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Abstract

A constraint satisfaction problem (CSP) consists of a set of variables; for
each variable, a finite set of possible values (its domain); and a set of con-
straints restricting the values that the variables can simultaneously take. A
solution to a CSP is an assignment of a value from its domain to every vari-
able, in such a way that every constraint is satisfied. Many problems arising
in O.R., in particular scheduling, timetabling and other combinatorial prob-
lems, can be represented as CSPs. Constraint programming tools now exist
which allow CSPs to be expressed easily, and provide standard strategies for
finding solutions. This tutorial is intended to give a basic grounding in con-
straint satisfaction problems and some of the algorithms used to solve them,
including the techniques commonly used in constraint programming tools.
In particular, it covers arc and path consistency; simple backtracking and
forward checking, as examples of search algorithms; and the use of heuristics
to guide the search. A simple example is considered in detail to show the
effect of different choices of formulation and search strategy. Finding optimal
solutions to CSPs is also discussed.

1 Introduction

Constraint satisfaction problems (CSPs) have been a subject of research in
AL for many years. It has been recognised that CSPs have practical sig-
nificance because many problems arising in O.R., in particular scheduling,
timetabling and other combinatorial problems, can be represented as CSPs.
This tutorial is intended to introduce the research into CSPs which is neces-
sary to make use of constraint programming tools; it is not intended to be a
comprehensive survey of the field.
Briefly, a constraint satisfaction problem (CSP) consists of:

o a set of variables X = {x1,....,2,};
e for each variable x;, a finite set D, of possible values (its domain);

o and a set of constraints restricting the values that the variables can
simultaneously take.

Note that the values need not be a set of consecutive integers (although
often they are); they need not even be numeric.

A solution to a CSP is an assignment of a value from its domain to every
variable, in such a way that every constraint is satisfied. We may want to

find:



e just one solution, with no preference as to which one;
e all solutions;

e an optimal, or at least a good, solution, given some objective function
defined in terms of some or all of the variables.

As described below, solutions to CSPs are found by searching systemati-
cally through the possible assignments of values to variables, usually guided
by heuristics. The reasons for choosing to represent and solve a problem as
a CSP rather than, say, as a mathematical programming problem are two-
fold. Firstly, the representation is often much closer to the original prob-
lem: the variables of the CSP directly correspond to problem entities, and
the constraints can be expressed without having to be translated into lin-
ear inequalities. This makes the formulation simpler, the solution easier to
understand, and the choice of good heuristics to guide the solution strategy
more straightforward. Secondly, although CSP algorithms are essentially
very simple, they can sometimes find solutions more quickly than if integer
programming methods are used.

In recent years, with the development of constraint programming tools, it
has become easier to express and solve constraint satisfaction problems. The
first commercial constraint programming tools were those based on exten-
sions of Prolog, in particular CHIP (Constraint Handling in Prolog). Cur-
rently, ICL’s DecisionPower incorporates CHIP, and it is also available from
Cosytec. Prologlll is an alternative constraint programming language based
on Prolog, available from Prologia. Constraint logic programming (i.e. the
extension of logic programming languages like Prolog to support the handling
of constraints) is now a significant area of research in the logic programming
community.

Logic programming is not, however, an essential basis for constraint pro-
gramming, and other tools have been built, notably Solver from ILOG, which
is a C4++ library. (It is worth mentioning that the French computer com-
pany Bull, which had its own constraint programming tool called Charme,
developed from CHIP, has now abandoned this in favour of a version of
ILOG Solver.) Where necessary, examples in this tutorial will refer to ILOG
Solver, which is the tool that I am most familiar with. However, examples
could equally well have been presented in terms of CHIP or another tool.

2 Constraints

The constraints of a CSP are usually represented by an expression involving
the affected variables, e.g.



1 7£ T2
21’1 == 101’2 + T3
1Ty < T3

or, in ILOG Solver,

CtNeq(x1,x2);
CtEq(2*x1, 10*x2 + x3);
CtLt(x1l * x2, x3);

It is useful also to be aware of the formal definition of a constraint: a
possible constraint C;;.. between the variables z;, x;, xy, ... is any subset of
the possible combinations of values of x;, z;, xx,...". The subset specifies the
combinations of values which the constraint allows.

