Revision ordering heuristics for the
Constraint Satisfaction Problem

Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre

CRIL (Centre de Recherche en Informatique de Lens)
CNRS FRE 2499
rue de 'université, SP 16
62307 Lens cedex, France

{boussemart ,hemery, lecoutre}@cril .univ-artois.fr

Abstract. For many years, arc consistency has been recognized as a
basic property of constraint networks. Among all algorithms that have
been proposed to establish arc consistency, AC3, and more precisely its
recent extensions, still remains competitive. In this paper, we present
three variants for AC3 based algorithms and we focus on the order in
which revisions are applied by them. For the three variants, which respec-
tively correspond to algorithms with an arc-oriented, variable-oriented
and constraint-oriented propagation scheme, we propose some original
revision ordering heuristics and adapt the ones defined in [21]. The ex-
perimentation which has been run both on binary and non-binary prob-
lems confirm that using such heuristics, when arc consistency is used as
a preprocessing or/and when it is maintained during search, turns out
to significantly reduce the number of constraint checks. Furthermore,
we show that the variable-oriented variant is guaranteed to benefit from
such heuristics in terms of cpu time.

1 Introduction

For many years, arc consistency has been recognized as a basic property of
constraint networks. Arc consistency guarantees that any value of the domain of
a variable can be found in, at least, a support of any constraint. This property
can be established by an algorithm to make a constraint network arc consistent
but it can also be maintained during the search of a solution.

Many algorithms have been proposed to establish arc consistency. One of the
very first proposals is the algorithm AC3 [12]. This coarse grained algorithm
involves applying successive revisions of arcs, i.e., of pairs (C, X)) composed of a
constraint C' and of a variable X belonging to the set of variables of C. Later,
other algorithms such as AC4 [14], AC6 [2] and ACT [3] have been introduced.
These fine grained algorithms involve applying successive revisions of “values”,
i.e., of triplets (C, X, a) composed of an arc (C,X) and of a value a belonging
to the domain of X.

Even if, theoretically, AC3, unlike AC4, AC6 and AC7, has not an optimal
worst case time complexity (O(md?®) for AC3 and O(md?) for AC4, AC6 and

ACT7 where m and d respectively denote the number of constraints and the size
of the uniform domains) and if, in practice, AC3 is not always as fast as AC6
and AC7, AC3 has the great advantage to be easily implemented.

On the other hand, some recent extensions of AC3 have been developed
which, while preserving the simplicity of AC3, turn out to be as competitive
as fine grained algorithms (with, in particular, a worst case time complexity
in O(md?) for most of them). These new algorithms are called AC2000 [5],
AC2001/3.1[5,22], AC34 [18], AC3.2 [11] and AC3.3 [11]. It is also interesting to
note that with respect to some desirable properties of arc consistency algorithms,
it is possible to draw a parallel [5] between AC2001/3.1 and AC6 and another [11]
between AC3.3 and AC7. Then, it clearly appears that AC3 based algorithms
are up-to-date algorithms to establish arc consistency.

In this paper, we are interested in the order in which revisions are applied
by AC3-based algorithms. First, we present three variants which respectively
correspond to algorithms with an arc-oriented, variable-oriented and constraint-
oriented propagation scheme. The first one is the most commonly presented,
the second one corresponds to the algorithm proposed by [13,6], and the third
one is original. Even if, at first glance, all these variants seems to be equivalent,
we shall emphasize a significant difference of their respective behaviour when
considering different revision ordering heuristics. As far as we are aware, the
only works which concern such heuristics are [21,8, 18] which focus on the arc-
oriented variant to solve binary problems, and [15] which focuses on fine-grained
algorithms.

Then, our contribution is the study of various revision ordering heuristics
with respect to the use of the three variants before and/or during the search of
a solution for binary and non binary problems. In particular, we propose some
original heuristics based on the proportion of removed values in the different
domains and on the current domain size of the different constraints. Also, we
adapt to the three proposed variants, the heuristic of [21] which is based on the
current size of the domains. Experimental results show that using such heuristics
before or/and during the search of a solution can be quite efficient in terms of
constraint checks. Furthermore, we show that the variable-oriented variant is
guaranteed to benefit from such heuristics in terms of cpu time.

This paper is organized as follows. Section 2 introduces some preliminaries.
In Section 3, three variants of the basic arc consistency algorithm are described.
Some revision ordering heuristics are presented in Section 4. Before concluding,
Section 5 gives an experimental evaluation.

2 Preliminaries

Let us introduce some notations frequently used in the rest of the paper:

— | S| denotes the cardinality of a set S, i.e. the number of elements of S,

- Hle S; denotes the Cartesian product over k sets Si,...,Sk, i.e. the set
{(ar,...,ar) |a; € S;,1 <i < kY,

Definition 1. A constraint network is a pair (2 ,€) where:

- 2 ={X1,..., Xy} is a finite set of n variables such that each variable X;
has an associated domain dom(X;) denoting the set of values allowed for X;,

- € ={C4,...,Cy} is a finile set of m constrainls such thal each constraint
C; has an associated relation rel(C;) denoting the set of tuples allowed for
the variables vars(C;) involved in the constraint C;.

