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Abstract

In non-binary constraint satisfaction problems, the study of local consistencies that only prune values from domains has so far
been largely limited to generalized arc consistency or weaker local consistency properties. This is in contrast with binary constraints
where numerous such domain filtering consistencies have been proposed. In this paper we present a detailed theoretical, algorithmic
and empirical study of domain filtering consistencies for non-binary problems. We study three domain filtering consistencies that
are inspired by corresponding variable based domain filtering consistencies for binary problems. These consistencies are stronger
than generalized arc consistency, but weaker than pairwise consistency, which is a strong consistency that removes tuples from
constraint relations. Among other theoretical results, and contrary to expectations, we prove that these new consistencies do not
reduce to the variable based definitions of their counterparts on binary constraints. We propose a number of algorithms to achieve
the three consistencies. One of these algorithms has a time complexity comparable to that for generalized arc consistency despite
performing more pruning. Experiments demonstrate that our new consistencies are promising as they can be more efficient than
generalized arc consistency on certain non-binary problems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Local consistency techniques are of great importance in constraint programming. They prune values from the
domain of variables and terminate branches of the search tree, saving much fruitless exploration of the search tree.
The most widely studied local consistency is (generalized) arc consistency (GAC). Local consistency techniques that
only filter domains like GAC tend to be more practical than those that alter the structure of the constraint hypergraph
or the constraints’ relations (e.g. path consistency). For binary constraints, many domain filtering consistencies have
been proposed and evaluated, including inverse and singleton consistencies [10,13,23]. The situation is very different
in the case of non-binary constraints. A number of consistencies that are stronger than GAC have been developed,
including relational consistency [22], pairwise consistency [15], and hyper-m-consistency [17]. However, these are
typically not domain filtering. In addition, algorithms that enforce them typically have a high time complexity.
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In this paper we study a number of domain filtering consistencies for non-binary constraints, inspired by corre-
sponding variable based consistencies for binary problems. A domain filtering consistency is a local consistency that
when enforced removes from the domain of a variable the values that cannot be consistently extended to some ad-
ditional variables. The simplest level of domain filtering local consistency for binary constraints is arc consistency,
which when enforced, removes values that cannot be consistently extended to any other variable. As another exam-
ple, enforcing path inverse consistency removes values that cannot be consistently extended to any set of two other
variables. Enforcing a domain filtering local consistency never infers no-goods of size more than one, and therefore
it does not create new constraints or modify existing constraint definitions. On the opposite, local consistencies that
do not only filter domains may infer and add no-goods of arbitrary size to the problem. This implies that either new
extensional constraints may be created or the definition of existing intentional constraints may be altered to cover
the recorded no-goods. In both cases the space requirements can become excessive. Also, restoration of the problem
state during backtracking becomes much more involved. For these reasons domain filtering consistencies are generally
considered more practical.

We study the following domain filtering consistencies: restricted pairwise consistency (RPWC), relational path
inverse consistency (rPIC), and max restricted pairwise consistency (maxRPWC). All these consistencies are stronger
than GAC, in the sense that they perform more domain pruning. However, they are weaker than a local consistency
which applies pairwise consistency and then removes any values that are left unsupported in some constraint. Pairwise
consistency (also called inter-consistency [17]) is a strong local consistency defined between constraint relations [15]
whose application removes tuples from the constraints’ relations.

Relational consistencies treat non-binary constraints irrespective of arity in a uniform manner [22]. However, they
have rarely been used in practice as most are not domain filtering, and as most have high time complexities. As with
relational consistencies, pairwise consistency, and hyper-m-consistency in general, has also rarely been used as it is
not domain filtering and the algorithm proposed in [15] has a high time complexity and requires all constraints to be
extensionally represented. The consistencies we study do not suffer from these problems. They are domain filtering
and are not prohibitively expensive to enforce.

In our theoretical study of RPWC, rPIC, and maxRPWC, we compare their pruning power and also compare them
to other consistencies for non-binary problems. We also consider their pruning power in the case where we only have
binary constraints. Our theoretical analysis reveals some surprises. For example, although the consistencies we study
are inspired by corresponding consistencies for binary problems, when restricted to binary constraints they do not
reduce to the variable based definition of their counterparts.

We also propose algorithms to enforce each of the consistencies that can be applied to constraints intentionally
or extensionally specified. The time complexity of the algorithms for maxRPWC and rPIC is O(e2k2dp), where e is
the number of constraints, k is the maximum arity, d is the maximum domain size, and p is the maximum number
of variables involved in two constraints that share at least two variables. The time complexity of the algorithm for
RPWC is O(ne2k2dk), where n is the number of variables. Focusing on maxRPWC, which is the most efficient
among the three consistencies, we propose two alternative algorithms to apply it. One of these algorithms avoids
many constraint checks and its time complexity is O(e2kdk). This is comparable to the complexity of standard GAC
algorithms, like GAC-Schema [6] and GAC2001/3.1 [8]. The time complexity of GAC2001/3.1 is O(ek2dk), while
GAC-Schema, taking advantage of multidirectionality, has time complexity of O(ekdk). However, the improvement
we achieve comes at a cost as the space required is exponential in the number of shared variables. Our third algorithm
for maxRPWC provides a balance between the other two by avoiding many constraint checks that the first one makes,
but not as many as the second algorithm, while only requiring polynomial space.

Experimental results demonstrate that it is feasible to maintain strong domain filtering consistencies during search,
and that they can be more cost-effective than GAC on certain problems. We show that maxRPWC, which is the
strongest among the consistencies we study, is also the most promising. This consistency prunes more values than
RPWC and rPIC, with small additional cost.

The rest of the paper is structured as follows. Section 2 gives necessary background and definitions. In Section 3
we define RPWC, rPIC, and maxRPWC. In Section 4 we make a theoretical study of the pruning power offered by the
three consistencies. Section 5 presents algorithms for applying the consistencies. In Section 6 we give experimental
results. Finally, we conclude and point to future work.
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2. Background

In this section we first give some necessary definitions on CSPs and then review local consistencies for binary and
non-binary constraints.

2.1. Basic definitions

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X,D,C) where: X = {x1, . . . , xn} is a set of n

variables, D = {D(x1), . . . ,D(xn)} is a set of ordered finite domains, and C = {c1, . . . , ce} is a set of e constraints.
Each constraint ci is a pair (var(ci), rel(ci)), where var(ci) = (xi1, . . . , xik ) is an ordered subset of X, and rel(ci)

contains the allowed combinations of values for the variables in var(ci). Each tuple τ ∈ rel(ci) is an ordered list of
values (ai1, . . . , aik ). A tuple τ ∈ rel(ci) is valid iff all the values in the tuple are present (i.e. they have not been
removed) in the domain of the corresponding variable. The process which verifies whether a given tuple is valid and
allowed by a constraint c is called a constraint check.

A constraint c can be either defined extensionally by explicitly giving rel(c), or (usually) intensionally by implicitly
specifying rel(c) through a predicate or arithmetic function. Any two constraints ci and cj intersect iff the set var(ci)∩
var(cj ) of variables involved in both constraints is not empty. We denote by p the maximum number of variables
involved in two constraints that intersect on at least two variables. The maximum number of variables that any two
constraints intersect on is denoted by f .

A binary CSP can be represented by a graph (called constraint graph) where nodes correspond to variables and
edges correspond to constraints. A non-binary CSP can be represented by a constraint hypergraph where the con-
straints correspond to hyperedges connecting two or more nodes.

The assignment of value a to variable xi is denoted by (xi, a). Any tuple τ = (a1, . . . , ak) can be viewed as a
set of value to variable assignments {(x1, a1), . . . , (xk, ak)}. In this way, an assignment of values to a set of variables
X′ ⊆ X is a tuple over X′. The ordered set of variables over which a tuple τ is defined is var(τ ). For any subset var′
of var(τ ), τ [var′] is the sub-tuple of τ that includes only assignments to the variables in var′. Any two tuples τ and
τ ′ over var(ci) = (xi1, . . . , xik ) can be lexicographically ordered. In this ordering, τ <l τ ′ iff there a exists a subse-
quence (xi1, . . . , xij ) of var(ci) such that τ [xi1, . . . , xij ] = τ ′[xi1, . . . , xij ] and τ [xij+1] <l τ ′[xij+1]. An assignment τ

is consistent iff for all constraints ci , where var(ci) ⊆ var(τ ), τ [var(ci)] ∈ rel(ci). A solution to a CSP is a consistent
assignment to all variables.

2.2. Local consistencies

The concept of local consistency is central to constraint programming. Local consistencies are used prior to and
during search to filter domains and discover inconsistencies early. The most widely studied local consistency is of
course (G)AC. In the rest of the paper we usually write AC when it involves binary constraints and GAC otherwise.
A CSP is Generalized Arc Consistent (GAC) iff for all xi ∈ X, D(xi) is non-empty and for all a ∈ D(xi), a is GAC-
supported in each constraint cj , s.t. xi ∈ var(cj ). A value a ∈ D(xi) is GAC-supported in a constraint cj iff there
exists τ ∈ rel(cj ) such that τ [xi] = a and τ is valid. In this case, we say that τ is a GAC-support of a in cj .

2.2.1. Local consistencies for binary constraints
Apart from AC, numerous other local consistencies have been proposed for binary CSPs. A generic concept that

captures many of them is (i, j)-consistency [12]. A binary CSP is (i, j)-consistent iff it has non-empty domains
and any consistent assignment of i variables can be extended to a consistent assignment involving j additional
variables. A problem is strong (i, j)-consistent iff it is (k, j) consistent for all k � i. Following the definition of
(i, j)-consistency, a problem is (strong) path consistent (PC) iff it is (strong) (2,1)-consistent. A problem is (strong)
m-consistent iff it is (strong) (m − 1,1)-consistent.

Local consistencies that only prune values from domains and leave the structure of the constraint graph/hypergraph
unchanged are called domain filtering consistencies [10]. We now recall the most important domain filtering consis-
tencies for binary CSPs proposed in the literature. They were usually defined on normalized binary CSPs, that is,
CSPs where any pair of variables is linked by at most one constraint [1,4]. We present their generalizations where
several constraints are allowed on the same pair of variables.
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A binary CSP is Path Inverse Consistent (PIC) [13] iff it has non-empty domains and it is (1, 2)-consistent i.e., for
all xi ∈ X, for all a ∈ D(xi), for all xj , xl ∈ X, s.t. xi �= xj �= xl �= xi , there exists b ∈ D(xj ), there exists d ∈ D(xl),
s.t. the assignments (xi, a), (xj , b) and (xl, d) satisfy the constraints between the three variables. In general, a problem
is inverse m-consistent iff it is (1,m) consistent.