For example, if variable  has the domain {1,2,3} and variable y has the
domain {1,2} then any subset of {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)} is a
valid constraint between = and y. The constraint * = y would be represented
by the subset {(1,1), (2,2)}.

Although the constraints of real problems are not represented this way in
practice, the definition does emphasise that constraints need not correspond
to simple expressions, and, in particular, they need not be linear inequalities
or equations (although they can be).

A constraint can affect any number of variables from 1 to n (n is the
number of variables in the problem). The number of affected variables is the
arity of the constraint. It is useful to distinguish two particular cases:

Unary constraints affect just one variable. The constraint can be used
to remove any value which does not satisfy the constraint from the domain
of the variable at the outset. For instance, if there is a constraint x; # 1,
the value 1 can be removed from the domain of x;, and the constraint will
then be satisfied. Since unary constraints are dealt with by preprocessing
the domains of the affected variable, they can be ignored thereafter.

Binary Constraints affect two variables. If all the constraints of a CSP
are binary, the variables and constraints can be represented in a constraint
graph: the nodes of the graph represent the variables and there is an edge
joining two nodes if and only if there is a constraint between the correspond-
ing variables.

'The possible combinations of values of ;, ;, zx, ... are given by the cross-product of
the domains, D; X D; X Dy.....,s0 Cjj.. is a possible constraint if:

Cijk.. CD; x Dj x Dy x ...



In fact, any constraint of higher arity can be expressed in terms of binary
constraints, although in practice this is not likely to be worth doing. Hence,
in some sense, binary CSPs are representative of all CSPs.

An individual binary constraint between two variables with domain sizes
my and my can be represented by an m; X my matrix of 0-1 values, where
1 signifies that the constraint allows the corresponding pair of values, and
0 that it does not. Although this is not a practical way of defining real
constraints, it means that a random 0-1 matrix can represent a binary con-
straint, and this allows experimenters who need a large number of CSPs to
produce randomly-generated problems. (The pairs of variables which have
constraints between them are also selected randomly. [9] describes in more
detail two possible models for randomly-generated CSPs.) A great deal of
experimental work on CSPs, comparing the performance of different algo-
rithms, for instance, has been done using populations of randomly-generated

binary CSPs.

2.1 Example

Cryptarithmetic puzzles, like the following, can be expressed as CSPs. Each
letter in the following sum stands for a different digit: find their values.

DONALD
+ GERALD

= ROBERT

The variables are the letters D, O, N, A, L, G, E, R, B, T and their
domains are the set of digits {0 .. 9} (except that D, G and R cannot be
0). This expressed in ILOG Solver by creating a set of constrained integer
variables:

CtIntVar D(1,9),0(0,9),N(0,9),A(0,9),L(0,9),
G(1,9),E(0,9),R(1,9),B(0,9),T(0,9);

It is convenient to form an array containing pointers to these variables:

CtIntVar* AllVars[]
={&D,&0,&N,&A ,&L ,&G ,&E ,&R,&B,&T7};

The constraints are:



o the ten variables must all be assigned a different value. Technically,
this means that there is a ‘not-equal’ constraint between every pair of
variables, giving 45 binary constraints. In practice, tools such as ILOG
Solver allow an easy way of stating that all variables in a specified set
must set have different values:

CtAllNeq(10, AllVars);

o the sum given must work out:

CtEq(100000*D+10000*0+1000*N+100*A+10*L+D
+ 100000*%G+10000*E+1000*R+100*A+10*L+D,
100000*R+10000*0+1000*%B+100*E+10*R+T) ;

(There are alternative ways of formulating this problem, which are better
from the point of view of finding a solution. This will be discussed later.)

3 Arc Consistency

If there is a binary constraint C;; between the variables z; and x; then the
arc? (x;, ;) is arc consistent if for every value a € D;, there is a value b € D;
such that the assignments z; = « and z; = b satisfy the constraint Cj;.
Any value a € D; for which this is not true, i.e. no such value b exists, can
safely be removed from D;, since it cannot be part of any consistent solution:
removing all such values makes the arc (x;,x;) arc consistent. Note that we
have only checked the values of x;; there may still be values in the domain
of z; which could be removed if we reverse the operation and make the arc
(x;,x;) arc consistent.

Figure 1(a) shows the original domains of # and y. In (b), (x,y) has
been made arc consistent; in (c), both (z,y) and (y, x) have been made arc
consistent.

