem,
even in the case of BTP-merging [4]. We implemented the two merging algo-
rithms to be tested (BTP-merging and 1-wBTP-merging) in C++ within our
own CSP library. The experiments were performed on 8 Dell PowerEdge M820
blade servers with two processors (Intel Xeon E5-2609 v2 2.5 GHz and 32 GB of
memory) under Linux Ubuntu 14.04.
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Fig. 8. Comparisons of the percentages of values merged by BTP and 1-wBTP.

For each benchmark instance, we performed BTP-merging and 1-wBTP-
merging until convergence with a timeout of one hour. In all, we obtained results
for 2,535 out of the 3,795 benchmarks and we succeeded in merging at least one

! See http://www.cril.univ-artois.fr/CPAIOS for more details.
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Table 1. Experimental results on benchmarks.

Family #benchmarks | #values | BTP-merging | 1-wBTP-merging
BH-4-4 10 674 322 348
BH-4-7 20 2102 883 932
ehi-85 98 2079 891 1 045
ehi-90 100 2 205 945 1100
graph-coloring/school 8 4473 104 104
graph-coloring/sgb/book| 26 1 887 534 534
os-taillard-4 30 2932 1820 1978
rlfapScens 1 8 004 341 1211
rlfapScensMod 6 8788 2415 5 169
subs 9 1479 40 517
langford-2 22 879 0 233
langford-3 20 1490 0 554
langford-4 16 1784 0 504
queenAttacking 7 2 196 0 36

pair of values for 1,001 of these instances. In Table 1, the column #benchmarks
shows the number of benchmark instances for which the test finished within
the one-hour timeout. The column #values indicates the average total num-
ber of values in these benchmarks. The columns BTP-merging and 1-wBTP-
merging give the number of merges performed respectively by BTP-merging and
1-wBTP-merging. In Fig. 8, we compare the percentages of domain reduction by
BTP-merging and 1-wBTP-merging instance by instance. If, for the majority of
instances, the results are comparable, we can observe that for certain instances,
1-wBTP merges significatively more values than BTP. This is notably the case
for the instances in the langford-* family for which 1-wBTP merges from 25
to 80 % of the values whereas BTP does not merge any.

8 Conclusion

In this paper we have studied value-merging conditions in binary CSP instances,
based on a generalisation of BTP. We proposed a family of definitions based on
the notion of a weakly broken triangle, which is a broken triangle supported by
one or more variables in order to preserve satisfiability after merging.

We have shown that m-wBTP together with different levels of consistency
defines a family of tractable classes. Possible links with bounded treewidth are
worth investigating. From a practical point of view, it would be interesting to
investigate the influence of the order in which merges are performed on the total
number of merges. We know that finding the best order in which to perform
m-wBTP-merging operations is NP-hard even in the case m = 0 [4].
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Abstract. Path finding is an ubiquitous problem in optimization and
graphs in general, for which fast algorithms exist. Yet, in many cases side
constraints make these well known algorithms inapplicable. In this paper
we study constraints to find shortest paths on a weighted directed graph
with arbitrary side constraints. We use the conjunction of two directed
tree constraints to model the path, and a bounded path propagator to
take into account the weights of the arcs. We show how to implement
these constraints with explanations so that we can make use of power-
ful constraint programming solving techniques using learning. We give
experiments to show how the resulting propagators substantially accel-
erate the solving of complex path problems on directed graphs.

1 Introduction

Path-finding is an important task in (directed) networks. It arises in tasks such as
graph layout [7], metabolic networks [25] or collaborative path-finding in video-
games [22] among other examples. In many cases, though, side constraints make
these problems highly combinatorial and no efficient algorithms exist.

In this paper, we focus on path-finding with distances. In order to do so, we
go through preliminary steps to build two propagators from which we build a
path propagator that works on the topology of the graph. Then, on top of that,
we construct a propagator that takes into account the weights of the arcs to
propagate distances.

Given a fixed directed graph G = (V, &), we enforce properties of a graph
variable G = (V, E) subgraph of G using the following constraints:

dreachability(G,r,G) requires all nodes in G are reachable from root 7;

— dtree(G,r,G) requires that G forms a tree rooted at r;

path(G, s,d,G) ensures that G is a simple path from s to d;

— bounded_path(G, s,d,G,w, K) ensures that G is a simple path from s to d of
length no more than K given the weight function w over the arcs of G;

The focus of the present paper is the bounded_path propagator. We present
two novel explanations for already existing propagation rules. Furthermore, we
introduce a new stronger propagation technique with explanations as well. The
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explanations for this propagator and its new version are the main contributions
of this paper.

Section 2 describes previous work as well as use cases for these propagators.
Section 3 gives the necessary technical background to the reader as well as all
the graph propagators for unweighted graphs. Section4 describes bounded_path.
Section 5 shows an extensive series of experiments justifying the use of these
propagators and their explanations.

2 Related Work

The three first constraints announced in the introduction were first introduced
as part of CP(Graph) [6] in 2005, using a decomposition approach.

Later, Quesada et al. [17] implemented the first reachability propagator and
used it as a path constraint in their paper. They make use of simple propagation
rules based on depth-first traversals of the graph and on the use of dominator
nodes (i.e. nodes that appear in all paths). Nonetheless the asymptotic com-
plexity of their algorithms is substantially greater than ours or those of Fages et
al. [9] since they use a brute-force algorithm to compute dominator nodes.

Constraints for trees and forests were introduced in [1,2,9]. Although focused
on forests, their work used better algorithms improving the work of Quesada et
al. in [17] to make each individual tree connected. For explanations on the dtree
constraint, we use the same algorithm as we previously introduced in [5] for
undirected graphs.

In order to be self-contained, we describe dreachability and dtree in the pre-
liminaries section. The propagations are based on previous work presented in
[1,9,17]. The explanations are novel although the algorithms are similar to the
undirected version which we already introduced [5].

Finding a simple path (no node repetitions) is a classic graph problem with
wide applicability. The usefulness of the constraint arises when there are inter-
esting side constraints. Our path propagator is based on the Ph.D. thesis by
J.-G. Fages [8], which showed how to model the path constraint as a conjunction
of dtree constraints:

path(G,s,d,G) < dtree(G,s,G) A dtree(G,d,G™) (1)

This states that a path from s to d is the intersection of a subtree of G rooted
at s and a tree in G~! (the graph G with arcs reversed) rooted at d.

There exist other approaches to finding paths by using circuit style propa-
gators [10]. We compare for the first time the tree-based and the circuit-based
approaches where both use explanations.

Path finding with distances is one of the most well-studied graph problems,
for which very well known fast algorithms exist. Many specific algorithms that
handle some form of side constraint are also known. For instance, paths with
resource constraints have been very well studied for electrical cars [23] and for
bike routes [24]. Another application is the Generalized Shortest Path queries [18,
19] where a person needs to do a series of tasks during their journey and choose
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among different places to do them. The bounded_pathconstraint allows us to
specify shorter path problems with arbitrary side constraints. It was introduced
by Sellman [20,21] with some propagation rules. Our work improves on this.

3 Preliminaries

3.1 Directed Graphs

A directed graph G = (V,E) consists of a set of nodes V and arcs £ C V X V,
where e = (u,v) is an arc from u = tail(e) to v = head(e) (drawn ‘u—v’, from
tail to head). Given arc e = (u,v) its reverse arc is e ! = (v, u). The inverse G~1
of a directed graph G = (V,€) is (V,{e™! | e € £}). A weighted directed graph
is a graph G with a weight function w : £ — N° mapping arcs to non-negative
weights.

3.2 Lazy Clause Generation

Briefly, Lazy Clause Generation (LCG, [16]) is a technique by which CP solvers
can learn from their mistakes. Propagators are extended to explain their propa-
gations, and the failures they detect. These explanations are captured in clauses.
When failure is detected, explanations are used to generate concise no-goods that
explain why the failure occurred, and these are stored in the solver, preventing
the same failure from occurring again. Using SAT technology to access and
process explanations and no-goods allows very efficient handling of no-goods,
and the reduction in search space for using explanation is usually substantial.

A critical consideration when constructing propagators for an LCG solver are
the algorithms to generate concise and precise explanations of the propagation.
Naive explanations may end up creating no-goods that are not reusable, while
highly complex minimal explanations may require much more computation effort
than propagation, and end up slowing down the solver.

3.3 Graph Propagators with Explanations

In order to model a graph variable G = (V, E) subgraph of G = (V, £) in an LCG
solver, we use Boolean variables ¢, representing whether node n € V is chosen to
be in V' and similarly Boolean variables c. for each e € £ representing whether
e € E. Eventually the solution is the subgraph G = ({n|n € V A ¢, }, {ele €
ENce}).

As we are searching for G, the variables ¢,, and ¢, will become fixed by search
or propagation. The propagators we describe here must infer new information
as a consequence of the constraint they implement, hence reducing the future
search. We say that an arc e is mandatory if at the current stage of the search
ce is true (and we draw it as ‘— in the following figures), forbidden (.....") if
Ce is false and unknown (‘---.") for an unassigned arc. Similarly, we use the same
terms for nodes: mandatory (‘°"), forbidden (“.¥) and unknown (“2). Nodes or
arcs that are mandatory or unknown are called available.
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Basic Graph Propagation. We assume that the graph variable G propagates
basic graph properties: the endnodes of an arc in the graph are also in the graph.
Explanations for this are given in previous work by the authors [5].

Reachability Propagation. The dreachability constraint guarantees that all
nodes in the subgraph G are reachable from a given node r. Quesada et al. [17]
first proposed this propagator, although our algorithm is substantially improved
by making use of the Lengauer-Tarjan algorithm to find dominators in a digraph
[13]. Fages et al. [9] already used this algorithm.

Detecting and explaining failure: In order to detect that the current assignment
of arcs and nodes in G is invalid, we need to check if all the nodes in G (i.e.
mandatory) are reachable from the given node r. We first perform a depth-first
search (DFS) in ({n | ¢, # false},{e | cc # false}) starting at r, saving all the
nodes visited in a set R. If some mandatory node f is not in R, we need to fail.

To explain why the mandatory node f is not reachable, we need to find
forbidden arcs that would have let it be in R if they were not forbidden, similarly
to the work in [5] for undirected graphs.

To find these arcs, we perform a DFS in G~ starting at f, this time following
all (reversed) arcs, regardless of their current state. Whenever the head of a
forbidden reversed arc e=! = (¢,h) is in R, e could have been used to extend
the reachable area further and eventually reach f. Therefore, e must be in the
explanation (we do not cross e~ ! in this DFS). We add such arcs to a set Fj.
Then an explanation for failure is: ¢, Acy A ¢ Py Ce = false. This exact same
rule can be applied for propagation to eliminate unreachable nodes.

Finding dominators: During the search, we also make inferences that will accel-
erate the search. We say that a node t is dominated by a node d from r if all
paths from 7 to t go through d. The immediate dominator of a node is the
dominator that is its closest ancestor. For reachability, immediate dominators
of mandatory nodes must be mandatory, otherwise some node (namely t) would
not be reachable from r.

Finding immediate dominators in a graph can be done using the Lengauer-
Tarjan algorithm [13] in O(|E|a(|€], |[N])) where « is the inverse Ackerman func-
tion. Their algorithm builds an array representation of a so-called dominator tree
where the parent of a node is its immediate dominator. For our purposes, we
apply the algorithm to ({n | ¢, # false},{e | c. # false}).

We assume that the reachability has been ensured and thus all mandatory
nodes are reachable from r. To enforce dominators to be in G, we build a queue
containing all the mandatory nodes and iterate through the queue until it is
empty while making their immediate dominators mandatory (if they are not
already) and enqueueing them. This way, all the nodes in the path between r
and some mandatory node ¢ in the dominator tree become mandatory.

Now, we need to explain why each dominator that we fix is mandatory.
Explaining this inference comes down to explaining the failure that would happen
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if the dominator d of ¢ was forbidden. We compute a partition of nodes P from
which ¢ can be visited without going through the dominator by performing a
DFS starting at ¢ in ({V\{d},{e™! | cc # false}). Now we find alternative ways
to get to any mandatory node beyond the dominator (that is, not in P) without
using d. For that, we perform another DFS in ({V\{d},{e~! | e € £}) starting
in t, this time allowing the use of forbidden arcs. Whenever a forbidden reversed
arc e~! = (¢, h) has its tail on the set P but its head is a node outside of P we
know that e would have allowed us to short-circuit d if it was not forbidden. Let
F; be the set of such arcs. The explanation for making a dominator mandatory
is: ¢ Aep A /\eGFt —Ce = C4.

Finding bridges: Additionally, if any mandatory node n (other than r) has only
one incoming arc that is not forbidden, that arc can be set as mandatory (if it is
not already). This is because lacking that arc would make that node unreachable.
That arc is called a bridge. The explanation for including this arc e in G is
trivial: ¢, A A, ¢ to(n)\{e} "Ce; = Ce, Where to(n) is the set of arcs incident to
n. Similarly, if n no longer has any incident arcs available, we have to set it to

false, or fail if it is mandatory, explained by A, ¢ 14(,) 7Ce; = 7Cn.

Directed Tree Propagator. Trees are connected graphs, therefore dtree inher-
its from dreachability. Additionally, trees cannot contain any cycle (whether it
is directed or not). Maintaining this condition is the task of dtree.

For this propagator, the algorithm is trivial. The use of the adequate data
structure to detect cycles is what makes the whole propagator. We use the
Rerooted Union-Find (RUF) data structure [5] to detect cycles and retrieve
explanations. This yields a propagator identical to the one for undirected graphs
[5] since cycle detection in undirected and directed graphs is equivalent as far as
trees are concerned.

4 Bounded Path Propagator

As we will see in the experiments, the decomposition of the path constraint as
two trees (Eq.1) is not competitive for solving shortest path problems when
compared to the alternative circuit formulation by Francis et al. [10]. For this
reason, we needed a bounded path propagator to enhance optimality proving.

In this section we present a bounded_path(P, s,d,G,w, K) propagator that
ensures that the weight of the simple path P from s to d in G is no more
than K. The weights of the arcs are given by the function w : & — N°. The
propagations in Sects.4.1 and 4.2 were already introduced by Sellman [20,21],
without explanation. As we will see in the experimental section, the explanations
greatly improve these propagations.

4.1 Propagating Simple Distances

This constraint fails when there is no path from s to d of cost no more than K.
This property naturally extends to all nodes in the path: the distance from s to
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any node n in P must be no more than K. The best correct lower bound for
this is obviously the shortest path from s to n € P: if the shortest path is longer
than K, then no solution of cost less than or equal to K exists.

