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1. Introduction.

In this survey 1 will give an overview of recent developments in methods for
solving combinatorially difficult, ie., NP-hard, problems defined on simple,
labelled or unlabelled, graphs or hypergraphs. Special instances of these methods
are repeatedly being invented in applications. They can be characterized as
table-based reduction methods, because they work by successively eliminating the
vertices of the problem graph, while building tables with the information about
the eliminated part of the graph required to /solve the problem at hand.
Bertele and Brioschi [9] give a full account of ‘the state-of-the-art in 1972 of
these methods applied to non-serial optimization problems.

A preliminary taste of the family of algorithrﬁs 1 consider is given by the
most well-known of all graph algorithms: the series-parallel reduction method-
for computing the resistance between two terminals of a network of resistors.
It was invented by Ohm (1787-1854) and is contained in most high-school
physics curricula. However, since resistance computation is not combinatorially
difficult (the resistance is easily obtained, via Kirchhoffs laws, from the solution
to a linear system of equations), [ will illustrate the method on a different
problem, that of computing the probability that a connection exists between two
terminals of a series-parallel network of communication links that are unreliable
and fail independently of each other, with given probabilities. This problem 1is
NP-hard for arbitrary graphs, see Garey and Johnson [17, problem ND20],
basically because all states of the set of communication links must be considered
On a series-parallel network, however, 2 simple reduction method will work.

The method successively eliminates non-terminal nodes which are adjacent to
at most two links, by a local transformation of the network. The elimination .
operation can be defined as in Figure 1.1., where the quantities p; labelling edges
are the probabilities that the corresponding links work correctly. If a link of the
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 triangle involved ((a, b, ¢) in Figure 1.1) is missing, the corresponding probability
is set to zero in the computation of pj. The dashed area represents the part
of the network not involved (and unchanged by the transformation).

When these transformations are applied to a connected two-terminal series-
parallel network they will ultimately remove all non-terminal nodes and leave the
terminals with a link between them which is labelled with a probability that
is the answer to the problem. With suitable data structures, see Wald and
Colbourn [2], the worst-case running time is O(n) for an n-node network.

It is important to understand how the series-parallel reduction method can be
interpreted as a decomposition method [1, Ch. 2]: Each link of the intermediate
network can be seen as representing a part of the original network, a branch,
which is connected to the remainder only through the endpoints of the inter-
mediate link. The reliability of the intermediate link is all the information about
the branch required later during the algorithm execution, and it is only by
coincidence that this information is of the same kind as the input data for the
problem. The node elimination operation can now be seen as an operation that

pi = 1=({1=p)(1—pyp3)

e e e e e

Fig. 1.1. Reduction of series-parallel communication network.

‘ combines three branches into one and computes the information required for the

new branch (Figure 1.2). A path through the new branch B is either a path
_ through B, and a path through B,, or a path through B, and the link sets of
_ the branches B,, B, and B, are disjoint, from which the computation rule for
‘fp'l (Figure 1.1) follows.
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Fig. 1.2. Combining branches of series-parallel network.
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2. Outline of paper.

This paper is intended to be useful for application specialists encountering com-
putationally difficult problems and for computer scientists not specialized in this
area. It also contains preliminary results on complement decomposable graphs.
The reader is assumed to be familiar with algorithms and their analysis, see, €.g.,
Aho, Hopcroft and Ullman [1]. Results will be stated as theorems or as
propositions depending on how new, significant and deep 1 consider them. No
long proofs will be duplicated here, but a reference is always given. Many facts
will just be sprinkled into the text with a reference if 1 consider them
simple or well-known, or if they are supplied as background information.

In section 3, I give graph-theoretic definitions and some basic properties of
graphs related to elimination processes, required for a comprehensive treatment
of table-based reduction algorithms. Section 4 explains the table-based reduction
method and exemplifies it with algorithms for some independent set problems.
The problem of finding suitable elimination orderings, either with rewrite rule
techniques or with_dynamic programming methods, as well as the complexity of i
the optimization of elimination ordering, is treated in section 5. The basic
method gives efficient algorithms for graphs which can be decomposed by a set
of small separators. Graphs without small separators can still be treated for
certain problems when they are clique decomposable. Results for such graphs are

reviewed in section 6, as well as a new decomposition method, applicable to .

graphs with bounded complement decomposability. The appendix contains a full
list of computational problems referred to in the text.

3. Graph-theoretic definitions and k-decomposable graphs.

A simple loopless unlabelled graph G = (V, E) is a set V of vertices and a set
E of edges, each edge being a 2-element subset of V. Throughout the paper,
G, V and E, possibly with sub- or superscripts, will denote such a graph, its.
vertex set and its edge set. The set operation U on graphs is defined component
wise. Vertices v and w are adjacent iff {v,w}eE. Edge e is incident to vertex v
iff vee. I'(v), the neighborhood of v, is the set of vertices adjacent to v. The
neighborhood of a vertex set W is the set T'(W) = Uyewl (). The degree
of vertex v is the size of its neighborhood, deg(v) = [['(v)l, and 4(G) = "
= max,. ydeg(v). An edge-labelling of G is a function from its edges to some:

Fig. 3.1. K,, P, and C,.
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“domain, and a vertex-labelling is analogously defined. An edge(vertex)-labelled
graph is a graph with an edge(vertex) labelling. A complete graph on vertex
et V, c(V), is a completely connected graph, ie., if it has vertices v and w,
_ then it has the edge {v,w}. K,, P, and C, denote, respectively, the complete
_graph, the path and the simple cycle on n vertices, see Figure 3.1.
.~ The subgraph of G induced by vertex set W is the graph G(W) = (W, E'),
 where E' = {ee E:e « W}. A partial graph of G = (V, E) is a graph G' = (V, E'),
. where E' < E. A subgraph of G is a partial graph of an induced subgraph of
G. A cliqgue of G is a (not necessarily maximal) vertex set W such that G(W)
s complete. The complement G of G = (V,E) is the graph (¥, E’) such that
 EnE =¢and G UG is complete.
 The transitive reflexive closure of the adjacency relation is an equivalence
relation and the blocks of the corresponding partition (equivalence classes) are
the connected components of the graph. A graph with one connected component
_ is connected, a graph with more than one component is disconnected. Vertex
set S of G is a separator if G(V —S8) is disconnected. S is a minimal separator
__if in addition G(V —S') is connected whenever §' is a proper subset of S (i.e.,
. <=8Sand S # 8)
. G is chordal iff it does.not have an induced subgraph C, with n > 3 (ie., if
_every cycle has a chord, see Rose [22]). It is k-chordal if in addition it does not
_ have a minimal separator of size greater than k. A graph G = (V, E) is a k-tree
[8,23]if
(i) either G is the complete graph on k vertices,
(i) or G has a vertex v of degree k, such that I'(v) is a clique of G and
G(V —{v}) is a k-tree.

~ A vertex of a k-tree satisfying the condition in (ii) is a simplicial vertex. A
vertex is always simplicial if it has degree k and its neighborhood is completely
_ connected [22]. The class of k-chordal graphs is equal to the class of induced
ubgraphs of k-trees. Therefore, chordal graphs and k-trees are easily recognized
by a procedure which successively deletes vertices with completely connected
eighborhoods [22]. A graph G is k-decomposable if either of (i), (i) holds:

(@) G has at most k+1 vertices

_(if) G has a separator S, || < k, such that the components of G(V —S) are
Si,...,S, and all graphs G(S; U S) uc(S), i = 1,...,n, are k-decomposable.

 The graphs G(S; U S) L ¢(S) mentioned in the definition are obtained as
:hown in Figure 3.2. The component graphs are obtained by taking a “part”
of the graph and filling in all edges between vertices of the separator.

_ An elimination ordering m is an ordering of the vertices of a graph. The .
fill-in caused by the ordering =, F,, of G = (V, E) is a set of edges computed as -
ollows [22]:

e A A
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Fig. 3.2. A decomposable graph with its component graphs.

F:=9;

Examine vertices in order 7: ‘
For each vertex v, find C.(v) which is the set of unexamined vertices
adjacent to v in G = (V,EUF);
Add all edges in G'(C,()) to F;

F, is the value of F when all vertices have been examined.

G* = (V,E < F,) is always chordal. C,(v) is a separator of G and of G* if
some w is either a m-successor of v with w¢ C,(v), or a n-predecessor of v with
C,(w) c C(v) [22]. The fill-in represents dependencies introduced during a
variable (vertex) elimination process; ¢.g., if we have x+z=a and y—z = b,
represented by ({x, , 2}, {{x,2} » z}}) we can eliminate z and get x+y = a+b,
represented by ({x, )}, {x,¥}})- A dependency between x and y was introduced
by elimination of z. A graph G has dimension k with respect 10 T if
max,ey|C,0) = k. A graph G has dimension k if min,max,|C. @) = k, cf. [9].
A series-parallel graph is a graph of dimension at most 2.

A simple, unlabelled hypergraph H = (V, E) consists of a set V of vertices and a
set E « #(V) of hyperedges (ie., each hyperedge is a subset of the vertices).
The clique répresentation of a hypergraph H = (V, E), is a simple graph
G = (V,E), obtained by replacing each hyperedge e by all edges of the
complete 'graph on vertex set e, i.e.,

E= U {ow)

heE v,weh

or, alternatively,
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The clique representation is unique but several hypergraphs can have the same

 clique representation. All graph concepts defined above carry over to hypergraphs

~yia the adjacency relation (the relation of having a common edge) or the clique

representatlon

‘ The concepts k-tree, k-chordal, k-decomposable and dimension were introduced

_in various investigations rather independently of each other. They are, however,
intimately related:

TueoREM 3.1:  The following conditions on a graph G are equivalent:
(i) G is k-decomposable,
(ii) G is a partial graph of a k-chordal graph,
(iii) G is a partial graph of a k-tree,
(iv) G has dimension at most k.

proor: The equivalences (i) <> (iii) and (i) <> (iii) are proved by Arnborg and
_ Proskurowski [5] and Arnborg, Corneil and Proskurowski [4], respectively. An
elimination ordering leads to a decomposition by the seperators C,(v), hence
(iv) = (i). (ii) = (iv) follows from the observation that the dimension of a graph
s non-decreasing as its edge-set increases, and that a chordal graph has an
_elimination ordering without fill-in [22]. [ ]

It follows from Theorem 3.1 that the class of series-parallel graphs is the
 class of partial graphs of 2-trees. Partial 2-trees are characterized by the
forbidden homeomorphic subgraph K,, but this simple characterization cannot
be generalized to arbitrary partial k-trees, cf. [14,29].

k 4. The table-based reduction method.