(Note that if a binary constraint is represented by a matrix, in the manner
described earlier, making the constraint arc consistent in both directions
effectively removes any values from the domains of the two variables for
which the corresponding row or column in the matrix is all zeros.)

If every arc in a binary CSP is made arc consistent, then the whole
problem is said to be arc consistent. Making the problem arc consistent is

*The arc (z;, z;) has a direction attached to it, so that it is distinct from the arc (z;, ;).
The edge joining z; and x;, on the other hand, is undirected.



X X<y-2 y
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@)
X X<y-2 y
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X X<y-2 y
{12 {4,5}
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Figure 1: Making (x,y) and (y, x) arc consistent

often done as a pre-processing stage: reducing the sizes of some domains
should make the problem easier to solve.

A number of algorithms for making a CSP arc consistent have been pro-
posed: the most commonly-used ones appear to be AC-3 and AC-4 (although
variations up to at least AC-7 exist, each supposedly better than its prede-
cessors in some way). AC-4 has worst case time complexity O(d?*c) where d
is the maximum domain size and ¢ is the number of binary constraints; the
space complexity is similarly O(d*c).

Since it is reasonably cheap to make a problem (or just the arcs cor-
responding to binary constraints) arc consistent, constraint programming
tools normally include an arc consistency algorithm. In ILOG Solver, for
instance, arc consistency is established as constraints are defined and main-
tained whenever any change is made, e.g. to the domains of variables. This
is done automatically.

Example. Suppose we have a set of activities, each with a specified
duration. There are precedence constraints between the activities, so that if
task A precedes task B, then:

startA 4+ durationA < startB

Task Duration Precedes
A 3 B.,C
B 2 D
C 4 D
D 2




We can express this as a binary CSP by introducing variables representing
the start time of each activity, and others representing the start and finish of
the project. Since the project need not take longer than the total duration
of all the activities (11), this gives a possible limit for each variable.

Variable Initial domain
start {0}
startA {0..11}
startB {0..11}
startC {0..11}
startD {0..11}
finish {0..11}

Arc consistency reduces the domains of the variables as shown below.
Any value remaining in any variable’s domain is part of a consistent solution
to the whole problem, which will allow the project to finish by time 11, as
shown in Figure 2.

startB
(3.7}
start startA startD finish
{0} {0..2} (7.9} {9.11}
dartC
{3.5

Figure 2: Simple project network

Note that if we want to minimise the project completion time and now
set finish to its minimum possible value, further values will be removed
from the domains. This is equivalent to the Critical Path Method.

Hence in a project planning problem with precedence constraints only
(and no resource constraints, for example), arc consistency is sufficient by
itself to remove all values from the domains which cannot be part of any
solution. This is not generally true, and in order to find a solution, if there
is one, we need to search for one.

4 Path Consistency and Beyond

In Figure 3, the problem is arc consistent, but it is clear that the variable «
cannot have the value 2. In general, even when a problem has been made



{45}

X<y-2 y<z
z>=5x
X z
{12 {6..10}
w >= 5x w+z< 20
w
{6..10}

Figure 3: An arc consistent constraint network

arc consistent, it is possible to make further deductions from the constraints,
short of searching for a complete solution. The next step (still with binary
constraints) is to consider triples of variables, in which two pairs of variables
have a non-trivial constraint between them. (A trivial constraint here is one
that allows every pair of values.)

Figure 4: A triangle of constraints

In Figure 4, suppose there are non-trivial constraints between z; and x;,
and between z; and xy.

The path (x;,x;,x)) is path consistent iff for every pair of values v; €
D; and v, € Dy allowed by the constraint C;; there is a value v; € D;
such that (v;,v;) € Cy; and (v;,vr) € Cj. If there is no such value v;
then (v;,vy) should be removed from the constraint Cy, i.e. the constraint
should be tightened. In other words, if no value can be found for z; which
is simultaneously consistent with x; = v; and x;, = vy, then we cannot allow
these values to be simultaneously assigned to x; and zy.

In the example of Figure 3, making (x,w, z) path consistent would show
that the constraint between x and z has to be tightened to exclude the



simultaneous assignment of x = 2 and z = 10; making the problem arc
consistent again would show that the value 2 must be removed from the
domain of . So in this case, path consistency would allow the problem to
be considerably simplified.

