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SHSTERACE

Vorkwirthe wnd Freuder have walyzed -the ame coonplexity of several ronstam salisfaction
dgoripien 151 We present heve siew algorahms for arc anit path coristercy and show that the are
cansistercy algorithm is uplimal in time complexity and of the sume-order space ceniplexity as the
ardier alporithms. A refined solution far the puth consistency problem ix propased. However, the
space complexity nf the path consisteriy algorihusn makes it praciicable only for small problens. These
alpnrithms are the result of the synthesis rechniques used in ALIcE (a general constraint satisfaction
sty and local consistency methods {31

1 Intraduction

We define a constraint satisfaction problem {after Mackworth [4]) as follows

N={i j, . .. }is the set of nodes, with [N|=n,

A=1b, ¢ .. ) is the set of labels, with [A] = a,

E = {, G, 1) s an edge in N x N}, with |E| = ¢,

A ={blbe 4 and (i, b) is admissible}, :

R, is a unary refation, and (7, b) is admissible if R (1, b),

R is a binary relation, and (7, b)-{ ], ¢) is admissible #f R (/, b, j )

* This work was partiadly supported under an ADI contract
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The constraint satisfaction problem is to find all n-tuples in A" which satisfy the
given relations.

Several authors have presented alporithms to solve this problemy. However
since the problem is NP-complete, it has been suggested by others that g
preprocessing or filtering step be applied before the backtracking or search
pracedures|1,2. 5. 7, 8] Although nade, arc, and path consistency algorithms do
not usnally result in a solution, they do eliminate any labels failing to satisly o
minimam of consistency constraints. Such technigues have found wide application
in artificial intelligence, pattern recognition and image analysis,

1t has been shown by Mackworth and Freuder [5] that the worst-case running
times for their algarithms for arc and path consistency are bounded abave by
Ofee’) and Oln'a’ ). respectively. We give are and path consistency algorithms
which are bounded above by Ofea’) and O(n'a’). respectively. Moreover, the
space requirements, although not neglipible, are of the same order as Mack
worth's algorithms,

The node consistency condition consists only in checking the unary relations
on the different nodes and keeping in the domain of each node values satisfying
this unary constraint. Arc consistency checks the consistency of labels for each
couple of nodes linked by a binary constramt and removes the labels that cannot
satisty this local condition.

Path consistency alporithms ensure that any pair of labelings (i, b1-(), ¢
allowed by a direct relation is also allowed by all paths from i to ;. It has been
proven that for complete graphs, path consistency is equivalent to consistency of
every path of length 2; thercfore, this is equivalent to checking the consistency of
every triple. Each praph can always be replaced by an equivalent complete graph
by adding the frue constraint between the nodes which are not connected.

The key idea of algorithm AC-3 given by Freuder and Mackworth is, whend
label is removed from node {, to consider only the edpes (1, J) because they a¢
the only ones whose arc consistency may be affected by the change. The same
idea applics for path consistency: when a pair of labelings is removed, the
algorithm PC-2 considers only the length-2 paths that are related to the nodes t;’f
this pair. Therefore, algorithm AC-3 has complexity O(ea’) instead of (et )
for the brute-force algorithm AC-1. PC-2 is of complexity O(a’n ) whereas pC-d
is Ola'n’ ).

Our improvement is based on a technical aspect of the avicr system (3]
was designed to solve most combinatorial problems using a unified and gencrﬁf
strategy. However, it is not possible to express in this system that swe want 0’31?
to eliminate labels that are locally inconsistent. Caretully looking at how Amﬁj
runs on this problem shows that it automatically applies the algorithm AU W’f

eseribe in Section 2. Then it starts to find a solution to the complete problen! by
using—lousely speakinp—backtracking. In fact, it applies AC-4 at cach Stage of
backiracking. (See also [6])
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2. Arc {ounsistency

