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Abstract 

A number of algorithms have recently been pro- 
posed that use iterative improvement (a form 
of hill-climbing) to solve constraint satisfaction 
problems. These techniques have had dramatic 
success on certain problems. However, one factor 
limiting their wider application is the possibility 
of getting stuck at non-solution local minima. In 
this paper we describe an iterative improvement 
algorithm, called Breakout, that can escape from 
local minima. We present empirical evidence that 
this method is very effective in cases where previ- 
ous approaches have difficulty. Although Break- 
out is not, theoretically complete, in practice it 
appears to almost always find solutions ,for solv- 
able problems. We prove that an idealized (but 
less efficient) version of the algorithm is complete. 

Introduction 
Several recent papers have studied iterative improve- 
ment methods for solving constraint satisfaction and 
optimization problems. (See [Minton et al. 
[Zweben 19901, 

19901, 
[S osic & Gu 19911, [Minton et al. 

19921, [Selman, Levesque, & Mitchell 19921.) These 
methods work by first generating an initial, flawed 
“solution” (i.e., containing constraint violations) to a 
problem. They then try to eliminate the flaws by mak- 
ing local changes that reduce the total number of con- 
straint violations. Thus, they perform hill-climbing in 
a space where goodness is measured in terms of how 
few constraints are violated, in the hope that even- 
tually a point will be reached that provides an ac- 
ceptable solution to the problem. The papers provide 
empirical and analytical evidence that such methods 
can lead to rapid solutions for importarit classes of 
problems. 

One drawback of such methods, however, is the pos- 
sibility of becoming stuck at locally optimal points 
that are not acceptable as solutions. (We will hence- 
forth call these “local minima,” viewing the local 
changes as movements on a cost surface where the 
height reflects the current number of constraint vi- 

olations.) While the above approaches incorporate 
some techniques to mitigate this problem, these are 
at best only moderately successful. For example, the 
Minton et al. and Selman et al. algorithms can es- 
cape from plateaus on the cost surface, since they al- 
low random “sideways” local changes. However, they 
still get caught in other local minima. This causes 
them to miss solutions in many difficult SAT and IC- 
coloring problems. While the random walk character 
of the Zweben algorithm would seem to ensure almost 
certain eventual movement to a solution, this kind of 
probabilistic guarantee may not be very useful.’ The 
Sosic and Gu approach formulates the search space in 
a way that avoids local minima. However, the method 
is specific to iv-queens, and has no obvious general- 
ization to other problems. 

Another remedy for the local minimum problem is 
to repeatedly restart the iterative improvement pro- 
cess from new random starting points until an accept- 
able solution is reached, as is done in the Selman et al. 
algorithm. This amounts to randomly searching the 
local minima for a solution. Figure 1 illustrates why 
this is computationally impractical in many cases. It- 
erative improvement methods derive their power from 
an assumption that the number of constraint viola- 
tions is a rough indicator of the closeness to a solu- 
tion. In general, we might expect some noise in the 
estimate, suggesting a cost surface with a cross-section 
something like that shown in the upper part of the fig- 
ure. (The lowest point in the surface represents a so- 
lution.) Now Fonsider an algorithm that gets stuck at 
each of the loFa1 minima shown. Notice that repeated 
restarting will perform no better on the upper surface 
than it would on the lower surface shown in the figure. 
That is, it fails to take advantage of the overall trend 
of the surface. Looking only at the lower surface, it is 
easy to see that the average time to a solution depends 
on the number of local minima in a region around the 
solution (and thus indirectly on the “volume” of the 

‘As an analogy, if two flasks are connected by a tube, 
the air molecules will, with probability 1, eventually all 
pile up in one flask. However, the mean time before this 
happens is enormous. 
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Figure 1: Why escaping is better than restarting. 

region). For CSPs, the dimension of the cost surface 
(i.e., the number of states adjacent to a given state) 
increases linearly with the size of the problem. This 
makes the “volume” (and hence, presumably, the ex- 
pense of a restart search) increase rapidly with the 
size. Now consider an algorithm that can escape from 
the local minima shown. This should perform better 
on the upper surface, since it takes advantage of the 
general trend towards a solution. For this type of sur- 
face, the time required to find a solution should be 
largely independent of the dimensionality. 