A binary CSP is Restricted Path Consistent (RPC) [3] iff it is (1,1)-consistent and for all xi ∈ X, for all a ∈ D(xi),
for all xj ∈ X s.t. there is a unique value b in D(xj ) with ((xi, a), (xj , b)) consistent, for all xl ∈ X, there exists
d ∈ D(xl) s.t. the 3-tuple ((xi, a), (xj , b), (xl, d)) is consistent. Informally, a problem is RPC iff it is (1,1)-consistent
and for all values a that have a single consistent extension b to some variable, this pair of values is path consistent.

A binary CSP is max Restricted Path Consistent (maxRPC) [9] iff it is (1,1)-consistent and for all xi ∈ X, for all
a ∈ D(xi), for all xj ∈ X s.t. there exists c ∈ C with var(c) = (xi, xj ), there exists b in D(xj ), s.t. for all xl ∈ X,
there exists d ∈ D(xl) s.t. the 3-tuple ((xi, a), (xj , b), (xl, d)) is consistent. Informally, a problem is maxRPC iff it
is (1,1)-consistent and for each value (xi, a) and variable xj linked to xi by some constraint, there is a consistent
extension b of a on xj and this pair of values is path consistent.

A binary CSP is Singleton Arc Consistent (SAC) [10] iff it has non-empty domains and for any assignment (xi, a)

of a variable xi ∈ X, the resulting subproblem, denoted by P(xi ,a), can be made AC. If P(xi ,a) cannot be made AC,
SAC removes a from D(xi).

Finally a CSP is Neighborhood Inverse Consistent (NIC) iff any consistent assignment (xi, a) of a variable xi ∈ X

can be extended to a consistent assignment of all the variables in xi ’s neighborhood [13]. The neighborhood of a
variable consists of all variables that are constrained with it.

2.2.2. Local consistencies for non-binary constraints
A number of consistencies that are stronger than GAC have been developed for non-binary problems, including

relational consistency [22], pairwise consistency [15], and hyper-m-consistency [17]. However, these are not domain
filtering as they may alter some constraints’ relations or add new constraints to the problem.

To define local consistency properties on non-binary constraints in an uniform manner, Dechter and van Beek
introduced relational consistency [11]. This unifies together operations like resolution in theorem proving, joins in
relational databases, and variable elimination when solving linear inequalities. By abstracting out the constraint ar-
ity, relational consistencies offer an elegant characterization of the level of local consistency needed to ensure global
consistency given constraints of a given tightness, and of that guaranteed to hold given constraints of a certain loose-
ness [11].

A problem is relationally arc consistent (rel AC) iff any consistent assignment for all but one of the variables in
a constraint can be extended to the final variable so as to satisfy the constraint [22]. A problem is relationally path-
consistent (rel PC) iff any consistent assignment for all but one of the variables in a pair of constraints can be extended
to the final variable so as to satisfy both constraints.

Relational consistency can be generalized to subsets of constraints of arbitrary size. A problem is relationally
m-consistent iff any consistent assignment for all but one of the variables in a set of m distinct constraints can be
extended to the final variable so as to satisfy all m constraints. A problem is relationally (i,m)-consistent iff any
consistent assignment for i of the variables in a set of m constraints can be extended to all the variables in the set.
A problem is strongly relationally (i,m)-consistent iff is relationally (j,m)-consistent for every j � i.

We can construct singleton versions of all the consistencies for non-binary constraints in a straightforward man-
ner [10]. For example, a problem is singleton generalized arc consistent (SGAC) iff it has non-empty domains and
for any assignment of a variable, the resulting subproblem can be made GAC.

Other consistencies for non-binary constraints include pairwise consistency and hyper-m-consistency. A problem is
pairwise consistent (PWC) iff it has non-empty relations and any consistent tuple of a constraint c can be consistently
extended to any other constraint that intersects with c [15]. As shown in [15], applying PWC to a non-binary CSP is
equivalent to applying AC to the dual encoding of the problem. Since PWC does not prune values from domains but
instead deletes tuples from constraint relations, domains can be filtered if GAC is applied as a second step [15]. In
this way, values that have lost all their GAC-supports in a constraint will be deleted. In the rest of this paper the local
consistency achieved by this two-step process is simply called PWC + GAC.

PWC has been generalized to k-wise consistency [14,16] and hyper-m-consistency [17]. A problem is k-wise con-
sistent iff any consistent tuple for a constraint can be consistently extended to any k − 1 other constraints. A problem
is hyper-m-consistent iff any consistent combination of tuples for m − 1 constraints can be consistently extended to
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any mth constraint. As noted in [17], hyper-m-consistency on a non-binary problem is equivalent to m-consistency on
the dual encoding of the problem.

To compare the pruning power of the various consistencies, we follow [10] and call a consistency property A

stronger than B iff in any problem in which A holds then B holds, and strictly stronger (written A → B) iff it is
stronger and there is at least one problem in which B holds but A does not. We call a local consistency property A

incomparable with B (written A ⊗ B) iff A is not stronger than B nor vice versa. Finally, we call a local consistency
property A equivalent to B (written A ↔ B) iff A is stronger than B and vice versa.

From [10] we know that RPC is strictly stronger than AC. Also, in problems with more than two variables maxRPC
is strictly stronger than PIC which is strictly stronger than RPC.

3. Domain filtering consistencies for non-binary constraints

Many strong local consistency techniques have prohibitive space and time complexities. One way around this
problem is to use domain filtering consistencies since they require limited space as they only prune domains. We
will define three domain filtering consistencies for non-binary constraints inspired by the definitions of RPC, PIC and
maxRPC for binary constraints. RPC, PIC and maxRPC specify that every value in the domain of a variable must
allow a consistent extension on every second variable, and they also specify conditions on how this consistent pair
of values can be extended to a third variable. Our generalizations to the non-binary case specify that every value in
the domain of a variable must allow a GAC-support on every constraint, and they also specify conditions on how this
GAC-support can be extended to another constraint. For example, when enforcing PIC we remove values that cannot
be consistently extended to any set of two other variables. When enforcing rPIC (the generalization of PIC) we will
remove values that cannot be extended to satisfy any set of two constraints.

Relational path inverse consistency

By analogy to the definition of PIC, and inverse m-consistency, relational (1,2)-consistency is called relational
path inverse consistency. We now give a formal definition.

Definition 1. A non-binary CSP is relational Path Inverse Consistent (rPIC) iff ∀xi ∈ X and ∀a ∈ D(xi), ∀cj ∈ C,
where xi ∈ var(cj ), and ∀cl ∈ C, s.t. var(cj ) ∩ var(cl) �= ∅, ∃τ ∈ rel(cj ) such that τ [xi] = a, τ is valid, and ∃τ ′ ∈
rel(cl) such that τ ′ is valid and τ [var(cj ) ∩ var(cl)] = τ ′[var(cj ) ∩ var(cl)].

If rPIC is applied it will enforce GAC. This is because in the above definition constraints cj and cl are not necessar-
ily different. In addition, rPIC will remove any value a ∈ D(xi) such that for some constraint cj where xi participates,
no GAC-support of a can be extended to a valid tuple in some other constraint that intersects with cj .

Restricted pairwise consistency

Definition 2. A non-binary CSP is Restricted Pairwise Consistent (RPWC) iff ∀xi ∈ X, all values in D(xi) are GAC
and, ∀a ∈ D(xi), ∀cj ∈ C, s.t. there exists a unique valid τ ∈ rel(cj ) with τ [xi] = a, ∀cl ∈ C (cl �= cj ), s.t. var(cj ) ∩
var(cl) �= ∅,∃τ ′ ∈ rel(cl), s.t. τ [var(cj ) ∩ var(cl)] = τ ′[var(cj ) ∩ var(cl)] and τ ′ is valid.

As shown by the definition, RPWC is inspired by the variable-based consistency RPC. If RPWC is applied it will
enforce GAC. In addition it will remove any value a ∈ D(xi) such that for some constraint cj where xi participates,
a has a single GAC-support in rel(cj ) and this tuple cannot be extended to a valid tuple in some other constraint that
intersects with cj .

Max restricted pairwise consistency

Definition 3. A non-binary CSP is max Restricted Pairwise Consistent (maxRPWC) iff ∀xi ∈ X and ∀a ∈ D(xi),
∀cj ∈ C, where xi ∈ var(cj ), ∃τ ∈ rel(cj ) such that τ [xi] = a, τ is valid, and ∀cl ∈ C (cl �= cj ), s.t. var(cj ) ∩
var(cl) �= ∅,∃τ ′ ∈ rel(cl), s.t. τ [var(cj ) ∩ var(cl)] = τ ′[var(cj ) ∩ var(cl)] and τ ′ is valid. In this case we say that τ ′
is a PW-support of τ .
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As shown by the definition, maxRPWC is inspired by the variable-based consistency maxRPC. If maxRPWC is
applied it will enforce GAC. In addition it will remove any value a ∈ D(xi) such that for some constraint cj where xi

participates, no GAC-support of a can be extended to a valid tuple in every constraint that intersects with cj .

4. Theoretical results

We first compare the pruning power of RPWC, rPIC maxRPWC and GAC on general non-binary problems and
we position the consistencies with respect to PWC+GAC and SGAC. We also consider the special case where all
constraints intersect on at most one variable. We then consider the pruning power of the consistencies in problems
consisting of binary constraints only. Finally, we study RPWC, rPIC and maxRPWC with respect to consistencies
enforced in two well-known binary encodings of non-binary problems.

4.1. Non-binary constraints

Theorem 1.

PWC + GAC → max RPWC → rPIC → RPWC → GAC
⊗ ⊗ ⊗ ↑

SGAC SGAC SGAC SGAC

Proof. By definition, PWC + GAC is stronger than maxRPWC, maxRPWC is stronger than rPIC, rPIC is stronger
than RPWC, and RPWC is stronger than GAC.

