
Path Consistency on Triangulated Constraint Graphs�Christian BliekILOG1681 Route des Dolines06560 Valbonne, Francebliek@ilog.fr Djamila Sam-HaroudArti�cial Intelligence LaboratorySwiss Federal Institute of Technology1015 Lausanne, Switzerlandharoud@lia.di.epfl.chAbstractAmong the local consistency techniques used inthe resolution of constraint satisfaction prob-lems (CSPs), path consistency (PC) has re-ceived a great deal of attention. A constraintgraph G is PC if for any valuation of a pairof variables that satisfy the constraint in G be-tween them, one can �nd values for the interme-diate variables on any other path in G betweenthose variables so that all the constraints alongthat path are satis�ed. On complete graphs,Montanari showed that PC holds if and only ifeach path of length two is PC. By convention, itis therefore said that a CSP is PC if the comple-tion of its constraint graph is PC. In this paper,we show that Montanari's theorem extends totriangulated graphs. One can therefore enforcePC on sparse graphs by triangulating instead ofcompleting them. The advantage is that withtriangulation much less universal constraintsneed to be added. We then compare the prun-ing capacity of the two approaches. We showthat when the constraints are convex, the prun-ing capacity of PC on triangulated graphs andtheir completion are identical on the commonedges. Furthermore, our experiments show thatthere is little di�erence for general non-convexproblems.1 IntroductionThe constraint satisfaction paradigm allows for a natu-ral formulation of a wide variety of practical problems.It consists of representing a problem as a set of vari-ables taking their values in particular domains, subjectto constraints which specify consistent value combina-tions. Solving a CSP amounts to assigning to the vari-ables, values from their domains, so that all the con-straints are satis�ed. Backtrack search is the principalmechanism for solving a CSP. It is commonly combinedwith local consistency techniques to limit the combina-torial explosion. These techniques reduce the size of thesearch space by removing local inconsistencies.�Authors are listed in alphabetical order.

This paper considers a particular form of local consis-tency called path consistency (PC). The work presented
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C v2,wFigure 1: Path Consistencyconsiders binary CSPs and builds on their classical con-straint graph representation, where the vertices representthe variables and the edges represent the constraints be-tween the variables.A path P = hu; : : : ; vi; : : : ; wi in a constraint graphG is PC if for all pairs of values for (u;w) that sat-isfy the constraint Cu;w in G one can �nd values forthe intermediate variables vi so that all the constraintsCu;v1 ; : : : ; Cvi;vi+1 ; : : : ; Cvk ;w in G along the path are sat-is�ed (see �gure 1). A constraint graph is PC i� all pathsin the graph are PC [Mackworth, 1977]. In this paperwe make the distinction between enforcing PC on CSPsand on constraint graphs. A CSP is PC if the comple-tion of its constraint graph is PC. A CSP will be said tobe partially PC (PPC) if its constraint graph is PC.In practice, we know how to enforce PC on completegraphs thanks to the following theorem:Theorem 1 (Montanari, 1974) A network with a com-plete graph is PC i� every path of length two is PC.As a result, existing algorithms �rst complete sparsegraphs by adding universal binary constraints, then en-force PC on each path of length two. The algorithmswith the best time complexity [Mohr and Henderson,1986; Han and Lee, 1988] run in time O(n3d3). n is thenumber of variables and d the maximum domain size.Despite its relatively high computational complexity,PC on complete graphs has been shown to be a cen-tral notion for certain classes of problems. In e�ect,it has been shown to be equivalent to global consis-tency for convex binary problems. This means that if



