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AbstractA constraint satisfaction problem (CSP) consists of a set of variables; foreach variable, a �nite set of possible values (its domain); and a set of con-straints restricting the values that the variables can simultaneously take. Asolution to a CSP is an assignment of a value from its domain to every vari-able, in such a way that every constraint is satis�ed. Many problems arisingin O.R., in particular scheduling, timetabling and other combinatorial prob-lems, can be represented as CSPs. Constraint programming tools now existwhich allow CSPs to be expressed easily, and provide standard strategies for�nding solutions. This tutorial is intended to give a basic grounding in con-straint satisfaction problems and some of the algorithms used to solve them,including the techniques commonly used in constraint programming tools.In particular, it covers arc and path consistency; simple backtracking andforward checking, as examples of search algorithms; and the use of heuristicsto guide the search. A simple example is considered in detail to show thee�ect of di�erent choices of formulation and search strategy. Finding optimalsolutions to CSPs is also discussed.1 IntroductionConstraint satisfaction problems (CSPs) have been a subject of research inA.I. for many years. It has been recognised that CSPs have practical sig-ni�cance because many problems arising in O.R., in particular scheduling,timetabling and other combinatorial problems, can be represented as CSPs.This tutorial is intended to introduce the research into CSPs which is neces-sary to make use of constraint programming tools; it is not intended to be acomprehensive survey of the �eld.Brie
y, a constraint satisfaction problem (CSP) consists of:� a set of variables X = fx1; ::::; xng;� for each variable xi, a �nite set Di of possible values (its domain);� and a set of constraints restricting the values that the variables cansimultaneously take.Note that the values need not be a set of consecutive integers (althoughoften they are); they need not even be numeric.A solution to a CSP is an assignment of a value from its domain to everyvariable, in such a way that every constraint is satis�ed. We may want to�nd: 1



� just one solution, with no preference as to which one;� all solutions;� an optimal, or at least a good, solution, given some objective functionde�ned in terms of some or all of the variables.As described below, solutions to CSPs are found by searching systemati-cally through the possible assignments of values to variables, usually guidedby heuristics. The reasons for choosing to represent and solve a problem asa CSP rather than, say, as a mathematical programming problem are two-fold. Firstly, the representation is often much closer to the original prob-lem: the variables of the CSP directly correspond to problem entities, andthe constraints can be expressed without having to be translated into lin-ear inequalities. This makes the formulation simpler, the solution easier tounderstand, and the choice of good heuristics to guide the solution strategymore straightforward. Secondly, although CSP algorithms are essentiallyvery simple, they can sometimes �nd solutions more quickly than if integerprogramming methods are used.In recent years, with the development of constraint programming tools, ithas become easier to express and solve constraint satisfaction problems. The�rst commercial constraint programming tools were those based on exten-sions of Prolog, in particular CHIP (Constraint Handling in Prolog). Cur-rently, ICL's DecisionPower incorporates CHIP, and it is also available fromCosytec. PrologIII is an alternative constraint programming language basedon Prolog, available from Prologia. Constraint logic programming (i.e. theextension of logic programming languages like Prolog to support the handlingof constraints) is now a signi�cant area of research in the logic programmingcommunity.Logic programming is not, however, an essential basis for constraint pro-gramming, and other tools have been built, notably Solver from ILOG, whichis a C++ library. (It is worth mentioning that the French computer com-pany Bull, which had its own constraint programming tool called Charme,developed from CHIP, has now abandoned this in favour of a version ofILOG Solver.) Where necessary, examples in this tutorial will refer to ILOGSolver, which is the tool that I am most familiar with. However, examplescould equally well have been presented in terms of CHIP or another tool.2 ConstraintsThe constraints of a CSP are usually represented by an expression involvingthe a�ected variables, e.g. 2



