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ABSTRACT. A conslrair[ﬂaﬁémrxyr&ﬁntigtg es md-i‘xéNvalues for a set of variables subject to a set
of constraints (relations) on those variables. Backtrack search is often used to solve such problems. A
relationship involving the structure of the constraints is described which characterizes to some degree the
extreme case of minimum backtracking (none). The relationship involves a concept called “width,” which
may provide some guidance in the representation of constraint satisfaction problems and the order in
which they are searched. The width concept is studied and applied, in particular, to constraints which
form tree structures.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—sorting and searching, G.2.1 [Discrete Mathematics) Combinatorics—
combinatorial algorithms, G.2.2 [Discrete Mathematics): Graph Theory; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—search process; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods and Search—backtracking

General Terms:  Algorithms, Theory

Additional Key Words and Phrases: constraint network consistency, constraint satisfaction, graph
coloring, scene labeling

1. Introduction

Backtrack search is recognized as a basic algorithmic technique in computer science
[15, 16]. It can be used to search for values which instantiate a set of variables subject
to a set of constraints. Combinatorial puzzles provide easily accessible examples, for
example, the eight queens problem, where the variables represent positions of the
eight queens on the chessboard, and the constraints require that no two queens can
attack each other. A more serious example of a constraint problem involves the
assignment of semantic interpretations to lines or regions in a visual scene [13, 14].

Backtrack search provides an improvement over simple depth-first search by
cutting down the search space. However, backtrack search still permits a great deal
of redundant and unnecessary effort [3]. Analysis of the effort required by backtrack
search is currently obtained through sampling or experiments [5, 6, 11]. Attempts to
reduce that effort are largely heuristic [2, 15].

It would be desirable to have a more analytical understanding of the effort involved
in backtrack search. This effort is dependent on the structure of the problem and the
order in which the search is conducted. The structure involves connective structure,
the pattern of constraints among the variables, and contextual structure, the actual
prohibitions of various combinations of values. In terms of the usual “backtrack tree”
picture, we may distinguish “vertical order.” the order in which variables are chosen
for instantiation, and “horizontal order,” the order in which values are tested for a
given variable.

This paper analyses the relationship that holds between structure and order in the

special case of “backtrack-free™ search. where search effort. in terms of the amount
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of backtracking actually required, is minimal. «Backtrack-free” implies that once a
value for a variable is chosen which satisfies constraints involving previously chosen
values, the choice never has to be “unmade,” because a dead end is reached further
down the tree. I present a relationship between the structure of the problem and the
order of search which provides a sufficient condition for backtrack-free search. The
characterization may be used, in theory, to obtain backtrack-free search. In practice
this may not be practical; however, the insight gained from this work may at least
provide heuristic guidance. This guidance might be applied to the structural design
of the search space or the vertical ordering of the search.

Section 2 defines “width,” “consistency,” and “backtrack-free,” and uses width
and consistency to provide a sufficient condition for backtrack-free search. Section
3 provides an alternative characterization of width and means for determining width.
Section 4 provides applications in which the connective structure of the constraints
is a tree structure and a characterization of width-one structures in terms of trees.
Section 5 demonstrates connections to graph theory and references some related
work in that area. Section 6 contains brief conclusions.

Before proceeding I introduce three examples of constraint problems that will be
used later in the paper to illustrate definitions or results.

First, a toy problem. We are given three sets of numbers: X = {5,2,4,6}, Y=
(2, 4, 6, 10), Z = {5. 2, 4, 6}. Choose one number from each set such that the
number chosen from Z divides both the others. A naive programmer might attack
such a problem with a backtrack search which takes the given order X, Y, Z as the
vertical search order, and the listed order as the horizontal search order for each set.
This would lead to a considerable amount of backtracking. The first choice for X, 5,
can only participate in a solution with the choice of 10 for Y, yet the search algorithm
would bullheadedly try each possibility for Z with first 2, then 4, then 6, for Y.

The analysis of iree-structured constraint graphs in Section 4 will provide a formal
basis (and thus, incidentally, a way of teaching) the “common sense” which might
direct a more experienced programmer (o utilize a different search order, Z, X, Y.
(Indeed, the latter search order might seem a bit counterintuitive—does it make sense
to choose a Z before we know the numbers it is supposed to divide?)