a binary convex CSP is PC, its solutions can be de-rived backtrack-free. The PC property has also re-ceived particular attention in the area of temporal rea-soning [Schwalb and Dechter, 1997] where lower formsof consistency prove to be of less interest.In this paper we show that Montanari's theorem ex-tends to triangulated constraint graphs. Triangulatedconstraint graphs can be made PC by ensuring that ev-ery path of length two is PC. In this case there is noneed for additional constraints to be synthesized. Thisallows us to devise an algorithm for making a CSP witha triangulated constraint graph PPC in time O(�ed3). �is the maximum degree of the graph and e is the num-ber of edges in the graph. When the original constraintgraph is not triangulated, we can triangulate it by addinguniversal edges. It is important to note that for sparseproblems, the number of edges added by triangulation ismuch less than by completion.Given an incomplete constraint graph, we then com-pare the pruning capacity of PC depending on whetherit is enforced on a triangulation or a completion of thegraph. We prove that for convex problems, the pruningcapacity of the two is identical on the common edges.This means that, in this case, the extra edges synthe-sized for completion do not a�ect the labeling of thecommon edges. We also propose an algorithm for �llingin these extra edges.Finally, we present some experiments illustrating thatsigni�cant gains in computational e�ort can be obtainedusing our algorithms. Furthermore it appears that thereis little di�erence in the pruning capacity of PPC andPC for general non-convex CSPs with triangulated con-straint graphs.2 BackgroundIn this paper, we consider binary CSPs (V;C;D) whereV is the set f1; : : : ; i; : : : ; ng of variables, D is the setfD1; : : : ; Di; : : : ; Dng of domains and variable i takes itsvalue in domain Di. The variables of V are subject toa set of constraints C = fCi;j j Ci;j represent the legalvalue combinations from Di � Djg. We use the (0; 1)matrix representation of constraints proposed in [Mon-tanari, 1974] and assume that Ci;j is always the trans-position of Cj;i. Ci;j = Di � Dj is called a universalconstraint. A constraint is connected row-convex (CRC)if after removing the empty rows from its matrix repre-sentation it is row-convex and connected, i.e. all the 1entries in a row are consecutive and two successive rowseither intersect or are consecutive [Deville et al., 1997].A CSP is strongly PC if in addition to PC it also is arcconsistent (AC). A CSP is globally consistent if any par-tial instantiation of a subset of variables can be extendedto a solution without backtracking.Let us now recall the necessary background from graphtheory. An undirected graph G is triangulated if everycycle of length strictly greater than 3 possesses a chord,that is, an edge joining two non-consecutive vertices ofthe cycle. For a graph G = (V;E), with jV j = n, an or-

dering [v1; : : : ; vi; : : : ; vn] of V is a bijection of f1; : : : ; ngonto V . For each v in V , the adjacency set Adj(v), isde�ned as fw 2 V j (v; w) 2 Eg. A vertex v is sim-plicial if Adj(v) is complete. Every triangulated graphhas a simplicial vertex. A triangulated graph remainstriangulated after removing a simplicial vertex and itsincident edges from the graph. The order in which sim-plicial vertices are successively removed is called a per-fect elimination order. For a given perfect eliminationorder, we will use the notation Si = fvn�i+1; : : : ; vng,and Gi will denote the subgraph of G induced by Si.Fi = fvk 2 Adj(vn�i) j vn�i < vkg where < is the prece-dence relation of the given order. Observe that since theelimination order is perfect, the subgraph of G inducedby Fi is complete.The material cited below is taken from[Kj�rul�, 1990].A perfect elimination order can be found in O(n+e) timeusing the maximum cardinality search algorithm. A non-triangulated graph can always be transformed into a tri-angulated one by adding edges. Finding aminimal trian-gulation, where every edge is necessary for the graph tobe triangulated can be done in O(n(e+f)) time, where fis the number of added edges. This bound is improved onaverage by a procedure called recursive thinning whichwe use in this work.3 PC on Triangulated ConstraintGraphsIn this section we extend theorem 1 to triangulatedgraphs. We show the following result:Theorem 2 A triangulated constraint graph G is PC i�every path of length 2 is PC.Proof: Since G is triangulated, we can �nd a perfectelimination order which de�nes Si, Gi and Fi as dis-cussed above. We demonstrate that G is PC by induc-tion on i. Since every path of length 2 is PC, we know byconstruction that G3 is PC. Assuming that Gi is PC, weset out to prove that Gi+1 is PC. We do this by showingthat any path P from u to w in Gi+1 is PC.If P is in Gi then P is PC by assumption. So we needto consider two cases. Either 1) as illustrated on the leftin �gure 2, vn�i is an endpoint of P , e.g. vn�i = w or 2)P goes through vn�i as shown on the right in �gure 2.
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Figure 2: Two cases of inductive proofLet us consider these two cases below:



