
Propositional Satisfiability and Constraint Programming:
A Comparative Survey

LUCAS BORDEAUX, YOUSSEF HAMADI and LINTAO ZHANG

Microsoft Research

Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively in-
dependent threads of research cross-fertilizing occasionally. These two approaches to problem solving have
a lot in common as evidenced by similar ideas underlying the branch and prune algorithms that are most
successful at solving both kinds of problems. They also exhibit differences in the way they are used to state
and solve problems since SAT’s approach is, in general, a black-box approach, while CP aims at being tunable
and programmable. This survey overviews the two areas in a comparative way, emphasizing the similarities
and differences between the two and the points where we feel that one technology can benefit from ideas or
experience acquired from the other.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Logic and constraint programming; D.3.3 [Programming Languages]: Language Constructs and
Features—Constraints; G.2.1 [Discrete Mathematicals]: Combinatorics—Combinatorial algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Search, constraint satisfaction, SAT

ACM Reference Format:
Bordeaux, L., Hamadi, Y., and Zhang, L. 2006. Propositional satisfiability and constraint programming: A
comparative survey. ACM Comput. Surv. 38, 4, Article 12 (Dec. 2006), 54 pages. DOI = 10.1145/1177352.
1177354 http://doi.acm.org/10.1145/1177352.1177354

1. INTRODUCTION

Propositional satisfiability solving (SAT) and constraint programming (CP) are two
automated reasoning technologies that have found considerable industrial applications
during the last decades. Both approaches provide generic languages that can be used to
express complex (typically NP-complete) problems in areas like hardware verification,
configuration, or scheduling. In both approaches, a general-purpose algorithm, called
solver, is applied to automatically search for solutions to the problem. Such approaches
avoid the need to redevelop new algorithmic solutions from scratch for each of the
applications where intelligent search is needed, while providing high performance.

Authors’ address: L. Bordeaux, Y. Hamadi, Microsoft Research Ltd, Roger Needham Building, 7 J J Thomson
Avenue, Cambridge CB3 0FB, UK; email: lucasb@microsoft.com; L. Zhang, Microsoft Research Silicon Valley,
1065 La Avenida Mountain View, CA 94043.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© 2006 ACM 0360-0300/2006/12-ART12 $5.00 DOI: 10.1145/1177352.1177354 http://doi.acm.org/10.1145/

1177352.1177354.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

2 L. Bordeaux et al.

SAT and CP have a lot in common regarding both the approach they use for prob-
lem solving and the algorithms that are used inside the solvers. They also differ on a
number of points and are based on different assumptions regarding their usage and
the applications they primarily target. This survey gives a comparative overview of
SAT and CP technologies. Most aspects of SAT and CP are covered, from modeling to
algorithmic details. We also discuss some more prospective features like parallelism,
distribution, dedicated hardware, and solver cooperation.

1.1. How to Read this Document

This document is the product of a cooperation among authors from both the CP and
the SAT community who were willing to confront the common features and differences
between their areas. It is intended both as an introductory document and as a survey.
Several types of readers might find it useful, including

—readers who would like to be introduced to these technologies in order to decide
which one will be most appropriate for their needs. In Section 2, they can find a brief
presentation of SAT and CP and in Section 3 a comparison of the way they are used
to express and solve problems.

—readers knowledgeable in one of the two areas and who would like to learn more
about the other area, such as the connections between the two approaches and their
respective particularities. They will find an overview of the algorithms for SAT and
CP in Section 4. The three subsequent sections are devoted to more technical compo-
nents of search-based SAT and CP solvers, namely, branching heuristics (Section 5),
deduction and propagation methods (Section 6), and conflict analysis techniques (Sec-
tion 7).

—readers interested in more specific aspects or advanced issues. They will find sec-
tions on the optimization features of SAT and CP (Section 8) and on the alternative
architectures for SAT and CP solving (Section 9).

A synthesis concludes each section. Its goal is to put each section in perspective and
to stress the similarities and differences between CP and SAT on the topic that is
discussed. This synthesis can consist of a small paragraph in some sections, or it can
be developed over several pages when the topic warrants it. Last, a global synthesis of
the comparison between SAT and CP concludes the article (Section 10). This section
aims to analyze the respective strengths of the two areas and to identify guidelines and
interesting perspectives for research.

1.2. Literature Related to SAT versus CP

A number of authors have provided documents bridging the SAT and CP worlds. These
references generally focus on one single aspect of the comparison, for instance, propa-
gation [Bessière et al. 2003; Walsh 2000; Génisson and Jégou 2000] (which is covered
in Section 6) or conflict analysis [Lynce and Marques-Silva 2002] (see Section 7). Our
goal in this survey is to provide a reasonably up-to-date and comprehensive overview
of both the problem solving philosophies of SAT and CP and of the basic algorithms
used in these areas. Compared to the existing texts on SAT solvers, we tried to be more
introductory and to target a more general audience than the specialists in this area.

A number of surveys have been published on constraint solving and will be of interest
to readers who would like to read more on specific aspects of SAT or CP. For instance,
Gu et al. [1997] presents a survey of SAT that covers the topic in all its diversity.
Unfortunately, the survey was written before the appearance of the new generation
of SAT solvers whose principles are largely described in our survey. A more recent

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 3

Fig. 1. A graph.

survey on SAT is one by Mitchell [2005], which is less detailed than our sections on
SAT. Dechter [2003] is a recent introduction to constraint processing which covers the
topic in much more depth. We refer the reader to it for more information in this field.

2. SAT AND CP IN BRIEF

We start with an overview of the way SAT and CP tools are used as well as a brief
presentation of the areas where they find their most typical and successful applications.

2.1. Overview

2.1.1. SAT Solvers. Given a propositional formula on a set of Boolean variables, a SAT
solver determines if there exists an assignment of the variables such that the formula
evaluates to true or proves that no such assignment exists. SAT solvers are used in
many applications as the lowest-level building block for reasoning tasks. Traditionally,
SAT solvers only deal with Boolean propositional logic, though recently researchers
have started to look into the possibilities of combining richer logics into the SAT solver
framework.

To give a very concrete, although simplistic, example of the syntax of problems solved
by SAT solvers, consider a 3-coloring problem. It can be expressed as follows: for each
vertex (e.g., for A) we introduce 3 Boolean variables (A1, A2, A3), which will be true if
color 1, 2, or 3 is assigned to the vertex. A basic constraint is that each vertex must
be assigned exactly one color which we decompose into propositions meaning that “at
least one color is assigned to the vertex” and “the vertex cannot have two colors”. For
A, this gives

A1 ∨ A2 ∨ A3 ¬A1 ∨ ¬A2 ¬A2 ∨ ¬A3 ¬A3 ∨ ¬A1

And similarly for B, C, D, and E. The constraints we have used are clauses, that is,
disjunctions of literals, where a literal is a variable or its negation. Most SAT solvers
take problem inputs in the so-called CNF (conjunctive normal form) format as input,
which means that the constraints have to be a conjunction of clauses. The remaining
clauses for this problem state that each edge forces us to assign different colors to its
extremities:

¬A1 ∨ ¬B1 ¬A2 ∨ ¬B2 ¬A3 ∨ ¬B3 . . .

Fifteen variables and 4 × 5 + 7 × 3 = 41 clauses are needed to express this problem.
SAT is quite a low-level language, but in practice the formulas are indeed typically
generated from the automatic translation of a problem instead of handwritten.

More precisely, there are, in general, two ways to use a SAT solver in an application.
The simplest way is for the application to generate a Boolean formula and ask a SAT
solver to determine the satisfiability of the formula. This approach is often referred to
as the eager approach [Bryant et al. 2002]. Alternatively, the application can reduce a

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

4 L. Bordeaux et al.

problem to a series of related SAT queries that are incrementally solved by the SAT.
Subsequent SAT queries are dynamically generated based on the results of previous
queries. This approach is sometimes called the lazy approach [Barrett et al. 2002].

2.1.2. Constraint Programming. Constraint programming typically provides languages
[Colmerauer 1990; Van Hentenryck 1989] or libraries [Puget 1994; Hamadi 2003] whose
aim is to allow the development of application-specific search algorithms. This usually
allows the rapid development of the optimization/satisfaction part of larger applica-
tions. Because libraries (e.g., C++ libraries as in Puget [1994] or Hamadi [2003]) make
it especially easy to integrate the constraint solving component into a larger applica-
tion, this solution is typically the most widely accepted in the industry.

For the sake of concreteness, and although the way to express problems in CP is,
in general, dependent on the tool which is used, we also give an idea of how a graph-
coloring problem can be modeled as a constraint satisfaction problem (or CSP1). Typi-
cally we would model the problem using variables ranging over a finite domain, which
we can express as:

A ∈ {1, 2, 3}, . . .

Constraints are then imposed to enforce a disequality for each edge of the graph.
All solvers provide slightly different constraint languages, but typically the difference
constraint would be directly available, and we would be able to state:

A �= B, B �= C, C �= D, A �= C, B �= D, D �= A, D �= E

Some solvers also provide higher-level constraints, allowing one, for instance, to di-
rectly state that all variables in a list are pairwise different using a statement of the
kind alldiff([A, B, C, D]) instead of the first six constraints.

The CP tool would generally be embedded in an application, and the constraints
would be processed using the host programming language from the data of the problem
at hand. For instance, a loop would usually be used to generate a disequality constraint
for each edge of the graph. In other words, the graph-coloring part of the application
can be developed using the CP tool instead of redeveloping an ad hoc algorithm, but the
integration with the rest of the application is transparent since the constraint solving
facilities are called programmatically.

2.2. Typical Areas of Applications

2.2.1. Application Areas of SAT. SAT solvers have been used as a target language for
many applications related to theorem proving, verification, artificial intelligence (AI),
and electronic design automation (EDA). Examples include AI planning [Kautz and
Selman 1992], model checking [Clarke et al. 2001], automatic test pattern generation
for circuits [Larrabee 1992], and decision procedures for various subsets of first-order
logics [Bryant et al. 2002; Barrett et al. 2002; Flanagan et al. 2003].

One of the most successful applications for SAT is verification and testing of
digital systems [Prasad et al. 2005]. Techniques such as bounded model checking

1The term CSP is often used in the literature to denote constraints expressed in an intentional way (table of
allowed/forbidden tuples), and many papers even implicitly use the term CSP with the more specific meaning
of binary intentional CSP in mind. In this survey, these restrictions will not be assumed unless otherwise
stated. To completely clarify the terminology, let us also note that there is a clear distinction between CP and
CSP since CP refers more broadly to the whole approach of constrained-based problem modeling and solving.
It covers some aspects, like the constraint programming languages, while the CSP literature focuses solely
on the algorithms for solving CSPs.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 5

[Biere et al. 1999] have been widely adopted by the integrated circuits industry to test
and verify the correctness of complicated designs. Many of these techniques use a SAT
solver as the underlying reasoning engine because the verification is mostly carried out
at the level of Boolean logic gates.

More recently, researchers begin to study the problem of verifying digital systems
at higher abstraction levels in order to verify more complicated properties and larger
systems. Examples of such verification tasks include checking certain properties of
programs and verifying the functional correctness of microprocessors [Burch and Dill
1994]. In these applications, systems are often described in rich logics. Translat-
ing these logics down to Boolean often causes significant overhead. Therefore, de-
cision procedures for richer logic are often needed. SAT plays an important role
in many of these decision procedures as the Boolean reasoning engine that glues
other reasoning procedures together. This approach, sometimes called satisfiability
modulo theories (SMT), has recently become an active research subject [Ranise and
Tinelli 2003; Nieuwenhuis and Oliveras 2005; Barrett et al. 2005]. CP solvers can
be regarded as a class of decision procedures with an ad hoc way of combining
theories.

2.2.2. Application Areas of CP. New applications of constraint programming appear
every year; currently the most successful ones are found in configuration, scheduling,
timetabling, and resource allocation, which are of critical interest to many areas of
activity such as manufacturing, transportation, logistics, financial services, utilities,
energy, telecommunications, defense, retail, etc.

Remarkably, before the wide adoption of SAT for verification and testing, early CP
works addressed these problems [Simonis and Dincbas 1987; Graf et al. 1989]. Recently,
there has been a renewal of interest in CP for this area [Delzanno and Podelski 2001;
Collavizza and Rueher 2006].

2.2.3. Synthesis. SAT and CP are two approaches to constraint satisfaction which dif-
fer in their philosophy and in their applications. As we shall see in subsequent sections,
the importance of the applications of SAT for hardware and (more recently) software
verification had some impact on the types of algorithms employed. For instance, com-
plete solvers are preferable for this type of applications (see Section 4). The applications
of CP to scheduling and similar industrial problems, on the other hand, had some im-
pact on the philosophy underlying these tools: the CP community wanted tools that
allow programming application-specific search strategies and integrating them into
large applications.

3. EXPRESSING PROBLEMS IN SAT AND CP

The philosophy adopted by CP tools could be summarized as providing the means to
directly express all useful constraints. In contrast, the SAT approach is minimalistic. It
typically provides a unique type of constraint (clauses) which is just expressive enough
to state complex problems, although usually in a less direct way. Once the problem
is modeled by a set of variables and constraints, the philosophies differ again in the
way the user interacts with the solver: the SAT approach is essentially a black box
approach in which no interaction is required—the solver is expected to find a solution
without external tuning. The CP approach, on the contrary, provides the user with
high-level tools so that she can express problem-specific knowledge and program the
best algorithm for her application.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

6 L. Bordeaux et al.

3.1. Modeling

3.1.1. Modeling Problems in SAT. The main challenge when using a SAT solver is to
model the problem as a Boolean propositional formula. This modeling process (some-
times called encoding or translation) is studied by many researchers. Different appli-
cations require different translation techniques. In the past, people have been able to
translate diverse problems such as AI planning [Kautz and Selman 1992], model check-
ing [Biere et al. 1999], automatic test pattern generation (ATPG) for circuits [Larrabee
1992] and decision problems for various subsets of first-order logics [Bryant et al. 2002]
into SAT problems. For a given problem, different encoding techniques may produce
formulas with very different performance characteristics for SAT solver. For example,
many techniques have been proposed to efficiently translate logic equivalence with
uninterpreted functions and separation logic into SAT [Strichman et al. 2002; Bryant
et al. 2002; Seshia et al. 2003].

Input. Most often, the input to a SAT solver is a Boolean propositional formula in
conjunctive normal form (CNF). A CNF formula is a conjunction (logic and) of one or
more clauses, each of which is a disjunction (logic or) of one or more literals. A literal
is either a positive or a negative instance of a variable. Any (Boolean propositional)
formula can be transformed into a equi-satisfiable CNF formula in linear time by in-
troducing auxiliary variables [Tseitin 1968]. Nonclausal SAT solvers have been studied
recently in the SAT community and that have been shown to be at least as efficient as
clausal SAT solvers [Thiffault et al. 2004]. This fact is also known in the EDA (elec-
tronic design automation) community which traditionally focus on reasoning with logic
circuits [Ganai et al. 2002].

Output. Traditionally, given a SAT instance, a SAT solver only needs to answer true
or false depending on the satisfiability of the formula. If the instance is satisfiable,
most SAT solvers can also output a satisfying assignment (a model) of the instance.
Sometimes the applications prefer the solution to have certain properties. For exam-
ple, applications such as explicating theorem provers [Flanagan et al. 2003] may prefer
solutions to contain only a small subset of the involved variables (Section 8.1). For un-
satisfiable instances, some applications may want the SAT solvers to produce a subset
of the original clauses that is unsatisfiable by itself (i.e., an unsatisfiable core). Some al-
gorithms have been proposed to achieve this [Zhang and Malik 2003b; Oh et al. 2004a].

One advantage of the very simple representation language used by SAT solvers is that
all the effort can be focused on a single representation. This resultes in highly optimized
datastructures and efficient implementations of the reasoning on this representation
as we will see in later sections2.

3.1.2. Modeling Problems in CP. A first step in problem solving with the CP approach
is to specify the problem by defining its (variables and) constraints. When using CLP or
libraries like Ilog Solver or Disolver, one uses the facilities of the host language (Prolog
or C++) to do this. Constraint programming tools provide a rich set of constraints

2CNF formulas in a SAT solver are usually stored in a linear way, sometimes called a sparse matrix repre-
sentation. The data set can be regarded as a sparse matrix with variables as columns and clauses as rows.
In a sparse matrix representation, the literals of each clause occupy their own space and no overlap exists
between clauses. Various techniques have been proposed to make such a representation space efficient and
cache friendly (e.g., by allocating a continuous memory pool for the clause database) and capable of perform-
ing periodical garbage collection and data set compaction. Other representations for a CNF clause database
exist. For example, data structures such as tries [Zhang and Stickel 2000] and ZBDDs [Chatalic and Simon
2001] have been proposed to compress the data size by allowing sharing between clauses. These techniques
are proven to be too costly for search-based SAT solvers but have found applications in resolution-based
solvers.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 7

that are designed to express the relations between the variables of the problem in the
most direct way possible. For instance, constraints are directly available to express
numerical relations (e.g., 2x + y = z), constraints on basic data structures like arrays
(e.g., t[x] = y , where variables t, x and y represent, respectively, an array, an index, and
a value), or higher-level constraints with a more complex meaning (e.g., a constraint
on a set of variables {xi | i ∈ 1..n}, imposing that ∀i ∀ j > i. xi �= x j).

More generally, an important strength of the constraint programming framework
comes from its flexibility. Constraint programming environments provide users with a
library of constraints that helps them to state their problems in the most direct way.
Constraints can be understood in three ways.

—Logical. The semantics of a constraint can be defined in a simple, declarative way:
a constraint is defined by the combinations of values it accepts for the variables it
relates (e.g., the constraint x < y will be satisfied by any solution which assigns a
larger value to y than to x).

—Deductive. The way the constraint interacts with the solver is by informing it of
deductions it makes in reaction to events and decisions arising during the search
process (e.g., a constraint x < y will react to the event x > 5 by deducing y > 6).

—Algorithmic. There are many ways to implement the deduction rules of complex con-
straints, and the role of the providers of the CP toolkit is to make sure the best
efficiency is obtained.

More details on constraint propagation are given in Section 6. We now describe some
of the constraints that most CP tools provide.

Numerical Constraints. Numerical data are ubiquitous in most applications, and nu-
merical constraints are natively integrated in most CP environments.

In most applications, the numerical constraints that naturally occur are linear, e.g.,
the primitive operations are addition and multiplication by a constant. For example,
pure integer programming3 problems [Chvatal 1983; Wolsey 1998], a vast literature
of mathematical programming is available and very efficient, specialized solvers exist.
Indeed, a whole area of research in constraint programming concerns the integration
of CP and integer programming methods [Milano 2004]. While CP tools do not usually
compete with integer programming solvers for pure linear constraints, they have the
advantage of being more flexible and effective at solving problems with other types of
constraints as well.

Because numerical domains can be very large, most CP tools rely on intervals to
represent the range of variables that are subject to numerical constraints and use
interval propagation (Section 5.2) for reasoning about these constraints.

Symbolic Constraints and Metaconstraints. A wide range of constraints which are not eas-
ily representable in SAT can be integrated into CP architectures. High-level constraints
can, for instance, be defined on lists or data structures. These are often referred to as
symbolic constraints since they allow the definition of constraints between data that
are neither numerical nor Boolean4. For instance, one can define constraints imposing

3In this survey, we focus on problems whose variables range over discrete domains (enumerated types or
integers). Specialized techniques, like the Simplex algorithm, can be applied to the problem of computing
real-valued solutions to linear constraints [Chvatal 1983] which is computationally much easier (polynomial
time complexity).
4Pioneering works in constraint logic programming used to consider constraints on many different domains,
like Booleans, integers, rationals, real numbers, strings, lists, trees or records (feature structures), and the
CLP(X) framework was parametrized by the domain (X) of computation [Jaffar and Lassez 1987]. In a sense,

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

8 L. Bordeaux et al.

t[x] = y , where x is an integer-valued unknown variable, t is an array of unknown
variables, and y is another variable.