To show PWC + GAC → maxRPWC, consider the problem depicted in Fig. 1a with five 0–1 variables {x1, . . . , x5}
and one variable (x6) with domain {0}. There are three constraints, and their allowed tuples are shown in Fig. 1a. Value
0 of x1 has tuple (0,0,0) as GAC-support in c1. This tuple can be extended to tuple (0,0,0,0) in c2, and therefore
(x1,0) is maxRPWC (as are all other values). However, tuple (0,0,0,0) of c2 cannot be consistently extended to c3,
and therefore it is not pairwise consistent, which means that PWC will delete it. As a result, tuple (0,0,0) in c1 will
be deleted and a further application of GAC will remove value 0 from D(x1).

To show maxRPWC → rPIC, consider the problem depicted in Fig. 1b with three 0–1 variables {x1, x2, x3} and
two variables (x4 and x5) with domain {0}. There are three constraints, and their allowed tuples are shown in Fig. 1b.
Value 0 of x1 is rPIC as its GAC-support (0,0,0) in c1 can be extended to tuple (0,0,0) in c2 and its GAC-support
(0,1,1) in c1 can be extended to tuple (1,1,0) in c3. However, this value is not maxRPWC as it does not have a
GAC-support in c1 that can be extended to both c2 and c3.

To show rPIC → RPWC, consider the problem on variables x1 to x3 with domain {0,1,2}, x4 with domain {0,1}
and two constraints c1 = alldiff (x1, x2, x3) and c2 = alldiff (x2, x3, x4). No value admits a single GAC-support on any
of the two constraints. So, the problem is RPWC. However, (x1,2) is not rPIC because none of its GAC-supports on
c1 extends consistently to c2.

To show RPWC → GAC, consider the problem with constraints alldiff (x1, x2, x3) and x1 = x2. If the domains are
{0,1,2} then the problem is GAC but it is not RPWC.

Fig. 1. a) PWC + GAC vs. maxRPWC, b) maxRPWC vs. rPIC.
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We show SGAC → RPWC. To show that SGAC is stronger than RPWC consider a problem with a value a for
some xi which is not RPWC. Then, there exists a constraint cj such that the only GAC-support τ of (xi, a) cannot be
extended to some constraint ck . Thus, when xi is assigned a in the problem, GAC will assign all values in τ because
it is the only GAC-support of (xi, a) on cj . So, GAC on ck will wipe out a domain and the problem is not SGAC.
To show strictness, consider the problem P with variables x1, x2, x3 taking values in {0,1} and constraints x1 �= x2,
x2 �= x3, x3 �= x1. This problem is RPWC because any support for any value can be extended to any second constraint.
However, it is not SGAC because GAC fails on P(x1,0).

We show that SGAC is incomparable with PWC + GAC, maxRPWC, and rPIC. Consider the problem P ′ on
variables x1 to x4 with domain {0,1} and the constraints x1 �= x2, x2 �= x3, x3 �= x4, x4 = x1. It is PWC + GAC, and
so it is maxRPWC and rPIC. But it is not SGAC, which in this case is equivalent to SAC (see [10] Fig. 3e). Consider
the problem P ′′ on variables x1 to x3 with domain {0,1} and the constraints c1(x1, x2, x3) = {000,011,100,111} and
c2(x1, x2, x3) = {001,010,100,111}. (x1,0) is SGAC because P ′′

(x1,0) is GAC. All other values are SGAC because
they belong to a solution of P ′′. But none of the GAC-supports of (x1,0) on c1 can satisfy c2. Thus, P ′′ is not rPIC,
and so not maxRPWC and not PWC + GAC. �
Constraints intersecting on at most one variable

Not surprisingly, when all constraints intersect on at most one variable, maxRPWC, rPIC, and RPWC collapse
down to GAC.

Theorem 2. On constraints that intersect on at most one variable: max RPWC ↔ rPIC ↔ RPWC ↔ GAC.

Proof. Suppose that the constraints intersect on at most one variable and are GAC. Consider an assignment xi = a

and a constraint cj involving xi . As cj is GAC, we can find a satisfying tuple τ including (xi, a). Consider any
constraint ck intersecting with cj and the value τ [xl] of the intersection variable xl . As ck is GAC, we can extend
τ [xl] to satisfy ck . τ can be extended similarly for any constraint intersecting with cj . The problem is thus maxRPWC
(and hence rPIC and RPWC). �
4.2. Binary constraints

Due to Theorem 2, on a normalized binary CSP, where constraints on the same pair of variables are combined
into a single constraint, maxRPWC, rPIC, and RPWC are equivalent to AC. Therefore, these consistencies are strictly
weaker than the corresponding variable based consistencies maxRPC, PIC, and RPC. We now analyze the pruning
power of maxRPWC, rPIC, and RPWC on non-normalized binary problems. We might expect maxRPWC, rPIC, and
rPWC to reduce to the corresponding variable based definitions. However, this is not the case.

Theorem 3. On non-normalized binary constraints:1

max RPC → PIC → RPC → (1,1)-cons. ↔ max RPWC → rPIC → RPWC → rel AC
⊗ ⊗ ↑

SAC SAC SAC

Proof. Relations between maxRPC, PIC, RPC and (1,1)-consistency come from [10]. By definition, maxRPWC is
stronger than rPIC, rPIC is stronger than RPWC, and RPWC is stronger than AC.

To show maxRPWC → rPIC, consider the problem with variables x1, x2 taking values in {0,1,2} and constraints
c1 ≡ x1 + x2 �= 0, c2 ≡ x1 + x2 �= 1, c3 ≡ x1 + x2 �= 2. Value 0 of x1 is rPIC because for each pair of constraints it has
a GAC-support satisfying both of them. All other values are rPIC by similar reasoning. However, value 0 of x1 is not
maxRPWC as it does not have any GAC-support in c1 that satisfies both c2 and c3.

1 The relation between SAC and maxRPC and PIC is different from that in [10] where CSPs are normalized.
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To show rPIC → RPWC, consider the problem with variables x1, x2 taking values in {0,1,2,3} and constraints
c1(x1, x2) = {00,01,10,11,22,33}, c2(x1, x2) = {02,03,10,11,22,33}. Value 0 of x1 is RPWC because for each
constraint it has more than one GAC-support. All other values are RPWC as they belong to a solution. However,
value 0 of x1 is not rPIC as it does not have any GAC-support in c1 that satisfies c2.

To show RPWC → rel AC, we first observe that rel AC is equivalent to AC on binary constraints. Thus, RPWC
is stronger than rel AC. Then, consider the problem with variables x1, x2 taking values in {0,1} and constraints
c1 ≡ x1 + x2 �= 0, c2 ≡ x1 + x2 �= 1. The problem is rel AC because on each constraint each value can be extended to
a GAC-support. However, value 0 of x1 is not RPWC as its unique GAC-support in c1 does not satisfy c2.

We show that maxRPWC is stronger than (1,1)-consistency. Consider a binary problem which is not (1,1)-
consistent. There exists a value a for a variable xi that cannot be extended to some variable xj . Thus, there exists
a set Cij of constraints on xi, xj such that any value b for xj is such that (a, b) violates one of the constraints in Cij .
Take any constraint c from Cij . For every GAC-support τ of a on c, there exists a constraint c′ in Cij which rejects τ .
As a result, a for xi is not maxRPWC.

We show that (1,1)-consistency is stronger than maxRPWC. Consider a binary CSP P . If P is not AC, it is
trivially not (1,1)-consistent. So, suppose P is AC but value a for variable xi is not maxRPWC. This means that there
exists a constraint c(xi, xj ) such that for any GAC-support τ of (xi, a) on c, there exists a second constraint c′ on
which τ cannot be extended. If c′ intersects c on a single variable, AC guarantees that τ can be extended to c′. So all
these constraints c′ rejecting the GAC-supports of a on c involve the same variables as c. Therefore, value a is not
(1,1)-consistent.

To show SAC is incomparable with maxRPC and PIC, we must find a problem which is SAC but not PIC (and
thus not maxRPC), and a problem which is maxRPC (and thus PIC) but not SAC. Consider the problem P on vari-
ables x1 with domain {0,1} and variables x2, x3 with domain {0,1,2}, and the constraints c1(x1, x2) = c2(x1, x3) =
{00,01,02,11,12}, c3(x2, x3) = {00,01,02,10,11,20,22} and c4(x2, x3) = {00,01,02,10,12,20,21}. (x1,1) is
SAC because P(x1,1) is AC. All other values are SAC because they belong to a solution of P . But (x1,1) is not
PIC (and not maxRPC) because it cannot be extended to x2 and x3. On the other hand, we know from [10] that there
exist networks which are PIC and maxRPC but not SAC.

To show SAC → RPC, we first show that SAC is stronger than RPC. Consider a problem P with a value a for
some variable xi which is not RPC. Then, there is a variable xj where a value, say b, is the only consistent extension
of a on xj and there exists xk such that the pair (a, b) cannot be extended to xk . If we assign xi with a (in P(xi ,a)),
AC will leave only b in D(xj ). If ∃c ∈ D(xk) which is AC in P(xi ,a), this means that it is consistent with both a on xi

and b on xj , which contradicts that RPC failed to extend (a, b) to xk . As for strictness, we know from [10] that there
exist binary networks which are RPC and not SAC. �

These results can easily be generalized to show that, on binary constraints, inverse m-consistency is strictly stronger
than relational inverse m-consistency for all m > 1.