1. This path is considered for PC only if there is aconstraint Cu;vn�i . Let us show that one can �ndvalues for the intermediate variables so that all theconstraints along a path P are satis�ed. Let y bethe variable that precedes vn�i in P . So in additionto the constraint Cu;vn�i we also have a constraintCy;vn�i . Since G is triangulated, the graph inducedby Fi is complete. So there is a constraint Cu;y.Now in G every path of length 2 is PC, so for ev-ery pair of values that satisfy Cu;vn�i we can �nda value for v that satis�es Cu;y and Cy;vn�i . Thepart P 0u;y of the path P between u and y is in Giand is therefore PC by assumption. So for the pairof values found for (u; y) we know that we can �ndvalues for the intermediate variables on this pathP 0u;y. Hence we are able to �nd a set of values forall the intermediate variables between u and vn�ithat satisfy the constraints along P .2. If P goes through vn�i then let y and z be the vari-ables that respectively precede and follow vn�i inthe path P . Note that both y and z are in Si. Sincethere is a constraint Cy;vn�i , a constraint Cvn�i;zand that the graph induced by Fi is complete, weknow that there is a constraint Cy;z . Now considerthe path P 0u;y;P 0z;w that goes directly from y to zwithout passing through vn�i. P 0u;y;P 0z;w is in Giand therefore by assumption PC. This means thatfor any pair of values for (u;w) we can �nd valuesfor the intermediate variables so that all the con-straints along P 0u;y;P 0z;w are satis�ed. Since in Gevery path of length 2 is PC, we also know that forthe pair of values found for (y; z) we can �nd a valuefor vn�i that satis�es both Cy;vn�i and Cvn�i;z. Bydoing so we just have found a set values that satisfyall the constraints along the original path P . 24 From Triangulated to CompletedGraphsGiven the result in the previous section, the questionarises whether more pruning can be obtained by com-pleting a triangulated graph. As demonstrated in sec-tion 6 this may indeed occasionally occur. However, inthis section we show that for the class of convex prob-lems, no additional pruning is obtained by completingthe graph. The notion of convexity we refer to is a broadone. It includes the conventional de�nition of convexityin continuous domains, as well as its CRC extension tothe discrete case. This extended convexity property isclosed under composition and intersection of constraints.To show our result on convex problems we need thefollowing lemma.Lemma 1 If G = (V;E) is an incomplete triangulatedgraph, then one can add a missing edge (u;w), withu;w 2 V so that1. the graph G0 = (V;E [f(u;w)g) is triangulated and2. the graph induced by X = fx j (u; x); (x;w) 2 Eg iscomplete.

Proof: Since G is triangulated, it has a perfect elimi-nation order de�ning Si, Gi and Fi. Let i be the small-est index such that Gi is complete. Consider a variablevj 2 Si for which there is no edge (vn�i; vj) in G. Bytaking (u;w) = (vn�i; vj) we now prove the two claimsof the lemma.1. Since Gi is complete, there is an edge between vjand every variable in Fi. The graph induced by Fiin G0 = (V;E[f(vn�i; vj)g) therefore remains com-plete. As a result, the considered elimination orderis also perfect for G0. Since a graph with a perfectelimination order is triangulated, G0 is triangulated.2. Let us �rst show that X = Fi. Suppose it is not.In that case we necessarily have that a y 2 X thatprecedes vn�i for which (vn�i; y); (y; vj) 2 E. Butthen, since G is triangulated, there would also be anedge (vn�i; vj) which contradicts our assumption.Finally, since X = Fi and G is triangulated, weknow that the graph induced by X is complete. 2This lemma is illustrated in �gure 3. In this case
v1 v2 v3 v4 v5 v6 v7Figure 3: Completing Triangulated GraphsSi = fv3; v4; v5; v6; v7g, vn�i = v2 and Fi = fv3; v6; v7g.The variables of Fi are colored gray. The constructionwould for example add the dashed edge (v2; v5) which iscurrently missing.Let us now turn to the main result of this section.Theorem 3 For a convex CSP with a triangulated con-straint graph G, strong PC on G is equivalent to strongPC on the completion of G.By equivalent we mean that the relations computedfor the constraints in G are identical.Proof: Suppose we have a triangulated graph G =(V;E) that is strongly PC. We will add to G the miss-ing edges one by one until the graph is complete. Toprove the theorem, we show that the relations of theconstraints can be computed from the existing ones sothat each intermediate graph, including the completedgraph, is strongly PC.To add the edges, we use the construction proposed forthe proof of lemma 1. At all times during the constraintaddition process, the graph therefore remains triangu-lated. After the addition of a single edge (vn�i; vj) to G,we obtain G0 = (V;E [ f(vn�i; vj)g). For this edge thenew relation Cvn�i;vj is computed as follows:Cvn�i;vj = \vk2Fi Cvn�i;vk 
 Cvk ;vj (1)