The CP framework is also flexible enough to allow users to specify problems with
arbitrary Boolean combinations of constraints, not just conjunctions of constraints
[Van Hentenryck and Deville 1991]. Such constraints are typically called metacon-
straints. Disjunctions of constraints are common in some applications, and implications
can typically be used to put constraints conditionally. It is indeed possible to decom-
pose any combination of constraints into a conjunction provided reified versions of the
constraints are available: a reified version of a constraint (say constraint x − y = z)
is a constraint with an additional parameter, whose domain is Boolean, and which is
true if and only if the constraint holds. For instance, we would have a constraint for
(x − y = z) ↔ b, and the distance constraint x − y = 5 ∨ y − x = 5 is seen by the solver
as the conjunction (x − y = 5) ↔ a, (y − x) = 5 ↔ b, a ∨ b.

A number of proposals have been made to improve the way Boolean combinations
of constraints are handled [Bacchus and Walsh 2005]. For instance, disjunction should
ideally be propagated in a constructive way, that is, the solver should be able to in-
fer information before knowing which constraint actually holds. The implication con-
nector can have different effects in CP tools, for instance, the blocking implication
used in the language CC(FD) [Van Hentenryck et al. 1998] puts a constraint (right-
hand side) only if another constraint (left-hand side, or guard) is entailed by the
constraint store. This operational semantics allows it to be used as a programming
construct.

Global Constraints. For some application areas of CP-like scheduling, it is possible to
identify complex constraints that are frequently used. Such constraints can typically be
expressed using a conjunction of primitive numerical and logical constraints but using
specialized algorithms, it is, in general, possible to make stronger deductions on these
constraints and to make these deductions more efficiently.

Such high-level constraints are called global constraints [Beldiceanu and Contejean
1994; Régin 1994]. Some CP libraries provide a very rich set of global constraints
(dozens of them for the largest libraries), and a good use of these components can allow
experts to obtain models with highly improved performances. Among the best-known
global constraints, let us mention the following one.

—The alldiff constraint. Imposed on a list of variables, it constraints their values to all
be different (i.e., the constraint can be expressed as ∀i ∀ j > i. xi �= x j).

—Constraints on lists. These ensure that the elements are sorted, or impose the mem-
bership of certain elements or bound the cardinality of the elements, [Van Hentenryck
and Deville 1991], etc.

—Application-specific constraints such as the cumulative constraint used in plan-
ning/scheduling applications. This constraint expresses a complex logical statement
whose meaning is intuitively: the sum of the quantities of resource r needed by all
tasks active at any instant is never more than the available capacity.

Historically the introduction of global constraints was an important step that allowed
CP to be used for real-world applications. As a means to integrate specialized algorithms
from operations research and graph theory into the CP framework, they are often
unavoidable in the resolution of complex problems.

logic programming, in which CP has some of its roots, intensively uses a particular form of constraints since
its unification mechanism [Robinson 1965] resolves equalities over terms. The expression of unification as a
constraint solving mechanism by Colmerauer [1984] paved the way for constraint logic programming.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 9

The reason why they are critical in terms of efficiency is easily understood if one con-
siders perhaps the most emblematic of them, the alldiff constraint. The alldiff constraint
can indeed make an exponential difference because it provides specialized algorithms
for problems on which branch and prune is inadequate and takes exponential time.
Take, for instance, alldiff([x1 . . . xn]), where each xi ranges over 1..n-1. This problem,
which encodes the Pigeon Hole Principle, is unsatisfiable. Deduction techniques clas-
sically used in constraint solvers are not very effective when the difference constraints
are considered independently of each other, and a classical search algorithm which does
not use global information on the group of disequalities will entirely explore a search
tree of size (n−1)! to prove inconsistency5 (in fact, the runtime will be exponential with
any resolution-based technique, including search, propagation, and learning [Mitchell
1998]). It is well-known that search-based (and resolution-based) solvers have intrinsic
limitations, and global constraints have been a means, in the CP world to overcome
them, for instance, all difference constraints can be propagated very efficiently using
graph-based algorithms (see Régin [1994] and Section 6.2.3).

We refer the reader to Beldiceanu et al. [2005] for a complete catalog of global con-
straints. Note that this reference, which is more than 1300 pages long, presents a list
of about 235 constraints. This shows that the literature on global constraints is rich
but that a high expertise is also needed to use these constraints effectively.

Modeling Languages. Constraint programming provides a rich number of features that
allow the user to express complex problems in a direct and declarative way. Additionally,
some research has focused on the design of declarative modeling languages that provide
a high-level algebraic or logical syntax to express the constraints of the problem. Typical
constructs provided by these languages are arrays, loops or forall quantification,

∑
i

notation for sums, etc. The way constraints are extracted from the declarative syntax
is usually straightforward. There seems to be room for static analysis and program
optimization, but this research area is currently in a preliminary stage [Frisch et al.
2005; Cadoli and Mancini 2006].

An example of state-of-the-art modeling language is OPL [Van Hentenryck and
Michel 2002] which is inspired from mathematical programming languages like AMPL
[Fourer et al. 1993] and also has roots in AI work of the 70s [Laurière 1978]. This
language allows for a separation between the specification of the problem (e.g., graph
coloring or a resource allocation problem) and the data of a particular instance (the
graph, or matrices with costs, etc). This decoupling allows a better reusability of the
specifications.

3.1.3. Synthesis. The features provided by SAT and CP with respact to modeling differ
greatly due to a difference in philosophy. SAT solvers do not aim at being directly used
to express a problem by hand; instead they are used as a target language by higher-level
reasoning tools that automatically translate other problems or formalisms into CNF
formulas. CP, on the other hand, is directly used to express problems, and the solver is
designed to be called directly from the application in which the constraint-solving part
is embedded.

Impact of the Model on the Performances. Common to SAT and CP is the issue of finding
a good model for the problem at hand. Once a model is chosen, expressing it using the
SAT/CP tool is usually relatively easy, but problems can usually be formulated in a

5In on this example, a simple check that the union of the possible values for the xis is always of cardinality
greater than or equal to n would also easily detect the inconsistency.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

10 L. Bordeaux et al.

variety of ways that are not equally easy to solve. It is more an art than a science to
decide which model is preferable.

In SAT, the modeling process (sometimes called encoding or translation) has been
studied by many authors. Some problems are known to have very different behaviors
for different SAT translations [Seshia et al. 2003; Nam et al. 2004]. Special transla-
tion algorithms have been proposed to handle constraints with certain structures (e.g.,
Ganai et al. [2004] and Velev [2004]). There are many similarities between the encod-
ing of problems expressed in rich logics into Boolean propositional formulas and the
compilation of a higher-level programming language into machine code. It has been ob-
served that, in certain applications, some of the commonly used techniques in compiler
optimization, such as loop unrolling and constant propagation, can also be applied to
SAT encoding [Marinov et al. 2005].

In CP, the good use of global constraints and other modeling choices is of critical
importance to the resolution speed. One can often greatly improve the performance
of the solver by reformulating the problem. Typical reformulation techniques are to
try alternative models, to add redundant constraints, to break the symmetries of the
problem with additional constraints [Gent and Smith 2000], or even to combine different
models of the same problem and link them together via so-called channeling constraints
which propagate information between the variables of different representations [Smith
2002].

Because of the wider choice of constraints they provide, the performance of CP tools
is usually (even) more dependent on modeling issues than in the case of SAT tools. One
design choice in SAT solvers is to have all features fully automated. For instance, in
most of the work done on symmetries is SAT, the detection of symmetries is performed
by the solver [Aloul et al. 2003], while in early CP work, the user was usually expected
to express them explicitly. Both approaches have their pros and cons. It has been argued
by some researchers, even inside the CP community, that the expertise needed by CP
tools is a major obstacle limiting their widespread use in the industry [Puget 2004].
An important challenge in CP is to assist or automate the modeling issues (note that
these issues are also tightly related to the discussion on the programming features of
SAT and CP in Section 3.2). On the other hand, some techniques available in CP have
not found their way to SAT solvers simply because they cannot be fully automated. For
instance, to the best of our knowledge, channeling constraints have not been studied
in SAT.

Handling Numerical Data. An important question driving the choice between SAT and
CP technologies for a particular application is whether numerics will be used inten-
sively. Arithmetics are natively supported by CP tools while, in SAT, they need to be
converted into Boolean logic. There are several ways of encoding a numerical variable x
into SAT. The simplest way is to create one Boolean variable Bi for each possible value
i of the variable x; Bi will be true if and only if x = i, and some constraints need to
be added to ensure that exactly one of the Bis is true. A more compact method, called
logarithmic encoding, considers a vector of Boolean variables 〈B0 . . . Bn〉 as the binary
encoding of a number ranging over [0, 2n]; this encoding is more appropriate when the
constraints represent arithmetic operations on large numbers, for instance, the addi-
tion of two 64-bit integers (note that the Boolean constraints used for this encoding
directly reflect the circuit of the operation, for instance, a 64-bit adder).

Surprisingly, encodings of numbers in SAT have been successfully used in verification
problems [Seshia and Bryant 2004] so it would be naïve to conclude that SAT solvers
cannot cope with numbers at all. The use of incremental encodings, in particular, can
compensate for the problem of the size of encoding. However, these encodings are not

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 11

direct and are complex to implement, and SAT solvers do not exploit the arithmetic
operations supported natively by the processor. On the contrary, CP tools can provide
direct support for numerical constraints, and the internal representation of these con-
straints is usually space-effective (typically intervals).

Awareness of Problem Structure. Problem representation in SAT is flat and homoge-
neous, and there is little room for giving the solver information on the structure of
the problem. Even if the formulation of a problem naturally exhibits particular graph-
theoretic properties or high-level features, this is lost during the encoding into Boolean
logic. To alleviate this problem, some authors tried to incorporate the structure in-
formation of the original problem as hints to guide the SAT search, for example, by
exploiting the signal correlations of circuits [Lu et al. 2003] or structure similarities
between different timeframes of the same sequential circuit [Strichman 1999], or make
the SAT solver aware of the structural symmetry [Sabharwal 2005]. On the contrary,
CP provides rich tools for the expression of the structure of the problems at hand at the
cost of being more difficult to learn and requiring more expertise.

One tool to express problem semantics in CP is the use of global constraints. An exam-
ple of using a special reasoning technique in SAT is equivalence reasoning. To express
an equivalence class with n variables, 2n−1 clauses, each with n literals, are needed. It
is well known that reasoning on equivalence is exponential for resolution-based SAT
solvers. Search is just a special case of guided resolution. Therefore, traditional SAT
solvers, even combined with learning, will stall on problems that contain many equiva-
lences. There is some work on incorporating equivalence reasoning into SAT solvers in
the literature [Li 2000; Dixon et al. 2004]. Other works aim at recovering structural in-
formation from the SAT instance of using preprocessing or graph analysis which allows
the restatement the problem in a more concise way so that some equality reduction can
be performed [Bacchus and Winter 2003].

The main reason why SAT solvers are not very structure-aware is that the CNF for-
mat is very low level, but note that this choice also has great advantages. SAT solvers
are highly optimized to perform efficient deduction on CNF Boolean formulas. CNF can
be compactly stored in memory with very good cache behavior. Highly-efficient deduc-
tion algorithms have been proposed to perform reasoning on clauses. Many branching
heuristics and conflict-driven learning techniques also rely on the fact that the for-
mula is in CNF. By combining these techniques, modern SAT solvers routinely solve
instances with tens of thousands of variables and hundreds of thousands of clauses.

Versatility. SAT solvers are highly-specialized in doing one thing—Boolean
satisfiability—while CP tools provide a more general framework into which additional
features can be plugged. On the other hand, the simplicity of the use of SAT solvers,
which have a clear interface with a simple and uniform representation language, makes
it easier to learn and use for nonspecialists. (See also Section 4.4 on integration of
SAT/CP algorithms for more details.)

3.2. Programming

3.2.1. Tuning of SAT Solvers. Given a SAT instance, usually a SAT solver will try to
find a solution or to prove the unsatisfiability without any interference from the caller.
There are many reasons for regarding SAT solvers as black boxes. First of all, through
many years of research, a number of good heuristics have been developed that seem to
be efficient for many classes of problems generated from real-world applications. A large
number of SAT test benchmarks exist in the public domain. A newly proposed heuristic
usually has to work well on most of them in order to be considered a good heuristic.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

12 L. Bordeaux et al.

When a real problem is reduced to a SAT instance, much of its internal structure is
lost in the translation phase. Therefore, intuition obtained from the problem domain
may not help much on solving the resulting SAT formula. For example, it is known
that branching heuristics based on variable dependencies do not work very well even
though there is a strong intuition behind such heuristics [Giunchiglia et al. 2002]. Still,
there are works that exploit domain-specific knowledge to help prune search spaces.
For example, signal correlation between nodes of a Boolean circuit can be used to derive
good branching and learning heuristics for equivalence checking of logic circuits [Lu
et al. 2003].

3.2.2. Programming a Search Strategy in CP. The constraints obtained from the modeling
can, in theory, be solved directly, and CP solvers have default strategies that can be
applied in the absence of user-defined instructions. But CP tools typically fail to achieve
the best performances without some application-specific tuning.

A typical parameter which has to be carefully tuned by the user to obtain the best
performance is the order in which the variables have to be instantiated during the
search. For many applications, variables divide into groups that have different mean-
ings, and some variables play a more important role. This is often obvious to the expert
but not necessarily to the automated procedure. This tuning can either be achieved by
providing a list of variables to start with or by selecting one of a number of predefined
enumeration strategies (e.g., by increasing domain size, see Section 5.1 on branching).
In some libraries, it is even possible to specify alternative choices of algorithms like
local search or stronger propagation methods.

In many constraint programming tools, the tuning is essentially done by giving well
chosen parameters to the solver. Some other tools provide higher-level ways of ex-
pressing strategies which culminate full-fledged, declarative languages. For instance,
in OPL, one can construct a search strategy using advanced constructs [Van Hentenryck
et al. 2000] for nondeterministic choice and ordering as well as event-driven conditions.
The idea of languages dedicated to search procedures dates back to the 1970s [Fikes
1970] and seems to be increasingly present in recent languages [Van Hentenryck and
Michel 2002].

3.2.3. Synthesis. The philosophy of SAT regarding the algorithmic problem solving
is, in general, to let the solver find the best way to deal with the instance at hand. CP,
on the other hand, typically provides a wide range of methods to solve the problem so
that the best one can be hand picked.

Once again, both choices have pros and cons: SAT is used as a target language which
is low level so many reasoning tasks can be compiled to it using some translation
scripts. Because the language is low level, it is not easy–nor desirable—to let the user
specify variable-ordering strategies and other information. CP, on the other hand, aims
at being used programmatically with queries directly coming from another application.
This gives the programmer opportunities to inform the solver of helpful, application-
specific information and to choose the best solving functions provided by the library. On
the other hand, the expertise required is higher which limits the use of this technology
by nonexperts.

4. ALGORITHMS FOR SAT AND CP

4.1. Complete versus Incomplete Algorithms

A large range of techniques have been proposed to solve constraint satisfaction and op-
timization problems over the years. Some of these methods arose from fields as diverse

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 13

as mathematical programming (dynamic programming [Bellman 1957], linear relax-
ations and cutting plane generations for integer linear constraints [Wolsey 1998], which
use simplex and interior point methods from linear programming [Chvatal 1983]) or
statistical physics [Mézard and Zecchina 2002], not to mention some attempts at using
nonconventional computational paradigms like DNA computing [Dantsin and Wolpert
2002]. Giving a complete overview of all the approaches that have been considered
would require considerable space, and the authors of this survey lack the required au-
thority in some of these areas. Still, the most robust, state-of-the-art solvers typically
rely on a small number of established techniques that sometimes date back to the early
60s [Davis and Putnam 1960; Davis et al. 1962]. One can roughly distinguish between
the following two categories of constraint solving methods.

—Incomplete methods aim at finding solutions by heuristics means, without exhaus-
tively exploring the search space. These methods are typically unable to detect that
no solution exists. When no solution is generated after some time limit, one can-
not tell whether existing solutions were missed/or whether the problem is indeed
unsatisfiable6. Most of the incomplete methods are stochastic, that is, they use ran-
dom moves.

—Complete methods aim at exploring the entire solution space, typically using back-
track search (see Sections 5 and 7). Since the exhaustive enumeration of the points in
the search space would be too costly, pruning techniques are used to rapidly determine
that certain regions contain no solution. (Section 6 will present pruning methods in
more details, in particular propagation methods.)

The rest of Section 4 will give a brief overview of incomplete and complete methods,
trying to emphasize the similarities and differences between the ways these techniques
are used in SAT and CP. Sections 5, 6, and 7 will then go into a more detailed comparison
of a class of complete algorithms which are of particular importance: branch and prune
methods.

4.2. A Brief Overview of Incomplete Methods

A wide range of incomplete methods have been proposed to solve constraint satisfaction
and optimization problems. These methods can roughly be divided into population-
based algorithms and other local search methods.

—Population-based algorithms maintain a population of individuals which typically
correspond to points of the search space. This population is iteratively modified and
the goal is to ultimately find an individual that satisfies all the constraints or one
that is of high quality with regard to the objective function of the problem. One way to
update the population is to use genetic algorithms, with operations like cross-over and
mutation, to obtain new individuals from the existing population (see Michalewicz
[1995] for a survey of evolutionary computation methods that is essentially restricted
to nonlinear constraints). Other population-based methods have been proposed, for
instance, ant colony optimization [Dorigo and Stutzle 2004] and other swarm-based
algorithms, which are inspired by the way ants or other social animals solve complex
problems using collective intelligence and stygmergy, that is, indirect communication
via pheromone laying.

6Some algorithms, including some stochastic ones, are nevertheless probabilistically asymptotically complete
[Hoos 1999], which means that they offer a probabilistic guarantee that all the search space will eventually
be explored.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

14 L. Bordeaux et al.

—Other (nonpopulation-based) incomplete methods typically consider a unique point
at every timestep. The goal is here again to reach a (possibly optimal) solution by
exploring the neighborhood of the current point and moving it stochastically along
the search space. Well-known representatives of the stochastic local search (SLS, also
known as hill-climbing) family are simulated annealing [Kirkpatrick et al. 1983] and
Tabu search [Glover and Laguna 1995]. A recent general reference on the topic is
[Hoos and Stutzle 2004].

Common to all stochastic local search methods is a small number of basic, well-
identified principles, of which many instantiations have been proposed through the
years. SLS algorithms use intensification to explore the close neighborhood of the
current point; on the other hand, they need a source of diversification to avoid getting
stuck in a neighborhood in which no (globally optimal) solution can be found. The
diversification component is usually the most difficult to define. A typical technique
is to allow a nonzero probability to make moves that do not seem a priori promising;
this allows the algorithm to explore parts of the search space that it would otherwise
never reach (noise strategies). While noise strategies allow some diversification in
the choice of the moves, randomness can also be injected by directly applying random
changes to the current point between some moves (perturbation approach).

While deterministic variants exist, the incomplete methods used in practice are typi-
cally stochastic, and rely on (pseudo)random generators. This feature typically improves
their robustness, but one drawback is that it makes the tuning of these algorithms par-
ticularly tiresome. Local search techniques are usually parametrized by a large number
of numerical constants that determine the probability of applying perturbations, the
number of steps to wait before applying the diversification technique, etc. Finding good
choices for these parameters is critical to obtaining good performance.

4.2.1. Incomplete Methods in SAT. Incomplete methods based on stochastic local search
started to have considerable success on SAT in the 1990s with the introduction of GSAT
[Selman et al. 1992], which showed that local search based on the objective of maximiz-
ing the number of satisfied clauses could be used to solve large satisfiability problems.
Its followers like WalkSAT [Selman et al. 1994] could deal with unsolvable instances
using complete solvers. However, complete SAT solvers have recently seen considerable
improvements due to the invention of learning and nonchronological backtracking tech-
niques [Marques-Silva and Sakallah 1996; Bayardo and Schrag 1997] and the introduc-
tion of well-designed solvers such as Chaff [Moskewicz et al. 2001]. Modern complete
SAT solvers are especially competitive when the instances are generated from real-
world applications (i.e., exhibits some structure). Moreover, the most important recent
applications of SAT is verification where complete solvers are preferable. Therefore,
complete SAT solvers are attracting most of the attention in recent years. Still, great
progress has been made on local search SAT solvers. An example of a state-of-the-art
stochastic SAT solver is a system called SAPS [Hutter et al. 2002]; its heuristic is based
on weights assigned to each clause of the CNF, which are updated using scaling and
smoothing steps.

