
DOI: 10.1007/s00453-004-1084-3

Algorithmica (2004) 39: 287–298 Algorithmica
© 2004 Springer-Verlag New York, LLC

Maximum Cardinality Search for Computing Minimal
Triangulations of Graphs1

Anne Berry,2 Jean R. S. Blair,3 Pinar Heggernes,4 and Barry W. Peyton5

Abstract. We present a new algorithm, called MCS-M, for computing minimal triangulations of graphs. Lex-
BFS, a seminal algorithm for recognizing chordal graphs, was the genesis for two other classical algorithms:
LEX M and MCS. LEX M extends the fundamental concept used in Lex-BFS, resulting in an algorithm that not
only recognizes chordality, but also computes a minimal triangulation of an arbitrary graph. MCS simplifies
the fundamental concept used in Lex-BFS, resulting in a simpler algorithm for recognizing chordal graphs.
The new algorithm MCS-M combines the extension of LEX M with the simplification of MCS, achieving all
the results of LEX M in the same time complexity.

Key Words. Chordal graphs, Minimal triangulations, Minimal elimination ordering, Minimal fill.

1. Introduction. An important and widely studied problem in graph theory with ap-
plications in sparse matrix computations [10], [14], [16]–[18], database management
[1], [19], knowledge-based systems [11], and computer vision [7] is that of adding as
few edges as possible to a given graph so that the resulting filled graph is chordal. Such a
filled graph is called a minimum triangulation of the input graph. Computing a minimum
triangulation is NP-hard [20]. In this paper we study the polynomially computable alter-
native of finding a minimal triangulation. A minimal triangulation H of a given graph
G is a triangulation such that no proper subgraph of H is a triangulation of G.

Several practical algorithms exist for finding minimal triangulations [2], [5], [8],
[12], [15], [18]. One such classical algorithm, called LEX M [18], is derived from
the Lex-BFS (lexicographic breadth-first search) algorithm [18] for recognizing chordal
graphs.6 Both Lex-BFS and LEX M use lexicographic labels of the unprocessed vertices.
As processing continues, the remaining labels grow, each potentially reaching a length
proportional to the number of vertices in the graph. Lex-BFS adds to the labels of
the neighbors of the vertex being processed, while LEX M adds to the labels of both
neighbors and other vertices that can be reached along special kinds of paths from the

1 A preliminary version of this work appeared as [3]. This collaboration was initiated while the first two authors
were visiting the University of Bergen.
2 LIMOS, UMR CNRS 6158, Université Clermont-Ferrand II, F-63177 Aubiere, France. berry@isima.fr.
3 Department of Electrical Engineering and Computer Science, United States Military Academy, West Point,
NY 10996, USA. Jean.Blair@usma.edu.
4 Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Pinar.Heggernes@ii.uib.no.
5 Division of Natural Sciences and Mathematics, Dalton State College, Dalton, GA 30720, USA.
bpeyton@em.daltonstate.edu.
6 Lex-BFS was originally called LEX P by its authors in [18] and then later was called RTL in [19].

Received March 17, 2003; revised October 29, 2003. Communicated by H. N. Gabow.
Online publication February 16, 2004.

288 A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton

vertex being processed. These special kinds of paths are precisely the paths that produce
fill, and the labels in LEX M are exactly the higher numbered neighbors in the current
filled graph. Interestingly, the simple extension of adding to labels based on reachability
along such fill paths, rather than only along single edges, results in an algorithm that
produces minimal triangulations.

The adjacency labeling concepts developed for Lex-BFS have proved to be central
in the understanding of chordal graphs and triangulations. Tarjan and Yannakakis later
came up with the surprising result that for the case of recognizing chordality, knowing
the specific processed neighbors (i.e., labels) is not necessary; one need only maintain
and compare the number of processed neighbors [19]. This was an important achieve-
ment resulting in a significantly simpler implementation of Lex-BFS, known as the
MCS (maximum cardinality search) algorithm. A natural question that arises is whether
or not cardinality comparisons are also sufficient for the case of minimal triangulations.
That is, is there a significantly simplified implementation of LEX M that uses only the
cardinality of processed vertices that can be reached along special kinds of paths that
turn out to be fill paths? Equivalently, can MCS be extended from neighbors to paths
in order to yield a minimal triangulation algorithm, in analogy with the extension from
Lex-BFS to LEX M? In this paper we introduce an algorithm called MCS-M to fill
exactly this gap.

