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Abstract. In this paper, we present a dynamic and adaptive variable
ordering heuristic which guides systematic search toward inconsis-
tent or hard parts of a Constraint Satisfaction Problem (CSP). This
generic heuristic is able to exploit information about previous states
of the search process whereas traditional dynamic ones only exploit
information about the current state. Intuitively, it avoids some trash-
ing by first instantiating variables involved in the constraints that
have frequently participated in dead-end situations. Such informa-
tion is recorded by associating a weight with each constraint. This
weight is increased whenever the associated constraint is violated
during search. The extensive experiments that we have conducted
prove that our conflict-directed approach is the most efficient current
one with respect to significant and large classes of academic, random
and real-world instances.

1 Introduction

In recent years, many improvements to backtracking algorithms
for solving constraint satisfaction problems (CSPs) have been pro-
posed. Roughly speaking, such improvements mainly concern order-
ing heuristics, filtering techniques, and conflict analysis. They can
be conveniently classified as look-ahead and look-back schemes [9].
Look-ahead schemes are used when extending the current partial so-
lution by maintaining, for example, a given level of local consistency,
in order to anticipate future conflicts. Look-back schemes are de-
signed to learn from conflicts in order to avoid the same conflict situ-
ations occurring later in the search. Based on experimental analysis,
these two paradigms are usually considered as not entirely orthog-
onal. More precisely, the enhancement of look-ahead techniques is
sometimes counterproductive to the effects of look-back techniques
[4, 8]. We agree to some extent on such observation. In fact, in the
general case, the difficulty of conceiving a good variable ordering
heuristic which avoids redundant search makes learning from con-
flicts necessary.

In this paper, we propose a fruitful combination of look-back and
look-ahead schemes. Our main objective is to address more effi-
ciently structured problems, where some constraints are more im-
portant than others, and consequently some parts of the problem are
inconsistent and/or more hard to solve. To this end, we introduce a
dynamic and adaptive heuristic, denoted ������� , which is able to di-
rect systematic search to inconsistent or hard parts of a CSP. Our
approach is able to learn (look-back side) and then to exploit (look-
ahead side) information from previous states of the search process
whereas traditional static and dynamic heuristics only exploit infor-
mation about the initial and current state of the search, respectively.
More precisely, inspired from works [21, 23, 20, 26, 7] about dif-
ferent methods developed for SAT (satisfiability testing) and CSP, a
�
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higher weight is given to constraints violated at some previous states
of the search process. Such weighted constraints are then used by
������� in order to guide a backtrack search-like algorithm. In other
words, as search progresses, the weight of hard constraints become
more and more important and this particularly helps the heuristic to
select variables appearing in the hard part of the CSP. In contrast with
sophisticated look-back schemes (see e.g. [9]), that use complex con-
flict analysis techniques and heavy data structures, our approach can
be grafted in a very simple way, to a backtrack search algorithm.

Extensive experiments prove that our approach is the most effi-
cient current one wrt significant and large classes of academic, ran-
dom and real world instances. As expected, the improvements are
very huge when addressing problems with (local) inconsistent sub-
parts. Surprisingly enough, significant improvements are also ob-
tained on others classes of instances such as random and academic
ones, showing the robustness and the efficiency of our approach.

The paper is organized as follows. First, some technical back-
ground about constraint satisfaction is recalled. Next, after a brief
overview about variable ordering heuristics, our approach is moti-
vated and described. Some results of our experimentation on large
and significant classes of CSPs instances are then introduced. Before
concluding, some related works are presented.

2 Definitions and preliminaries

In this section, we briefly introduce some notations and definitions
used hereafter.

Definition 1 A Constraint Satisfaction Problem (CSP) is a pair��������
where:

� ������ � ����������� �"! is a finite set of # variables such that each
variable

�%$
has an associated domain �'&)( �*� $+� denoting the set

of values allowed for
� $

,� �,�-�). � ���������/.102! is a finite set of ( constraints such that each
constraint

.43
has an associated relation 5)�76 �+.839� denoting the set

of tuples allowed for the variables :';�5=< �+. 3 � involved in the con-
straint

. 3
.