Second, consider the classical graph coloring problem. This problem requires us to
assign colors to the vertices of a graph in such a way that if two vertices are joined
by an edge in the graph, they will not have the same color. The variables of this
constraint problem are the permissible node colors, and the constraints are the
requirements that neighboring vertices not have the same color. For our purposes we
will restrict the problem by establishing a priori a finite set of permissible colors.

Finally, consider the scene labeling problem (see Figure 1). This is the problem of
labeling the lines of a two-dimensional drawing of a group of blocks with labels that
represent their three-dimensional properties, for example, as convex or concave
edges. The line drawings are themselves graphs (“picture graphs”). The labeling
problem can be regarded as a constraint problem in which the variables are the
vertices, the potential values are legitimate labelings of the lines entering the vertex.
and the constraints are the necessity that lines connecting two vertices receive the
same label at both vertices.

2. Basics

A constraint satisfaction problem requires us to instantiate a set of variables subject
to § set of constraints, that is, relations involving the variables. We instantiate each
variable from a finite set of potential values for that variable.
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FiG. 1. Scene labeling.

+ =2 convex

-~ =2 concave

> =2 occluding

A constraint graph for such a problem is a graph where the nodes represent
variables and two nodes are linked to represent the existence of a constraint which
involves these variables (and possibly others). At most a single edge will join two
nodes, even if they are related by more than one constraint; in any case, we shall be
concerned primarily with binary constraints. Graphs will be undirected in this paper.
An ordered constraint graph arranges the nodes in a linear order. Obviously a given
constraint graph admits of many orderings (n!, where n is the number of varjables).
The intention is for an ordering to correspond to a vertical order of backtrack search,
the levels in the backtrack tree, that is, to the order in which variables are chosen for
instantiation.

The constraint graph for a graph coloring problem has the same structure as the
graph to be colored. Figure 2 shows a graph to be colored, a possible coloring, and
the corresponding constraint graph. It also shows the six different ordered constraint
graphs for this problem.

The width at a node in an ordered constraint graph is the number of links that lead
back from that node to previous nodes. The width of an ordering is the maximum
width at the nodes. The width of a constraint graph is the minimum width of all the
orderings of that graph.

The width at node C in the first ordered constraint graph in Figure 2 is 2; at node
Cin the second ordered constraint graph the width is I. The width of the first ordered
graph is 2; of the second, 1. The width of the constraint graph in Figure 2 is 1, the
minimum of the widths of the ordered constraint graphs.

K-consistency was developed in [4] as a generalization of low-order notions of
consistency [7]. K-consistency implies the following: Choose any set of k — | variables
along with values for each that satisfy all the constraints among them. Now choose
any kth variable. There exists a value for the kth variable such that the k values
taken together satisfy all constraints among the k variables.

For example, the coloring problem in Figure 2 is not 3-consistent. If we choose red
for vertex a and blue for vertex ¢, these choices are mutually consistent; however,
there is then no color that can be chosen for vertex b that satisfies the constraints
among a, b, and c together.

In [4] k-consistency was defined formally in terms of “constraint networks.” It was
observed that the algorithm given for synthesizing constraint expressions achieved /-
consistency for all j < k after & steps. I now define j-consistency for all j < k as strong
k-consistency. (It is possible to have k-consistency without strong k-consistency. A
variation of the coloring problem in Figure 2 provides an example where it is
specified a priori that colors red and blue are available for vertex 4 but vertices @ and
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Fic. 2. A graph coloring example.

¢ can only be colored red. The resulting problem is 3-consistent but not 2-consistent.
If we choose red for vertex b, there is no consistent choice for vertex a. However, if
we have a consistent choice for any 2 vertices, there will always be a consistent choice
of color for the third.)

Backtracking occurs when an instantiation chosen during a backtrack search,
consistent with all previous choices, must be discarded later in the search when no
consistent instantiation can be made for a variable at a lower level in the backtrack
tree. A search may, of course, be fortuitously backtrack-free. We say that a given
vertical search order is backtrack-free if it guarantees a backtrack-free search regard-
less of the horizontal order of search.

Given these definitions, the following relationships emerge among connective
structure (width), contextual structure (consistency), and vertical order.

