
&hod I: Escaping F!rom Escal inima

Paul Morris
Intelli Corp

1975 El Camino Real West
Mountain View, CA 94040

morris@intellicorp.com

Abstract

A number of algorithms have recently been pro-
posed that use iterative improvement (a form
of hill-climbing) to solve constraint satisfaction
problems. These techniques have had dramatic
success on certain problems. However, one factor
limiting their wider application is the possibility
of getting stuck at non-solution local minima. In
this paper we describe an iterative improvement
algorithm, called Breakout, that can escape from
local minima. We present empirical evidence that
this method is very effective in cases where previ-
ous approaches have difficulty. Although Break-
out is not, theoretically complete, in practice it
appears to almost always find solutions ,for solv-
able problems. We prove that an idealized (but
less efficient) version of the algorithm is complete.

Introduction
Several recent papers have studied iterative improve-
ment methods for solving constraint satisfaction and
optimization problems. (See [Minton et al.
[Zweben 19901,

19901,
[S osic & Gu 19911, [Minton et al.

19921, [Selman, Levesque, & Mitchell 19921.) These
methods work by first generating an initial, flawed
“solution” (i.e., containing constraint violations) to a
problem. They then try to eliminate the flaws by mak-
ing local changes that reduce the total number of con-
straint violations. Thus, they perform hill-climbing in
a space where goodness is measured in terms of how
few constraints are violated, in the hope that even-
tually a point will be reached that provides an ac-
ceptable solution to the problem. The papers provide
empirical and analytical evidence that such methods
can lead to rapid solutions for importarit classes of
problems.

One drawback of such methods, however, is the pos-
sibility of becoming stuck at locally optimal points
that are not acceptable as solutions. (We will hence-
forth call these “local minima,” viewing the local
changes as movements on a cost surface where the
height reflects the current number of constraint vi-

olations.) While the above approaches incorporate
some techniques to mitigate this problem, these are
at best only moderately successful. For example, the
Minton et al. and Selman et al. algorithms can es-
cape from plateaus on the cost surface, since they al-
low random “sideways” local changes. However, they
still get caught in other local minima. This causes
them to miss solutions in many difficult SAT and IC-
coloring problems. While the random walk character
of the Zweben algorithm would seem to ensure almost
certain eventual movement to a solution, this kind of
probabilistic guarantee may not be very useful.’ The
Sosic and Gu approach formulates the search space in
a way that avoids local minima. However, the method
is specific to iv-queens, and has no obvious general-
ization to other problems.

Another remedy for the local minimum problem is
to repeatedly restart the iterative improvement pro-
cess from new random starting points until an accept-
able solution is reached, as is done in the Selman et al.
algorithm. This amounts to randomly searching the
local minima for a solution. Figure 1 illustrates why
this is computationally impractical in many cases. It-
erative improvement methods derive their power from
an assumption that the number of constraint viola-
tions is a rough indicator of the closeness to a solu-
tion. In general, we might expect some noise in the
estimate, suggesting a cost surface with a cross-section
something like that shown in the upper part of the fig-
ure. (The lowest point in the surface represents a so-
lution.) Now Fonsider an algorithm that gets stuck at
each of the loFa1 minima shown. Notice that repeated
restarting will perform no better on the upper surface
than it would on the lower surface shown in the figure.
That is, it fails to take advantage of the overall trend
of the surface. Looking only at the lower surface, it is
easy to see that the average time to a solution depends
on the number of local minima in a region around the
solution (and thus indirectly on the “volume” of the

‘As an analogy, if two flasks are connected by a tube,
the air molecules will, with probability 1, eventually all
pile up in one flask. However, the mean time before this
happens is enormous.

40 Morris

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Figure 1: Why escaping is better than restarting.

region). For CSPs, the dimension of the cost surface
(i.e., the number of states adjacent to a given state)
increases linearly with the size of the problem. This
makes the “volume” (and hence, presumably, the ex-
pense of a restart search) increase rapidly with the
size. Now consider an algorithm that can escape from
the local minima shown. This should perform better
on the upper surface, since it takes advantage of the
general trend towards a solution. For this type of sur-
face, the time required to find a solution should be
largely independent of the dimensionality.