We shall say that a constraint
.

binds (or involves) a variable
�

if and only if
�

belongs to :';�5=< �+.>� . The arity of a constraint
.

is
the number of variables bound by

.
. The degree of a variable

�
is

the number of constraints where it is involved. Two variables
��$

and�23
are said to be neighbors if there exists a constraint

.
such that��� $ ���>3?!A@ :';�5?< �+.>� . We define B �*� $ � as the set of variables that

are neighbors of
� $

.
A solution is an assignment of values to all the variables such that

all the constraints are satisfied. A problem is said to be satisfiable (or
consistent) iff it admits a solution, and unsatisfiable otherwise. Solv-
ing a CSP C involves either determining the unsatisfiability of C or



finding one (or more) solution. A depth-first search algorithm with
backtracking can then be applied, where at each step of the search,
a variable assignment is performed followed by a filtering process
called constraint propagation. Usually, constraint propagation algo-
rithms, which are based on some constraint network properties such
as arc-consistency, remove some values which can not occur in any
solution. The algorithm that maintains arc consistency during search
is called MAC.

3 Weighting constraints from conflicts

In this section, after a brief review of existing variable ordering
heuristics, we introduce an illustrative example that shows the im-
portance of recording constraint violations in order to efficiently cir-
cumscribe inconsistent or hard parts of CSPs. Next, we propose a
new heuristic that relies on dynamic constraint weighting in order to
direct search toward the most constrained part of the CSP.

3.1 An overview of variable ordering heuristics

The order in which variables are assigned by a backtracking search
algorithm has been recognized as a key issue for a long time. Using
different variable ordering heuristics to solve a CSP can lead to dras-
tically different results in terms of efficiency. Furthermore, we know
that simply introducing some kind of randomization to a given vari-
able ordering heuristic may exhibit a large variability in performance
[14]. In fact, one should ideally use a variable ordering that selects
first a small (strong) backdoor [27], i.e., a set of variables which once
assigned makes the resulting problem easy to solve.

A first category of heuristics corresponds to static (or fixed) vari-
able ordering heuristics (SVOs) which are heuristics that keep the
same ordering all along the search, and, hence, only exploit (struc-
tural) information about the initial state of the search. Such heuris-
tics are 6 � ����� & where variables are lexicographically ordered, �����
and �'����� where variables are decreasingly ordered according to their
initial [10] and current degree, � � ���	� where variables are ordered in
order to minimize the width of the constraint graph [11].

A second category of heuristics corresponds to dynamic variable
ordering heuristics (DVOs) which take into account some informa-
tion about the current state of the search. A well-known dynamic
heuristic is �'&9( [16] where variables are increasingly ordered ac-
cording to the current size of their domains. The justification of this
heuristic is given [16] by the fail-first principle : “To succeed, try first
where you are most likely to fail”. When combining domain sizes and
variables degrees, one obtains �'&)(�
9����� [4] and �'&)(�
9�'����� [4, 25]
which can substantially improve the performance of the search. Other
theory-based dynamic heuristics have been proposed by [13, 17] but
these heuristics, although conceptually elegant, require extra compu-
tation and have only been tested on random problems.

It is important to note that ties can occur when using a variable or-
dering heuristic. A tie is a set of variables that are considered equiv-
alent by the heuristic. We can assume that 6 � ���� & is always implic-
itly used to break ties. For instance, �'&9( implicitly corresponds to
�'&)( + 6 � ���� & which selects among the variables with smallest current
domain sizes the first variable wrt the lexicographic order. Other tie-
breakers can be explicitly introduced (but, if necessary, 6 � ����� & still
remains the last and definitive implicit one). Some new composed
heuristics are �'&9( + ����� [12], �'&9( + �'����� [5, 24], ����� [24].