The relationships between the four algorithms discussed thus far are summarized in
Figure 1. In the figure the algorithms on the left recognize chordal graphs while those
on the right produce minimal triangulations of arbitrary graphs, as well as recognize
chordality. Both algorithms on the left have time complexity O(n+m); both algorithms
on the right have time complexity O(nm).

This paper is organized as follows. In the next section we give the necessary back-
ground in graph terminology, assuming that the reader is familiar with standard graph
notation. Included in Section 2 is a classical characterization of minimal triangulations
that forms the basis for our proofs of correctness. The three algorithms that lead to the
results in this paper are presented in Section 3. Section 4 describes the new minimal
triangulation algorithm MCS-M, and proves its correctness. The proofs add insight into
MCS and minimal triangulations in general, and lead to an interesting invariant of MCS,

of neighbors)

Lex−BFS
(lexicographic labelling

LEX M
(lexicographic labelling

along paths)

MCS
(cardinality labelling

of neighbors)

MCS−M
(cardinality labelling

along paths)

Fig. 1. Relationships between algorithms. Solid arrows represent previous evolution. Dashed arrows represent
the natural evolution to a new MCS-M algorithm.

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 289

which is discussed in Section 5. We conclude with a time complexity discussion and
several open questions in Section 6.

2. Background. All graphs in this work are undirected and finite. A graph is denoted
by G = (V, E), with n = |V | and m = |E |. For a set A ⊆ V , G(A) denotes the subgraph
of G induced by the vertices belonging to A. The neighborhood of a vertex v in G is
NG(v) = {u | uv ∈ E}, and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
Similarly, for a set A ⊆ V of vertices in G, NG(A) =

⋃
v∈A NG(v)− A and NG[A] =

NG(A) ∪ A. When the graph G is clear from the context, we omit the subscript G.
A clique is a set of pairwise adjacent vertices. A vertex v is simplicial if N (v) is a

clique. A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph is chordal, or equivalently triangulated, if it contains no chordless cycle of
length≥ 4. A triangulation of a graph G = (V, E) is a chordal graph G+ = (V, E ∪ F)
that results from the addition of a set F of fill edges, and G+ is a minimal triangulation
if (V, E ∪ F ′) fails to be chordal for every proper subset F ′ of F .

The algorithm shown in Figure 2, called the elimination game, was first introduced
by Parter [14]. Its input is a graph G and an ordering α of G, where α(v) = i if v is
the i th vertex in ordering α. The resulting filled graph G+α is a triangulation of G [9].
The ordering α is a perfect elimination ordering if no fill edges are added during the
elimination game, i.e., G+α = G. Note that this is equivalent to choosing a simplicial
vertex at each step of the elimination game. Fulkerson and Gross [9] showed that the
class of chordal graphs is exactly the class of graphs having perfect elimination orderings.
Thus when the input graph G is not chordal, no perfect elimination of it exists. However,
if G+α is a minimal triangulation of G, then α is called a minimal elimination ordering,
and if G+α is a minimum triangulation of G, then α is called a minimum elimination
ordering on G.

The following theorem characterizes the edges of the filled graph.

THEOREM 2.1 [18]. Given a graph G = (V, E) and an elimination ordering α of G,
uv is an edge in G+α if and only if uv ∈ E or there exists a path u, x1, x2, . . . , xk, v in G
where α(xi) < min{α(u), α(v)}, for 1 ≤ i ≤ k.

Algorithm Elimination Game

Input: A general graph G = (V, E), and an ordering α of the vertices in G.
Output: The filled graph G+α , which is a triangulation of G.

begin
G0 = G;
for i = 1 to n do

Let v be the vertex for which α(v) = i ;
Let Fi be the set of edges necessary to make NGi−1(v) a clique in Gi−1;
Obtain Gi by adding the edges in Fi to Gi−1 and removing v;

G+α = (V, E
⋃n

i=1 Fi);
end

Fig. 2. The elimination game.