x1 6= x22x1 = 10x2 + x3x1x2 < x3or, in ILOG Solver, CtNeq(x1,x2);CtEq(2*x1, 10*x2 + x3);CtLt(x1 * x2, x3);It is useful also to be aware of the formal de�nition of a constraint: apossible constraint Cijk::: between the variables xi; xj; xk; ::: is any subset ofthe possible combinations of values of xi; xj; xk; :::1. The subset speci�es thecombinations of values which the constraint allows.For example, if variable x has the domain f1; 2; 3g and variable y has thedomain f1; 2g then any subset of f(1; 1); (1; 2); (2; 1); (2; 2); (3; 1); (3; 2)g is avalid constraint between x and y. The constraint x = y would be representedby the subset f(1,1), (2,2)g.Although the constraints of real problems are not represented this way inpractice, the de�nition does emphasise that constraints need not correspondto simple expressions, and, in particular, they need not be linear inequalitiesor equations (although they can be).A constraint can a�ect any number of variables from 1 to n (n is thenumber of variables in the problem). The number of a�ected variables is thearity of the constraint. It is useful to distinguish two particular cases:Unary constraints a�ect just one variable. The constraint can be usedto remove any value which does not satisfy the constraint from the domainof the variable at the outset. For instance, if there is a constraint x1 6= 1,the value 1 can be removed from the domain of x1, and the constraint willthen be satis�ed. Since unary constraints are dealt with by preprocessingthe domains of the a�ected variable, they can be ignored thereafter.Binary Constraints a�ect two variables. If all the constraints of a CSPare binary, the variables and constraints can be represented in a constraintgraph: the nodes of the graph represent the variables and there is an edgejoining two nodes if and only if there is a constraint between the correspond-ing variables.1The possible combinations of values of xi; xj; xk; ::: are given by the cross-product ofthe domains, Di �Dj �Dk:::::, so Cijk::: is a possible constraint if:Cijk::: � Di �Dj �Dk � :::::3



In fact, any constraint of higher arity can be expressed in terms of binaryconstraints, although in practice this is not likely to be worth doing. Hence,in some sense, binary CSPs are representative of all CSPs.An individual binary constraint between two variables with domain sizesm1 and m2 can be represented by an m1 �m2 matrix of 0-1 values, where1 signi�es that the constraint allows the corresponding pair of values, and0 that it does not. Although this is not a practical way of de�ning realconstraints, it means that a random 0-1 matrix can represent a binary con-straint, and this allows experimenters who need a large number of CSPs toproduce randomly-generated problems. (The pairs of variables which haveconstraints between them are also selected randomly. [9] describes in moredetail two possible models for randomly-generated CSPs.) A great deal ofexperimental work on CSPs, comparing the performance of di�erent algo-rithms, for instance, has been done using populations of randomly-generatedbinary CSPs.2.1 ExampleCryptarithmetic puzzles, like the following, can be expressed as CSPs. Eachletter in the following sum stands for a di�erent digit: �nd their values.D O N A L D+ G E R A L D---------------= R O B E R TThe variables are the letters D, O, N, A, L, G, E, R, B, T and theirdomains are the set of digits f0 .. 9g (except that D, G and R cannot be0). This expressed in ILOG Solver by creating a set of constrained integervariables:CtIntVar D(1,9),O(0,9),N(0,9),A(0,9),L(0,9),G(1,9),E(0,9),R(1,9),B(0,9),T(0,9);It is convenient to form an array containing pointers to these variables:CtIntVar* AllVars[]={&D,&O,&N,&A,&L,&G,&E,&R,&B,&T};The constraints are: 4