where 
 is the composition operator. For example, in�gure 3, Cv2;v5 is obtained by intersecting the compo-sitions obtained via the variables in Fi = fv3; v6; v7g.Cvn�i;vj is the universal relation when Fi = ;.If after making G strongly PC the relations in G areempty, the construction above would, as desired, com-pute the empty relations for the missing edges. In whatfollows we therefore assume that the relations in G afterstrong PC are not empty.We now show that G0 is PC. Since G0 is triangulated,by theorem 2 it is su�cient to prove that every path oflength 2 is PC. By assumption, paths of length 2 thatdo not go through vn�i and vj are PC. So let us con-sider paths of length 2 that go through vn�i and vj .By lemma 1 and the construction used in its proof, weknow that the set of intermediate variables on the rele-vant paths is Fi and that Fi induces a complete subgraphof G. This situation is illustrated in �gure 4, where thevariables in Fi are colored gray. Note that by construc-tion the graph A induced by fvn�ig[Fi and the graph Binduced by Fi [ fvjg are complete. We have to consider
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vn-iFigure 4: Added edges are PCtwo cases1. With vk0 2 Fi, either 1) P = hvn�i; vj ; vk0 ior 2) P = hvn�i; vk0 ; vji. Let us consider each of thesecases in turn.1. If P = hvn�i; vj ; vk0 i we need to prove that for everypair of values for (vn�i; vk0 ) that satis�es Cvn�i;vk0we can �nd a value for vj so that Cvn�i;vj , as de�nedby (1), and Cvj ;vk0 are satis�ed.A is complete, strongly path-consistent and convex,it is therefore also globally consistent [Sam-Haroudand Faltings, 1996]. So that for every pair of valuesthat satisfy Cvn�i;vk0 we can �nd values for all thevariables in Fi � fvk0g so that all other edges in Aare also satis�ed (see �gure 4). Similarly, since B iscomplete, strongly path-consistent and convex it isglobally consistent. This means that for the abovevalues of the variables in Fi, we can �nd a value forvj so that all constraints in B are satis�ed. For theconsidered values the constraint Cvj ;vk0 is thereforesatis�ed. For any pair of values for Cvn�i;vk0 weare hence able to �nd values for the variables in(Fi�fvk0g)[fvjg so that all constraints in A[B aresatis�ed. For the values for (vn�i; vj), the relationsCvn�i;vk and Cvk ;vj participating in (1) are thereforesatis�ed by the values for the variables in Fi. Thevalues for (vn�i; vj) therefore satisfy Cvn�i;vj .1The reasoning is the same for the symmetrical cases.

2. If P = hvn�i; vk0 ; vji the relation Cvn�i;vj of thenew edge ensures by de�nition that for every pairof values in Cvn�i;vj we can �nd a value for vk0 sothat the Cvn�i;vk0 and Cvk0 ;vj are veri�ed.We now show that G0 is AC. When jFij � 1, since G0is PC we know that for every value pair in Cvn�i;vk0 orin Cvk0 ;vj we can �nd a value pair that satis�es Cvn�i;vj .Since G is AC this means that for any support respec-tively on Cvn�i;vk0 or on Cvk0 ;vj we are able to �nd asupport on Cvn�i;vj . As a consequence G0 is not only PCbut also AC. When jFij = 0, Cvn�i;vj = Dvn�i � Dvj .Since G is AC, G0 will therefore be AC as well. 2Corollary 1 is a direct consequence of theorem 3.Corollary 1 For convex problems, insolubility is de-tected using PC by graph completion i� it is detectedusing PC by graph triangulation.5 AlgorithmsBy theorem 2 we know that triangulated graphs canbe made PC by enforcing that every path of lengthtwo is PC. For problems with a triangulated constraintgraph we can therefore make the CSP PPC by a sim-ple modi�cation of existing PC algorithms2. The result-ing algorithm is Algorithm 1. The procedure Related-algorithm PPCQ EUntil Q is empty doq  Dequeue(Q)for (vi; vk; vj) 2 Related-Triplets(q) doCvi;vj  Cvi;vj \ (Cvi;vk 
 Cvk;vj )if Cvi;vj has changed thenEnqueue((vi; vj), Q)endendendend. Algorithm 1: PPCTriplets(q) returns all those triplets in which q partici-pates and that correspond to actual triangles in G. Thedi�erence with a classical PC algorithm, referred to asPC in the rest of the paper, is that PC revises all pos-sible triplets, not only those corresponding to trianglesin G. To determine the complexity of this algorithm fordiscrete problems, consider the number of revisions thatcan be made based on each edge (vi; vj). Revisions basedon Cvi;vj will be made only when a pair of values is re-moved. If d is the maximum domain size, then one canremove at most d2 pairs from any relation. Each removal2PPC is close to Schwalb and Dechter's PLPC algorithmfrom which it borrows the name. PLPC (Partial Loose PC)enforces a partial form of path consistency on disjunctivetemporal CSPs. It only considers the paths of length twowith at least two non-universal constraints.