290 A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton

Algorithm MCS

Input: A graph G.
Output: An ordering α of G.

begin
for all vertices v in G do

w(v) = 0;
for i = n downto 1 do

Choose an unnumbered vertex v of maximum weight w(v);
for all unnumbered vertices u ∈ N (v) do

w(u) = w(u)+ 1;
α(v) = i ;

end

Fig. 3. Maximum cardinality search.

The authors of [18] also give several interesting characterizations of minimal trian-
gulations. The following theorem, which characterizes minimal triangulations by their
fill edges, will be used to prove the correctness of our algorithm.

THEOREM 2.2 [18]. Given a graph G = (V, E), a triangulation H = (V, E ∪ F) of
G is minimal if and only if every edge in F is the unique chord of a 4-cycle in H .

3. The Lex-BFS, LEX M, and MCS Algorithms. The MCS algorithm (Figure 3) is a
simple linear time algorithm that first processes an arbitrary vertex v assigning α(v) = n,
and then continues generating an elimination ordering in reverse. MCS maintains, for
each vertex v, an integer weight w(v) that is the cardinality of the already processed
neighbors of v. When given a chordal graph as input, MCS produces a perfect elimination
ordering.

Lex-BFS has the same description as MCS, but uses labels that are lists of the already
processed neighbors, instead of using weights. In the beginning l(v) = ∅ for all vertices.
At step n − i + 1, an unnumbered vertex v of the lexicographically highest label is
chosen to receive number i , and i is added to the end of the label lists of all unnumbered
neighbors of v.

LEX M is an extension of Lex-BFS that uses Theorem 2.1 to compute a minimal
triangulation in the following way. Whenv receives number i at step n−i+1, LEX M adds
i to the end of the label lists of all unnumbered vertices u for which there exists a path
between v and u consisting only of unnumbered vertices with lexicographically lower
labels than those of v and u. We call such a path a fill path. Thus vertex v appends its
number α(v) to the label of every vertex u which is connected to v through a fill path, and
vu is an edge of the resulting minimal triangulation. Furthermore, the ordering generated
by LEX M is a minimal elimination ordering of the input graph.

In the next section we show that using weights rather than the labels of LEX M is
sufficient for computing a minimal triangulation. This mimics the simplification of using
weights in MCS rather than the labels of Lex-BFS for computing a perfect elimination

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 291

Algorithm MCS-M

Input: A graph G = (V, E).
Output: A minimal elimination ordering α of G and the corresponding
triangulated graph H = G+α .

begin
F = ∅;
for all vertices v in G do

w(v) = 0;
for i = n downto 1 do

Choose an unnumbered vertex v of maximum weight w(v);
S = ∅;
for all unnumbered vertices u ∈ G do

if there is an edge uv or a path u, x1, x2, . . . , xk, v in G through
unnumbered vertices such that w(xi) < w(u) for 1 ≤ i ≤ k
then S = S ∪ {u};

for all vertices u ∈ S do
w(u) = w(u)+ 1;
if uv �∈ E then F = F ∪ {uv};

α(v) = i ;
H = (V, E ∪ F);

end

Fig. 4. The MCS-M algorithm.

ordering. The new result, an algorithm that we call MCS-M, has a substantially simpler
implementation that that of LEX M.

4. The New MCS-M Algorithm. The new algorithm presented in this paper, MCS-M,
is an extension of MCS in the same way that LEX M is an extension of Lex-BFS. When
v receives number i at step n− i + 1, MCS-M increments the weight of all unnumbered
vertices u for which there exists a path between v and u consisting only of unnumbered
vertices with weight strictly less than w(v) and w(u). The details of this O(nm) time
algorithm are given in Figure 4.

An example run of MCS-M on a 5-cycle is given in Figure 5. The figure shows the
numbers and the weights of the vertices at the end of each step of the algorithm. Numbers
that are assigned to vertices are shown inside each vertex, whereas the current weights
of the vertices are shown next to the vertices, in parentheses. The added fill edges are
given in dashed line style. Note that the added edges have no effect on the choices made
by the algorithm, as the algorithm only considers edges of the original graph G. The
output graph H with the produced ordering α is given as the last graph of the figure.