It is, of course, possible to check every triple of variables in a binary CSP
and tighten the constraints where possible. Clearly, the number of possible
triples is greater than the number of pairs of variables that need to be checked
to make the problem arc consistent, and the best algorithm has worst case
time complexity O(d*n®). This is one reason why path consistency algorithms
are not in common use. Another is that since constraints are not generally
expressed as allowed tuples of values, it is not easy to remove individual pairs
of values in order to tighten a binary constraint.

In practice, the constraints required for path consistency are often easy
to see when the problem is formulated. For instance, in the triangle of
constraints in Figure 5, path consistency shows that the constraint between
x and z must be & # z; a constraint such as this, which must effectively
exist, but may not be specified in the original statement of the problem, is
called an induced constraint. (See [8] for further discussion of this.)

z

Figure 5: Example of an induced constraint between x and z

It is also possible to consider groups of 4 or more variables and attempt to
induce new constraints (which will in general be non-binary), but this is still
more time-consuming: in practice, preprocessing rarely goes beyond making
a problem arc consistent.

5 Search Algorithms

Most algorithms for solving CSPs search systematically through the possible
assignments of values to variables. Such algorithms are guaranteed to find
a solution, if one exists, or to prove that the problem is insoluble, but they
may take a very long time to do so.

This paper is not intended to be a comprehensive survey of constraint sat-
isfaction algorithms. I shall consider only two systematic search algorithms:



a simple backtracking algorithm, and the forward checking algorithm, which
is the default search algorithm in the constraint programming tools that I
am aware of.

Both algorithms instantiate (i.e. assign a value to) each variable in turn,
and build up a partial solution consisting of the variables already considered,
with their assigned values; these are termed the past variables. The variables
which are so far uninstantiated are the future variables.

In the backtracking algorithm, the current variable is assigned a value
from its domain. This assignment is then checked against the current partial
solution; if any of the constraints between this variable and the past variables
is violated, the assignment is abandoned and another value for the current
variable is chosen. If all values for the current variable have been tried, the
algorithm backtracks to the previous variable and assigns it a new value. If a
complete solution is found, i.e. a value has been assigned to every variable,
the program may terminate, if only one solution is required, or carry on to
find new solutions. If there are no solutions, the algorithm terminates when
all possibilities have been considered.

If the CSP has n variables, each with m possible values, the maximum
depth of any branch in the search tree is n and up to m branches are cre-
ated from each node. There are up to m™ possible assignments of values to
variables (many of which will not be allowed by the constraints, of course).
Hence, the tree has up to m” leaf nodes.

An example of a search tree built by the backtracking algorithm is shown
in Figure 6, using the 4-queens problem. (The n-queens problem requires
placing n queens on an n X n chessboard in such a way that no queen can
take any other: hence no two queens can be on the same row, the same column
or the same diagonal of the board.) As a CSP, this problem has 4 variables,
representing the rows of the chessboard, and each variable has domain {1,..,4}
representing the 4 columns. However, it is easier to follow the progress of the
search if the chessboard representation is used: a Q on a particular square
should be taken as meaning that the variable corresponding to that row has
been assigned the value corresponding to that column. Deadends, where the
algorithm has to backtrack to a previous choice, are marked by crosses, and
the solution eventually found is marked by a tick.

The backtracking algorithm only checks the constraints between the cur-
rent variable and the past variables. The forward checking algorithm, on the
other hand, checks the constraints between the current (and past) variables
and the future variables. When a value is assigned to the current variable,
any value in the domain of a future variable which conflicts with this assign-
ment is (temporarily) removed from the domain. The advantage of this is
that if the domain of a future variable becomes empty, it is known immedi-

10



Q Q
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q
X X X X X
Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q
X X X X X X X
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
X X X X X X v

Figure 6: Search tree for 4-queens using simple backtracking

ately that the current partial solution is inconsistent, and as before, either
another value for the current variable is tried or the algorithm backtracks to
the previous variable; the state of the domains of future variables, as they
were before the assignment which led to failure, is restored. With simple
backtracking, this failure would not have been detected until the future vari-
able was considered and it would then have been discovered that none of its
values were consistent with the current partial solution. Forward checking
therefore allows branches of the search tree that will lead to failure to be
pruned earlier than with simple backtracking.