Recently, [3] have proposed a generalization (denoted here
(������ ) of existing variable ordering heuristics by considering that

each variable can be evaluated while taking into account its neigh-
borhood. For instance, assuming that an heuristic � is based on a
function ��� which allows evaluating variables, it is possible to de-
fine with an operator � , a generalization ��� � of the heuristic � at a
neighborhood distance equal to � . This new heuristic is based on a
function � �� � � that evaluates any variable

� $
as follows:

� �� � � ( � $ ) =
!#"%$'&)(+*,"�-/.10,24350 6 -/7 � 24350,6

$8797
: ; 0,6 -�7 : <

Finally, many experiments have been performed to compare the
impact of using different variable ordering heuristics. No heuristic
clearly outperforms the other ones but dynamic ones such as �'&9( ,
�'&9( + �'����� and �'&9(=
9�'����� are usually considered as the most effec-
tive ones. Neighborhood generalization of �'&)( and �'&)(�
9�'����� have
also been shown to be promising [3].

3.2 Circumscribing inconsistent sub-problems

In this subsection, it is shown that recording constraint violations
is important to circumscribe inconsistent or hard parts of CSP in-
stances. To give some insight into the main motivation of our ap-
proach, we consider, in the following, an example built by merging a
consistent CSP with an inconsistent one.

Let us consider the well-known queens problem which involves
putting # queens on a chessboard of size # * # while avoiding that
two queens can attack each other. In a classical CSP model of this
problem, each queen is targeted to a row and is represented by a vari-
able whose domain contains exactly # values (corresponding to the
different columns of the chessboard), and a constraint is introduced
between each pair of variables in order to guarantee that two queens
cannot be placed on the same column or diagonal.

Let us introduce another academic problem, called knights prob-
lem, that involves putting > knights on a chessboard of size # * # such
that all knights form a cycle (when considering knight moves). This
problem does not admit any solution when the value of > is odd. In
a CSP model of this problem, each knight is represented by a vari-
able whose domain contains exactly # * # values (corresponding to
all squares of the chessboard), and a constraint is introduced between
each variable and the variable that comes next (modulo > ) in order
to guarantee that one can pass from a knight to another with a single
knight move. Besides, for any pair of variables, there is a constraint
implying that two knights cannot be placed on the same square.

When combining queens and (an odd number of) knights, one can
observe an interesting behaviour called thrashing. Here, we simply
merge the two independent problems without any interaction. Indeed,
the knights subproblem is unsatisfiable but, as classical variable or-
dering heuristics selects first queens variables (due to their small do-
main sizes), the unsatisfiable subproblem is rediscovered for each
new solution of the queens subproblem.

To observe this phenomenon, we have attached a counter to each
constraint and we have run a MAC algorithm using all variable or-
dering heuristics cited above. Whenever a constraint has been shown
unsatisfied (during the constraint propagation process), its attached
counter has been incremented by � .

We have been interested in two values which correspond to
the maximum value of counters attached to queens constraints
(i.e. constraints involving queens) and knights constraints (i.e. con-
straints involving knights), respectively. Figure 1 shows, while using
�'&9(=
7�'����� , the evolution2 of these two values with respect to the
?

A similar behavior can be observed when using other variable ordering
heuristics such as @'ACB , @'ACBED�@'@'F8G , HIHJH .
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Figure 1. Evolution of constraint violations: � knights and � queens

number of assignments required to prove the inconsistency of the in-
stance involving � queens and � knights. It clearly appears that some
knights constraints are violated far more often than all queens con-
straints. in other words, these counters emphasize the inconsistent
knights sub-problem.

These results illustrate and confirm that the number of times each
constraint is violated during the search is an important information
that might be used to locate the inconsistent (hard) part of the CSP.
In the following section, we present new heuristics that exploit the
weight of the constraints to direct the search to such an important
part of the CSP.