{f we consider are consistency intuitively, we find that it 18 (hasc:d on the notion of
apport Suppose we are considering label 6 at node @ As 1‘033 as b has a
;ﬁnimum oof support from the i’a,?wis at each of the ather nod:z:s j{jnot equai‘ o
. bis considered a viable Label for node i, But once there exists a node al which
;o, remaining label satisfies the requited relation with b, then b canbe chiminated
a pussible fabel for node 1
The algurithm that we propuse makes this support evident by assigning a
ounter 1o sach arc-label pair. Such pairs are denoted by [{, 1), 51 and mdicate
he arc from 1o J with label b at node ¢ 1n addition, for each label ¢ at nade §,
e sel §,. is constructed, where s W b3 e at node j supports b at node 1)
gat 1, if ¢ is climinated at node /. then counters at [(i, j}, b] must be
geeremented for cach b supported by ¢, Finally, we use a table, M, to keep track
of which labels have been deleted from which objects, and a list, List, to control
he propuggation of constraints. The alporithm for arc consislency is given in Fig.
i Assume node consistency has already been agsured. It is easy to see that ine 7
of the innermost loop of the data structare intialization part of the algorithm can
pe execnted at most e times. Thus, the number of cloments i the scts S.ison
the order of e’ Sinve line 12 is executed at most ea times, the total number of
counters is of the order eg; furthermore, since the value of Total is bounded
fy ¢, the maximum value for a counter is ¢ Line 14 simply puts the anique
{i.b) pairs into hst form; this requires order ag time. Qur measure of tme
complesity for the algorithm is the decrementing of a counter; note that the
counters and decrement Hsts encode in a fixed way the binary relatons. Thus,
this measure is consistent with that of Freuder and Mackworth.

Now consider lines 15-27. A global consideration of the counters shows that if
they never go pegative, then there are at most

a5

decrementations. Ancther way o see this is to consider the bounds on the two

loops at lines 15 and 18. First, we remark that a label 1s chiminated at most once
from an nbiect because the matrix M sremembers’” that fact. NMow, given that

label ¢ hus been climinated from node J, the only labels that can be affected are

those: at nodes i which have an edge to j. Let d. be the vertex degree at node j.
then sinee f can appear at most @ times at lne 17, and since there are at most da
dements of S}.C for a given §. we have that line 20 can be executed at most

L8 43

2 ada = a z d}; Sae
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Step 1. Construction of the data structures 9 1. Correctness of ACA

1M =05, - Emply sat; :
2 for (i JE F do We outline here the key

for bE A do i The same approach can

be?é?a}:mo; Step 1. By induction, ¢
forcc A do consistency solution: thek
HALB L) then no more corresponding Ll
begin . jabels could not belong to
fotal . Tol ¢ 1. Step 2. The resultof At
Append(S,_, (i, b)) L iRV
10 end, 1. we have Counterf(/, ]}
11 if Total=0then Mli. bl = 1. 4 = A - [hb): AU builds an arc cos
12 . Swp 3. From Steps 1
3 ena , consistent solution.
14 initialize List with {{ BIIMU b} =1}

Step 2 Pruning the inconsistent iabeals 2.2. Space complexity of

18 while List not Emply do The sets &, can be rep
16 begin proportional to their m
17 choose (j. ¢) from List and remove (/. ¢} from List; represented by an array ¢

18 for (b e 8 :
19 bigin) 5 do Ofea) counters. Therefor

20 Counterf(i, /), b]:= Gounter{(i. 1, b] - 1. - our glgorithim never rea
21 it Counter((/, ) bl =0and M|i b]=0then It should be noted th
22 begin possible Iabels for eact
24 Append(List(i. b)) requirement  bounded t

24 Mibli=1,4 = A - (b} qu
2 end; fmmum upper bound.

26 end;
27 end 3. Path

i, 1. Opumal complexity arc consistent algorithm AC-H Montanari [71 prove d tha

16 path consistency for a
tompleted by adding edg

Since the lower bound time complexity for are consistency is Ofeq ) and the
upper bound time complexity for AC-4 is Ofea’ ), we have an optimal algorithn!
We have already shown that the space required is on the same order as thit
required to deline the relations. .

