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Abstract

Singleton arc consistency (SAC) is a consistency property that is simple to specify and is stronger than arc consistency. Algo-
rithms have already been proposed to enforce SAC, but they have a high time complexity. In this paper, we give a lower bound
to the worst-case time complexity of enforcing SAC on binary constraints. We discuss two interesting features of SAC. The first
feature leads us to propose an algorithm for SAC that has optimal time complexity when restricted to binary constraints. The second
feature leads us to extend SAC to a stronger level of local consistency that we call Bidirectional SAC (BiSAC). We also show the
relationship between SAC and the propagation of disjunctive constraints.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Constraint propagation is an important step of reasoning when we try to solve problems with constraints. Constraint
propagation usually consists in enforcing arc consistency. However, in some cases, some stronger level of consistency
could pay off. Singleton arc consistency (SAC) ensures that we can enforce arc consistency without failure after
any assignment of a value to a variable. It has been introduced in [12], and further studied, both theoretically and
experimentally in [13,25]. This idea of looking ‘one step in advance’ exists under other forms. It has been applied in
constraint problems with numerical domains by limiting the tentative assignments to the bounds of the domains and
ensuring that bound consistency does not fail after such assignments [18]. In SAT, the technique of ‘failed literals’ has
been used as a way to compute more accurate heuristics for DPLL [14,20]. In mixed integer programming, ‘strong
branching’ has been used before actually branching on some variable to test which of the fractional variables gives
the best progress after performing a limited number of dual simplex pivots [1].
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on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland, 2005, pp. 54–59].
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Some nice properties give to SAC a real advantage over the other local consistencies that are stronger than the
ubiquitous arc consistency. The definition of SAC is much simpler than that of restricted path consistency [4], max-
restricted-path consistency [11], or other exotic local consistencies. Its operational semantics can be understood by a
non-expert of the field. Enforcing it only removes values in domains, and thus does not change the structure of the
problem, as opposed to path consistency [24], k-consistency [15], which may add constraints and thus modify the
topology of the network. Finally, implementing it can be done simply on top of any arc consistency algorithm.

Three algorithms enforcing SAC have already been proposed: SAC1 [12], SAC2 [2] and SAC3 [17]. But they all
have a high worst-case time complexity (O(en2d4) on binary constraints). Moreover, there does not exist any study
of the complexity of singleton arc consistency that would tell us the optimal worst-case time complexity of enforcing
SAC.

In this paper, we prove a lower bound on the worst-case time complexity of enforcing SAC on a network of binary
constraints. We propose an algorithm whose complexity reaches this bound when restricted to binary constraints, thus
being optimal for such constraints. We discuss two features inherent to singleton arc consistency. One of them, the
non-locality of supports, justifies our approach for designing an optimal algorithm to enforce SAC. The other one,
the non-bidirectionality of supports, leads us to the definition of a new local consistency, bidirectional singleton arc
consistency (BiSAC), which is stronger than SAC. We propose a simple algorithm to enforce BiSAC. We theoretically
compare the level of consistency of BiSAC with that of existing local consistencies. We also show the relationship
between SAC and techniques to propagate disjunctions of constraints.

The rest of the paper is organized as follows. Section 2 contains the preliminary notions and notations necessary
for reading the paper. In Section 3, we study the complexity of enforcing SAC and we show an unexpected feature of
SAC: supports are not local. In Section 4 we propose SAC-Opt, the algorithm enforcing SAC with optimal worst-case
time complexity. The relationship between SAC and propagation techniques for disjunctive constraints is presented
in Section 5. In Section 6 we show a second unexpected feature of SAC (the non-bidirectionality of supports) and we
present BiSAC, a new local consistency stronger than SAC that no longer has this feature; we give an algorithm that
enforces BiSAC and we compare BiSAC to existing local consistencies. Section 7 concludes this work.

2. Background

A constraint network P consists of a finite set of n variables X = {X1, . . . ,Xn}, a set of domains D =
{D(X1), . . . ,D(Xn)}, where the domain D(Xi) is the finite set of at most d values that variable Xi can take, and
a set of e constraints C = {c1, . . . , ce}. Each constraint ck is defined by the ordered set var(ck) of the variables it
involves, and the set sol(ck) of combinations of values satisfying it. An assignment (or instantiation) of values to
variables in a set Y ⊆ X is locally consistent iff each variable in Y is assigned a value in its domain and all constraints
c with var(c) ⊆ Y are satisfied. A solution to a constraint network is an assignment of values to all variables in X that
is locally consistent. When var(c) = (Xi,Xj ), we use cij to denote sol(c) and we say that c is binary.