3.3 A conflict-directed variable ordering heuristics

As stated in the previous section, traditional dynamic variable or-
dering heuristics benefit from information about the current state of
the search such as current domain sizes and current variable degrees.
One limitation of this approach is that no information about previous
states of the search is exploited. We propose to capture such informa-
tion by associating a counter, called ��� � �4� � , with any constraint of
the problem. These counters will be updated during search whenever
a dead-end (domain wipe-out) occurs. As systematic solvers such as
FC or MAC involve successive revisions in order to remove values
that are no more consistent with the current state, it suffices to in-
troduce a test at the end of each revision. Note that the algorithm 1,
presented below wrt coarse-grained filtering algorithms, can be eas-
ily adapted wrt fine-grained ones.

More precisely, a general description of the 5)�7: � <�� function is de-
picted in Algorithm 1. Note that the function <��7�+>����	�	�"&95'� deter-
mines whether there exists a support of

�*� � ; � in
.

. According to the
implementation of this function, we obtain different coarse-grained
filtering algorithms (see, e.g., [19]). At the end of the algorithm (lines


and � ), when a domain wipe-out occurs, the weight of the “revis-
ing” constraint is incremented.

Using these counters, it is possible to define a new variable or-
dering heuristic, denoted ������� , that gives an evaluation �������� (

� $
),

called weighted degree, of any variable
� $

as follows:

� ���������� $������
���� "! F$#9G&%�')( *,+�-�.&/&021 � *

��3 � $54 -�6879'5:;/<0<1 � * � - = �

where >?� �I�2;�5=< �+.>� denotes the uninstantiated variables in
:';�5=< �+.>� . Hence, the weighted degree of a variable

��$
corresponds

Algorithm 1 revise(
.

: Constraint,
�

: Variable) : boolean

1: for each ; @ �'&9( �*� � do
2: if <��7�+>����	�	�"&95'� �+. � � � ; �8�A@ ; 6*<�� then
3: remove ; from �'&)( �*� �
4: if �'&9( �*� � �CB

then
5: � � � �4� �ED .GF ++
6: return � &)( �*� �IH�JB

to the sum of the weights of the constraints involving
��$

and at
least another uninstantiated variable. Intuitively, locally inconsistent
or hard parts of CSPs should be first examined by the search algo-
rithm when selecting in priority variables with greatest weighted de-
grees, respecting the so-called fail-first principle.

It is important to note that this new heuristic is related to �'����� as
only constraints involving a variable and at least another uninstan-
tiated one are considered. In fact, setting all ��� � �4� � counters to �
is equivalent to define �'����� . Then, in order to benefit, at the begin-
ning of the search, from relevant information about current variable
degrees, we propose to initialize all ��� � �4�4� counters to � . Finally,
combining weighted degrees and domain sizes yields �'&)(�
9������� ,
an heuristic that selects first the variable with the smallest ratio cur-
rent domain size to current weighted degree. In the rest of the paper,
������� and �'&9(=
7������� will be called conflict-directed (variable or-
dering) heuristics.

4 Comparative results

To prove the practical interest of the conflict-directed heuristics intro-
duced in this paper, we have implemented them and performed some
experiments with respect to random, academic and real-world prob-
lems. Performances for one solution have been measured in terms
of the number of constraint checks (#ccks), the number of assign-
ments (#asgs) and the cpu time in seconds (cpu). Also, on some prob-
lems involving �&K or �EKLK instances, the number of solved instances
(#solved) is indicated and performance criteria are given on average.
We have used a MAC algorithm (called GAC when constraints are
non binary) which integrates the coarse-grained arc consistency al-
gorithm M . � � N [19].

4.1 Illustrative example

First, we show that ������� drastically improves the performances of
MAC compared to �'&)(�
9�'����� with respect to our illustrative exam-
ple (see subsection 3.2).

Table 1 shows results obtained for two different chessboard sizes
( # � � and # � � N ) and for three different unsatisfiable problems:

�PORQ : the � -knights instance as defined in subsection 3.2,�PO Q�SUT � : the � -knights and the # -queens instances merged,�PO Q,VWT � : the � -knights and the # -queens instances merged such
that queens and knights cannot share the same square.