4.2.2. Incomplete Methods in CP. The use of local search integrated with constraint pro-
gramming, (see, e.g., Pesant and Gendreau [1999]) or as an alternative framework for
constraint solving and optimization (e.g., Davenport et al. [1994]) has been considered
since the early days of CP. An important difference with SAT is that many applica-
tions of constraint programming deal with optimization problems for which incomplete
approaches based on local search are effective at finding good solutions, and exhaus-
tive search is indeed often infeasible. An example of recent constraint programming

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 15

Fig. 2. The iterative description of DPLL.

approaches to incomplete methods is the Comet system which proposes a high-level
language to program local search algorithms [Van Hentenryck and Michel 2005].

4.3. A Brief Overview of Complete Algorithms

The complete algorithms proposed for SAT and CP are also quite numerous. Most com-
plete algorithms are based on backtrack search. In these approaches, a search tree
is built/explored and some local reasoning is used at each node to prune away cer-
tain branches. An alternative search algorithm used in SAT is proposed by Stålmarck
[Sheeran and Stålmarck 2000] which use breadth-first search among other techniques.
The main approaches in SAT other than search are resolution (see Section 6.11), which
iteratively builds all the clauses implied by the problem until unsatisfiability is de-
tected, and algorithms based on data structures to represent the entire set of solutions
of the problems. These data structures are typically variants of binary decision dia-
grams [Bryant 1986].

4.3.1. Complete Methods in SAT. The backtrack algorithm is most often attributed to
Davis, Putnam, Logemann, and Loveland (DPLL) [Davis and Putnam 1960; Davis
et al. 1962]7. The original paper described a recursive algorithm but, in practice, most
solvers implement the algorithm as an iterative procedure. The pseudocode based on
the branch and prune principle is described in Figure 2. There are three essential
constituents of backtracking algorithms: the heuristics to choose variables for branch-
ing (function make branch decision), the algorithm used for pruning and reasoning
(function deduce), and the algorithm to handle conflicts when they occur (function
analyse conflict and backtrack). These three parts will be discussed in Section 5,
6, and 7, respectively. The preprocess step can be regarded as an extra deduction step
to simplify the problem before any branch is made. Since it is only carried out once,
the preprocessor can employ some more powerful but more expensive reasoning mech-
anisms than the regular deduce function in order to simplify the problem as much as
possible. We will briefly overview some of the preprocessing algorithms in Section 6.

7The version of the algorithm which is currently used actually corresponds to the second version, that is, the
one by Davis et al. The term DPLL, however, is generally used.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

16 L. Bordeaux et al.

4.3.2. Complete Methods in CP. If we exclude the historical generate and test algorithm
which completely generates an assignment of the problem variables before testing the
associated constraints, the most prominent algorithm is backtrack search [Golomb and
Baumert 1965]. Today, the backtrack search algorithms used in CP are close to the ones
used in SAT (at least at the conceptual level). They define a search tree by dynamically
selecting a value for a variable. This is called a branching decision. Each decision is prop-
agated through the underlying constraint engine. When an inconsistency is detected by
the engine, it can be analyzed to perform (possibly nonchronological) backtracking. If
alternatives values are available, the consequences of the inconsistency are propagated
through a process called refutation. The engine may add a new constraint which records
the negation of the previous attempt (no-good learning).

It has been observed that the initial choices in a tree search are by far the most critical.
One mistake at a very early level can result in a very expensive and deeply unfruitful
systematic exploration. To overcome this problem, the initial backtracking algorithm
has been revisited by many researchers [Harvey and Ginsberg 1995; Meseguer 1997;
Gomes et al. 1998] (see Section 5).

4.4. Integration of Algorithms

Because a wide range of algorithms have been proposed for both SAT and constraint
satisfaction problems, an interesting thread of research has investigated the possibility
of mixing the algorithms available and combining their respective advantages. Addi-
tionally, it is sometimes necessary to mix solvers of different types to tackle problems
whose formulation requires a mix of several types of constraints possibly on variables
ranging over several domains (e.g., some real-valued, some discrete). We can distinguish
between:

—cooperation, which is the integration of several algorithms that are run together on
the same problem and exchange some information to make their resolution easier;

—hybridization, which denotes the design of a new algorithm composed of features
taken from algorithms of different categories (typically a complete solver that occa-
sionally performs some steps of local search);

—combination, in which solvers for different types of problems are mixed, allowing
them to solve problems not solvable by any of them independently (e.g., mixed linear
integer programming deals with problems with linear constraints on data that are
partly real-valued, partly integer-valued.).

Integration is used as a generic term for all methods which are based on one of these
forms of mixing.

In the context of SAT, some hybrid procedures were recently proposed. They combine
a stochastic algorithm with resolution, which guarantees completeness [Fang and Ruml
2004], or with search, which allows better performance on structured instances [Hirsch
and Kojevnikov 2001]. The most common form of integration involving SAT solvers is
otherwise combination. This is because SAT solvers are often used in applications that
require mixing propositional reasoning with richer logic theories such as integer or real
arithmetics, equivalences, and uninterpreted function symbols, etc. Such combination-
based decision procedures based on SAT are often called satisfiability modulo theories
(SMT) provers. Two well-known methods combining different theories are the Nelson-
Oppen method [Nelson and Oppen 1979] and the Shostak method [Shostak 1984]. An
appealing recent framework for SMT is the DPLL(T) framework [Nieuwenhuis and
Oliveras 2005].

The constraint programming community, on the other hand, has traditionally used all
forms of solver integration, perhaps because a large number of established techniques

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 17

from operations research naturally apply to some classical constraint programming
applications. The connections between constraint programming and mathematical pro-
gramming have therefore been widely studied [Hooker 2000; Milano 2004], and more
general frameworks for solver cooperation have been proposed [Monfroy and Castro
2003].

4.5. Synthesis

Both SAT and CP have benefited from a wide range of proposals defining complete
and incomplete algorithms. The state-of-the-art algorithms for both areas are in many
respects similar: stochastic local search usually appears as the leading class of incom-
plete solvers, while the best complete solvers are based on a backtrack search that
essentially uses the same kind of propagation (unit propagation and arc-consistency,
Section 6.1 and 6.2, respectively). More details on the important class of branch and
prune SAT/CP solvers will be given in the next sections: Section 5 will more specifi-
cally focus on branching, while Section 6 will deal with the pruning part. A topic which
shows more differences in the SAT and CP approaches concerns the conflict analysis
techniques, which are the last important enhancement of branch and prune we consider
and which are discussed in Section 7.

5. BRANCHING

5.1. SAT Heuristics

In SAT, since only two choices are possible for each variable, usually variable selection
is more important. The heuristics for choosing values are more or less arbitrary, usually
based on some obvious statistics. In practice, most of the challenging SAT instances are
unsatisfiable. The solver has to search the entire space one way or the other. Therefore,
the main research focus on SAT branching heuristics is to discover conflicts as early as
possible. Another principle guiding the design of branching heuristics in SAT is that
they must be cheap to evaluate—a heuristic that would requires iterating through all
the clauses of the problem would clearly not be affordable on large instances. Currently
the most successful branching heuristics all have sublinear asymptotic time complexity
with regard to the size of the formula.

The decision heuristics used in the first generation of SAT solvers were mostly based
on statistics on the formula. Early branching heuristics such as Bohm’s heuristic (re-
ported in Buro and Büning [1993]), maximum occurrences on minimum sized clauses
(MOM) (e.g., Freeman [1995]), and Jeroslow-Wang [Jeroslow and Wang 1990] are greedy
algorithms that either try to produce a large number of implications or to satisfy as
many clauses as possible. These heuristics use some functions to estimate the effect of
branching on each free variable and choose the variable that has the maximum function
value as the next branching variable.

One of the most successful branching heuristics based on such statistics is introduced
in the SAT solver GRASP [Marques-Silva 1999]. This scheme proposes the use of the
counts of literals appearing in unresolved clauses, that is, clauses which are not al-
ready true under the current partial assignment. In particular, it was found that the
heuristic called DLIS gave quite good results for the benchmarks tested. DLIS chooses
the variable with the dynamic largest individual sum (DLIS) of its literal count as the
next decision variable.

In the DLIS case, the counts are state-dependent in the sense that different variable
assignments will give different counts for the same CNF formula because whether a
clause is unresolved (unsatisfied) depends on the variable assignment. Because the
counts are state-dependent, counts for all the free variables need to be recalculated at

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

18 L. Bordeaux et al.

every branching point. This often introduces significant overhead. Moreover, the counts
are static in the sense that they depend only on current state (i.e., variable assignments,
original and learnt clauses, etc.) of the solver. The heuristic is oblivious to the search
process of the SAT solver (i.e., how the solver reaches the current state).

Chaff [Moskewicz et al. 2001] proposed a branching heuristic called Variable State In-
dependent Decaying Sum (VSIDS) that tried to eliminate both of the problems. VSIDS
keeps a score for each of the two phases of a variable. Initially, the scores are the
number of occurrences of the corresponding literals in the original CNF formula. Be-
cause of the learning mechanism (discussed in Section 7), additional clauses (and lit-
erals) are added to the clause database as the search progresses. VSIDS increases the
score of a literal by a constant value whenever an added clause contains this literal.
Moreover, as the search progresses, all the scores are periodically divided by a con-
stant. In effect, the VSIDS score is a literal occurrence count with higher weight on
the more recently added literals. VSIDS branches on the free literal with the highest
score.

Because scores in VSIDS are variable-state independent (i.e., unrelated to the current
variable assignment), they are very cheap to maintain. In practice, profiling shows that
branching usually takes less than ten percent of the total solving time. In VSIDS, the
scores are not static statistics. They take the search history into consideration. VSIDS
tries to branch on variables that are recently active. The activity of a variable is captured
by the score that is related to the literal’s occurrences. The focus on recent events is
captured by decaying the scores periodically. Experimental results show that VSIDS
is much more effective in solving real-world instances compared with static branching
heuristics.

Recently, several new branching heuristics have been proposed that further push the
ideas of VSIDS. For instance, Berkmin [Goldberg and Novikov 2002] proposed taking
into account the scores of the literals that are involved in the generation of these clauses
(in addition to the literals present in these clauses). Moreover, it proposed choosing to
branch on a free literal that appears in the latest learned clauses. Siege [Ryan 2004]
proposed another branching scheme that heuristically moves literals that appear in
the latest learned clauses up to the front of the branching priority queue. Yet another
heuristic [Dershowitz et al. 2005] moves active clauses to the front of a clause list and
chooses to branch on literals occurring in an unresolved clause in front of the list. These
algorithms are all different ways to capture the recently active principle. All of them
seem to be quite competitive in performance compared with VSIDS. Almost all SAT
solvers developed recently that are optimized for real-world SAT instances employ a
state-independent dynamic decision heuristic.

It is well known that bad choices in early branch variable selection can make the
problem much harder to solve. Random restarts [Gomes et al. 1998] provide a heuristic
that tries to alleviate this problem by periodically resetting the solver and starting
search from the very beginning. In modern SAT solvers, after restart learned clauses
are carried over, only variable assignments are thrown away. This allows the solver
to explore new solution spaces without wasting previous search efforts. Restart is an
important feature that has a huge impact on the robustness and efficiency of SAT
solvers. Unsurprisingly, researchers have tried to tune restart strategies to make them
more intelligent and less random [Kautz et al. 2002].

5.2. CP Heuristics

5.2.1. Variable and Value Ordering. The general idea guiding variable and value selec-
tion is usually summarized under the fail first principle, which basically says that to
succeed, first try where you are most likely to fail.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 19

The most common variable heuristics are MINDOM (selects the variable with the
smallest domain), MAXDEG (variable connected to the largest number of constraints),
DOMDEG ([Bessière and Régin 1996] favors variables with small domains and large
degrees), BRELAZ (MINDOM-fail-first principle that breaks ties by returning the first
variable connected to the largest number of unassigned variables in the constraint
graph [Brelaz 1979]). Alternatively, the solver can simply consider variables according
to a user-defined variable ordering (LEX).

Classical value-ordering heuristics include LEX (lexicographical ordering), INVLEX
(reverse lexicographical ordering), MIDDLE (median value of the domain first), and
RANDOM.

If we exclude RANDOM, all the previous heuristics must be interpreted with respect
to the problem. For instance, using a LEX ordering on a task allocation problem will
allocate a task as soon as possible (INVLEX as late as possible, etc).

Note that in addition to the heuristics presented here, in CP, programmers can define
their own ones.

5.2.2. Intelligent Search Strategies. Evolved search strategies have been proposed in the
CP framework to explore the search tree in an intelligent and diversified way in order
not to get eternally stuck when a branching heuristic makes a wrong choice.

—Limited discrepancy search [Harvey and Ginsberg 1995] is based on the assumption
that a well-chosen heuristic is wrong only a few times along the sequence of choices.
Search therefore starts by applying the heuristics, then exploring other sequences
of choices by increasing order in the number of discrepancies (i.e., number of times
where the heuristic is violated).

—Interleaved Depth-First Search (IDFS, [Meseguer 1997]) searches a number of sub-
trees in parallel in an interleaved way. The idea is that the bad choices that are most
important to avoid are the ones occurring at an early branching stage because they
can lead to exploring huge subtrees. The same assumption leads to variants of LDS
like Depth-Bounded Discrepancy Search [Walsh 1997], which applies the LDS idea
only on nodes that arise early in the tree. LDS-style and IDFS-style heuristics are
compared in Meseguer and Walsh [1998] which gives a clear idea of the different
orders in which these heuristics explore the tree.

We note that IDFS is a direct exploitation of the results of Rao and Kumar [1993]
(Figure 3). Like many others before [Pruul and Nemhauser 1988], these authors
observed superlinear speed-ups in parallel tree search. But they were the first ones
to interpret these observations as a of suboptimal proof for sequential tree search:
“. . . what is the best possible sequential algorithm? Is it the one derived by running
parallel DFS on one processor in a time slicing mode?. . . ”.

5.3. Synthesis

Note that, whereas the branching heuristics of SAT are designed to allow the solver to
robustly solve the instances without much help from the user, the philosophy in CP is
rather to propose diverse branching methods, none of which works universally well, but
which allow the constraint programmer to handpick the most appropriate combination
for her application. An interesting remark arising from the comparison of the heuristics
of SAT and CP is that the idea of minimizing the cost of the evaluation of the heuristics
itself is a major concern in SAT, while this issue appears to have been overlooked in
the literature on CP heuristics.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

20 L. Bordeaux et al.

Fig. 3. A number of search strategies (from Meseguer and Walsh, [1998]). For simplicity, the
leftmost branches correspond to the ones indicated by the branching heuristic. The extreme
version of IDFS does interleaving at every level, while the one-level version interleaves just 3
searches corresponding to the values of the first variable (depth-bounded version with bound-
depth one).

6. PRUNING

Search-based solvers rely on deduction mechanisms to detect the consequences of the
assignments imposed by the branching heuristics. This can dramatically speed-up the
detection of inconsistent branches. This section presents the deduction mechanisms
used in SAT and CP.

6.1. Deduction in SAT

6.1.1. Common Deduction Mechanisms in SAT

Resolution. A central deduction mechanism in SAT solvers is propositional resolution
[Davis and Putnam 1960], that is, the following rule

A ∨ x, ¬x ∨ B
 A ∨ B,

which we read as follows: if we have both a clause containing a positive occurrence of
variable x (together with a disjunction A of other literals) and a clause with a negated
occurrence of x (together with a disjunction B of other literals), then we can deduce
a new clause by merging these two clauses and removing the occurrences of x. The
deduced clause A ∨ B is called resolvent. For instance, the clause ¬x ∨ ¬z ∨ u is a
resolvent of the clauses ¬x ∨ y and ¬ y ∨ ¬z ∨ u. Resolvents are a particular type of
implicants, that is, may clauses which are consequences of the problem.

Resolution is a complete deduction mechanism by itself, computing the resolvents
of the problem until saturation; we have the guarantee that the empty clause will
be generated if and only if the problem is inconsistent. Such resolution-based solvers
have been developed but better performance is typically obtained by using search-
based (DPLL) solvers that only use restricted forms of resolution. An important type
of resolution is the unit resolution (or unit implication) rule, which is the restriction of
resolution in which we impose that one of the clauses we resolve on be a single literal
(unit clause). Unit resolution was first proposed in the seminal paper by Davis et al.
[1962]. It can be expressed by the two rules:

x, ¬x ∨ A
 A and ¬x, x ∨ A
 A.

Unit resolution is no longer a complete deduction mechanism but it can be performed
efficiently. It also mixes well with search algorithms because branching works by as-
signing values to the variables of the problem, which can be interpreted as adding unit

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 21

clauses to the problem (e.g., branching on x = 0 can be interpreted as stating the clause
¬x). Unit resolution simply means that, if the assignment of variable x contradicts the
value imposed to it by the clause, then one of the other literals of the clause has to be
true. In particular, when all literals of the clause but one contradict the current assign-
ment, then the remaining literal has to be true, and we can assign the variable of this
literal accordingly. The clause is in this case called a unit clause. For instance, under
the current assignment x = 0, z = 1, the clause x ∨ ¬ y ∨ ¬z allows us to assign y to 0.

Search-based solvers use unit resolution to propagate the consequences of every deci-
sion they make. The process of iteratively applying this rule until no unit clause exists
in the CNF is called unit propagation. When there exists a conflicting clause in the
formula, that is, a clause whose literals all evaluate to false, then the current assign-
ment cannot be extended to a solution and we must backtrack. The process of doing
assignments in a chain using the unit resolution rule and of detecting conflicts is called
Boolean constraint propagation (BCP) [Mac Allester 1990]. Boolean constraint prop-
agation is a central component of DPLL solvers, and considerable attention has been
paid to implementing it efficiently. This will be discussed in detail in Section 6.1.3.

Other Deduction Rules. Many deduction rules other than unit implication have been
proposed. A well-known rule is the pure literal rule [Davis et al. 1962]: if a variable oc-
curs only positively (respectively negatively) in all the unresolved8 clauses, then it can
be assigned value 1 (respectively 0). Another explored deduction mechanism is equiv-
alence reasoning. In particular, EqSatz [Li 2000] incorporated equivalence reasoning
into the Satz solver and this was found to be effective on some classes of benchmarks.
In Li [2000], equivalence is detected by a pattern-matching scheme. The authors of
Marques-Silva [2000] propose including more patterns in the matching process to ob-
tain richer deductions.

Clauses with two literals are a common special case for which efficient, specialized
algorithms can be used. While the unit implication rule basically guarantees that all
the unit clauses are consistent with each other, it is possible to make all the clauses
that have two literals consistent with each other. Researchers have been exploring this
avenue in works such as Chakradhar and Agrawal [1991] and Van Gelder and Tsuji
[1996]. These approaches maintain a transitive closure of the implication relationships
among all two literal clauses. Recursive Learning [Kunz and Pradhan 1994] is another
reasoning technique originally proposed in the context of learning with a logic circuit
representation of a formula. Subsequent research [Marques-Silva and Glass 1999] has
proposed incorporating this technique into SAT solvers.

All these alternative implication rules can detect implications that are not implied
by unit clauses and potentially reduce the number of branches needed for exploring the
search space. Unfortunately, most of them are costly to implement and will reduce the
overall efficiency of the solver for general SAT instances; still many of them are useful
for solving certain classes of instances. Finding a good trade-off between fast algorithms
that compute simple deductions, and more sophisticated, but slower, reasoning methods
is a central concern that has been driving the research on SAT solvers.

6.1.2. Preprocessing and Deduction. While the previous sections presented deduction
techniques applied during the search, some reasoning can also be done before the
search in order to simplify the problem. This is usually called preprocessing. Since
preprocessing is applied only once, it is possible to incorporate some deduction rules
that are too expensive to be applied at every node of the search tree. For instance, it

8A clause is said to be resolved if it is already true under the current assignment. Note that a resolved clause
can be discarded: it does not constrain the problem anymore.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

22 L. Bordeaux et al.

is usually acceptable to perform operations such as variable renaming or elimination
to generate a simpler, equisatisfiable SAT instance which can be solved instead of the
original formula. Such operations are usually difficult to perform during the search
process due to the bookkeeping overhead.