Given a value a in the domain of a variable Xi , denoted by (Xi, a), a support for the consistency of (Xi, a) on
ck is an assignment of the other variables in var(ck) to values in their domain such that together with (Xi, a) they
satisfy ck . If there is a constraint in C for which such a support does not exist, (Xi, a) is said to be arc inconsistent.
A constraint ck is arc consistent iff all the values of all the variables in var(ck) have a support on ck . A constraint
network P = (X,D,C) is arc consistent (AC) iff all the constraints in C are arc consistent (or equivalently, D does
not contain any arc inconsistent value). AC(P ) denotes the arc consistent closure of P , that is, the network obtained
by iteratively removing arc inconsistent values from D until the remaining network is arc consistent. This process of
computing AC(P ) is also called enforcing arc consistency on P . If enforcing arc consistency on P wipes out a domain
(denoted by AC(P ) = ∅), we say that P is arc inconsistent. We should bear in mind that if P is not arc consistent it is
not necessarily arc inconsistent. Arc inconsistency is a stronger notion. It means that enforcing arc consistency on P

is sufficient to detect that it has no solution.
A constraint network P = (X,D,C) is singleton arc consistent (SAC) iff ∀Xi ∈ X,∀a ∈ D(Xi), the network

P |Xi=a = (X,D|Xi=a,C) obtained by replacing D(Xi) by the singleton {a} is not arc inconsistent. If P |Xi=a is arc
inconsistent, we say that (Xi, a) is SAC inconsistent.

Given two variables Xi and Xj , i ̸= j , given two values a ∈ D(Xi) and b ∈ D(Xj ), the pair ((Xi, a), (Xj , b))

is path consistent iff for any third variable Xk, k ̸= i, k ̸= j there exists a value vk ∈ D(Xk) such that the binary
constraints between Xi,Xj and Xk are satisfied by the assignment ((Xi, a), (Xj , b), (Xk, vk)). A constraint network
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P = (X,D,C) is path consistent (PC) iff for any pair of variables Xi,Xj (i ̸= j ), for any pair of values (a, b) ∈
D(Xi) × D(Xj ) not forbidden by a constraint cij , ((Xi, a), (Xj , b)) is path consistent.

Φ(P ) denotes the Φ closure for any local consistency Φ , and enforcing Φ denotes the process of computing Φ(P ).
We will use the relation ‘stronger than’ defined in [13] to compare local consistencies. Briefly, a local consistency Φ

is stronger than another local consistency Φ ′ if any constraint network which is Φ-consistent is also Φ ′-consistent.
Consequently, any algorithm enforcing Φ removes at least all the values removed by an algorithm enforcing Φ ′. Φ is
strictly stronger than Φ ′ (denoted Φ ≻ Φ ′) if Φ is stronger than Φ ′ and there exists a constraint network on which Φ ′

holds and Φ does not.

3. Complexity analysis of SAC

In this section, we analyze singleton arc consistency from a theoretical point of view. We study its computational
complexity, proving a lower bound to the worst-case time complexity of enforcing SAC. Then, we observe that the
property of ‘local support’ usually used to build optimal algorithms for local consistencies does not hold on SAC.

3.1. Lower bound to the cost of SAC

On binary constraint networks, the three existing algorithms for enforcing singleton arc consistency, SAC1 [12],
SAC2 [2], and SAC3 [17], all have an O(en2d4) time complexity. But this is not optimal. We first show a lower bound
to the worst-case time complexity of enforcing SAC. We limit our analysis to binary constraint networks because the
complexity of arc consistency, and that of SAC, depends on the arity of the constraints.

Theorem 1. The worst-case time complexity of enforcing SAC on a network of binary constraints is bounded below by
O(end3), where n is the number of variables, d is the size of the largest domain, and e is the number of constraints.

Proof. The complexity of enforcing SAC on a constraint network of binary constraints is at least as high as the com-
plexity of checking whether P |Xi=a is arc inconsistent for any value a in the domain of any variable Xi . According
to [22], we know that checking whether a value (Xi, a) is such that AC does not fail in P |Xi=a is equivalent to ver-
ifying if in each domain D(Xj ) there is at least one value b locally consistent with a such that ((Xi, a), (Xj , b))

is ‘path consistent on (Xi, a)’. (A pair of values ((Xi, a), (Xj , b)) is path consistent on (Xi, a) iff it is not deleted
when enforcing path consistency only on pairs involving (Xi, a).) In the worst case, all the values b in D(Xj ) have
to be considered. So, the path consistency of each pair ((Xi, a), (Xj , b)) may need to be checked against every
third variable Xk by looking for a value (Xk, vk) compatible with both (Xi, a) and (Xj , b). However, it is use-
less to consider variables Xk not linked to Xj by a constraint. Indeed, if ((Xi, a), (Xj , b)) is path inconsistent on
(Xi, a) because of Xk , and Xj ,Xk are not linked by a constraint, then there is no value vk ∈ D(Xk) locally con-
sistent with (Xi, a). A lower bound to the worst-case time complexity of proving that path consistency on (Xi, a)

does not fail is thus at least
∑

cjk∈C |D(Xj )| × |D(Xk)| = ed2. Furthermore, checking whether ((Xi, a), (Xj , b)) is
path consistent on (Xi, a) does not help deciding whether ((Xj , b), (Xi, a)) is path consistent on (Xj , b). Indeed, a
pair ((Xi, a), (Xj , b)) can be path consistent on (Xi, a) and the pair ((Xj , b), (Xi, a)) can be path inconsistent on
(Xj , b): Suppose ((Xi, a), (Xj , b)) is path consistent on (Xi, a) because the pair ((Xk, vk), (Xj , b)) belongs to ckj

and ((Xj , b), (Xk, vk)) is path inconsistent on (Xj , b) because of some variable Xl . ((Xj , b), (Xk, vk)) is not removed
by path consistency on (Xi, a) but it is removed by path consistency on (Xj , b). Then ((Xj , b), (Xi, a)) is path in-
consistent on (Xj , b). Thus, the worst-case time complexity of enforcing this form of path consistency of pairs on
every value is at least as high as the complexity of enforcing it on each value in turn. Therefore, the worst-case time
complexity of any algorithm enforcing SAC is bounded below by O(nd × ed2) = O(end3). ✷