These results clearly show the trashing phenomenon that occurs
when using the �'&)(�
9�'����� heuristic: the number of assignments (and
constraint checks) to solve a O QGSJT � or a O QGVJT � instance is
roughly equal to the product of the number of assignments (and con-
straint checks) to solve O Q by the number of solutions of the queens
instance ( X N for # = � , and � 
 N KYK for # = � N ). This behaviour is not
observed when using the conflict-directed heuristics. Indeed, after
finding a limited number of queens solutions, the knights variables
are selected in priority since the weight of the knights constraints
become large enough, thereby, avoiding trashing.



� ���������	��
��� ���	��� ������ ����� ������������

8

��� cpu �! "�# �! "$" �% "
#ccks �! �'&'( M �% �)&$# M �% �)*$+ M
#asgs �% "�, K �! �'( K �! �'+ K� �$-/.10 cpu �! #'# �! #$2 #% ()"
#ccks �! #$('2 M �! #$( M +3 ('($4 M
#asgs �! 2 K �% # K +3 # K�5�$6 . 0 cpu �! "�& �! +$4 #% #)"
#ccks �! "�4'( M �% &$�'* M 23 #'*$+ M
#asgs �! " K �% * K 23 * K

12

� � cpu �! #'2 �! #$4 �! 4$&
#ccks �! ,'#'+ M �% ,3"�# M �% #'*$+ M
#asgs �! # K �% 4 K �% " K�5� -/.87 < cpu "	 ( ,! 4$# 4%9�&�,)2% "�&
#ccks #% �	"�* M *3 +	"�# M 239�#'&	") +'+$* M
#asgs "	 & K #3 4 K 439"�*$,% 4 K� � 6 . 7 < cpu �! +	" *% &$( 4%9�2)"�2% "�#
#ccks �! +)"�* M "�43 &'+$( M ,%9�2'4	") 4$�'* M
#asgs �! # K 23 2 K 439��	"�*3 4 K

Table 1. Knights-Queens instances

4.2 Experiments

Here, we present some representative results obtained from our
experimentation. For the real-world (and artificially-generated) bi-
nary instances of the fullRLFAP (Radio Link Frequency Assignment
Problem) archive, we follow the approach of [3] to produce harder
instances by removing some constraints and/or some frequencies.
For example, < � �7# K;: - ��� - @ 
 corresponds to the instance < � ��# K<: for
which the constraints of weight greater than � have not been taking
into account and the



highest frequencies have been removed. Ta-

ble 2 shows the results obtained on some selected difficult instances.
Note that the right-most column gives the best result obtained when
using the following four variants of (������ :

�>=$? 0 � � , ��= ������������ � � , ��@$?
0 � � and ��@ ������������ � � .

The good behavior of conflict-directed heuristics is here clearly
shown: using such heuristics allows to solve all instances in a few
seconds3 whereas �'&9(=
7�'����� allows to solve only

N
instances withinN

hours, and tested ( ��� � only A .

instances ���	��� ������ ����� ������������ BDCDE1F��
�� "'" cpu "�+3 4'& #% +�, ('#% ($* 4	") �)2
(sat) #asgs 43 +'( K �! ()" K #	") &	" K &3 #	" K��
��� �'4 - G;4$2 cpu 43 +'* "	 ($( HI4)J 4'('43 4'*

(unsat) #asgs �% +'+ K �! &$( K "�4$#% ('2 K��
��� �'# - GK"� cpu 43 �)+ ") * HI4)J ") &$�
(sat) #asgs �% +'& K �! *$* K �% ,)4 K��
��� �'# - GK"$" cpu ,% +'# 4% ($# HI4)J "�+3 #'(

(unsat) #asgs �% *'2 K �! &�� K ") �)( K��
�� �)+ - � 4 cpu �% #	" �! ($# HI4)J �% 4'2
(unsat) #asgs �% �)4 K �! *�, K �% �3" K��
�� �)* - � " - G!, cpu �% #'2 �! #�� �! ,$, �% ,)(