It is known that for certain problems, like N-queens,
almost all the local minima are narrow plateaus (Mor-
ris [1992]). Th e a b ove analysis suggests that plateau-
escaping algorithms (like that of Minton et uZ.) would
solve such problems very efficiently. Indeed, this does
appear to be the case.

In this paper we present a deterministic algorithm
for solving finite constraint satisfaction problems us-
ing an iterative improvement method. The algorithm
includes a technique called breakout for escaping from
local minima. In the following sections, we will define
the algorithm, and compare its performance to that
of other methods. Finally, we will prove a theoretical
result that helps explain the success of the algorithm.

The reakout Algorithm

We now discuss the Breakout algorithm in more de-
tail and consider how it applies to a constraint sat-
isfaction problem (CSP). The essential features of
this algorithm were first introduced in Morris [1990],
where it was applied to the Zebra problem (see
Dechter [1990]) .2

Informally, a CSP consists of a set of variables, each
of which is assigned a value from a set called the do-
main of the variable. A state is a complete set of as-
signments for the variables. The solution states must
satisfy a set of constraints, which mandate relation-
ships between the values of different variables. We
refer the reader to Dechter [1990] for the formal def-
inition of a CSP. In this paper we will consider only
finite CSPs, i.e., where there is a finite set of variables,
and the domain of each variable is finite. Constraint
satisfaction problems are generally expressed in terms
of sets of tuples that are allowed. For our purposes,
it is convenient to instead focus attention on the no-
goods, i.e., the tuples that are prohibited.

The intuition for the breakout algorithm comes
from a physical force metaphor. We think of the vari-
ables as repelling each other from values that con-
flict. The variables move (i.e., are reassigned) under
the influence of these forces until they reach a posi-
tion of equilibrium. This corresponds to a state where
each variable is at a value that is repelled the least by
the current values of the other variables. In physical
terms, an equilibrium state is surrounded by a poten-
tial barrier that prevents further movement. If this is
not a solution, we need some way of breaking through
that barrier to reach a state of lower energy.

In an equilibrium state, the variables that are still
in conflict are stable because they are repelled from al-
ternative values at least as much as from their current
values. Suppose, however, the repulsive force associ-
ated with the current nogoods is boosted relative to
the other nogoods. As the repulsive force on current
values increases, at some point, for some variable, it
will exceed that applied against the alternative values.
Then the variable will no longer be stable, and the
iterative improvement procedure can continue. The
boosting process has effectively changed the topogra-
phy of the cost surface so that the current state is no
longer a local minimum. We refer to this as a breakout
from the equilibrium position.

In iterative improvement, the cost of a state is mea-
sured as the number of constraints that it violates, i.e.,
the number of nogoods that are matched by the state.
For the Breakout algorithm, we associate a weight
with each nogood, and measure the cost as the sum
of the weights of the matched nogoods. The weights
have 1 as their initial value. Iterative improvement
proceeds as usual until an equilibrium state (i.e., a lo-
cal minimum) is reached. 3 At that point, the weight of
each current nogood is increased (by unit increments)
until breakout occurs. Then iterative improvement
resumes. Figure 2 summarizes the algorithm.

We note that the algorithm does not specify the ini-
tial state. In our experiments we used random start-

2Selman and Kautz [1993] have independently devel-
oped a closely related method.

3Plateau points are treated just like any other local
minima. Thus, the algorithm relies on breakouts to move
it along plateaus.

Automated Reasoning 41

UNTIL current state is SOhLtiOn DO
IF current state is not a local minimum
THEN make any local change that reduces the total

cost
ELSE increase weights of all current nogoods
END

Figure 2: The Breakout Algorithm.

ing points. The results of Minton et al. suggest that
it may be worthwhile to use a greedy preproccessing
algorithm to produce an initial point with few viola-
tions. This will generally shorten the time required to
reach the first local minimum.

The algorithm also does not specify which local
change to make in a non-equilibrium state. In our
implementation, we simply use the first one found in
a left-to-right search.

Experimental Results

We tested the breakout algorithm on several types of
CSP, including Boolean 3-Satisfiability, and Graph K-
Coloring. We describe the results here.