We shall say that a constraint C' involves (or binds) a variable X if and only
if X belongs to vars(C). The arity of a constraint C' is the number of variables
involved in C| i.e., the number of variables in vars(C'). A binary constraint
only involves 2 variables. The domain of a constraint C, denoted dom(C'), is
the Cartesian product H§:1 dom(X;;), where C' is a k-ary constraint such that
vars(C) = {X;,,..., X, }. For any element t = (a;,,...,qa;,), called k-tuple, of
dom(C), t[X;;] denotes the value a;;. A k-tuple ¢ is said to be a support of C
iff t € rel(C) and is said to be a support of (X,a) in C iff ¢ is a support of C
such that ¢[X] = a. Determining if a tuple is allowed by a constraint C' (i.e. is a
support of (') is called a constraint check.

An instance of the Constraint Satisfaction Problem (CSP) is defined by a
constraint network. A CSP instance is said to be satisfiable iff the constraint
network to which it corresponds admits a solution, and unsatisfiable otherwise.
Solving a CSP instance involves either finding one (or more) solution or de-
termining its unsatisfiability. A solution is an assignment of values to all the
variables such that all the constraints are satisfied.

To solve a CSP instance, a depth-first search algorithm with backtracking can
be applied, where at each step of the search, a variable assignment is performed
followed by a filtering process called constraint propagation. Usually, constraint
propagation algorithms, which are based on some constraint network properties
such as arc-consistency, remove some values which can not occur in any solution.
Modifying the domains of a given constraint network in order to get it arc
consistent involves performing constraint checks.

Definition 2. Let P = (¥,€) be a CSP, C € ¢, V € vars(C) and a €
dom (V). (V,a) is said to be consistent wrt C' iff there exists a support of (V,a)
in C. C is said to be arc-consistent iff YV € vars(C), Ya € dom(V'), (V,a) is
consistent wrt C. P is said to be arc consistent iff VC € €, C is arc-consistent.

3 ACS3 based algorithms

In this section, we present the basic coarse-grained algorithm to establish arc
consistency, namely, AC3 [12]. Even if fine-grained algorithms such as AC4 [14],
AC6 [2] and ACT [3] have been introduced, the simplicity and relative efficiency
(e.g., [20]) of AC3 have contributed to the fact that it is not still out of date. Fur-
ther, some recent improvements, which are quite competitive with fine-grained
algorithms, have been proposed. These new coarse-grained algorithms (or AC3
based algorithms) respectively correspond to AC2000 [5], AC2001/3.1 [5,22],

Algorithm 1 arc-oriented AC3

1 Q+{(C,X)| CeFNX €vars(C)}
2: while Q # () do
3: pick (C,X) in Q
nbRemovals + revise(C, X)
if nbRemovals > 0 then
if dom(X) = 0 then return FAILURE
else Q + QU{(C", X") | X € vars(C') A X' € vars(ChYAX #X'NC #C'}
8: end if
9: end while
10: return SUCCESS

Algorithm 2 revise(C : Constraint, X : Variable) : integer

1: nbRemovals + 0

2: for each a € dom(X) do

3: if seekSupport(C, X, a) = false then
4 remove a from dom(X)

5: nbRemovals < nbRemovals + 1

6 end if

7: end for

8: return nbRemovals

AC3, [18], AC3.2 [11] and AC3.3 [11]. Even if, for the sake of simplicity, from
now on, we shall be mainly concerned with AC3, all what follows can be adapted
to other coarse-grained algorithms.

As already stated, AC3 is a coarse-grained algorithm, that is to say, an al-
gorithm whose principle is to apply successive revisions of pairs (C, X), called
arcs, composed of a constraint C' and of a variable X belonging to the set of
variables of C. Each revision of an arc (C,X) aims at removing the values of
dom(X) without any support in C.

AC3 requires the management of a set @) recording the revisions to be still
performed. Basically, @ corresponds to a set of arcs [12]. However, it is possible to
consider () as a set of variables [13,6,5,22], and also, as a set of constraints. We
present these three alternatives in the general context of non-binary constraint
networks.