Resolution is the basic operation used in most preprocessing algorithms. Many au-
thors have explored the possibility of computing resolvents to enrich the problem with
redundant clauses or to simplify it. NiVer [Subbarayan and Pradhan 2004] is a system
that tries to eliminate variables without increasing the size of the resulting formula.
In Bacchus and Winter [2003], the authors explored the use of a variant of resolution
called hyper-resolution to simplify Boolean formulas. SateElite [Èen and Biere 2005]
uses resolution and detection of subsumption9 to eliminate clauses and literals.

6.1.3. Unit Propagation. A SAT solver typically spends 80 to 90 percent of its run time
performing BCP, and it is therefore important that this operation be very efficient.
Over the years, many different BCP algorithms have been proposed to speed up the
implication process. The goal is to react to new assignments by determining as rapidly
as possible which clauses become units and whether there is a conflict. A literal is said
to be free if the current partial assignment does not yet assign a value to it; it is said
to have value 0 if the partial assignment contradicts the value imposed by the clause
(e.g., assignment imposes x = 1, while the clause contains the literal ¬x) and to have
value 1 if the partial assignment satisfies it, in which case the clause is satisfied. In
reaction to a new assignment, BCP will have to determine for every clause which one
of the three following cases applies.

—All literals of the clause have value 0 (conflicting clause): we have detected the incon-
sistency and we must backtrack.

—All literals but one have value 0 (unit clause): the remaining literal forces a new
assignment which we need to propagate.

—The clause either contains at least two free literals, or already contains a value 1
literal; this clause cannot help in making any further deduction until either more
variables get assigned or a backtrack occurs.

To perform these updates, a well-known, simple method keeps counters for each
clause. The counter records the number of true and false literals of the clause. When a
variable is assigned a value, clauses that contain this variable as one of their literals
update their counters and detect implication or conflict based on the counter values.
This gives a propagation algorithm whose complexity is linear in the size of the problem
representation, but it has drawbacks which are revealed by a finer analysis of the
algorithm. The problem of this scheme is that, whenever a variable gets assigned, all
clauses that contain this variable need to be updated, and the same is true for all
unassignments. Given a Boolean formula that has m clauses and n variables with l
literals for each clause on average, then, on the average, each variable occurs lm/n
times. Using this BCP mechanism, whenever a variable gets assigned, on the average
lm/n counters need to be updated. Unassignment has to update the same number of
counters.

To make propagation more efficient, Zhang and Stickel [2000] proposed the use of
a mechanism for BCP using head/tail lists. The algorithm is based on the observation
that a clause will not be unit nor conflicting as long as it contains two different literals
that do not have value 0. We can, therefore, keep track of two nonzero literals and avoid

9A clause c1 is said to be subsumed by a clause c2 if c1 is a disjunction of a superset of the literals of c2, for
instance, x ∨ ¬ y ∨ z is subsumed by x ∨ ¬ y .

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 23

Fig. 4. Head/tails approach to BCP. For simplicity, we consider
a clause on the variables x1 . . . x10. Darkened cells correspond to
value 0 literals, while empty ones are free. (1) Initially head and
tail pointers point to the beginning and the end of the array, re-
spectively. (2) No action is needed in reaction to new assignments
as long as they do not affect the head and tail literals (here the
events x2 = 0, x6 = 0, x8 = 0, x9 = 1 have occurred). (3) If the lit-
eral pointed to by the tail pointer becomes 0, the pointer is moved
left until it finds a free or value 1 cell (here we react to the event
x10 = 0); the head pointer would similarly move right. (4) When
the two pointers are at the same position, we have a unit clause
if the cell is free, and we have a conflict if it has value 0 (here the
events x1 = 1, x3 = 0 and x7 = 0 have occurred, we have a unit
clause).

performing any action as long as these literals exist. In the head/tail algorithm, the two
literals we keep track of are the first and last nonzero literals of each clause which are
pointed to by so-called head and tail pointers. The algorithm maintains the invariant
that the head pointer be on the first nonzero literal of the clause and the tail pointer
on the last one, as shown in Figure 4. If both the head and tail pointers point to the
same literal, then the clause is either unit or conflicting depending on the value of that
particular literal. This mechanism is more efficient than the literal counting algorithm
because, for each clause, it only needs to keep track of two literals. Therefore, the total
number of literals to keep track of is 2m/n. Since there is no need to move pointers
positioned on literals with value 1, only m/n clauses need to be updated10 on average
for each variable assignment. The head/tail approach still has a drawback: backtracking
requires moving the head and trail literals back to their original positions to maintain
the invariant. Variable unassignment therefore requires to performing m/n operations
again.

The authors of the SAT solver chaff [Moskewicz et al. 2001] proposed a BCP algorithm
called 2-literal watching which, while still based on the idea of maintaining two literals,
allows a more efficient backtracking. The two literals that are maintained are called
watched literals. Contrary to the head/tail list approach, they can be at arbitrary posi-
tions in the clause, and they are initially set to any pair of different free literal positions.

10The update does not take constant time but time O(l) in the worst case. In practice, the approach is
nonetheless efficient, also because the cells of the clause are in adjacent memory regions which makes
iteration efficient.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

24 L. Bordeaux et al.

Fig. 5. The 2-watching literal method. The watched literals are are x6 and x8. Variable x6
(highlighted) is assigned value 0. Four different cases may arise.

Each variable has two lists containing pointers to all the watched literals correspond-
ing to it for both phases. The lists for variable x are denoted as pos_watched(x) and
neg_watched(x). The list pos_watched(x) will be considered when value x is assigned
value 0, and neg_watched(x) will be considered when x is assigned value 1. When the
assignment occurs, we iterate through every literal p in this list and search for a new
nonzero literal in the corresponding clause. The following cases may occur.

—A nonzero literal l different from the other watching literal is found (case 1 in Figure
5). It will replace the watching literal p and we update the lists accordingly (we
remove the reference to p, and add a reference to l in the appropriate list). Note
that this is the only case where the watching literal is modified (the reason to avoid
modifying it in the other cases, as we will see, is that this way we keep watching
literals that will remain valid in case of backtrack).

—The only literal l with a nonzero value is the other watched literal, then,
(a) if l has value 1, then nothing needs to be done for this clause (Figure 5 case 2);
(b) if l is free, then the clause is a unit clause, and l is the unit literal (case 3 in Figure

5). We notify the solver of the new assignment.

—If all literals in the clause have value 0 and no such l exists, then the clause is a
conflicting clause (case 4 in Figure 5).

The 2-literal watching scheme has similar advantages to the head/tail algorithm
except that, additionally, the watching structures can be updated in constant time when
a backtrack occurs. This is because, in every case, the possibility of a backtracking is
anticipated: in case (1) of Figure 5, the two pointers will refer to two nonzero positions
which will remain valid after backtrack. In cases (2–4) the reasons why we avoid moving
the pointer are subtle: we allow it to temporarily refer to a zero position, but this is
without any risk because in every case the only events that can affect the clause will
be related to the other watching literal. On the other hand, the literal that is pointed
to will become valid again once a backtrack occurs. Experimental results show that the
2-literal-watching scheme significantly outperforms other BCP schemes [Zhang and
Malik 2003a].

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 25

6.2. Constraint Propagation

6.2.1. Principles. Propagation methods appeared in the context of constraint sat-
isfaction problems with the work of Waltz [1975] on scene recognition, followed by
Montanari’s [1974] paper on path-consistency, which was also inspired by picture pro-
cessing applications, and leading eventually to the notion of arc-consistency estab-
lished in Mackworth’s work [1977]. (A last important early reference is Freuder [1978]
that defines a k-consistency algorithm that now appears very similar to propositional
resolution).

Most modern propagation engines are still essentially based on Waltz and Mack-
worth’s AC-3 propagation algorithm which, although not optimal for some particular
types of constraints, is general and flexible. The idea is to reason locally by considering
each constraint in turn. Each constraint reacts to modifications of the variables that
fall under its scope and reduces the domains of the other variables of its scope if needed.
For instance, a constraint x �= y will react to an instantiation of the domain of x to a
value a by removing this value from the domain of y . A queue is maintained, which
contains the variables that have been recently modified or the constraints that depend
on these variables (variable-based v. constraint-based implementations).

Most solvers allow the use of both domains and bounds to represent the range of
allowed values of each variable. For instance, in GNU-Prolog [Codognet and Diaz 1996],
the representation can automatically switch to an explicit domain stored as a bit vector
or to an interval, depending on the domain size. Bound propagation is needed when
the variables have large domains; it was first proposed in AI and logic programming
contexts by Davis [1987] and Cleary [1987], but its principles can be traced back to much
older mathematical programming literature on interval arithmetics [Moore 1966]11. As
a concrete example of how a propagator can be associated to a constraint, here are the
rules for interval propagation on a constraint x + y = z (the notation is nonstandard
but self-explanatory, and lb(x)/ub(x) represent, respectively, the lower/upper bounds of
a variable x):

when lb(x) modified do: lb(z) := lb(x) + lb(y) ub(y) := ub(z) − lb(x)
when lb(y) modified do: lb(z) := lb(x) + lb(y) ub(x) := ub(z) − lb(y)
when lb(z) modified do: lb(x) := lb(z) − ub(y) lb(y) := lb(z) − ub(x)

when ub(x) modified do: ub(z) := ub(x) + ub(y) lb(y) := lb(z) − ub(x)
when ub(y) modified do: ub(z) := ub(x) + ub(y) lb(x) := lb(z) − ub(y)
when ub(z) modified do: ub(x) := ub(z) − lb(y) ub(y) := ub(z) − lb(x)

Many variants of propagation have otherwise been proposed; a typical approach is to
maintain full arc-consistency during the search in every node of the search tree. This
is the so-called MAC approach in opposition to the once standard forward checking
approach. In the context of (binary) CSP, MAC was largely popularized by Sabin and
Freuder [1994] even though some CP libraries were already using a similar approach.
Consistency techniques which allow a stronger pruning than arc-consistency have also
been investigated [Montanari 1974; Freuder 1978; Debruyne and Bessière 2001].

Any efficient algorithm that removes some values from the domains of the variables
with the guarantee of never deleting any solution can be used in place of, or jointly
with, constraint propagation (e.g., bounds computed by linear relaxation can be used
together with interval propagation for linear constraints). The deduction rules used for
the pruning part of constraint solvers can, in general, be seen as closure operators which
have some properties of narrowing (the operators reduce the domain of the variables),
monotonicity (the smaller the initial domains, the smaller the domain obtained after

11Note that the use of intervals makes it possible to solve real-valued nonlinear numerical problems us-
ing propagation, see for instance, Hyvönen [1989], Lhomme [1993], Benhamou and Older [1997], and
Van Hentenryck et al. [1997].

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

26 L. Bordeaux et al.

Fig. 6. The data structures maintained by the AC-6 algorithm. We consider a binary constraint between
two variables x and y whose domains are subsets of [0..9]; the lines represent the pairs of values which
satisfy the constraint (left). AC-6 associates to each value its smallest support (middle). Additionally, for
each value a, a list is maintained to collect the values whose smallest support is a in the other variable’s
domain (right).

application of the operators), optionally idempotence (applying the operator twice gives
the same result as applying it once), etc. These properties have been studied extensively;
for instance Apt [1999], applying results by Cousot and Cousot [1977], shows that the
propagation of closure operators which are narrowing and monotonic is confluent (i.e.,
it converges to a unique state independently of the order in which the operators are
applied), and that this state can be characterized as the greatest common fixpoint of
the operators.

6.2.2. Arc-Consistency for Binary Constraints. Constraint propagation algorithms for the
special case of binary constraints have been studied with consistent regularity over
the years. The first algorithm with an optimal complexity was AC-4 [Mohr and Hen-
derson 1986] which was not efficient in practice because of heavy space requirements
and long initialization step (when AC-4 appeared, the complexity of propagation al-
gorithms had only started to be investigated in Mackworth and Freuder [1985]). The
contributions that followed in included AC-5 [Van Hentenryck et al. 1992], a generic al-
gorithm which can take into account some properties of specific constraints, the classic
AC-6 [Bessière 1994], and AC-7, which exploits bidirectionally and other properties of
constraints [Bessière et al. 1995]. Binary AC algorithms have since been published reg-
ularly up to Bessière et al. [2005]. We briefly describe Bessière’s AC-6 algorithm [1994]
in Figure 6 (which shows the data structures it maintains) and Figure 7 (which shows
an example of execution). Although not completely optimized, AC-6 remains a valid
reference and is emblematic of the kind of algorithms that can be used. The algorithm
incrementally computes a support for each label. Its time complexity is O(ed2), where
e is the number of constraints and d is the domain size. In average cases, it performs
fewer checks than AC-4 whose initialization step globaly computes and stores counters
on the entire support relations.

It is interesting to note that another way of obtaining an optimal algorithm for
binary constraints is to encode them into SAT. Kasif [1990] proposed the so-called
support encoding of CSP into SAT, in which one Boolean variable X a is created for
each value a of the domain of each variable x (the convention, e.g., is that X a = true
means “x �= a”). Let {a1, . . . , as} be the set of values for x that support the value b for
y . The following clause:

¬X a1 ∨ . . . ∨ ¬X as ∨ Yb

encodes the fact that, if all supports of (y , b) are deleted, then value b can be removed
from the domain of y . Encoding the set of supports for each value of each variable in a
similar way, we obtain a CNF of size ed2. Unit propagation is easily shown to perform
arc-consistency on this example, and its complexity is linear.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 27

Fig. 7. An illustration of the way AC-6 performs propagation. On receiving the information x �= 7, the two
values for y which need to be revised are those contained in the list for (x : 7), namely, (y : 4) and (y : 9)
(left). For each of them, only values larger than the removed support (i.e., 7) need to be considered. For
(y : 4), there is no support larger than (x : 7), and the value can therefore be removed (middle). For (y : 9),
the next smallest support is (x : 9). We therefore record this support and update the list associated to (x : 9)
accordingly.

6.2.3. Arc-consistency for Global Constraints. The CP literature provides a number of
propagation algorithms for all the global constraints we have discussed in Section 3.1.2.
These algorithms are often based on graph theory or operations research. The best
known of these algorithms is undoubtedly the algorithm introduced by Régin [1994]
for the domain propagation of the alldiff constraint. We recall that alldiff(x1 . . . xn)
imposes that the variables take n different values, that is, this global constraint stands
for a conjunction of disequality constraints

∧
i
∧

j>i xi �= x j .
To see how this algorithm works on a simple example, consider the constraint

alldiff(x1, x2, x3, x4), where x1, x2 ∈ {1, 2}, x3 ∈ {1, 2, 3} and x4 ∈ {4, 5}. If we consider
each disequality independently, no inconsistent value can be detected, for instance, all
values for x2 and x3 are arc-consistent with regard to the constraint x2 �= x3. Yet no
solution to the conjunction of disequality constraints allows either value 1 or 2 for vari-
able x3. Régin’s algorithm is able to detect that these values are inconsistent and, in
general, to compute exactly the values that are arc-consistent with regard to the alldiff
constraint taken as a whole.

Figure 8 sketches the execution of this algorithm on our example. We maintain the
value graph of the constraint, that is, the bipartite graph in which each variable and
value is represented by a vertex and an edge connects a variable x to a value a if
and only if a is in the domain of x. Every assignment satisfying the alldiff constraint
corresponds to a matching of cardinality n in this graph, where n is the number of
variables involved in the alldiff. An initial matching is computed [Hopcroft and Karp
1973], as shown in bold lines (left). The goal is then to remove the edges that do not
participate in any matching. The edges which should be preserved are those that belong
either to the original matching, as shown in region B (center), or to an alternating path
of even length (an alternating path/cycle is a path/cycle whose edges are alternately
chosen inside and outside the original matching). These even alternating paths can
be either alternating cycles, as in region A, or other, noncyclic paths of even length,
as in region C. Note that two edges can be removed, namely, z : 1 and z : 2; they
correspond to inconsistent values since they don’t belong to the original matching or
to any even alternating path. To compute alternating cycles, we can use algorithms
for strongly connected components in the graph obtained by orienting the edges of the
original matching from left to right and the other edges from right to left (right); to
compute alternating paths we can use depth-first search.

A number of other algorithms have been proposed for the alldiff constraint, notably
algorithms for bound propagation instead of domain propagation [López-Ortiz et al.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

28 L. Bordeaux et al.

Fig. 8. Régin’s propagation algorithm [1974] for the alldiff constraint.

2003]. Generalizations of the alldiff constraint, like the global cardinality constraint
[Régin 1996], are also typically propagated using graph algorithms, for instance, flow
theory. See Milano [2004] and Beldiceanu et al. [2005] for much more information on
the algorithms used in global constraints.

6.3. Synthesis

In both the SAT and CP worlds, the propagation component is central and the algo-
rithms proposed to implement it have been carefully tested over the years. The reader
will note that a small number of ideas are common to the optimizations performed in
the unit propagation and arc-consistency algorithms. Bookkeeping allows one to make
the computations as incremental as possible, and the idea of exploiting an ordering
(of the literals of a clause, or the values of a domain) to avoid revisiting the same values
twice is present in head/tail and AC-6. The 2-literal watching scheme adds a further
refinement in that it is essentially designed to optimize the cost of the backtracking: its
structures are designed so that they need as little update as possible when a failure is
detected. To the best of our knowledge, no propagation algorithm in CP was proposed
with this concern so explicitly in mind.

7. BACKTRACKING

Whenever a conflict is found during the search in SAT and CP, the solver needs to
backtrack to a previous branch node to explore a different search space. The most naïve
backtracking algorithm goes up just one level of the search tree and tries to choose a
different value for the branching variable. Intelligent backtracking algorithms try to
do better by analyzing the conflict and then backtracking to a decision level that really
resolves it. This process is often called nonchronological backtracking, in contrast to
chronological backtracking, i.e., backtracking to the immediate most recent decision
level.

After analyzing the conflict, SAT and CP solvers can often gain some knowledge from
the analysis and store this knowledge to prevent similar conflicts from occurring in the
subsequent search. This process is called clause learning in SAT and no-good learn-
ing in CP. Learning plays a particularly important role in search-based SAT solvers.
Most real-world problems contain structure (i.e., relationships between variables that
are not obvious from the CNF representation). Learning helps the SAT solver discover
the relationships that are relevant to the current query in order to reach the satisfi-
able/unsatisfiable result quickly.

In this section, we briefly overview the techniques used in SAT and CP to get out of
a conflict by backtracking and learning.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 29

7.1. Conflict Analysis in SAT

A conflict occurs in SAT search whenever all literals of a clause evaluate to false under
the current variable assignment. Such a clause is called a conflicting clause. A conflict
means that the current value choices for decision variables cannot be extended to a
satisfying assignment. Inspecting the conflicting clause yields two improvements.

—Some information can be learned from the conflict. In SAT, this is typically achieved by
memorizing a new clause that captures the conflict and will prevent it from happening
again. This is called conflict-driven learning.

—The conflict analysis process can try to figure out the decision level in order to back-
track to resolve this conflict (i.e., the goal is to find a search space in which the conflict
does not occur anymore).

Conflict analysis is an important part of SAT solving—all state-of-the-art DPLL
solvers integrate learning and intelligent backtracking components. Conflict analy-
sis is also intertwined with the other components of the solver in quite an intricate
way: it monitors the deductions made by the propagation component, it guides the
backtracking component, and it has a dramatic impact on the branching heuristics.

In the literature, there are two equivalent ways of describing the conflict analysis
and learning process. We will discuss them in the following two sections.

7.1.1. Conflict Analysis Using Implication Graphs. Implication graphs are a representation
which captures the variable assignments made by the solver both by propagation and
by branching. This representation is a convenient way to analyze conflicts, and its
implementation can directly exploit the optimized internal representation of clauses.

Implication Graph. The principles are basically the following.

—An implication graph is a directed acyclic graph (DAG). Each vertex represents the
assignment of a variable to value 0 or 1. The edges of the graph capture the depen-
dencies between the assignment: an arc from a to b means that assignment a is one
of the reasons that caused assignment b. From a logical viewpoint, each assignment
is a consequence of the conjunction of all its predecessors in the graph.

—Since we additionally take into account the branching decisions, we have to reflect the
fact that these are done at different depths inside the search tree. Consequently, each
decision variable is assigned a decision level starting from 1 and increased for subse-
quent branchings. All variables implied by a decision variable have the same decision
level as that decision variable. The current decision level is the highest decision level
in the assignment stack. After backtracking, some variables are unassigned, and the
current decision level is decreased accordingly.