4.3. Binary encodings of non-binary constraints

One way to deal with non-binary constraints is to encode them into binary ones, and apply binary techniques (as
for example in [2]). We now position RPWC, rPIC and maxRPWC with respect to other consistencies enforced in the
hidden variable and dual encodings of a non-binary problem. Recall that in the hidden variable and dual encodings
of a non-binary problem each constraint c is turned into a hidden variable Hc or a dual variable Vc having as domain
the valid tuples allowed by the constraint. The hidden variable encoding is defined on the original variables plus the
hidden variables. Its constraints ensure that a hidden variable Hc and an original variable xk involved in c agree on the
value taken by xk . The dual encoding is defined on the dual variables only. Its constraints ensure that two variables
Vci

and Vcj
take values that agree on the original variables common to ci and cj . Local consistency A is denoted by

A when used on the original representation, Ahidden on the hidden variable encoding, and Adual on the dual encoding.
Each result has the precondition that the non-binary constraints are GAC so that the hidden variable or dual encoding
is node consistent (and not trivially unsatisfiable).
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Theorem 4. On (non-binary) constraints which are GAC:

SAChidden SAChidden SAChidden
⊗ ⊗ ↓

SACdual → max RPCdual → PICdual → RPCdual
↓ ⊗ ↓

SAChidden → SGAC SGAC ACdual
↓ ⊗ ↓

GAC ← RPWC ← rPIC ← max RPWC
�

max RPChidden ↔PICYhidden ↔ RPChidden ↔ AChidden

Proof. We show SAChidden is incomparable with PICdual and with max RPCdual. Consider problem P1 on variables
x1 to x4 with domain {0,1} and the constraints x1 �= x2, x2 �= x3, x3 �= x4, x4 = x1. Its dual encoding is maxRPC
(and so PIC) because it is AC and there is no triple of dual variables pairwise connected by constraints. However the
hidden encoding of P1 is not SAC because whatever the hidden variable we assign, AC leads to a wipe out. Consider
problem P2 on variables x1 to x6 with domain {0,1} and the constraints c1(x1, x2, x3), c2(x2, x5, x6), c3(x3, x5, x6).
c1 = {001,010,111}, c2 = {000,011,101,110} and c3 = {001,010,100,111}. t = 111 for c1 is the only tuple of a
constraint in P2 that does not belong to any solution. If we assign Hc1 with t in the hidden encoding of P2, no wipe
out is detected because original variables x5 and x6 keep their two values. However, the dual encoding of P2 is not
PIC (and so not maxRPC) because t for Vc1 cannot be extended to Vc2 and Vc3 simultaneously.

We show SACdual → SAChidden → SGAC. By definition SACdual is stronger than SAChidden. As for strictness, we
already presented problem P2 which is SAChidden but is not PICdual and so not SACdual. The relation SAChidden →
SGAC has been proved in [20].

We show SAChidden → RPCdual. To show SAChidden is stronger than RPCdual, consider a problem such that the
dual encoding is not AC. Then, there exists v in D(Vci

) for some ci , there exists Vcj
for some cj , such that there is no

w ∈ D(Vci
) compatible with v. Thus, when assigning Hci

with value v, AC will fail on Hcj
in the hidden encoding.

Hence, if SAChidden is not stronger than RPCdual there necessarily exists a network such that its hidden encoding is
SAC and its dual encoding is AC but not RPC. Consider such a problem. In the dual encoding, there exists v in D(Vci

)

for some ci , and w in D(Vcj
) for some cj such that w is the only value consistent with v in D(Vcj

) and such that
there exists Vck

with no value consistent with both v and w. In the hidden variable encoding, when assigning v to Hci
,

AC forces Hcj
to take value w because this is the only value consistent with v and every original variable xp in the

scope of ci has been forced to take as value the projection of v on xp . Thus, after AC, D(Hck
) contains only values

that are consistent with both v and w. But we know that no such value exists because the dual encoding is not RPC.
So, AC wipes out and v is not SAC in the hidden variable encoding. As for strictness, we already showed that there
exists problem P1 such that the dual encoding is PIC (and so RPC) and the hidden variable encoding is not SAC.

We show ACdual → max RPWC. ACdual is known to be stronger than PWC + GAC [15]. Now, we have shown in
Theorem 1 that PWC + GAC → maxRPWC.

It is known that GAC ↔ AChidden and, due to the topology of the hidden variable encoding, NIChidden ↔
AChidden [21]. Since NIC is strictly stronger than maxRPC, PIC, RPC, and AC [10], it immediately follows that
max RPChidden ↔ PIChidden ↔ RPChidden ↔ AChidden.

We show that SACdual → max RPCdual → PICdual → RPCdual → ACdual. By definition, SACdual is stronger than
max RPCdual, which is stronger than PICdual, which is stronger than RPCdual, which is stronger than ACdual. To show
strictness, consider problem P1 above. It is max RPCdual but not SAChidden and so not SACdual. Consider problem
P3 on variables x1 to x5 with domain {0,1} and the constraints c1(x1, x2, x3), c2(x2, x4), c3(x3, x5), c4(x1, x4, x5).
c1 = {000,110,111}, c2 = c3 = {00,11}, and c4 = {000,100,111}. P3 is PICdual, but value 110 for Vc1 is not
max RPCdual. Consider problem P4 on variables x1 to x5 with domain {0,1} and the constraints c1(x1, x2, x3),
c2(x2, x4, x5), c3(x3, x4, x5). c1 = {000,011,101}, c2 = c3 = {000,001,110,111}. P4 is RPCdual, but value 101 for
Vc1 is not PICdual. Consider problem P5 on variables x1 to x4 with domain {0,1} and the constraints c1(x1, x2, x3),
c2(x2, x4), c3(x3, x4). c1 = {000,011,101}, c2 = c3 = {00,11}. P5 is ACdual, but value 101 for Vc1 is not RPCdual.

We still need to position SGAC. The problem P1 above is not SGAC but its dual encoding is maxRPC. The problem
P ′′ in Theorem 1 is SGAC but not rPIC. Therefore, consistencies max RPCdual, PICdual, RPCdual, ACdual, maxRPWC
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and rPIC are incomparable to SGAC. Finally, we know from Theorem 1 that SGAC → RPWC. This completes the
picture. �
5. Algorithms

Verfaillie, Martinez, and Bessiere, proposed a generic AC-7 based algorithm for domain filtering local consisten-
cies [23]. Although the algorithm was primarily intended for binary constraints, it can be easily adapted to enforce
rPIC. However, adapting it to enforce RPWC and maxRPWC is much more involved. In what follows we propose a
number of algorithms that are much simpler to implement compared to the generic algorithm of [23].

First we describe the schema of a simple generic AC-3 based algorithm for non-binary domain filtering consisten-
cies, and show how this algorithm can be instantiated to apply RPWC, rPIC, and maxRPWC. Then we describe two
alternative algorithms for maxRPWC, which is stronger and, as experimental results show, more cost-effective than
RPWC and rPIC. The first of these algorithms has better time complexity than the generic algorithm but worse space
complexity, while the second achieves a balance between the other two in terms of time and space complexity. Both
these algorithms can be easily modified to apply RPWC and rPIC.

5.1. A generic algorithm for domain filtering consistencies

Fig. 2 describes the framework of a generic algorithm for domain filtering consistencies. This is based on coarse-
grained GAC algorithms like GAC-3 [18,19] and GAC2001/3.1 [8].

Algorithm DFcons takes as input a (non-binary) CSP P , a specified domain filtering local consistency DFC and a
parameter current-var, and enforces DFC on P . The parameter current-var is set to −1 if the algorithm is used stand-
alone (e.g. for preprocessing a problem with a given consistency). Otherwise if the algorithm is applied during search
(e.g. to maintain a given consistency), current-var is the currently assigned variable. DFcons uses a list Q (that can
be implemented as a stack or as a queue) of constraints to propagate value deletions, and works as follows. If used
stand-alone, the algorithm initially puts all constraints in Q (line 1). Else if the algorithm is applied during search, it
calls procedure Enqueue to initialize Q with the appropriate constraints (line 2). These include each constraint cm

involving current-var and each constraint intersecting with cm on more than one variable. We now explain why these
constraints are added to Q for the case where DFC is rPIC or maxRPWC. A similar explanation holds for RPWC.

A constraint cm that involves current-var needs to be added to Q as the assignment of current-var effectively
means that all but its given value have been removed from its domain. As a result, some variables involved in cm may
have lost their GAC-support. A constraint cl that intersects with cm (on more than one variable) needs to be added to
Q because the following situation may occur. For some value a ∈ xi , where xi ∈ var(cl), there may now not exist any

function DFcons(P , DFC, current-var)
1: if current-var = −1, put all constraints in Q;
2: else Enqueue(current-var,−1);
3: while Q is not empty
4: pop constraint ci from Q;
5: for each unassigned variable xj where xj ∈ var(ci)

6: if Revise(xj , ci , DFC)> 0
7: if D(xj ) is empty return INCONSISTENCY;
8: Enqueue(xj , ci );
9: return CONSISTENCY;

procedure Enqueue(xj , ci )
1: for each cm such that xj ∈ var(cm)

2: put in Q each cl ( �= ci) such that |var(cl) ∩ var(cm)| > 1;
3: if cm �= ci put cm in Q;

Fig. 2. A generic algorithm for domain filtering consistencies.
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tuple τ ∈ rel(cl) that includes assignment (xi, a) and can be consistently extended to cm. This is because tuples that
previously were consistent extensions of τ may now have become invalid.

Then constraints are sequentially removed from Q (line 4) and the domains of the variables involved in these con-
straints are revised. For each such constraint ci and variable xj , the revision is performed using function Revise(xj ,
ci , DFC). The implementation of Revise depends on the local consistency DFC being applied. If after the revision
the domain of xj becomes empty then the algorithm detects the inconsistency and terminates (line 7). Otherwise, if
the domain of xj is pruned then constraints are added to Q for further propagation using procedure Enqueue(xj )
(line 8). In this procedure, each constraint cm involving xj (except ci ) and each constraint intersecting with cm on more
than one variable (and that is not already in Q) will be put in Q. If at some point Q becomes empty, the algorithm
terminates having successfully enforced DFC on P .

We now show how we can derive algorithms for maxRPWC, rPIC, and RPWC by instantiating function Revise
appropriately.

5.2. maxRPWC-1: An algorithm for maxRPWC

From the definition of maxRPWC we can immediately derive a simple algorithm by extending a GAC algorithm so
that whenever it finds a GAC-supporting tuple for a value in a constraint ci , it also checks if this tuple can be extended
to a valid tuple in all constraints intersecting with ci . Fig. 3 gives function Revise for maxRPWC-1, an algorithm
for maxRPWC derived from DFcons.

In function Revise of maxRPWC-1, for each value a in D(xj ), we first look for a tuple in rel(ci) that GAC-
supports it. As in GAC2001/3.1, for each constraint ci and each a ∈ D(xj ), where xj ∈ var(ci), we keep a pointer
lastGACxj ,a,ci

(initialized to the first tuple in rel(ci)). This is now the most recently discovered tuple in rel(ci) that
GAC-supports value a of variable xj and can be extended to a valid tuple in all constraints that intersect with ci . If
this tuple is valid then we know that a is GAC-supported. Otherwise, we look for a new GAC-support starting from
the tuple immediately after lastGACxj ,a,ci

in the lexicographic order (line 3). If lastGACxj ,a,ci
is valid or a new GAC-

support is found then the algorithm checks if the GAC-support (tuple τ ) can be extended to all intersecting constraints.
Note that this check must be performed in the case where lastGACxj ,a,ci

is valid, since this tuple may have lost its
PW-supports on some of ci ’s intersecting constraints.