Many important combinatorial problems on graphs concern the existence of
_certain sets. An independent set of a graph is a vertex set I such that no two
vertices in I are adjacent. The standard versions of combinatorial problems are
decision problems, e.g., the problem INDEPENDENT SET is: “Given G and an
integer k, does G have an 1ndependent set of at least k vertices?”. This problem
_is NP-complete [17]. In applications one is often interested in the correspondmg
ifoptimization problem, in this case MAX IND SET: “Given graph G, what is the
maximum size of its independent sets?” We may also be interested in counting
 problems such as finding the number of maximum size independent sets or
ndependent sets larger than a prescribed number (many problems in discrete
robabilities can be seen as weighted counting problems, like the network
eliability problem described in the introduction), and realization problems with
Qlutions actually exhibiting one or all maximum size independent sets.

~ We will consider table-based reduction algorithms which successively eliminate
ertices of the problem graph, and at the same time build information in tables
ibout the eliminated part of the graph, so that when vertex v is eliminated and
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the elimination ordering is 7, a table is created for vertex set C,(v). This table has
contents depending only on the subgraph of the problem induced by C.(v) and
the connected component of G(V —C,(v)) which contains v, the branch B,(v) of
vertex v under elimination ordering 7. The table for C,(v) is created from tables
associated with vertex sets containing v but no eliminated vertex, and possibly
problem data in the form of a vertex or edge labelling on the subgraph
G(CL) L {v}).

The answer to an optimization or decision problem for a connected graph can
be computed from the last table produced. Counting problems are solved by
having extra information in the tables, and realization problems are solved
through a scan of created tables in reverse order.

I will now describe algorithms, in the form of table update rules, for
independent set problems. In the optimization problem each row of a table will
contain a subset of the vertex set of the table and an integer. Row (i,n) in a
table for vertex set C,(v) says that G(B,(v)—I'(i)) has a maximum size independent
set with n vertices. Initially, tables are created for edges of G, so that edge

{v,w} has table
i ] n

@ 0
{v} 0
{w} 0
The update operation when vertex v is eliminated is as follows, where T(v) is’
the set of tables with vertex set containing v butino eliminated vertex: ;
(i) Construct intermediate tables T;, and T, for the two cases where v is

out

in or not in the independent set: A row (i,n), i< C(v)of T, is produced
if there is a row (i;, n;) for each table 7;in T(v) on a vertex set e; such that’

ij=(ne) v v}
i
Similarly, a row (i, n) of T, is produced if
=ine

n=>yn,.
J

(i) Merge tables T,, and T,, to table T. If row (i,n) is in T, and row |
(i, nyy,) in T, keep row (i, max(n;,n,,)) in T, and if index i of row (i,n)
occurs only in one of the tables, keep row (i,n) in T. ‘
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 When the last vertex has been eliminated, the answer to the optimization
:.problem is the sum of the values in created tables associated with the empty
vertex set. One such table is produced for every connected component of the
problem graph, and each such table has only one row (@, n).

The correctness of the method follows from an optimality principle: if § < V
_and G(V —S) has components {S;};.;, then the size of a maximum independent
et is the maximum over i < S of the sum over jeJ of maximum independent
gt sizes of G(S;—TI'(i)), plus |il.

_ One counting problem version of MAX IND SET is the problem of
. finding the number of maximum independent sets. This problem can be solved
by adding another number ¢ to each row of each table, as follows:

(i) For the initial tables, ¢ = 1.

(ii) For tables T,, andT,, constructed under step (i) of the optimization algo-

rithm, ¢ equals the product of the c; values of rows in tables T;, (i;, n;, c;),
from which the row of table T, or T,,, was constructed.

(iiiy When T is obtained by merging T;, and T,,,, c will be taken from the same

. row as n,“but if n,, = n_,, ¢ will be the sum of corresponding ¢ values

(¢;n+Cou if the TOws are (i,n, ;) and (i, n, ¢ )0

< The answer to the counting problem will be the product of ¢ values for
ables associated with empty vertex sets.

. The realization version of MAX IND SET, that of actually constructing one
r:all maximum independent sets, is solved by the following modification. Let
T, be the table produced when vertex v was eliminated. Add an item h to each
ow of each table T, which indicates how the row was obtained: from T, T,,
r, when the function values were equal, from both. Thus he {in, out, both}. A
olution is obtained non-deterministically by examining the tables in the reversed

limination ordering:

1 is a vertex set variable, initially empty;
for each vertex v, in reversed elimination ordering do
find row (i,n, h) of T, such that I n C,(v) = i;
ifh=inthen I :=1 U {v} else

if & = both then doordonot I :=1 U {v};
is a maximum independent set.

Non-determinism is expressed by the operator doordonot. Depending on how it
mplemented (random choice or backtrack), one or all optimal solutions are
duced. The algorithm can also be used for numbering the optimal
utions.

hree types of optimization of the algorithms are quite often applicable. The
st consists of eliminating a table whose associated vertex set is a subset of that
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of another table, ie., if T; and T, are associated with vertex sets e, and e,
and e, < e,, then a table T; on e, replaces Ty and T,. A row of T, is (i,n)
if there are rows (iy, ny) and (i, ny)in Ty and T,, respectively, such that

i, ney =i
n = n;-+n;.