The vertices with no incident edge are the decision variables; they correspond to the
assignments made by the solver at every node of the search tree. To illustrate these
notions, let us consider an instance that contains the following clauses (we only show
the clauses that are relevant to the discussion):

(c1) ¬x1 ∨ ¬x2 (c2) ¬x1 ∨ x3 ∨ x4 (c3) x2 ∨ ¬x3 ∨ x5
(c4) ¬x5 ∨ x6 (c5) ¬x6 ∨ x7 ∨ x8 (c6) ¬x6 ∨ ¬x8

Figure 9 gives a pictorial representation of an implication graph for this problem.
The decision level of each assignment is denoted in parenthesis. In this example, the
current decision level is 7. At level 2, the solver decided to assign x1 to value 1, which

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

30 L. Bordeaux et al.

Fig. 9. Implication graph. The numbers in parenthesis are the
decision levels of each assignment. The nodes in black corre-
spond to assignments done at previous levels. The conflicting
assignments are those on the right-hand side.

implied x2 = 0 by constraint c1. At level 3, the solver chose to assign x7 to value 0 with
no immediate consequence. We do not report the assignments made at other levels than
2, 3, and 7 in this example because they are not used by the deductions we are focusing
on (in graph terms, they are not connected to the assignments we focus on).

The most interesting deductions depicted in Figure 9 are those made at level 7, where
the solver branched on x4 = 0. This decision implied a series of assignments:

—By c2, x4 = 0 and x1 = 1 imply x3 = 1.
—By c3, x2 = 0 and x3 = 1 imply x5 = 1.
—By c4, x5 = 1 implies x6 = 1.
—By c5, x6 = 1 and x7 = 0 imply x8 = 1.
—By c6, x6 = 1 implies x8 = 0.

All these deductions are consequences of a decision made at level 7, and hence are
themselves labeled with decision level 7. The solver has discovered that x8 must be
assigned both values 0 and 1 and that there is therefore a conflict at level 7. More
generally, a conflict occurs when the implication graph contains vertices assigning both
value 0 and 1 to a given variable. This variable (here x8) is called the conflicting variable.

Note that the structure of the implication graph closely corresponds to the hypergraph
of the clauses of the problem, for instance, the predecessors of vertex x5 = 1 are x2 = 0
and x3 = 1 because a clause, namely c3, connects these 3 variables. As a consequence,
conflict analysis does not require the implementation of additional data structures;
the graph is simply maintained by associating each assigned nondecision (i.e., implied)
variable with a pointer to its antecedent clause. By following the antecedent clause
pointers, the implication relation can be constructed on demand.

Learning Clauses from Conflicts. The conflict that was just revealed can be interpreted
in a number of ways. In a sense, the conflict is due to the simultaneous presence of
the assignments x6 = 1 and x7 = 0, which ultimately clashed with clauses c5 and c6.
Any other situation in which the combination x6 = 1, x7 = 0 will produce the same
effects and lead to an inconsistency. But since x6 = 1 was a consequence of x5 = 1, we
could just as well say that the reason for the conflict is the combination x5 = 1, x7 = 0.
Similarly, the combinations x2 = 0, x3 = 1, x7 = 0 and x1 = 1, x3 = 1, x7 = 0 and x1 =
1, x4 = 0, x7 = 0 are forbidden and could serve as explanations for the inconsistency.
(x1 = 1, x2 = 0, x4 = 0, x7 = 0 would be another candidate but since x2 = 0 is a
consequence of x1 = 1, the weakest explanation is obviously preferable.).

We can express the fact that a particular combination of assignments is forbidden
using a clause, for instance, the clause ¬x6 ∨ x7 captures the information that x6 =
1, x7 = 0 is a conflict. Adding a redundant clause to the problem will help detect the

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 31

Fig. 10. Conflict-based learning based on the implication
graph. Candidate learned clauses correspond to cuts between
the decision assignments (black) and the conflicting assign-
ments (right-hand side).

conflict early if it happens again12, and we can therefore record one of the following
clauses:

(1) ¬x6 ∨ x7 (2) ¬x5 ∨ x7 (3) x2 ∨ ¬x3 ∨ x7
(4) ¬x1 ∨ ¬x3 ∨ x7 (5) ¬x1 ∨ ¬x4 ∨ x7

These candidate learned clauses can be rapidly computed from the graph: intuitively,
and as shown in Figure 10, all the clauses we have mentioned separate the decision
assignments (vertices without predecessor, in black on the figure) from the conflicting
ones (x8 = 0 and x8 = 1).

More formally, the separation lines correspond to cuts between the set of decision
variables nodes (often referred to as the decision side) and the two conflicting variable
nodes (referred to as the conflict side). (A cut is here understood as a minimal set of
edges such that every path from any decision variable to any conflicting variable goes
through the cut.) Each clause is obtained from the set of predecessors of the edges of a
cut.

Heuristics for Clause Selection. We have seen that there typically exist many candidate
clauses that can explain a conflict; solvers usually aim at keeping only one informa-
tive clause, and heuristics have been proposed to guide this selection. We mention an
important learning heuristic which is based on the notion of Unit Implication Point
(UIP).

A UIP is intuitively a single assignment at the current decision level that implies
the conflict. More formally, a vertex is a unique implication point [Marques-Silva and
Sakallah 1996] if and only if every path starting from the decision assignment of the
current level and leading to any of the two conflict vertices goes through this vertex. For
example, in Figure 11, it is impossible to go from x8 = 0 to a conflicting vertex (x7 = 0
or x7 = 1) without going through x4 = 1, and the latter is therefore a UIP. Other UIPs
are x8 = 0 and x6 = 1, while x3 = 1 and x5 = 0 are not UIPs. (In our main examples of
Figures 9 and 10, all assignments at the current decision level were UIPs.) Note that
the decision variable at the current decision level is always a UIP.

Learning clauses containing a UIP empirically appears to lead to good performance.
While it is true that a UIP can always be found because at least the one involving

12Learned clauses help in another, less direct way which was briefly mentioned in Section 5.1. The branching
heuristics take into account the clauses of the problem, and learned clauses are given a more important
weight thanks to a decay mechanism.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

32 L. Bordeaux et al.

Fig. 11. Notion of unit implication point (we use a different prob-
lem than the main one used in this section).

the current decision variable exists, there can sometimes be several of them, and the
question of which one to choose arises. In Zhang et al. [2001], the authors evaluated
several different learning heuristics and found that the cut that corresponds to the
first UIP gives the best result. The first UIP is here understood as the one closest to the
conflict, for instance, in the example of Figure 10, the corresponding clause is ¬x6 ∨ x7,
given by cut 1. The clause learned is often called a conflict clause, in contrast to a
conflicting clause, which refers to the clause that causes the conflict.

Backtracking. Backtracking in SAT solvers is typically nonchronological. Whereas a
naı̈ve approach would be to explore the other Boolean value for the variable which
was just branched on at the backtracking level, a SAT solver will typically choose
another strategy, and the search tree might very often contain nodes whose left and
right branches assign different variables. The choice of the next assignment is indeed
guided by the learning process and based on the notion of asserting clause.

An asserting clause is a (learned) conflict clause that contains only one variable that
is assigned at the current decision level (all its other variables are assigned at lower
levels). It is always desirable for a conflict clause to be an asserting clause because it
will effectively result in a forced backtrack that resolves the current conflict. To make
a conflict clause an asserting clause, the partition can only have one variable at the
current decision level, with edges crossing the cut. This is equivalent to having one
UIP at the current decision level on the decision side, and all vertices assigned after
this UIP on the conflict side. Such a cut can therefore always be found.

After backtracking, an asserting clause becomes a unit clause, and a new assignment
will therefore be determined by simple unit propagation. Note that, in the case of an
asserting clause obtained from an UIP, the UIP vertex will be the unit literal. After
the backtrack, the asserting literal will be implied, and search will proceed. The back-
tracking level is the second-highest decision level for all the literals in the asserting
clause (the highest level is the current decision level). If, in our example, we learn the
clause given by the first UIP (namely, ¬x6 ∨ x7), which is necessarily asserting, we will
backjump to level 3, and proceed by assigning x6 = 0.

7.1.2. Conflict Analysis as a Resolution Process. In the example of Figure 10, we have
seen that from the following clauses

(c1) ¬x1 ∨ ¬x2
(c2) ¬x1 ∨ x3 ∨ x4
(c3) x2 ∨ ¬x3 ∨ x5

(c4) ¬x5 ∨ x6
(c5) ¬x6 ∨ x7 ∨ x8
(c6) ¬x6 ∨ ¬x8

,

the clauses (¬x6 ∨x7) (¬x5 ∨x7), (x2 ∨¬x3 ∨x7), (¬x1 ∨¬x3 ∨x7) and (¬x1 ∨¬x4 ∨x7) could
be learned. These clauses are implicants of the problem and could also be obtained by
resolution (see Section 6.1.1 for a reminder on resolution). Another way to formulate

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 33

Fig. 12. Conflict analysis in chaff.

the conflict analysis process is indeed by regarding it as a form of resolution which
exploits the inconsistencies revealed by propagation in order to generate implicants in
a conflict-driven way.

The pseudocode for conflict analysis is shown in Figure 12. Whenever a conflicting
clause is encountered, analyze conflict is called. The last assigned literal in the clause
is chosen and its antecedent clause is resolved with the conflicting clause. Note that
one of the clauses being resolved is a conflicting clause (i.e., all its literals evaluate to
0), and the other is the antecedent of a variable (i.e., all but one literal evaluate to 0).
Therefore, all literals of the resulting clause will evaluate to 0, that is, the clause will
still be a conflicting clause.

The clause generation process will stop when some predefined stop criterion is met.
The stop criterion is that the resulting clause be an asserting clause (as defined in the
previous section). This stop criterion will be met eventually since it is always the last
assigned literal in cl that is chosen for resolution. Therefore, no literal can be chosen
twice. If the stop criterion has never been met, at some point in the loop, the current
decision variable will be the last assigned variable in the clause. At this time, the clause
is guaranteed to be an asserting clause. The stop criterion can in some cases be met
before the decision variable is the last assigned variable in the clause. If we stop the
first time the stop criterion is met, then we get the same clause as with the first UIP
cut described in the previous section. Other learning schemes can also be simulated
utilizing this resolution process by using different stop criterion.

Many other heuristics have been suggested in the literature to perform better learn-
ing (e.g., Ryan [2004]). They are usually accomplished by doing a little more resolution,
or possibly by keeping more than one antecedent for each variable and choosing the
best one for resolution.

7.1.3. Clause Deletion in SAT Solver. Each time a conflict occurs, conflict analysis adds
some learned clause into the clause database. These learned clauses may help prune
the search space in the future. However, they also occupy memory and slow down the
BCP process. Therefore, from time to time, learned clauses need to be removed from
the clause database. There are many heuristics for choosing the clauses that have to be
removed. For example, relevance-based heuristics [Bayardo and Schrag 1997] regard
clauses that contain too many unassigned or value 1 literals as irrelevant and remove
them. Activity-based heuristics [Goldberg and Novikov 2002] keep track of how many
implications and conflicts each clause is involved in and delete the clauses that have
not been active recently.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

34 L. Bordeaux et al.

Fig. 13. Part of the search tree for a constraint satisfaction
problem on variables x1 . . . x5 ∈ {0, 1} with constraints x4 �= x5,
x2 + x3 + x5 ≥ 2x1 and x1 + x4 = x5. For simplicity, the heuristics
used here branches on variables x1 . . . x5 and on values 0 and 1,
in this order.

7.2. Conflict Analysis in CP

A number of techniques have been proposed to analyze conflicts in constraint program-
ming. When the inconsistency of a branch is detected, these methods aim at carefully
analyzing the reasons for the inconsistency and using them to backtrack in a clever
way. In some cases, the conflict is caused by choices made at an early level in the search
tree, and any branch that does not reconsider these choices will also be inconsistent.
Conflict analysis can be used to backtrack in the decision tree to the deepest level that
really participates in the causes of the conflict. This prevents the solver from performing
redundant computations and can, therefore, avoid detecting the same inconsistencies
multiple times.

We now present the ideas underlying a technique called conflict-directed backjumping
(CBJ) [Prosser 1993] as an example. Consider a CSP on variables x1, . . . , x5 ∈ {0, 1} that
involves the following constraints:

(c1) x4 �= x5 (c2) x2 + x3 + x5 ≥ 2x1 (c3) x1 + x4 = x5

Assigning value 0 to x1 will have the contradictory consequences x4 �= x5 and 0 +
x4 = x5 (by c3). This inconsistency is not necessarily obvious to propagation-based
solvers though because no contradiction can be revealed if we consider each of these
constraints separately. Typically, a solver will detect the inconsistency once x4 or x5 is
instantiated, for instance, assigning x4 to value 0, the solver will deduce that x5 also
has to be instantiated to value 0 (propagation using c3), which leads to a contradiction
(by constraint c1).

Having a look at a search tree (Figure 13) for this problem helps in understanding why
constraint solvers can sometimes perform the same deductions several times, leading
to unnecessary repetitions in the branches of the tree. In our case, while inspecting the
branch x1 = 0, the solver detects the inconsistency by successively assigning values 0
and 1 to variable x4, leading in each case to a failure. The problem is that our branching
heuristics were poorly chosen here, and we branch on each choice for x2 and x3 before
considering variable x4. As a consequence, the exploration of the 2 values for x4 is
repeated for every branch corresponding to an assignment of x2 and x3, whereas the
real cause of the inconsistency is indeed the choice x1 = 0.

What we failed to detect in the previous example is that the conflict is indeed inde-
pendent of the values assigned to variables x2 and x3. The constraints that are violated
on the leaves are in fact invariably x4 �= x5 and x1 + x4 = x5, which do not involve

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 35

Fig. 14. Effect of maintaining conflict sets during the search. We detect the
true reasons of the inconsistency of the branch on the left-hand side, and we
can directly backjump to the branching level of variable x1. The conflict was
caused by the choice x1 = 0, and is independent on whether value 0 or 1 is
assigned to x2 and x3.

variables x2 and x3. Analyzing the conflict, therefore, reveals that the choice x1 = 0 has
to be reconsidered—any branch involving this choice will be inconsistent. The idea of
conflict-directed backjumping is to keep track of the cause of conflicts by maintaining
at each node of the search tree a conflict set that contains the variables involved in the
deductions performed by the propagation engine at this node13.

An example of how conflict sets are maintained is shown in Figure 14. The only
propagations in this example are the ones causing the failure in each leaf. In each case,
the instantiations of variables x1 and x4 were the reasons for the inconsistency, and
we therefore keep track of the fact that x1 is the only variable that is involved in the
conflict and that it was instantiated at a higher level. Now when the failure is detected
for all values of variable x4, the union of the conflict set obtained for each branch is
computed; here we obtain {x1}. We backjump to the level of the deepest variable in the
conflict set, and we directly go to a new choice for x1.

CBJ is but one form of many forms of intelligent backtracking, some of which have
been proposed in the context of logic programming [Bruynooghe 1981]. Some other
variants include graph-based backjumping [Dechter 1990] and dynamic backtracking
[Ginsberg 1993]. Let us additionally note that the basic ideas of intelligent backtracking
can indeed be traced back to AI work on search done in the 70s [Stallman and Sussman
1977; Gaschnig 1979].

7.3. Synthesis

Conflict analysis has been intensively studied in both the SAT and CP contexts, but it
seems fair to say that, while performing complex conflict analysis is now standard in
DPLL solvers, the only conflict analysis techniques which have been widely adopted in
CP concern the intelligent backtracking part, while no technique for learning (which

13In some presentations of CBJ, no propagation is done; in this case, it is sufficient to compute the set of
variables involved in one violated constraint for each failure leaf of the tree, hence the term conflict set. When
propagation is used, these sets do not only contain the participants to a conflict: all the variables responsible
for intermediate deductions which are used in the conflict also have to be recorded. There are some other
subtleties in CBJ which we do not detail in this introductory survey, for instance, when a variable whose
value is fixed by propagation participates in a deduction, we do not add the variable itself to the conflict set
but rather the branching variables which determined its value.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

36 L. Bordeaux et al.

is more typically called no-good recording in this context) has so far proved as widely
useful for CP. The situation is widely recognized by the CP community and is the
motivation for recent work which takes inspiration from SAT techniques [Katsirelos
and Bacchus 2005].

One reason which might make no-good recording particularly more natural in the
SAT context is that most SAT solvers use a clausal representation which directly rep-
resent forbidden partial assignments. The internal data structures of SAT solvers are
therefore appropriate to the representation of nogoods, whereas it is much less obvi-
ous how to represent learned constraints in a CP context in a space- and time-efficient
way.

The difference of philosophy we already addressed between the two approaches is in
our opinion also a major reason for the disparity in the level of complex coflict analysis.
Developers of SAT tools aimed at producing autonomous software components which
can solve a CNF formula without hints from the programmer, and the interplay between
branching heuristics, conflict-driven learning, backtracking, and propagation was cen-
tral to this achievement. CP, in contrast, aimed at providing high-level tools in which
search algorithms could be programmed. This means that the heuristics are usually
more problem-specific, and room for general purpose conflict analysis is smaller. The
richer constructs provided in this context, not the least of which are global constraints,
make it more complex to think of general purpose learning schemes that would perform
as well as in the case of SAT.

8. OPTIMIZING

Finding a solution is but one of the features that SAT and CP tools must provide.
In many applications, there is no guarantee that the instance at hand is satisfiable.
In this case, the solver is expected to prove unsatisfiability, and it should provide an
explanation for the failure in addition to a mere no solution exists answer. In constraint
programming, many applications (e.g., many scheduling problems) do have solutions
but the problem is to find the best one as measured by an objective function. These
tasks have in common that they go beyond simple constraint solving and they involve
optimizing some additional criterion.

8.1. Optimization in SAT

The goal of SAT solvers is typically to find a solution to the problem or prove its unsat-
isfiability. Some variants of the SAT problem are naturally expressed as optimization:
the goal in MAXSAT is, for instance, to maximize the number of satisfied clauses (the
weighted version of this problem is a constrained optimization problem; see, for ex-
ample, Mills and Tsang [2000])); but these problems seem to have attracted relatively
little interest in practical applications.

Nevertheless some applications recently began to require more information about
CNF formulas than just a solution or a no answer. For example, given an unsatisfiable
SAT instance represented as CNF, the unsatisfiable core of the formula is a (small)
subset of the clauses in the CNF such that the conjunction of these clauses is still un-
satisfiable. The problem of efficiently finding minimum unsatisfiable cores is attracting
a lot of attention recently [Zhang and Malik 2003b; Lynce and Marques-Silva 2004; Oh
et al. 2004b]. This is due to applications such as interpolant computation [McMillan
2003], SAT-based abstraction [McMillan and Amla 2003], debugging over-constrained
models [Shlyakhter et al. 2003], etc.

Mainstream SAT solvers do not otherwise directly allow the mini/maximization of
user-defined objective functions, and the only approach to using them for optimization

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 37

is to perform sequences of calls to the solver, each time on an encoding corresponding
to a different value of the objective.

A slight generalization of pure (CNF) SAT that is more relevant to optimization
issues is PseudoBoolean satisfiability, that is, the problem of solving linear constraints
on 0/1 variables. In this context, optimization based on branch and bound schemes
can be considered; see Bart [1995] for an early reference, and Manquinho et al. [1998]
for a first attempt to solve PseudoBoolean constraints using the same combination of
techniques used in modern DPLL solvers.

8.2. Optimization in CP

In the vast majority of CP applications, the problem is not only to find a solution, but
to find a solution that is optimal with respect to some criterion. This is an important
distinction with applications of SAT. The most general way to express these criteria is
to allow the user to specify one or several objective functions. The goal of the solver
will be to find one of the solutions whose evaluation by this function is optimal. In
the case where several criteria are used (multiobjective or multicriteria optimization),
what is meant by optimal is less straightforward but well-studied notions like Pareto-
optimality14 are usually satisfactory.

One key technique in optimization is branch and bound, which allows imposing a
constraint (bound) that is increasingly stringent as successive solutions are found. Some
variants are using a technique called optimistic partitioning [Marriott and Stuckey
1998] where the idea is to successively split the domain of the variable representing
the objective function. The assumption is that these optimistic splits could allow a
quick convergence towards good solutions, whereas the basic approach would have
first enumerated long lists of slightly improved solutions.