3.1 Arc-oriented AC3

First, we describe the variant of AC3 which uses an arc-oriented propagation
scheme. This variant, which is simple, natural and the most commonly presented,
is depicted in Algorithm 1. Initially, all arcs (C, X) are put in a set Q. Then,
each arc is revised in turn, and when a revision is effective (at least one value
has been removed), the set () has to be updated. A revision is performed by a
call to the function revise(C, X), depicted in Algorithm 2, and removes values of
dom(X) that have become inconsistent with respect to C. This function returns
the number of removed values. On the other hand, the function seekSupport

Algorithm 3 variable-oriented AC3
LQQ+«{X|Xe2}

2: VC € €,VX € vars(C),ctr(C,X) «+ 1
3: while Q # 0 do

4: pick X in Q

5: for each C | X € vars(C) do

6: if ¢tr(C, X) = 0 then continue

7 for each Y € vars(C) do

8: if needsNotBeRevised(C,Y) then continue
9: nbRemovals + revise(C,Y)

10: if nbRemovals > 0 then

11: if dom(Y) = 0 then return FAILURE
12: Q+— QuU{Y}

13: for each C' | C' # C AY € vars(C') do
14: ctr(C',Y) «+ ctr(C',Y) + nbRemovals
15: end for

16: end if

17: end for

18: for each Y € vars(C) do ctr(C,Y) < 0

19: end for

20: end while
21: return SUCCESS

Algorithm 4 needsNotBeRevised(C : Constraint, X : Variable) : boolean
1: return (ctr(C,X) > 0 and 3Y € vars(C) | Y # X Actr(C,Y) > 0)

determines whether there exists a support of (X, a) in C. According to the the
implementation of this function, we obtain the different AC3 based algorithms.
The algorithm is stopped when the set) becomes empty.

3.2 Variable-oriented AC3

The second variant of AC3, uses a variable-oriented propagation scheme as pro-
posed by [13,6]. The principle is to insert in) all variables with reduced domains.
Initially, all variables are inserted in (). Then, iteratively, each variable X of @
is selected and each constraint C' binding X is considered. Then, it is possible to
perform the revision of all arcs (C,Y") with ¥ # X. When the revision of an arc
(C,Y) involves the removal of some values in dom(Y"), the variable Y is added
to Q.

The reader can notice that the description of Algorithm 3 differs slightly
from the principle presented just above. Indeed, to avoid useless treatments, it
is necessary to introduce some counters in order to determine whether a given
revision is essential. For instance, let us assume a binary constraint C; ; binding
the variables X; and Xj. If the selection of the variable X; involves an effective
revision of (Cj ;,X;) (i.e., the removal of, at least, a value from the domain of
X;), and, if next, the selection of X; involves an effective revision of (C; ;, X;),

Algorithm 5 constraint-oriented AC3

1. Q+{C|Ce%}

2: VC € €,VX € vars(C),ctr(C,X) «+ 1

3: while Q # 0 do

4: pick C'in Q

5: for each Y € vars(C) do

6: if needsNotBeRevised(C,Y) then continue
7 nbRemovals < revise(C,Y)

8: if nbRemovals > 0 then

9: if dom(Y) = 0 then return FAILURE
10: for each C' | C' #C AY € vars(C') do
11: Q-+ Qu{C'}

12: ctr(C',Y) + ctr(C',Y) + nbRemovals
13: end for

14: end if

15: end for

16: for each Y € vars(C) do ctr(C,Y) < 0
17: end while
18: return SUCCESS

then there is no need to perform again the revision of (C; ;, X;) if X; is again
selected and if the domain of X; has not been modified elsewhere. As another
illustration (as expressed in [5]), let us assume a ternary constraint C; ;5. If the
selection of the variable X; involves a revision of (C; &, X;) and of (C; j x, Xy)
then there is no need to perform again the revision of (C; j x, Xj) if the variable
X is selected and if the domains of X; and of X; have not been modified
elsewhere.

By associating a counter ctr(C, X)) with any arc, it is possible to determine
which revisions are relevant. The value of ctr(C, X) denotes the number of re-
moved values in dom(X) since the last revision involving C'. Initially, this value
is arbitrarily fixed to 1 for all counters. Then, when a variable X is selected and
when a constraint C' binding X is considered, two situations can happen. If X
is the only variable in vars(C) such that ctr(C,X) > 0, then the revision of
all arcs (C,Y) with Y # X is performed. Otherwise (second situation), all arcs
(C,Y), including Y = X, are revised. Indeed, it is also relevant to revise (C, X)
since at least another variable of C' has been modified elsewhere. This is the
function needsN ot Be Revised, described by Algorithm 4 which allows determin-
ing whether the revision of an arc is relevant. When taking into consideration
the second situation and the fact that all counters related to C' are reinitialized
to 0 after C' has been considered, the test of the line 8 of Algorithm 3 becomes
meaningful: it allows avoiding useless revisions.

3.3 Constraint-oriented AC3

The third AC3 variant uses a constraint-oriented propagation scheme (as
AC3,; can be regarded in the binary case) and is depicted in Algorithm 5. The

principle is to insert in) all constraints for which at least a revision is necessary.
Initially, all constraints are inserted in (). Then, iteratively, each constraint C'
of @ is selected and each variable X of vars(C) is considered. Similarly as
the variable-oriented variant, the introduction of some counters allows avoiding
useless revisions.