To check if τ has PW-supports, maxRPWC-1 iterates over each constraint cm that intersects with ci on more than
one variable. Constraints intersecting on one variable are not considered because maxRPWC offers here no more
pruning than GAC. The algorithm checks if there is a tuple τ ′ ∈ rel(cm) such that τ ′ is a PW-support of τ (lines 5–6).
If such tuples are found for all intersecting constraints then lastGACxj ,a,ci

is updated (line 8). If no PW-support is
found on some intersecting constraint, then the iteration stops (line 7) and the algorithm looks for a new GAC-support.
If no GAC-support that can be extended to all intersecting constraints is found, a is removed from D(xj ) (line 9). In
this case, each constraint cm involving D(xj ) and each constraint intersecting with cm (that is not already in Q) will
be put in Q using procedure Enqueue. The algorithm terminates if a domain is wiped out, in which case the problem
cannot be made maxRPWC, or if Q becomes empty, in which case the problem is maxRPWC.

function Revise(xj , ci , maxRPWC)
1: for each value a ∈ D(xj )

2: PW ← FALSE;
3: for each valid τ (∈ rel(ci)) �l lastGACxj ,a,ci , such that τ [xj ] = a

4: PW ← TRUE;
5: for each cm �= ci such that |var(ci) ∩ var(cm)| > 1
6: if � valid τ ′(∈ rel(cm)) such that

τ [var(ci) ∩ var(cm)] = τ ′[var(ci) ∩ var(cm)]
7: PW ← FALSE; break;
8: if PW=TRUE lastGACxj ,a,ci ← τ ; break;
9: if PW=FALSE remove a from D(xj );
10: return number of deleted values;

Fig. 3. Function Revise of algorithm maxRPWC-1.
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Finally, one extra feature of the algorithm that is not shown in Figs. 2 and 3, to avoid complicating the pseudocode,
is the following. During each revision of a constraint ci , once we have established that a tuple τ is a GAC-support
for a value a ∈ D(xj ) that has PW-supports in all intersecting constraints, we do not check if the values in τ of the
other variables involved in ci are maxRPWC, since it is certain that they are. In this way we take advantage of the
multi-directionality of supports to avoid some redundant constraint checks.

Proposition 1. The worst-case time complexity of algorithm maxRPWC-1 is O(e2k2dp), where p is the maximum
number of variables involved in two constraints that share at least two variables.

Proof. Let us denote by ki the number of variables involved in ci and by pim the total number of variables involved
in the two constraints ci and cm. The complexity is determined by the number of constraint checks performed in total,
in all calls to function Revise. In the inner loop of Revise (lines 5–6), maxRPWC-1 verifies if lastGACxj ,a,ci

has
PW-supports in the at most e − 1 constraints intersecting ci on at least two variables. For each such constraint cm

the algorithm checks at most dpim−ki tuples, i.e. those that take the same values in variables var(ci) ∩ var(cm) as in
lastGACxj ,a,ci

. The cost of each such check is O(k) if we assume that the cost of a constraint check is linear to the
arity of the constraint. Therefore, the cost of lines 5–6 is bounded by Kjia = ∑

cm∈C\{ci } kdpim−ki . Given a variable
xj and a constraint ci , these two lines are performed for each value a each time function Revise(xj , ci , maxRPWC)
is called or each time a new GAC-support lastGACxj ,a,ci

is found. Revise(xj , ci , maxRPWC) can be called at most
nd times. This is because every one of the n variables may either belong to var(ci) or participate in a constraint that
intersects with ci . In this case every deletion of a value from a variable will force Enqueue to add ci to Q and
subsequently cause a call to Revise. lastGACxj ,a,ci

cannot change more than dki−1 times because maxRPWC-1
only checks the tuples that contain the assignment (xj , a) and it only checks tuples that have not been checked
before. So, lines 5–6 are performed at most Ljia = nd + dki−1 times for each variable xj , value a, and constraint ci .
Ljia is also the number of times a tuple can be checked as GAC-support for (xj , a) on ci at a cost O(k) (line 3).
Thus, for a variable xj , value a, and constraint ci , the complexity is bounded above by Mjia = Ljia · (k + Kjia) =
(nd + dki−1) · (k + ∑

cm∈C\{ci } kdpim−ki ). Assuming that dk−1 > nd , this gives a complexity in O(ekdp−1). Since
there are at most d values in D(xj ), k variables in var(ci), and e constraints in C, the total complexity is bounded
above by ekd · ekdp−1. This gives a time complexity in O(e2k2dp), assuming that dk−1 > nd . �

The space complexity of maxRPWC-1 is determined by the space required for the lastGAC data structure. If the
constraints are given in extension, in which case we can use pointers of constant size, then the size of lastGAC is
O(ekd). If the constraints are intensionally specified then the size of lastGAC is O(ek2d), since in this case each
pointer is of size k.

5.3. rPIC-1: An algorithm for rPIC

Fig. 4 gives function Revise for rPIC-1, an algorithm for rPIC derived from DFcons. The algorithm is similar
to maxRPWC-1 and works as follows.

In each call to Revise(xj , ci , rPIC), for each value a of D(xj ) we iterate over each constraint cm that intersects
with ci

2 (line 2) to look for a tuple in rel(ci) that GAC-supports a and can be extended to a valid tuple in rel(cm). To
do this we store a pointer lastGACxj ,a,ci ,cm for each constraint cm that intersects with ci . This is now the most recently
discovered tuple in rel(ci) that GAC-supports value a of variable xj and can be extended to a valid tuple in cm. If
this tuple is valid then we know that a is GAC-supported. Otherwise, we look for a new GAC-support starting from
the tuple immediately “after” lastGACxj ,a,ci ,cm (line 4). If lastGACxj ,a,ci ,cm is valid or a new GAC-support is found
then the algorithm checks if the GAC-support (tuple τ ) can be extended to cm. To do this, rPIC-1 checks if there is a
tuple τ ′ ∈ rel(cm) such that τ ′ is a PW-support of τ (line 5). If such a tuple is found then lastGACxj ,a,ci ,cm is updated
(line 6). If no such tuple is found, the algorithm looks for a new GAC-support in ci . The process is repeated for all
constraints intersecting with ci . If no GAC-support that can be extended to some intersecting constraint is found, a

is removed from D(xj ) (line 8). In this case, each constraint cm involving D(xj ) and each constraint intersecting

2 As in maxRPWC-1, we only consider constraints intersecting on more than one variable with ci .
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function Revise(xj , ci , rPIC)
1: for each value a ∈ D(xj )

2: for each cm such that |var(ci) ∩ var(cm)| > 1
3: PW ← FALSE;
4: for each valid τ (∈ rel(ci )) �l lastGACxj ,a,ci ,cm , such that τ [xj ] = a

5: if ∃ valid τ ′(∈ rel(cm)) such that
τ [var(ci ) ∩ var(cm)] = τ ′[var(ci ) ∩ var(cm)]

6: lastGACxj ,a,ci ,cm ← τ ;
7: PW ← TRUE; break;
8: if PW=FALSE remove a from D(xj ); break;
9: return number of deleted values;

Fig. 4. Function Revise of algorithm rPIC-1.

with cm (that is not already in Q) will be put in Q using procedure Enqueue. The algorithm terminates if a domain
is wiped out, in which case the problem cannot be made rPIC, or if Q becomes empty, in which case the problem is
rPIC.

Proposition 2. The worst-case time complexity of algorithm rPIC-1 is O(e2k2dp).

Proof. As in maxRPWC-1, the complexity is determined by the number of constraint checks performed in total, in all
calls to function Revise. In the inner loop of Revise (line 5), rPIC-1 verifies if lastGACxj ,a,ci ,cm has PW-support
in cm. For such a constraint cm the algorithm checks at most dpim−ki tuples, i.e. those that take the same values in
variables var(ci) ∩ var(cm) as in lastGACxj ,a,ci ,cm . The cost of each such check is O(k). Therefore, the cost of lines
5–7 is bounded by Kjima = kdpim−ki . For a variable xj , a value a, and constraints ci , cm, these lines are performed
each time function Revise(xj , ci , rPIC) is called or each time lastGACxj ,a,ci ,cm is modified. As in maxRPWC-1,
Revise(xj , ci , rPIC) can be called at most nd times. lastGACxj ,a,ci ,cm cannot change more than dki−1 times because
rPIC-1 only checks the tuples that contain the assignment (xj , a) and it only checks tuples that have not been checked
before. So, lines 5–7 are performed at most Ljima = nd + dki−1 times for each variable xj , value a, constraint ci

that involves xj and any other constraint cm intersecting ci . Ljima is also the number of times a tuple can be checked
as GAC-support for (xj , a) on ci (with respect to cm) at a cost O(k) (line 4). Therefore, the cost is bounded by
Ljima · (k + Kjima). For all the constraints intersecting ci the cost is bounded by

∑
cm∈C Ljima · (k + Kjima) =

∑
cm∈C(nd + dki−1) · (k + kdpim−ki ). Assuming that dk−1 > nd , this gives a complexity in O(ekdp−1). Since there

are at most d values in D(xj ), k variables in var(ci), and e constraints in C that involve xj , the total complexity is
bounded above by ekd · ekdp−1. This gives a time complexity in O(e2k2dp), assuming that dk−1 > nd . �

The space complexity of rPIC-1, determined again by the space required for the lastGAC data structure, is O(e2kd)

for extensional constraints and O(e2k2d) for intensional ones.

5.4. RPWC-1: An algorithm for RPWC

Fig. 5 gives function Revise for RPWC-1, an algorithm for RPWC derived from DFcons. The main idea of
algorithm RPWC-1 is the following. In each call to Revise(xj , ci , RPWC) of RPWC-1, for each value a of D(xj ),
we look for two tuples in rel(ci) that GAC-support it. If we only find one GAC-support then we have to check if it can
be extended to all constraints intersecting with ci .