Boolean Satisfiability

For Boolean 3-satisfiability, we generated random
solvable formulas. The results we report here are for
3-SAT problems where the clause density4 has the
critical value of 4.3 that has been identified as par-
ticularly difficult by Mitchell et al. [1992]. We use
the same method of generating random problems as
theirs except for the following: to ensure the problems
are solvable, we select a desired solution5 in advance
and modify the generation process so that at least one
literal of every clause matches it. Specifically, we re-
ject (and replace) any clauses that would exclude the
desired solution. 6 The variables are then initialized
to random values before starting the breakout solu-
tion procedure. Note that for Boolean satisfiability
problems, the nogoods are just the clauses expressed
negatively.

The results are shown in table 1 for a range of prob-
lem sizes, averaged over 100 trials in each case. We
wish to emphasize that the algorithm never failed to
find a solution in any of the trials. Note that the
growth of total hill-climbing (HC) steps appears to be
a little faster than linear, but less than quadratic. The
timing figures shown are the average elapsed time for

4The number of clauses divided by the number of
variables.

5By symmetry, it doesn’t matter which one.
‘In an earlier version of this paper, instead of using

a rejection method, the negated/unnegated status of one
literal was directly chosen to match the solution. That
method produced very easy problems.

42 Morris

Vars Breakouts HC steps Time (sec.)
100 60 168 3.2

Table I: Breakout on S-SAT problems with prear-
ranged solution.

Table 2: GSAT on similar problems.

the (combined) creation and solution of 3-SAT prob-
lems, running in Lisp on a Sun 4/ 110.

A recent paper [Williams & IIogg 19931 has noted
that using a prespecified solution when generating
random problems introduces a subtle bias in favor
of problems with a greater number of solutions, and
thus is likely to produce easier problems. (On the
other hand, it is a convenient way of producing large
known-solvable problems, which are otherwise diffi-
cult to obtain.) Selman et al. [1992] use a different
random generation process for testing their GSAT al-
gorithm. First they generate formulas that may or
may not be satisfiable. Unsolvable formulas are then
filtered out by an exhaustive search (using a variant
of the Davis-Putnam algorithm). Thus, the results in
table 1 cannot be directly compared to those reported
for GSAT. To obtain a better comparison, we reimple-
mented GSAT and tested it on problems generated in
the same way as those used for testing Breakout. The
results are shown in table 2 (averaged over 100 trials).
The Tries parameter here is the number of restarts
(including the final successful one). The Total Flips
parameter is the number of local changes needed to
reach a solution (summed over all the Tries), This
figure is roughly comparable to the number of hill-
climbing steps for the Breakout algorithm. In GSAT,
each Try phase is limited to hdm-Flips steps; for these
experiments, Max-Flips was set to n2/20, where n is
the number of variables.7

In terms of the machine-independent parameters,”
the problems we use are clearly easier for GSAT than
those on which it was originally tested. In particu-
lar, the Tries figure appears to stay roughly constant

‘An O(n2) setting was suggested by Bart Selman (per-
sonal communication).

‘The sun 4/110 is slower than the MIPS machine used
by Selman et ~1.

Density 3 4 5 6 7
Breakouts 6.4 36 74 23 8.1
HC steps 41 115 248 143 99

Table 3: Breakout for different clause densities

as the problem size increases. Nevertheless, the per-
formance of Breakout seems significantly better than
that of GSAT, and avoids the inconvenience of hav-
ing to set the Max-Flips parameter. We remark that
testing with a variant of the Davis-Putnam algorithm
shows exponential growth for these problems.

We also ran Breakout for different values of the
clause density, keeping the number of variables fixed
at 100. Instead of a peak centered at 4.3, we found
one in the neighbourhood of 5. (Testing at higher res-
olution indicates a range from 4.8 to 5.2 as the region
of greatest difficulty.) The results shown in table 3
are each averaged over 1,000 trials.

In preliminary testing of Breakout on problems gen-
erated in the same way as those in Selman et al. [1992],
average performance appears to degrade to exponen-
tial, like that of GSAT, and the peak difficulty occurs
at the 4.3 value of the density. Remarkably, the av-
erage appears dominated by a small number of very
difficult problems. The average over 100 trials has
been observed to fluctuate by an order of magnitude,
depending on how many of the very difficult problems
are encountered. These problems may have cost sur-
faces that more closely resemble the lower surface in
figure 1.