Another optimization consists in eliminating rows that are “dominated”: if
table T contains rows (iy,ny) and (i3, 1), i < i, and |i;|+ny > lixl+n2, then
row (i,,n,) can be removed because it cannot be used in an optimal solution.
If only the optimization problem is wanted or if only one arbitrary realization
is requested, then (i, n,) can be removed also if |i;| +n, = |iy| +n, because some
optimal solution does not use row (i, 13) ,

A third technique, known as constraint propagation, has been reported by
Walz [30] to eliminate all unwanted rows (i.e., rows that are not used in any
solution) at an early stage in some scene labeling applications of CONJUNCTIVE
QUERY. The technique consists of comparing tables with overlapping vertex sets
(say T, T; with vertex sets ¢; and e;) and deleting row (i,,n;) in T if there is no
row (i, n;) in T; with i; ne; = i; N e, cf. Freuder [15].

When the available optimizations have been exploited, we may still not be
able to eliminate all vertices in reasonable time. We must then revert to
standard techniques of finding a reasonable solation even if it is not optimal.
One such technique consists in looking for Jocally optimal solutions, and if several
locally optimal solutions are produced from starting values obtained with
Monte-Carlo techniques, there is hope that the best solution is close to the global k‘,'
optimum. Unfortunately, it is in general not possible to analyze this approxima- .
tion method in quantitative terms and although quite many applications use such
methods, few empirical results have been published — except as rather partial and
incomplete justifications of an application. A recent popularization of the method,
using a fascinating analogy with statistical mechanics to justify the heuristics
applied, was reported by Kirkpatrick, Gelatt and Vecchi [21]. For counting
problems, Monte-Carlo simulation is usually a reasonable technique. Rosenthal
[26] has shown that such a simulation gives better results if it is preceded by
elimination of vertices of low degree.

MAX CLIQUE, the complementary problem of MAX IND SET, can
somewhat surprisingly be solved by essentially the same method, although the
information in tables will be rather different. Suppose K is a largest clique. in G,
When the first vertex eliminated in K is v, K must be contained in C,(v) U {v}.
The proper way to obtain the size of the largest clique is thusto let the table
associated with C,(v) contain just the size of the largest clique in G(CL(v) © B,(®)):
This is the maximum of the values of all tables associated with a vertex set
containing v, and the size of the largest clique in G(C,(v) U {v}). Counting and.
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 realization problems are solved quite analogously to how it is done for maximum
 ndependent sets.
These table-based reduction algorithms have a wide applicability. Among
reported application algorithms using the method can be mentioned NON-
_ GERIAL OPTIMIZATION [9], NETWORK RELIABILITY [24], CONJUNC-
 TIVE QUERY [3], CNF SATISFIABILITY [13] and SYSTEM RELIA-
_ BILITY [2]. Since these algorithms were independently designed, their descrip-
. tions do not always emphasize the simple elimination principle on which they
_ are based. They concentrate more on lower-level details like application-
_ dependent optimizations and efficient data structures (problems that are, of
_ course, important enough). Algorithms for a number of problems have been
constructed [6] for the purpose of showing the wide applicability of the
method. These problems are VERTEX COVER, INDEPENDENT SET,
DOMINATING SET, GRAPH K-COLORABILITY, HAMILTONIAN
CIRCUIT and NETWORK RELIABILITY. Algorithms designed for series-
parallel graphs which seem straightforwardly extendable to graphs with bounded
dimension are reported for finding a Steiner tree [29], the resistance of an
electrical network with nonlinear elements [14] and for computing several more
complex measures of network reliability [26] and performance [10]. Several
other examples can be found in the NP-completeness column of Johnson [20].
Generally speaking, combinatorial optimization problems arising in applica-
tions are often slightly modified versions of the “pure” problems analyzed in the
scientific literature. It seems as if table-based reduction algorithms can be used
for a large majority of these modified problems, and the applicability of the
‘method depends mainly on whether or not the application tends to generate
graphs and hypergraphs with small dimension. The application oriented results
r table-based reduction methods clearly show that there are quite many such
pplications, but there are also examples where graphs are of high dimension.
ne such example is a square grid [9,25]. In some applications the methods are
aimed feasible even on graphs with higher dimension than suggested by a
orst-case estimate. Solid support has been given to some of these claims.
s an example, the Davis-Putnam procedure for CNF SATISFIABILITY was
own polynomial on the average for some reasonable instance distributions
20, June 84]. When the problem is restricted to at most two literals per clause,
e fill-in will not come in full force, so the procedure becomes in fact polynomial
1 the worst case without a dimension restriction [17]. The principle carries over
several problems which have a natural formulation on hypergraphs and for
hich a very efficient elimination algorithm can be designed when the problem
restricted to hypergraphs with at most two vertices per hyperedge (i.e., essentially
rdinary graphs). This technique has been explored by Aspvall [7].
One may ask if all NP-hard problems defined on graphs can be solved in
néar time on k-decomposable graphs. The answer is probably no, because some
roblems on graphs are NP-complete even on trees, a subclass of 1-decomposable
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graphs. However, the only examples 1 know of are BANDWIDTH, which was
shown NP-complete even on trees with bounded degree [16], and a quantified
version of CONJUNCTIVE QUERY [3], NP-complete on trees with only two
quantifier alternations (the prefix is 3*v3). The CUTWIDTH problem is quite
similar to BANDWIDTH but was recently shown by Yannakakis to have an
O(nlogn) algorithm for trees [33]. However, the “tables” are fairly complicated

and the algorithm has not yet been extended even to series-parallel graphs. I do ;
not know any natural problem which is polynomial on trees but NP-complete
on series-parallel graphs. At present no useful characterisation exists for problems
efficiently solvable with table-based reduction methods on k-decomposable graphs.
Some results for series-parallel graphs were derived by Takamizawa, Nighizeki
and Saito [27]:

TueoreMm 4.1.  If a graph property Q is defined in terms of a finite set of forbidden, .
induced or homeomorphic, subgraphs, then the following problems can be solved in -
linear time when the problem, graph G = (V, E) is constrained to be series-parallel;

(i) Does G have property o7
(ii) How large is the largest set W < V such that G(W) has property Q7
(iii) How large is the largest set E < E such that G' = (V, E') has property Q?