(sat) #asgs �% ,', K �! ,'& K �! *$2 K �% *'+ K��
�� �)* - � " - G;2 cpu �% &'# �! #$+ HI4)J HI4)J
(unsat) #asgs �% ,', K �! 4$2 K�	L'�'M J!�)& - GK"�� cpu "�4'&3 &'2 "�2% &$+ HI4)J HI4)J

(sat) #asgs 4'(3 +$, K 2% *$* K�	L'�'M J!�)& - GK"'" cpu 43 #'4 "�*% *)" HI4)J HI4)J
(unsat) #asgs �% 4$, K 2% �'* K�	L'�'M JK"�, - G;4'* cpu "�&'23 +	" 2% 4$2 HI4)J HI4)J

(sat) #asgs #'(3 &$, K "	 +$4 K�	L'�'M JK"�, - G;4'& cpu #$�% �'� 4'*% *$( HI4)J HI4)J
(unsat) #asgs ,% +$� K *% &$2 K

Table 2. RLFAP instances

We have also experimented some realistic radar surveillance in-
stances as proposed by the Swedish Institute of Computer Science
(SICS). The problem is to adjust the signal strength (from K to � )
of a given number of fixed radars wrt A geographic sectors. More-
over, each cell of the geographic area must be covered exactly by �
N

The (modified) RLFAP instances that have not been solved by MAC- ! @+FJGwithin O hours are built from 1$PIF�Q ��� by removing from
�

to R frequencies.

radar stations, except for some insignificant cells that must not be
covered. We have artificially generated three sets of �YK instances in-
volving non-binary constraints. Each set is denoted 5?< - � -S where �
and S represent the number of radars and the number of insignifi-
cant cells, respectively. One can observe on Table 3 the huge gain
obtained when using conflict-directed heuristics: after

N
hours (per

instance) and � � KYKLK to �EK � KYKLK times as many assignments, classical
heuristics do not succeed to solve all �YK instances.

instances ���	��� ������ ����� ������������ �����UTV�������L)� - #$� - � cpu �! �'2 �% �)( +$4'#3 �', 4%9�#)"�(% ($(
#asgs �% 4$� K �% 4'# K "	9�+$2'+% ($2 K "�4%9�2$#'&% *�, K

( 2$�)W'2$� sat) #solved 2$� 2�� ,)+ #'2L'� - 4$, - "�4 - �3
 cpu #% *$& *% &'+ 439��)4$�% �)+ 439�#$#'+3 �3"
#asgs ") 4	" K ") +'& K *$4'4% #$+ K +�,3"	 ($4 K

( �	W'2�� sat) #solved 2$� 2�� #'+ #'2L)� - 4$, - 4 cpu #% &$+ #3 4$, 439��'#$�% *'# 4%9�2�,)2% ,$,
#asgs �% ('4 K �% 2'( K ,!9��'4'*% 2$+ K *%9�&��)2% ,	" K

( 4'+'W'2$� sat) #solved 2$� 2�� #'* #'#
Table 3. Radar surveillance instances

Next, we have dealt with the following academic instances:

� two chessboard coloration instances [2], denoted �8� - : -
N

and �8� - : -
� , involving quaternary constraints,� two Golomb ruler instances4, denoted ��5 - 
L
 - X and ��5 - 
L
 - �2K , in-
volving binary and ternary constraints,� two prime queen attacking instances5, denoted X9; - � and X); - A , in-
volving only binary constraints.