prompts revisions only of the 2 neighboring edges in eachtriangle. If �vk is the degree of variable vk, a modi�ca-tion of Cvi;vj will prompt at most 2minf�vi � 1; �vj � 1grevisions. Summing over all edges we �nd that at mostX(vi;vj)2E 2minf�vi � 1; �vj � 1gd2 = O(�ed2)revisions will be performed, where � is the maximumdegree. This should be compared to the O(n3d2) revi-sions performed by the classical PC algorithm. Usingthe results presented in [Chiba and Nishizeki, 1985], onemay use the arboricity � of G instead of �, resulting ina number of revisions O(�ed2). The same reference alsopresents upper bounds on � both for general graphs andfor speci�c types of graphs.For the experiments below we report the number of re-visions since this measure is independent of the speci�ctechniques one might use for updating the relations. Inpractice one can for example use the techniques based onthe principle of minimal support used in PC-6 [Chmeiss,1996]. In this case at most O(ed2) value pairs may bedeleted in the relations. Per value pair at most O(�d)supports may be visited leading to a time complexity ofO(�ed3). However, per value pair only O(�) support in-formation concerning the smallest supporting element isstored, resulting in a O(�ed2) space complexity. In caseof CRC constraints one can use the techniques describedin [Deville et al., 1997] to obtain a time complexity ofO(�ed2) and a space complexity of O(�ed).The PPC algorithm makes CSPs with triangulatedconstraint graphs PPC. CSPs whose constraint graph isnot triangulated can be made PPC by triangulating thegraph with universal constraints before running PPC.For convex problems PPC is equivalent to PC. If de-sired, the relations of the missing edges can be computedas proposed in the proof of theorem 3. This �ll algorithmis shown in Algorithm 2 below.algorithm Fillfor i 1 to n doUntil Gi is complete dolet (vn�i; vj) be a missing edge in GiCvn�i;vj  Tvk2Fi Cvn�i;vk 
 Cvk;vjendendend. Algorithm 2: FillThe variables are assumed to be ordered according to aperfect elimination order. Observe that it is not requiredto update the sets Fi when G changes, since the orderin which the edges are added to Gi does not matter.Algorithm 2 computes at most n(n � 1)=2 relations.Since each relation is computed by intersecting at most2� compositions, the number of revisions Algorithm 2needs to perform is therefore O(�n2). For CRC con-straints one can, as before, use the techniques described