Another execution of MCS-M is shown in Figure 6(a), and can be compared with
Figure 6(b) where LEX M is applied to the same graph. In (a) and (b) final weights/labels
are given in parentheses after the assigned α order number of each vertex. Both orderings
produce the fill represented by the dashed edges in (c). The ordering is not minimum
since there exists an ordering with only five fill edges. For this example it is not possible

292 A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton

5

4 4 3

2

5

4 3

2 1(1)(2) (2)

3

55

4 (2)

5

(1) (1)

(1)

Fig. 5. An example run of MCS-M on a 5-cycle.

for MCS-M to produce the ordering shown in part (b), and it is not possible for LEX M to
produce the ordering shown in part (a). Thus, LEX M and MCS-M do not produce the
same orderings.

Throughout the remainder of this paper, while speaking about MCS or MCS-M, the
following phrases are considered to be equivalent: u is numbered higher than v and u
is processed earlier than v. The symbols v− and v+ are used as time stamps, where
v− denotes the time at which v is chosen as the vertex to receive its number, and v+
denotes the time at which v receives its number. For any two vertices u and v, where v is
numbered higher than u during an execution of MCS or MCS-M, wv−(u) is the weight
of u at time v−, andwv+(u) is the weight of u at time v+. Similarly, for a set of vertices
A, wv−(A) and wv+(A) denote the highest weight of a vertex among the unnumbered
vertices of A ⊆ V , at times v− and v+, respectively.

To prove the correctness of MCS-M, we will, after establishing the fact that the
computed graph H is chordal, show that every fill edge is the unique chord of a 4-cycle
in H . It will follow then by Theorem 2.2 that H is a minimal triangulation of G. We begin
by proving a property about paths containing unnumbered lower weight intermediary
vertices. As with LEX M, these paths are called fill paths. It will be clear from the proof
of the following lemma that once such a path is established it will remain a fill path
throughout the algorithm and eventually result in a fill edge between its endpoints.

LEMMA 4.1. Let α be an ordering produced by an execution of MCS-M on G. For any
step of MCS-M, let v be the vertex chosen to receive its number. Among the unnumbered
vertices, if

wv−(xi) < wv−(y) ≤ wv−(z)
for all xi on a path y, x1, x2, . . . , xr , z in G, then

α(xi) < min{α(y), α(z)}.

(c) The filled graph.

10

9(1) 8(2)

7(3)

6(3)

(a) An MCS−M ordering.

5(2)

4(2)

1(2)3(2)

2(2)

10

9(10) 8(10,9)

7(10,9,8)

(b) A LEX M ordering.

2(7,5)

5(9,8,7)

3(8,5)

1(6,4)

4(8,6)

6(10,8)

Fig. 6. (a) An MCS-M numbering. (b) A LEX M numbering. (c) A minimal triangulation that is not minimum.

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 293

PROOF. Suppose there is a path for which wv−(xi) < wv−(y) ≤ wv−(z) as in the
premise of the lemma. Note that for any u such that α(v) > α(u) > max{α(xi),

α(y), α(z)}, wu−(u) ≥ max{wu−(y), wu−(z)}. Thus, if wu−(xi) < min{wu−(y),
wu−(z)}, then any lower weight path from u to some xi that causeswu+(xi) = wu−(xi)+1
can be extended as lower weight paths from u through xi to y and to z, respectively,
causing wu+(y) = wu−(y) + 1 and wu+(z) = wu−(z) + 1. Consequently, since MCS-
M always chooses next a vertex with the highest weight to receive the highest remaining
number, the weights of y and z remain larger than the weights of all xi at later steps until
y or z is numbered, and either y or z receives the highest number among the mentioned
vertices. Assume without loss of generality that α(y) < α(z). When z receives its num-
ber it will increase the weight of y, and at all later steps until y is numbered, by the same
argument as above, any vertex that increases the weight of one of the vertices xi will
also increase the weight of y. Thus, y will be numbered higher than any of the xi .