THEOREM L. Given a constraint satisfaction problem:

(1) A vertical search order is backtrack-free if the level of strong consistency is greater
than the width of the corresponding ordered constraint graph.

(2) There exists a backtrack-free vertical search order for the problem if the level of
strong consistency is greater than the width of the constraint graph.

Proor. In instantiating any variable v we must check consistency requirements
involving at most j other variables, where j is the width at the node. If the consistency
level & is at least j + 1, then given prior choices for the j variables, consistent among
themselves, there exists a value for v consistent with the prior choices. [J

3. Width

We can determine the width of a constraint graph and find an ordered graph with
this width, utilizing an ordered-search algorithm [10]. Employ a search tree where
each node at level i represents a choice for the ith node (variable) of an ordered
constraint graph. Each branch represents the nodes of a (partial) ordered constraint
graph. Repeatedly expand a node at the end of a minimal width branch by adding
as its children the variables not yet used in that branch until a branch using all the
variables is completed. This will represent a full minimal-width ordered constraint
graph for the problem. A more efficient algorithm can be developed using an
alternative characterization of width in terms of a concept I call “linkage.”
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We define the linkage of a subgraph as the maximum 7 such that every node in the
subgraph is connected to at least n other nodes, that is, has degree at least n. We then
have the following connection between linkage and width.

THEOREM 2.  The width of a constraint graph is equal 1o the maximal linkage of its
subgraphs.

PrOOF.  We first show that width =n iff there is a subgraph with linkage =n. If
a subgraph has linkage =n, then whichever node of the subgraph is last in the
ordered constraint graph has width =n; thus the graph has width =n. If there is no
such subgraph, we can demonstrate an ordered graph with width <n as follows.
Consider the graph as a whole. Its linkage is <n, so there must be at least one node
that is connected to <n others. Make such a node the last node of an ordered
constraint graph. The width at that node will be <n. Now consider the remaining
nodes of the graph. Again there must be at least one node that is connected to <n
others, as no subgraph has linkage =n. Choose such a node as the next to last node
of the ordered graph. Again the width at that node will be <n. Continue until all
nodes have been placed in an ordered graph. The width of this ordered graph will be
<n. Thus the width of the constraint graph itself is <n. v

If the maximal linkage of the subgraphs is n, there is at least one with linkage n,
which we now see implies that the width is >n. Furthermore, since there is no
subgraph with linkage =n + 1, the width is <n + 1. Therefore the width is also 7.

If the width is n, there exists a subgraph with linkage =n; thus the maximal
subgraph linkage is =n. If the maximal linkage were >n, there would be a subgraph
with linkage =n + 1, and the width would be =7 + 1. But the width is n, and thus the
maximal subgraph linkage is also n. [J

If we spot a highly linked subgraph, that at least provides a lower bound for the
width. If we know the width, the above proof provides us with a method for finding
an ordered constraint graph with that width, based on the knowledge that there is no
subgraph with linkage greater than the width. I will restate that simple method
explicitly as an algorithm. The outer loop has n passes; at each pass we examine at
most i nodes.

For a graph with width &, to find an ordered graph with that width:

Repeat for i from n to 1 by ~1:
Find a node connected to <k + 1 others.
(Its existence is implied by a maximal subgraph linkage of k. If there is more than one, any one will
do.)

Remove the node from the graph, along with any edges connected to it. Make the node the ith node
of the ordered graph.

The characterization of the width of a constraint graph in terms of subgraph
linkage provides an alternative method for finding the width. The following algorithm
determines the maximal subgraph linkage and finds the maximum subgraph with
that linkage.