4 Revision ordering heuristics

At this step, it is natural to wonder about the practical interest of the variable-
oriented and constraint-oriented variants. Indeed, as the three variants seem to
be equivalent, we could have just introduce the arc-oriented one since it is simpler
and more natural. The answer is that the nature of the elements of the set () can
have important repercussions on the overall behaviour of the algorithms. From a
certain perspective, the variable-oriented and constraint-oriented variants have a
grain bigger than the arc-oriented one. Instead of being a drawback (as it seems
to be at first sight), it can be in fact an advantage. This is what we are going
to show by introducing so-called revision ordering heuristics, i.e., heuristics to
order the revisions to be applied by AC3 (or its extensions)®.

Some of the heuristics that we introduce here are original and some other are
simply taken from or adaptations of previous works (a discussion about related
work is proposed later in this section). But, first, we present the revision ordering
heuristic fifo that can be defined without any ambiguity whatever variant is
chosen. This heuristic involves selecting the oldest element of @ (viewed as a
queue).

On the other hand, from now on, we shall introduce the composition of
heuristics whose operator is denoted o (as in [19]). A composed heuristic hs o hy
means that the heuristic hy is used first, and then, if necessary, the heuristic hs
is used to break ties (a tie is a set of elements that are considered as equivalent
by an heuristic). For all heuristics (including composed ones) presented below,
when a tie is still to be broken, the oldest element of the tie is selected (using
implicitly fifo). Note that other “final” tie-breakers could be studied.

4.1 Variable-oriented heuristics

Each of the variable-oriented heuristics, i.e., heuristics adapted to the variable-
oriented variant, selects a variable X from () with:

— dom": the smallest current domain size,
— remV: the greatest proportion of removed values in its domain.
— ddeg: the greatest current (also called dynamic) degree,

In some way, dom” and rem" are complementary. The former is based on
the number of remaining values whereas the latter is based on the number (pro-
portion) of removed values (since the last selection of the variable). Note that

! We think that the term of “revision ordering heuristics” is more appropriate than
“ordering heuristics” [21], “constraint ordering heuristics” [8] or “arc heuristics” [18].

considering a raw number of removed values is in favour of large domains (since
there are more opportunities to remove values) and, consequently, usually en-
tails more constraint checks. This is the reason why we have preferred using
proportions.

4.2 Constraint-oriented heuristics

Each of the constraint-oriented heuristics, i.e. heuristics adapted to the constraint-
oriented variant, selects a constraint C' from @ with:

— dom®: the smallest current domain size,
— rem?®: the greatest proportion of removed values in its domain.

The heuristics dom® and rem® are similar to dom” and rem". Remember that
we call current domain of a constraint C' the Cartesian product of the current
domains associated with the variables in vars(C). It must not be confused with
the constraint size or satisfiability of [21]. Hence, the removed values from the
domain of a constraint correspond to the removed tuples due to the modification
of the domains of some variables. For instance, let us consider a binary constraint
C;,; involving two variables X; and X;. Assume that, at last selection of C; ;, the
domains of X; and X; had 10 values. Then, if, at current selection, the domains
respectively have 6 and 8 values, the size of the current domain Cj;; is 48 and
the proportion of removed values is 52/100.

4.3 Arc-oriented heuristics

Each of the arc-oriented heuristics, i.e., heuristics adapted to the arc-oriented
variant, selects an arc (C, X) from @ with:

— dom": the variable which has the smallest current domain size,

— dom®/dom": the smallest ratio between the current domain size of the con-
straint (i.e., the number of tuples in the Cartesian product built from the
current domains attached to the variables involved in the constraint) and
the current domain size of the variable,

— ddeg o dom”: the variable which has the smallest current domain size, and
in case of equivalence, the greatest current degree.

4.4 Related work

In this subsection, we present some works related to revision ordering heuristics.
First, let us cite the seminal work of [21] which propose different revision ordering
heuristics to be used with the arc-oriented variant of AC3. These heuristics
devised for binary problems are based on three major features:

— the number of supports in each constraint (called satisfiability),
— the number of values in the domain of each variable,
— the degree of each variable.

The heuristic sat up is based on satisfiability and allows to obtain interest-
ing results in terms of constraint checks. However, determining the number of
supports in each constraint and maintaining this information is not a very prac-
tical approach. This observation has been stated by [8] which propose another
heuristic k.. based on the number of supports in each constraint in order to
minimizing the constrainedness of the resulting subproblem. Some experiments
[8] show that k., which is time expensive, performs less constraint checks than
sat up and dom j up at the phase transition of arc consistency.

The heuristic dom j up selects the arc (C; j, X;) such that the variable X, i.e.
the variable relaxed against, has the smallest current domain size. With respect
to our notation, this heuristic corresponds to dom¢/dom? (when considering
binary problems). There is also a correspondence between dom j up and the
heuristic dom? defined for the variable-oriented variant.

The heuristic deg down which corresponds to ddeg is particularly disappoint-
ing in the experiments of [21]. We have made the same observation.