3.2. Globality of supports for SAC

Some of the intuitive characteristics of local consistencies are no longer true on singleton arc consistency. The most
noticeable one is the loss of the notion of ‘local support’: the removal of a value (Xj , b) anywhere in the constraint
network can provoke SAC inconsistency of a value (Xi, a) even if all supports for the arc consistency of (Xi, a)

remain SAC.
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Fig. 1. Inconsistency graph of a constraint network on which (Xi,1) becomes SAC inconsistent after removing (Xj ,1) whereas all values of
neighboring variables remain SAC.

Local consistencies are properties usually defined on subsets of variables (or subsets of the constraints) of bounded
size. Consequently, verifying that a value (or a partial instantiation in the case of k-consistencies) satisfies a local
consistency property can be done by finding instantiations on the specified subsets of variables such that the specified
subset of constraints is satisfied. Optimal algorithms can always be implemented on the same principle: storing ‘sup-
porting’ assignments for each value (or for each partial instantiation) [10,23]. As long as its supporting assignments
are consistent, the supported value verifies the given property. For arc consistency, for instance, the subnetworks to
check are simply the constraints involving the given variable.

In the case of SAC, the notion of support is no longer local.

Observation 1. Let P = (X,D,C) be a SAC network, and (Xi, a) and (Xj , b) two values in P such that Xi and Xj

are not involved in the same constraint. It is possible that removing (Xj , b) from P (denoted by P \ {(Xj , b)}) makes
(Xi, a) SAC inconsistent whereas all the values of its neighbors belong to SAC(P \ {(Xj , b)}).

Proof. Take the example in Fig. 1. When (Xj ,1) is present, the whole network is SAC. If we remove (Xj ,1), all
values for Xk and Xm are still SAC. Nevertheless, (Xi,1) is not SAC because if we instantiate Xi with 1 and propagate
arc consistency, values (Xk,1) and (Xm,1) are removed, which provokes the removal of (Xj ,2) and (Xj ,3), then
wiping out Xj ’s domain. ✷

Observation 1 shows that if AC(P |Xi=a) ̸= ∅ we cannot guarantee that (Xi, a) will remain SAC as long as all the
values in variables sharing a constraint with Xi remain SAC. The whole network AC(P |Xi=a) supports (Xi, a). This
observation will be used to build an optimal time SAC algorithm.

4. Optimal time algorithm for SAC

We propose an algorithm that enforces SAC with optimal time complexity. Such an algorithm maintains some data
structures that permit to benefit from the incrementality property of optimal arc consistency algorithms.

Previous SAC algorithms are not optimal. SAC1 and SAC3 have no data structure storing the values that may
become SAC inconsistent when a given value is removed. Hence, they must check again the SAC consistency of all
remaining values. SAC2 has data structures that use the fact that if AC does not lead to a wipe out in P |Xj =b then the
SAC consistency of (Xj , b) holds as long as all the values in AC(P |Xj =b) are in the domain. After the removal of a
value (Xi, a), SAC2 checks again the SAC consistency of all the values (Xj , b) such that (Xi, a) was in AC(P |Xj =b).
This leads to a better average time complexity than SAC1 but the data structures of SAC2 are not sufficient to reach
optimality because SAC2 may waste time re-enforcing AC in P |Xj =b several times from scratch.

Algorithm 1, called SAC-Opt, is an algorithm that enforces SAC in O(end3) if all constraints are binary. This is
the lowest time complexity we can expect (see Theorem 1). The idea behind such an optimal algorithm is that we do
not want to achieve (potentially nd times) arc consistency from scratch in each subproblem P |Xj =b each time a value
(Xi, a) is found SAC inconsistent. To avoid such costly repetitions of arc consistency calls, we propose to duplicate
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function SAC-Opt(inout P : Problem): Boolean;
/* init phase */;

1 if AC(P ) then PendingList ← ∅ else return false;
2 foreach (Xi, a) ∈ D do
3 Pia ← P |Xi=a /* copy only domains and data structures */;
4 Qia ← D(Xi) \ {a};
5 PendingList ← PendingList ∪{(Xi, a)};

/* propag phase */;
6 while PendingList ̸= ∅ do
7 pop (Xi, a) from PendingList;
8 if propagAC(Pia,Qia) then Qia ← ∅;
9 else

10 D ← D \ {(Xi, a)};
11 if D(Xi) = ∅ then return false;
12 foreach (Xj , b) ∈ D such that (Xi, a) ∈ Djb do
13 Djb(Xi) ← Djb(Xi) \ {a};
14 Qjb ← Qjb ∪ {(Xi, a)};
15 PendingList ← PendingList ∪{(Xj , b)};
16 return true;

Algorithm 1. The optimal SAC algorithm.

nd times the domains and the data structures of the arc consistency algorithm we use (e.g., the lists S of supported
values for AC-6 or the Last supports for AC2001). That is, for each value (Xi, a), we store the domain of P |Xi=a

and the associated data structures. These local domains and local data structures permit to avoid starting each new AC
propagation phase from scratch. So, we can benefit from the incrementality of arc consistency on each P |Xi=a . All
generic AC algorithms are incremental, i.e., their asymptotic complexity is the same for a single call or for up to nd

calls, where two consecutive calls differ only by the deletion of some values. The local domains also permit to know
that the values (Xj , b) that may no longer be SAC after the removal of a value (Xi, a) are those for which (Xi, a) was
in the domain of P |Xj =b .