� the ten variables must all be assigned a di�erent value. Technically,this means that there is a `not-equal' constraint between every pair ofvariables, giving 45 binary constraints. In practice, tools such as ILOGSolver allow an easy way of stating that all variables in a speci�ed setmust set have di�erent values:CtAllNeq(10, AllVars);� the sum given must work out:CtEq(100000*D+10000*O+1000*N+100*A+10*L+D+ 100000*G+10000*E+1000*R+100*A+10*L+D,100000*R+10000*O+1000*B+100*E+10*R+T);(There are alternative ways of formulating this problem, which are betterfrom the point of view of �nding a solution. This will be discussed later.)3 Arc ConsistencyIf there is a binary constraint Cij between the variables xi and xj then thearc2 (xi; xj) is arc consistent if for every value a 2 Di, there is a value b 2 Djsuch that the assignments xi = a and xj = b satisfy the constraint Cij.Any value a 2 Di for which this is not true, i.e. no such value b exists, cansafely be removed from Di, since it cannot be part of any consistent solution:removing all such values makes the arc (xi; xj) arc consistent. Note that wehave only checked the values of xi; there may still be values in the domainof xj which could be removed if we reverse the operation and make the arc(xj; xi) arc consistent.Figure 1(a) shows the original domains of x and y. In (b), (x; y) hasbeen made arc consistent; in (c), both (x; y) and (y; x) have been made arcconsistent.(Note that if a binary constraint is represented by a matrix, in the mannerdescribed earlier, making the constraint arc consistent in both directionse�ectively removes any values from the domains of the two variables forwhich the corresponding row or column in the matrix is all zeros.)If every arc in a binary CSP is made arc consistent, then the wholeproblem is said to be arc consistent. Making the problem arc consistent is2The arc (xi; xj) has a direction attached to it, so that it is distinct from the arc (xj; xi).The edge joining xi and xj, on the other hand, is undirected.5
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{1,2}Figure 1: Making (x; y) and (y; x) arc consistentoften done as a pre-processing stage: reducing the sizes of some domainsshould make the problem easier to solve.A number of algorithms for making a CSP arc consistent have been pro-posed: the most commonly-used ones appear to be AC-3 and AC-4 (althoughvariations up to at least AC-7 exist, each supposedly better than its prede-cessors in some way). AC-4 has worst case time complexity O(d2c) where dis the maximum domain size and c is the number of binary constraints; thespace complexity is similarly O(d2c).Since it is reasonably cheap to make a problem (or just the arcs cor-responding to binary constraints) arc consistent, constraint programmingtools normally include an arc consistency algorithm. In ILOG Solver, forinstance, arc consistency is established as constraints are de�ned and main-tained whenever any change is made, e.g. to the domains of variables. Thisis done automatically.Example. Suppose we have a set of activities, each with a speci�edduration. There are precedence constraints between the activities, so that iftask A precedes task B, then:startA + durationA � startBTask Duration PrecedesA 3 B,CB 2 DC 4 DD 2 6



We can express this as a binary CSP by introducing variables representingthe start time of each activity, and others representing the start and �nish ofthe project. Since the project need not take longer than the total durationof all the activities (11), this gives a possible limit for each variable.Variable Initial domainstart f0gstartA f0..11gstartB f0..11gstartC f0..11gstartD f0..11g�nish f0..11gArc consistency reduces the domains of the variables as shown below.Any value remaining in any variable's domain is part of a consistent solutionto the whole problem, which will allow the project to �nish by time 11, asshown in Figure 2.
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startBFigure 2: Simple project networkNote that if we want to minimise the project completion time and nowset finish to its minimum possible value, further values will be removedfrom the domains. This is equivalent to the Critical Path Method.Hence in a project planning problem with precedence constraints only(and no resource constraints, for example), arc consistency is su�cient byitself to remove all values from the domains which cannot be part of anysolution. This is not generally true, and in order to �nd a solution, if thereis one, we need to search for one.4 Path Consistency and BeyondIn Figure 3, the problem is arc consistent, but it is clear that the variable xcannot have the value 2. In general, even when a problem has been made7
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Figure 3: An arc consistent constraint networkarc consistent, it is possible to make further deductions from the constraints,short of searching for a complete solution. The next step (still with binaryconstraints) is to consider triples of variables, in which two pairs of variableshave a non-trivial constraint between them. (A trivial constraint here is onethat allows every pair of values.)
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xjFigure 4: A triangle of constraintsIn Figure 4, suppose there are non-trivial constraints between xi and xj,and between xj and xk.The path (xi; xj; xk) is path consistent i� for every pair of values vi 2Di and vk 2 Dk allowed by the constraint Cij there is a value vj 2 Djsuch that (vi; vj) 2 Cij and (vj; vk) 2 Cjk. If there is no such value vjthen (vi; vk) should be removed from the constraint Cik, i.e. the constraintshould be tightened. In other words, if no value can be found for xj whichis simultaneously consistent with xi = vi and xk = vk, then we cannot allowthese values to be simultaneously assigned to xi and xk.In the example of Figure 3, making (x;w; z) path consistent would showthat the constraint between x and z has to be tightened to exclude the8