On the other hand, [15] mentions the issue of ordering the removed values
which are put in different queues (a queue per variable). However, this approach
is specific to fine-grained algorithms. [10] propose an original approach by man-
aging propagation events associated with variables. Each event entails the im-
mediate propagation of some constraints binding the variable associated with
this event. A layered propagation architecture schedules the propagation of con-
straints according to a compromise between the provided information and the
computation cost.

Finally, let us mention the work of [18] which emphasizes the importance
of revision ordering heuristics as well as so-called domain heuristics. In [19], a
precise revision ordering heuristic, called comp is presented as being tuned for
AC34 (an arc-oriented AC3-based variant). It is a heuristic composed of 6 basic
criteria. Roughly speaking, it corresponds to (when only considering the two first
criteria) ddeg o dom”.

5 Experiments

To compare the efficiency of the heuristics introduced in this paper, we have
implemented them in Java and performed some experiments (run on a PC Pen-
tium IV 2,4GHz 512MB under Linux) with respect to random, academic and
real-world problems. Performances have been measured in terms of the CPU
time in seconds (time), the number of constraint checks (#ccks) and the num-
ber of times (#rohs) a revision ordering heuristic has to select an element in the
propagation set (). The arc consistency algorithm that has been used for our
experimentation is AC3.2 [11].

5.1 Stand-alone arc consistency

First, we have considered stand alone arc consistency which involves making
arc consistent a CSP instance (that is to say, no search is performed). The first

10

P1 P2

variant heuristic |time | #ccks |#rohs| time | #ccks |#rohs
variable |fifo 0.064|94,012| 150/0.130|326, 752 67
variable |dom" 0.065|94,012| 150/0.030| 63,540 55
variable |rem" 0.065|94,012| 150/0.037| 85,152 26
variable |ddeg 0.066|94,012| 150/0.049|102, 379 36
arc fifo 0.071|94,012| 1000|0.177|441,859| 927
arc dom” 0.094|94,012| 1000{0.120|204,346| 895
arc dom®/dom” |0.195/94,012| 1000{0.297|113, 798| 1, 060
arc ddeg o dom”|0.151|194,014| 1000(0.119|115,277| 490
constraint|fifo 0.063|94,012| 500|0.188|484,108| 600
constraint|dom* 0.096|94,012| 500(0.079| 42,884| 463
constraint|rem® 0.103|94,012| 500{0.053| 77,299 131

Table 1. Stand alone arc consistency on random instances

series of experiments that we have run corresponds to some random problems.
In this paper, a class of random CSP instances will be characterized by a 4-tuple
<n,d,m,t> where n is the number of variables, d the uniform domain size, m
the number of binary constraints and ¢ the number of unallowed tuples.

We present the results, given in Table 1 and Table 2, about some random
binary instances studied in [3,5,22]. More precisely, 4 classes, denoted here
P1, P2, P3 and P4, have been experimented. P1 = <150, 50,500, 1250> and
P2 = <150, 50, 500, 2350> respectively correspond to classes of under-constrained
and over-constrained instances. P3=<150, 50, 500, 2296> and P4=<50, 50, 1225,
2188> correspond to classes of instances at the phase transition of arc consis-
tency for sparse problems and for dense problems, respectively. For each class,
mean results are given for 50 generated instances using the generator of [7].

P3 P4

variant heuristic | time | #ccks |#rohs|time | #ccks | #rohs
variable |fifo 0,244|546,900| 701|0.446|911, 748 203
variable |dom" 0.219]478,135| 708|0.426|857, 789 225
variable |rem” 0.233|519,207| 525(0.433|888, 890 173
variable |ddeg 0.253|500,287| 669(0.473|911, 748 203
arc fifo 0.266|569, 228| 6,068|0.517(944,679(12, 659
arc dom” 0.333|518, 310 6,301|1.034(867, 232{15, 195
arc dom® /dom" | 0.903|506, 318| 7,456|4.423|882, 329|16, 926
arc ddeg o dom"|0.490(493,795| 5, 781|1.706|867, 232|15, 195
constraint|fifo 0.252]561, 398| 3, 740(0.460(927,966| 7,571
constraint|dom® 0.539|459, 739| 5, 652|2.098(823, 478(13, 051
constraint|{rem® 0.496|527,545| 2,740(2.095(897, 306| 6,055

Table 2. Stand alone arc consistency on random instances

One can immediately notice that the number of heuristic solicitations (#rohs)

is far less important for the variable-oriented variant. In fact, when a variable is

11

SCEN#05 SCEN#08

variant heuristic |time| #ccks |#rohs| time | #ccks |#rohs
variable |fifo 0.276(899,793| 1,184| 0.243| 830,824 212
variable |dom" 0.159(294, 882 625 0.095 39,795 69
variable |rem" 0.228]585, 194 815 0.119| 150,047 64
variable |ddeg 0.286(652, 228 943| 0.214| 365,830 125
arc fifo 0.315(981, 555(19, 701| 0.560(2,178,674|17,040
arc dom” 2.291(742,330|20,731| 4.478| 876,989| 8,067
arc dom® [dom" |7.921|251,064| 8,567| 4.662 30,674| 816
arc ddeg o dom"|4.916|687,107(18,660(10.099| 904, 712| 8,748
constraint|fifo 0.303(964, 764|12,000| 0.461(1,877,001| 5,508
constraint|dom® 4.277|261,892(9,010| 2.043 25,028 781
constraint|rem® 4.890(298, 310| 7,036| 3.112 74,614| 984