Graph Coloring

For graph K-coloring, we generated random solvable
K-coloring problems with n nodes and m arcs in essen-
tially the same way as described in Minton et al. [1992]
(and attributed there to Adorph and Johnson [1990]).
That is, we choose a coloring in advance that divides
the I< colors as equally as possible between the nodes.
Then we generate random arcs, rejecting any that vi-
olate the desired coloring, until m arcs have been ac-
cepted. The entire process is repeated until a con-
nected graph is obtained.

We used two sets of test data, one with K = 3 and
m= 2n, and the other with K = 4 and m = 4.7n.
The first set are the “sparse” problems for which
Minton et al. report poor performance of their Min-
Conflicts hill-climbing (MCHC) algorithm. The sec-
ond represents a critical value of the arc density iden-
tified by Cheeseman et al. 119911 as producing partic-
ularly difficult problems.

Table 4 shows the results on the first set of test data.
Each figure is averaged over 100 trials. The algorithm
never failed to find a solution on any of the trials.
We note the number of breakouts seems to increase
roughly linearly (with some fluctuation). The number
of transitions per breakout also appears to be slowly

Table 4: Breakout and MCHC on 3-coloring

Nodes 30 60 90 120 150
Breakouts 8 47 189 655 1390
HC steps 49 308 1257 3959 8873

Table 5: Breakout on 4-coloring

growing. This performance can be contrasted with
that of MCHC, which shows an apparent exponential
decline in the frequency with which solvable sparse 3-
coloring problems are solved (within a bound of 9n
steps), as the number of nodes increases.g

Table 5 shows the results on the second set of test
data. In this case, each figure is averaged over 100 tri-
als, except for N = 120 and 150, which were averaged
over only 99 trials each. This really does seem to be
a more difficult task for Breakout. For the omitted
trials, the algorithm failed to reach a solution even af-
ter 100,000 breakouts, and was terminated. This may
be a further instance of the phenomenon of a small
number of very difficult problems sprinkled among the
majority of easier problems.

A ,Complete Algorithm
The experimental results show that Breakout has re-
markable success on important classes of CSPs. This
is partially explained by the discussion regarding fig-
ure 1. However, one point has not yet been answered.
Since Breakout modifies the cost function, it appears
plausible that it could often get trapped in infinite
loops; yet the experimental data shows this almost
never occurs (at least, for randomly generated prob-
lems). In this section, we provide some insight into
this by showing that a closely related algorithm is the-
oretically complete; that is, it is guaranteed to even-
tually find a solution if one exists.

Consider the effect of a breakout on the cost SUP-
face: the cost of the current state, and perha.ps sev-
eral neighbouring states (that share nogoods with the
current state), is increased. However, all that is re-
ally needed to escape the local minimum is that the
cost of the current state itself increase. We are thus
led to consider an idealized version of Breakout where
that is the only state whose cost changes. To facil-
itate this, we assume every state has a stored cost
associated with it that can be modified directly. (The
initial costs would be the same as before.) This ideal-

‘We thank Andy Philips for providing this data.

Automated Reasoning 43

UNTIL current state is so&tion DO
IF current state is not a docal minimum
THEN make any local change that reduces the cost
ELSE increase stored cost of current state
END

Figure 3: The Fill Algorithm.

ized algorithm is summarized in figure 3. We will call
this the Fill algorithm because it tends to smoothly
fill depressions in the cost surface.

It turns out that this idealized version of Breakout
is complete, as we prove here.1° In the following, we
say two states are adjacent if they differ in the value
of a single variable, a state is visited when it occurs as
the current state during the course of the algorithm,
and a state is lifted when its stored cost is incremented
as a result of the action of the algorithm. Note that
lifting only occurs at a local minimum.

Theorem 1 Given a finite CSP, the Fill algorithm
eventually reaches a solution, if one exists.