In the following, Pia denotes the subproblem in which SAC-Opt stores the current domain (noted Dia) and the data
structures corresponding to the AC enforcement in P |Xi=a . propagAC(P,Q) denotes the function that incrementally
propagates the removal of set Q of values in problem P when an initial AC call has already been executed. The initial
AC call initializes the data structure required by the AC algorithm in use. It returns false iff P is arc inconsistent.

SAC-Opt is composed of two main steps. After making the ‘master’ problem P arc consistent (line 1), the loop
in line 2 creates the subproblem Pia by duplicating the domains of P together with the data structures necessary to
enforce AC optimally. In this loop, we also put in Qia all values of D(Xi) other than a for future propagation (line 4)
and we put (Xi, a) in PendingList, the list of values for which some removals have not yet been propagated in their
subproblem (line 5).

Once the initialization phase has finished PendingList contains all values (Xi, a) still in D because the removal of
the values D(Xi) \ {a} (contained in Qia) has not yet been propagated in Pia . The loop in line 6 propagates these
removals (line 8). If propagation fails, this means that (Xi, a) is SAC inconsistent. (Xi, a) is then removed from the
domain D of the master problem in line 10 and each subproblem Pjb containing (Xi, a) is updated together with
its propagation list Qjb for future propagation (lines 12–15). When PendingList is empty, all removals have been
propagated in the subproblems. So, all the values in D are SAC.

Theorem 2. SAC-Opt is a correct SAC algorithm with O(enkdk+1) time complexity and O(enkd2) space complexity,
where k is the greatest arity of the constraints.

Proof. Soundness. Suppose some SAC values are removed by SAC-Opt. Let (Xi, a) be the first SAC value removed.
It is necessarily removed in line 10 because Pia was found arc inconsistent in line 8. All values already removed from
Pia in line 13 were removed from P in line 10 and are SAC inconsistent by assumption. So, Pia cannot be made arc
consistent without containing some SAC inconsistent values. So, (Xi, a) is SAC inconsistent and SAC-Opt is sound.
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Completeness. Thanks to the way PendingList and Qia are updated in lines 4–5 and 12–15, we know that at the
end of the algorithm, all Pia are arc consistent. Thus, for any value (Xi, a) remaining in P at the end of SAC-Opt,
P |Xi=a is not arc inconsistent and (Xi, a) is therefore SAC.

Complexity. Because any AC algorithm can be used to implement our SAC algorithm, the space and time com-
plexities will obviously depend on this choice. Let us first discuss the case where an optimal time algorithm such as
GAC-schema [8] or GAC2001 [9] is used. (They have an O(ekd) space complexity and an O(ekdk) time complexity.)
Line 3 tells us that the space complexity will be nd times the complexity of the AC algorithm, namely O(enkd2).
Regarding time complexity, the AC call on the master problem (line 1) is in O(ekdk). The first loop (line 2) copies
the data structures and initializes the lists Qia and PendingList, two tasks which are respectively in O(nd · ekd) and
O(nd · d). In the while loop (line 6), each subproblem can be called at most nd times for arc consistency, and there
are nd subproblems. Now, GAC-schema and GAC2001 are both incremental, which means that the complexity of nd

restrictions on the same problem is ekdk and not nd · ekdk . Thus the total cost of arc consistency propagation on the
nd subproblems is nd · ekdk . We have to add the cost of updating the lists in line 12. In the worst case, each value is
removed one by one, and thus, nd values are put in nd Q lists, leading to n2d2 updates of PendingList. If n < e, the
total time complexity is O(enkdk+1). ✷

Corollary 1. On networks of binary constraints, SAC-Opt has an optimal O(end3) time complexity.

We do not claim optimality of SAC-Opt on non-binary constraints because Theorem 1 is restricted to binary con-
straints. However, we strongly conjecture it is also optimal for non-binary constraints.

Remarks. We chose to present the Qia lists as lists of values to be propagated because the AC algorithm used
is not specified here, and value removal is the most accurate information we can have. When using a fine-grained
AC algorithm, such as AC4 [23], AC6 [5], or GAC-schema, the lists will be used as they are. If we use a coarse-
grained algorithm such as AC3 [21] or AC2001, only the list of variables from which the domain has changed is
needed. The modification is direct. We should bear in mind that if AC3 is used, we decrease space complexity to
O(n2d2), but time complexity increases to O(end4)—on binary constraint networks—because AC3 is not optimal. As
a comparison, SAC1 and SAC3 have the space complexity of the AC algorithm they use (i.e., O(e + nd) if AC3 or
O(ekd) if GAC2001), and SAC2 has a space complexity in O(n2d2).