Russian Doll Search (RDS) [Verfaillie et al. 1996] is an example of a variant that
was developed in the context of scheduling problems. The idea is to successively solve
growing nested subproblems, starting by the schedule of the very last tasks and ending
by solving the whole problem. Each subproblem provides a good bound, boosting the
resolution of the next ones. This knowledge sharing makes the whole set of resolutions
much faster than a direct attempt on the original problem.

While objective functions allow for the statement of arbitrarily complex, user-defined
preferences over the solutions of a problem, some particular cases of preferences can
be expressed using specialized frameworks. One may wish, for instance, to:

—maximize the quality of the solutions in terms of robustness: we favour solutions
which remain valid even if the problem is subject to small perturbations [Ginsberg
et al. 1998; Hebrard et al. 2004].

—cope with over-constrained problems: when the constraints of a problem cannot be
entirely satisfied, it is often desirable to propose a partially satisfactory solution. Sev-
eral approaches to partial satisfaction have been proposed—one may, for instance,
use algorithms which maximize the number of satisfied constraints (MAX-CSP ap-
proach) [Freuder and Wallace 1992]. In many applications, the constraints are not
of equal importance and a convenient way to express user preferences in this case is
to label the constraints with weights or to specify an ordering expressing which ones
are to be satisfied in priority. Several frameworks for soft constraints (valued CSPs,
semiring based CSPs, etc. [Bistarelli et al. 1999]) have been proposed to solve such
problems.

14A solution is Pareto-optimal if no other solution exists whose value is at least as good under all criteria
and strictly better according to at least one of them.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

38 L. Bordeaux et al.

Table I. Magic Square, n = 8, Multithreading
Successful thread Overall system

p time #fails #choices overall time(s) #fails #choices
1 2.6h 175M 210M — — —
2 4.47 m 4.4 M 5.4 M 7.63 m 8 M 9.3 M
3 0 s 54 109 0.01 s 171 307
4 0.03 s 504 944 0.19 s 2990 3854
5 7.21 s 94064 128808 33.26 s 529066 632083
6 22.21 s 340944 408055 2.06 m 2 M 2.3 M
7 7.07 s 94064 128808 49.59 s 772746 907800
8 0.28 s 3833 5215 2.43 s 34330 41689

Overall, CP provides a wide range of means to express preferences and is a technology
of choice to solve optimization problems.

8.3. Synthesis

Whereas CP applications naturally involve some numerical function to optimize, SAT
problems essentially focus on finding a solution, but additional criteria (size of the
inconsistency core, size of the learned clauses) must be optimized on the way. The
distinction between decision and optimization problems is, in our opinion, essential
in understanding the respective strengths of SAT and CP. Whenever it is desirable to
optimize a numerical function, CP provides native support that makes it the preferred
tool. On the contrary, in the applications where the emphasis is on clear-cut yes/no
answers like theorem proving and verification, SAT is often the leading technology.

9. ALTERNATIVE ARCHITECTURES

9.1. Parallel Search

9.1.1. Parallel SAT Solvers. Parallel search has attracted some attention in the SAT
community [Gu 1995; Zhang et al. 1996; Sinz et al. 2001; Feldman et al. 2005; Blochinger
et al. 2005]. There are mainly two approaches to parallelize a SAT solver: by partitioning
the search space [Zhang et al. 1996] or by lemma exchange [Sinz et al. 2001].

Recent advancements in SAT seem to interwine the learning and branching heuris-
tics which make the SAT solver much more sequential and hard to parallelize. Recently
some authors reported that parallelizing modern SAT solvers on shared memory ma-
chines is hard, due to bad memory performances [Feldman et al. 2005; Chraback and
Wolski 2003].

9.1.2. Parallel Constraint Programming. When we consider parallel search in CP, we have
to distinguish between two cases. The first one is related to the search of one solution,
and here, the partitioning of the search space can greatly compensate a poorly-informed
value selection heuristic. In the best situation, benefits are dramatic and corresponds
to superlinear speed-ups. These gains can also occur when the solution space is not
regular (see Pruul and Nemhauser [1988], Rao and Kumar [1993], and Hamadi [2003].

Table I, which is extracted from Disolver’s documentation [Hamadi 2003], shows the
effect of multithreading with p threads on the resolution of the magic square problem
with a naı̈ve heuristic. As we can see, many partitions bring superlinear speed-ups
(even an asymptotically infinite one when p = 3).

The second case is related to optimization and requires the exhaustion of the search
space to demonstrate that a solution is optimal. Here, the previous superlinear ef-
fect coming from the opposition between a poor heuristic and a lucky partitioning can
only help to quickly find good solutions. However, the proof has to always run until

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 39

Table II. Optimal Golomb Ruler, n = 10, Multithreading
Optimal solution Proof

p time #fails time #fails #msg
1 0.78 s 13266 2.92 s 50652 —
2 0.53 s 6526 1.96 s 51658 1443
3 0.67 s 7611 1.79 s 62289 3317
4 0.43 s 6044 1.64 s 65089 7195
10 1.28 s 5639 2.34 s 92021 22813
20 0.45 s 2620 4.5 s 76090 49982

completion (with many load-balancing and bound exchange messages) and therefore,
the best speed-ups are often sublinear. We can see this in Table II that presents the
results for Golomb-10 (again, extracted from Disolver’s documentation).

9.1.3. Synthesis. Parallel search in CP is really helpful when the problem requires
the finding of a first solution. In these scenarios, search space partitioning can compen-
sate poor value-ordering heuristics, and, in the best situations, superlinear speed-ups
are achievable. In optimization settings, it works reasonably well. It can often improve
the time to reach the optimal solution, but it can hardly provide a benefit on the overall
search time which involves the proof of optimality. However, quick finding of good solu-
tions can often be valuable in online problem solving settings. On the other hand, the
heavy use of learning by current SAT solvers can be seen as a real bottleneck for paral-
lel search. No-goods have to be exchanged between subspaces and this can eventually
require large and frequent messages.

9.2. Distributed Problems

Some scenarios involve combinatorial problems naturally distributed among indepen-
dent computational nodes or agents. To tackle these problems two main strategies exist.
The most obvious one requires the gathering of the subproblems in some node and the
use of some classical search algorithm. This solution is often not acceptable essentially
because of privacy concerns. Here privacy means that some internal constraint may re-
quire some protection while nodes agree to share interconstraints, that is, constraints
that link different subproblems. In these situations, the only remaining alternative is
to apply a distributed algorithm to perform a distributed exploration of the underlying
search space.

9.2.1. Distributed SAT. If we except works which present parallel SAT solvers as dis-
tributed, we can just report a single work tackling distributed SAT problems. Adjiman
et al. [2005] study the problem of peer-to-peer consequence finding. They present a
distributed algorithm which computes proper prime implicates for propositional peer-
to-peer systems.

In the context of a clausal theory P , a clause m is called a prime implicate of a clause
q with regard to P if and only if P ∪{q} |= m and, for any other clause m′, if P ∪{q} |= m′
and m′ |= m, m′ ≡ m. If m is a prime implicate of q with regard to P and P �|= m, m is
also a proper prime implicate.

In short, the distributed consequence-finding problem is given a peer P and a clause
q (part of the peer language), and the system finds the set of proper prime implicates
of q with regard to the distributed peer-to-peer network.

9.2.2. Distributed CSP. Distributed constraint satisfaction (DisCSP) is an extension
of the CSP formalism which was defined to tackle distributed constraint satisfaction
problems [Yokoo et al. 1990]. In the new formalism, a problem is distributed among a

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

40 L. Bordeaux et al.

Fig. 15. The data structures maintained by the DisAC-9 algorithm: we consider a binary constraint between
two variables x and y whose domains are subsets of [0..9]; the lines represent the pairs of values which satisfy
the constraint (top left).

set of autonomous agents. The distribution represents a partition of the variables. Each
agent owns and controls the subproblem defined by its variables and associated con-
straints. The previous partitioning process automatically splits the constraints between
intra and interconstraints. Interconstraints are used to control interagents decisions.
Message passing is used to ensure the consistency of these constraints. Since the over-
all constraint network is connected, local constraints impact interconstraints which
impact other subproblems, and so on.

A DisCSP’s solution is represented by a set of locally consistent solutions consistent
with their interconstraints. Finding such solutions involves the application of some
distributed search algorithm. Distributed backtracking has been widely used to tackle
DisCSPs [Yokoo et al. 1990; Hamadi et al. 1998]. Distributed filtering has been stud-
ied as well, and DisAC-9, a message-optimal algorithm which computes arc-consistent
fix-points, is now available [Hamadi 1999a]. Historically, researchers started with the
straightforward adaptation of centralized algorithms. Today, the versatility of asyn-
chronous searches is well understood and some methods take advantage of it [Hamadi
2005; Ringwelski and Hamadi 2005].

Optimal Distributed Arc-Consistency. The key idea behind DisAC-9 is presented on the
example of Figure 15 which presents the microstructure of an interconstraint occurring
between variables x and y . In Figure 15, we identify agents by their variable, and the
processing goes from the top left to the bottom right.

Initially, the variable x is made of values {2, 6, 7, 9}, while y is made of {0, 4, 6, 8, 9}.
Assuming that for some reason, a constraint (an internal constraint or another inter-
constraint), (x, 2), has to be deleted, a straight-forward distributed AC algorithm would
inform related interconstraints about this. DisAC-9 tries to delay and avoid costly
message-passing operations by reasoning locally about the outcome of value dele-
tion. For that it benefits from the bidirectionality property of this binary constraint:
Cx y (a, b) = Cyx(b, a). This property allows x to infer y ’s decisions. In the example, the
first agent can infer that the values currently supported by (x, 2) have a viable support

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 41

Fig. 16. Conflict directed backjumping. Sequential versus distributed settings.

in x ’s domain. More precisely, (y , 6) has a viable support in (x, 6). The previous analysis
saves a message and preserves the correctness since no other search space reduction
would come from y . The same reasoning is applied when (x, 9) disappears. Eventually,
(x, 7) is removed. As a consequence, x determines that (y , 9) has to disappear as well.
However, if the information was just about the deletion of (x, 7), y would have chosen
(x, 9) as new support. One way to avoid this is to always inform about all the previous
deletions15. Ultimately, y removes values 0, 4, and 9. DisAC-9 is optimal in the num-
ber of message-passing operations. To do so, it has to perform more local reasoning.
However the trade-off is very interesting since message passing can be very costly.

Distributed Conflict-Directed Backjumping. Prosser’s CBJ is directed by conflicts (see Sec-
tion 7.2 and Prosser [1993]). This sequential algorithm stores with each variable i a
conflict-set which keeps the subset of the past variables in conflict with some assign-
ment of i. When a dead end occurs, CBJ jumps back to the deepest variable h in conflict
with i. If a new dead end occurs, it jumps back to g , the deepest variable in conflict
with either h or i, etc. Each time CBJ jumps back from i to h, the variables j such that
h < j ≤ i get back their search space and therefore an empty conflict set.

In the left part of Figure 16, some variable ordering related to a sequential tree search
is presented. In this example, we suppose that a dead end occurs while processing X 7.
Then, if X 3 is the deepest conflicting variable, variables X 4 to X 7 are reinitialised.
Unfortunately, they are not related to the current conflict and their current conflict
sets could be preserved. This is exactly what Interleaved Distributed Intelligent Back-
tracking/CBJ (IDIBT/CBJ) is doing [Hamadi 2005].

In the right part of Figure 16, the agent owning variable X 7 checks a value a against
X 3, then if the test is successful, a is checked against X 4. Note that the ordering between
agents X 4 <o X 3 is decided beforehand, for instance, thanks to the generic distributed
agent ordering method [Hamadi et al. 1998]. At that point, if a is not compatible, it

15Hamadi [1999b] presents a version of the algorithm which is both optimal in the number and the size of
the message-passing operations.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

42 L. Bordeaux et al.

moves to the test of some other value b against X 3, then possibly against X 4, etc. Now,
when a value is addressed to i by an agent j , i can partially preserve its conflict-set by
taking advantage of the ordering used during the construction of the conflict-set. More
precisely, i filters each agent h from its conflict-set by doing the following checks:

— j <o h means that h has higher priority than j in the DisAO ordering, that is, values
removed with regard to h’s value can be kept removed;

—h <o j , the deletion of values raised by h’s value is not independent from j ’s values.
The local search space must recover these values and h must be removed from the
conflict-set.

As we can see, while the sequential CBJ explicitly reinitializes intermediate conflict
sets upon backjumping, IDIBT/CBJ only filters these sets when agents receive new
decisions. This is possible thanks to the incremental filtering of local values.

9.2.3. Synthesis. The number of works addressing distributed SAT is marginal,
whereas DisCSP algorithms already have a strong research record. Interestingly, this
formalism eliminates the artificial variable dependencies introduced by sequential
search. Unfortunately, unlike classical CSP, DisCSP has not proved its applicability
to real-world problem solving so far.

9.3. Dedicated Hardware

Raw speed-up can, in general, be achieved by transposing the resolution of a problem
in some dedicated hardware component. But unfortunately, the cost of dedicated chips
(ASIC) is so high that their use is restricted to low-level critical tasks. In the early
nineties, a solution to this cost problem was given by the development of reconfigurable
architectures (FPGA) [Xilinx-Inc 1991]. SAT and CP works targeting ASICs and FPGAs
for problem solving are presented in the next two sections.

9.3.1. Hardware for SAT. The suitability of SAT instances to low-level hardware is ob-
vious. Indeed, the basic building operations of these instances (NOT, OR, AND) can be
evaluated simultaneously on low-level hardware resources. We are unaware of ASIC-
based SAT solvers implementation. However, the use of FPGAs has been very fruit-
ful for both complete and incomplete search. The initial works proposed quite direct
adaptation of DPLL and GSAT, respectively [Yokoo et al. 1996; Hamadi and Merceron
1997; Zhong et al. 1997]. These FPGA architectures were instance-based which means
that they performed runtime adaptation of the hardware design to a specific instance.
Further contributions focused on the improvement of, respectively, backtracking (e.g.,
Abramovici et al. [1999]), learning [Zhong et al. 1998], and local search (e.g., Henz et al.
[2001]). As far as we know, one single work is related to the specific optimization of unit
propagation [Dandalis and Prasanna 2002].

Today we can say that this research track was very fruitful with many contribu-
tions from the hardware community16 [Skliarova and de Brito Ferrari 2004]. However,
it seems that the more advanced a SAT algorithm is, the more complex its physical
implantation. In hardware, algorithmic complexity often translates into large space
requirements and if we consider that current software solvers are able to handle prob-
lems with tens of thousands of clauses, we can doubt the applicability of hardware to
SAT.

16This is not surprising since SAT solvers are mainly used by this community.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 43

9.3.2. Hardware for CP. Despite its polynomial complexity, discrete relaxation has ben-
efited from hardware processing. Swain and Cooper [1988] presented a circuit with a
space complexity O(n2d2) and a time complexity O(nd) (where n is the number of
variables and d the size of the largest domain). Obviously this is a direct application
of spatial parallelism to AC. Later on, Kasif [1990] identified discrete relaxation as
P-complete17, that is, this problem exhibits inherent sequentiality and is not well fit-
ted for (spatial) parallelization. Strangely, hardware architectures were not applied to
search in CP/CSP frameworks. For CSP, the possible bottleneck may come from the
space complexity of the instance mapping (compatibility tables). For CP, the situation
is even worse since the mapping of high-level constraints is a very complex task.

9.3.3. Synthesis. To summarize, we can say that the problem defined by SAT fits well
on hardware architectures, and this simple fact was exploited by many researchers.
Unfortunately, the complexity level of efficient SAT solvers is hard to reproduce on
low-level hardware. This restricts the applicability of dedicated hardware to SAT. On
the other hand, the high level of abstraction of the CP or CSP formalisms makes them
inappropriate to hardware processing.

10. SYNTHESIS AND CONCLUSION

10.1. Comparing SAT and CP

All survey through this we have suggested differences and similarities between the SAT
and CP tools which we hope will give interested readers good hints on which technology
is most interesting for their needs. We now summarize the comparison.

10.1.1. Principles and Evolution of the Technologies. We summarize the main differences
regarding the methodologies advocated by SAT and CP in Figure 17. This section will
essentially give additional details on the points discussed in this table.

Approach to Problem Solving. Concerning the problem solving methodology of the two
technologies, it is clear that SAT is lower level in the sense that it provides a minimal
language in which NP-complete problems can be encoded, but often in a verbose and
tedious way. SAT instances are never written by hand and are always produced by
translators that reduce part of the considered problem (typically a model checking
or theorem-proving problem) to propositional logic. In CP, to the contrary, providing
means to directly express problems in a natural way was always a concern; a rich
library of constraints (some of which are very application-specific) is provided, and
these constraints are embedded in a language or programming tool that helps modeling
the problems. As a consequence of this programmatic approach to problem solving, CP
is really a tool that allows a wide set of modeling options. These options have to be
carefully selected and tuned to obtain the best performances for the application at
hand.

Research in CP did not focus very much on the question of finding a general purpose
constraint-solving method that would naturally adapt to the problem, whereas it is
exactly what modern SAT solvers have tried to do with considerable success. While
it appears to be impossible to provide a heuristic that is optimal on most types of
problems, it would be satisfactory for many applications to use a default tuning that

17We can remark that this result is embedded in the previous complexity measures where the spatial com-
plexity is equivalent to the optimal time complexity of a software algorithm, while the time complexity is
equivalent to the size of the longest dependency chain in a constraint network.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

44 L. Bordeaux et al.

Fig. 17. Some distinctive features between SAT and CP.

just works reasonably well and that would require no expertise, no programming, and
less modeling effort. Indeed, we are not the first authors to argue that improving the
simplicity of use is one of the main current challenges for CP [Puget 2004].

Classes of Applications. A second dimension which helps clarify the respective
strengths of SAT and CP concerns their classes of applications. An important difference
with regard to this dimension is that the most successful applications of SAT concern
a very small number of areas of which verification is the most important. The range of
applications of constraint programming, on the contrary, is so large that it is difficult to
characterize it precisely—new applications appear every year. SAT is typically used for
decision problems; typical examples are to determine whether a system contains a bug
or whether a theorem is true. In both cases, a yes/no answer is essentially satisfactory.
CP, on the other hand, finds its most successful applications in areas like scheduling,
which involve optimization. These applications were not without impact on the develop-
ment of the algorithms. In optimization problems solved using CP, exploring the search
space entirely is not always possible, especially for applications where runtimes are

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 45

severely limited. It is often acceptable to find solutions whose quality is only close to
optimal.

For SAT, on the contrary, an important reason why DPLL solvers have been dominant
for the last years is that the inability of local search methods to detect unsatisfiability
makes them unusable in many verification problems. A look at the application areas
suggests interesting perspectives. A growing need is emerging from the verification
community for SAT-based tools that are also able to handle more complex data than
Booleans, typically numerical and symbolic data (problems of Satisfiability Modulo
Theories [Ranise and Tinelli 2003; Nieuwenhuis and Oliveras 2005; Barrett et al. 2005;
Sheini and Sakallah 2005]). The perspective of enriching SAT solvers with higher-level
constructs is not new, and we suspect this is a direction in which the SAT community
will follow in the next years. We are convinced that CP can have an important impact
on this class of applications.

Architecture. It is interesting to compare the choices made in SAT and CP in terms of
software architectures. SAT solvers are standalone executables whose code is relatively
small (a few thousand lines at most). Constraint programming tools, on the other hand,
can be full-fledged programming languages which include a compiler/interpreter and
many features, or large and extensible libraries. The philosophy is here again differ-
ent: the SAT community has focused on gaining the best efficiency for an extremely
specific type of constraints, while CP tools aim, on the contrary, at being open. They
provide software frameworks in which constraint-solving components communicate in
a flexible way through events and in which new components can easily be integrated.
In our opinion, an important challenge for SAT solvers will be to determine whether
the limits imposed on their architecture will restrict their extension to richer logical
theories which we believe will be an increasingly important concern in forthcoming
SAT research.