in [Deville et al., 1997] to perform the actual computa-tions. In this case the missing relations can be �lled inin time O(�n2d2).6 ExperimentsIn this section, we report some preliminary experimentsthat compare the number of revision steps carried out byPC and PPC for three types of randomly generated prob-lems. The convex case is illustrated by tests on linearcontinuous and CRC problems, the non-convex one bytests on randomly generated discrete problems. For thelinear problems, the constraints generated are inequali-ties. They are discretized similarly to what is describedin the work of [Sam-Haroud and Faltings, 1996] and rep-resented by (0; 1) matrices. The constraint graph of eachgenerated instance is triangulated before running PPC.The domain size is 8 for all the types of problems. Eachtest is averaged over 25 instances.Table 1 shows the comparison for di�erent sizes of con-straint graphs and a �xed density p. The density chosen(p = 0:1) corresponds to sparse graphs and illustratesthe most favorable case for PPC. Table 2 compares PCand PPC for problems of �xed size (n = 20) and di�er-ent densities. Since PPC is of interest on sparse CSPs,we report the experiments on sparse graphs (p � 0:5).For higher densities, the number of revisions of PPC ap-proaches that of PC. Note that PPC and PC are identicalfor complete graphs.By theorem 3 for convex problems the relations com-puted by PPC and PC on the common edges are iden-tical. For non-convex problems, we also compare thepruning capacity of PPC to the one of PC. � is the ratiobetween the number of tuples removed by PPC over thenumber of tuples removed by PC on the common edges.For the tests conducted on random problems, insolubil-ity detected by PC was also detected by PPC.The tests reported for non-convex problems are gener-ated in the phase transition [Grant and Smith, 1996] asthis seems to best illustrate the di�erence of behavior be-tween PPC and PC. Indeed, several hundreds of tests runout of the phase transition showed no di�erence of prun-ing between PC and PPC on the common edges. Notethat the randomly generated linear and CRC probleminstances do not necessarily fall in the phase transition.It is worth mentioning that despite the worst case com-plexity of O(n(e + f)) for triangulation algorithms, thee�ective time devoted to triangulation is negligible com-pared to the running time of PPC.More experiments clearly need to be conducted forbetter stating the e�ectiveness of PPC. The preliminaryresults we report are however encouraging enough towarrant PPC being investigated as alternative to PC forsparse problems.7 ConclusionPath consistency is an important notion in constraintsatisfaction. A new algorithm, called PPC, is proposedthat makes triangulated constraint graphs PC. PC can



Linear CRC Randomn p PC PPC10 0.1 1,944 21115 0.1 10,293 33420 0.1 33,220 55025 0.1 85,463 64430 0.1 183,253 1,64135 0.1 356,825 4,53240 0.1 619,999 9,666
n p PC PPC10 0.1 1,827 22215 0.1 9,117 37420 0.1 32,213 55925 0.1 84,796 95030 0.1 185,807 1,82535 0.1 361,000 5,16040 0.1 624,314 14,621

n p PC PPC � (%)10 0.1 1,971 339 99.7515 0.1 13,870 407 99.5120 0.1 32,366 749 99.6525 0.1 97,180 1,388 99.8430 0.1 143,116 5,441 99.8035 0.1 348,399 5,477 100.040 0.1 665,871 33,623 99.92Table 1: Revisions performed by PC and PPC on sparse graphs for di�erent problem sizesLinear CRC Randomn p PC PPC20 0.1 33,220 55020 0.2 37,440 1,66020 0.3 38,187 5,32920 0.4 38,719 8,90720 0.5 39,054 13,736 n p PC PPC20 0.1 32,213 55920 0.2 37,593 2,25720 0.3 38,393 5,69220 0.4 38,811 8,91920 0.5 39,043 13,339 n p PC PPC � (%)20 0.1 32,366 749 99.6520 0.2 35,017 3,263 99.9820 0.3 55,330 13,982 100.020 0.4 112,986 45,979 100.020 0.5 223,459 148,330 100.0Table 2: Revisions performed by PC and PPC on given problem size for di�erent densitiesthus be enforced on incomplete constraint graphs by tri-angulating instead of completing them. When the prob-lem is sparse, this spares a signi�cant amount of workcompared to the classical PC algorithm. We have alsoshown that for convex CSPs with triangulated constraintgraphs, the PPC and PC algorithms will compute thesame labeling on the common edges.Excessive memory requirements of existing PC al-gorithms limit their applicability [Chmeiss and J�egou,1996]. Since on sparse graphs PPC has a lower spacecomplexity than PC, PPC might prove to be a viablealternative when memory is a limiting factor.For non-convex problems, PPC exhibits a good prun-ing capacity compared to PC and can be computed muchmore e�ciently than PC on sparse graphs. We thereforeexpect that it might be bene�cial to interleave it withbacktrack algorithms to search for solutions. This willbe a topic of future research.8 AcknowledgmentsWe would like to thank Jean-Charles R�egin for point-ing out the results on arboricity. Most of this work wasperformed at the Arti�cial Intelligence Laboratory of theSwiss Federal Institute of Technology in Lausanne whereChristian Bliek was sponsored by the Swiss National Sci-ence Foundation under project number 2000-52363.97through the ERCIM Fellowship Program.References[Chiba and Nishizeki, 1985] N. Chiba and T. Nishizeki.Arboricity and subgraph listing algorithms. SIAMJournal on Computing, 14, 1985.[Chmeiss and J�egou, 1996] A. Chmeiss and P. J�egou.Path-consistency: When space misses time. In AAAI-96, pages 196{201, Portland, Oregon, 1996.
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