Turorem 4.2. For any graph P, the following ;}roblem (generalized matching)
can be solved in linear time: Given a series-parallel graph G, what is the size of
the largest family of disjoint vertex sets {C;}¥_, such that P is isomorphic to a

partial graph of G(Cy), all i =1,...,k?

Another natural question is whether or not table-based reduction methods
are better than alternative methods. Of course, since we do not even know if
NP-hard problems have polynomial time algorithms (we only know that all or
no NP-complete problems have polynomial time algorithms), it is not possible
at present to get particularly strong optimality results. A preliminary, but quite
interesting, result has been reported by Rosenthal [25]. It is based on the
decision tree computation model, i.. computations are modeled with a binary
(or ternary) tree, where a node represents a comparison, its sons the outcomes
of the comparison, and where each possible execution is represented by a path
from the root to a leaf. The cost of the algorithm is the maximum length o

such a path:

TuroreM 4.3. For NON-SERIAL OPTIMIZATION restricted to the family o
chordal hypergraphs, no comparison-based algorithm has lower cost than a table
based reduction method using a perfect elimination ordering.

This result cannot necessarily be extended to those problems which ar
special cases of NON-SERIAL OPTIMIZATION, because in those cases th
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function tables are restricted. Rosenthal also proves the optimality of table-based
cduction methods on unrestricted hypergraphs, but with a restriction on the
 family of algorithms to “non-overlapping” comparison algorithms. Although this
mily seems natural, its definition is too technical for this survey and the
nterested reader is referred to [25].

5, Finding good vertex elimination orderings.

The cost of table-based reduction algorithms depends critically on the
Jimination ordering used. The cost to eliminate a vertex can usually (ie., in all
ases that have been investigated) be bounded by a function of the size of the
argest separator used in the elimination process, the dimension k of the graph
with respect to the elimination ordering. For an NP-hard problem, this bound
s always at least exponential in k (otherwise we would have a polynomial time
glgorithm for an NP-hard problem, since a graph of n vertices has dimension
ess than 7. This would be extremely unlikely and surprising). For many problems
the elimination cost for vertex v also depends very much on the connectedness
of G(C,(v) v {v}). In particular, the elimination cost is often polynomial in the
size of separators constrained to be cliques, a feature discussed further in section 6.
However, the dimension of the graph with respect to the elimination ordering is
a satisfactory objective function in most applications, and I will therefore survey
some results on finding elimination orderings giving smallest dimension.

This is, by Theorem 3.1, the problem of finding the smallest k such that
graph G can be completed to a k-tree, or, equivalently, a k-chordal graph. It is
similar to the MIN FILL-IN problem, which asks for the smallest number of
edges that must be added to G in order to make it chordal. The latter problem
curred in elimination order investigations for sparse linear systems of equations.

We have:
uEoreM 5.1. (Yannakakis [32]) MIN FILL-IN is NP-hard.

TueoREM 5.2. (Arnborg, Corneil and Proskurowski [4]) .DIMENSION is NP-
rd.

The full proofs are not given here. As in most NP-completeness results, the
ain difficulty is to relate the given problem, by polynomial reducibility, to an
ready known NP-complete problem. Those problems will be OPTIMAL
INEAR ARRANGEMENT and CUTWIDTH. The constructions are shown
1 Figure 5.1. Graph G = (V, E) is transformed into two graphs, G’ and G” as
llows: G' has a group B, of two vertices for each edge in G, a group B, of
(G)—degg(v) vertices and ‘a singleton group 4, for each vertex v in G. The
ertex of A, is adjacent to each vertex of B, if e is incident to v and to each
ertex in |B,, and the vertex groups U,cy4, and U, g, yB, are cliques
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G’ has B, groups defined as for G, and two groups A, and B, with A(G)+1
and 4(G)—deg(x)+ 1 vertices, respectively, for each ve V. Vertices x and y in
G" are adjacent iff either of (i) xe4,, yeB., e incident to v in G; (i)
x€ A, yeB,; (iii) xe 4,, ye A,; (iv) x€ B, ye B;; where i and j is any edge or
vertex, is true.

The main contents of the proofs of Theorems 5.1 and 5.2 is to show that G
has a linear arrangement with total edge-length at most k iff G' can be made
chordal by addition of not more than k+n?(n—1)/2—2m edges, and that G has
a linear arrangement with maximum cut at most k iff G” can be completed, by
addition of edges, to a k'-tree with k' = (4(G)+ 1)(n+1)+k—1, where G has n
vertices and m edges.

a Ba

&)

o

B
B
B,

B,
B,

G G G’

Fig. 5.1. Graph transformations for Theorems 5.1, 5.2.