We compute the shortest path from s to every node in (V,{e | c. # false})
(i.e. avoiding forbidden arcs) using Dijsktra’s algorithm. This yields the shortest
available path from s to all nodes. If the cost of the path to a node n is greater
than K, we can forbid n. This reasoning can be applied in both directions: d
cannot be further than K from any node n in the path. For this reason, we also
apply this rule starting Dijkstra’s algorithm at d on the reversed graph.

To explain this inference we need to find (at least a superset of) the arcs that
made the path to n too expensive. Let F), be that set of arcs (initially empty).
Let 0, be the shortest available path from s to some node x, and J, ! the shortest
available path from z to d. Any arc e = (u,v) such that §, +w[e] + 6, < K can
be used to connect s to d in no more than K (we say e is in a short-enough path).
We can easily keep track of those arcs since both runs of Dijkstra’s algorithm
yield 6, and &, 1. When such an arc is forbidden, a feasible path is removed from
the graph. We then add e to Fj,. Eventually, F,, contains all the arcs causing n
to be too far from either s or d. We have the following Theorem:

Theorem 1. Let [04 < K] be the literal stating that 04 (i.e. the length of P)
should be less than or equal to K (K is typically a variable). Then, [64 < K] A
/\efan “Ce; = TCp 18 a valid explanation for why n cannot be in G.

Note the explanation set F, is the same for any node n further than K from the
source, its not specific to a particular n. We will address this flaw and give an
example in Fig. 2 later on. The explanations can be used to explain failure too.

These explanations can be computed very efficiently by storing a function
giving constant time access to whether an arc has been in a short-enough path.
Upon removal of an arc e, we add it to Fj, if e has been in a short-enough path.

4.2 Propagating Combined Distances

The previous rule removes any node that is too far from the source or too far
from the destination to be in the path P, or detects failure. In addition, we can
consider nodes through which a path from s to d would be longer than K and
filter them. Similarly we can filter arcs.

Proposition 1. Let 6, be the cost of the shortest path from s to u, and let 6"
be the cost of the shortest path from u to d. If §, + 6,1 > K, then u cannot be
in the path from s to d of cost less than or equal to K.

Proposition 2. Let e = (u,v) be an arc of cost wle]. Let 6, and 6, * be the cost
of the shortest paths from s to w and v to d respectively. If 5, +wle] + 5,1 > K,
then e cannot be in a path from s to d of cost less than or equal to K.

We use these observations to filter out nodes and arcs that cannot participate
in the path from s to d.
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Algorithm 1. Shortest path from s to d containing all mandatory nodes M.
1: procedure DPBOUND(G, s,d,ns = {cn|n € V},es = {cele € E},w, M)

2: Q — newPriorityQueue(); Q.push((s,{s}, 0));

3: tables[s|[{s}] < 0 > One table per node
4: while = Q.empty() do

5: (u, mp, ) — Q.top(); Q-pop()

6: if tables[u].contains(my) A tables[u|[m,] < v then continue;

7 for all e = (u,v) € {ele € £} do

8: if c. = false then continue;

9: if —tables[v].contains(my) V (tables[v][my] > v + wle]) then

10: tables[v][mp] — v + we]

11: Q.push(v, my & v,y + wle]) >S@uvaddsvtoset SiffveM

12: return tables[d]|[M]

To explain these propagations, we note that if the filtered element (either
node or arc) was mandatory, we would have to fail. Thus the explanations are the
same as given in Theorem 1 (applied to the node or the arc we are propagating
here). These explanations can be used for failure if either u or e is mandatory.

4.3 Stronger Bounding Using Dynamic Programming

Although the implementation of bounded_path explained above proves to be use-
ful, the bound is too weak if there are many intermediate nodes. For this reason,
we developed a dynamic programming (DP) lower bound. If the previous one
does not prune, we run a more expensive DP algorithm to find the shortest path
from s to d containing all the mandatory nodes.

The algorithm is similar to Dijkstra’s, but our priority queue stores more
information. Each entry is a tuple (u,mp,v): a node u, the set of mandatory
nodes m,, visited in some path p leading to v and the cost of p. As usual, the
priority is on the cost.

We associate a hash-table to each node n that maps sets of mandatory nodes
(encoded as bit-sets in our implementation) to the cost of visiting those nodes
before reaching n. Formally the tables are functions tables[n] : (M’ C M) — N.

Then, when a tuple (u,mp,7y) is retrieved from the queue, the algorithm
considers each available arc (u,v). For each neighbor node v, we first check if
there is a set m, in its table such that mj, = m,,. If m;, exists and its associated
cost is greater than v+ w((u, v)], we update the entry on v’s table, and enqueue
(v,mp ® v,y + w[(u,v)]) (where & adds v to m,, iff v is mandatory, and returns
my, otherwise). If such m;, does not exist, we add that same entry to v’s table
and enqueue it. We do not need to enqueue or update any table if m; exists and
its associated cost is less than v 4+ w[(u,v)]. The cost of the shortest path to d
containing all the nodes will be found in d’s table. If such path does not exist,
we simply return an error code and fail with the naive explanation (all the fixed
arcs and nodes). In practice, this rarely happens.
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Notice that this algorithm does not give simple paths, and therefore it does
not give an exact lower bound. Indeed, if we did, we would need to keep track
of all the states in the path, making the state space grow too quickly. Instead
we only keep track of the mandatory nodes visited.

The explanation for pruning is the same as in Theorem 1, but we need to
add the conjunction of ¢, for all the mandatory nodes n € M. Note that the
asymptotic complexity of this algorithm is O(n2/M!|M|log(n)), hence the state
may grow prohibitively. We will study solutions to this issue in the next sub-
section. Nonetheless, as we will see in the results, this explosion rarely happens
since the higher the number of mandatory nodes, the smaller the choice in arcs.

Limiting State Explosion in the DP Propagation

Strongly Connected Components: Some basic inference we can take into account
to reduce the state explosion is based on strongly connected components (SCC)
of the current graph. There is no point for the DP algorithm to take an arc
leaving SCC A if it has not yet visited all the mandatory nodes in A.

We use Kosaraju’s algorithm [12] to compute SCCs. We then label the SCCs
as follows. Let m be the number of SCCs containing at least one mandatory node
(we call them mandatory SCCs). The SCC D containing the destination node d
is labeled m. All other mandatory SCCs are numbered with the number of the
lowest numbered SCC they can reach minus one. All non-mandatory SCCs are
numbered with the lowest numbered SCC they can reach. It is easy to do this
in linear time using a topological sort on the graph of SCCs. We call this levels
and we denote the level of an SCC A by [(A). Then, if an arc e goes from A to
B such that I(B) > I(A) +1, by crossing it we would skip some mandatory SCC
to which we can never go back. Similarly, if A is mandatory and I(B) =[(A)+1
we only cross e if we have visited all mandatory nodes of A, otherwise we would
not be able to get back to A to finish visiting the mandatory nodes in A.

This process can greatly accelerate the DP algorithm without losing pruning
power. Nonetheless, because during the search the partially assigned graphs tend
to have a succession of SCCs of only one node followed by a big SCC containing
all the unassigned nodes, we often did not see a benefit from this. It is, however,
very worthwhile running at the root level. As a simple example, consider the
graph in Fig. 1: it takes 0.03s to solve the problem using the SCC labeling, but
22.72s without it (same number of nodes and conflicts).

($)=1 _ UA)=3 _ UB)=5 "oyt 7 Each node on the left graph
S\ ””” "A\ ””” "B\ ‘Tf ﬂ\ ‘w is an SCC of the form of
[ { 1 .
\ VAR VAR (Vlf;? E’\‘\;?n') the right graph (from [17]).
N/ N/ N\ & M % Each SCC contains 3 ran-
— 6 A
LU =2 JUE) =4y K(D)=6 MG dom mandatory nodes.
C - v - + D BRI N= 0 :
AT AL edges have weight 1.

Fig. 1. Example of use of SCCs to accelerate Algorithm 1.
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Clustering mandatory nodes: Further acceleration can be achieved by reducing
the number of mandatory nodes to visit. To decide which ones to ignore, we
use the k-means clustering algorithm [11] on the set M of mandatory nodes.
We use the centroids of the clusters only as mandatory nodes (i.e., we have as
many mandatory nodes as clusters, treating the non-centroid nodes as unknown).
Because the centroids tend to be equidistant to the other nodes in the cluster,
the DP tends to also use some of the other mandatory nodes, thus visiting more
than just the centroids. Also, since k-means has some inherent randomness, we
have different clusters every time, which is also beneficial for the lower bound.

This has huge performance effects, but is a double-edged sword: the DP gets
faster but we prune much less often as the bound is not as high. In order to
regulate this, we use a simple heuristic based on the time spent by the DP. If
the DP algorithm with C clusters takes less than x seconds, we increase C' by 1,
if it takes more than y seconds, we lower it. For the experiments where we used
clustering, we chose x = 0.5s, y = 8.0s and started with C' = 5.

4.4 Improving the Explanations

So far, the explanations for bounded_path have been the set of forbidden arcs
that were in a short-enough path at some point (see Sect.4.1). One problem
with these explanations is that they are not targeted. It is easy to see that some
of the arcs in the explanations may have nothing to do with the fact that some
specific node n is too far from the source. We now provide better explanations.

Simple and Combined Distances Propagation. First, during the propa-
gation we use Dijkstra’s algorithm on the available graph. This leaves a label
on each node indicating how far it is from the source. These labels are noted
on,Vn € V. Nodes not visited have label §,, = oco.

Let n be a node that is at distance d,, more than the limit K from the source.
Algorithm 2 returns a set of forbidden arcs that explain why §,, > K.

Algorithm 2. Explaining why n is at distance more than K from the source.

1: procedure EXPLAINDIST(G, s,n, {d.|u € V}, K) > We consider all arcs in G
2: Q — new PriorityQueue(); Q.push((n, 0)); X =0; cost = [oolv € V]

3 while = Q.empty() do

4 (u,877) + Q.top(); Q.pop() > 55" : cost of the shortest path from n to u
5: if u = s then break > Reached start s
6: for all e = (v,u) € {ele € £} do > Notice that we take arcs backwards
7: ifec FAG, +wle] +6;' <Kthen X=XU{e}

8 else if cost[v] > ;" + wle] then

9: cost[v] = 671 + wle] > Update cost
10: Q.push(v, cost[v]) > Overwrites previous instances of v in Q

11: return X
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@@ @@ K = 10, 6, = 18 > K, thus we fail.

Lc) Le) Algorithm 2, starting at n (line 7):
10 2 2/ ex: 144+2+0=16 > K = cross it.
a / e1:2+2+4+2=6 <K = explanation.

9 27 . 974
@8 @ @ e1 T@b@ e2 T@n@ Only e; is needed in the explanation. The
basic explanation would have added both.

Fig. 2. Example of improved explanations. The labels for propagation (‘[>’7 from Dijk-

/!

stra’s algorithm) and explanation (‘<, from Algorithm 2) are given next to each node.

Algorithm 2 mimics Dijkstra’s starting at n in G~1. For any arc e = (v,u) of
weight w(e] we know §, (obtained during propagation). We also have the distance
from u to n (the cost of the last current node in the loop, line 4). Let X be the
initially empty set of arcs explaining why n is at distance more than K from s.
When considering a forbidden arc, if §, + wle] + 6; ' < K, e participates in a
path from s to n no longer than K. Therefore we add it to the explanation and
we do not cross it. Otherwise, we can cross it. Once we dequeue s we finish
since all other paths are no shorter than §; ' > K. See Fig. 2 for an example of
explanation.

Theorem 2. The clause [0q < KJAN, ¢ x ~Ce; = ¢ computed by Algorithm 2
is a correct and minimal explanation for whyn is too far from s to be in G.

Proof. Let F be the set of forbidden arcs at the time of explanation. At any stage
of Algorithm 2, let F), be the set of forbidden arcs not yet considered (initially F'),
X the arcs in the explanation, dg(u, v) the shortest distance from u to v for any
G’ C G, and u the top of Q. Let Ggr = G\ (F), U X). We ensure correctness and
minimality by preserving the following invariants: (1) dg,(s,n) > K, (2) for all
(v ') € Fp, day(u,n) < dggy(u',n), and (3) for all e € X, dg uqey(s;n) < K.

The three invariants hold initially: Gg = G\ F = G, so (1) is the bound to
be explained, (2) holds because n is initially the head of @ and all weights are
non-negative, and (3) holds because X is initially empty.

At each iteration, we remove u from @ and process each arc e = (v,u) € £
(removing all forbidden arcs (v, u) from F},, preserving (2) as nodes are processed
in order of distance from n). We add arcs such that &, + wle] + §,? < K to X
(preserving property (3)). Other forbidden arcs are now made available in Gg.

We show how adding these arcs to G maintains the invariants. Note
dg,,(x,n) values for previously processed nodes x remain unchanged as any
newly introduced path from n must be at least as long as J,!. Newly avail-
able arcs may, however, decrease dg,(x,n) for some x which has not yet been
processed. However, if dg . (z,n) decreased as a result of (v, u) becoming avail-
able, then the shortest path from z to n must pass through w. But, x is not yet
processed, so still dg, (u,n) < dg,(z,n), preserving property (2). If the shortest
path from s to n were to be reduced because now 0, + dg, (x,n) < d,, there is
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a contradiction since this path goes through (v, u) meaning the arc should have
been added to X and be unavailable. Hence property (1) is preserved. Adding
arcs to Gr can only make paths shorter, hence property (3) is preserved.

Once s is popped from @, our explanation is X. By (1), F, U X is a valid
explanation; but by (2), no arc e remaining in F,, may be on a shorter path from
s to n (as either n is unreachable via e, or the head of the arc is distance no less
than 0, ! from n), so e may be omitted from the explanation. Thus X is also
a valid explanation. Removing arcs from F},, thus adding them to G'r preserves
property (3). By (3), omitting any element of X introduces a path from s to n
of length no greater than K, so X is also minimal. [l

Clearly, Algorithm 2 runs in O(|&| + |V|log(|V])), like Dijkstra’s algorithm.
We can use it to explain Propositions 1 and 2 as follows. For Proposition 1, we
first obtain X; = EXPLAINDIST(G, s, u, {§,|v € V}, K — &, 1), the explanation
for u being at distance K — 4, ! from s. The call to Algorithm 2 also yields the
distance & from s to u in G that is still greater than K — J,;!. Let X5 be the
explanation for d being at distance K — 67 from w. The final explanation is
X = X7 UXs,. The same idea can be used for Proposition 2, using the head and
tail of the arc to be removed.