It is known that for certain problems, like N-queens, 
almost all the local minima are narrow plateaus (Mor- 
ris [1992]). Th e a b ove analysis suggests that plateau- 
escaping algorithms (like that of Minton et uZ.) would 
solve such problems very efficiently. Indeed, this does 
appear to be the case. 

In this paper we present a deterministic algorithm 
for solving finite constraint satisfaction problems us- 
ing an iterative improvement method. The algorithm 
includes a technique called breakout for escaping from 
local minima. In the following sections, we will define 
the algorithm, and compare its performance to that 
of other methods. Finally, we will prove a theoretical 
result that helps explain the success of the algorithm. 

The reakout Algorithm 

We now discuss the Breakout algorithm in more de- 
tail and consider how it applies to a constraint sat- 
isfaction problem (CSP). The essential features of 
this algorithm were first introduced in Morris [1990], 
where it was applied to the Zebra problem (see 
Dechter [1990]) .2 

Informally, a CSP consists of a set of variables, each 
of which is assigned a value from a set called the do- 
main of the variable. A state is a complete set of as- 
signments for the variables. The solution states must 
satisfy a set of constraints, which mandate relation- 
ships between the values of different variables. We 
refer the reader to Dechter [1990] for the formal def- 
inition of a CSP. In this paper we will consider only 
finite CSPs, i.e., where there is a finite set of variables, 
and the domain of each variable is finite. Constraint 
satisfaction problems are generally expressed in terms 
of sets of tuples that are allowed. For our purposes, 
it is convenient to instead focus attention on the no- 
goods, i.e., the tuples that are prohibited. 

The intuition for the breakout algorithm comes 
from a physical force metaphor. We think of the vari- 
ables as repelling each other from values that con- 
flict. The variables move (i.e., are reassigned) under 
the influence of these forces until they reach a posi- 
tion of equilibrium. This corresponds to a state where 
each variable is at a value that is repelled the least by 
the current values of the other variables. In physical 
terms, an equilibrium state is surrounded by a poten- 
tial barrier that prevents further movement. If this is 
not a solution, we need some way of breaking through 
that barrier to reach a state of lower energy. 

In an equilibrium state, the variables that are still 
in conflict are stable because they are repelled from al- 
ternative values at least as much as from their current 
values. Suppose, however, the repulsive force associ- 
ated with the current nogoods is boosted relative to 
the other nogoods. As the repulsive force on current 
values increases, at some point, for some variable, it 
will exceed that applied against the alternative values. 
Then the variable will no longer be stable, and the 
iterative improvement procedure can continue. The 
boosting process has effectively changed the topogra- 
phy of the cost surface so that the current state is no 
longer a local minimum. We refer to this as a breakout 
from the equilibrium position. 

In iterative improvement, the cost of a state is mea- 
sured as the number of constraints that it violates, i.e., 
the number of nogoods that are matched by the state. 
For the Breakout algorithm, we associate a weight 
with each nogood, and measure the cost as the sum 
of the weights of the matched nogoods. The weights 
have 1 as their initial value. Iterative improvement 
proceeds as usual until an equilibrium state (i.e., a lo- 
cal minimum) is reached. 3 At that point, the weight of 
each current nogood is increased (by unit increments) 
until breakout occurs. Then iterative improvement 
resumes. Figure 2 summarizes the algorithm. 

We note that the algorithm does not specify the ini- 
tial state. In our experiments we used random start- 

2Selman and Kautz [1993] have independently devel- 
oped a closely related method. 