Evolution of the Techniques. A last aspect of the comparison between the SAT and CP
approaches that attracted our attention concerns their recent evolution, and the way
research was carried out in both areas. We qualify the approach of the SAT community
as bottom-up because improvements were brought about incrementally: a surprising
feature of SAT is that a clear state-of-the-art, general purpose complete SAT algorithm
seems to emerge and can serve as a basis for the construction of each new generation of
solvers. As a result, new features are integrated only if they improve the state-of-the-
art method on a significant number of benchmarks. Comparing solvers is easy because
of the uniform CNF format and the progress between generations of solvers is easy to
measure. The only drawback of that approach, in our opinion, is that the state-of-the-
art algorithm appears recently to be quite stable. This conservative approach does not
encourage researchers to investigate alternative algorithms. New types of solvers could
advance the understanding of SAT, but they are sometimes discarded because of their
bad performance compared to DPLL solvers that have undergone years of tuning and
optimization.

The CP approach, on the contrary, has been top-down since many methods are pro-
posed, but there is no such thing as a state-of-the-art algorithm that would be incremen-
tally improved. Instead, there is a toolbox that is incrementally enriched. This allows
CP libraries to integrate a great diversity of new techniques that can be handpicked
to obtain very good performance on specific applications. On the other hand, each new
feature increases in a sense the complexity of use of the tool. Our belief is that there
are some lessons to learn for the CP community from the way research was done in
SAT. Perhaps the main reason why the SAT community was able to clearly identify
robust general purpose algorithms was their principled approach which consisted of

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

46 L. Bordeaux et al.

systematically trying new algorithms against a large set of instances which includes
industrial instances, examining solvers in an annual competition, and getting a clear
picture of what really works not on particular instances, but in general. Recent work
on Satisfiability Modulo Theories [Ranise and Tinelli 2003; Barrett et al. 2005] seems
to be a recent example of successful adaptation of the SAT research methodology to a
new field.

10.1.2. Algorithms. Whereas the approaches to problem solving considered in SAT and
CP are in many respects orthogonal, we have seen in this survey that the algorithms
much in common. The big classes of algorithms used in SAT and CP are roughly the
same, and in the closer look we had at the components of complete solvers (branch-
ing, pruning, backtracking) we noticed more similarities than differences. There are
nevertheless interesting perspectives emerging from the slight differences we noticed.

Heuristics. SAT researchers have always focused on finding the best general purpose
heuristic, whereas CP tools propose a number of different heuristics which have to be
explicitly tuned. We have insisted in this conclusion on the perspective of reducing the
complexity of use of CP tools by finding more powerful general purpose mechanisms.
Finding general purpose heuristics for CP is an important challenge in this respect.
The heuristics used in SAT might be a valuable source of inspiration, for instance, it
is interesting to notice that the variable-state independent heuristics which proved so
successful in SAT have, to the best of our knowledge, not yet been considered in CP.

Learning. Perhaps the aspect in which SAT solvers are most evolved compared to CP
tools concerns the learning component. Since learning plays such a central role in SAT
(it analyzes the deductions made by the propagation engine, determines the backjump
level, and impacts the branching heuristics), the question of why similar mechanisms
have not proved successful in CP is puzzling; our hope is that a deep understanding of
learning in SAT will help develop similar techniques for CP.

10.2. Conclusion

We have presented a broad overview of propositional satisfiability and constraint pro-
gramming. It should benefit both researchers and practitioners. The latter should use
it to enter the area and find out which formalism is the most appropriate for their ap-
plication. The former should take it as an up-to-date overview of their field opposed to
a different yet complementary formalism.

A number of perspectives have emerged as we studied various aspects of these tech-
nologies. We have presented a number of selected algorithms that are central to SAT
and CP complete solvers, and a careful comparison on the techniques reveals a number
of perspectives of algorithmic improvements. The branching heuristics used in SAT
and CP, presented in Section 5, are based on different principles and one may won-
der if the ideas used in SAT heuristics can help CP researchers to design more ro-
bust heuristics for CP. Unit propagation and arc-consistency propagation algorithms
share many similarities, but we have concluded in Section 6 that the 2-literal watch-
ing scheme integrates a refinement not present in CP. SAT solvers are much more
evolved than CP solvers regarding their conflict-analysis ability, and our comparison
in Section 7 suggests that learning remains an important perspective for CP. On the
other hand, our presentation of the alternative resolution frameworks in Section 9
suggests that this is a point that has been more studied from the CP side, and that
here the SAT community might benefit from the experience acquired in constraint
programming.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 47

Regarding the comparison of the approaches themselves, Section 3 proposed a com-
parison of the use of the two technologies, and Section 8 insisted on the importance
of CP for optimization applications. A number of higher-level perspectives arose from
the critical comparison of Section 10.1. Increasing the robustness and the simplicity of
use of CP tools by focusing on general-purpose algorithms instead of highly efficient,
but overly specialized ones, appears as a major perspective where CP researchers can
learn from recent progress in SAT. Robust heuristics and a more powerful use of learn-
ing might be some part of the solution to this challenge. We also think that exploring
further diversification techniques will be important and that machine learning will
play an important role in the development of adaptive search engines. Research in the
SAT community was done from this perspective [Leyton-Brown et al. 2002; Hutter and
Hamadi 2005; Hutter et al. 2006] and hopefully, will eventually be adapted to constraint
programming.

Our feeling on SAT and CP is that the distance between the two fields is bound to
decrease during the next years: the need for enriching the purely propositional lan-
guage used in SAT is recognized and SAT solvers tend to either directly integrate, or to
cooperate with, other forms of constraints, as exemplified by most recent decision pro-
cedures developed for Satisfiability Modulo Theories. The frameworks used to extend
SAT solvers with theories (e.g., the framework of Nelson and Oppen [1979]) share many
similarities with the frameworks used for solver cooperation in Constraint Program-
ming; these two approaches to solver integration can probably benefit from each other
and may even merge as a unique framework in which SAT and CP could ultimately be
integrated. Our hope is that this survey will modestly contribute to bridging these two
areas.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers as well as the colleagues who provided feedback and
encouragement.

REFERENCES

ABRAMOVICI, M., DE SOUSA, J. T., AND SAAB, D. 1999. A massively-parallel easily-scalable satisfiability solver
using reconfigurable hardware. International Design Automation Conference (DAC). 684–690.

ADJIMAN, P., CHATALIC, P., GOASDOUE, F., ROUSSET, M.-C., AND SIMON, L. 2005. Scalability study of peer-to-peer
consequence finding. International Joint Conference on Artificial Intelligence (IJCAI). 351–356.

ALOUL, F., MARKOV, I., AND SAKALLAH, K. 2003. Shatter: Efficient symmetry-breaking for Boolean satisfia-
bility. International Design Automation Conference (DAC). 883–886.

APT, K. R. 1999. The essence of constraint propagation. Theoret. Comput. Science 221, 1-2, 179–
210.

BACCHUS, F. AND WALSH, T. 2005. Propagating logical combinations of constraints. International Joint. Con-
ference on Artificial Intelligence (IJCAI). 35–40.

BACCHUS, F. AND WINTER, J. 2003. Effective preprocessing with hyper-resolution and equality reduction.
International Conference on Theory and Applications of Satisfiability Testing (SAT). 341–355.

BARRETT, C., DE MOURA, L., AND STUMP, A. 2005. SMT-COMP: Satisfiability modulo theories competition. In
International Conference on Computer-Aided Verification (CAV). Springer, 20–23.

BARRETT, C., DILL, D., AND STUMP, A. 2002. Checking satisfiability of first-order formulas by incremental
translation to SAT. In International Conference on Computer-Aided Verification (CAV). 236–249.

BART, P. 1995. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization.
Tech. rep. 95-2-003, Max Planck Institute.

BAYARDO, R. J. AND SCHRAG, R. C. 1997. Using CSP look-back techniques to solve real world SAT instances.
North American National Conference on Artificial Intelligence (AAAI). 203–208.

BELDICEANU, N., CARLSSON, M., AND RAMPON, J.-X. 2005. Global constraint catalog. Tech. rep. T2005-08,
Swedish Institute of Computer Science.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

48 L. Bordeaux et al.

BELDICEANU, N. AND CONTEJEAN, E. 1994. Introducing global constraints in CHIP. Mathem. Comput.
model. 20, 12, 87–123.

BELLMAN, R. 1957. Dynamic Programming. Princeton University Press.
BENHAMOU, F. AND OLDER, W. J. 1997. Applying interval arithmetic to real, integer, and Boolean constraints.

J. Logic Program. 32, 1, 1–24.
BESSIÈRE, C. 1994. Arc-consistency and arc-consistency again. Artific. Intell. 65, 1, 179–190.
BESSIÈRE, C., FREUDER, E. C., AND RÉGIN, J.-C. 1995. Using inference to reduce arc consistency computation.

International Joint Conference on Artificial Intelligence (IJCAI). 592–599.
BESSIÈRE, C., HÉBRARD, E., AND WALSH, T. 2003. Local consistencies in SAT. International Conference on

Theory and Applications of Satisfiability Testing (SAT). 299–314.
BESSIÈRE, C. AND RÉGIN, J.-C. 1996. MAC and combined heuristics: Two reasons to forsake FC (and CBJ?)

on hard problems. In International Conference on Principles and Practice of Constraint Programming
(CP). 61–75.

BESSIÈRE, C., REGIN, J.-C., YAP, R. H. C., AND ZHANG, Y. 2005. An optimal coarse-grained arc consistency
algorithm. Artific. Intell. 165, 2, 165–185.

BIERE, A., CIMATTI, A., CLARKE, E. M., AND ZHU, Y. 1999. Symbolic model checking without BDDs. Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
193–207.

BISTARELLI, S., MONTANARI, U., ROSSI, F., SCHIEX, T., VERFAILLIE, G., AND FARGIER, H. 1999. Semiring-based
CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints 4, 3.

BLOCHINGER, W., WESTJE, W., KÜCHLIN, W., AND WEDENIWSKI, S. 2005. ZetaSAT—Boolean satisfiability solving
on desktop grids. In IEEE/ACM International Symposium on Cluster Computing and the Grid.

BRELAZ, D. 1979. New methods to color vertices of a graph. Comm. ACM 22, 4, 251–256.
BRUYNOOGHE, M. 1981. Solving combinatorial search problems by intelligent backtracking. Inform. Proces.

Lett. 12, 1, 36–39.
BRYANT, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-

put. 35, 8, 677–691.
BRYANT, R. E., LAHIRI, S. K., AND SESHIA, S. A. 2002. Modeling and verifying systems using a logic of

counter arithmetic with lambda expressions and uninterpreted functions. In International Conference
on Computer-Aided Verification (CAV). 209–222.

BURCH, J. R. AND DILL, D. 1994. Automatic verification of pipelined microprocessor control. In International
Conference on Computer-Aided Verification (CAV). 68–80.

BURO, M. AND BÜNING, H. K. 1993. Report on a SAT competition. Bull. Europ. Assoc. Theoret. Comput.
Science 49, 143–151.

CADOLI, M. AND MANCINI, T. 2006. Automated reformulation of specifications by safe delay of constraints.
Artific. Intell. 170, 8-9, 779–801.

CHAKRADHAR, S. T. AND AGRAWAL, V. D. 1991. A transitive closure based algorithm for test generation. Inter-
national Design Automation Conference (DAC). 353–358.

CHATALIC, P. AND SIMON, L. 2001. Multiresolution for SAT checking. Int. J. Artific. Intell. Tools 10, 4, 451–481.
CHRABACK, W. AND WOLSKI, R. 2003. GridSAT: A chaff-based SAT solver for the grid. International Confer-

ence on Supercomputing (SC). 37.
CHVATAL, V. 1983. Linear Programming. W. H. Freeman Co.
CLARKE, E. M., BIERE, A., RAIMI, R., AND ZHU, Y. 2001. Bounded model checking using satisfiability solving.

Formal Methods Syst. Design 19, 1, 7–34.
CLEARY, J. G. 1987. Logical arithmetic. Future Comput. Syst. 2, 2, 125–149.
CODOGNET, P. AND DIAZ, D. 1996. Compiling constraints in CLP(FD). J. Logic Program. 27, 3, 185–226.
COLLAVIZZA, H. AND RUEHER, M. 2006. Exploration of the capabilities of constraint programming for software

verification. International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). 182–196.

COLMERAUER, A. 1984. Equations and inequations on finite and infinite tress. International Conference on
Fifth Generation Computing. 85–99.

COLMERAUER, A. 1990. An introduction to prolog III. Comm. ACM 33, 7, 69–90.
COUSOT, P. AND COUSOT, R. 1977. Automatic synthesis of optimal invariant assertions: mathematical foun-

dations. In ACM Symposium on Artificial Intelligence and Programming Languages, ACM SIGPLAN
Notes 12, 8, 1–12.

DANDALIS, A. AND PRASANNA, V. K. 2002. Run-time performance optimization of an FPGA-based deduction
engine for SAT solvers. ACM Trans. Des. Autom. Electron. Syst. 7, 4, 547–562.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 49

DANTSIN, E. AND WOLPERT, A. 2002. Solving constraint satisfaction problems with DNA computing. Com-
puting and Combinatorics Conference (COCOON). 171–180.

DAVENPORT, A. J., TSANG, E. P. K., WANG, C. J., AND ZHU, K. 1994. GENET: A connectionist architecture for
solving constraint satisfaction problems by iterative improvement. North American National Conference
on Artificial Intelligence (AAAI). 325–330.

DAVIS, E. 1987. Constraint propagation with interval labels. Artific. Intell. 32, 3, 281–331.
DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem-proving. Comm. ACM 5, 7,

393–397.
DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory. J. ACM 7, 3, 201–215.
DEBRUYNE, R. AND BESSIÈRE, C. 2001. Domain filtering consistencies. J. Artific. Intell. Resear. 14, 205–230.
DECHTER, R. 1990. Enhancement schemes for constraint processing: Backjumping, learning, and cutset

decomposition. Artific. Intell. 41, 3, 273–312.
DECHTER, R. 2003. Constraint Processing. Morgan Kaufmann.
DELZANNO, G. AND PODELSKI, A. 2001. Constraint-based deductive model checking. Int. J. Softw. Tools Tech-

nol. Transfer 3, 3, 250–270.
DERSHOWITZ, N., HANNA, Z., AND NADEL, A. 2005. A clause-based heuristic for SAT solvers. International

Conference on Theory and Applications of Satisfiability Testing (SAT). 46–60.
DIXON, H. E., GINSBERG, M. L., LUKS, E. M., AND PARKES, A. J. 2004. Generalizing Boolean satisfiability II:

Theory. J. Artific. Intell. Resear. 22, 481–534.
DORIGO, M. AND STUTZLE, T. 2004. Ant Colony Optimization. MIT Press.

ÈEN, N. AND BIERE, A. 2005. Effective preprocessing in SAT through variable and clause elimination. In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT). 61–75.

FANG, H. AND RUML, W. 2004. Complete local search for propositional satisfiability. North American National
Conference on Artificial Intelligence (AAAI). 161–166.

FELDMAN, Y., DERSHOWITZ, N., AND HANNA, Z. 2005. Parallel multithreaded satisfiability solver: Design and
implementation. Elec. Notes Theor. Comput. Science 128, 3, 75–90.

FIKES, R. 1970. REF-ARF: A system for solving problems stated as procedures. Artific. Intell. 1, 1/2, 27–120.
FLANAGAN, C., JOSHI, R., OU, X., AND SAXE, J. B. 2003. Theorem proving using lazy proof explication. Inter-

national Conference on Computer-Aided Verification (CAV). 355–367.
FOURER, R., GAY, D., AND KERNIGHAN, B. 1993. AMPL: A Modeling Language for Mathematical Programming.

Duxbury Press.
FREEMAN, J. W. 1995. Improvements to propositional satisfiability search algorithms. Ph.D. thesis, De-

partement of Computer and Information Science, University of Pennsylvania, Philadelphia, PA.
FREUDER, E. C. 1978. Synthesizing constraint expressions. Comm. of the ACM 21, 11, 958–966.
FREUDER, E. C. AND WALLACE, R. J. 1992. Partial constraint satisfaction. Artific. Intell. 58, 1-3, 21–

70.
FRISCH, A. M., JEFFERSON, C., MARTINEZ-HERNANDEZ, B., AND MIGUEL, I. 2005. The rules of constraint modeling.

International Joint Conference on Artificial Intelligence (IJCAI). 109–117.
GANAI, M., ZHANG, L., ASHAR, P., GUPTA, A., AND MALIK, S. 2002. Combining strengths of circuit-based and

CNF-based algorithms for a high-performance sat solver. International Design Automation Conference
(DAC). 747–750.

GANAI, M. K., GUPTA, A., AND ASHAR, P. 2004. Efficient modeling of embedded memories in bounded model
checking. International Conference on Computer-Aided Verification (CAV). 440–452.

GASCHNIG, J. 1979. Performance measurement and analysis of certain search algorithms. Tech. rep. CMU-
CS-79-124, Carnegie-Mellon University.

GÉNISSON, R. AND JÉGOU, P. 2000. On the relations between SAT and CSP enumerative algorithms. Discrete
Appl. Mathemat. 107, 1-3, 27–40.

GENT, I. P. AND SMITH, B. M. 2000. Symmetry breaking in constraint programming. In European Conference
on Artificial Intelligence (ECAI). 599–603.

GINSBERG, M. L. 1993. Dynamic backtracking. J. Artific. Intell. Resear. 1, 25–46.
GINSBERG, M. L., PARKES, A. J., AND ROY, A. 1998. Supermodels and robustness. North American National

Conference on Artificial Intelligence (AAAI). 334–339.
GIUNCHIGLIA, E., MARATEA, M., AND TACCHELLA, A. 2002. Dependent and independent variables for proposi-

tional satisfiability. European Conference on Logic in Artificial Intelligence (JELIA). 296–307.
GLOVER, F. AND LAGUNA, M. 1995. Tabu search. In Modern Heuristic Techniques for Combinatorial Problems.

McGraw-Hill, 70–150.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

50 L. Bordeaux et al.

GOLDBERG, E. AND NOVIKOV, Y. 2002. BerkMin: A fast and robust SAT-solver. IEEE/ACM Design, Automa-
tion and Test in Europe (DATE). 142–149.

GOLOMB, S. W. AND BAUMERT, L. D. 1965. Backtrack programming. J. ACM 12, 516–524.
GOMES, C. P., SELMAN, B., AND KAUTZ, H. A. 1998. Boosting combinatorial search through randomization.

North American National Conference on Artificial Intelligence (AAAI). 431–437.
GRAF, T., HENTENRYCK, P. V., PRADELLES, C., AND ZIMMER, L. 1989. Simulation of hybrid circuits in con-

straint logic programming. International Joint Conference on Artificial Intelligence (IJCAI). 72–
77.

GU, J. 1995. Parallel algorithms for satisfiability (SAT) problem. Parallel Processing of Discrete Optimiza-
tion Problems. DIMACS, vol. 22. 105–161.

GU, J., PURDOM, P. W., FRANCO, J., AND WAH, B. W. 1997. Algorithms for the satisfiability (SAT) problem:
A survey. In Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. AMS, 19–152.

HAMADI, Y. 1999a. Optimal distributed arc-consistency. International Conference on Principles and Practice
of Constraint Programming (CP). 219–233.

HAMADI, Y. 1999b. Traitement des problèmes de satisfaction de contraintes distribués. Ph.D. thesis, Uni-
versité Montpellier.

HAMADI, Y. 2003. Disolver: A distributed constraint solver. Tech. rep. MSR-TR-2003-91, Microsoft Re-
search.

HAMADI, Y. 2005. Conflicting agents in distributed search. Int. J. Artific. Intell. Tools 14, 3, 459–476.
HAMADI, Y., BESSIÈRE, C., AND QUINQUETON, J. 1998. Backtracking in distributed constraint networks. Euro-

pean Conference on Artificial Intelligence (ECAI). 219–223.
HAMADI, Y. AND MERCERON, D. 1997. Reconfigurable architectures: A new vision for optimization problems.

International Conference on Principles and Practice of Constraint Programming (CP). Lecture Notes
Computer Science, 209–221.

HARVEY, W. D. AND GINSBERG, M. L. 1995. Limited discrepancy search. J. Artific. Intell. Resear. (JAIR).
607–615.

HEBRARD, E., HNICH, B., AND WALSH, T. 2004. Robust solutions for constraint satisfaction and optimization.
European Conference on Artificial Intelligence (ECAI). 186–190.