This can again be illustrated using the 4-queens problem. If we start by
placing a queen on the first row, then none of the other queens can be placed
in the same column or on the same diagonal, and the values corresponding
to the squares attacked by this queen can be removed from the domains of
the variables representing the queens in rows 2 to 4, unless and until this
branch leads to a dead end, and the first row queen has to be moved. The
full search tree built by forward checking for this problem is shown in Figure
7. Squares with crosses denote values removed from the domains of future
variables by the past and current assignments.

Note that whenever a new variable is considered, all its remaining values
are guaranteed to be consistent with the past variables, so that checking
an assignment against the past assignments is no longer necessary. If all
the constraints are binary, then only the constraints between the current

11



Q Q
Q Q Q
Q Q Q
X
Q Q
Q Q
Q Q
X
Q
Q
Q
Q
v

Figure 7: Search tree for 4-queens using forward checking

variable and future variables need be checked; it is only if there are constraints
of higher arity that the past variables may need to be involved. (A k-ary
constraint (k > 2) needs to be checked if and only if the current variable
is one of the variables involved in the constraint, and all but one of the
other variables in the constraint have already been instantiated; the past
instantiations then effectively reduce the constraint to a binary constraint
between the current variable and a future variable.)

Forward checking does more work when each assignment is added to the
current partial solution, in order to reduce the size of the search tree and
so (hopefully) reduce the overall amount of work done. In fact, in 4-queens
forward checking does about the same amount of work as the backtracking
algorithm in checking for consistency; there is not enough scope in such a
small search tree for early pruning of large branches. However, the follow-
ing artificial example will show that forward checking can save an arbitrary
amount of work compared with simple backtracking: suppose we have vari-
ables xy,xq, 23, ....,2,, where x1, 25,2, all have domain {1,2} and the con-
straints on these three variables are that they should all have different values.

12



Clearly this subproblem, and thus the whole problem, is infeasible. (It does
not matter what the domains of the remaining variables zj, ....,x,_; are, or
what the constraints on these variables are: we assume that this part of the
problem can be solved without any difficulty.) The backtracking algorithm
will instantiate variables x; and x5 to 1 and 2 respectively, and then assign
values to x3, ...., z,_1 In turn, before discovering that there is no value for =,
which is consistent with the first two assignments. It will then backtrack to
x,—1 and try all the alternative assignments for this variable, then backtrack
to x,_2, and so on, even though these variables are not part of the subprob-
lem which is causing the difficulty. It could take a very long time to discover
that the problem has no solution. Forward checking, on the other hand,
will discover that there is no remaining value in the domain of z, as soon
as values have been assigned to x; and z,: it will never consider assigning
values to the remaining variables. Forward checking is not the only way of
avoiding this kind of stupidity, and it can get into difficulties itself; on the
whole, however, it performs reasonably well compared with other algorithms,
when combined with good heuristics as described in the next section, and it
is almost always a much better choice than simple backtracking.

A search strategy which does still more work in looking ahead when an
assignment is made combines forward checking with maintaining arc consis-
tency. Whenever a new subproblem is created, by removing values from the
domains of future variables which are inconsistent with the current assign-
ment, the subproblem is made arc consistent. This will remove further values
from the domains of future variables, and as with forward checking itself, the
hope is that in doing additional work at the time of the assignment, there
will be an overall time-saving. Forward checking combined with maintaining
arc consistency is the default algorithm used in ILOG Solver, for instance.

6 Variable Ordering

A tree search algorithm for constraint satisfaction requires the order in which
variables are to be considered to be specified. (Even if no particular order
is specified, the algorithm must have some default ordering to fall back on,
probably the order in which the variables were defined.) The ordering may be
either a static ordering, in which the order of the variables is specified before
the search begins, and is not changed thereafter, or a dynamic ordering, in
which the choice of next variable to be considered at any point depends on
the current state of the search.

Dynamic ordering is not feasible for all tree search algorithms: for in-
stance, with simple backtracking there is no extra information available dur-

13



ing the search that could be used to make a different choice of ordering from
the initial ordering. However, with forward checking, the current state in-
cludes the domains of the variables as they have been pruned by the current
set of instantiations, and so it is possible to base the choice of next variable
on this information.

A common variable ordering heuristic is based on what Haralick and El-
liott [4] termed the “fail-first” principle, which they explained as “To succeed,
try first where you are most likely to fail.” In forward checking, this principle
is implemented by choosing next the variable with fewest remaining values in
its domain, on the assumption that any value is equally likely to participate
in a solution, so that the more values there are, the more likely it is that one
of them will be a successful choice.