simultaneous assignment of x = 2 and z = 10; making the problem arcconsistent again would show that the value 2 must be removed from thedomain of x. So in this case, path consistency would allow the problem tobe considerably simpli�ed.It is, of course, possible to check every triple of variables in a binary CSPand tighten the constraints where possible. Clearly, the number of possibletriples is greater than the number of pairs of variables that need to be checkedto make the problem arc consistent, and the best algorithm has worst casetime complexityO(d3n3). This is one reason why path consistency algorithmsare not in common use. Another is that since constraints are not generallyexpressed as allowed tuples of values, it is not easy to remove individual pairsof values in order to tighten a binary constraint.In practice, the constraints required for path consistency are often easyto see when the problem is formulated. For instance, in the triangle ofconstraints in Figure 5, path consistency shows that the constraint betweenx and z must be x 6= z; a constraint such as this, which must e�ectivelyexist, but may not be speci�ed in the original statement of the problem, iscalled an induced constraint. (See [8] for further discussion of this.)
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zxFigure 5: Example of an induced constraint between x and zIt is also possible to consider groups of 4 or more variables and attempt toinduce new constraints (which will in general be non-binary), but this is stillmore time-consuming: in practice, preprocessing rarely goes beyond makinga problem arc consistent.5 Search AlgorithmsMost algorithms for solving CSPs search systematically through the possibleassignments of values to variables. Such algorithms are guaranteed to �nda solution, if one exists, or to prove that the problem is insoluble, but theymay take a very long time to do so.This paper is not intended to be a comprehensive survey of constraint sat-isfaction algorithms. I shall consider only two systematic search algorithms:9



a simple backtracking algorithm, and the forward checking algorithm, whichis the default search algorithm in the constraint programming tools that Iam aware of.Both algorithms instantiate (i.e. assign a value to) each variable in turn,and build up a partial solution consisting of the variables already considered,with their assigned values; these are termed the past variables. The variableswhich are so far uninstantiated are the future variables.In the backtracking algorithm, the current variable is assigned a valuefrom its domain. This assignment is then checked against the current partialsolution; if any of the constraints between this variable and the past variablesis violated, the assignment is abandoned and another value for the currentvariable is chosen. If all values for the current variable have been tried, thealgorithm backtracks to the previous variable and assigns it a new value. If acomplete solution is found, i.e. a value has been assigned to every variable,the program may terminate, if only one solution is required, or carry on to�nd new solutions. If there are no solutions, the algorithm terminates whenall possibilities have been considered.If the CSP has n variables, each with m possible values, the maximumdepth of any branch in the search tree is n and up to m branches are cre-ated from each node. There are up to mn possible assignments of values tovariables (many of which will not be allowed by the constraints, of course).Hence, the tree has up to mn leaf nodes.An example of a search tree built by the backtracking algorithm is shownin Figure 6, using the 4-queens problem. (The n-queens problem requiresplacing n queens on an n � n chessboard in such a way that no queen cantake any other: hence no two queens can be on the same row, the same columnor the same diagonal of the board.) As a CSP, this problem has 4 variables,representing the rows of the chessboard, and each variable has domain f1,..,4grepresenting the 4 columns. However, it is easier to follow the progress of thesearch if the chessboard representation is used: a Q on a particular squareshould be taken as meaning that the variable corresponding to that row hasbeen assigned the value corresponding to that column. Deadends, where thealgorithm has to backtrack to a previous choice, are marked by crosses, andthe solution eventually found is marked by a tick.The backtracking algorithm only checks the constraints between the cur-rent variable and the past variables. The forward checking algorithm, on theother hand, checks the constraints between the current (and past) variablesand the future variables. When a value is assigned to the current variable,any value in the domain of a future variable which con
icts with this assign-ment is (temporarily) removed from the domain. The advantage of this isthat if the domain of a future variable becomes empty, it is known immedi-10
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Figure 7: Search tree for 4-queens using forward checkingvariable and future variables need be checked; it is only if there are constraintsof higher arity that the past variables may need to be involved. (A k-aryconstraint (k > 2) needs to be checked if and only if the current variableis one of the variables involved in the constraint, and all but one of theother variables in the constraint have already been instantiated; the pastinstantiations then e�ectively reduce the constraint to a binary constraintbetween the current variable and a future variable.)Forward checking does more work when each assignment is added to thecurrent partial solution, in order to reduce the size of the search tree andso (hopefully) reduce the overall amount of work done. In fact, in 4-queensforward checking does about the same amount of work as the backtrackingalgorithm in checking for consistency; there is not enough scope in such asmall search tree for early pruning of large branches. However, the follow-ing arti�cial example will show that forward checking can save an arbitraryamount of work compared with simple backtracking: suppose we have vari-ables x1; x2; x3; ::::; xn, where x1; x2; xn all have domain f1,2g and the con-straints on these three variables are that they should all have di�erent values.12