Now, we will prove that MCS-M produces a triangulation of the input graph, by
showing the stronger property that the output graph is exactly the same graph as the
one that would be produced by the elimination game using the ordering α produced by
MCS-M.

THEOREM 4.2. Let H and α be the graph and ordering produced by an execution of
MCS-M on G. Then H = G+α .

PROOF. Given an input graph G, let α be the elimination ordering and let H be the
supergraph computed by an execution of MCS-M. In order to prove that H = G+α , we
will prove that a fill edge uv with α(u) < α(v) is added by MCS-M if and only if there
is a path u, x1, x2, . . . , xr , v in G with α(xi) < α(u) for 1 ≤ i ≤ r . The result will then
follow from Theorem 2.1.

Let u and v be non-adjacent in G, and assume that uv is added by MCS-M. This
can only happen if there is a path u, x1, x2, . . . , xr , v in G where xi is unnumbered with
wv−(xi) < wv−(u) ≤ wv−(v) for 1 ≤ i ≤ r . Then by Lemma 4.1 α(xi) < α(u), for
1 ≤ i ≤ r .

For the other direction, assume that there is a path p = u, x1, x2, . . . , xr , v in G with
α(xi) < α(u) for 1 ≤ i ≤ r , and assume on the contrary that uv is not an edge of H .
Let X = {x1, x2, . . . , xr }. Since v is the first to receive its number among all mentioned
vertices, wv−(v) ≥ wv−(u) and wv−(v) ≥ wv−(X). Since uv is not added by MCS-
M, wv−(u) is smaller than or equal to the highest weight on every path consisting of
unnumbered vertices between u and v at time v−, and, in particular,wv−(X) ≥ wv−(u).
Then wv+(X) > wv+(u), since the vertex of X with the highest weight closest to v on
p is connected to v by a fill path or a direct edge, and thus gets its weight increased
by v. Let xj be the vertex of p closest to u with wv+(xj) > wv−(u), and define pj =
u, x1, x2, . . . , xj−1 and U = {u, x1, x2, . . . , xj−1}. Note first that wv+(xj) > wv+(U)
since we chose xj closest to u on p. Let now z be the vertex that receives its number
and increments the weight of a vertex of U for the first time after time step v+. Then
z also increases the weight of xj since wz−(z) ≥ wz−(xj) > wz−(U). Therefore, w(xj)

will stay higher than w(u) and w(U) at all later steps since every time we increase the
weight of u or any other vertex of U we also increase w(xj). Since a vertex of highest

294 A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton

weight is chosen at each step, this contradicts our assumption that α(xj) < α(u), and
completes the proof.

We now prove the minimality of the computed triangulation.

LEMMA 4.3. Let H = (V, E ∪ F) be the triangulation of G = (V, E) produced by an
execution of MCS-M. Every edge belonging to F is the unique chord of a 4-cycle in H .

PROOF. Observe that every edge in F has at least one associated fill path that caused
MCS-M to add the edge to F . Initially MCS-M assigns weight zero to every vertex, and
thus there are no fill paths. Consequently, there are no fill paths incident with, and hence
no fill edges added incident to, the first vertex chosen to be numbered n by MCS-M. A
fill path is then created only by increasing the weights of the endpoints of paths to values
higher than the weights of the vertices interior to the path.

Let uv be a fill edge generated by MCS-M and let z be the vertex that first establishes
a fill path between u and v. Then there is no fill path joining u and v at time z−, but there
is at least one fill path p = u, x1, x2, . . . , xr , v at time z+. Without loss of generality,
assume that wz−(u) ≤ wz−(v). Clearly, wz−(xi) = wz−(u) for at least one xi on p,
because if wz−(xi) < wz−(u) for every xi , then p would have been a fill path at time
z−, and if wz−(xi) > wz−(u) for some xi , then there is no way that wz+(xi) < wz+(u),
which is required for p to be a fill path at time z+. We will show that for some xi on p,
where wz−(xi) = wz−(u), uv is the unique chord in the 4-cycle u, xi , v, z, u in H .