To implement the above idea, for each constraint ci and each a ∈ D(xj ), where xj ∈ var(ci), we keep two pointers
lastGAC1xj ,a,ci

(initialized to the first tuple in rel(ci)) and lastGAC2xj ,a,ci
(initialized to the second tuple in rel(ci)).

lastGAC1xj ,a,ci
will always represent the smallest GAC-support and lastGAC2xj ,a,ci

the second smallest. The value
NIL for lastGAC2xj ,a,ci

means that all possible extensions for (xj , a) on ci have been explored. If lastGAC2xj ,a,ci
is

not valid (and not NIL), we look for a new GAC-support starting immediately after lastGAC2xj ,a,ci
(lines 2–3). If we

find one, we update lastGAC2xj ,a,ci
, otherwise we set lastGAC2xj ,a,ci

to NIL (lines 4–5). We now check the validity of
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function Revise(xj , ci , RPWC)
1: for each value a ∈ D(xj )

2: if lastGAC2xj ,a,ci �= NIL and lastGAC2xj ,a,ci is not valid
3: if ∃ valid τ (∈ rel(ci )) >l lastGAC2xj ,a,ci such that τ [xj ] = a

4: lastGAC2xj ,a,ci ← τ ;
5: else lastGAC2xj ,a,ci ← NIL;
6: if lastGAC2xj ,a,ci �= NIL and lastGAC1xj ,a,ci is not valid
7: lastGAC1xj ,a,ci ← lastGAC2xj ,a,ci ;
8: if ∃ valid τ (∈ rel(ci )) >l lastGAC2xj ,a,ci such that τ [xj ] = a

9: lastGAC2xj ,a,ci ← τ ;
10: else lastGAC2xj ,a,ci ← NIL;
11: if lastGAC1xj ,a,ci is not valid PW ← FALSE;
12: else if lastGAC2xj ,a,ci = NIL
13: PW ← FindPWsupports(ci , lastGAC1xj ,a,ci );
14: else PW=TRUE;
15: if PW=FALSE remove a from D(xj );
16: return number of deleted values;

function FindPWsupports(ci , τ );
1: PW ← TRUE;
2: for each cm �= ci such that |var(ci ) ∩ var(cm)| > 1
3: if � valid τ ′(∈ rel(cm)) such that

τ [var(ci ) ∩ var(cm)] = τ ′[var(ci ) ∩ var(cm)]
4: PW ← FALSE; break;
5: return PW;

Fig. 5. Function Revise for algorithm RPWC-1.

lastGAC1xj ,a,ci
. If search is not exhausted and lastGAC1xj ,a,ci

is not valid (line 6), we assign lastGAC1xj ,a,ci
with the

tuple stored in lastGAC2xj ,a,ci
(necessarily valid), and we search for a new GAC-support greater than lastGAC2xj ,a,ci

(lines 7–8). If we find one, we update lastGAC2xj ,a,ci
, otherwise we set lastGAC2xj ,a,ci

to NIL (lines 9–10).
At this point, if lastGAC1xj ,a,ci

is not a valid GAC-support, (xj , a) has no GAC-support on ci and thus a must
be removed from D(xj ) (lines 11 and 15). Otherwise, if lastGAC2xj ,a,ci

is NIL (line 12), this means that (xj , a)

has a single GAC-support on ci and we must check if this only support (lastGAC1xj ,a,ci
) has PW-supports on all

intersecting constraints. (This is done by means of function FindPWsupports in line 13). If this is not the case
then a will be deleted from D(xj ) (line 15). Otherwise, if both pointers are valid, nothing is done (line 14).

In case of value deletion, each constraint cm involving D(xj ) and each constraint intersecting with cm (that are not
already in Q) will be put in Q using procedure Enqueue in the main algorithm (Fig. 2). The algorithm terminates if
a domain is wiped out, in which case the problem cannot be made RPWC, or if Q becomes empty, in which case the
problem is RPWC.

Proposition 3. The worst-case time complexity of algorithm RPWC-1 is O(ne2k2dk).

Proof. In each call to Revise(xj , ci , RPWC), for each a ∈ D(xj ), lines 2–10 look for a new GAC-support for a on
ci if one of lastGAC1xj ,a,ci

and lastGAC2xj ,a,ci
is non-valid. The search for new supports always starts from the tuple

after lastGAC2xj ,a,ci
, which is the greatest of the two. So, for each value a ∈ D(xj ), each tuple will be visited at most

once. Therefore, for a variable xj , a value a, and a constraint ci , the total cost of lines 2–10 of Revise on all its calls
is bounded above by Kjia = kdki−1, where dki−1 is the number of tuples in ci containing a for xj to be checked at
cost O(k). In each call to Revise, the cost of lines 11–15 is bounded above by the cost of FindPWsupportswhich
looks for a PW-support for lastGAC1xj ,a,ci

on the at most e − 1 constraints intersecting ci on at least two variables.
For each such constraint cm, we check at most dpim−ki tuples, with O(k) cost for each one. So, the cost of lines 11–15
is bounded above by Ljia = ∑

cm∈C\{ci } kdpim−ki . In the worst case, given xj , a, ci , lines 11–15 will be repeated in
each of the nd possible calls to Revise. This is because we may repeatedly discover that the single GAC-support is
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valid, and each time we have to search for PW-supports for it. Thus, for each value a of xj and each constraint ci , the
asymptotic cost of Revise is bounded above by Kjia + nd · Ljia = kdki−1 + nd

∑
cm∈C\{ci } kdpim−ki . This gives a

complexity in O(kdk−1 + nekdg+1) where g = maxci,cm∈C(pim − ki). Since there are at most d values in D(xj ), k

variables in var(ci), and e constraints in C, the worst-case time complexity of RPWC-1 is in O(ek2dk + ne2k2dg+2).
In the worst case, g can be equal to k − 2 because the algorithm only considers pairs of constraints sharing at least
two variables. Therefore, the time complexity of RPWC-1 is in O(ne2k2dk). �

Note that if the number of intersecting variables is large, in which case g is small, the worst-case time complexity
of RPWC-1 is O(ek2dk), the same as GAC2001/3.1. The space complexity of RPWC-1 is O(ekd) for extensional
constraints and O(ek2d) for intensional ones. This is determined by the space required for the GAC-supports.

5.5. maxRPWC-2: An improved algorithm for maxRPWC

Although the asymptotic time complexities of the above algorithms are lower than that of the generic algorithm
of [23], they can still be prohibitive in practice. We will now present maxRPWC-2, an alternative algorithm for
maxRPWC which offers a significant improvement in terms of time complexity, but with an increase in the space
complexity. Note that it is easy to design similar algorithms for RPWC and rPIC by appropriately modifying their
Revise function.

The major bottleneck for maxRPWC-1 is that each time a GAC-support τ for a value a ∈ D(xj ) is found in rel(ci),
it has to check if τ can be extended to all constraints that intersect with ci . This is done by iterating through all
constraints that intersect with ci . Assuming the intersection is on f variables, in each such iteration the algorithm may
check all the dk−f sub-tuples that include the assignment τ [var(ci) ∩ var(cm)]. This process is repeated each time
ci is revised. To overcome this problem, for each constraint ci , algorithm maxRPWC-2 keeps a set of df pointers
for every constraint cm intersecting with ci . Each such pointer lastPWci ,cm,s corresponds to the sub-tuple s among
the df sub-tuples for variables var(ci) ∩ var(cm). These pointers are initialized to the first combination of values for
variables var(cm)\ (var(ci)∩var(cm)). During the execution of the algorithm, each pointer points to the most recently
discovered valid tuple in rel(cm) that extends sub-tuple s.

Fig. 6 gives function Revise of maxRPWC-2. During each revision, for each value a of D(xj ) we first look for
a tuple in rel(ci) that GAC-supports it, in the same way as in maxRPWC-1 (line 3). If such a tuple τ is found then the
algorithm checks if τ has PW-supports in all constraints intersecting with ci . For each such constraint cm, maxRPWC-
2 first checks whether all possible extensions of s, where s is the sub-tuple τ [var(ci) ∩ var(cm)], have been searched

function Revise(xj , ci , maxRPWC)
1: for each value a ∈ D(xj )

2: PW ← FALSE;
3: for each valid τ (∈ rel(ci)) �l lastGACxj ,a,ci , such that τ [xj ] = a

4: PW ← TRUE;
5: for each cm �= ci such that |var(ci) ∩ var(cm)| > 1
6: s ← τ [var(ci) ∩ var(cm)];
7: if lastPWci ,cm,s �= NIL
8: if ∃ valid τ ′(∈ rel(cm)) �l lastPWci ,cm,s

and τ ′[var(ci) ∩ var(cm)] = s

9: lastPWci ,cm,s ← τ ′;
10: else
11: lastPWci ,cm,s ← NIL;
12: PW ← FALSE; break;
13: else PW ← FALSE; break;
14: if PW=TRUE, lastGACxj ,a,ci ← τ ; break;
15: if PW=FALSE, remove a from D(xj );
16: return number of deleted values;

Fig. 6. Function Revise of maxRPWC-2.
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Fig. 7. Applying maxRPWC-1 and maxRPWC-2 on a non-binary problem.

before (line 7). Such a situation, indicated by lastPWci ,cm,s pointing to a virtual tuple NIL, means that there is no PW-
support available for τ , and therefore we move on to look for another GAC-support (line 13). If lastPWci ,cm,s does
not point to NIL, the algorithm looks for a PW-support starting from lastPWci ,cm,s in the lexicographic order (line 8).
If such a tuple τ ′ is found, lastPWci ,cm,s is updated (line 9). Otherwise, it is set to NIL (line 11). If no tuple is found in
rel(ci) that is both a GAC-support for a and has PW-supports in all intersecting constraints, then a is removed from
D(xj ) (line 15).

The following example demonstrates the savings in constraint checks that maxRPWC-2 achieves compared to
maxRPWC-1.