3Plateau points are treated just like any other local 
minima. Thus, the algorithm relies on breakouts to move 
it along plateaus. 
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UNTIL current state is SOhLtiOn DO 
IF current state is not a local minimum 
THEN make any local change that reduces the total 

cost 
ELSE increase weights of all current nogoods 
END 

Figure 2: The Breakout Algorithm. 

ing points. The results of Minton et al. suggest that 
it may be worthwhile to use a greedy preproccessing 
algorithm to produce an initial point with few viola- 
tions. This will generally shorten the time required to 
reach the first local minimum. 

The algorithm also does not specify which local 
change to make in a non-equilibrium state. In our 
implementation, we simply use the first one found in 
a left-to-right search. 

Experimental Results 

We tested the breakout algorithm on several types of 
CSP, including Boolean 3-Satisfiability, and Graph K- 
Coloring. We describe the results here. 

Boolean Satisfiability 

For Boolean 3-satisfiability, we generated random 
solvable formulas. The results we report here are for 
3-SAT problems where the clause density4 has the 
critical value of 4.3 that has been identified as par- 
ticularly difficult by Mitchell et al. [1992]. We use 
the same method of generating random problems as 
theirs except for the following: to ensure the problems 
are solvable, we select a desired solution5 in advance 
and modify the generation process so that at least one 
literal of every clause matches it. Specifically, we re- 
ject (and replace) any clauses that would exclude the 
desired solution. 6 The variables are then initialized 
to random values before starting the breakout solu- 
tion procedure. Note that for Boolean satisfiability 
problems, the nogoods are just the clauses expressed 
negatively. 

The results are shown in table 1 for a range of prob- 
lem sizes, averaged over 100 trials in each case. We 
wish to emphasize that the algorithm never failed to 
find a solution in any of the trials. Note that the 
growth of total hill-climbing (HC) steps appears to be 
a little faster than linear, but less than quadratic. The 
timing figures shown are the average elapsed time for 

4The number of clauses divided by the number of 
variables. 

5By symmetry, it doesn’t matter which one. 
‘In an earlier version of this paper, instead of using 

a rejection method, the negated/unnegated status of one 
literal was directly chosen to match the solution. That 
method produced very easy problems. 
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Vars Breakouts HC steps Time (sec.) 
100 60 168 3.2 

Table I: Breakout on S-SAT problems with prear- 
ranged solution. 

Table 2: GSAT on similar problems. 

the (combined) creation and solution of 3-SAT prob- 
lems, running in Lisp on a Sun 4/ 110. 

A recent paper [Williams & IIogg 19931 has noted 
that using a prespecified solution when generating 
random problems introduces a subtle bias in favor 
of problems with a greater number of solutions, and 
thus is likely to produce easier problems. (On the 
other hand, it is a convenient way of producing large 
known-solvable problems, which are otherwise diffi- 
cult to obtain.) Selman et al. [1992] use a different 
random generation process for testing their GSAT al- 
gorithm. First they generate formulas that may or 
may not be satisfiable. Unsolvable formulas are then 
filtered out by an exhaustive search (using a variant 
of the Davis-Putnam algorithm). Thus, the results in 
table 1 cannot be directly compared to those reported 
for GSAT. To obtain a better comparison, we reimple- 
mented GSAT and tested it on problems generated in 
the same way as those used for testing Breakout. The 
results are shown in table 2 (averaged over 100 trials). 
The Tries parameter here is the number of restarts 
(including the final successful one). The Total Flips 
parameter is the number of local changes needed to 
reach a solution (summed over all the Tries), This 
figure is roughly comparable to the number of hill- 
climbing steps for the Breakout algorithm. In GSAT, 
each Try phase is limited to hdm-Flips steps; for these 
experiments, Max-Flips was set to n2/20, where n is 
the number of variables.7 

In terms of the machine-independent parameters,” 
the problems we use are clearly easier for GSAT than 
those on which it was originally tested. In particu- 
lar, the Tries figure appears to stay roughly constant 

‘An O(n2) setting was suggested by Bart Selman (per- 
sonal communication). 