Proof: Suppose the algorithm does not find a solu-
tion. Then we can divide the state space into states
that are lifted infinitely often, and states that are
lifted at most a finite number of times. Let S be the
set of states that are lifted infinitely often. A bound-
ary state of S is one that is adjacent to a state not in
S. To see that S must have a boundary state, con-
sider a path that connects any state in S to a solution.
Let s be the last state that belongs to S on this path.
Clearly s is a boundary state of S.

As the algorithm proceeds, there must eventually
come a time when all the following conditions hold.

1. The states outside S will never again be lifted.

2. The cost of each state in S exceeds the cost of every
state not in S.

3. A boundary state of S is lifted.

Notice that at the moment the last event occurs, the
boundary state involved must be a local minimum.
But this contradicts the fact that the state is adjacent
to a state not in S, which (by the second condition)
has a lower cost. Thus, the assumption that a solution
is not found must be false.

The Breakout algorithm may be regarded as a
“sloppy,” or approximate version of the Fill algorithm,
where some of the increase in cost spills onto neigh-
bouring states. Note that Breakout is much more effi-
cient because of the compact storage of the increased
costs.

“The reader may wonder whether a simpler algorithm
that just marked local minima, and never visited them
again, would be complete. It turns out this is not the
case because of the possibility of “painting oneself into a
corner.” Note that Fill may revisit states.

The Fill algorithm is itself related to the LRTA*
algorithm of Korf [1990], which has also been proved
complete. The latter algorithm has been studied in
the context of shortest path problems, rather than
CSPs. In a path problem, the goal state is usually
known ahead of time. Note, however, that this is
not essential as long as a suitable heuristic distance
function is available. Iterative improvement implic-
itly treats a CSP as a path problem by seeking a path
that transforms an initial state into a solution state,
thereby obtaining the solution state as a side product.
From this viewpoint, the number of conflicts serves as
a heuristic distance function. (However, this heuris-
tic is not admissible in the sense of the A* algorithm,
because it may occasionally overestimate the distance
to a solution.)

Both Fill and LRTA* have the effect of increasing
the stored cost of a state when at a local minimum.
We note the following technical differences between
the two algorithms.

1. LRTA* transitions to the neighbour of least cost,
whereas the Fill algorithm is satisfied with any
lower cost neighbour .

2. LRTA* may modify costs at states that are not local
minima, and may decrease costs as well as increas-
ing them.

Item 1 suggests Fill/Breakout is more suited for CSPs,
where the number of states adjacent to a given state
is generally very large.

One might consider using the Fill algorithm directly
to solve CSPs. However, the only obvious advantage
of this over Breakout is the theoretical guarantee of
completeness. It appears that, in practice, Breakout
almost always finds a solution anyway, and has a much
lower overhead with regard to storage and retrieval
costs. The Fill algorithm requires storage space pro-
portional to n x I, where n is the number of variables,
and 1 is the number of local minima encountered on
the way to a solution. By contrast, Breakout only
requires storage proportional to the fixed set of no-
goods derived from the specification of the problem.
Moreover, preliminary experiments suggest that Fill
requires many more steps than Breakout to reach a
solution. This may be due to a beneficial effect of
the cost increase spillovers in Breakout-presumably
depressions get filled more rapidly.

It is known that Breakout itself is not complete.
As a counterexample, consider a Boolean Satisfiability
problem with four variables, x, y, Z, w, and the clause

xvyvzvw

together with’the 12 clauses

-xvy 1xv.z 1xvw
1yvx 1yvz -yvw
l%VX Tzvy T%vw
-wvx 1wvy lWV%

44 Morris

Note that these clauses have a single solution, in which
all the variables are true.

Suppose the initial state sets all the variables to
false. It is not hard to see that the Breakout algorithm
will produce oscillations here, where each variable in
turn moves to true, and then back to false. ’

To understand this better, consider the three states
5’1, 5’2, and 5’s, such that x is true in S1, y is true in
Sz, and both x and y are true in Ss. All of the other
variables are false in each case.

Each time 5’1 occurs as an local minimum, the
weight of each of its nogoods is incremented. Thus,
the total cost of 5’1 increases by 3. Since S1 shares
two nogoods with Ss, the cost of the latter increases
by 2 at the same time. Similarly, when state Sz be-
comes a local minimum, the cost of 5’s increases by
2. This means that S’s undergoes a combined increase
of 4 during each cycle, which exceeds the increase for
each of Si and 5’2. Thus, Ss is never visited, and this
path to a solution is blocked.