Theorem 5.2 says that it is, in the worst case, infeasible to determine the:
dimension of a graph or to find an optimal elimination ordering. Fortunately
(or perhaps unfortunately) the exponential dependence of the cost for our algo-
rithms on the dimension of the problem graph means that we are mainly interested
in finding the dimension when it is small, say up to 10 [6]. An O(n**?) algorithm
for decidihg if a graph has dimension k, and for finding an optimal elimination
ordering in that case, is given in [4].

The algorithm starts by finding all separators of size at most k, and for each
such separator § with associated components S, of G(V-—S) the graphs
G(S; L §) U ¢(S) are put into a table in increasing vertex set size order. The table ‘
is processed in this order and for each entry it is decided whether or not the
graph can be composed from previously processed graphs decided to be k-
decomposable. Since the series-parallel reduction method recognises a 2-decom-,
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osable graph in linear time whereas the general method would require time
om*) for such a graph, there is room for improvement. Although the algorithm
s the only, and therefore the best, polynomial algorithm for recognizing k-
ecomposable graphs, there are methods which will give faster execution on

o

PROPOSITION 5.3. (Bertele and Brioschi [9]) If G a clique separator S and
‘(V —S) has the components S;, then the dimension of G is the largest of the

dimensions of the graphs G(S U S)).

@

proor: - If G has dimension k then every induced subgraph G(S U §;) has
dimension at most k (see the computation rule for fill-in). If every graph
G(S U S, is k-decomposable, then, since G(S U S;) = G U S) vcS), Gis k-
decomposable. The proposition then follows from Theorem 3.1. [ ]

_ This means that if S is a clique separator where G(V —S) has components
S;, then an optimal elimination ordering can be found from optimal elimination
orderings of graphs G(S U S)), ie., Proposition 5.3 can be used to decompose
the problem into smaller ones. Of course, one might expect it difficult to find
clique separaiors, since both cliques and separators are difficult to find, unless
they are small. Fortunately, a clique separator, if one exists, can be found in
time O(nm) for an n-vertex graph with m edges (Whitesides [31]). Proposition 5.3
also allows us to assume that a vertex of degree 0 or 1 is the first in an
optimal elimination ordering. There are other cases where one can safely assume
that a certain vertex can be eliminated first in an optimal elimination ordering:

ROPOSITION 5.4. (Bertele and Brioschi [9], Arnborg and Proskurowski [5h If
(I'(v)) has no two adjacent vertices of degree greater than 1 and if G is of
imension at least deg(v), then v is the first vertex in some optimal elimination

This Proposition allows us to eliminate at once vertices of degree 2. This is
ufficient for finding an optimal elimination ordering for .all 2-decomposable
raphs, since a graph without vertices of degree at most 2 cannot be 2-decam-
osable. (see also [29]).

It is very rewarding to regard the elimination process of a graph as a
ewriting process, a concept thoroughly studied in computer algebra (see, e.g.,
uet and Oppen [19]). A rewrite rule in this context deletes a vertex and its
ncident edges and fills in the fill edges in I'(v). The rules for degree 0, 1 and 2
re given in Figure 5.2 (i)-(ili). Proposition 5.4 also implies that the rule of
igure 5.2 (iv), the “triangle rule”, is safe in the sense that application of the .
ule to a minimum degree vertex does not increase the dimension of the graph.
'he following Propositions give additional “safe rules”:
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PROPOSITION 5.5. (Arnborg and Proskurowski [S]) If there are vertices vy, v,
such that S = I'(v;) = I'(v;), G(S) has no vertex of degree greater than 2 and G
is of dimension at least |S|, then v, and v, (in any order) start some optimal
elimination ordering.

For vertices of degree 3, this proposition gives the “buddy rule”, Figure 5.2 (v).
ProPOSITION 5.6. (Arnborg and Proskurowski [S]) If G has vertices;vy,..

U, ... Uy, SUch that T'(v;) = {u|j # i} and G is of dimension at least k, then vertices
vy, .., (in any order) start some optimal elimination ordering.

For k = 3 this proposition gives the “cube rule”, Figure 5.2.(vi). We have now
a complete set of rewrite rules which will transform every 3-decomposable graph
to the empty graph, at the same time giving an optimal elimination ordering:

(i) islet

O

ARG
® e o U

(il) twig

(iii) series

(iv) triangle

(v) buddy

(vi) cube

Fig. 5.2. Safe and complete rewrite rules for 3-decomposable graphs.

TuedreM 5.7. (Arnborg and Proskurowski [5]) Rewrite rule sets from Figure 52 '5
correspond to graph classes as follows:

() - O-decomposable
(iy-(@) - 1-decomposable
(iy-(iii) — 2-decomposable

(iy(wi) — 3-decomposable
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the sense that repeated application of rewrite rules from a set reduces a graph
to the empty graph iff G is a member of the corresponding class.

Theorem 5.7 indicates an algorithm for recognizing 3-decomposable graphs
hich operates in time O(n*) as opposed to O(n®) for the table-based method [4].
owever, graphs which require the cube rule are extremely unusual, so in
practice it operates in time less thanO(n®) for randomly generated 3-decom-
_posable graphs. An extension of theorem 5.7 to arbitrary k-decomposable graphs
nd even to 4-decomposable graphs would be valuable, but it seems difficult
o establish the completeness of a set of rewrite rules in these cases. Monte-
arlo simulations have shown the set of “safe” rules described in [5] efficient
4 the sense that it is sufficient for recognizing “most” k-decomposable graphs

or k=7

. Applications to dense graphs.