5. SAC and disjunctive constraints

Most constraint solvers allow to express constraints as disjunctions of other constraints. In this section, we show
how singleton arc consistency can be seen as a propagation property for some special disjunctive constraints.

Constraint networks are defined as conjunctions of constraints on a set of variables. Constraint solvers usually con-
tain libraries of ‘elementary’ constraints already defined together with their propagation algorithm. From a modelling
point of view, it can be useful to post a disjunctive constraint, that is a constraint c which is defined as a disjunction
of elementary constraints c1 ∨ · · · ∨ ck [26]. In this section, we will note C ∪ Cdisj the set of constraints defining a
constraint network, where Cdisj contains those constraints explicitly defined as disjunctions of elementary constraints.
In order to simplify the presentation, we will suppose that elementary constraints are all propagated via an algorithm
enforcing arc consistency. Propagating a constraint c = c1 ∨ · · · ∨ ck could be done with a generic arc consistency
algorithm such as GAC-schema [8] but it would be highly inefficient if the number of variables involved in c is large.
The literature has proposed two main techniques to propagate disjunctive constraints.

5.1. Propagating disjunctive constraints

The simplest form of propagation for a disjunctive constraint c = c1 ∨ · · ·∨ ck in Cdisj is to remove all components
of the disjunction that are disentailed1 and to move disjunctions with a single component from Cdisj to C to be made
arc consistent. We call delayed-disjunction consistency the level of local consistency achieved by such a technique.

1 A constraint ci is disentailed when enforcing arc consistency on it wipes a domain out.
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Definition 1 (Delayed-disjunction consistency). Given a constraint network P = (X,D,C ∪ Cdisj) and a constraint
c ∈ Cdisj such that c = c1 ∨ · · · ∨ ck , c is delayed-disjunction consistent (denoted by DC) iff k > 1 and ∀i ∈ 1..k, ci is
not disentailed. P is DC iff all the constraints in Cdisj are DC.

As shown in [19,26], DC is weaker than AC. Consider for instance the constraint c = c1 ∨ c2 where c1 is Z = X, c2
is Z = Y , and the domains are D(X) = {1,2}, D(Y) = {2,3}, D(Z) = {1,2,3,4}. Enforcing DC on c does not prune
anything whereas the value (Z,4) does not have any support for AC on c.

In [26], Van Hentenryck et al. proposed constructive disjunction to overcome the weak level of consistency achieved
by delayed-disjunction consistency. Given a constraint c = c1 ∨ · · · ∨ ck , constructive disjunction propagates each
disjunct ci independently and stores the set Si of values removed when propagating ci . Then, the set of values removed
by constructive disjunction on c is the intersection of all Si .

Definition 2 (Constructive-disjunction consistency). Given a constraint network P = (X,D,C ∪ Cdisj) and a con-
straint c = c1 ∨ · · · ∨ ck in Cdisj, c is constructive-disjunction consistent (denoted by CC) iff

⋂
i∈1..k Si = ∅, where Si

is the set of values removed from D when enforcing AC on ci . P is CC iff all the constraints in Cdisj are CC.

Let us consider again the example above where c = c1 ∨c2, with c1 is Z = X and c2 is Z = Y with domains D(X) =
{1,2}, D(Y) = {2,3}, D(Z) = {1,2,3,4}. S1 = {(Z,3); (Z,4)} and S2 = {(Z,1); (Z,4)}. S1 ∩ S2 = {(Z,4)}. Thus,
(Z,4) is not CC. In [19], Lhomme shows that a disjunctive constraint is CC iff it is AC.

5.2. Extended disjunctions

When we have a disjunctive constraint c = c1 ∨ · · · ∨ ck , we can use the distributivity of disjunction over con-
junction to reformulate the constraint networks containing c. Given the constraint network P = (X,D,C ∪ {c}),
given the constraint networks Pi = (X,D,C ∪ {ci}), i ∈ 1..k, the set of solutions sol(P ) of P is equal to the union⋃

i∈1..k sol(Pi) of the solutions of the k networks Pi . Thus, We can extend DC and CC the following way.

Definition 3 (Extended-delayed-disjunction consistency). Given a constraint network P = (X,D,C ∪ Cdisj) and a
constraint c ∈ Cdisj such that c = c1 ∨ · · · ∨ ck , c is extended-delayed-disjunction consistent (denoted by EDC) iff
k > 1 and ∀i ∈ 1..k, (X,D,C ∪ {ci}) is not arc inconsistent. P is EDC iff all the constraints in Cdisj are EDC.

We see that the condition to be EDC is stronger than the condition to be DC because EDC does not only require
a disjunct not to be disentailed, but also not to lead to a failure when propagated by AC together with all constraints
in C.

Theorem 3. EDC is strictly stronger than DC.

Proof. Let us prove that EDC is stronger than DC. Suppose a constraint c ∈ Cdisj is not DC. If this is because c
contains a single disjunct, it is then trivially not EDC. If it contains several disjuncts, suppose ci is a disjunct that is
disentailed. (X,D,C ∪ {ci}) is thus obviously arc inconsistent and c is not EDC.