We begin by establishing the existence of the edges uz and vz in H . Now, uz is an
edge in H because the weight of u must be increased by one at time z+ for p to become
a fill path. Furthermore, ifwz−(u) = wz−(v), then the same argument guarantees that vz
is an edge in H . If, on the other hand, wz−(u) < wz−(v), we have wz−(u) < wz−(v) ≤
wz−(z), since z is chosen at time z−. In this case wz−(xj) ≤ wz−(u) for all vertices xj

on p and there is a fill path between v and z through u at time z−. It follows that the
edge vz is in H .

Next we show that, at time z+, there is no edge xi z in H for any xi on p with
wz−(xi) = wz−(u). Now xi z cannot be an edge of H , because otherwise this would mean
that z increased the weight of xi , implying that wz+(xi) = wz+(u), and consequently xi

would not be on a fill path between u and v at time z+.
Finally, we pick a particular xi with wz−(xi) = wz−(u), and show that the edges uxi

and xiv are in H . By Lemma 4.1, all the vertices xj on p for whichwz−(xj) < wz−(xi) =
wz−(u) receive numbers that are smaller than those received by any such vertex xi . This
means that the highest number assigned to an interior vertex on path p is to such a vertex
xi with wz−(xi) = wz−(u). Let xi be the interior vertex of p with the highest α-number.
By Theorem 2.1 and Lemma 4.1, uxi and xiv are edges in H .

We have shown that the fill edge uv is the unique chord of the 4-cycle u, xi , v, z, u
in H , giving the desired result.

THEOREM 4.4. MCS-M computes a minimal triangulation and a corresponding mini-
mal elimination ordering.

PROOF. Follows from Lemma 4.3 and Theorems 2.2 and 4.2.

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 295

5. A Closer Look at MCS. The results in the previous section demonstrate that main-
taining cardinalities rather than lexicographic labels is sufficient for computing minimal
triangulations. This naturally leads to questions about what properties a vertex numbered
1 by MCS may have in an arbitrary graph, especially in view of the interesting behavior
of MCS on a chordal graph, as fully described in [6]. Given any graph G, we will show
that a vertex of G that is numbered 1 by an execution of MCS can be eliminated first
in some minimal elimination ordering, as is also the case for a vertex numbered 1 by
Lex-BFS (see [4]).

Ohtsuki et al. [13] characterized the vertices that can be numbered 1 in a minimal
elimination ordering. Below we define an OCF-vertex (OCF representing the initials of
the authors of [13]) as a vertex that satisfies their condition, and summarize in a theorem
their results.

DEFINITION 5.1. A vertex x in G = (V, E) is an OCF-vertex if, for each pair of
non-adjacent vertices y, z ∈ N (x), there is a path y, x1, x2, . . . , xk, z in G where xi ∈
G(V − N [x]), for 1 ≤ i ≤ k.

THEOREM 5.2 [13]. A minimal elimination orderingα is computed by choosing, at each
step i of the elimination game, an OCF-vertex x in Gi−1, and setting α(x) = i .

We now present our result, which implies that even standard MCS can be used as a
tool in computing minimal triangulations.

THEOREM 5.3. Given an arbitrary graph G, any vertex that can be numbered 1 by an
MCS execution is an OCF-vertex of G.

PROOF. We will prove the equivalent statement that if a vertex is not an OCF-vertex,
then it cannot be numbered 1 by MCS. Assume on the contrary that there is a vertex x
in G = (V, E) which is not an OCF-vertex and that an execution of MCS on G gives
number 1 to vertex x . For the remainder of this proof, we refer to this execution.

For a vertex y ∈ N (x), we let Cy represent the union of all connected components
of G(V − N [x]) that contain y in their neighborhoods. If Cy is empty, then we let
N (Cy) = {y} for simplicity, and thus Cy ∪ N (Cy) is always non-empty. Since x is not
an OCF-vertex, there must exist two vertices y, z ∈ N (x)with yz �∈ E , such that there is
no path between y and z with all intermediate vertices belonging to G(V − N [x]). Thus
Cy ∩ Cz = ∅. Let Z = N (Cz)− N (Cy), and let Y = N (Cy)− N (Cz). Thus y ∈ Y and
z ∈ Z , and the sets Y, Z , N (Cy), N (Cz) are all proper subsets of N (x). Let z be higher
numbered than y by MCS.