DP-based Propagation. We can also improve the explanations for the DP-
based propagation. Similarly to the simple propagation, Algorithm1 leaves a
table on each node stating the cost of visiting some subsets of mandatory nodes
before getting to that node. If d is not reachable in less than K + 1 visiting
all mandatory nodes, we fail and explain the failure. To do so, we run the same
Algorithm 1 starting at d on the revered graph allowing forbidden arcs (similarly
to Algorithm 2).

Let e=! = (v,u) be some reversed forbidden arc of cost wle]. On node u
(the tail of e in the original graph) lies the table left from the propagation pass
of Algorithm 1. Each row of the table is a pair (m., 7, ) as defined in Sect. 4.3.
Symmetrically, node v contains a table where each row (m,,~,) indicates the
mandatory nodes visited from d to v. If there exists an entry (m,,,) in u’s
table and an entry (m,,7,) in v’s table such that m, Um, = M, then e is
an arc that could be used in a path from s to d containing all nodes in M. If
additionally, v, + w[e] + 7, < K, that path would be a valid path. Therefore, e
being forbidden explains why we can’t reach d visiting all mandatory nodes in
no more than K. This corresponds to substituting the ¢ f-condition in line 8 of
Algorithm 1 with a call to EXPLAIN from Algorithm 3 (where e is the reversed
arc of whom we are visiting the tail, namely v).

State explosion for explanations: The explanation algorithm needs to use the
same mandatory nodes as the propagation. Therefore, if we clustered, the same
clustering is given to this algorithm. Also, we cannot use SCC levels here (other
than the ones computed at the root) since we need to traverse forbidden arcs
whether or not they skip entire mandatory SCCs as there may be other forbidden
arcs leading to the skipped SCCs later.
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A major problem with these explanations is that we need to traverse forbid-
den arcs. In dense graphs, this can be slow as there may be many possible paths
to consider. For this reason, we use a simple stopping condition. Let ¢, be the
time it takes to run Algorithm 1 for propagation. If explaining is taking more
than x xt, (we choose x arbitrarily) we switch to the version of EXPLAIN in Algo-
rithm 4 which corresponds to the basic explanations described in Theorem 1.
We say that we interrupt the explanation when this change happens.

Algorithm 3. Better explanations Algorithm 4. Avoiding state explosion

1: function EXPLAIN(e, Yy, My) 1: function EXPLAIN(e,y, m)

2: for all (mp,cp) € table[head(e)] do 2: > was_short(e) = true < e was in a
3: if mp Um, = M then short-enough path at some point.

4: if vn, +wle] + 70 < K then 3: if —ce A was_short(e) then

5: ezplanation.add(—c.) 4 explanation.add(—c.)

6: return true 5: return true

7 return false 6 return false

5 Experimental Results

In this section we test our bounded_path in different problems (all benchmarks
available at [4]). We implemented all our work in the CHUFFED solver [3]. All
tests are run on a Linux 3.16 Intel® Core  i7-4770 CPU @ 3.40GHz machine.

We annotate the tests EXPL when learning is enabled, NOEXPL otherwise.
We use ExpL* for the improved explanations. We name the tree decomposition
for path PATH, BPATH the bounded_path propagator without the DP algorithm,
and DPBPATH when using the DP algorithm. We compare failures (the number
of times the solver has encountered a wrong valuation of the variables before
proving optimality), the number of nodes (the size of the search space explored)
and the time in seconds.

We found it beneficial to add an array of successors constrained as c, <
succ|tail(e)] = head(e). Definitions of all search strategies are given in [15].

5.1 Node Constrained Shortest Paths

Here we compare our path propagators with the results from [17] using their same
benchmarks. The aim of these problems is to find the shortest path between two
given nodes in a graph G = (N, ) passing through a set of mandatory nodes
M. We present the results in Table 1 using first_fail on the succ variables as
the search strategy.

We clearly see that we solved the benchmarks faster than in [17]. We also
see how BPATH and DPBPATH improve the results obtained by PATH, which is
the point of having bounded_path. We can also see that the explanations reduced
the number of failures greatly, specially for the two instances with biggest search
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Table 1. Comparison between [10,17], ExpL, NOEXPL, BPATH, DPBPATH and PATH.
(C) indicates when clustering is used.

[17] [10] PATH Patn+BPATH|PATH+DPBPATH
Benchmark || \V]|Fails Time(s)|Fails Time(s) Fails Time(s)|Fails Time(s) |Fails Time(s)
Ham?22 22 13 4.45| 24 0.00 139 0.03| 19 0.01| 16 0.01
Ham?22full 22 0 1.22 2 0.00 19 0.01] 15 0.01] 15 0.01
Ham52b 52| 100 402| 112 0.01 z 1119 0.81] 19 0.07] 19 0.22
Ham52full 52| 3 4503 5 0.00] & 90 013] 72 011] 72 058 (C)
Hamb2order_a| 52| 16  57.07| 97 0.02 2203 2.54| 189 0.45| 76 3.80
Hamb2order_b| 52 | 41 117 1 0.00 49 0.04| 49 0.05| 49 0.08
See [17] for details on 202 0.02| 34 0.01] 22 0.01
on the benchmarks. 3 35 0.01] 27 0.01] 13 0.74
“full” = M =N ; 17579 6.04]1523 0.76| 21 4.03
“order” = the nodes ’3 328 0.12| 264 0.12| 264 0.59(C)
in M must be visited 2 17438 7.93(1409 0.83| 407 0.38
in some given order. 83 0.03] 83 0.03] 83 0.13

space (52b and 52order_a). We do not show EXPL* as they don’t improve on
ExPL, because the search space is already very small, and EXPL* is more expen-
sive than EXPL.

Although slow, the DPBPATH is still suitable for the Hamiltonian path of 22
nodes. For 52 nodes in such dense graph though, the state space explodes and
we absolutely need to cluster.

We also compared against the circuit-based path propagator with explana-
tions presented in [10]. Their propagator is surprisingly fast on these benchmarks
and requires little search. This is because their propagator has much better rea-
soning over the topology of the graph. The topological reasoning of our case is
done by the path propagator, which is a combination of directed trees (Eq. 1),
whereas their propagator makes more inferences based on strongly connected
components and starting the path at different nodes. This specific benchmarks
are simple in terms of distance (all the arcs have the same weight), but hard in
terms of topology, hence the advantage.

The take-away from this experiment is that for graphs that are topologically
hard, using our propagator might be a burden whereas using other propagators
with strong topological reasoning as [10] might be a better approach.

5.2 Metabolic Networks

A metabolic network is a network of molecules and reactions. Biologists use
this to understand how some molecules transform into others and cause some
behavior in cells. For instance, this helps biologists understand how a protein
behaves or how gene expression is regulated. This problem was modeled in [25]
by creating a bipartite graph where molecules are in one partition of the nodes,
and reactions in another partition. The arcs of the graph link the substrates and
products participating in a reaction to the reaction itself.

Here, there is a set of mandatory nodes (because biologists are aware of their
existence) and mutually exclusive nodes (corresponding to mutually exclusive
reactions). Furthermore, each node is given a weight corresponding to its degree
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(this is to model highly connected molecules). The objective is to find a pathway
from some given substrate to some given product minimizing the total weight of
the path, where the weight is the sum of the degrees of the nodes.

Table 2 shows a comparison between our solver and the work in [25], which
used the solvers GRASPER and CP(Graph) on an Intel Core 2 Duo 2.16 GHz.
Here BPATH stands for PATH+BPATH. There is one instance for each size.

Table 2. Solving metabolic pathways in real-world networks (same strategy as [25]).

Glycosis Lysine Heme

|IN| | GRASP. | CP Patn | BPaTH | GRASP. | CP Patn | BPaTH | GRASP. | CP PatH | BPATH
(Graph) (Graph) (Graph)

500 |0.28 0.21 0.05 | 0.11 0.36 0.41 0.06 | 0.12 0.22 0.10 0.05 | 0.22
600 |0.38 0.31 0.07 | 0.17 0.48 0.44 0.06 | 0.16 0.28 0.12 0.06 | 0.31
700 |0.45 0.35 0.19|0.22 0.47 0.75 0.08 | 0.25 0.36 0.16 0.08 | 0.46
800 |0.53 0.50 0.24 | 0.29 0.53 1.00 0.120.37 0.41 0.19 0.11|0.55
900 |0.64 0.68 0.15 | 0.39 0.57 1.29 0.16 | 0.4 0.51 0.27 0.15|0.73
1000 | 0.77 0.84 0.18 | 0.51 0.60 1.37 0.18 | 0.46 0.62 0.32 0.18 | 0.95
1100 | 0.91 1.00 0.17|0.71 0.73 1.29 0.19 | 0.64 0.65 0.33 0.32|1.08
1200 | 0.96 1.08 0.20|0.75 0.86 2.23 0.23 | 0.79 0.80 0.41 0.21 | 3.62
1300 | 1.03 1.21 0.81|0.84 0.99 2.50 0.28 | 1.02 0.94 0.47 0.4 |1.81
1400 | 1.23 1.56 0.71|1.05 1.12 2.84 0.30 | 1.17 1.11 0.51 0.4 |21
1500 | 1.40 1.85 1.25|1.28 1.25 2.92 0.39|1.33 1.14 0.52 0.94 | 2.09
1600 | 1.67 2.14 0.75|1.49 1.30 2.97 0.43 | 1.36 1.35 0.61 0.74 | 2.55
1700 | 1.93 2.40 0.82 | 1.77 1.41 3.03 0.67 | 1.44 1.57 0.69 0.4 |3.08
1800 | 2.11 2.77 1.01 | 2.01 1.53 3.69 0.49 | 1.69 1.72 0.77 0.45 | 3.69
1900 | 2.27 3.02 1.19|2.21 1.75 3.93 0.60 | 1.95 1.96 0.84 0.48 | 6.21
2000 | 2.40 3.14 1.33|2.3 1.96 2.18 0.64 | 2.39 2.18 0.91 0.51 | 4.86

The results show that BPATH slows PATH down. We interpret this as the
effect of the overhead of bounded_path. Indeed, the instances are solved so quickly
by PATH that BPATH has little to improve on. We also ran the same experiments
with the VSIDS [14] search strategy. The times were very similar to those in
Table 2 for PATH, but 3 benchmarks (1200, 1300 and 1900 nodes for Heme) were
much slower (around 30 seconds). We tested the BPATH version on those three
instances and noticed a big speedup (between 5 and 15 times faster). Nonetheless,
note how BPATH is still faster than GRASPER and CP(Graph) in two thirds
of the tests. From this we conclude that bounding is only worthwhile if the
instances are hard to solve (i.e. there is a big search space to explore).

5.3 Task Constrained Shortest Path

In this problem, we are required to perform a set of tasks along a path. A task
can be done at different nodes, and visiting a node where some task can be
performed is enough, we do not need to visit more than one. As an example,
consider on the drive home withdrawing money from an ATM, going to a carwash
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and buying some groceries. Any ATM, supermarket or carwash on the path is
sufficient. This problem was studied in [18,19] using dynamic programming only.

In [10], the authors used a circuit-based path propagator to solve a similar
problem (minimizing the longest arc). We compare our implementation against
theirs using the same instances (500 graphs of 20 nodes each) with the objective
of minimizing the total length of the path. The aim of this experiment is to see
if BPATH and DPBPATH can also improve the circuit-based path propagator.

In this experiment we compare the best runtimes of both approaches, even
if they use two different strategies. Our best search strategy is smallest (i.e.
branching on the succ variable with smallest domain) and their best search strat-
egy is first_fail on the succ variables. Additionally, we combine our bounding
propagator with theirs to see the benefits.

Table 3. Benefit from BPATH & DPBPATH with both PATH and [10]. Geometric average
over 500 instances of 20 nodes.

ExpL* (all use smallest) |ExpL NOEXPL
Version Conflicts | Nodes | Time | Opt | Conflicts | Nodes | Time | Opt | Conflicts | Nodes | Time | Opt
Nodes | (s) | (s) (s) | (s) (s) |(s)
[10] 48790 54254 |3.18 |2.14 | 48790 54254 | 3.18 |2.14 | 308888 619304 | 7.95 |6.48
[10]4+-BParu 18303 19883 |2.90 |1.49 27050 29995 | 3.70 |2.84 | 174329 350327 |15.99|13.67
[10]4+-DPBPATH | 636 1133 |2.09 |1.86 |4933 6228 |1.68 |1.36 |31256 188278 |4.47 |3.75
Parn 26488 28801 | 7.05 |2.27 | 26488 28801 | 7.05 |2.27 | 200773 402943 |32.63|9.81
Parun+4BPAaTH 13175 14787 |3.63 |1.30 | 15238 16868 [4.07 |1.37 | 76701 156208 |16.20|5.51
PaTH+DPBPATH | 54 456 0.53 |0.36|221 648 1.31 |0.44 | 381 1253 |2.96 |1.14

Table 3 gives the results, also showing the time (Opt) to find (but not prove)
the optimal solution. The PATH constraint finds optimal solutions very fast, but
takes time to prove optimality. On the other hand, the version from [10] is supe-
rior in both these aspects. Adding BPATH and DPBPATH improves both these
versions. The circuit based propagator does 89 % less search when combined with
DPBPATH (in its fastest version, using EXPL), and PATH does 98 % less search
when combined with DPBPATH (using EXpPL*). This shows how bounded_path
with explanations can be used in combination with both tree-based and circuit-
based paths to enhance propagation.

5.4 Profitable Tourist Path

We introduce here a new problem (as far as we are aware) similar to the prize
collecting TSP. Imagine you need to do a long layover during a trip and change
airports. You might be interested in visiting the city while waiting for your
connection flight. In this problem, we model every point of interest (POI) of a
city with a minimum visit time (i.e. the least amount of time that a visit to some
POI is worthwhile) and a profit (i.e. how much a person enjoys visiting some
POI). The path can contain a node without necessarily visiting the corresponding
POI, but in order to visit a POI the path must contain the corresponding node



204 D. de Una et al.

and spend the minimum visit time. The objective of the problem is to find the
path with most profit such that the total time is less than a certain bound (i.e.
the time we have available between connections). The total time is the cost of
the path plus the time spent at each POI (either 0 or the minimum visit time).