To prove EDC is strictly stronger than DC, consider the network with variables X1,X2,X3, domains D(X1) =
D(X2) = D(X3) = {1,2,3} and constraints C = {X1 ! X2,X2 ! X3} and Cdisj = {(X1 < X3 ∨ X1 > X3)}. None of
the two disjuncts of the single disjunctive constraint are disentailed. Thus the network is DC. However, if we apply
arc consistency on C ∪ {X1 > X3}, we obtain a failure. Therefore, the network is not EDC. ✷

Definition 4 (Extended-constructive-disjunction consistency). Given a constraint network P = (X,D,C ∪Cdisj) and a
constraint c = c1 ∨ · · ·∨ck in Cdisj, c is extended-constructive-disjunction consistent (denoted by ECC) iff

⋂
i∈1..k Si =

∅, where Si is the set of values removed from D when enforcing AC on (X,D,C ∪ {ci}). P is ECC iff all the
constraints in Cdisj are ECC.

Similarly to DC and EDC, extended CC is a local consistency stronger than CC because ECC does not only require
an empty set of values removed by all disjuncts but also an empty set of values removed when propagating AC on
each disjunct together with all constraints in C.
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Theorem 4. ECC is strictly stronger than CC.

Proof. Let us prove that ECC is stronger than CC. Suppose a constraint c = c1 ∨ · · · ∨ ck in Cdisj is not CC. Hence,
there exists a value v in some variable domain that is removed by AC on any disjunct ci of c. Thus, v is removed by
AC on C ∪ {ci} for any disjunct ci of c. Therefore, the constraint c is not ECC.

To prove ECC is strictly stronger than CC, consider the network with variables X1,X2,X3, domains D(X1) =
D(X2) = D(X3) = {1,2,3} and constraints C = {X1 ! X2,X2 ! X3} and Cdisj = {(X1 < X2 ∨ X2 < X3)}. Arc
consistency on the first disjunct of the single disjunctive constraint does not remove any value that AC on the second
disjunct removes. Thus the network is CC. However, if we apply arc consistency on C ∪ {X1 < X2} or on C ∪ {X2 <

X3}, we remove values (X1,3) and (X3,1) in both cases. Therefore, the network is not ECC. ✷

5.3. Singleton consistencies as disjunctive consistencies

We first propose a slight modification in the definition of a constraint network that will allow us to build a compari-
son between disjunctive consistencies and other known local consistencies. By definition, it is implicit that every vari-
able is assigned a value in any solution to a constraint network. This implicit constraint could be made explicit without
changing the semantics of the problem. For instance, adding the constraint (Xi = a) ∨ (Xi = b) ∨ (Xi = c) does not
change anything in a network where D(Xi) = {a, b, c}. We say that a constraint network PE = (X,D,C ∪ Cdisj) is
the expansion of a constraint network P = (X,D,C)2 iff Cdisj = {∨v∈D(Xi)

(Xi = v)|i ∈ 1..n}. By construction, we
have sol(P ) = sol(PE).

We can now show that SAC can be reformulated in terms of the propagation of disjunctive constraints by extended-
delayed-disjunction consistency.

Theorem 5. Given a network P = (X,D,C), P is SAC iff its expansion PE is EDC.

Proof. Suppose the network P = (X,D,C) is not SAC. Suppose value v ∈ D(Xi) is the first value removed by a
SAC algorithm. Hence, AC(P |Xi=v) produces a wipe out. Thus, the network PE = (X,D,C ∪ Cdisj) which is the
expansion of P is not EDC because Cdisj contains a disjunctive constraint

∨
w∈D(Xi)

(Xi = w) such that there exists
w ∈ D(Xi),w = v and (X,D,C ∪ {Xi = v}) is arc inconsistent.

Suppose the expansion PE of P is not EDC. Hence, there exists a disjunctive constraint Xi = v1 ∨ · · · ∨ Xi = vk

in Cdisj, there exists j ∈ 1..k, such that (X,D,C ∪ {Xi = vj }) is arc inconsistent. Thus (Xi, vj ) is not SAC whereas it
belongs to D because PE contains a disjunctive constraint with (Xi = vj ) as a disjunct ✷

We can also show that 1-AC, a local consistency stronger than SAC proposed by Affane and Bennaceur in [3], can
be reformulated in terms of the propagation of disjunctive constraints by extended-constructive-disjunction consis-
tency.

Definition 5 (1-AC [3]). A constraint network P = (X,D,C) is 1-AC iff P is SAC and for all Xi ∈ X, for all
a ∈ D(Xi), for all Xj ∈ X, there exists b ∈ D(Xj ) such that (Xi, a) ∈ AC(P |Xj =b).

Theorem 6. Given a network P = (X,D,C), P is 1-AC iff its expansion PE is ECC.

Proof. Suppose the network P = (X,D,C) is not 1-AC. Suppose value v ∈ D(Xi) is the first value removed by an al-
gorithm enforcing 1-AC. Hence, AC(P |Xi=v) produces a wipe out or there exists Xj such that ∀w ∈ D(Xj ), (Xi, v) /∈
AC(P |Xj =w). If AC(P |Xi=v) produces a wipe out, the disjunctive constraint

∨
u∈D(Xi)

(Xi = u) is not ECC in PE

because (Xi, v) is removed by AC on C ∪ {(Xi = u)} for any u in D(Xi). If AC(P |Xi=v) does not lead to a wipe
out, we know that there exists Xj such that ∀w ∈ D(Xj ), (Xi, v) /∈ AC(P |Xj =w). Thus, the disjunctive constraint∨

w∈D(Xj )(Xj = w) is not ECC in PE because (Xi, v) is removed by AC on C ∪ {(Xj = w)} for any w in D(Xj ).