Example 1. Consider the problem of Fig. 7. There are four variables {x1, . . . , x4} and two constraints that intersect
on x1 and x2. Tuples in bold are allowed by the constraints and are valid, while tuples in italics are not allowed by the
constraints. Assume we wish to determine if the values of x3 are maxRPWC. maxRPWC-1 checks all 5 tuples of c2

for each value of x3, as depicted in Fig. 7a (for each tuple τ in c1, all tuples of c2 between the pair of edges starting
from τ are checked against τ ). maxRPWC-2 checks all 5 tuples only for value 0 of x3. After locating tuple {0,0,4}
of c2 as a PW-support for tuple {0,0,0} of c1, lastPWc1,c2,s , where s = {0,0}, points to tuple {0,0,4}. For the rest of
x3’s values, maxRPWC-2 only checks this tuple, (as depicted in Fig. 7b).

When checking if a tuple τ of a constraint ci has PW-supports, maxRPWC-2 updates lastPWci ,cj ,s whenever a PW-
support for τ on a constraint cj is found. This is done irrespective if τ has PW-supports in all intersecting constraints
or not. For example, assume that PW-supports for τ are discovered on q − 1 constraints and there is no PW-support
on the q-th intersecting constraint. In this case the algorithm will stop looking for PW-supports and move on to search
for a new GAC-support in the next iteration of the for loop of line 3. However, the lastPWci ,cj ,s pointers for the q − 1
constraints will not be restored. They will keep pointing to the tuples discovered when τ was checked. It is easy to see
that this is correct since all tuples before lastPWci ,cj ,s are either disallowed or invalid. Therefore, there is no point in
restoring the pointers to their previous positions.

Proposition 4. The worst-case time complexity of algorithm maxRPWC-2 is O(e2kdk).

Proof. When looking for a GAC-support within Revise, maxRPWC-2 is identical to maxRPWC-1 and therefore the
two algorithms have the same cost for this part of their operation. That is, there are O(nd) validity checks and O(dk−1)

visits to tuples (at cost O(k)) in order to make a value a ∈ D(xj ) GAC for all calls to Revise(xj , ci , maxRPWC).
The difference is in the cost of extending a GAC-supporting tuple to all intersecting constraints. Once such a tuple τ

is found, maxRPWC-2 iterates over the constraints that intersect with ci . Assuming that τ [var(ci) ∩ var(cm)] = sm,
for any intersecting constraint cm maxRPWC-2 searches through the tuples that include assignment sm. However,
these tuples are not searched from scratch every time. Since the pointer lastPWci ,cm,sm is used, the tuples that include
assignment sm are searched from lastPWci ,cm,sm since the tuples before lastPWci ,cm,sm have already been searched. As
a result, in all the calls to Revise on ci , each tuple of each intersecting constraint is checked at most once (with each
check costing O(k)) and there are at most dk such tuples per constraint. Thus, the cost on all calls to Revise(xj , ci ,
maxRPWC) is O(knd +kdk−1) for each variable-value pair, plus O(ekdk). For kd values in ci this gives an asymptotic
cost of O(k2nd2 + k2dk + ekdk) = O(k2dk + ekdk) for sufficiently large k and d . For e constraints, the worst-case
time complexity of maxRPWC-2 is O(e2kdk) if k < e. �
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For any constraint ci maxRPWC-2 requires O(ekdf ) space to store the lastPW pointers of size k for all constraints
that intersect with ci . Therefore, the space complexity of maxRPWC-2 is O(e2kdf ). This means that maxRPWC-2
is not practical for constraints of large arity sharing many variables. Note that, even when constraints share just two
variables (and the space complexity is O(e2kd2)), maxRPWC is still stronger than GAC.

5.6. maxRPWC-3: A third algorithm for maxRPWC

The asymptotic time complexity of maxRPWC-2 is significantly lower than that of maxRPWC-1, but to achieve
it, the algorithm requires space exponential in the number of intersecting variables. Therefore, in problems where this
number is large, the memory requirements can prohibit the use of maxRPWC-2. We will now describe maxRPWC-3;
a third algorithm for maxRPWC that can save constraint checks compared to maxRPWC-1 (though not as many as
maxRPWC-2), but only requires polynomial space.

In addition to the lastGAC pointers, algorithm maxRPWC-3 stores a pointer lastPWxj ,a,ci ,cm for each pair of
intersecting constraints ci and cm and each a ∈ D(xj ), where xj ∈ var(ci). Such a pointer is now the smallest (i.e.,
most recently discovered) PW-support of lastGACxj ,a,ci

in rel(cm).
Fig. 8 gives function Revise of maxRPWC-3 (the rest of the algorithm is the same as maxRPWC-1 and

maxRPWC-2). When (xj , a) is revised on ci , maxRPWC-3 first checks if lastGACxj ,a,ci
is valid (as do the other

algorithms). If lastGACxj ,a,ci
is still valid, maxRPWC-3 checks the validity of all lastPWxj ,a,ci ,cm , for all cm inter-

secting with ci . If for some cm, lastPWxj ,a,ci ,cm is no longer valid, the algorithm searches for a new PW-support
for lastGACxj ,a,ci

starting from the tuple immediately after lastPWxj ,a,ci ,cm . In this way some constraint checks are
avoided, in the spirit of maxRPWC-2. In case lastGACxj ,a,ci

is no longer valid or does not have PW-support on some
intersecting constraint, maxRPWC-3 looks for a new lastGACxj ,a,ci

, as do the other algorithms. However, in this case,
for each candidate lastGACxj ,a,ci

the search for a PW-support, i.e. a new lastPWxj ,a,ci ,cm , starts from scratch in each
intersecting constraint cm, in the spirit of maxRPWC-1. This is necessary in order to avoid missing any PW-supports.
If no tuple is found in rel(ci) that is both a GAC-support for a and has PW-supports in all intersecting constraints,
then a is removed from D(xj ).

The following example demonstrates the savings in constraint checks that maxRPWC-3 achieves compared to
maxRPWC-1.

Example 2. Consider the problem of Fig. 9. There are five variables {x1, . . . , x5} and two constraints that intersect
on x1 and x2. Tuples in bold are allowed by the constraints and are valid, tuples in italics are not allowed by the
constraints, and the rest of the tuples (i.e. the “deleted” ones) are allowed but not valid. Assume we wish to determine
if the values of x4 are maxRPWC. Initially both maxRPWC-1 and maxRPWC-3 find the GAC-supports {0,0,0,0}
and {0,0,0,1} in rel(c1) for values 0 and 1 of x4, respectively. Then, for each of these tuples both algorithms check

function Revise(xj , ci , maxRPWC)
1: for each value a ∈ D(xj )

2: PW ← FALSE;
3: for each valid τ (∈ rel(ci)) �l lastGACxj ,a,ci , such that τ [xj ] = a

4: PW ← TRUE;
5: for each cm �= ci such that |var(ci) ∩ var(cm)| > 1
6: if τ = lastGACxj ,a,ci , t ← lastPWxj ,a,ci ,cm ;
7: else t ← first tuple in rel(cm);
8: if � valid τ ′(∈ rel(cm)) �l t such that

τ [var(ci) ∩ var(cm)] = τ ′[var(ci) ∩ var(cm)]
9: PW ← FALSE; break;
10: else lastPWxj ,a,ci ,cm ← τ ′;
11: if PW=TRUE lastGACxj ,a,ci ← τ ; break;
12: if PW=FALSE remove a from D(xj );
13: return number of deleted values;

Fig. 8. Function Revise of maxRPWC-3.
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Fig. 9. Applying maxRPWC-1 and maxRPWC-3 on a non-binary problem.

3 tuples of c2, as depicted in Fig. 9a, before discovering that tuple {0,0,2} is a PW-support. Assume that later value
1 of x3 is deleted. As a result we need to establish if the values of x4 are still maxRPWC. Since the GAC-supports
of x4’s values discovered earlier are still valid, both maxRPWC-1 and maxRPWC-3 will try to extend them to c2.
Assume that tuple {0,0,2} of c2 is no longer valid (because value 2 of x5 has been deleted). For both values of x4,
maxRPWC-1 will check the tuples of c2 from scratch, as depicted in Fig. 9b, before discovering that tuple {0,0,3}
is a PW-support. On the other hand, as depicted in Fig. 9c, maxRPWC-3 will start searching immediately after tuple
{0,0,2} and will thus only check tuple {0,0,3}. This will be made possible because pointers lastPWx4,0,c1,c2 and
lastPWx4,1,c1,c2 will point to tuple {0,0,2}.

Proposition 5. The worst-case time complexity of algorithm maxRPWC-3 is O(e2k2dp).

Proof. In each call to Revise(xj , ci , maxRPWC) and for each a ∈ D(xj ), maxRPWC-3 operates in an identical way
to maxRPWC-1, except when lastGACxj ,a,ci

is valid. In this case it may avoid some constraint checks through the
use of the lastPW pointers. In the worst case, pointer lastGACxj ,a,ci

will be assigned all dki−1 extensions of a, which
means that maxRPWC-3 will behave like maxRPWC-1. Therefore, they have the same worst-case time complexity of
O(e2k2dp). �

The space complexity of maxRPWC-3 is determined by the space required for the lastGAC and lastPW pointers.
Therefore, it is O(ekd + e2kd) = O(e2kd) for extensional constraints and O(ek2d + e2k2d) = O(e2k2d) for inten-
sional ones.

6. Experiments

To compare the efficiency of the consistencies, we ran experiments on random and benchmark configuration prob-
lems. We compared algorithms that maintain GAC2001/3.1, RPWC-1, maxRPWC-1, and rPIC-1 throughout search.
For simplicity we refer to these search algorithms by the consistency they maintain. We also compared the three dif-
ferent algorithms for maxRPWC. In all experiments all algorithms used the dom/deg variable ordering heuristic [7]
for dynamic variable ordering, and lexicographic value ordering. The experiments were run on a 3.06 GHz Pentium
PC with 1 GB RAM.

6.1. Random problems

We first compared the different local consistencies and different algorithms for maxRPWC on randomly generated
problems. Random problems allow us to relate the performance of the algorithms to certain parameters, such as
tightness, constraint graph density, and domain size.

Random instances were generated using the extended model B [5]. According to this model, a random non-binary
CSP is defined by the following five input parameters:

n number of variables;
d uniform domain size;
k uniform arity of the constraints;
p density, i.e. the ratio between the number of constraints in the problem and the number of possible constraints

involving k variables;
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q uniform looseness of the constraints, i.e. the ratio between allowed tuples and the dk total tuples of a con-
straint.

The constraints and the allowed tuples were generated following a uniform distribution. We made sure that the gen-
erated graphs were connected. In the following, a class of non-binary CSPs will be denoted by a tuple of the form
〈n,d, k,p(e), q〉, where e denotes the actual number of constraints in the class.