To determine maximal subgraph linkage:
Remove from the graph all nodes not connected to any others. Set & = 0.
Do while there are nodes left in the graph: ‘
Setktok + 1.
Do while there are nodes not connected 1o more than 4 others:
Remove such nodes from the graph. along with any edges connected to them.

it

TRrs

et I s

PP 5




Sufficient Condition for Backtrack-Free Search 29

C
B D
A E
F
k=1: no nodes have degree < |
c
k=2: i E ° \G( ° ¢
F F
A,C,E have now B,D,F now G has
degree 2 have degree | degree O

determining maximal subgraph linkage by repeatedly re-
moving nodes with degree < k and incrementing k

c c c
B D B D L e A0
A E E E E

F F

G
VE
F

Fic. 3. Maximal subgraph link-
age and width.

finding minimal width ordered graph by choosing nodes
with degree not greater than the width and removing

them from the graph
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resulting minimal width ordered graph

Upon completion of the algorithm, & will be the maximal subgraph linkage. The
nodes left before the last execution of the outer loop will constitute the largest
subgraph with that linkage. Since the maximal subgraph linkage A must be <n — 1,
the outer loop has at most n — 1 iterations. The inner loop examines at most n nodes
on any one pass.

Taken together, the two algorithms above provide an alternative to the ordered-
search algorithm sketched at the beginning of this section, while avoiding the
potential n! explosion of the ordered search.

As an application. consider the scene labeling problem. Waltz [14].attacked this
problem with a filtering algorithm that achieves 2-consistency. eliminating many
impossible labelings in the process. followed when necessary by a final search phase.

Now at first glance one might assume that picture graphs had a width of 3. as
there are so many vertices which are connected to, and thereby constrained byv. three
others. Even in the usual view of a simple cube. over half the vertices are connected
to three others. Nevertheless. using the techniques of this section, we quickly discover
that the maximal subgraph linkage of the cube picture graph. and therefore the
width, is 2. and we can derive an ordered graph with that width (see Figure 3). Even
more complex scenes. some involving vertices connected to four others. may still only
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have a width of 2: for example, two cubes lined up on top of one another, with a four
line vertex where they touch in the center of the scene. (A view looking down on a
pyramid would be an example of a picture graph with width three.)

Nevertheless, even width-2 demands strong 3-consistency to be able to guarantee
no backtracking, and Waltz’ filtering algorithm is a strong 2-consistency algorithm.
Thus the consistency level is not enough by itself to guarantee a backtrack-free search

order.

4. Tree-Structured Constraint Graphs

We will consider by way of illustration and application the case in which the
constraint graph is a tree. For example, it might be an organization chart to be filled
in or a hierarchical program structure. In either case the constraints are that connected
components must be “compatible.”

The three standard methods of tree traversal—inorder, preorder and postorder—
provide a linear ordering of the nodes which can serve as a basis for an ordered
constraint graph. The constraint graphs resulting from postorder or inorder traversal
have width greater than 1, in general; however, preorder traversal results in a width
of only 1. A breadth-first traversal also results in an ordered graph with width 1.

The fact that a tree has a width of 1, and has that width regardless of the branching
factor, is perhaps a bit counterintuitive. At first glance a binary tree structure, for
example, might seem to require a width of at least 2, or perhaps 3. Indeed, a randomly
chosen ordering of the nodes would be likely to have higher width.

Consider now by way of illustration a graph coloring problem where the graph is
a binary tree. If we allowed two colors, the problem is 2-consistent but not 3-
consistent. Given a coloring for any one node, we can find a consistent coloring for
any one other. However, if we color two siblings with different colors, there remains
no way to color their parent. If we use a preorder traversal for our vertical search
order, the constraint graph will have a width of 1, less than the consistency level, and
a backtrack-free search is assured. However, a postorder traversal could lead to
backtrack trouble. If, on the other hand, we allow three colors, the problem is
(strongly) 3-consistent, and postorder traversal will not lead to backtracking either.

Clearly, the width of a constraint graph is 0 iff there are no constraints—the graph
is a collection of unconnected points. We can characterize graphs of width | in terms
of trees.

THEOREM 3. A connected constraint graph (with more than one node) has width |
iff it is a tree. More generally, a constraint graph has width <1 iff it is a forest.

PrOOF. A forest is a graph with no cycles [1]. I showed in the preceding section
that the width of a graph is equal to the maximal linkage of its subgraphs. I claim
that the maximal linkage of the subgraphs is <! iff the graph has no cycles.

If the graph has cycles, the nodes of any cycle will generate a subgraph with
linkage at least 2.