We created two benchmarks, based on New York City (14 nodes, from LGA
Airport to JFK Airport) and London (12 nodes, from Heathrow Airport to
Liverpool Street Station). We added two side constraints: for London, we require
that the visit to the Tower Bridge (if it happens) takes place between two narrow
time frames (which would correspond to times where the bridge opens to let ships
go through); for NYC, the ferry to Liberty Island leaves every hour and so there
might be a waiting time added to the total time (if the visit happens).

We used EXPL on all the tests to study the benefits of bounding. The results
are in Table4. Clearly, DPBPATH and BPATH largely improve PATH for this
problem. Again, there was no need to cluster or interrupt explanations.

Table 4. Profitable tourist path. Search: smallest on succ variables.

New York City (14 POI) London (12 POI)
Version Fails Nodes Time(s) |Fails |Nodes | Time(s)
Parn >5030898 | >5034046 | >3600.00 | 236010 | 237263 | 60.14
Paru+BPaTH (EXPL) 390985 391746 379.19 24061 | 25190 | 13.86
Patu+DPBPATH (EXpPL) | 44015 44606 48.82 10645 | 11866 |2.89
Patu+BPaTH (EXPL*) 360945 361971 350.26 18546 | 19881 | 8.78
PaTH+DPBPATH (EXPL*) | 2062 2690 37.45 224 670 0.16

Without explanations, though, NYC takes 1598s using DPBPATH and
London takes 13s, making them substantially slower than with explanations.

6 Conclusion

In this paper we have improved the bounded_path propagator by adding a new
propagation technique that is clearly superior. Both propagations are enhanced
by our two new versions of explanations. First, a fast way of computing valid
but not minimal explanations is given. We then provided another version that
generates more reusable explanations.

We have shown how combining bounded_path with path propagators (com-
position of directed trees or circuit-based) improves their performance, reaching
the state of the art in bounded path propagation.
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Abstract. In this paper, we describe Compact-Table (CT), a bitwise
algorithm to enforce Generalized Arc Consistency (GAC) on table con-
straints. Although this algorithm is the default propagator for table
constraints in or-tools and OscaR, two publicly available CP solvers,
it has never been described so far. Importantly, CT has been recently
improved further with the introduction of residues, resetting operations
and a data-structure called reversible sparse bit-set, used to maintain
tables of supports (following the idea of tabular reduction): tuples are
invalidated incrementally on value removals by means of bit-set opera-
tions. The experimentation that we have conducted with OscaR shows
that CT outperforms state-of-the-art algorithms STR2, STR3, GAC4R,
MDD4R and AC5-TC on standard benchmarks.

1 Introduction

Table constraints, also called extension(al) constraints, explicitly express the
allowed combinations of values for the variables they involve as sequences of
tuples, which are called tables. Table constraints can theoretically encode any
kind of constraints and are among the most useful ones in Constraint Pro-
gramming (CP). Indeed, they are often required when modeling combinatorial
problems in many application fields. The design of filtering algorithms for such
constraints has generated a lot of research effort, see [1,10,12,17,20,21,23,30,33].

Over the last decade, many developments have thus been achieved for enforc-
ing the well-known property called Generalized Arc Consistency (GAC) on
binary and/or non-binary extensionally defined constraints. Among successful
techniques, we find:

— bitwise operations that allow performing parallel operations on bit vectors.
Already exploited during the 70’s [27,32], they have been applied more recently
to the enforcement of arc consistency on binary constraints [3,22].

© Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 207223, 2016.
DOI: 10.1007/978-3-319-44953-1_14
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— residual supports (residues) that store the last found supports of each value.
Initially introduced for ensuring optimal complexity [2], they have been shown
efficient in practice [18,19,24] when used as simple sentinels.

— tabular reduction, which is a technique that dynamically maintains the tables
of supports. Based on the structure of sparse sets [4,16], variants of Simple
Tabular Reduction (STR) have been proved to be quite competitive [17,20,33].

— resetting operations that saves substantial computing efforts in some particu-
lar situations. They have been successfully applied to the algorithm GACA4 [30].

In this paper, we introduce a very efficient GAC algorithm' for table con-
straints that combines the use of bitwise operations, residual supports, tabular
reduction, and resetting operations. It is called Compact-Table (CT), and origi-
nates from or-tools, the Google solver that won the latest MiniZinc Challenges. It
is important to note that or-tools developers prefer to focus on highly-optimized
implementations of a few important (global) constraints instead of having many
of them. Through the years, CT has reached a good level of maturity because
it has been continuously improved and extended with many cutting edge ideas
such as those introduced earlier. Unfortunately, the core algorithm of CT has
not been described in the literature so far? and is thus seldom used as a reference
for practical comparisons. The first version of CT implemented in or-tools, with
a bit-set representation of tables, dates back to 2012, whereas the version of CT
presented in this paper is exactly the last one implemented in OscaR [29].

Outline. After presenting related works in Sect. 2, we introduce some technical
background in Sect.3. Then, we recall in Sect.4 usual state restoration mech-
anisms implemented in CP solvers, and describe reversible sparse bit-sets in
Sect. 5. In Sect. 6, we describe our algorithm CT. Before concluding, we present
in Sect. 7 the results of an experimentation we have conducted with CT and its
contenders on a large variety of benchmarks.

2 Related Work

Propagators for table constraints are filtering procedures used to enforce GAC.
Given the importance of table constraints, it is not surprising that much research
has been carried out in order to find efficient propagators. This section briefly
describes the most efficient ones.

Generic Algorithms. On the one hand, GAC3 is a classical general-purpose GAC
algorithm [25] for non-binary constraints. Each call to this algorithm for a con-
straint requires testing if each value is still supported by a valid tuple accepted
by the constraint. Several improvements to fasten the search for a support gave
birth to variants such as GAC2001 [2] and GAC3™™ [19]. Unfortunately, the

! We are aware of an independent work [34] on a similar topic, but hadn’t the oppor-
tunity of reading it at the time of writing our paper.
2 Note that some parts of this paper were published in a Master Thesis report [7].
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worst-case time complexity of all these algorithms grows exponentially with the
arity of the constraints. On the other hand, GAC4 [28] is a value-based algorithm,
meaning here that for each value, it maintains a set of valid tuples supporting
it. Each time a value is removed, all supporting tuples are removed from the
associated sets, which allows us to identify values without any more supports.
GACA4R is a recent improvement of GAC4 [30], which recomputes the sets of
supporting tuples from scratch (referred to as a resetting operations) when it
appears to be less costly than updating them based on the removed values.

AC5 Instantiations. In [12], Mairy et al. introduce several instantiations of
the generic AC5 algorithm for table constraints, the best of them being AC5-
TCOptSparse. This algorithm shares some similarities with GACA4 since it pre-
computes lists of supporting tuples which allows us to retrieve efficiently new
supports by iterating over these lists. Note that a reversible integer, i.e., an inte-
ger storage location with a facility to restore its successive values, is used to
indicate the current position of a support in each list. This algorithm is imple-
mented in Comet, and has been shown to be efficient on ternary and quaternary
constraints.

Simple Tabular Reduction. STRI [33] and STR2 [17] are algorithms that glob-
ally enforce GAC by traversing the constraint tables while dynamically main-
taining them: each call to the algorithm for a constraint removes the invalid
tuples from its table. The improvements brought in STR2 avoid unnecessary
operations by considering only relevant subsets of variables when checking the
validity of a tuple, and collecting supported values. Contrary to its predecessors,
STR3 [20] is a fine-grained (or value-based) algorithm. For each value, it initially
computes a static array of tuples supporting it, and keeps a reversible integer
curr that indicates the position of the last valid tuple in the array. STR3 also
maintains the set of valid tuples. STR3 is shown to be complementary to STR2,
being more efficient when the tables are not reduced drastically during search.

Compressed Representations. Other algorithms gamble on the compression of
tables to reduce the time needed to ensure GAC. The most promising data
structure allowing a more compact representation is the Multi-valued Decision
Diagram (MDD) [31], but note that the order of variables used to build an
MDD may significantly impact its size. Two notable algorithms using MDDs
as main data structure are mddc [6] and MDD4R [30]. The former does not
modify the decision diagram and performs a depth-first search of the MDD
during propagation to detect which parts of the MDD are consistent or not.
MDD4R dynamically maintains the MDD by deleting nodes and edges that do
not belong to a solution. Each value is matched with its corresponding edges in
the MDD, so, when a value has none of its edges present in the MDD, it can be
removed. On the other hand, some other forms of compression have been studied
from the concepts of compressed tuples [14,35], short supports [13] and sliced
tables [11].



210 J. Demeulenaere et al.

3 Technical Background

A constraint network (CN) N is composed of a set of n variables and a set of
e constraints. Each variable x has an associated domain, denoted by dom(z),
that contains the finite set of values that can be assigned to it. Each constraint c
involves an ordered set of variables, called the scope of ¢ and denoted by scp(c),
and is semantically defined by a relation, denoted by rel(c), which contains the
set of tuples allowed for the variables involved in c. The arity of a constraint c is
|sep(e)], i.e., the number of variables involved in e¢. A (positive) table constraint
¢ is a constraint such that rel(c) is defined explicitly by listing the tuples that
are allowed by c.

Ezample 1. The constraint  # y with z € {1,2,3} and y € {1,2} can be
alternatively defined by the table constraint ¢ such that scp(c) = {z,y} and
rel(c) ={(1,2),(2,1),(3,1),(3,2)}. We also write:

(x,y) eT with T =((1,2),(2,1),(3,1),(3,2))

Let 7 = (a1,aq,...,a,) be a tuple of values associated with an ordered set
of variables X = {x1,x2,...,2,}. The ith value of 7 is denoted by 7[i] or 7[z;].
The tuple 7 is valid iff Vi € 1..r,7[i] € dom(x;). An r-tuple 7 is a support on
the r-ary constraint ¢ iff 7 is a valid tuple that is allowed by c. If 7 is a support
on a constraint ¢ involving a variable z and such that 7[z] = a, we say that
is a support for (z,a) on c. Generalized Arc Consistency (GAC) is a well-known
domain-filtering consistency defined as follows:

Definition 1. A constraint ¢ is generalized arc consistent (GAC) iff Vo €
sep(c),Ya € dom(z), there exists at least one support for (x,a) on c. A CN
N is GAC iff every constraint of N is GAC.

Enforcing GAC is the task of removing from domains all values that have
no support on a constraint. Many algorithms have been devised for establishing
GAC according to the nature of the constraints. For table constraints, STR [33]
is such an algorithm: it removes invalid tuples during search of supports using
a sparse set data structure which separates valid tuples from invalid ones. This
method of seeking supports improves search time by avoiding redundant tests
on invalid tuples that have already been detected as invalid during previous
GAC enforcements. STR2 [17], an optimization of STR, limits some operations
concerning the validity of tuples and the identification of supports, through the
introduction of two sets called S*“? and S** (described later in Sect. 6).

4 Reversible Objects and Implementation Details

Trail and Timestamping. The issue of storing related states of the solving process
is essential in CP. In many solvers®, a general mechanism is used for doing and
undoing (on backtrack) the current state. This mechanism is called a trail and

3 One notable exception is Gecode, a copy-based solver.
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it was first introduced in [9] for implementing non-deterministic search. A trail
is a stack of pairs (location, value) where location stands for any piece of mem-
ory (e.g., a variable), which can be restored when backtracking. Typically, at each
search node encountered during the solving process, the constraint propagation
algorithm is executed. A same filtering procedure (propagator) can thus be exe-
cuted several times at a given node. Consequently, if one is interested in storing
some information concerning a filtering procedure, the value of a same memory
location can be changed several times. However, stamping that is part of the “folk-
lore” of programming [15] can be used to avoid storing a same memory location
on the trail more than once per search node. The idea behind timestamping is
that only the final state of a memory location is relevant for its restoration on
backtrack. The trail contains a general time counter that is incremented at each
search node, and a timestamp is attached to each memory location indicating the
time at which its last storage on the trail happened. If a memory location changes
and its timestamp matches the current time of the trail then there is no need to
store it again. CP solvers generally expose some “reversible” objects to the users
using this trail+timestamping mechanism. The most basic one is the reversible
version of primitive types such as int or long values. In the following, we denote
by rint and rlong the reversible versions of int and long primitive types.

Reversible Sparse Sets. Reversible primitive types can be used to implement
more complex data structures such as reversible sets. It was shown in [16] how
to implement a reversible set using a single rint that represents the current
size (limit) of the set. In this structure, which is called reversible sparse set, an
array of size n is used to store the permutation from 0 to n — 1. All values in
this permutation array at indices smaller than or equal to a variable limit are
considered as part of the set, while the others are considered as removed. When
iterating on current values of the set (with decreasing indices from limit to 0),
the value at the current index can be removed in O(1) by just swapping it with
the value stored at limit and decrementing limit. Making a sparse set reversible
just requires managing a single rint for limit. On backtrack, when the limit is
restored, all concerned removed values are restored in O(1).

Domains and Deltas. In OscaR [29], the implementation of domains relies on
reversible sparse sets. One advantage is that one can easily retrieve the set of val-
ues removed from a domain between any two calls to a given filtering procedure.
All we need to store in the filtering procedure is the last size of the domain. The
delta set (set of values removed between the two calls) is composed of all the
values located between the current size and the last recorded size. More details
on this cheap mechanism to retrieve the delta sets can be found in [16].