6.1.1. Comparing different consistencies
Fig. 10 shows average CPU times and node visits from 50 instances of class 〈20,10,4,0.004(19), q〉. The value

of q is varied along the x-axis. On this sparse class of problems, maxRPWC is clearly the most efficient algorithm in
terms of run times. RPWC and rPIC are close to the performance of GAC despite visiting many fewer nodes. rPIC
in particular displays a bad CPU time per node performance as its node visits are close to those of maxRPWC but its
CPU times are close to but sometimes worse than GAC.

Fig. 11 shows average CPU times and node visits from 50 instances of class 〈20,20,4,0.004(19), q〉. This is
the same class as before with the difference that the domain size of the variables has been doubled. This makes the
problems much harder, especially for GAC. The difference in run times between GAC and maxRPWC is now more
than one order of magnitude for most values of q . Also, both RPWC and rPIC are more efficient than GAC, but remain
significantly slower than maxRPWC.

Table 1 gives results from hard problems of five classes with different characteristics. Class 1 (〈14,8,4,0.1(100),

0.4〉) is dense, classes 2 and 3 (〈20,10,4,0.04(193),0.4〉 and 〈15,15,4,0.05(68),0.2〉) are of medium density, with
class 3 having large domain sizes, class 4 (〈50,5,4,0.0002(46),0.185〉) is sparse and has small domain sizes, and
class 5 (〈30,15,4,0.001(27),0.05〉) is sparse. GAC is the most efficient algorithm in classes 1 and 4, it is competitive
with maxRPWC in class 2, and it is inefficient in classes 3 and 5. RPWC is worse than maxRPWC in all five classes
and worse than GAC in all but classes 3 and 5. rPIC displays very bad performance in all but the last class where it
is significantly better than GAC and RPWC but worse than maxRPWC. Finally, maxRPWC is worse than GAC in

Fig. 10. CPU times (left) and node visits (right) on class 〈20,10,4,0.004(19), q〉.

Fig. 11. CPU times (left) and node visits (right) on class 〈20,20,4,0.004(19), q〉.
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Table 1
Results on four classes of random problems. CPU times and node visits are averages over 50 hard instances for each class

Class GAC
nodes–time

RPWC
nodes–time

rPIC
nodes–time

maxRPWC
nodes–time

1: 〈14,8,4,0.1(100),0.4〉 1298–4.64 672–7.70 515–41.11 114–7.80
2: 〈20,10,4,0.04(193),0.4〉 16,883–421.83 9380–532.89 5335–5,822.93 1433–409.14
3: 〈15,15,4,0.05(68),0.2〉 14,560–1,615.21 7276–707.69 3589–3,750.32 1799–321.94
4: 〈50,5,4,0.0002(46),0.185〉 14,292–1.76 8700–6.93 4553–14.74 4342–3.81
5: 〈30,15,4,0.001(27),0.05〉 534,899–8,560.73 175,404–3,137.56 12,454–616.54 10,134–283.25

Fig. 12. CPU times of the three maxRPWC algorithms on classes 〈30,20,4,0.001(27), q〉 (left) and 〈50,10,4,0.001(230), q〉 (right).

classes 1 and 4, slightly better in class 2, five times better in class 3, and more than one order of magnitude better in
class 4.

From these experiments and also experiments with other parameters, we conjecture that maxRPWC is more effi-
cient than GAC on sparse problems, especially when the domain size is large. On the other hand, maxRPWC is too
expensive on problems of relatively high density or when the domain sizes are very small. Although it always reduces
the visited nodes, in such problems it is outperformed by GAC in CPU time. In problems of medium density there is
no clear winner. When domain sizes are large maxRPWC outperforms GAC whereas when domain sizes are small the
opposite holds. RPWC is outperformed by maxRPWC in almost all parameter settings. However, it is better than GAC
in sparse problems with relatively large domain sizes. Finally, rPIC is always worse than maxRPWC and displays bad
performance in all but the very sparse classes.

The reason for rPIC’s bad performance is the amount of redundant constraint checks it performs at each node.
Recall that in order to establish that a value a of a variable x in a constraint c is rPIC, for each constraint c′ intersecting
c algorithm rPIC-1 searches for a tuple in c that GAC-supports a and can be extended to a tuple in c′. Since this process
is repeated for each intersecting constraint, it may involve repeated searches for GAC-supports in c. So, although for
each pair c,c′ each tuple of c will be checked only once for GAC-support, overall it may end up being checked many
times.

6.1.2. Comparing algorithms for maxRPWC
Fig. 12 shows average CPU times (in msecs) of the three maxRPWC algorithms on two classes of random problems.

The three algorithms were run stand-alone to preprocess the generated instances. Algorithm maxRPWC-2 is the fastest
of the three, followed by maxRPWC-3. Both these algorithms are considerably faster than maxRPWC-1 (up to 2.5
times) for small values of q where problems are either not maxRPWC or the application of maxRPWC results in
many value deletions. As q grows and maxRPWC results in no deletions, i.e. it becomes useless for preprocessing,
the performance of the three algorithms evens out.

Fig. 13 shows average CPU times when maintaining the three algorithms during search on problems of class
〈20,10,4,0.004(19), q〉. As we can see, again maxRPWC-2 and maxRPWC-3 are faster than maxRPWC-1, but
the differences are now marginal. This is due to the cost of updating the data structures used by maxRPWC-2 and
maxRPWC-3 upon backtracking. Similar results were observed with other problem classes.
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Fig. 13. CPU times when maintaining the three maxRPWC algorithms on class 〈20,10,4,0.004(19), q〉.

6.2. Configuration

We ran experiments on some problems from the CLib configuration benchmark library (see www.itu.dk/doi/VeCoS/
clib). Since these problems are very easy (when looking for one solution), each problem was slightly altered by adding
a few variables (5–6) and constraints (8–10) randomly in the following way. The added constraints were of arity 3
or 4 (chosen at random) and the variables on which they were posted were selected at random, making sure that the
resulting graph was connected. The looseness of each added constraint was also set at random, and finally, the allowed
tuples of each constraint were chosen at random according to its looseness. In this way we were able to obtain a large
number of hard instances.

Table 2 gives results for algorithms that maintain GAC, RPWC, rPIC, and maxRPWC during search. The corre-
sponding algorithms for each local consistency are again GAC2001/3.1, RPWC-1, rPIC-1 and maxRPWC-1.

Algorithm maxRPWC is considerably more efficient than all the other ones in these problems. rPIC and RPWC are
also faster than GAC, in some cases by a large margin. This is due to the additional pruning they perform (as clearly
demonstrated by the numbers of node visits).

Apart from the problems of Table 2, we also ran experiments on 50 instances created following the same method-
ology as above and using the Renault configuration problem as basis. This is a problem with 101 variables and 134
constraints, where the largest domain has 42 values and there are constraints with arity as high as 10. The instances
created from the Renault problem are very hard. For example, the second instance could not be solved by GAC within
four days of CPU time. We set a time limit of 20 minutes within which GAC solved 10 instances. Algorithms RPWC,
rPIC and maxRPWC solved 15, 16 and 27 instances respectively. Note that the second instance was solved within the
time limit only by maxRPWC (in a few seconds). The results from the Renault problem are summarized in Table 3.

There were 7 instances (all soluble) that were solved by all algorithms within the time limit and 21 instances on
which all algorithms timed out. On the 7 instances solved by all algorithms, RPWC displayed by far the best perfor-
mance, as shown in Table 3. There were 2 instances which GAC and RPWC were able to solve whereas maxRPWC
and rPIC timed out. Also, there was 1 instance which GAC, RPWC, and maxRPWC were able to solve whereas rPIC
timed out. From the remaining 19 instances all were solved by maxRPWC, 5 by RPWC, 9 by rPIC, and none by GAC.
Overall, maxRPWC was the most efficient algorithm in 17 instances and RPWC in 12.

Table 2
Configuration problems. n and e are the numbers of variables and constraints in the modified instances. k and d are the maximum arity and domain
size respectively. Run times are in seconds. Averages are over 50 hard instances created from each benchmark

Problem n e k d GAC
nodes–time

RPWC
nodes–time

rPIC
nodes–time

maxRPWC
nodes–time

machine 30 22 4 9 535,874–10.27 95,459–4.63 36,046–6.48 8263–0.84
fx 24 21 5 44 193,372–3.43 54,915–1.65 17,755–2.18 864–0.06
fs 29 18 6 51 618,654–10.65 150,544–4.11 1443–0.31 19–0.06
esvs 33 20 5 61 6,179,966–124.39 333,036–10.78 32,548–3.79 2612–0.07
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Table 3
Results from the Renault problem. Nodes and CPU times (in seconds) are averages are over the 7 instances solved by all algorithms. The last
column gives the number of instances on which each algorithm was the most efficient of the four

Algorithm Nodes Time # instances solved # instances solved fastest

GAC 583,355 146.47 10 0
RPWC 462 28.97 15 12
rPIC 456 189.28 16 0
maxRPWC 214 127.28 27 17

7. Conclusion

Although domain filtering consistencies tend to be more practical than consistencies that change the constraint
relations and the constraint graph, very few such consistencies have been proposed for non-binary constraints. In
this paper, we performed a detailed theoretical, algorithmic, and empirical study of three such consistencies, RPWC,
rPIC and maxRPWC. In our theoretical study we showed that the pruning power of these consistencies on non-
binary problems lays between PWC + GAC and GAC, while rPIC and maxRPWC are incomparable to SGAC. Some
surprising results were also revealed. For example, rPIC and maxRPWC are weaker than RPC when restricted to
binary constraints.

We also described algorithms that can be used to achieve RPWC, maxRPWC and rPIC. In addition we proposed
two alternative algorithms for maxRPWC, which is the most efficient among the three consistencies. One of them has
a particularly good time complexity, competitive with GAC algorithms, though with a higher space cost. Experiments
demonstrated the potential of the new consistencies, and especially maxRPWC and RPWC, as an alternative or com-
plement to GAC. As future work, we will investigate ways to combine inverse consistencies with specialized GAC
propagators. Also, we intend to further develop some of the algorithms presented here. Finally, new domain filtering
consistencies for non-binary constraints can be developed and studied.
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