A k-decomposable graph with n vertices cannot, by Theorem 3.1, have more
han nk edges, since it can be eliminated by removal of its vertices so that no
more than k edges are removed with any vertex. Thus, k-decomposable graphs
must be sparse if they have significantly more than k vertices. I will describe
wo cases where table-based reduction methods are applicable to dense graphs.
‘he first case is where the problem graph contains many clique separators. As an
xample, consider the tables produced for the problem MAX IND SET in
ection 4. The index i of a table row in the table produced for C,(v) when v
s eliminated is an independent set of G(C,(v)), so if C,(v) is a clique of size m,
e table can only have m+ 1 rows. Likewise, for MAX CLIQUE, it is easy to
ind the largest clique of G(C,(v) v {v}) if C,(v) is a clique, in time polynomial
its size. Thus, for a graph and elimination ordering where all sets C,(v) are
liques, i.¢., a chordal graph and a perfect elimination ordering, the algorithm
vill run in polynomial time for these two problems,\as well as for the problems
RAPH K-COLORABILITY and CLIQUE COVER (Gavril [18]). Tarjan [28]
1as designed a decomposition algorithm which decomposes a graph by clique
arators into atoms which are not clique separable. He notes that for the four
blems above and for the MIN FILL-IN problem, the solution on the whole
ph can be constructed in polynomial time from solutions to similar problems
the atoms, and that approximate solutions on the atoms can be used to
nstruct approximate solutions on the whole graph. The technique jis apparently
;‘applicablel to all problems. Particularly, MIN DOM SET has been shown
-hard even when constrained to chordal graphs [11], [20, Jan. 1984]. Two
Yy properties of a problem which make it feasible for clique-separable graphs
m to be: (i) the problem asks for a subset or labeling with a property such
t there are only polynomially many on a complete graph ; (ii) the problem has
hereditary” property. I will only define this property with an example and a
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nonexample : if I is an independent set of G, then I n W is an independent set
of G(W), but if D is a dominating set of G then D ~ W is not necessarily a
dominating set of G(W).

The other case of problems solvable on dense families of graphs is based on
complementary problem pairs. Problems P and P are complementary if the
solution to P on graph G directly gives the solution to P on the complementary
graph G. Such pairs are MAX IND SET - MAX CLIQUE and MIN
GRAPH COLORABILITY — MIN CLIQUE COVER. There are surprisingly
many problems where it is easy to find a complementary problem which, even
if it looks quite artificial, can be solved efficiently with the table-based reduction
method (important exceptions are most problems where an edge-labelling is part
of the problem instance). All such problem pairs are, of course, easy on
graphs which are complements of graphs with small dimension. One may ask
if there is also a reasonable definition of a class of graphs such that a problem
on a graph in the class can ve solved by solving the original problem on some
parts of the graph and the complementary problem on complements of other
parts of the graph. I will propose such a family, which can be considered a
generalization of co-graphs or complement reducible graphs (Corneil, Lerchs

and Stewart Burlingham [12]):

G is a co-graph iff either of (i)-(ii):

(i) G is a single vertex
(ii) G is disconnected and all components of G are co-graphs
(ili) G is disconnected and all components of G are co-graphs.

Problem P is easy for co-graphs if both P and P are such that the answe
for a disconnected graph is easy, given the answers on the components. Since
graph and its complement cannot both be disconnected, the decompositio
defined by (i)-(iii) is unique. Linear time algorithms for the two problem pair:
above and also for finding the scattering number (a generalization of HAMIL
TONIAN CIRCUIT) when constrained to co-graphs are described in [12], wher
it is also shown that co-graphs are characterized by the forbidden subgraph P

The main difficulty in generalising the co-graph class is the proper treatme
of fill in the joints between complemented and non-complemented parts of th

graph.

DEerFINTIONS: A shaded graph is an edge-labelled graph with labels grey an
black. An unshaded graph is represented by the shaded graph obtained
painting its edges black. The complement of a shaded graph is obtained by

changing black edges to nonedges, nonedges to black, and keeping grey edges

unchanged.
By shading vertex set S in a shaded graph G we mean the operation of

changing all edges and non-edges in G(S) to grey edges, obtaining graph s(G, S)
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A shaded graph G is complement k-decomposable or co-k iff either of (i)-(iii):

(i) G has k+1 or fewer vertices,

ii) G has separator S (with respect to black and grey edges)such that G(V—S)
has components S;, and all graphs s(G(S v §;),5) are complement k-
decomposable,

. (iii) G is complement k-decomposable.

_ An s-subgraph of a shaded graph G is an induced subgraph of G where
posslbly some grey edges have been deleted or painted black. We note that the
class of co-k graphs is closed under complementation and taking s-subgraphs.
The recognition problem for co-k graphs seems more complicated than that
for k- decomposable graphs, and it is not obvious that the problem is in P for
fixed but arbitrary k. The following simple analogue of Proposition 5.3 gives
olynomial-time algorithms for recognizing and decomposing co-0 and co-1

OPOSITION 6.1: If a shaded graph G has a shaded separator S, with associated
mponents S;, then G is complement k-decomposable iff all the graphs
S U S;) are complement k-decomposable.

oor: (—):if G is co-k, then its s-subgraphs G(S U §;) are co-k.
-): if all the graphs G(S v S,) are co-k, then, since G(S U ;) = s(G(s L §;), S),
satisfies item (ii) of the definition of co-k. B

Conclusions and open problems.