Table 3. Stand alone arc consistency on RLFAP instances

selected in the propagation set (), it entails a number of revisions related to the
degree of the variable. On the other hand, for the arc-oriented variant, when an
arc is selected, it just entails one revision, and, for the constraint-oriented variant,
when a k-ary constraint is selected, it entails at most k revisions. Hence, the
variable-oriented variant has a bigger grain than the other variants: the number
of constraints checks performed after each solicitation is far more important.

We also observe that the variable-oriented variant clearly appears to be the
fastest one when using some revision ordering heuristics, and, more precisely,
the heuristic dom?. This behaviour can be explained as follows. The variable-
oriented variant requires less solicitations, as stated above, and each solicitation
is cheap. Indeed, the overhead of picking the best element in the propagation
set is limited for the variable-oriented variant, unlike other ones, since there are
less variables than constraints and arcs.

In terms of constraint checks, the best heuristics are the constraint-oriented
heuristic dom® and the variable-oriented dom" whereas the worse heuristics are
the three versions of fifo. However, the time performance of these “standard”
heuristics is not too bad as, systematically, the first element of the propagation
set is selected.

Next, we have tested real-world instances, taken from the FullRLFAP archive?,
which contains instances of radio link frequency assignment problems. Table 3
presents the results obtained for two instances, denoted SCEN#05 and SCEN#08,
studied in [3,18,22], and confirms all remarks expressed above. Note that there
is a gap between the standard heuristics fifo and some other heuristics with
respect to the number of constraints checks required for SCEN#08. A similar
behaviour has been observed by [18].

5.2 Maintaining arc consistency during search

As it appears that one of the most efficient complete search algorithms is the
algorithm which Maintains Arc Consistency during the search of a solution [16,

? We thank the Centre d’Electronique de I’Armement (France).

12

bqwh-15-106 QL Q2
variant heuristic |time | #ccks | time #ccks | time | #ccks
variable |fifo 4.68(1.601M| 166.43|100.192M| 44.21|15.321M
variable |dom" 3.87(1.211M| 122.77| 66.270M| 39.86| 8.860M
variable |rem” 4.11(1.270M| 132.22| 77.955M| 45.59|11.292M
variable |ddeg 5.57|1.879M| 194.13|102.730M| 71.76{14.565M
arc fifo 4.76(1.6156M| 173.26|{103.099M| 44.20|15.639M
arc dom” 6.28(0.921M| 251.91| 60.276M| 69.39| 9.329M
arc dom®/dom" |26.81|1.193M| 932.59| 66.183M|124.54| 8.858M
arc ddeg o dom"”|28.91|1.0156M|1,170.90| 60.305M|222.01| 9.317M
constraint| fifo 4.66|1.599M| 169.65(100.915M| 43.24|15.444M
constraint|dom* 11.41]0.858M| 491.94| 52.753M| 94.46| 7.060M
constraint|rem* 19.28|1.306M| 809.09| 80.343M |144.21|11.528 M

Table 4. Maintaining arc consistency on random instances

4], we have implemented a MAC3.2 version which integrates the dom/ddeg [4,

17] variable ordering heuristic, and the lexicographic value ordering heuristic.
First, to study the behaviour of the different heuristics wrt problems involving

random generation, we have considered the following classes of instances :

— one class, denoted bqwh-15-106, of 100 satisfiable balanced Quasigroup With
Holes (bQWH) instances [9] of order 15 with 106 holes,

— two classes Q1=<80, 10,400, 35> and Q2=<900, 10, 1250, 70> of 100 ran-
dom binary instances situated at the phase transition of search for rela-
tively dense problems (~ 12%) with low tightness (35%) and sparse problems
(=~ 0.3%) with high tightness (=~ 70%), respectively.

Table 4 presents the results obtained for all these classes. When considering
the number of constraint checks, one can observe that all heuristics based on
dom® or dom? are the best ones. More precisely, the constraint-oriented heuristic
dom® outperforms all other ones and saves about 50% of the constraint checks
required by fifo heuristics. We also note that the coarser grain of the variable-