‘The sun 4/110 is slower than the MIPS machine used 
by Selman et ~1. 



Density 3 4 5 6 7 
Breakouts 6.4 36 74 23 8.1 
HC steps 41 115 248 143 99 

Table 3: Breakout for different clause densities 

as the problem size increases. Nevertheless, the per- 
formance of Breakout seems significantly better than 
that of GSAT, and avoids the inconvenience of hav- 
ing to set the Max-Flips parameter. We remark that 
testing with a variant of the Davis-Putnam algorithm 
shows exponential growth for these problems. 

We also ran Breakout for different values of the 
clause density, keeping the number of variables fixed 
at 100. Instead of a peak centered at 4.3, we found 
one in the neighbourhood of 5. (Testing at higher res- 
olution indicates a range from 4.8 to 5.2 as the region 
of greatest difficulty.) The results shown in table 3 
are each averaged over 1,000 trials. 

In preliminary testing of Breakout on problems gen- 
erated in the same way as those in Selman et al. [1992], 
average performance appears to degrade to exponen- 
tial, like that of GSAT, and the peak difficulty occurs 
at the 4.3 value of the density. Remarkably, the av- 
erage appears dominated by a small number of very 
difficult problems. The average over 100 trials has 
been observed to fluctuate by an order of magnitude, 
depending on how many of the very difficult problems 
are encountered. These problems may have cost sur- 
faces that more closely resemble the lower surface in 
figure 1. 

Graph Coloring 

For graph K-coloring, we generated random solvable 
K-coloring problems with n nodes and m arcs in essen- 
tially the same way as described in Minton et al. [1992] 
(and attributed there to Adorph and Johnson [1990]). 
That is, we choose a coloring in advance that divides 
the I< colors as equally as possible between the nodes. 
Then we generate random arcs, rejecting any that vi- 
olate the desired coloring, until m arcs have been ac- 
cepted. The entire process is repeated until a con- 
nected graph is obtained. 

We used two sets of test data, one with K = 3 and 
m= 2n, and the other with K = 4 and m = 4.7n. 
The first set are the “sparse” problems for which 
Minton et al. report poor performance of their Min- 
Conflicts hill-climbing (MCHC) algorithm. The sec- 
ond represents a critical value of the arc density iden- 
tified by Cheeseman et al. 119911 as producing partic- 
ularly difficult problems. 

Table 4 shows the results on the first set of test data. 
Each figure is averaged over 100 trials. The algorithm 
never failed to find a solution on any of the trials. 
We note the number of breakouts seems to increase 
roughly linearly (with some fluctuation). The number 
of transitions per breakout also appears to be slowly 

Table 4: Breakout and MCHC on 3-coloring 

Nodes 30 60 90 120 150 
Breakouts 8 47 189 655 1390 
HC steps 49 308 1257 3959 8873 

Table 5: Breakout on 4-coloring 

growing. This performance can be contrasted with 
that of MCHC, which shows an apparent exponential 
decline in the frequency with which solvable sparse 3- 
coloring problems are solved (within a bound of 9n 
steps), as the number of nodes increases.g 

Table 5 shows the results on the second set of test 
data. In this case, each figure is averaged over 100 tri- 
als, except for N = 120 and 150, which were averaged 
over only 99 trials each. This really does seem to be 
a more difficult task for Breakout. For the omitted 
trials, the algorithm failed to reach a solution even af- 
ter 100,000 breakouts, and was terminated. This may 
be a further instance of the phenomenon of a small 
number of very difficult problems sprinkled among the 
majority of easier problems. 

A ,Complete Algorithm 
The experimental results show that Breakout has re- 
markable success on important classes of CSPs. This 
is partially explained by the discussion regarding fig- 
ure 1. However, one point has not yet been answered. 
Since Breakout modifies the cost function, it appears 
plausible that it could often get trapped in infinite 
loops; yet the experimental data shows this almost 
never occurs (at least, for randomly generated prob- 
lems). In this section, we provide some insight into 
this by showing that a closely related algorithm is the- 
oretically complete; that is, it is guaranteed to even- 
tually find a solution if one exists. 