If there is a subgraph with linkage =2. we can use it to construct a cycle. Start with
any node n in the subgraph. Choose a node n’ connected to it. All nodes are
connected to at least two others in the subgraph, so n” must be connected to at least
one other node besides n; choose one and call it n”. Repeat the following procedure
until a cycle is found, starting with n” as the current node: The current node must be
connected to another node in addition to the previous node chosen. If it is connected
back to another already chosen node, we have found a cycle. If not, choose one of
the remaining nodes which it is connected to as the new current node. As the number
of nodes is finite this process will terminate and produce a cycle. [
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Trees then not only have width 1 (aside from the trivial tree consisting merely of
a root node); they are the only connected constraint graphs with width 1. Strong 2-
consistency is sufficient to guarantee the existence of a backtrack-free vertical search
order for constraint problems whose constraint graphs are forests.

As another example, recall the toy problem introduced in Section 1: Given three
sets of numbers, X = {5, 2,3, 6}, ¥ = (2, 4, 6, 10}, Z = {5, 2, 4, 6}, choose one
number from each set such that the number chosen from Z divides both the others.
The problem is 2-consistent. The constraint graph can be regarded as a simple tree
structure with Z at the root. A preorder traversal will provide an ordering of width
1. That ordering—Z, X, Y—will thus be backtrack-free.

5. Graph Theory Connections

The constraint-graph concept permits us to make use of standard graph-theoretic
results. For example, the following theorem comes easily.

THEOREM 4. A simple planar constraint graph has width <5.

PrROOF. Any simple planar graph has a vertex of degree <5 [1]. Utilize this vertex
as the last node of an ordered constraint graph. The width of that node is <5. The
remaining vertices form a subgraph; it too must have a vertex of degree <5. Use that
vertex as the next to last node of the constraint graph. Continue in this fashion to
build an ordered constraint graph of width 5. [

For the graph coloring problem, the (strong) consistency level will obviously be
greater than or equal to the number of colors available. Thus from Theorems 1 and
4 we can conclude that for the coloring problem on any planar graph, given six
colors, there exists a backtrack-free search order.

This observation can be generalized to provide a bound on the chromatic number
of a graph, the minimum number of colors required to color the graph. Since the
consistency level is greater than or equal to the number of colors available, if the
number of colors is greater than the width, the consistency level is greater than the
width, and a coloring can be obtained (with a backtrack-free search). In particular,
the graph can be colored with width + 1 colors. Thus width + 1 is an upper bound
on the chromatic number of a graph.

An equivalent result was obtained by Szekeres and Wilf [12] involving the
minimum vertex degree of subgraphs, a concept clearly equivalent to what I have
called linkage. This result was obtained as well by Matula [8]. Matula also employed
a concept called “degree decomposition sequence.” closely related to what I have
called width. and proved an analog of Theorem 2 in terms of degree decomposition
sequence and minimum vertex degree. Both Matula and Szekeres and Wilf have
methods for determining the value of the width analog for a given graph and for
obtaining a corresponding ordering of the vertices and a coloring within the estab-
lished bound. These results are summarized in [9]. where a concept of “sequential
coloring™ is described which is essentially equivalent to a backtrack-free vertical
search order in the graph coloring context. This paper serves to generalize this graph
coloring work to the larger context of constraint satistaction (although as it happens
my work arose from concerns with constraints and backtracking. and I only belatedlv
became aware of these related developments in graph theory).

6. Conclusions

In. theory. the algorithm for determining a minimal-width path in Section 3. together
with the algorithm for obtaining any level of strong k-consistency found in [4], should
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permit us to achieve backtrack-free search for any problem. However, not only are
these algorithms themselves time consuming, they may need to be applied a number
of times, as the algorithm for achieving consistency may well alter the connective
structure, and the width, of the problem, as it makes explicit constraints previously
only implied by other constraints. Thus we need to determine width, achieve a

consistency level one greater than the width, and repeat this procedure until the
width does not change.

I am therefore not treating this method as a
However, the insights we have gained here m
the choice of vertical search order. The
of constraint problems, where we have a
we use to embody the problem.

Specific structures or problems may yield to a more complete formal analysis, as
is the case for tree structures. In a larger context, my hope is that an understanding

of the limiting case of backtrack-free search will abet our assault on the general
problem of backtrack search analysis.

practical approach in general.
ay provide some heuristic guidance in
y may also guide us in the structural design
choice in which specific pattern of constraints
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