First we make the following observation. At the step when z is chosen to be the next
vertex to receive its number, wz−(Cy ∪ {y}) ≥ wz−(x)+ 1. For a proof of this, assume
that it is not true. When z receives its number it will increase w(x) but not the weight
of any vertex in Cy ∪ {y} since no vertex of Cy ∪ {y} is adjacent to z. So w(x) will
exceed w(Cy ∪ {y}). Clearly, w(Cy ∪ {y}) must eventually either equal or exceed w(x)
since x ends up receiving number 1. So some vertex outside of Cy ∪ {y} ∪ {x} has to be
numbered before anything in Cy ∪ {y} in order to increase w(Cy ∪ {y}) and obey the

296 A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton

assumed numbering on the vertices. The important thing to note is that any such vertex
must lie in N (Cy ∪{y}) and is therefore adjacent to x . Thus every time we try to increase
w(Cy ∪ {y}), we also increase w(x), which gives the desired contradiction.

From the above observation, we can deduce that wz−(x) + 1 ≤ wz−(Cy ∪ N (Cy)).
Let t be the most recent step before z such that wt (Cy ∪ N (Cy)) was increased and
therefore exceeded wt (x). Thus, at that step, a vertex v received its number such that
wv−(Cy ∪ N (Cy)) = wv−(x), and wv+(Cy ∪ N (Cy)) = wv+(x) + 1. Because of
this, and since v was chosen to be the vertex to be numbered, wv−(Cy ∪ N (Cy)) =
wv−(Cz ∪ Z ∪ {x}), and wv+(Cy ∪ N (Cy)) = wv+(Cz ∪ Z ∪ {x})+ 1. This proves the
base case of the following induction hypothesis.

INDUCTION HYPOTHESIS. wt (Cy ∪ N (Cy)) > wt (Cz ∪ Z ∪ {x}) for v+ ≤ t ≤ z−.

Now, let the induction hypothesis be true for all steps until t−1 = u−, and let us prove
it for the step t = u+. Since it is true for u−, we know that the vertex u chosen to receive
its number belongs to Cy ∪ N (Cy). If u ∈ Cy , only the weight of vertices in Cy ∪ N (Cy)

can be increased, so the induction hypothesis is true for step u+. If u ∈ N (Cy), vertex
u might increase w(Cz ∪ Z) by 1, but it will definitely also increase w(x) by 1 since
N (Cy) ⊂ N (x). By our assumption that w(x) does not exceed w(Cy ∪ N (Cy)) − 1
between steps v+ and z−, the induction hypothesis is true for step u+.

By the induction hypothesis wz−(Cy ∪ N (Cy)) > wz−(z), contradicting the assump-
tion that z is numbered at this step while y is still unnumbered.

Theorems 5.2 and 5.3 together give a straightforward algorithm, which we call
Repeated-MCS, for computing minimal triangulations: at each step i of the elimina-
tion game, run MCS on Gi−1, and choose the vertex that is numbered 1 by MCS as
the vertex to receive number i in the resulting minimal elimination ordering. This is an
O(nm ′) time procedure, where m ′ is the number of edges in G+α .

It should be noted that MCS-M and Repeated-MCS are not equivalent. The graph
shown in Figure 7 illustrates this point. The given ordering of the graph is an MCS-
M ordering. However, no MCS ordering of this graph can give the lowest number to
the vertex numbered 1 by MCS-M. Thus no Repeated-MCS ordering is able to pick this
vertex as the first vertex to eliminate.

6. Conclusion. We have described a new algorithm, MCS-M, that computes a minimal
elimination ordering and a minimal triangulation of the input graph. MCS-M can be
viewed as a simplification of LEX M. As can be seen in the example of Figure 6,

4

3 1

2

5

Fig. 7. An example showing an MCS-M ordering which cannot be created by Repeated-MCS.