2 Observe that we only consider constraint networks P that do not contain any disjunctive constraint.
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Fig. 2. Inconsistency graph of a constraint network where (Xi ,1) and (Xj ,1) are not mutually compatible or incompatible wrt SAC.

Suppose the expansion PE of P is not ECC. Hence, there exists a disjunctive constraint Xj = w1 ∨ · · · ∨ Xj = wk

in Cdisj, there exists i ∈ 1..n, there exists v ∈ D(Xi) such that v is removed from (X,D,C ∪ {Xj = wl}) by AC for
all l ∈ 1..k. Thus, (Xi, v) is not 1-AC because there exists Xj such that ∀w ∈ D(Xj ), (Xi, v) /∈ AC(P |Xj =w). ✷

6. Bidirectional SAC

In addition to the non-locality of supports observed in Section 3.2, SAC has a second irregular behavior. We
characterize it in this section, and we propose a new local consistency, bidirectional SAC (BiSAC), which does not
have this strange behavior. Like SAC, this local consistency can be applied indifferently to binary or non-binary
constraints. We show that the new local consistency is stronger than SAC.

In local consistencies, usually, if a value (Xj , b) belongs to a set of values supporting a value (Xi, a), this set of
values together with (Xi, a) also supports (Xj , b). This property was named bidirectionality of support in [7]. SAC
does not have this property.

Observation 2. Let (Xi, a) and (Xj , b) be values in P . (Xj , b) ∈ AC(P |Xi=a) ̸⇒ (Xi, a) ∈ AC(P |Xj =b).

Proof. See Fig. 2 in which (Xi,1) ∈ AC(P |Xj =1) whereas (Xj ,1) /∈ AC(P |Xi=1). ✷

Observation 2 shows a weakness in the pruning capability of SAC. If (Xj , b) does not belong to AC(P |Xi=a), we
are guaranteed that (Xi, a) and (Xj , b) cannot belong to the same solution. So, the arc consistency test on P |Xj =b

could safely be done on a network from which (Xi, a) has been removed. Then, there would be more chances of wipe
out when testing (Xj , b). This leads to a slight modification of the definition of SAC. We obtain a stronger consistency
level that we will compare to existing ones.

Definition 6 (Bidirectional singleton arc consistency). A constraint network P = (X,D,C) is bidirectional single-
ton arc consistent (BiSAC) iff ∀Xi ∈ X,∀a ∈ Di , AC(Tia) ̸= ∅, where Tia = (X,DT

ia,C), with DT
ia(Xj ) = {b ∈

D(Xj ) | (Xi, a) ∈ AC(P |Xj =b)}. (So, DT
ia(Xi) = {a}.)

Remark that DT
ia is a kind of dual of Dia of Section 4: Dia(Xj ) contains all values for Xj arc consistent in P |Xi=a

whereas DT
ia(Xj ) contains all values b such that (Xi, a) is arc consistent in P |Xj =b .

6.1. Algorithm for BiSAC

Algorithm 2 is a brute-force algorithm for enforcing BiSAC. The loop in lines 3–10 checks BiSAC for each value
in turn. To know whether a value (Xi, a) is BiSAC, we need to build the domain DT of the values (Xj , b) such that
(Xi, a) belongs to AC(P |Xj =b) (lines 5–6). Then, the test for BiSAC on (Xi, a) is performed in line 7. In case of
failure, (Xi, a) is removed from the domain (line 8) and the Boolean is updated (line 10). Because there are no data
structures to store already computed information, the process is embedded in a main loop (line 1) that is executed until
no changes occur.
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function BiSAC1 (inout P : Problem): Boolean;
1 repeat
2 CHANGE ← false;
3 foreach (Xi, a) ∈ D do
4 DT ← ∅;
5 foreach (Xj , b) ∈ D do
6 if (Xi, a) ∈ AC(P |Xj =b) then DT ← DT ∪ {(Xj , b)};
7 if AC(X,DT ,C) = ∅
8 D(Xi) ← D(Xi) \ {a};
9 if D(Xi) = ∅ then return false;

10 CHANGE ← true;
until not CHANGE;
return true;

Algorithm 2. A brute-force algorithm for BiSAC.

Theorem 7. BiSAC1 is a correct algorithm for enforcing BiSAC.

Proof. Soundness. Suppose some BiSAC values are removed by BiSAC1. Let (Xi, a) be the first BiSAC value re-
moved. It is necessarily removed in line 8. This means that (X,DT ,C) was found arc inconsistent in line 7. Now, by
construction (lines 5–6), (X,DT ,C) = Tia ∩D, where Tia is as defined in Definition 6. Hence, if (Xi, a) was BiSAC,
there are some values that are BiSAC but which were no longer in D when (Xi, a) has been unsuccessfully checked
for BiSAC. This contradicts the assumption that (Xi, a) was the first BiSAC value removed. Therefore, BiSAC1 is
sound.