Clearly this subproblem, and thus the whole problem, is infeasible. (It doesnot matter what the domains of the remaining variables x3; ::::; xn�1 are, orwhat the constraints on these variables are: we assume that this part of theproblem can be solved without any di�culty.) The backtracking algorithmwill instantiate variables x1 and x2 to 1 and 2 respectively, and then assignvalues to x3; ::::; xn�1 in turn, before discovering that there is no value for xnwhich is consistent with the �rst two assignments. It will then backtrack toxn�1 and try all the alternative assignments for this variable, then backtrackto xn�2, and so on, even though these variables are not part of the subprob-lem which is causing the di�culty. It could take a very long time to discoverthat the problem has no solution. Forward checking, on the other hand,will discover that there is no remaining value in the domain of xn as soonas values have been assigned to x1 and x2: it will never consider assigningvalues to the remaining variables. Forward checking is not the only way ofavoiding this kind of stupidity, and it can get into di�culties itself; on thewhole, however, it performs reasonably well compared with other algorithms,when combined with good heuristics as described in the next section, and itis almost always a much better choice than simple backtracking.A search strategy which does still more work in looking ahead when anassignment is made combines forward checking with maintaining arc consis-tency. Whenever a new subproblem is created, by removing values from thedomains of future variables which are inconsistent with the current assign-ment, the subproblem is made arc consistent. This will remove further valuesfrom the domains of future variables, and as with forward checking itself, thehope is that in doing additional work at the time of the assignment, therewill be an overall time-saving. Forward checking combined with maintainingarc consistency is the default algorithm used in ILOG Solver, for instance.6 Variable OrderingA tree search algorithm for constraint satisfaction requires the order in whichvariables are to be considered to be speci�ed. (Even if no particular orderis speci�ed, the algorithm must have some default ordering to fall back on,probably the order in which the variables were de�ned.) The ordering may beeither a static ordering, in which the order of the variables is speci�ed beforethe search begins, and is not changed thereafter, or a dynamic ordering, inwhich the choice of next variable to be considered at any point depends onthe current state of the search.Dynamic ordering is not feasible for all tree search algorithms: for in-stance, with simple backtracking there is no extra information available dur-13



ing the search that could be used to make a di�erent choice of ordering fromthe initial ordering. However, with forward checking, the current state in-cludes the domains of the variables as they have been pruned by the currentset of instantiations, and so it is possible to base the choice of next variableon this information.A common variable ordering heuristic is based on what Haralick and El-liott [4] termed the \fail-�rst" principle, which they explained as \To succeed,try �rst where you are most likely to fail." In forward checking, this principleis implemented by choosing next the variable with fewest remaining values inits domain, on the assumption that any value is equally likely to participatein a solution, so that the more values there are, the more likely it is that oneof them will be a successful choice.Calling this the fail-�rst principle is, it seems to me, slightly misleading,or at least one-sided: after all, we do not want to fail, so it seems at �rstsight perverse to deliberately choose the variable that is most likely to leadto failure. The reasoning is that if the current partial solution will not leadto a complete solution, so that the current branch will eventually prove to bea dead end, then the sooner we discover this the better. Hence encouragingearly failure, if failure is inevitable, is bene�cial in the long run. On theother hand, if the current partial solution can be expanded to a completesolution, then every remaining variable must be instantiated and the onewith smallest domain is likely to be the most di�cult to �nd a value for:instantiating other variables �rst may further reduce its domain and lead toa failure. Hence the principle could equally well be stated as \Deal with hardcases �rst: they can only get more di�cult if you put them o�." So whetherthe current partial solution will lead to a complete solution, in which casewe want to get to the solution straightaway without further backtracking, orwill not lead to a solution, and we want to �nd that out as soon as possible,choosing the variable with smallest remaining domain makes sense.This heuristic should reduce the average depth of branches in the searchtree by triggering early failure. Hence, even if there is no solution, so thata complete search is required, or if all solutions are required, the size of thesearch tree explored is less than if a static ordering is used.When all variables have the same number of values, which is the casein some problems at the start, then the fail-�rst principle indicates that weshould still try to choose the variable which is likely to be most di�cultto instantiate, and a good choice is the variable which participates in mostconstraints (in the absence of more speci�c information on which constraintsare likely to be di�cult to satisfy, for instance).A word of warning. Most experiments with CSPs have been done withrandomly-generated problems in which every variable has the same domain14