Table-based reduction methods can be used to solve efficiently most combi-
torial problems defined on graphs and hypergraphs of bounded dimension,
d many problems on clique separable graphs and complement decomposable
aphs. The method is thus quite general. It compares in generality with methods
generating the convex hull of the domain of feasible sets and solving the
timization with linear programming (in which case NP-completeness of the
mbinatorial problem reflects itself in an exponential worst-case bound on the
e of the LP problem in terms of the size of the original problem). There seem
e connections between these methods which deserve to be investigated.
other area that should be investigated is the recognition problem of com-
ement k-decomposable graphs, and a characterization of problems solvable on
- graphs.

_most promising line of research, however, is an investigation of the
llelism of table-based reduction methods, and design of a circuit architecture
oiting such parallelism and programmable for a large set of table constructions
various problems. It should be observed that, given an embedding of the
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problem graph in a k-tree, all simplicial vertices can be processed in parallel,
and the table construction for one elimination has also a great deal of parallelism
in operations like maximization and summing, A processor based on such an
architecture and realized in standard technology would be orders of magnitude
better in cost/performance than a supercomputer, for a significant portion of
optimization problems arising in applications. It could be attached to a personal
workstation, attached as a resource in a high-speed local network, or embedded ":
in an on-line control system.

Appendix.

For completehess, this appendix defines all computational problems
mentioned in the paper. For problems where no reference is given, a complexity
result for a similar problem can be found from [17].

MAX CLIQUE: “Given G, what is its maximum clique size?”

A dominating set of G is a vertex set D such that every vertex in V-D is-
adjacent to a vertex in D.

MIN DOM SET: “Given G, what is its minimum dominating set size ?”

A k-coloring of G is a vertex-labelling of G with domain {1,2,...,k}, such that.
no two adjacent vertices have the same label. '

MIN GRAPH COLORABILITY : “Given G, what is the smallest k such that G
has a k-coloring?” ‘

MIN CLIQUE COVER: “Given G = (V, E), what is the size of the smallest set‘
of cliques in G whose union is V7" ,

NETWORK RELIABILITY: “Given G, where each edge e is labelled with a
probability p(e) between 0 and 1, what is the probability that the corresponding
network is connected 7’ :

This is a weighted counting problem. The probability is the sum over all
subsets x of E defining a connected partial graph (V,x) of G, of []eexple)
Hee g-x(1—p(e)). A more general version of this problem asks for the
probability that a designated vertex set W is contained in one connected
component. In section 1 we solved this problem for |W| = 2 on a series-parallel

- graph with terminals W.

A system event description is a set of independent atomic events, each assigned
a probability, and a set of composite events, each defined by a logical function of
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S operands each operand being an atomic or composite event, and finally a
ubset of the composite events, the system events. The dependency relation must

¢ acyclic.

ySTEM RELIABILITY [2]: “Given a system event description, what are the
robabilities of the system events?”

_An important family of problems not normally seen as problems on graphs
an be modelled on hypergraphs and solved by vertex elimination when the
lique representation of the hypergraph has low dimension:

CNF SATISFIABILITY : “Given an edge labelled hypergraph H, where an edge
abel is a set of subsets of the edge vertices, let a logical formula correspond to

H as follows: There is a variable for each vertex, a clause for each member ¢ of
n edge label of edge e, such that the clause contains those - variables
'orrespondmg to vertex set e and with variables corresponding to vertices in ¢
mplemented. Is the formula corresponding to H satisfiable?”

CONJUNCTIVE QUERY: “Given an edge labelled hypergraph H where edge
abels are tables of locally admissible assignments of values to the vertices of the
¢, is there an assignment of values to vertices consistent with all hyperedge
ables?”

This problem is central for query evaluation in databases (where the tables
represent relations of the data base and the hypergraph represents an existential
conjunctive query). Variants often occur in Al applications.

(IQ

ON-SERIAL OPTIMIZATION [9]: “Given an edge labelled hypergraph H,
where edge labels are tables giving, for each locally admissible assignment of
values to vertices of the edge, a function value. What is the smallest value for the
sum of function values for a globally admissible assignment of values to vertices

01 —1/deg(w)
1 0 —1/deg(v)
11 0
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independent set. This construction also gives an NP-hardness proof for NON-
SERIAL OPTIMIZATION.

Another important family of problems are arrangement problems, where an
ordering of the vertices of the problem graph is sought. For a linear ordering of
the vertices of G, let the length of an edge be the difference between the index of
its last and first vertex.

HAMILTONIAN CIRCUIT: “Given G, is there an ordering of its vertices such
that each vertex is adjacent to its successor and the last vertex is adjacent to the

first?”
If we edge-label G with distances and ask for a shortest Hamiltonian circuit

we get a constrained traveling salesman problem.

OPTIMAL LINEAR ARRANGEMENT: “Given G and an integer k, is there
an ordering giving total edge-length at most k?

BANDWIDTH : “Given G and an integer k, is there an ordering of vertices of G
such that the largest edge-length is at most k7

CUTWIDTH : “Given G and an integer k, is there an ordering such that, for no ;‘
vertex v, more than k edges join a predecessor of v and v or one of its
successors 7

The complexity of the following two problems was settled in section 5:

MIN FILL-IN: “Given G, what is the minimum value of |F A7

DIMENSION: “Given G, what is its dimension?”’
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