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 297

LEX M and MCS-M are not equivalent. The maximum label (10,8) and the maximum
weight (3) just before choosing the vertex to be numbered 6 by the two algorithms force
different orderings. However, one interesting open question is whether or not LEX M and
MCS-M produce the same triangulations.

The time complexity of MCS-M is O(nm) which follows from the time complex-
ity analysis of LEX M given in [18], and this is the best known time for producing
minimal triangulations of arbitrary graphs. In order to achieve O(nm) time in [18], the
authors describe an implementation of LEX M that uses label numbers, rather than lists
of vertices as labels. However, in order for the label numbers to implement the relative
lexicographic labels in LEX M properly, their implementation must also sort and nor-
malize all unprocessed label numbers after each vertex is processed. This effectively
adds a (lower-order) term to their time complexity, requiring O(nm + n2) = O(nm)
time. Our MCS-M implementation does not require this extra sorting step, and has thus
an easier and faster implementation.

We also leave open several other questions related to LEX M and MCS-M. How can
one, for example, characterize the vertices which can be numbered 1 by each of these
algorithms? How hard is it to decide whether or not a given vertex can be numbered
1? Is it possible to characterize the minimal triangulations that can be computed by
LEX M and the ones that can be computed by MCS-M? For every graph G, is there a
LEX M and/or MCS-M ordering that gives a minimum triangulation of G?

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database systems,
J. Assoc. Comput. Mach., 30 (1983), 479–513.

[2] A. Berry, A wide-range efficient algorithm for minimal triangulation, in Proceedings of the 10th Annual
ACM–SIAM Symposium on Discrete Algorithms, 1999.

[3] A. Berry, J. R. S. Blair, and P. Heggernes, Maximum cardinality search for computing minimal triangula-
tions, in Graph Theoretical Concepts in Computer Science - WG 2002, L. Kucera, ed., Springer-Verlag,
Berlin, 2002. Lecture Notes in Computer Science.

[4] A. Berry and J.-P. Bordat, Separability generalizes Dirac’s theorem, Discrete Appl. Math., 84 (1998),
43–53.

[5] J. R. S. Blair, P. Heggernes, and J. A. Telle, A practical algorithm for making filled graphs minimal,
Theoret. Comput. Sci., 250 (2001), 125–141.

[6] J. R. S. Blair and B. W. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory
and Sparse Matrix Computations, J. A. George, J. R. Gilbert, and J. W. H. Liu, eds., Springer-Verlag,
New York, 1993, pp. 1–30. IMA Volumes in Mathematics and its Applications, Vol. 56.

[7] F. R. K. Chung and D. Mumford, Chordal completions of planar graphs, J. Combin. Theory, 31 (1994),
96–106.

[8] E. Dahlhaus, Minimal elimination ordering inside a given chordal graph, in Graph Theoretical Concepts
in Computer Science - WG ’97, R. H. Möhring, ed., Springer-Verlag, Berlin, 1997, pp. 132–143. Lecture
Notes in Computer Science 1335.

[9] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math., 15 (1965),
835–855.

[10] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[11] S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical structures
and their applications to expert systems, J. Roy. Statist. Soc. Ser. B, 50 (1988), 157–224.

[12] T. Ohtsuki, A fast algorithm for finding an optimal ordering in the vertex elimination on a graph, SIAM
J. Comput., 5 (1976), 133–145.

298 A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton

[13] T. Ohtsuki, L. K. Cheung, and T. Fujisawa, Minimal triangulation of a graph and optimal pivoting
ordering in a sparse matrix, J. Math. Anal. Appl., 54 (1976), 622–633.

[14] S. Parter, The use of linear graphs in Gauss elimination, SIAM Rev., 3 (1961), 119–130.
[15] B. Peyton, Minimal orderings revisited, SIAM J. Matrix Anal. Appl., 23 (2001), 271–294.
[16] D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970), 597–609.
[17] D. J. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems of

linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York, 1972,
pp. 183–217.

[18] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM
J. Comput., 5 (1976), 266–283.

[19] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), 566–579.

[20] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete Methods,
2 (1981), 77–79.