We do not claim that there are po faster algorithms; the one we suggest hc“ ’
can be obviously improved: in Step 1 we can remove from A, each b for which
we have found that there is no more consistent labeling; this reduces the size ¢
the 5, and therefore reduces the complexity of Steps 1 and 2. However, 318 lf
not & major improvement for the worst case. But it is very casy to add and m) ¢
in some cases divide the comglexity by a factor of 2. For planar graphs €89 | ‘;’“
O(n). AU will run in O(na’) and AC-3 in Ofaa’) and both are linear it the | end

number of nodes, e 2 tye path consistency
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4 1. Correciness of At
T

Wwe outhime here the key steps for a complete proof of the correctness of A4

he sanie approach can be used to prove AC-3.

Siep | By induction, cach label deiect‘ed fr{m‘z'f& .15 not admissaible tor any arc
consistency solution: the labelis removedif one of its counters goes Lo 26105 50 it has
no DI corresponding labels at one edge; by induction all the previously m‘mgved
pabels could Bot belong to uny solution, s this one cannot belong to any solution,

Sgep 2. The resultof AC-disarc consistent: forall edpes (v, 7). toralllabels b for
: we have Counter{ts, J ). b] = 050 b has a corresponding label node J; theretore,
AC-4 builds an arc consistent solution.

Siep 3. Prom Steps 1 and 2 we conclude that AC4 builds the largest arc
consistent solution,

1.2, Space complexity of AC-4

The seis &, can be represented as linked lhists and, therefore, use a space
proportiontal to their number of elements: Ofea’). The set M has to be
represented by an array of bits and, therefore, its size is O(ne). We have at most
0O{ra) counters. Therefore, the total space required is Ofea’ ), On real problens
our algorithm never reaches its upper bound m space.

1t should be noted that each algorithm must represent the graph and the
possible labels for each of its nodes. This leads us o a minimal space
requirement bounded by Ofe + na).  Algorithm AC-3 needs exactly this
minimum upper bound.

3. Path Consistency

Montanari [7] praved that, for a complete graph, path consistency s cquivalent
to path consistency for all length-2 paths. If a graph is not complete it can be
completed by adding edpes with the always rrue relation. Therefore, the PC-1

begin
Y = R; {«copy of the different mattices » ¢
repeat
begin
yR
for k.in N do
foriin Ndo
for fin N.do
¥lov landy v vl
end
until Y7 = v
Y =¥
end

the path conéis(ﬁncy aponthm PO
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aleorithm (Fig. 2} examines only these short paths. We need 10 use the notation
of PC-1: the relation between ¢ and J 18 a Boolean matnix 8, whose rows
correspond to the possible labels for 7 and the columns 1o the possible labek
tor |

The body of the ioner loop of PC-1 updates the relation matrices ¥ by
deleting the pair of labels that is illegal because no legal label for & is conuistent
with it

4. Algorithm PU3

A wimilar approach can be used to find a lower complexity path consistency
alporithm (see Fig. 3). For each edge (7, j), for each node k, and each label b for
i and ¢ for . we introduce Counter{(d, ), k. b, ¢] which counts the number
ot labels for node k that are still consistent with the assignment of label b to { and
cto]. Thesets S, provide all the (Ui, /). b, ¢) that are admissible with the labeld
for node k. The maximum number of times line 12 will be executed i on the
order of n’a’. (Remember that for this path consistency algorithm to work itis
required that the graph be complete; i.e., e = jaln — 1)) Likewise, a globil
consideration shows that i the counters never go nogative, then since there are
at most order nla” counters and each has a muzimunm value of ¢ hne 26 can be
executed at most order n'e’ times. On the other hand, if we examine the loop
bounds. we see that the “while” loop is execuited at most pg thines since a gven
node cun only appear once for each label. Finally, the “for” loop is bounded by
the size of each &, which is of order na’. Taking the product, we have that line
26 is executed at most order pan’n’ = n'g times.
The space complexity is however very large: the number of counters i