Consider the effect of a breakout on the cost SUP- 
face: the cost of the current state, and perha.ps sev- 
eral neighbouring states (that share nogoods with the 
current state), is increased. However, all that is re- 
ally needed to escape the local minimum is that the 
cost of the current state itself increase. We are thus 
led to consider an idealized version of Breakout where 
that is the only state whose cost changes. To facil- 
itate this, we assume every state has a stored cost 
associated with it that can be modified directly. (The 
initial costs would be the same as before.) This ideal- 

‘We thank Andy Philips for providing this data. 
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UNTIL current state is so&tion DO 
IF current state is not a docal minimum 
THEN make any local change that reduces the cost 
ELSE increase stored cost of current state 
END 

Figure 3: The Fill Algorithm. 

ized algorithm is summarized in figure 3. We will call 
this the Fill algorithm because it tends to smoothly 
fill depressions in the cost surface. 

It turns out that this idealized version of Breakout 
is complete, as we prove here.1° In the following, we 
say two states are adjacent if they differ in the value 
of a single variable, a state is visited when it occurs as 
the current state during the course of the algorithm, 
and a state is lifted when its stored cost is incremented 
as a result of the action of the algorithm. Note that 
lifting only occurs at a local minimum. 

Theorem 1 Given a finite CSP, the Fill algorithm 
eventually reaches a solution, if one exists. 

Proof: Suppose the algorithm does not find a solu- 
tion. Then we can divide the state space into states 
that are lifted infinitely often, and states that are 
lifted at most a finite number of times. Let S be the 
set of states that are lifted infinitely often. A bound- 
ary state of S is one that is adjacent to a state not in 
S. To see that S must have a boundary state, con- 
sider a path that connects any state in S to a solution. 
Let s be the last state that belongs to S on this path. 
Clearly s is a boundary state of S. 

As the algorithm proceeds, there must eventually 
come a time when all the following conditions hold. 

1. The states outside S will never again be lifted. 

2. The cost of each state in S exceeds the cost of every 
state not in S. 

3. A boundary state of S is lifted. 

Notice that at the moment the last event occurs, the 
boundary state involved must be a local minimum. 
But this contradicts the fact that the state is adjacent 
to a state not in S, which (by the second condition) 
has a lower cost. Thus, the assumption that a solution 
is not found must be false. 

The Breakout algorithm may be regarded as a 
“sloppy,” or approximate version of the Fill algorithm, 
where some of the increase in cost spills onto neigh- 
bouring states. Note that Breakout is much more effi- 
cient because of the compact storage of the increased 
costs. 

“The reader may wonder whether a simpler algorithm 
that just marked local minima, and never visited them 
again, would be complete. It turns out this is not the 
case because of the possibility of “painting oneself into a 
corner.”  Note that Fill may revisit states. 

The Fill algorithm is itself related to the LRTA* 
algorithm of Korf [1990], which has also been proved 
complete. The latter algorithm has been studied in 
the context of shortest path problems, rather than 
CSPs. In a path problem, the goal state is usually 
known ahead of time. Note, however, that this is 
not essential as long as a suitable heuristic distance 
function is available. Iterative improvement implic- 
itly treats a CSP as a path problem by seeking a path 
that transforms an initial state into a solution state, 
thereby obtaining the solution state as a side product. 
From this viewpoint, the number of conflicts serves as 
a heuristic distance function. (However, this heuris- 
tic is not admissible in the sense of the A* algorithm, 
because it may occasionally overestimate the distance 
to a solution.) 

Both Fill and LRTA* have the effect of increasing 
the stored cost of a state when at a local minimum. 
We note the following technical differences between 
the two algorithms. 