5 Reversible Sparse Bit-Sets

This section describes the class RSparseBitSet that is the main data structure
for our algorithm to maintain the supports. In what follows, when we refer to
an array t, t[0] denotes the first element (indexing starts at 0) and t.length the
number of its cells (size). Also, 0¥ will stand for a sequence of k bits set to 0.
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Algorithm 1. Class RSparseBitSet

1 words: array of rlong // words.length = p
2 index: array of int // index.length = p
3 limit: rint
4 mask: array of long // mask.length = p
5 Method isEmpty(): Boolean
6 L return limit = —1
7 Method clearMask()
8 foreach i from 0 to limit do
9 offset « index[i]
10 mask[offset] « 0%
11 Method reverseMask()
12 foreach i from 0 to limit do
13 offset « index[i]
14 mask[offset] < “mask[offset] // bitwise NOT
15 Method addToMask(m: array of long)
16 foreach i from 0 to limit do
17 offset < index|[i]
18 L mask[offset] < mask[offset] — mloffset] // bitwise OR
19 Method intersect WithMask()
20 foreach i from limit downto 0 do
21 offset « index[i]
22 w <« words[offset]| &mask[offset] // bitwise AND
23 words[offset] «— w
24 if w = 05 then
25 index[i] «+ index[limit]
26 index[limit] « offset
27 limit «— limit — 1
28 Method intersectIndex(m: array of long): int
/* Post: returns the index of a word where the bit-set
intersects with m, —1 otherwise */
29 foreach i from 0 to limit do
30 offset <« index|[i]
31 if words[offset] & m[offset] # 0°* then
32 L return offset
33 return —1

The class RSparseBitSet, which encapsulates four fields and 6 methods, is
given in Algorithm 1. One important field is words, an array of p 64-bit words
(actually, reversible long integers), which defines the current value of the bit-set:
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the ith bit of the jth word is 1 iff the (j — 1) x 64 + ith element of the (initial)
set is present. Initially, all words in this array have all their bits at 1, except
for the last word that may involve a suffix of bits at 0. For example, if we want

to handle a set initially containing 82 elements, then we build an array with
p = [82/64] = 2 words that initially looks like:

words: 111111111111111111111111111111111111111111111111111111111111111
11111111111111111100000000000000 0000000000000000000000000000000

Because, in our context, only non-zero words (words having at least one bit
set to 1) are relevant when processing operations on the bit-set, we rely on the
sparse-set technique by managing in an array index the indices of all words:
the indices of all non-zero words are in index at positions less than or equal to
the value of a variable 1imit, and the indices of all zero-words are in index at
positions strictly greater than 1limit. For our example, we initially have:

words: 11111111111111111111111111111112 1111111111 111111111111111111111
11111111111111111100000000000000 0000000000000000000000000000000

index: 0 1

limit : 1

If we suppose now that the 66 first elements of our set above are removed,
we obtain:

words: 00000000000000000000000000000000 0000000000000000000000000000000
00111111111111111100000000000000 0000000000000000000000000000000

index: 10

limit: O

The class invariant describing the state of a reversible sparse bit-set is the
following:

— index is a permutation of [0,...,p — 1], and
— words|[index[i]] # 0% < i < limit, Vi € 0.p— 1

Note that the reversible nature of our object comes from (1) an array of
reversible long (denoted rlong) (instead of simple longs) to store the bit words,
and (2) the reversible prefix size of non-zero words by using a reversible int
(rint).

A RSparseBitSet also contains a local temporary array, called mask. Is is
used to collect elements with Method addToMask(), and can be cleared and
reversed too. A RSparseBitSet can only be modified by means of the method
intersectWithMask() which is an operation used to intersect with the elements
collected in mask. An illustration of the usage of these methods is given in next
example.
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words|1(O|1(0|1|1|1|1
addToMask|1(1|1]|0[{1[0]|0|0
addToMask|0[{0|0[{1]|0[0]|0[1
mask|1[1|1|1{1]0|0|1

intersect WithMask|[1|0{1]{0({1|0]|0|1

Fig. 1. RSparseBitSet example

Ezample 2. Figurel illustrates the use of Methods addToMask() and intersect
WithMask(). We assume that the current state of the bit-set is given by the value
of words, and that clearMask() has been called such that mask is initially empty.
Then two bit-sets are collected in mask by calling addToMask(). The value of mask
is represented after these two operations. Finally intersect WithMask() is executed
and the new value of the bit-set words is given at the last row of Fig. 1.

We now describe the implementation of the methods in RSparseBitSet.
Method isEmpty() simply checks if the number of non-zero words is different
from zero (if the limit is set to —1, it means that all words are non-zero). Method
clearMask() sets to 0 all words of mask corresponding to non-zero words of words,
whereas Method reverseMask() reverses all words of mask. Method addToMask()
applies a word by word logical bit-wise or operation. Once again, notice that
this operation is only applied to words of mask corresponding to non-zero words
of words. Method intersectMask() considers each non-zero word of words in turn
and replaces it by its intersection with the corresponding word of mask. In case
the resulting new word is zero, it is swapped with the last non-zero word and
the value of 1imit is decremented. Finally, Method intersectIndex() checks if a
given bit-set (array of longs) intersects with the current bit-set: it returns the
index of the first word where an intersection can be proved, —1 otherwise.

6 Compact-Table (CT) Algorithm

As STR2 and STR3, Compact-Table (CT) is a GAC algorithm that dynamically
maintains the set of valid supports regarding the current domain of each variable.
The main difference is that CT is based on an object RSparseBitSet. In this set,
each tuple is indexed by the order it appears in the initial table. Invalid tuples
are removed during the initialization as well as values that are not supported by
any tuple. The class ConstraintCT, Algorithm 2, allows us to implement any
positive table constraint ¢ while running the CT algorithm to enforce GAC.

6.1 Fields

As fields of Class ConstraintCT, we first find scp for representing the scope of
c and currTable for representing the current table of ¢ by means of a reversible
sparse bit-set. If (79, 71,...,7¢—1) is the initial table of ¢, then currTable is a
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RSparseBitSet object (of initial size t) such that the value ¢ is contained (is set
to 1) in the bit-set if and only if the ith tuple is valid:

i € currTable < Va € scp(c), 7;[z] € dom(x)

We also have three fields S, S5% and lastSizes in the spirit of STR2. The
set S"3! contains variables whose domains have been reduced since the previous
invocation of the filtering algorithm on c. To set up S"2!, we need to record the
domain size of each modified variable x right after the execution of CT on c¢: this
value is recorded in lastSizes|x]. The set S%"P contains unfixed variables (from
the scope of the constraint ¢) whose domains contain each at least one value
for which a support must be found. These two sets allow us to restrict loops on
variables to relevant ones.

We also have a field supports containing static data. During the set up of the
table constraint ¢, CT also computes a static array of words supports|z, al, seen
as a bit-set, for each variable-value pair (z,a) where = € scp(c) A a € dom(x):
the bit at position ¢ in the bit-set is 1 if and only if the tuple 7; in the initial
table of ¢ is a support for (z,a).

Tlx|y|z
Olajaja currTable[T[1[1[1[1[T[1[1
llajab supports|z, a]{1|1]1]0[1]0[0]0
2]albjc supports|z, b][0[0[0[1[0[T[1[1
3|blaja supports|y, a]|1{1[0(1{0{1]|0{0
alclb supports|[y, b][0[0[1]0[1]0[1]T
4 |a|b|b supports[y, d]|0/0/0/0{0|0(0|0
5|bla|b supports|z,a]|1]0[0|1]0[0[1]0
6 |b|bla supports[z,b]OlOOllOl
7|blblb supports|z, ¢||0/0{1|0{0]0[0|0
(a) The indexed tuples (b) The corresponding bit-sets

Fig. 2. Illustration of the data structures after the initialization of (z,y,z) € T. The
tuple (a, ¢, b) will not be indexed and d will be removed from dom(y).

Example 3. Figure2 shows an illustration of the content of those bit-sets after
the initialization of the following table constraint (z,y, z) € T, with:

— dom(z) = {a, b}, dom(y) = {a,b,d}, dom(z) = {a,b, c}
_ Zb)>: <(a7 a, a)7 (a, a, b)7 ((I, b, C)a (b, a, a)7 (CL, C, b), (Cl7 b, b), (b, a, b), (b, b, CL)7 (b7

The tuple (a,c,b) is initially invalid because ¢ ¢ dom(y), and thus will not be
indexed. Value d will be removed from dom(y) given that it is not supported by
any tuple.

Finally, we have an array residues such that for each variable-value pair
(z,a), residues|z, a] denotes the index of the word where a support was found
for (z,a) the last time one was sought for.
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Algorithm 2. Class ConstraintCT
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scp: array of variables // Scope
currTable: RSparseBitSet // Current table
gval gswe // Temporary sets of variables
lastSizes // lastSizes[z] is the last size of the domain of =z
supports // supports[z,a] is the bit-set of supports for (z,a)
residues // residues|z,a] is the last found support for (z,a)

Method updateTable()
foreach variable z € " do
currTable.clearMask()
if |Az| < |dom(z)| then // Incremental update
foreach value a € A, do
L currTable.addToMask(supports|z, a])

currTable.reverseMask()
else // Reset-based update
foreach value a € dom(z) do

L currTable.addToMask(supports|z, a])

currTable.intersect WithMask()
if currTable.isEmpty() then
L break

Method filterDomains()
foreach variable z € S°* do
foreach value a € dom(z) do
index « residues[z,a]
if currTable.words[index] & supports(z,a)[index] = 0°* then
index < currTable.intersectIndex(supports|z, a])
if index # —1 then
‘ residues|z,a] < index
else

L dom(z) «— dom(z) \ {a}

| lastSize[z] « |dom(x)]|

Method enforceGAC()
S* «— {x € scp : |[dom(x)| # lastSize[z]}
foreach variable x € $™ do

L lastSize[z] « |dom(z)|
8P — {z € scp : |[dom(z)| > 1}
updateTable()
if currTable.isEmpty() then

L return Backtrack

filterDomains()




Compact-Table: Efficiently Filtering Table Constraints 217

6.2 Methods

The main method in ConstraintCT is enforceGAC(). After the initialization of
the sets 872 and S5%, CT updates currTable to filter out (indices of) tuples
that are no more supports, and then considers each variable-value pair to check
whether these values still have a support.

Updating the Current Table. For each variable x € 8", i.e., each variable x
whose domain has changed since the last time the filtering algorithm was called,
updateTable() performs some operations. This method assumes an access to
the set of values A, removed from dom(x) since the last call to enforceGAC().
There are two ways of updating currTable, either incrementally or from scratch
after resetting. Note that the idea of using resets has been proposed in [30] and
successfully applied to GAC4 and MDD4, with the practical interest of saving
computational effort in some precise contexts. This is the strategy implemented
in updateTable(), by considering a reset-based computation when the size of the
domain is smaller than the number of deleted values.

In case of an incremental update (line 10), the union of the tuples to be
removed is collected by calling addToMask() for each bit-set (of supports) cor-
responding to removed values, whereas in case of a reset-based update (line 14),
we perform the union of the tuples to be kept. To get a mask ready to apply,
we just need to reverse it when it has been built from removed values. Finally,
the (indexes of) tuples of currTable not contained in the mask, built from =z,
are directly removed by means of intersect WithMask(). When there are no more
tuples in the current table, a failure is detected, and updateTable() is stopped
by means of a loop break.

Filtering of Domains. Values are removed from the domain of some vari-
ables during the search of a solution, which can lead to inconsistent values in
the domain of other variables. As currTable is a reversible and dynamically
maintained structure, the value of some bits changes from 1 to 0 when tuples
become invalid (or from 0 to 1 when the search backtracks). On the contrary,
the supports bit-sets are only computed at the creation of the constraint and
are not maintained during search. It follows from the definition of those bit-sets
that (z,a) has a valid support if and only if

(currTable N supports|z,al) # 0 (1)

Therefore, each time a tuple becomes invalid, the constraint must check this
condition for every variable value pair (x,a) such that a € dom(z), and remove
a from dom(x) if the condition is not satisfied any more. This operation is effi-
ciently implemented in filterDomains() with the help of residues and the method
intersectIndex().

Ezxample 4. The same set of tuples as in Example 3 is considered. Suppose now
that a was removed from dom(z) (by another constraint) after the initialization.
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Given that the domain of z is reduced, when updateTable() is called by enforce-
GACY(), all tuples supporting a (because A, = {a}) will be invalidated. Figure 3a
illustrates the intermediary bit-sets used to compute the new value currTable®“!
from currTable’™ and supports[z,a]. Then filterDomains() computes for each
variable-value pair (z;,a;) (with z; € S5 and a; € dom(x)) the intersection of
its associated set of supports with currTable as shown in Fig.3b. Given that
the intersection for supports|z,c] and currTable is empty, c is removed from
dom(z).

currTable|0(|0(0|1|0|1|1|1

supports[z, b] N currTable|0]|0[0[1|0[1|1]1

supports[y, a] N currTable|0[0|0{1[0|1]0[0

currTable ™ [1]1[1[1[1]1[1]1 supports[y, b] N currTable|0[0|0]0|0[0[1]1

supports[z,a]|1{1/1]0[1]0[0[0 supports|z, a] N currTable|0[0{0[1]0[0[1|0

currTable®*[0[0[0[1]0[1]1]1 supports|z, b] N currTable|0[0(0|0[0|1]0|1

(a) updateTable() invalidates tu- supports|z, ¢| N currTable|0(0(0/0{0/0/0|0
ples supporting (z, a) (b) filterDomains() removes ¢ from dom(z)

Fig. 3. Illustration of enforceGAC() after the removal of a from dom(z).

6.3 Improvements

The algorithm in Sect.6.2 can be improved to avoid unnecessary computations
in some cases.

Filtering Out Bounded Variables. The initialization of S" at line 32 can be only
performed from unbound variables (and the last assigned variable), instead of
the whole scope. We can maintain them in a reversible sparse set.

Last Modified Variable. Tt is not necessary to attempt to filter values out from
the domain of a variable z if this was the only modified variable since the last
call to enforceGAC(). Indeed, when updateTable() is executed, the new state of
currTable will be computed from dom(z) or A, only. Because every value of
z had a support in currTable the last time the propagator was called, we can
omit filtering dom(x) by initially removing « from S5*P.

7 Experiments

We experimented CT on 1,621 CSP instances involving (positive) table con-
straints (15 GB of uncompressed files in format XCSP 2.1). This corresponds to
a large variety of instances, taken from 37 series. For guiding search, we used
binary branching with domain over degree as variable ordering heuristic and
min value as value ordering heuristic. A timeout of 1,000s was used for each
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instance. The tested GAC algorithms are CT, STR2 [17], STR3 [20], GAC4
[28,30], GAC4R [30], MDDR [30] and AC5TCRecomp [26]. All scripts, codes
and benchmarks allowing to reproduce our experiments are available at https://
bitbucket.org/pschaus/xp-table. The experiments were run on a 32-core machine
(1400MHz cpu) with 100GB using Java(TM) SE Runtime Environment (build
1.8.0-60-b27) with 10GB of memory allocated (-Xmx option).

Performance Profiles. Let t; s represent the time obtained with filtering algo-
rithm s € S on instance ¢ € I. The performance ratio is defined as follows: r; s =
m A ratio r; s = 1 means that s was the fastest on instance ¢. The
performance profile [8] is a cumulative distribution function of the performance
of s (speedup) compared to other algorithms: ps(7) = T}\ x |{i € Ilr; s < T}.