Calling this the fail-first principle is, it seems to me, slightly misleading,
or at least one-sided: after all, we do not want to fail, so it seems at first
sight perverse to deliberately choose the variable that is most likely to lead
to failure. The reasoning is that if the current partial solution will not lead
to a complete solution, so that the current branch will eventually prove to be
a dead end, then the sooner we discover this the better. Hence encouraging
early failure, if failure is inevitable, is beneficial in the long run. On the
other hand, if the current partial solution can be expanded to a complete
solution, then every remaining variable must be instantiated and the one
with smallest domain is likely to be the most difficult to find a value for:
instantiating other variables first may further reduce its domain and lead to
a failure. Hence the principle could equally well be stated as “Deal with hard
cases first: they can only get more difficult if you put them off.” So whether
the current partial solution will lead to a complete solution, in which case
we want to get to the solution straightaway without further backtracking, or
will not lead to a solution, and we want to find that out as soon as possible,
choosing the variable with smallest remaining domain makes sense.

This heuristic should reduce the average depth of branches in the search
tree by triggering early failure. Hence, even if there is no solution, so that
a complete search is required, or if all solutions are required, the size of the
search tree explored is less than if a static ordering is used.

When all variables have the same number of values, which is the case
in some problems at the start, then the fail-first principle indicates that we
should still try to choose the variable which is likely to be most difficult
to instantiate, and a good choice is the variable which participates in most
constraints (in the absence of more specific information on which constraints
are likely to be difficult to satisfy, for instance).

A word of warning. Most experiments with CSPs have been done with
randomly-generated problems in which every variable has the same domain

14



size initially and all constraints are equally difficult to satisfy. For these
problems, choosing the variable with smallest domain works extremely well.
For real problems, too, it is often a good choice, but sometimes needs a
little thought. For instance, [10] describes a rostering problem in which
the variables represent tasks and the values people who can do those tasks.
Some of the variables have very small domains initially, not because they
are difficult to assign, but because they represent tasks which particular
individuals can do, if there is nothing of higher priority available. So in this
case, choosing the variable with smallest domain first would be wrong.

7 Value Ordering

Having selected the next variable to assign a value to, a search algorithm has
to select a value to assign. As with variable ordering, unless values are to
be assigned simply in the order in which they appear in the domain of each
variable, we should decide how to choose the order in which values should be
assigned. A different value ordering will rearrange the branches emanating
from each node of the search tree. This is an advantage if it ensures that
a branch which leads to a solution is searched earlier than branches which
lead to dead ends, provided that only one solution is required. If all solutions
are required, or if the whole tree has to be searched because there are no
solutions, then the order in which the branches are searched is immaterial.
Suppose we have selected a variable to instantiate: how should we choose
which value to try first? It may be that none of the values will succeed;
we are in fact exploring what will turn out to be a dead end, and we shall
have to backtrack to the previous variable. In that case, every value for the
current variable will eventually have to be considered, and the order does
not matter. On the other hand, if we can find a complete solution based on
the past instantiations, we want to choose a value which will lead to such a
solution; a good general principle, then, is to choose a value which is likely
to succeed, and unlikely to lead to a conflict (if we can detect such a value).
Some value ordering heuristics based on this principle have been proposed
for use with forward checking, e.g. [5, 3]. In both cases, in order to select
a value for the current variable, the state of the domain of future variables
which would result from each choice is found, i.e. forward checking is done for
each value in turn. Keng & Yun [5] suggest then calculating the percentage
of values in future domains which will no longer be usable, as a measure of
the cost of making this choice: the best choice would be the value with lowest
cost. Geelen [3] suggests instead calculating the ‘promise’ of each value, that
is the product of the domain sizes of the future variables after choosing this
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value (this is an upper bound on the number of possible solutions resulting
from the assignment): the value with highest promise should be chosen.

Unfortunately, there is a great deal of work involved in forward checking
from each possible value in turn. For randomly-generated problems, and
probably in general, the work involved in assessing each value is not worth
the benefit of choosing a value which will on average be more likely to lead
to a solution than the default choice.

In particular problems, on the other hand, there may be information
available which allows the values to be ordered according to the principle of
choosing first those most likely to succeed.