HENZ, M., TAN, E., AND YAP, R. H. C. 2001. One flip per clock cycle. International Conference on Principles
and Practice of Constraint Programming (CP). 509–523.

HIRSCH, E. A. AND KOJEVNIKOV, A. 2001. UnitWalk: A new SAT solver that uses local search guided by
unit clause elimination. In International Conference on Theory and Applications of Satisfiability Testing
(SAT). 35–42.

HOOKER, J. 2000. Logic-Based Methods for Optimization: Combining Optimization and Constraint Satis-
faction. John Wiley & Sons.

HOOS, H. 1999. On the run-time behaviour of stochastic local search methods for SAT. North American
National Conference on Artificial Intelligence (AAAI). 661–666.

HOOS, H. AND STUTZLE, T. 2004. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann.
HOPCROFT, J. E. AND KARP, R. M. 1973. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM

J. Comput. 2, 4, 225–231.
HUTTER, F. AND HAMADI, Y. 2005. Adjustment based on performance prediction: Towards an instance-aware

problem solver. Tech. rep. MSR-TR-2005-125, Microsoft Research.
HUTTER, F., HAMADI, Y., HOOS, H., AND LEYTON-BROWN, K. 2006. Performance prediction and automated

tuning of randomized and parametric algorithms. International Conference on Principles and Practice
of Constraint Programming (CP). To appear.

HUTTER, F., TOMPKINS, D. A. D., AND HOOS, H. H. 2002. Scaling and probabilistic smoothing: Efficient dynamic
local search fot SAT. International Conference on Principles and Practice of Constraint Programming
(CP). 233–248.

HYVÖNEN, E. 1989. Constraint reasoning based on interval arithmetic. International Joint Conference on
Artificial Intelligence (IJCAI). 1193–1198.

JAFFAR, J. AND LASSEZ, J.-L. 1987. Constraint Logic Programming. Conference Record of ACM Symposium
on Principles of Programming Languages (POPL). 111–119.

JEROSLOW, R. J. AND WANG, J. 1990. Solving propositional satisfiability problems. Ann. Mathemat. Artific.
Intell. 1, 167–188.

KASIF, S. 1990. On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artific.
Intell. 45, 3, 99–118.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 51

KATSIRELOS, G. AND BACCHUS, F. 2005. Generalized nogood in CSPs. North American National Conference
on Artificial Intelligence (AAAI). 390–396.

KAUTZ, H., HORVITZ, E., RUAN, Y., GOMES, C., AND SELMAN, B. 2002. Dynamic restart policies. North American
National Conference on Artificial Intelligence (AAAI). 674–681.

KAUTZ, H. A. AND SELMAN, B. 1992. Planning as satisfiability. European Conference on Artificial Intelligence
(ECAI). 359–363.

KIRKPATRICK, S., GELATT, C., AND VECCHI, M. 1983. Optimization by simulated annealing. Science 220, 671–
680.

KUNZ, W. AND PRADHAN, D. 1994. Recrusive Learning: A new implication technique for efficient solutions to
CAD problems: Test, verification and optimization. IEEE Trans. Comput.-Aided Design 13, 9, 1143–1158.

LARRABEE, T. 1992. Test pattern generation using Boolean satisfiability. IEEE Trans. Comput.-Aided De-
sign 11, 1, 6–22.

LAURIÈRE, J.-L. 1978. A language and a program for stating and solving combinatorial problems. Artific.
Intell. 10, 1, 29–127.

LEYTON-BROWN, K., NUDELMAN, E., AND SHOHAM, Y. 2002. Learning the empirical hardness of optimization
problems: The case of combinatorial auctions. International Conference on Principles and Practice of
Constraint Programming (CP). 556–572.

LHOMME, O. 1993. Consistency techniques for numeric CSPs. International Joint Conference on Artificial
Intelligence (IJCAI). 232–238.

LI, C.-M. 2000. Integrating equivalency reasoning into Davis-Putnam procedure. North American Na-
tional Conference on Artificial Intelligence (AAAI). 291–296.

LÓPEZ-ORTIZ, A., QUIMPER, C.-G., TROMP, J., AND VAN BEEK, P. 2003. A fast and simple algorithm for bounds
consistency of the alldifferent constraint. International Joint Conference on Artificial Intelligence (IJCAI).
245–250.

LU, F., WANG, L.-C., CHENG, K.-T., AND HUANG, R. C.-Y. 2003. A circuit SAT solver with signal correlation
guided learning. IEEE/ACM Design, Automation and Test in Europe (DATE). 10892–10897.

LYNCE, I. AND MARQUES-SILVA, J. 2002. The effect of nogood recording in DPLL-CBJ SAT algorithms. Inter-
national Workshop on Constraint Solving and Constraint Logic Programming (CSCLP). 144–158.

LYNCE, I. AND MARQUES-SILVA, J. 2004. On computing minimum unsatisfiable cores. International Conference
on Theory and Applications of Satisfiability Testing (SAT). 305–310.

MAC ALLESTER, D. A. 1990. Truth maintenance. North American National Conference on Artificial Intelli-
gence (AAAI). 1109–1116.

MACKWORTH, A. 1977. Consistency in networks of relations. Artific. Intell. 8, 99–118.
MACKWORTH, A. K. AND FREUDER, E. C. 1985. The complexity of some polynomial network consistency algo-

rithms for constraint satisfaction problems. Artific. Intell. 25, 1, 65–74.
MANQUINHO, V. M. AMD MARQUES-SILVA, J. P., OLIVEIRA., A. L., AND SAKALLAH, K. A. 1998. Satisfiability-based

algorithms for 0-1 integer programming. International Workshop on Logic Synthesis.
MARINOV, D., KHURSHID, S., BUGRARA, S., ZHANG, L., AND RINARD, M. 2005. Optimizations for compiling declar-

ative models into Boolean formulas. International Conference on Theory and Applications of Satisfiability
Testing (SAT). 187–202.

MARQUES-SILVA, J. P. 1999. The impact of branching heuristics in propositional satisfiability algorithms.
9th Portuguese Conference on Artificial Intelligence (EPIA).

MARQUES-SILVA, J. P. 2000. Algebraic simplification techniques for propositional satisfiability. International
Conference on Principles and Practice of Constraint Programming (CP). 537–542.

MARQUES-SILVA, J. P. AND GLASS, T. 1999. Combinational equivalence checking using satisfiability and re-
cursive learning. IEEE/ACM Design, Automation and Test in Europe (DATE). 145–149.

MARQUES-SILVA, J. P. AND SAKALLAH, K. A. 1996. GRASP - A new search algorithm for satisfiability. Interna-
tional Conference on Computer Aided Design (ICCAD). 220–227.

MARRIOTT, K. AND STUCKEY, P. J. 1998. Programming with Constraints: An Introduction. MIT Press.
MCMILLAN, K. L. 2003. Interpolation and SAT-based model checking. International Conference on

Computer-Aided Verification (CAV). 1–13.
MCMILLAN, K. L. AND AMLA, N. 2003. Automatic abstraction without counterexamples. International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 2–17.
MESEGUER, P. 1997. Interleaved depth-first search. International Joint Conference on Artificial Intelligence

(IJCAI). 1382–1387.
MESEGUER, P. AND WALSH, T. 1998. Interleaved and discrepancy based search. European Conference on

Artificial Intelligence (ECAI). 239–243.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

52 L. Bordeaux et al.

MÉZARD, M. AND ZECCHINA, R. 2002. Random k-satisfiability: from an analytic solution to a new efficient
algorithm. Physical Rev. E, 66, 056126.

MICHALEWICZ, Z. 1995. A survey constraint handling techniques in evolutionary computation methods.
International Conference on Evolutionary Programming (EP). 135–155.

MILANO, M. 2004. Constraint and Integer Programming: toward a unified methodology. Kluwer.
MILLS, P. AND TSANG, E. P. K. 2000. Guided local search for solving SAT and weighted MAX-SAT problems.

J. Automat. Reaso. 24, 205–223.
MITCHELL, D. G. 1998. Hard problems for CSP algorithms. In North American National Conference on

Artificial Intelligence (AAAI). 398–405.
MITCHELL, D. G. 2005. A SAT solver primer. Bull. Euro. Ass. Theoret. Comput. Science 85, 112–133.
MOHR, R. AND HENDERSON, T. C. 1986. Arc and path consistency revisited. Artific. Intell. 28, 2, 225–233.
MONFROY, E. AND CASTRO, C. 2003. Basic components for constraint solver cooperations. ACM International

Symposium on Applied Computing (SAC). 367–374.
MONTANARI, U. 1974. Networks of constraints: Fundamental properties and applications to picture pro-

cessing. Inform. Science 7, 2, 85–132.
MOORE, R. E. 1966. Interval Analysis. Prentice-Hall.
MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an efficient

SAT solver. International Design Automation Conference (DAC). 530–535.
NAM, G.-J., ALOUL, F., SAKALLAH, K. A., AND RUTENBAR, R. A. 2004. A comparative study of two Boolean

formulations of FPGA detailed routing constraints. IEEE Trans. Compute. 53, 6, 688–696.
NELSON, G. AND OPPEN, D. C. 1979. Simplification by cooperating decision procedures. ACM Trans. Program.

Lang. Syst. 1, 2, 245–257.
NIEUWENHUIS, R. AND OLIVERAS, A. 2005. DPLL(T) with exhaustive theory propagation and its application

to difference logic. International Conference on Computer-Aided Verification (CAV). 321–334.
OH, Y., MNEIMNEH, M. N., ANDRAUS, Z. S., SAKALLAH, K. A., AND MARKOV, I. L. 2004a. Amuse: A minimally-

unsatisfiable subformula extractor. In Proceedings of the Design Automation Conference (DAC).
ACM/IEEE, 518–523.

OH, Y., MNEIMNEH, M. N., ANDRAUS, Z. S., SAKALLAH, K. A., AND MARKOV, I. L. 2004b. Amuse: A mini-
mally unsatisfiable subformula extractor. International Design Automation Conference (DAC). 518–
523.

PESANT, G. AND GENDREAU, M. 1999. A constraint programming framework for local search methods. J. of
Heuristics 5, 3, 255–279.

PRASAD, M. R., BIERE, A., AND GUPTA, A. 2005. A survey of recent advances in sat-based formal verification.
International J. Softw. Tools Technol. Transfer 7, 2, 156–173.

PROSSER, P. 1993. Hybrid algorithms for the constraint satisfaction problem. Computat. Intell. 9, 268–299.
PRUUL, E. A. AND NEMHAUSER, G. L. 1988. Branch-and-bound and parallel computation: A historical note.

Operat. Resear. Lett. 7, 2, 65–69.
PUGET, J.-F. 1994. A C++ implementation of CLP. Tech. rep., ILOG, inc. ILOG Solver Collected Papers.
PUGET, J. F. 2004. CP’s next challenge: simplicity of use. International Conference on Principles and Practice

of Constraint Programming (CP). invited talk.
RANISE, S. AND TINELLI, C. 2003. The SMT-LIB format: An initial proposal. International Workshop on

Pragmatics of Decision Procedures in Automated Reasoning.
RAO, V. N. AND KUMAR, V. 1993. On the efficiency of parallel bactracking. IEEE Trans. Parall. Distribut.

Syst. 4, 4, 427–437.
RÉGIN, J.-C. 1994. A filtering algorithm for constraints of difference in CSPs. North American National

Conference on Artificial Intelligence (AAAI). 362–367.
RÉGIN, J.-C. 1996. Generalized arc consistency for global cardinality constraint. North American National

Conference on Artificial Intelligence (AAAI). 209–215.
RINGWELSKI, G. AND HAMADI, Y. 2005. Boosting distributed constraint satisfaction. International Conference

on Principles and Practice of Constraint Programming (CP). 549–562.
ROBINSON, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12, 1, 23–41.
RYAN, L. 2004. Efficient algorithms for clause learning SAT solvers. Tech. rep., Simon Fraser University.
SABHARWAL, A. 2005. Symchaff: A structure-aware satisfiability solver. North American National Confer-

ence on Artificial Intelligence (AAAI). 467–474.
SABIN, D. AND FREUDER, E. 1994. Contradicting conventional wisdom in constraint satisfaction. European

Conference on Artificial Intelligence (ECAI). 125–129.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

Propositional Satisfiability and Constraint Programming: A Comparative Survey 53

SELMAN, B., KAUTZ, H., AND COHEN, B. 1994. Noise strategies for improving local search. In North American
National Conference on Artificial Intelligence (AAAI). 337–343.

SELMAN, B., LEVESQUE, H. J. AND MITCHELL, D. G. 1992. A new method for solving hard satisfiability problems.
North American National Conference on Artificial Intelligence (AAAI). 440–446.

SESHIA, S. A. AND BRYANT, R. E. 2004. Deciding quantifier-free presburger formulas using parameterized
solution bounds. In IEEE International Symposium Logic in Computer Science (LICS). 100–109.

SESHIA, S. A., LAHIRI, S. K., AND BRYANT, R. E. 2003. A hybrid SAT-based decision procedure for separation
logic with uninterpreted functions. International Design Automation Conference (DAC). 425–430.

SHEERAN, M. AND STÅLMARCK, G. 2000. A tutorial on stålmarcks’s proof procedure for propositional logic.
Formal Methods Syst. Design 16, 23–58.

SHEINI, H. M. AND SAKALLAH, K. A. 2005. A sat-based decision procedure for mixed logical/integer linear
problems. International Conference on Integration of AI and OR Techniques in CP for Combinatorial
Optimization Problems (CP-AI-OR). 320–335.

SHLYAKHTER, I., SEATER, R., JACKSON, D., SRIDHARAN, M., AND TAGHDIRI, M. 2003. Debugging overconstrained
declarative models using unsatisfiable cores. IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 94–105.

SHOSTAK, R. E. 1984. Deciding combinations of theories. J. ACM 31, 1, 1–12.
SIMONIS, H. AND DINCBAS, M. 1987. Using logic programming for fault diagnosis in digital circuits. German

Workshop on Artificial Intelligence, (GWAI). 139–148.
SINZ, C., BLOCHINGER, W., AND KÜCHLIN, W. 2001. PaSAT—parallel SAT-checking with lemma exchange:

Implementation and applications. Elec. Notes in Discrete Math. 9.
SKLIAROVA, I. AND DE BRITO FERRARI, A. 2004. Reconfigurable hardware SAT solvers: A survey of systems.

IEEE Trans. Comput. 53, 11, 1449–1461.
SMITH, B. 2002. Solve your problem faster—by changing the model. International Workshop on Constraint

Solving and Constraint Logic Programming (CSCLP). invited talk.
STALLMAN, R. M. AND SUSSMAN, G. J. 1977. Forward reasoning and dependency-directed backtracking in a

system for computer-aided circuit analysis. Artific. Intell. 9, 135, 135–196.
STRICHMAN, O. 1999. Tuning SAT checkers for bounded model checking. International Conference on

Computer-Aided Verification (CAV). 480–494.
STRICHMAN, O., SESHIA, S. A., AND BRYANT, R. E. 2002. Deciding separation formulas with SAT. International

Conference on Computer-Aided Verification (CAV). 209–222.
SUBBARAYAN, S. AND PRADHAN, D. K. 2004. NiVER: Non increasing variable elimination resolution for pre-

processing SAT instances. International Conference on Theory and Applications of Satisfiability Testing
(SAT). 351–356.

SWAIN, M. J. AND COOPER, P. R. 1988. Parallel hardware for constraint satisfaction. National Conference on
Artificial Intelligence. Los Altos, CA, 682–686.

THIFFAULT, C., BACCHUS, F., AND WALSH, T. 2004. Solving non-clausal formulas with DPLL search. Interna-
tional Conference on Principles and Practice of Constraint Programming (CP). 663–678.

TSEITIN, G. 1968. On the complexity of derivation in propositional calculus. Studies in Constructive Math-
ematics and Mathematical Logic, part 2, 115–125.

VAN GELDER, A. AND TSUJI, Y. K. 1996. Satisfiability testing with more reasoning and less guess-
ing. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. AMS, 559–
586.

VAN HENTENRYCK, P. 1989. Constraint Satisfaction in Logic Programming. MIT Press.
VAN HENTENRYCK, P. AND DEVILLE, Y. 1991. The cardinality operator: A new logical connective for Constraint

Logic Programming. International Conference on Logic Programming (ICLP). 745–759.
VAN HENTENRYCK, P., DEVILLE, Y., AND TENG, C.-M. 1992. A generic arc-consistency algorithm and its spe-

cializations. Artific. Intell. 57, 2-3, 291–321.
VAN HENTENRYCK, P. AND MICHEL, L. 2002. A constraint-based architecture for local search. ACM Conference

on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). 83–100.
VAN HENTENRYCK, P. AND MICHEL, L. 2005. Constraint-Based Local Search. MIT Press.
VAN HENTENRYCK, P., MICHEL, L., AND DEVILLE, Y. 1997. Numerica: A Modeling Language for Global Opti-

mization. MIT Press.
VAN HENTENRYCK, P., PERRON, L., AND PUGET, J.-F. 2000. Search and strategies in OPL. ACM Trans. Computat.

Logic 1, 2, 285–320.
VAN HENTENRYCK, P., SARASWAT, V. A., AND DEVILLE, Y. 1998. Design, implementation, and evaluation of the

constraint language CC(FD). J. Logic Program. 37, 1-3, 139–164.

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

54 L. Bordeaux et al.

VELEV, M. 2004. Exploiting signal unobservability for efficient translation to CNF in formal verification of
microprocessors. IEEE/ACM Design, Automation and Test in Europe (DATE). 266–217.

VERFAILLIE, G., LEMAı̂TRE, M., AND SCHIEX, T. 1996. Russian Doll Search for solving constraint optimization
problems. North American National Conference on Artificial Intelligence (AAAI). 181–187.

WALSH, T. 1997. Depth-bounded discrepancy search. In International Joint Conference on Artificial Intel-
ligence (IJCAI). 1388–1395.

WALSH, T. 2000. SAT v CSP. International Conference on Principles and Practice of Constraint Program-
ming (CP). 441–456.

WALTZ, D. L. 1975. Generating semantic descriptions from drawings of scenes with shadows. The Psychol-
ogy of Computer Vision. McGraw-Hill, Chapter 3. (Preliminary version as MIT research report (MAC-
AI-TR-271), 1972.)

WOLSEY, L. 1998. Integer Programming. Wiley Interscience.
XILINX-INC. 1991. The Programmable Gate Array Data Book. Product Briefs.
YOKOO, M., ISHIDA, T., AND KUBAWARA, K. 1990. Distributed constraint satisfaction for DAI problems. Inter-

national Workshop on Distributed Artificial Intelligence.
YOKOO, M., SUYAMA, T., AND SAWADA, H. 1996. Solving satisfiability problems using field programmable gate

arrays: First results. International Conference on Principles and Practice of Constraint Programming
(CP). 497–509.

ZHANG, H., BONACINA, M., AND HSIANG, H. 1996. PSATO: a distributed propositional prover and its applica-
tion to quasigroup problems. J. Symbolic Computat. 21, 543–560.

ZHANG, H. AND STICKEL, M. E. 2000. Implementing the Davis-Putnam method. J. Autom. Reason. 24, 1/2,
277–296.

ZHANG, L. AND MALIK, S. 2003a. Cache performance of SAT solvers: A case study for efficient implementation
of algorithms. International Conference on Theory and Applications of Satisfiability Testing (SAT). 287–
298.

ZHANG, L. AND MALIK, S. 2003b. Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. IEEE/ACM Design, Automation and Test in Europe
(DATE). 10880–10885.

ZHANG, L., MOSKEWICZ, M. W., MADIGAN, C. F., AND MALIK, S. 2001. Efficient conflict driven learning in a
Boolean satisfiability solver. International Conference on Computer Aided Design (ICCAD). 279–285.

ZHONG, P., MARTONOSI, M., ASHAR, P., AND MALIK, S. 1997. Implementing Boolean satisfiability in configurable
hardware. International Workshop on Logic Synthesis.

ZHONG, P., MARTONOSI, M., ASHAR, P., AND MALIK, S. 1998. Solving Boolean satisfiability with dynamic hard-
ware configurations. Field-Programmable Logic and Applications. 326–335.

Received November 2005; revised May 2006; accepted July 2006

ACM Computing Surveys, Vol. 38, No. 4, Article 12, Publication date: December 2006.