Our results are visually aggregated to form a performance profile in Fig. 4
generated by means of the online tool [5] http://sites.uclouvain.be/performance-
profile. Note that we filtered out the instances that (i) could not be solved within
1,000s by all algorithms (ii) were solved in less than 2s by the slowest algo-
rithm, and (iii) required less than 500 backtracks. The final set of instances
used to build the profile is composed of 227 instances. An interactive perfor-
mance profile is also available at https://www.info.ucl.ac.be/~pschaus/assets/
publi/performance-profile-ct to let the interested reader deactivate some family
of instances to analyze the results more closely.

OCT ©STR2 ®STR3 ®©GAC4 ®GAC4R ©MDD4R @AC5TCRecomp

100, e =
90
80
70
8 60
©
% 50
£
X 40
30
20
10
0
1.0 2.0 4.0 8.0 16 32 64 130 260 370

T ( time ) =speedup

Fig. 4. Performance profile

Table 1 reports the speedup statistics of CT over the other algorithms. A first
observation is that CT is the fastest algorithm on 94.47% of the instances.
Among all tested algorithms, AC5TCRecomp obtains the worse results. Then it
is not clear which one among STR2, STR3, GAC4 and GAC4R is the second
best algorithm. Based on the geometric mean speedup, STR3 seems to be the
second best algorithm followed by STR2, GAC4R and MDD4R. Importantly,
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Table 1. Speedup analysis of CT over the other algorithms. Column ‘Best2’ corre-
sponds to a virtual second best solver (minimum time of all algorithms except CT).

Speedup STR2 | STR3 | GAC4 | GAC4R | MDD4R | AC5-TC | Best2
Geometric mean | 5.09 | 4.03 7.05 6.15 6.57 19.22 | 2.75
Min 0.76 | 1.09 0.92 1.13 0.13 1.05 | 0.13
Max 88.58 | 51.04 |173.24 | 208.52 | 50.84 1850.82 | 15.99
St. dev 10.64 | 4.36 | 19.67| 18.57 9.46 134.13 | 2.87

one can observe that the geometric mean speedup of CT over the best of the
other algorithms is about 2.75.

Impact of Resetting Operations. In Algorithm 2, the choice of being incremental
or not, when updating currTable, depends on the size of several sets and is thus
dynamic. We propose to analyze two variants of Algorithm 2 when this choice
is static:

— Full incremental (CTI): only the body of the ‘if” at line 10 is executed (deltas

are systematically used).
— Full re-computation (CTR): only the body of the ‘else’ at line 14 is executed

(domains are systematically used).

The performance profiles with these two variants are given in Fig.5, and the
speedup table of the static versions over the dynamic one is given in Table 2.
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T(time ) =speedup

Fig. 5. Performance Profiles with dynamic (CT), recomputation (CTR) and incremen-
tal (CTI) strategies.

As can be seen from both the performance profiles and the speedup table,
the dynamic version using the resetting operations dominates the static ones.
The geometric mean speedup is around 4 % over CTI and 34 % over CTR.
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Table 2. Speedup analysis of the two static variants over CT.

Speedup CTI | CTR | Best
Geometric mean | 1.04 | 1.34 |0.99
Min 0.44 1 0.53 |0.44
Max 3.234.39 |1.96
St. dev 0.38 1 0.65 |0.27

Contradiction with Previous Results. In [26], AC5TCRecomp was presented as
being competitive with STR2. When we analyzed the code* of STR2 used in
[26], it appeared that STR2 was implemented in Comet using built-in sets (trig-
gering the garbage collection of Comet). We thus believe that the results and
conclusions in [26] may over-penalize the performance of STR2. Our results also
somehow contradict the results in [30] where STR3 and STR2 were dominated
by MDD4R and GAC4R. When analyzing the performance of the implementa-
tion of STR2 and STR3 used in [30] with or-tools, it appears that it is not as
competitive as that in AbsCon (sometimes slower by a factor of 3). The results
presented in [30] may thus also over-penalize STR2 and STR3.

One additional contribution of this work is a fined-tuned implementation of
the best filtering algorithms for table constraints. The implementation of these
algorithms in OscaR was optimized, and checked to be close in performance
to the ones by the original authors. For CT, STR2 and STR3, a comparison
was made with AbsCon, and for CT, MDD4R and GAC4R, a comparison was
made with or-tools. Our implementation required a development effort of 10
man-months in order to obtain an efficient implementation of each algorithm.
It involved the expertise of several OscaR developers and a deep analysis of
the existing implementations in AbsCon and or-tools. The implementation of all
algorithms used in this paper is open-source and part of OscaR release 3.1.0.

8 Conclusion

In this paper, we have shown that Compact-Table (CT) is a robust algorithm
that clearly dominates state-of-the-art propagators for table constraints. CT
benefits from well-tried techniques: bitwise operations, residual supports, tabu-
lar reduction and resetting operations. We believe that CT can be easily imple-
mented using the reversible sparse bit-set data structure.
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Abstract. Lazy Clause Generation (LCG) is a learning extension of
Constraint Programming that combines the power of SAT and CP. In
this paper we present an extension of Lazy Clause Generation from finite
domain constraints to interval constraints, that is: non-linear constraints
over the reals. Because LCG solvers must be able to negate literals
involved in computation, LCG for intervals must represent both open
and closed intervals. This makes LCG for intervals quite different from
LCG for integers. We illustrate the advantage of the technology by solv-
ing a mixed integer non-linear Air Traffic Control problem .

1 Introduction

The capacities of European en-route Air Traffic Control (ATC) centers are far
exceeded by a constant growth in air traffic demand, resulting in ever increas-
ing flight delays. To overcome this issue, novel Air Traffic Management (ATM)
schemes are designed while keeping the hard constraint of a minimal 5 nauti-
cal mile horizontal safety separation between every pair of aircraft. Nowadays,
solutions to avoid conflicts are empirical, and human controllers rely on stan-
dard routes and traffic organization to devise them. However, the complexity of
conflicts could grow tremendously within future ATM systems, should the air-
craft fly on direct routes, from take-off airport to destination. Human controllers
would no longer be able to solve them efficiently on their own, thus requiring
automated solvers. Former approaches like [6] use local search (namely genetic
algorithms) to solve the conflict problem. These meta-heuristics are well suited
to solve large scale and difficult problems when no other relevant techniques are
known, but stochastic search inherently lacks existence and optimality proofs. An
interval constraint approach was offered in [8]. While the method allows proof of
optimality and the existence of solutions, it does not scale to the size of a general
air traffic sector. The difficulty in handling the required constraints is related to
the fact that the separation must be kept at any time. In this paper we propose
to solve this problem by extending an Interval Constraint Solver with Learning.
Learning methods such as lazy clause generation [15] can exponentially reduce
the search complexity and are particularly well suited to such a problem where
some of the variables can be discretized. After presenting interval constraint
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methods and its extensions to learning, we present the air traffic control models
and their implementation and provide results validating the approach.

2 Preliminaries

2.1 Finite Domain Constraint Programming

A waluation, 0, is a mapping of variables to values, denoted {zy — dy, ..., 2, —
dp}. Define vars(0) = {z1,...,2,}. A primitive constraint, c, is a set of val-
uations over a set of variables wvars(c). A valuation 6 is a solution of ¢ if
{z — 6(x) | = € vars(c)} € c. A constraint C' is a conjunction of primitive
constraints, which we often treat as a set. A valuation 6 is a solution of con-
straint C' if it is a solution for each ¢ € C. We write C; | C; if every solution
of Cy is a solution of ¢s.

An atomic constraint is a unary constraint of the form (z =d), (x # d),
(x > d), (x <d), or false. We write atomic constraints in angle brackets to
emphasize their special status. A domain D is a conjunction of atomic con-
straints. D is a false domain if it has no solutions. We use notation D(z) =
{6(x) | 8 is a solution of D}. A singleton domain is one where |D(x)| = 1,2 €
vars(D), and we let 0p = {x +— d, | x € vars(D), D(x) = {d,}} in this case.

A propagator p(c) for constraint ¢ is an inference algorithm, it maps a domain
D to a set of atomic constraints p(c)(D), where DAc = p(c)(D). We assume each
propagator is checking, that is if V& € vars(c).|D(z)| = 1 then p(c)(D) =0 if 0p
is a solution of ¢ and {false} otherwise. A propagation solver prop(P, D) applied
to a set of propagators P and a domain D repeatedly applies the propagators
p € P until p(D’) = () for p € P, and returns D’.

A constraint satisfaction problem (CSP) P = (V, D, C) is a constraint C' and
domain constraint D over variables V' = vars(C) Uvars(D). A CP solver solves
the CSP by applying the propagation solver prop({p(c) | ¢ € C}, D) to obtain a
new domain D’, then if this is not a false domain or singleton domain, guessing
an atomic constraint decision a, and solving the two problems (V, D’ Aa,C) and
(V,D' A —a,C).

2.2 Lazy Clause Generation for Integers

Lazy clause generation (LCG) solvers [15] are hybrid CP and SAT solvers that
combine CP propagation based solving with SAT nogood learning. An LCG
solver represents an integer variable with initial domain [I..u] by the Boolean
variables [z = d],! < d < u (equality variables) and [z > d],! < d < u (bounds
variables). Note that each atomic constraint defined earlier, is exactly a Boolean
literal using this representation: (z = d) is [ = d], (x # d) is =[x = d], (x > d)
is [x > d] and (z < d) is =[x > d + 1].

The Boolean variables are connected to an integer domain propagator which
ensures that they maintain a consistent representation of an integer variable, that
isr>d+1] = [z >d,l<d<u,and [x =d] « [z > d] A -]z >d+1],l <
d<u,Jr=1] & -z >1+1], and [z = u] < [z > u].
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In LCG solvers propagators are also required to return explanations for each
new consequence ! € p(c)(D), that is an explanation clause e = I3 A -+ -1, — I
where V1 <i<n,D | [; and ¢ | e. In LCG solvers during propagation [7,15],
a trail of newly inferred literals representing atomic constraints is created, each
of which has an explanation clause showing which previously true literals made
it true.

When an LCG solver infers false it, like a SAT solver, repeatedly replaces
literals in the explanation for the failure until only one literal that became true
since the last decision remains. The resulting explanation of failure is the so
called 1UIP nogood [14]. This nogood is then stored in the system as a new
constraint (propagator), and the solver backjumps to the second last decision
level in the nogood. At this point the nogood is guaranteed to propagate new
information. See [15] for more details.

Ezxample 1. Consider a CSP with constraints ¢ >y, t >2 —b,b - < 32,0 —
y > 2, over integers x, y, z and ¢, and Boolean b and initial domain D = (x > 0)A
(x <10)A{y > 0)A{y < 10) A (2> 0) A (2 < 10) A (¢ > 0) A (¢ < 10). An initial
decision (z <5) (—[z > 6]) causes no propagation. The next decision (¢ > 6)
([t > 6]) causes b which in turn causes [y > 2] and (with =]z > 6]) -]z > 2], and
these two propagate to false. The initial nogood is [y > 2] A =[xz > 2] — false,
replacing =[x > 2] by its reasons gives [z > 6] Ab A [y > 2] — false, then
replacing [y > 2] gives —[z > 6] A b — false. The resulting 1UIP nogood is
[z > 6] Vv —b. O

2.3 Interval Arithmetic

Given the discrete representation of numbers by computers it is impossible to
solve continuous problems exactly. Interval constraint solvers use interval arith-
metic [13] to compute sound approximations of the constraint system, through
a combination of local consistencies and search.

Let R be the set of real numbers, and let R™ be R U {400, —co}. Let F be
the subset of R of the representable floating-point numbers in a given format,
and let F*° be F U {400, —o0}. Let | (r) (resp. T (r)) be the downward (resp.
upward) roundings to F* of a real number r. Given two numbers a € FU{—oc0}
and b € FU {+oo} the closed interval [a,b] is the set {x € R | a < x < b}.

Less usual for interval arithmetic we will also consider open and semi-open
intervals. The open interval (a,b) is the set {x € R | a < & < b}, while the two
forms of semi-open intervals (a,b] and [a,b) represent the sets {x € R |a < z <
b} and {z € R| a <z < b} respectively.

We will use I to represent the set of closed intervals, which is closed under
intersection. We will use I to represent the set of (all) intervals, including open
and semi-open intervals, which is also closed under intersection.

Given a closed interval I we define |I] (resp. [I]) as the smallest (resp.
largest) element of I.

Given a real operator #, the associated interval operator ® is defined
by X®Y = ({Z|VeeX VyeY,zxyecZ}, eg [ab © [cd =
[L(a=d),T (b=
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2.4 Interval Constraints Solving

A real (resp. interval) constraint is an atomic formula arising from a relation
over real (resp. interval) expressions and variables. In practice interval constraint
propagators enforce approximate counsistencies, often hull consistency [3] or box
consistency [2]. The original hull consistency algorithm hc3 decomposes con-
straints into primitives constraints implemented each by a corresponding prop-
agator.

Ezample 2. The constraint ¢: (z+y)+2+b = 0 can be decomposed into ¢; : z =
4y and ca : 2+ 2% b= 0. The hull consistent propagator for the constraint
c1, with the domains X, Y, and Z computes the common fixed-point of the
projection operators: X «— XN(ZeY),Y «— YN(ZeX),and Z «— ZN(X@Y).O

A refinement of the hce3 algorithm is hed [12] which avoids decomposing
the constraints by working directly on a tree-like representation of constraints
where each node is either a variable, a constant or a primitive function operator.
The variables domains pruning is done through a forward evaluation of the tree
followed by a backward top-down projection narrowing operation. During the
top-down pruning the algorithm may prematurely end by the computation of
an empty interval, in which case the constraint is inconsistent w.r.t the current
domain.

Ezample 3. The constraint ¢ : (z + y) + (2 * b) = 0 has the tree representation
c:(e1:(ex:x+y)+(e3:2%b)) =0. Given the domain X, Y, B, the evaluation
phases computes es.f = X @Y, es.f =[2,2]| ® B, e1.f = ea.f @ e3.f. The top-
down pruning phases enforces the projection e;.b «— e;.f N[0,0], ea.b «— ea.f N
(e1.bces.f), X — XN(e2.8Y),Y — YN(e2.bSX), e3.b — ez.fN(e1.bSes.f),
B — BN (e3.b@[2,2]). O

3 Lazy Clause Generation for Intervals

The critical question in defining a learning solver is how to represent the changes
in variables. A natural representation for interval variable x would be using
atomic constraints of the form (x € I'), which record the entire interval I attached
to the variable. Indeed there are finite domain learning solvers which take this
approach [16]. The disadvantages of this approach is that resulting nogoods
are unlikely to be very reusable, and the atomic constraints themselves interact
in complex ways. A stronger disadvantage is that atomic constraints will be
negated, and the negative form of these constraints is hard to reason about.