Thus, the basic reason for incompleteness is that
the cost increase spillovers from several local minima
can conspire to block potential paths to a solution.
However, this kind of blockage requires nogoods to
interact locally in a specific “unlucky” manner. For
large random CSPs, the number of possible exits from
a region of the state space tends to be very large, and
the probability that all the exits get blocked in this
way would appear to be vanishingly small. This may
explain why we did not observe infinite oscillations in
our experiments.

conchlsions

The class of Boolean 3-Satisfiability problems is of im-
portance because of its central position in the family of
NP-complete problems. We have seen that the Break-
out algorithm performs very successfully on S-SAT
problems with prearranged solutions, including those
at the critical clause density. Breakout also performs
quite well on K-coloring problems, and appears supe-
rior to previous approaches for both of these classes.

We have provided analyses that explain both the ef-
ficiency of the algorithm, and its apparent avoidance
of infinite cycles in practice. In particular, an ideal-
ized version of the algorithm has been proved to be
complete.

Several possibilities for future work suggest them-
selves. The relationship to LRTA* ought to be ex-
plored in greater detail, particularly in view of the
attractive learning capabilities of LRTA*. One might
also consider applying some form of Breakout to other
classes of search problems where a cost measure can be
distributed over individual “flaws” in a draft solution.
More generally, the metaphor of competing forces that
inspired Breakout may encourage novel architectures
for other computational systems.

Acknowledgements The author is grateful to Rina
Dechter, Bob Filman, Dennis Kibler, Rich Korf, Steve
Minton and Bart Selman for beneficial discussions,
and would also like to thank the anonymous referees
for their useful comments.

eferences
Adorph, H. M., and Johnson, M. D. A discrete
stochastic neural network for constraint satisfaction
problems. In Proceedings of IJCNN-90, San Diego,
1990.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. M.
Where the really hard problems are. In Proceedings
of IJCAI-91, Sydney, Australia, 1991.

Dechter, R. Enhancement schemes for constraint
processing: backjumping, learning, and cutset de-
composition. Artificial Intelligence, 41(3), 1990.

Korf, R. E. Real-time heuristic search. Artificial
Intelligence, 42(2-3), 1990.

Minton, S.; Johnston, M. D.; Philips, A. B.; and
Laird, P. Solving large scale constraint satisfac-
tion and scheduling problems using a heuristic repair
method. In Proceedings of AAAI-90, Boston, 1990.

Minton, S.; ,Johnston, M. D.; Philips, A. B.; and
Laird, P. Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58(1-3), 1992.

Mitchell, D.; Selman, B.; and Levesque, H. Hard and
Easy Distribution of SAT Problems. In Proceedings
of AAAI-92, San Jose, California, 1992.

Morris, P. Solutions Without Exhaustive Search:
An Iterative Descent Method for Solving Binary
Constraint Satisfaction Problems. In Proceedings of
AAAI-90 Workshop on Constraint-Directed Reason-
ing, Boston, 1990.

Morris, P. On the Density of Solutions in Equilibrium
Points for the Queens Problem. In Proceedings of
AAAI-92, San Jose, California, 1992.

Selman, B.; Levesque, H.; and Mitchell, D. A New
Method for Solving Hard Satisfiability Problems. In
Proceedings of AAAI-92, San Jose, California, 1992,

Selman, B.,, and Kautz, H. Domain-Independent
Extensions to GSAT: Solving Large Structured Sat-
isfiability Problems. In Proceedings of IJCAI-93,
Chambery, France, 1993.

Sosic, R., and Gu, J. 3,000,OOO Queens in Less Than
One Minute. Sigart Bulletin, 2(2), 1991.

Williams, C.P., and Hogg, T. Exploiting the Deep
Structure of Constraint Problems. Preprint, Xerox
PARC, 1993.

Zweben, M. A Framework for Iterative Improvement
Search Algorithms Suited for Constraint Satisfaction
Problems. In Proceedings of AAAI-90 Workshop on
Constraint-Directed Reasoning, Boston, 1990.