size initially and all constraints are equally di�cult to satisfy. For theseproblems, choosing the variable with smallest domain works extremely well.For real problems, too, it is often a good choice, but sometimes needs alittle thought. For instance, [10] describes a rostering problem in whichthe variables represent tasks and the values people who can do those tasks.Some of the variables have very small domains initially, not because theyare di�cult to assign, but because they represent tasks which particularindividuals can do, if there is nothing of higher priority available. So in thiscase, choosing the variable with smallest domain �rst would be wrong.7 Value OrderingHaving selected the next variable to assign a value to, a search algorithm hasto select a value to assign. As with variable ordering, unless values are tobe assigned simply in the order in which they appear in the domain of eachvariable, we should decide how to choose the order in which values should beassigned. A di�erent value ordering will rearrange the branches emanatingfrom each node of the search tree. This is an advantage if it ensures thata branch which leads to a solution is searched earlier than branches whichlead to dead ends, provided that only one solution is required. If all solutionsare required, or if the whole tree has to be searched because there are nosolutions, then the order in which the branches are searched is immaterial.Suppose we have selected a variable to instantiate: how should we choosewhich value to try �rst? It may be that none of the values will succeed;we are in fact exploring what will turn out to be a dead end, and we shallhave to backtrack to the previous variable. In that case, every value for thecurrent variable will eventually have to be considered, and the order doesnot matter. On the other hand, if we can �nd a complete solution based onthe past instantiations, we want to choose a value which will lead to such asolution; a good general principle, then, is to choose a value which is likelyto succeed, and unlikely to lead to a con
ict (if we can detect such a value).Some value ordering heuristics based on this principle have been proposedfor use with forward checking, e.g. [5, 3]. In both cases, in order to selecta value for the current variable, the state of the domain of future variableswhich would result from each choice is found, i.e. forward checking is done foreach value in turn. Keng & Yun [5] suggest then calculating the percentageof values in future domains which will no longer be usable, as a measure ofthe cost of making this choice: the best choice would be the value with lowestcost. Geelen [3] suggests instead calculating the `promise' of each value, thatis the product of the domain sizes of the future variables after choosing this15



value (this is an upper bound on the number of possible solutions resultingfrom the assignment): the value with highest promise should be chosen.Unfortunately, there is a great deal of work involved in forward checkingfrom each possible value in turn. For randomly-generated problems, andprobably in general, the work involved in assessing each value is not worththe bene�t of choosing a value which will on average be more likely to leadto a solution than the default choice.In particular problems, on the other hand, there may be informationavailable which allows the values to be ordered according to the principle ofchoosing �rst those most likely to succeed.8 ExampleThe cryptarithmetic problem discussed earlier was formulated with a singleconstraint representing the required sum:CtEq(100000*D+10000*O+1000*N+100*A+10*L+D+ 100000*G+10000*E+1000*R+100*A+10*L+D,100000*R+10000*O+1000*B+100*E+10*R+T);This is su�cient to allow ILOG Solver to �nd a solution, using its de-fault strategy of forward checking combined with arc consistency. However,it takes a relatively long time. The performance of the algorithm can bemeasured by the number of times it detects a failure and has to backtrack.With the constraint stated as above, it takes 8018 fails to �nd the solution.The di�culty lies in the formulation of the sum as a single constraintinvolving all the variables. If we tried solving the puzzle by hand, consideringthe sum as a whole in this way would not give an obvious point of attack;if we consider how forward checking works, we can see that it also causesdi�culties for the algorithm.The power of the forward checking algorithm lies in the fact that eachinstantiation of a variable can be used to reduce the domains of future vari-ables. Tools such as Solver also continually make sure that the remainingsubproblem is arc consistent; having reduced the domains of two future vari-ables which have a constraint between them, arc consistency may show thatfurther reductions to the domain of one or other have become necessary.Both of these methods of reducing future domains can only make use ofbinary constraints, or constraints which have e�ectively become binary be-cause all but two of the a�ected variables have already been instantiated.The pruning e�ect of higher arity constraints therefore has to be postponeduntil su�cient variables have been instantiated to make them into binary16