8 Example

The cryptarithmetic problem discussed earlier was formulated with a single
constraint representing the required sum:

CtEq(100000*D+10000*0+1000*N+100*A+10*L+D
+ 100000*%G+10000*E+1000*R+100*A+10*L+D,
100000*R+10000*0+1000*%B+100*E+10*R+T) ;

This is sufficient to allow ILOG Solver to find a solution, using its de-
fault strategy of forward checking combined with arc consistency. However,
it takes a relatively long time. The performance of the algorithm can be
measured by the number of times it detects a failure and has to backtrack.
With the constraint stated as above, it takes 8018 fails to find the solution.

The difficulty lies in the formulation of the sum as a single constraint
involving all the variables. If we tried solving the puzzle by hand, considering
the sum as a whole in this way would not give an obvious point of attack;
if we consider how forward checking works, we can see that it also causes
difficulties for the algorithm.

The power of the forward checking algorithm lies in the fact that each
instantiation of a variable can be used to reduce the domains of future vari-
ables. Tools such as Solver also continually make sure that the remaining
subproblem is arc consistent; having reduced the domains of two future vari-
ables which have a constraint between them, arc consistency may show that
further reductions to the domain of one or other have become necessary.
Both of these methods of reducing future domains can only make use of
binary constraints, or constraints which have effectively become binary be-
cause all but two of the affected variables have already been instantiated.
The pruning effect of higher arity constraints therefore has to be postponed
until sufficient variables have been instantiated to make them into binary
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constraints. Hence, the forward checking algorithm combined with main-
taining arc consistency is best at solving binary CSPs. If there is a choice
between two formulations of a problem as a CSP, both of which represent
problem entities in a natural way, then in general one that has constraints of
low arity should be chosen.?

With this in mind, an alternative formulation representing the sum col-
umn by column, which has additional variables representing the quantities
carried into the next column, is preferable:

CtIntVar
c1(0,1),c2(0,1),€3(0,1),C4(0,1),C5(0,1);

CtEq(Q*D, 10*%C1 + T);
CtEq(Q*L + C1, 10*%C2 + R);
CtEq(Q*A + C2, 10%C3 + E);
CtEq(N + R + C3, 10%C4 + B);
CtEq(E + C4, 10%C5);

CtEq(D + G + C5, R);

This finds the solution with 212 fails, a dramatic improvement.

So far, nothing has been said about variable and value ordering heuristics.
It is hard to see any reason for preferring one value to another, so we shall not
specify a value ordering; for the variable ordering, the heuristic of choosing
the variables with smallest remaining domain, from amongst the original
variables, seems a good choice. (Note that if we choose the variable with
smallest remaining domain from amongst all the variables, the ‘carries” would
be chosen first, as they start off with smaller domains. In this case, choosing
the carries first gives good results, but in general it may not be a good idea to
allow subsidiary variables, defined entirely in terms of the original variables,
to drive the search strategy.) With this heuristic, the solution is found with
only 14 fails.

This is still not the best that can be done; however, the final improvement
seems to depend on giving Solver a piece of additional information that it
cannot spot for itself. It is clear from looking at the original sum that T must
be even; however, arc consistency does not allow Solver to eliminate the odd
values from the domain of T. If we do this by hand, as well as making all the
previous modifications, the solution can be found without any backtracking.

31t has been mentioned that any CSP can in theory be expressed as a binary CSP.
However, this is done by introducing new variables which represent tuples of the original
variables, so that the new formulation is likely to be much more cumbersome to deal with.

(See [12] for details.)
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9 Symmetries

In many problems, if there are any solutions at all, there are classes of equiv-
alent solutions. For instance, in timetabling problems, it may be possible to
interchange the allocations to the time slots and still have a feasible solution;
in rostering problems, a group of staff may have the same skills and the same
availability and so be interchangeable in the roster. Such symmetries in the
problem may cause difficulties for a search algorithm: if the problem turns
out to be insoluble, or the algorithm is exploring a branch of the search tree
which does not lead to a solution, then all symmetrical assignments will be
explored in turn. This is a waste of effort, because if one such assignment is
infeasible, then they all are. Such symmetries should be avoided, if possible,
by including additional constraints in the formulation which will allow only
one solution from each class of equivalent solutions.