SCEN#11 GRAPH#14

variant heuristic time | #ccks | #rohs | time | #ccks | #rohs
variable |fifo 88.950(36.379M| 470,966| 1.713|1.237M| 5,700
variable |dom" 80.547|22.238M| 308,608| 1.730(1.189M| 4,428
variable |rem” 82.461|22.329M| 310,253| 1.775/1.188M| 4,428
variable |ddeg 98.475|34.808M| 595,373| 2.666(1.215M| 4,978
arc fifo 90.381|33.688M |7, 548,869| 1.711|1.237M |39, 838
arc dom” 93.596|18.511M|4, 781, 551| 4.271|1.218M |35, 870
arc dom®/dom" |214.370|21.169M |4, 336, 842(22.552|1.180M |30, 517
arc ddeg o dom"|410.737|18.775M |4, 833, 847(24.614|1.218M |35, 961
constraint|fifo 90.054|36.130M|5, 586, 648| 1.708|1.237M |30, 030
constraint|dom® 111.995(17.318M |3, 256, 374| 6.901|1.190M |24, 032
constraint|rem* 158.468(22.079M |4, 136, 456| 7.847|1.188M 23,197

Table 5. Maintaining arc consistency on RLFAP instances

13

variant heuristic | cc-7-2 | cc-7-3 | gr-34-9 | gr-34-10 qa-5 qa-6
variable |fifo 9.159| 238.630 47.853| 1,736.913| 62.104| 5,943.426
variable |dom" 8.688| 213.966 31.238| 1,174.526| 56.138| 4,331.342
variable |rem” 8.531| 222.600 35.666| 1,292.841| 57.310[4,636.216
variable |ddeg 8.955| 291.663 52.885| 1,907.120| 69.987| 6,435.984
arc fifo 10.263| 276.240 56.017| 1,997.052| 68.729| 5,679.748
arc dom?” 39.856| 735.510 90.419| 5,025.990|129.377| 10, 096.466
arc dom® /dom" |129.977|2,636.612| 251.786| 13,871.150{457.250| 49, 364.050
arc ddeg o dom"|498.214|7,918.398|1,121.336|109, 292.280|719.742|126, 063.110
constraint|fifo 9.342| 229.128 52.504| 1,951.002| 65.983| 5,516.274
constraint|dom® 19.926| 736.137| 98.216| 6,747.980(205.111| 18,382.519
constraint|rem® 38.754|1,210.565| 528.161| 30,428.539|335.617| 33, 818.809

Table 6. cpu time when maintaining arc consistency on academic instances

variant heuristic | cc-7-2 | cc-7-3 | gr-34-9| gr-34-10 qa-5 qa-6
variable |fifo 3.196M|116.585M [42.836M |1, 609.906M |56.326M |3, 584.318M
variable |dom" 3.196M|111.633M |34.882M |1, 347.494M |47.610M |2, 765.204M
variable |rem” 3.196M|111.652M|38.052M |1, 434.013M |48.741M |2, 876.704M
variable |ddeg 2.977M|121.794M|46.012M |1, 660.198M|56.327M |3, 584.320M
arc fifo 3.155M|118.312M |45.175M |1, 680.035M |58.098M |3, 631.175M
arc dom” 2.261M| 93.980M|26.979M |1, 028.886M |42.862M |2, 179.902M
arc dom® [dom” |1.766M| 92.250M|32.315M |1, 213.946M|45.920M |2, 677.797M
arc ddeg o dom"|2.503M[106.447M |27.121M |1, 031.489M [42.861M |2, 179.929M
constraint|fifo 3.196M|116.252M [44.733M |1, 684.691M |56.366M |3, 580.447M
constraint|dom® 1.366M| 80.645M|29.084M|1,115.535M|40.467M|2,125.472M
constraint|{rem® 2.843M|113.639M |40.145M |1, 462.286M [48.367M |2, 882.489M
Table 7. #ccks when maintaining arc consistency on academic instances

oriented heuristics has an impact on the number of constraint checks (dom?
entails more checks than dom¢). However, it is highly compensated by the small
overhead of such heuristics as explained above.

Finally, we introduce three additional tables that confirm our previous re-
sults. Table 5 corresponds to the real-world instances SCEN#11 and GRAPH
#14 of the RLFAP archive. Tables 6 and 7 respectively correspond to the cpu
time and the number of constraint checks required to solve the following aca-
demic instances:

— two chessboard coloring instances [1], denoted cc-7-2 and ce-7-3, involving
quaternary constraints,
— two Golomb ruler instances?, denoted gr-44-9 and gr-44-10, involving binary
and ternary constraints,
— two prime queen attacking instances?, denoted ga-5 and ga-6, involving only
binary constraints.

To summarize, the efficiency of all variable-oriented heuristics based on cur-
rent domain sizes has been established both for stand alone arc consistency and

% See problem006 at http://4c.ucc.ie/ tw/csplib/
* See problem029 at http://4c.ucc.ie/ tw/csplib/

14

for MAC. On the other hand, the arc-oriented and constraint-oriented heuristics
which allow saving some constraint checks, are quite costly. Nevertheless, there
are at least three alternatives to improve all heuristics:

— restricting the search of the best element to a subset of @,
— performing the search of the k best elements every k selections,
— improving the management of () using a pigeonhole sort [21].

Such an optimization is proposed by [19] with the heuristic comp which
belongs to the group of the best heuristics (when considering constraint checks).
[19] uses an efficient representation for the queue which allows compensating the
time spent on selection and maintenance.