constraints. Hence, the forward checking algorithm combined with main-taining arc consistency is best at solving binary CSPs. If there is a choicebetween two formulations of a problem as a CSP, both of which representproblem entities in a natural way, then in general one that has constraints oflow arity should be chosen.3With this in mind, an alternative formulation representing the sum col-umn by column, which has additional variables representing the quantitiescarried into the next column, is preferable:CtIntVarC1(0,1),C2(0,1),C3(0,1),C4(0,1),C5(0,1);CtEq(2*D, 10*C1 + T);CtEq(2*L + C1, 10*C2 + R);CtEq(2*A + C2, 10*C3 + E);CtEq(N + R + C3, 10*C4 + B);CtEq(E + C4, 10*C5);CtEq(D + G + C5, R);This �nds the solution with 212 fails, a dramatic improvement.So far, nothing has been said about variable and value ordering heuristics.It is hard to see any reason for preferring one value to another, so we shall notspecify a value ordering; for the variable ordering, the heuristic of choosingthe variables with smallest remaining domain, from amongst the originalvariables, seems a good choice. (Note that if we choose the variable withsmallest remaining domain from amongst all the variables, the `carries' wouldbe chosen �rst, as they start o� with smaller domains. In this case, choosingthe carries �rst gives good results, but in general it may not be a good idea toallow subsidiary variables, de�ned entirely in terms of the original variables,to drive the search strategy.) With this heuristic, the solution is found withonly 14 fails.This is still not the best that can be done; however, the �nal improvementseems to depend on giving Solver a piece of additional information that itcannot spot for itself. It is clear from looking at the original sum that T mustbe even; however, arc consistency does not allow Solver to eliminate the oddvalues from the domain of T. If we do this by hand, as well as making all theprevious modi�cations, the solution can be found without any backtracking.3It has been mentioned that any CSP can in theory be expressed as a binary CSP.However, this is done by introducing new variables which represent tuples of the originalvariables, so that the new formulation is likely to be much more cumbersome to deal with.(See [12] for details.) 17



9 SymmetriesIn many problems, if there are any solutions at all, there are classes of equiv-alent solutions. For instance, in timetabling problems, it may be possible tointerchange the allocations to the time slots and still have a feasible solution;in rostering problems, a group of sta� may have the same skills and the sameavailability and so be interchangeable in the roster. Such symmetries in theproblem may cause di�culties for a search algorithm: if the problem turnsout to be insoluble, or the algorithm is exploring a branch of the search treewhich does not lead to a solution, then all symmetrical assignments will beexplored in turn. This is a waste of e�ort, because if one such assignment isinfeasible, then they all are. Such symmetries should be avoided, if possible,by including additional constraints in the formulation which will allow onlyone solution from each class of equivalent solutions.It is di�cult to give general advice on how to do this, because it dependson the particular problem. As an example, in the rostering problem, wecould number the sta� in the group, and the tasks which the members of thegroup can be assigned to in the �rst time-period covered by the roster, andinsist that if i < j then the task assigned to person i must have a smallernumber than the task assigned to person j. This means that the sta� in thegroup are no longer interchangeable, thus ruling out the equivalent solutions,and avoiding doing unnecessary work. For instance, if there is no solutionwith person 1 assigned to task 1, then there will be no solution with person2 assigned to task 1 either. (For more information on avoiding symmetriesby adding constraints, see [6]. An example of a problem with symmetries isdescribed in [11].)10 Optimization ProblemsConstraint programming tools adopt the same general approach to attempt-ing to �nd an optimal solution: create a constrained variable which repre-sents the objective function, �nd an initial solution, then introduce a newconstraint that the value of the objective variable must be better than in theinitial solution. Repeatedly solve the new problem and tighten the constrainton the objective variable in this way until the problem becomes insoluble:the last solution found is then the optimal solution.For instance, ILOG Solver has a built-in function CtMinimize (and an-other CtMaximise, but we shall assume that we have a minimization problem)which can replace the usual function which �nds just one solution, and takesan extra parameter, which is the variable representing the objective function,18