It is difficult to give general advice on how to do this, because it depends
on the particular problem. As an example, in the rostering problem, we
could number the staff in the group, and the tasks which the members of the
group can be assigned to in the first time-period covered by the roster, and
insist that if ¢+ < j then the task assigned to person ¢ must have a smaller
number than the task assigned to person j. This means that the staff in the
group are no longer interchangeable, thus ruling out the equivalent solutions,
and avoiding doing unnecessary work. For instance, if there is no solution
with person 1 assigned to task 1, then there will be no solution with person
2 assigned to task 1 either. (For more information on avoiding symmetries
by adding constraints, see [6]. An example of a problem with symmetries is

described in [11].)

10 Optimization Problems

Constraint programming tools adopt the same general approach to attempt-
ing to find an optimal solution: create a constrained variable which repre-
sents the objective function, find an initial solution, then introduce a new
constraint that the value of the objective variable must be better than in the
initial solution. Repeatedly solve the new problem and tighten the constraint
on the objective variable in this way until the problem becomes insoluble:
the last solution found is then the optimal solution.

For instance, ILOG Solver has a built-in function CtMinimize (and an-
other CtMaximise, but we shall assume that we have a minimization problem)
which can replace the usual function which finds just one solution, and takes
an extra parameter, which is the variable representing the objective function,
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say cost. It is the programmer’s responsibility to see that cost is defined
in terms of the other variables in the problem, and that whenever a solution
to the problem is found, cost is thereby assigned a value. Effectively what
then happens (though this is taken care of internally by CtMinimize) is that
whenever a new solution is found, the value of cost is saved, say in best,
and a new constraint is added:

cost <= best -1
The new problem is then solved, and this is repeated until the constraint on
cost has been tightened to the extent that the problem cannot be solved;
the last constraint is then removed and the previous solution (which is now
known to be optimal) is found again.

This is clearly somewhat inefficient, in that the optimal solution is found
twice. However, it works well, provided that the problem is small. With
large problems, as the constraint on cost gets tighter, it can get extremely
difficult to find a solution. Whereas good heuristics may be able to find a
solution quickly if there are many possible solutions, this gets more difficult
if there are few solutions, and of course in order to prove that a problem has
no solutions (to show that the last solution was optimal) the entire search
tree must be explored. So for large problems it may not be practicable to get
anywhere near the optimal solution, still less to prove optimality. This partly
depends on particular circumstances: in some cases, proving optimality is
straightforward, because reducing cost below its optimal value results in a
problem which is obviously infeasible. Even then, finding an optimal solution
may not be easy.

In many cases, therefore, it is necessary to rely on good heuristics, and
allow the program to search for improvements on the initial solution for as
long as is practicable before accepting the current solution as (hopefully)
good enough. The advantage in that case over heuristics which will simply
construct a solution is that the built-in backtracking may find significant
improvements over the initial solution before the search has to be abandoned.

11 Conclusions

It is probably clear from the foregoing that the search algorithms available
for solving CSPs are relatively unsophisticated, compared for instance to
mathematical programming techniques. On the other hand, it is because of
this that the constraints can be much more expressive, and therefore more
powerful, than is allowed in mathematical programming.

Because algorithms like forward checking search systematically for solu-
tions, they are unlikely to be able to handle large problems without good
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heuristics to guide them. Good variable and value ordering heuristics are
often crucial, and can make the difference between finding a solution very
quickly and failing to find a solution at all.

An area which needs further investigation is the comparison between
mathematical programming and constraint programming. Integer program-
ming problems can be expressed as CSPs, but when is it worthwhile to do
so? In [11], I describe a problem where constraint programming succeeded in
finding a solution when integer programming had failed, and discuss reasons
for the difference in performance in this case.

12 Further Reading

For a thorough overview of constraint satisfaction problems, concentrating
especially on search algorithms and achieving different levels of consistency
in CSPs, see Edward Tsang’s book [12].

Van Hentenryck’s book [13] is specifically on CHIP, and so contains a
good deal on how Prolog has been extended to produce CHIP. It does also,
however, contain quite a lot of useful material on tackling specific problems,
which would apply to most constraint programming tools. Other useful pa-
pers on applying CHIP to specific problems, and comparing this approach
with traditional OR are [1] and [2].

Papers on Solver are available from the ILOG World-Wide Web site
(http://www.ilog.fr/ilog/products/solver/solver .html),including an
overview of the system [7] and the paper on symmetries already mentioned

[6].
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