6 Conclusion

Our first motivation, in this paper, was to clarify the situation about the different
propagation schemes of AC3-based algorithms. Indeed, we can define three vari-
ants which respectively correspond to algorithms with an arc-oriented, variable-
oriented and constraint-oriented propagation scheme. We have presented general
versions of these algorithms so that they can be applied to non-binary problems
whereas being careful about avoiding useless revisions (for variable-oriented and
constraint-oriented variants). To determine which variant is the more appro-
priate to establish arc-consistency, we have studied the impact of introducing
so-called revision ordering heuristics. Such heuristics have been proposed by [21]
with respect to the arc-oriented variant and experimentations performed when
arc consistency is used as a preprocessing of binary problems.
In this paper, we have extended our understanding of revision ordering heuris-
tics by:
— introducing new heuristics and adapting heuristics of [21] with respect to
the different variants of AC3-based algorithms,
— experimenting these heuristics when arc consistency is maintained during
the search of a solution for binary and non binary problems.

Experimental results show that heuristics based on the number of removed
values are disappointing, unlike heuristics based on the number of remaining
values. The best heuristics save up to 50% of constraint checks when compared
to the “standard” heuristic fifo. Hence, it confirms for MAC the observation of
[21]. Also, the best variable-oriented heuristics can save about 25% of cpu-time
when compared to fifo. However, it turns out that constraint-oriented and arc-
oriented heuristics are penalized in terms of CPU time. The reason is that the
constraint-oriented and arc-oriented variants need to record more elements in
the propagation set) than the variable-oriented variant. Hence, both variants
are time-consuming when one heuristic iterates all recorded elements in Q.

To conclude, even if there exists some perspectives to optimize all these
heuristics by avoiding systematic iterations of @), we believe that a AC3-based
variable-oriented variant associated with a revision ordering heuristic based on
dom? should preserve its advantage (as it could also benefit from such improve-
ments).

15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Beresin, E. Levin, and J. Winn. A chessboard coloring problem. The College
Mathematics Journal, 20(2):106-114, 1989.

C. Bessiere. Arc consistency and arc consistency again. Artificial Intelligence,
65:179-190, 1994.

C. Bessiere, E.C. Freuder, and J. Régin. Using constraint metaknowledge to reduce
arc consistency computation. Artificial Intelligence, 107:125-148, 1999.

. C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake

FC (and CBJ?) on hard problems. In Proceedings of CP’96, pages 61-75, 1996.
C. Bessiere and J. Régin. Refining the basic constraint propagation algorithm. In
Proceedings of IJCAI’01, pages 309-315, 2001.

A. Chmeiss and P. Jégou. Efficient path-consistency propagation. International
Journal on Artificial Intelligence Tools, 7(2):121-142, 1998.

D. Frost, R. Dechter, C. Bessiére, and J.C. Régin. Random uniform CSP genera-
tors. http://www.lirmm.fr/~bessiere/generator.html, 1996.

I.P. Gent, E. Maclntyre, P. Prosser, P. Shaw, and T. Walsh. The constraindedness
of arc consistency. In Proceedings of CP’97, pages 327-340, 1997.

C.P. Gomez and D. Shmoys. Completing quasigroups or latin squares: a structured
graph coloring problem. In Proceedings of Computational Symposium on Graph
Coloring and Generalization, 2002.

F. Laburthe and le projet OCRE. CHOCO : implémentation du noyau d’un
systéme de contraintes. In Actes de JNPC’00, pages 151-165, 2000.

C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality in
coarse-grained arc consistency algorithms. In Proceedings of CP’03, pages 480—
494, 2003.

A K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:118-126, 1977.

J.J. McGregor. Relational consistency algorithms and their applications in finding
subgraph and graph isomorphism. Information Science, 19:229-250, 1979.

R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225—-233, 1986.

J.C. Régin. Développement d’outils algorithmiques pour l'intelligance artificielle.
Application a la chimie organique. PhD thesis, Universit Montpellier 1T, 1995.

D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proceedings of the PPCPA’9/, Seattle WA, 1994.

B.M. Smith and S.A. Grant. Trying harder to fail first. In Proceedings of ECAI’98,
pages 249-253, Brighton, UK, 1998.

M.R.C. van Dongen. AC34 an efficient arc consistency algorithm with a low space
complexity. In Proceedings of CP’02, pages 755-760, 2002.

M.R.C. van Dongen. Lightweight arc-consistency algorithms. Technical Report
TR-01-2003, University college Cork, 2003.

R.J. Wallace. Why AC3 is almost always better than AC4 for establishing arc
consistency in CSPs. In Proceedings of IJCAI’93, pages 239—-245, 1993.

R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency algorithms.
In Proceedings of NCCAI’92, pages 163-169, 1992.

Y. Zhang and R.H.C. Yap. Making AC3 an optimal algorithm. In Proceedings of
IJCAI’01, pages 316-321, Seattle WA, 2001.