say cost. It is the programmer's responsibility to see that cost is de�nedin terms of the other variables in the problem, and that whenever a solutionto the problem is found, cost is thereby assigned a value. E�ectively whatthen happens (though this is taken care of internally by CtMinimize) is thatwhenever a new solution is found, the value of cost is saved, say in best,and a new constraint is added:cost <= best - 1The new problem is then solved, and this is repeated until the constraint oncost has been tightened to the extent that the problem cannot be solved;the last constraint is then removed and the previous solution (which is nowknown to be optimal) is found again.This is clearly somewhat ine�cient, in that the optimal solution is foundtwice. However, it works well, provided that the problem is small. Withlarge problems, as the constraint on cost gets tighter, it can get extremelydi�cult to �nd a solution. Whereas good heuristics may be able to �nd asolution quickly if there are many possible solutions, this gets more di�cultif there are few solutions, and of course in order to prove that a problem hasno solutions (to show that the last solution was optimal) the entire searchtree must be explored. So for large problems it may not be practicable to getanywhere near the optimal solution, still less to prove optimality. This partlydepends on particular circumstances: in some cases, proving optimality isstraightforward, because reducing cost below its optimal value results in aproblem which is obviously infeasible. Even then, �nding an optimal solutionmay not be easy.In many cases, therefore, it is necessary to rely on good heuristics, andallow the program to search for improvements on the initial solution for aslong as is practicable before accepting the current solution as (hopefully)good enough. The advantage in that case over heuristics which will simplyconstruct a solution is that the built-in backtracking may �nd signi�cantimprovements over the initial solution before the search has to be abandoned.11 ConclusionsIt is probably clear from the foregoing that the search algorithms availablefor solving CSPs are relatively unsophisticated, compared for instance tomathematical programming techniques. On the other hand, it is because ofthis that the constraints can be much more expressive, and therefore morepowerful, than is allowed in mathematical programming.Because algorithms like forward checking search systematically for solu-tions, they are unlikely to be able to handle large problems without good19



heuristics to guide them. Good variable and value ordering heuristics areoften crucial, and can make the di�erence between �nding a solution veryquickly and failing to �nd a solution at all.An area which needs further investigation is the comparison betweenmathematical programming and constraint programming. Integer program-ming problems can be expressed as CSPs, but when is it worthwhile to doso? In [11], I describe a problem where constraint programming succeeded in�nding a solution when integer programming had failed, and discuss reasonsfor the di�erence in performance in this case.12 Further ReadingFor a thorough overview of constraint satisfaction problems, concentratingespecially on search algorithms and achieving di�erent levels of consistencyin CSPs, see Edward Tsang's book [12].Van Hentenryck's book [13] is speci�cally on CHIP, and so contains agood deal on how Prolog has been extended to produce CHIP. It does also,however, contain quite a lot of useful material on tackling speci�c problems,which would apply to most constraint programming tools. Other useful pa-pers on applying CHIP to speci�c problems, and comparing this approachwith traditional OR are [1] and [2].Papers on Solver are available from the ILOG World-Wide Web site(http://www.ilog.fr/ilog/products/solver/solver.html), including anoverview of the system [7] and the paper on symmetries already mentioned[6].References[1] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving a Cutting-Stock problem in constraint logic programming. In R. Kowalski andK. Brown, editors, Logic Programming, pages 42{58. 1988.[2] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problem in constraint logic programming. In ProceedingsECAI-88, pages 290{295, 1988.[3] P. A. Geelen. Dual Viewpoint Heuristics for Binary Constraint Satis-faction Problems. In B. Neumann, editor, Proceedings ECAI'92, pages31{35, 1992. 20
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