The obvious choice, analogous to the integer case is to use the atomic con-
straints (z > a), (x < a), a € F. This allows us to represent all closed intervals.
Unlike the integer case we cannot get away with a single set of bounds variables
since = {x > a) # (x < a). Hence we need 2 sets of Boolean variables [z > d]
and [z < a]. Since (z < a) < —[z > a] and (z > a) < —[z < a], we will be able
to represent open and semi-open intervals.
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Clearly we cannot create a Boolean variable for each possible atomic con-
straint (z > a), (x < a), a € F for variable = apriori, there are far too many.
Indeed even during propagation far too many atomic constraints will appear for
us to represent them each by a Boolean variable. In an LCG (and SAT) solver
each Boolean variable is a non-trivial data structure storing watch lists, activity
counts, and any associated atomic constraint.

To avoid the cost of creating many Boolean variables during propagation
we make use of a stateless atomic constraint representation (tagged pointer),
which carries its meaning with it, and use this for propagation, and recording
the implication graph in the trail, and the explanations of propagation, and
for building explanations. Most atomic constraints will appear on the trail, and
simply be removed by backtracking/backjumping. We will only create Boolean
variables corresponding to atomic constraints that end up in the nogoods that
are created.

Ezample 4. Reconsider the CSP of Example 1 where now z, y, z and t are inter-
val variables. An initial decision (z < 5) causes no propagation. The next decision
(t > 6) causes b which in turn causes (y > 2) and (with (z < 5)) (z <1 2), and
these two propagate to false. The initial nogood is (y > 2) A <x <7 g> — false,
replacing (x <1 2) by its reasons gives (z < 5) AbA(y > 2) — false, then replac-
ing (y > 2) gives (z < 5) Ab — false. The resulting 1UIP nogood is =z < 5]V —b.
Note how the entire process uses atomic constraints, except the final stored
nogood which uses literals. O

A critical component of the interval learning solver is the interval domain
propagator which is responsible for mapping interval domain information to
atomic constraints and any associated Boolean literals, and vice versa.

The domain of interval variable z is implemented as a sorted map from float
values a to atomic constraints (z < a), (x < a), (z > a), and (x > a). We cache
the current upper and lower bounds for x, but not their positions in the map.
Changes to D(z) require walking the map to determine which atomic constraints
become true or false. Note that in this way the domain propagator for = also
maintains the consistency of the Boolean literals associated with z, which will
be added to the queue for propagation.

When a new atomic constraint is created, it is inserted appropriately in the
map. Note usually a new atomic constraint is only created by propagation which
makes it true, so we can implement this simply by walking the map from the
current bound to the position of the new bound and inserting it, since we have
to walk the map setting the other atomic constraints in the path true or false
appropriately.

3.1 Propagation with Learning

Note that although we must represent open, semi-open and closed intervals, in
order to have the representation of intervals closed under negation, the interval
propagation almost always relaxes intervals to be closed. The only cases where
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this does not occur is when no floating point operations occur on the interval
bounds, for example in equality, min and max. Clearly the resulting computation
is still safe.

In order to provide explanations for variable domain updates, interval oper-
ations are augmented to maintain the reasons for their results, in the form of a
set of atoms per bound. For example the augmentation H of the operator @ is
defined as (X, 1y, u,) B(Y,ly, uy) = (X B Y, 1, Uly,uy Uuy). Given a variable =
with a domain X let A(z) = (X, {{z > | X )}, {{x < [X])}). These augmented
operators are used in the implementation of propagators, to derive reasons for
failure or variables bounds updates,

Example 5. Reconsiding Example 3 in the context of learning, the bottom-up
evaluation now computes es.f = A(z) B A(y), es.f = ([2,2],{}, {}) K A(b),
e1.f = es.fHes. f. The top-down pruning phases enforces the projection e;.b «—
e1.fN([0,0],{},{}), ea.b —ea.fN(e1.bBes.f), e3.b — es.f N(e1.bBes.f) and
the following potential updates augmented with explanations for x, y, and b :
A(z)N](e2.b B A(y)), A(y)Dl(e2.b B A(x)) and A(b)N](es.b A [2,2]).

Consider the constraint with domains x € [-2,0], y € [-1,0] and b € [0, 1]
when b changes to [1,1], ignoring any rounding problems for simplicity. We
recalculate es.f = ([2,2],{(b > 1)},{}), e2.b = ([-2,-2],{}, {(b>1)}), e2.b B
{{b>1),(y > —1)}). The explanation for the change in z is (b > 1)A{y > —1) —
(x < —=1). O

In practice it is possible, during forward evaluation, to simply flag bits indicating
which of an expression children bounds are used during evaluation of its f field
to avoid the systematic creation and union of sets of atoms. A reason will be
then reconstructed, if needed, when a variable bound is updated.

4 Mixed Models

In this section we present the models first introduced in [8]. An aircraft ¢ is char-
acterized by an initial position p;(0) = (x;(0), y;(0)), a speed v;, a heading 6; and
a waypoint or destination w; along its path (see Fig.1). We consider horizontal
maneuvers between aircraft at the same altitude. At any given time, two aircraft
are in conflict when the distance between them is less than a safety separation d.
The considered maneuvers for maintaining separation involve deviations of the
aircraft headings. Given that these maneuvers are orders for pilots, the starting
time and deviation angle of a maneuver are discrete variables, indeed arbitrarily
precise orders would be unrealistic.

4.1 Horizontal TCAS Model

This simple model is for emergency situations and could be used for a real-time
Traffic Collision Avoidance System (TCAS): at the initial time, deviations are
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Fig. 1. lllustration of a deviated path to avoid conflict in the human controller model.

applied to the aircraft headings to avoid conflicts. It has one discrete decision
variable «; per aircraft i.

Given two aircraft i and j, let v;; be the relative speed and p;;(t) the relative
position between them at time ¢, and d the safety distance. We have pl-j(t) =
P;;(0) + v45(t — 0). These two aircraft are not in conflict at a given time ¢ if the
distance separating them is greater than d: P(i,j) = p;;(t)* — d*> > 0. If the
discriminant Ap; ;) of P(i,7) is negative, these two aircraft will not enter into
conflict, hence the inequality constraint per pair of aircraft is:

(pij(o)vij)z —(py (0)* — d2)vi2j <0
with :

P = (50 30)) 25 (et - og) —rsein 1 o)

4.2 Horizontal Human Controller Model

In this model we consider that the aircraft is initially heading toward a waypoint.
To avoid a conflict, it is possible to deviate the aircraft from its original heading,
at some time t;. After an amount of time J; it will then head back toward its
original destination. The path of an aircraft p is then composed of three segments
Sp1, Sp2 and sp3. Given a pair of aircraft ¢ and j, a conflict can arise for each pair
of segments (s;5, 55y), resulting in 9 avoidance constraints per pair of aircraft.

Given two segments S;z, Sjy, let P(siz, ;) be the associated distance poly-
nomial as defined in the previous model. The avoidance constraint is defined by
the following disjunction :

— there is no common time segment during which the aircraft ¢ flies over s;, and
aircraft j flies over s, or

— the discriminant of P(s;z, s;y) is negative, or

— the roots of P(s;g,sjy) are outside the common flight time.
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5 Experiments

The lazy clause generation solver Chuffed [5] was extended with interval con-
straint support, which can be used both with or without learning. The optimiza-
tion strategy chosen was the minimisation of the sum of the absolute deviations
|cv;| which is a good approximation of how disruptive the solution is.

Other possible optimization strategies would be the minimization of number
of deviated aircraft, which is a relevant criterion for a human controller, or to
minimize the total lengthening of the paths, which better captures the airline
operators’ concerns.

In Table 1, we compare the performance of Interval Constraints without learn-
ing (IC) and with Lazy Clause Generation for simple avoidance problems (tcasx)
and human controller model (hmex) involving 4, 8 and 12 aircraft with a 90s
timeout. We obtain an exponential search space reduction from learning, with
IC only solving the smaller human controller model problem. Since the aircrafts
are constrained pairwise, it is likely that the nogoods transpose well to different
parts of the search space. The benchmarks are available in MiniZinc format at
people.unimelb.edu.au/pstuckey/atc.

Table 1. Comparison of Interval Constraints with and without learning.

Problem IC LCG Problem IC LCG
#bts| t(s) ||#lits|#bts|t(s) #bts| t(s)|| #lits| #bts| t(s)
tcas4 13| 0.1 65| 26]0.1 hcm4 513342|60.1{|21206|27621| 4.4
tcas8 1001| 0.2| 237 128/ 0.1 hcm8 — [>90]|28521|42372|21.2
tcasl2 (|52863]4.65|| 2107|1655 0.3 hem12 — [>90|{43234(64890(62.1

6 Related Work and Conclusion

Constraint systems such as ECL!PS® [4] support both integers and interval
constraints. The framework presented in [11] and the SMT solver HySAT [9],
based on the iSAT algorithm [10], combine interval constraint propagation with
the learning framework of SMT to solve real constraints, implementing a form
of he3 augmented by explanations (as opposed to hed that we implement).

The SMT approaches do not tightly integrate the handling of integer and
interval variables which is a distinct disadvantage for applications such as ATC.
They both elide the issue of too many literals appearing in the trail, which may
be because the benchmarks they use are quite distinct from those appearing in
typical CP interval problems where interval propagation can take many iterations
to quiesce. Hence it appears the implementation issues for LCG and SMT for
intervals are quite different.

The domain of Air Traffic Management is very complex and contains many
hard combinatorial problems. Although there is little existing work regarding
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continuous or mixed problems, CP approaches has been developed for many of
the combinatorial problems in this area such as arrival management, runway
allocation, workload management. See [1] for a survey.
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Abstract. We extend the notion of a strong backdoor from the CSP set-
ting to the Valued CSP setting (VCSP, for short). This provides a means
for augmenting a class of tractable VCSP instances to instances that are
outside the class but of small distance to the class, where the distance is
measured in terms of the size of a smallest backdoor. We establish that
VCSP is fixed-parameter tractable when parameterized by the size of a
smallest backdoor into every tractable class of VCSP instances character-
ized by a (possibly infinite) tractable valued constraint language of finite
arity and finite domain. We further extend this fixed-parameter tractabil-
ity result to so-called “scattered classes” of VCSP instances where each
connected component may belong to a different tractable class.

1 Introduction

Valued CSP (or VCSP for short) is a powerful framework that entails among
others the problems CSP and MAX-CSP as special cases [26]. A VCSP instance
consists of a finite set of cost functions over a finite set of variables which range
over a domain D, and the task is to find an instantiation of these variables that
minimizes the sum of the cost functions. The VCSP framework is robust and has
been studied in different contexts in computer science. In its full generality, VCSP
considers cost functions that can take as values the rational numbers and positive
infinity. CSP (feasibility) and Max-CSP (optimisation) arise as special cases by
limiting the values of cost functions to {0,000} and {0,1}, respectively. Clearly
VCSP is in general intractable. Over the last decades much research has been
devoted into the identification of tractable VCSP subproblems. An important
line of this research (see, e.g., [17,18,25]) is the characterization of tractable
VCSPs in terms of restrictions on the underlying valued constraint language I,
i.e., a set I of cost functions that guarantees polynomial-time solvability of all
VCSP instances that use only cost functions from I'. The VCSP restricted to
instances with cost functions from I is denoted by VCSP[I].

In this paper we provide algorithmic results which allow us to gradually
augment a tractable VCSP based on the notion of a (strong) backdoor into a
tractable class of instances, called the base class. Backdoors where introduced
by Williams et al. [27,28] for SAT and CSP and generalize in a natural way to
VCSP. Let C denote a tractable class of VCSP instances over a finite domain D.
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A backdoor of a VCSP instance P into C is a (small) subset B of the variables
of P such that for all partial assignments « that instantiate B, the restricted
instance P|,, belongs to the tractable class C. Once we know such a backdoor B
of size k we can solve P by solving at most |D|¥ tractable instances. In other
words, VCSP is then fized parameter tractable parameterized by backdoor size.
This is highly desirable as it allows us to scale the tractability for C to instances
outside the class, paying for an increased “distance” from C only by a larger
constant factor.

In order to apply this backdoor approach to solving a VCSP instance, we first
need to find a small backdoor. This turns out to be an algorithmically challenging
task. The fixed-parameter tractability of backdoor detection has been subject of
intensive research in the context of SAT (see, e.g., [16]) and CSP (see, e.g., [2]).
In this paper we extend this line of research to VCSP.

First we obtain some basic and fundamental results on backdoor detection
when the base class is defined by a valued constraint language I'. We obtain
fixed-parameter tractability for the detection of backdoors into VCSP[I'] where
I' is a valued constraint language with cost functions of bounded arity. In fact,
we show the stronger result: fixed-parameter tractability also holds with respect
to heterogeneous base classes of the form VCSP[I1] U --- U VCSP[I}] where
different assignments to the backdoor variables may result in instances that
belong to different base classes VCSP[I]. A similar result holds for CSP but
the VCSP setting is slightly more complicated as a valued constraint language
of finite arity over a finite domain is not necessarily finite.

Secondly, we extend the basic fixed-parameter tractability result to so-called
scattered base classes of the form VCSP[I1] & --- @ VCSP[I}] which contain
VCSP instances where each connected component belongs to a tractable class
VCSP|I;] for some 1 < 4 < {—again in the heterogeneous sense that for different
assignments to the backdoor variables a single component of the reduced instance
may belong to different classes VCSP|[I;]. Backdoors into a scattered base class
can be much smaller than backdoors into each single class it is composed of, hence
the gain is huge if we can handle scattered classes. This boost in scalability does
not come for free. Indeed, already the “crisp” case of CSP, which was the topic of
a recent SODA paper [14], requires a sophisticated algorithm which makes use
of advanced techniques from parameterized algorithm design. This algorithm
works under the requirement that the constraint languages contain all unary
constraints (i.e., is conservative); this is a reasonable requirement as one needs
these unary cost functions to express partial assignments (see also Sect.2 for
further discussion). Here we lift the crisp case to general VCSP, and this also
represents our main technical contribution.