Table 4 shows that conflict-directed heuristics are usually better than
the other heuristics.

instances ���	��� ������ ����� ������������ BYCVEZF

 - * - 4 cpu "	 &$* 43 #'& "�! ($( ,% #$,
(unsat) #asgs 4% 4$# K 23 4'+ K #��! "�( K ",! *'& K

 - * - # cpu 4)"�,! &$4 #'(3 &'+ 4'($4% 4$& #$4'43 +$,

(sat) #asgs #'&'*3 # K "��',% #'& K *)"�,% " K *'&$�% 2'+ K�	L - ,$, - ( cpu #)"	 2$* +$�% 2$, #$*% �$� ,)*3 (	"
(sat) #asgs 2% #$( K "�,% &$� K "$"	 *�, K "'") *'# K�	L - ,', - "�� cpu *��)&% ,'4 "�+'*3 *'( "	9�#'2$+% +�, 2$&'#3 4'#

(unsat) #asgs *'2% 2$+ K 4'43 #'& K 4��)4% �'* K ,$,! 4'& K[�� - 2 cpu ,! 2�� 43 #'* *��! 2�� 4$,% ('*
(sat) #asgs *% (�� K ,% *'( K #)"�&% +�� K "��'�% &	" K[�� - + cpu &$&% *$# &'43 ,)+ 2�,)($�% &'+ #$#'(3 *'#
(sat) #asgs +'4% *�, K *$,% 2'& K *%9�*��)#% ,$, K 2'4'#3 "�, K

Table 4. Academic instances

Finally, to study the behaviour of the different heuristics wrt prob-
lems involving random generation, we have considered the following
classes of instances :

� two classes of �2KYK satisfiable balanced Quasigroup With Holes
(bQWH) instances [15] of order �2� with �EK;A holes and order �2�
with � 
 � holes, respectively,� three classes \ # � � � ( � �^] of �2KYK random instances situated at
the phase transition where # denotes the number of variables, �
the uniform domain size, ( the number of binary constraints and
� the constraint tightness.

In Table 5, we remark that for (structured or pure) random problems,
as the constraint tightness grows, the gap between conflict-directed
heuristics (and more particularly �'&)(�
9������� ) and the other ones be-
comes more and more important. However, this observation deserves
further exploration.
_

See problem006 at http://4c.ucc.ie/˜tw/csplib/Q
See problem029 at http://4c.ucc.ie/˜tw/csplib/
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Table 5. Structured and pure random instances

5 Related work

Dynamic weighting has been first introduced by [21] and [23] in or-
der to improve the performance of local search methods. The Break-
out method of [21] simply increases the weights of all current no-
goods (prohibited tuples of constraints) whenever a local minimum
is encountered. Such weights are then used to escape from local min-
ima. Independently, [23] have proposed to increment the weight of
all clauses (of a boolean formula in conjunctive normal form) not
satisfied by the current assignment. This weighting strategy (com-
bined with two other strategies: random walk and averaging-in) has
been shown to dramatically enhance the applicability of a random-
ized greedy local search procedure (GSAT) for propositional satisfia-
bility testing. In the context of applying local search to general CSPs,
constraint weighting has been addressed by [26].

On the other hand, in [20], an hybrid search technique is pro-
posed, combining a GSAT-like procedure with the well known DP
procedure. The branching strategy of the logically-complete DP pro-
cedure is based on the dynamic constraint weighting managed by
GSAT in order to direct search toward an inconsistent kernel. [6]
have improved the satisfiability branching heuristics using clauses
that shown previously unsatisfiable. Also, [7] used clause weighting
to detect minimally unsatisfiable subformulae in SAT instances.

Finally, among specialized heuristics that have been proposed in
the literature and that are related to our approach, one can cite the
heuristics proposed by [22]. These heuristics, adapted to the job shop
scheduling CSP, involve focusing search toward critical variables,
i.e., variables that are most likely to be involved in a conflict.

6 Conclusion

In this paper, we have introduced a new generic variable ordering
heuristic that learn from encountered failures to manage the choice
of the variables to be assigned. From works of [21, 23, 20, 26, 7], we
had imagined that locally inconsistent or hard parts of CSPs could be
first examined by a systematic search algorithm using this conflict-
directed heuristic. Experimentally, we have shown that our approach
is the most efficient current one wrt significant and large classes of
academic, random and real world instances.

As a perspective, we plan to compare the performance of our ap-
proach with other approaches that use sophisticated backjumping
techniques (see, e.g. [9, 8, 18, 1]).
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