1. LRTA* transitions to the neighbour of least cost, 
whereas the Fill algorithm is satisfied with any 
lower cost neighbour . 

2. LRTA* may modify costs at states that are not local 
minima, and may decrease costs as well as increas- 
ing them. 

Item 1 suggests Fill/Breakout is more suited for CSPs, 
where the number of states adjacent to a given state 
is generally very large. 

One might consider using the Fill algorithm directly 
to solve CSPs. However, the only obvious advantage 
of this over Breakout is the theoretical guarantee of 
completeness. It appears that, in practice, Breakout 
almost always finds a solution anyway, and has a much 
lower overhead with regard to storage and retrieval 
costs. The Fill algorithm requires storage space pro- 
portional to n x I, where n is the number of variables, 
and 1 is the number of local minima encountered on 
the way to a solution. By contrast, Breakout only 
requires storage proportional to the fixed set of no- 
goods derived from the specification of the problem. 
Moreover, preliminary experiments suggest that Fill 
requires many more steps than Breakout to reach a 
solution. This may be due to a beneficial effect of 
the cost increase spillovers in Breakout-presumably 
depressions get filled more rapidly. 

It is known that Breakout itself is not complete. 
As a counterexample, consider a Boolean Satisfiability 
problem with four variables, x, y, Z, w, and the clause 

xvyvzvw 

together with’the 12 clauses 

-xvy 1xv.z 1xvw 
1yvx 1yvz -yvw 
l%VX Tzvy T%vw 
-wvx 1wvy lWV% 
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Note that these clauses have a single solution, in which 
all the variables are true. 

Suppose the initial state sets all the variables to 
false. It is not hard to see that the Breakout algorithm 
will produce oscillations here, where each variable in 
turn moves to true, and then back to false. ’ 

To understand this better, consider the three states 
5’1, 5’2, and 5’s, such that x is true in S1, y is true in 
Sz, and both x and y are true in Ss. All of the other 
variables are false in each case. 

Each time 5’1 occurs as an local minimum, the 
weight of each of its nogoods is incremented. Thus, 
the total cost of 5’1 increases by 3. Since S1 shares 
two nogoods with Ss, the cost of the latter increases 
by 2 at the same time. Similarly, when state Sz be- 
comes a local minimum, the cost of 5’s increases by 
2. This means that S’s undergoes a combined increase 
of 4 during each cycle, which exceeds the increase for 
each of Si and 5’2. Thus, Ss is never visited, and this 
path to a solution is blocked. 

Thus, the basic reason for incompleteness is that 
the cost increase spillovers from several local minima 
can conspire to block potential paths to a solution. 
However, this kind of blockage requires nogoods to 
interact locally in a specific “unlucky” manner. For 
large random CSPs, the number of possible exits from 
a region of the state space tends to be very large, and 
the probability that all the exits get blocked in this 
way would appear to be vanishingly small. This may 
explain why we did not observe infinite oscillations in 
our experiments. 

conchlsions 

The class of Boolean 3-Satisfiability problems is of im- 
portance because of its central position in the family of 
NP-complete problems. We have seen that the Break- 
out algorithm performs very successfully on S-SAT 
problems with prearranged solutions, including those 
at the critical clause density. Breakout also performs 
quite well on K-coloring problems, and appears supe- 
rior to previous approaches for both of these classes. 

We have provided analyses that explain both the ef- 
ficiency of the algorithm, and its apparent avoidance 
of infinite cycles in practice. In particular, an ideal- 
ized version of the algorithm has been proved to be 
complete. 

Several possibilities for future work suggest them- 
selves. The relationship to LRTA* ought to be ex- 
plored in greater detail, particularly in view of the 
attractive learning capabilities of LRTA*. One might 
also consider applying some form of Breakout to other 
classes of search problems where a cost measure can be 
distributed over individual “flaws” in a draft solution. 
More generally, the metaphor of competing forces that 
inspired Breakout may encourage novel architectures 
for other computational systems. 
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