Completeness. The main loop finishes when the loop in line 3 has been executed on all values remaining in D

without any deletion. Thus, for every value (Xi, a) in D, the problem Tia as defined in Definition 6 has been tested
not to be arc inconsistent (line 7). Therefore, D is BiSAC. ✷

The complexity of BiSAC1 depends on the complexity of the AC algorithm used. Calls to arc consistency are
performed in lines 6 and 7. The AC call in line 6 is executed at most nd times for each call to the loop of line 5.
That loop of line 5 and the AC call of line 7 are executed at most nd times for each call to the loop of line 3. This
last loop is executed at most for each domain change, that is, nd times. Thus, the total time complexity of BiSAC1
is nd · nd · (nd + 1) times the complexity of the arc consistency algorithm used. For binary networks, this gives a
complexity in O(en3d5) if an optimal AC algorithm is used. As for the space complexity, there is no data structures
other than those of the arc consistency algorithm used.

BiSAC1 is of course non-optimal. There are many ways to improve it. For instance, if we accept to increase the
space complexity to O(n2d2), we can store and maintain the domain DT for each value in D, and avoid the arc
consistency test in line 6. Therefore, time complexity decreases by a factor nd , becoming O(en2d4) for networks of
binary constraints. We could also use a technique close to that in SAC-Opt to enforce BiSAC at a lower cost.

6.2. Comparing BiSAC to other local consistencies

BiSAC is a direct application of Observation 2. It can seem similar to 1-AC. Nevertheless, they are different, as
shown in the following theorem.

Theorem 8. BiSAC is strictly stronger than 1-AC.

Proof. Let (Xi, a) removed by 1-AC. (Xi, a) is then such that ∃Xj | ∀b ∈ D(Xj ), (Xi, a) /∈ AC(P |Xj =b). BiSAC will
test AC(Tia) with DT

ia(Xj ) = ∅. Therefore, (Xi, a) is removed by BiSAC and BiSAC is stronger than 1-AC. Strictness
is shown in Fig. 3. (Xi,1) is removed by BiSAC and not by 1-AC. ✷
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Fig. 3. Inconsistency graph of a constraint network which is 1-AC but on which (Xi ,1) is not BiSAC.

Fig. 4. Inconsistency graph of a constraint network which is BiSAC but on which strong path consistency removes (Xi ,1).

Theorem 8 gives a lower bound to the level of consistency ensured by BiSAC. The following theorem shows that
strong path consistency (denoted by StrongPC) is an upper bound. Strong path consistency is the property of having
both arc and path consistency [16].

Theorem 9. StrongPC is strictly stronger than BiSAC.

Proof. Let us prove that StrongPC is stronger than BiSAC. Consider a BiSAC inconsistent value (Xi, a) in a con-
straint network P . According to the definition of BiSAC, the propagation of the deletion from P |Xi=a of the set S

of all the values (Xj , b) such that (Xi, a) /∈ AC(P |Xj =b) leads AC to wipe out a domain D(Xk). In [22], McGregor
shows that a network P is path consistent iff there does not exist any pair of values ((Xi, a), (Xj , b)), allowed by P ,
such that (Xi, a) is arc inconsistent in P |Xj =b . So, all the pairs ((Xi, a), (Xj , b)) such that (Xj , b) ∈ S are path incon-
sistent. Therefore, once these pairs have been removed from P , AC on P |Xi=a will remove all those values (Xj , b)

such that (Xi, a) /∈ AC(P |Xj =b) and will wipe out the same domain D(Xk) as BiSAC. Thus, for all c ∈ D(Xk), the
pair of values ((Xi, a), (Xk, c)) is not path consistent. As a result, applying AC on the path consistent closure of P

will remove (Xi, a), which has no support on Xk . So, (Xi, a) is not StrongPC. Strictness is shown in Fig. 4. (Xi,1)

is removed by StrongPC and not by BiSAC. ✷

In [13] we gave a complete picture of the relations between existing local consistencies, from AC to StrongPC.
This picture can now be completed by our new results. Here is the summary of the relations between BiSAC and the
other local consistencies:

StrongPC ≻ BiSAC ≻ 1-AC ≻ SAC.

Obviously, for any local consistency Φ we can introduce the bidirectional singleton Φ consistency that will enhance
the filtering capability of singleton Φ consistency in a way similar to BiSAC enhancing SAC.
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7. Conclusion

We have proved what is the optimal worst-case time complexity of enforcing SAC on a network of binary con-
straints. We have presented SAC-Opt, the first SAC algorithm that has an optimal time complexity when enforced on
binary constraints. (Optimality is conjectured for non-binary constraints.) We have shown how SAC (and its extension
to 1-AC) is related to techniques for propagating disjunctive constraints. Furthermore, some observations we made
on the characteristics of SAC led us to propose BiSAC, a new local consistency stronger than SAC. We proposed a
simple algorithm enforcing BiSAC and we theoretically compared BiSAC to existing local consistencies.

This comprehensive theoretical analysis of SAC opens new directions of research. On the one hand, SAC-Opt is a
new type of algorithm for SAC. We could look for other algorithms based on this scheme, such as SAC-SDS already
proposed in [6]. On the other hand, BiSAC is a new local consistency that remains to be fully studied, by proposing
better algorithms to enforce it, and by analyzing its effectiveness to prune values.
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