To achieve this, we proceed in two phases. First we transform the backdoor
detection problem from a general scattered class VCSP(I) @ --- @ VCSP(I)
to a scattered class VCSP(I) @ --- @ VCSP(I)) over finite valued constraint
languages I'/. In the subsequent second phase we transform the problem to a
backdoor detection problem into a scattered class VCSP(I7') & - - - & VCSP(I})
where each I'/’ is a finite crisp language; i.e., we reduce from the VCSP setting to
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the CSP setting. We believe that this sheds light on an interesting link between
backdoors in the VCSP and CSP settings. The latter problem can now be solved
using the known algorithm [14].

Related Work

Williams et al. [27,28] introduced backdoors for CSP or SAT as a theoretical tool
to capture the overall combinatorics of instances. The purpose was an analysis
of the empirical behaviour of backtrack search algorithms. Nishimura et al. [22]
started the investigation on the parameterized complexity of finding a small SAT
backdoor and using it to solve the instance. This lead to a number of follow-up
work (see [16]). Parameterized complexity provides here an appealing framework,
as given a CSP instance with n variables, one can trivially find a backdoor of
size < k into a fixed tractable class of instances by trying all subsets of the
variable set containing < k variables; but there are ©(n*) such sets, and therefore
the running time of this brute-force algorithm scales very poorly in k. Fixed-
parameter tractability removes k from the exponent providing running times of
the form f(k)n® which yields a significantly better scalability in backdoor size.

Extensions to the basic notion of a backdoor have been proposed, including
backdoors with empty clause detection [6], backdoors in the context of learn-
ing [7], heterogeneous backdoors where different instantiations of the backdoor
variables may result in instances that belong to different base classes [15], and
backdoors into scattered classes where each connected component of an instance
may belong to a different tractable class [14]. Le Bras et al. [20] used backdoors
to speed-up the solution of hard problems in materials discovery, using a crowd
sourcing approach to find small backdoors.

The research on the parameterized complexity of backdoor detection was
also successfully extended to other problem areas including disjunctive answer
set programming [10,11], abstract argumentation [9], and integer linear program-
ming [13]. There are also several papers that investigate the parameterized com-
plexity of backdoor detection for CSP. Bessiere et al. [1], considered “partition
backdoors” which are sets of variables whose deletion partitions the CSP instance
into two parts, one falls into a tractable class defined by a conservative polymor-
phism, and the other part is a collection of independent constraints. They also
performed an empirical evaluation of the backdoor approach which resulted in
promising results. Gaspers et al. [15] considered heterogeneous backdoors into
tractable CSP classes that are characterized by polymorphisms. A similar app-
roach was also undertaken by Carbonnel et al. [3] who also considered base
classes that are “h-Helly” for a fixed integer h under the additional assumption
that the domain is a finite subset of the natural numbers and comes with a fixed
ordering.
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2 Preliminaries

2.1 Valued Constraint Satisfaction

For a tuple t, we shall denote by ¢[i] its i-th component. We shall denote by Q the
set of all rational numbers, by Q>0 the set of all nonnegative rational numbers,
and by QZO the set of all nonnegative rational numbers together with positive
infinity, co. We define a + 0o = 0o + a = oo for all a € Q>¢, and a - 00 = oo for
all o € Q>¢. The elements of @20 are called costs.

For every fixed set D and m > 0, a function ¢ from D™ to Q¢ will be called
a cost function on D of arity m. D is called the domain, and here we will only
deal with finite domains. If the range of ¢ is {0, 00}, then ¢ is called a crisp cost
function.

With every relation R on D, we can associate a crisp cost function ¢gr on
D which maps tuples in R to 0 and tuples not in R to co. On the other hand,
with every me-ary cost function ¢ we can associate a relation R, defined by
(x1,...,2m) € Ry, & @(z1,...,Tm) < co. In the view of the close correspon-
dence between crisp cost functions and relations we shall use these terms inter-
changeably in the rest of the paper.

A VCSP instance consists of a set of variables, a set of possible values, and
a multiset of valued constraints. Each valued constraint has an associated cost
function which assigns a cost to every possible tuple of values for the variables
in the scope of the valued constraint. The goal is to find an assignment of values
to all of the variables that has the minimum total cost. A formal definition is
provided below.

Definition 1 (VCSP). An instance P of the VALUED CONSTRAINT SATIS-
FACTION PROBLEM, or VCSP, is a triple (V,D,C) where V is a finite set of
variables, which are to be assigned values from the set D, and C is a multiset
of valued constraints. Fach ¢ € C is a pair ¢ = (x,p), where x is a tuple of
variables of length m called the scope of ¢, and ¢ : D™ — Qs is an m-ary
cost function. An assignment for the instance P is a mapping T from V to D.
We extend T to a mapping from VF to D* on tuples of variables by applying T
componentwise. The cost of an assignment T is defined as follows:

Costp(r) = 3 w(r(a))-

(z,p)€C

The task for VCSP is the computation of an assignment with minimum cost,
called a solution to P.

For a constraint ¢, we will use var(c) to denote the set of variables which
occur in the scope of c. We will later also deal with the constraint satisfaction
problem, or CSP. Having already defined VCSP, it is advantageous to simply
define CSP as the special case of VCSP where each valued constraint has a crisp
cost function.

The following representation of a cost function will sometimes be useful for
our purposes. A cost table for an m-ary cost function ¢ is a table with D™ rows
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and m+1 columns with the following property: each row corresponds to a unique
tuple @ = (aq,...,a,) € D™, for each i € [m] the position 7 of this row contains
a;, and position m + 1 of this row contains p(aq, ..., am).

A partial assignment is a mapping from V' C V to D. Given a partial
assignment 7, the application of 7 on a valued constraint ¢ = (&, ) results in a
new valued constraint c|, = (2, ¢’) defined as follows. Let ' = x \ V' (i.e., «’
is obtained by removing all elements in V' N & from x) and m’ = |2’|. Then for
each a’ € D™, we set ¢/(a') = p(a) where for each i € [m]

alil = {T(mm) if zli] € V'

a'i — j] otherwise, where j = [{z[p] | p € [i] } N V'|.

Intuitively, the tuple a defined above is obtained by taking the original tuple
a’ and enriching it by the values of the assignment 7 applied on the “missing”
variables from x. In the special case when x’ is empty, the valued constraint
¢|r becomes a nullary constraint whose cost function ¢’ will effectively be a
constant. The application of 7 on a VCSP instance P then results in a new
VCSP instance P|, = (V\ V', D,C’) where C' = {¢|; | ¢ € C }. It will be useful
to observe that applying a partial assignment 7 can be done in time linear in
|P| (each valued constraint can be processed independently, and the processing
of each such valued constraint consists of merely pruning the cost table).

2.2 Valued Constraint Languages

A wvalued constraint language (or language for short) is a set of cost functions.
The arity of a language I' is the maximum arity of a cost function in I', or oo if
I contains cost functions of arbitrarily large arities. Each language I" defines a
set VCSP[I'] of VCSP instances which only use cost functions from I'; formally,
(V,D,C) € VCSPII'] iff each (z, ¢) € C satisfies ¢ € I'. A language is crisp if it
contains only crisp cost functions.

A language I' is globally tractable if there exists a polynomial-time algorithm
which solves VCSP[I'].! Similarly, a class H of VCSP instances is called tractable
if there exists a polynomial-time algorithm which solves H. For technical reasons,
we will implicitly assume that every language contains all nullary cost functions
(i-e., constants); it is easily seen that adding such cost functions into a language
has no impact on its tractability.

There are a few other properties of languages that will be required to for-
mally state our results. A language I" is efficiently recognizable if there exists a
polynomial-time algorithm which takes as input a cost function ¢ and decides
whether ¢ € I'. We note that every finite language is efficiently recognizable.

A language I' is closed under partial assignments if for every instance P €
VCSPII'] and every partial assignment 7 on P and every valued constraint ¢ =
(z, %) in P, the valued constraint ¢|, = (&, ¢’) satisfies ¢’ € I'. The closure of

! The literature also defines the notion of tractability [17,19], which we do not consider
here. We remark that, to the best of our knowledge, all known tractable constraint
languages are also globally tractable [17,19].
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a language I' under partial assignments, is the language I” D I containing all
cost functions that can be obtained from I via partial assignments; formally,
I contains a cost function ¢’ if and only if there exists a cost function ¢ € I’
such that for a constraint ¢ = (x, @) and an assignment 7 : X — D defined on
a subset X C var(c) we have ¢|, = (', ¢’).

If a language I' is closed under partial assignments, then also VCSP[I] is
closed under partial assignments, which is a natural property and provides a cer-
tain robustness of the class. This robustness is also useful when considering back-
doors into VCSP[I] (see Sect. 3), as then every superset of a backdoor remains a
backdoor. Incidentally, being closed under partial assignments is also a property
of tractable classes defined in terms of a polynomial-time subsolver [27,28] where
the property is called self-reducibility.

A language is conservative if it contains all unary cost functions [18]. We
note that being closed under partial assignments is closely related to the well-
studied property of conservativeness. Crucially, for every conservative globally
tractable language I, its closure under partial assignments I will also be glob-
ally tractable; indeed, one can observe that every instance P € VCSP[I"”] can
be converted, in linear time, to a solution-equivalent instance P’ € VCSP[I'] by
using infinity-valued (or even sufficiently high-valued) unary cost functions to
model the effects of partial assignments.

2.3 Parameterized Complexity

We give a brief and rather informal review of the most important concepts of
parameterized complexity. For an in-depth treatment of the subject we refer the
reader to other sources [5,8,12,21].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fized-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time O(f(k)n°) where f is a computable
function and ¢ is a constant independent of k. The function f is called the
parameter dependence, and algorithms with running time in this form are called
fixed-parameter algorithms. Since the parameter dependence is usually super-
polynomial, we will often give the running times of our algorithms in O* nota-
tion which suppresses polynomial factors. Hence the running time of an FPT
algorithm can be simply stated as O*(f(k)).

The exists a completeness theory which allows to obtain strong theoretical
evidence that a parameterized problem is not fixed-parameter tractable. This
theory is based on a hierarchy of parameterized complexity classes W[1] C
WI2] C ... where all inclusions are believed to be proper. If a parameterized
problem is shown to be W{[i]-hard for some ¢ > 1, then the problem is unlikely to
be fixed-parameter tractable, similarly to an NP-complete problem being solv-
able in polynomial time [5,8,12,21].
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3 Backdoors into Tractable Languages

This section is devoted to establishing the first general results for finding and
exploiting backdoors for VCSP. We first present the formal definition of back-
doors in the context of VCSP and describe how such backdoors once found,
can be used to solve the VCSP instance. Subsequently, we show how to detect
backdoors into a single tractable VCSP class with certain properties. In fact,
our proof shows something stronger. That is, we show how to detect heteroge-
neous backdoors into a finite set of VCSP classes which satisfy these properties.
The notion of heterogeneous backdoors is based on that introduced by Gaspers
et al. [15]. For now, we proceed with the definition of a backdoor.

Definition 2. Let ‘H be a fized class of VCSP instances over a domain D and
let P =(V,D,C) be a VCSP instance. A backdoor into H is a subset X C V
such that for each assignment 7 : X — D, the reduced instance P|. is in H.

We note that this naturally corresponds to the notion of a strong backdoor
in the context of Constraint Satisfaction and Satisfiability [27,28]; here we drop
the adjective “strong” because the other kind of backdoors studied on these
structures (so-called weak backdoors) do not seem to be useful in the general
VCSP setting. Namely, in analogy to the CSP setting, one would define a weak
backdoor of a VCSP instance P = (V, D,C) into H as a subset X C V such
that for some assignment 7 : X — D (i) the reduced instance P|, is in H and
(ii) 7 can be extended to an assignment to V' of minimum cost. However, in
order to ensure (ii) we need to compare the cost of 7 with the costs of all other
assignments 7/ to V. If X is not a strong backdoor, then some of the reduced
instances Pl restricted to x Will be outside of H, and so in general we have no
efficient way of determining a minimum cost assignment for it.

We begin by showing that small backdoors for globally tractable languages
can always be used to efficiently solve VCSP instances as long as the domain is
finite (assuming such a backdoor is known).

Lemma 1. Let ‘H be a tractable class of VCSP instances over a finite domain
D. There exists an algorithm which takes as input a VCSP instance P along with
a backdoor X of P = (V,D,C) into H, runs in time O*(|D|IX!), and solves P.

Proof. Let B be a polynomial-time algorithm which solves every P in H, i.e.,
outputs a minimum-cost assignment in P; the existence of B follows by the
tractability of H. Consider the following algorithm A. First, A branches on the
at most |D||X l-many partial assignments of X. In each branch, A then applies
the selected partial assignment 7 to obtain the instance P|, in linear time. In
this branch, A proceeds by calling B on P|,, and stores the produced assignment
along with its cost. After the branching is complete A reads the table of all of the
at most |D| IXI assignments and costs outputted by B, and selects one assignment
(say o) with a minimum value (cost) a. Let 7 be the particular partial assignment
on X which resulted in the branch leading to «. A then outputs the assignment
a U7 along with the value (cost) a. O
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Already for crisp languages it is known that having a small backdoor does not
necessarily allow for efficient (i.e., fixed-parameter) algorithms when the domain
is not bounded. Specifically, the W[1]-hard k-clique problem can be encoded into
a CSP with only k variables [23], which naturally contains a backdoor of size at
most k for every crisp language under the natural assumption that the language
contains the empty constraint. Hence the finiteness of the domain in Lemma 1
is a necessary condition for the statement to hold.

Next, we show that it is possible to find a small backdoor into VCSP[I]
efficiently (or correctly determine that no such small backdoor exists) as long
as I' has two properties. First, I" must be efficiently recognizable; it is easily
seen that this condition is a necessary one, since detection of an empty backdoor
is equivalent to determining whether the instance lies in VCSP[I']. Second, the
arity of I' must be bounded. This condition is also necessary since already in the
more restricted CSP setting it was shown that backdoor detection for a wide
range of natural crisp languages (of unbounded arity) is W[2]-hard [15].

Before we proceed, we introduce the notion of heterogeneous backdoors for
VCSP which represent a generalization of backdoors into classes defined in terms
of a single language. For languages I1,...,I}, a heterogeneous backdoor is a
backdoor into the class H = VCSP[I1] U --- U VCSP[I}]; in other words, after
each assignment to the backdoor variables, all cost functions in the resulting
instance must belong to a language from our set. We now show that detecting
small heterogenous backdoors is fixed-parameter tractable parameterized by the
size of the backdoor.

Lemma 2. Let I, ...,y 