2 4] x]A]x|{ke Nk ncighbors ¢ and j}| < n'e

NN

The sum of the size of the different sets 8 15 bounded by:

> A lxjalza,]lana’
YN INN :

The space complexity of the whole algorithm is Ofn'a ). Because Step 2 1
exactly in O(n'a’) for a consistent network, this algarithm is truly cubic i s
behavior, ' ,

Some optimization in space and time can be achieved. Eirst, as was already
mentioned 1n [4], when exploring the length-2 paths, we can lunit Qursehf?f w
the paths (i, k, j) with { = ;. This divides space and time by 2. Secondly, 1o Siep
2 we can update A and 4, cach time one of (1. b) or [/, ) 15 put into M.

4.1. Improvement for “empty’’ graphs

Usually graphs. used in image apphications for instance, arc fat tronl Ct}mpfzﬁ
bet DY

graphs and have their number of edges inear in the size of the node num

ARU ARD PATH COMBIST

1 M =08,
200 e
3 dor k=1
4 far b
5 foe
B b
‘7 ”
8

3
18
11
12
13
14
15

16
17
17
18
18 1]
20 irutinlize L

Step 2

21 while Listi
22 begin
23 CHGOS
24 for i
25 beg
26 Ci
27 i
28

29

30

3

3H

32

33

34

35

38 e
37 end

g
9 3 Reduced complestiy g
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¢ AND PATH CONSISTENUY REVISIEED

Step i

1M =0 5 = bmply set List = Broply,
2ilov (L /it Edo

3

fork = L. ndo
forbe A do
forc e Aswchihat U b,/ Sy do
begin
Total = U
fard = A do
W b ok o) and Atk d 4 ¢ then
begin :
Total:= Total + 1,
Append(S,,. (0 /) b, cl);
end;
ot =0
then
begin
MiEBlL =1 A
Mljoli= 1A =
el
efse Counter[{i, /). &k b ¢l = Total
end:

20 inibalize List from M,

Step 2

21 while List not Empty do

22
23
24

25
27
28
29
30
31
31
32
33

34
35
3%
37

begin
choose th o from Listandramovertk o) from List:
fori(i. /). b.cje 5., do
begin
Counler{(i, j), k. b, ¢] = Counterlit, }). 8. ]l = 1
if Countex{(i, /). & ol = Dthen
begin
i MU bl =0 then
begin
MIL bl =1, Appand{List, (1, bjh A (= A - {bh
entd;
it M[j, ¢}l = Dthen
bagin
Mlj chi= 1 Appendilist. (f ¢ A& = A - (e]
end: '
and:
end;
engd

B 2 Roduced complesity path consistensy algosthm P-4
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fet us suppose here that we have Ofn) edges. Introducing the frue relation
hetween the not connected edges we are therelore increasing heavily the
complexity. For instance. the result of True, - R, - R, | can be computed in
the obvious way in Ofa’):

xTrun dboo) 25 bin A and cin A, «/

2

result = false:
forcin 4 do
ifthersexigts din A such that 8 (¢ e then
for bin A do result (b c) = tue

‘This algorithm runs in O(a’) instead of O(a’). The same can be stated for the
product where the last torm is a True matrix. H we have two True madrices, e,
we have to compute True, - R, True, . the computation is reduced to testif
4 is emply or nol: this is performed i O{1). In fact this “computation” does
not have to be performed. H 4, is empty the algorithm can stop: there is no
salution! For this reason the lengih-2 paths using only True relations can be
discarded in PC-1 and PC-2. Thus, we reduce the namber of the lengih-2 edges
from O(n ) Lo Ofn); this reduces the complexity of PC-1 and PC-2 by a factorn.

For P23 this approach discards i Step 2 all the & which are chosen and have
to be connected at least to { or . Theretore, only Ota’) triples (4, /. k) will be
considered. The complexity is reduced here also by a factor n

5. Conclusion

We have provided an optimal alporithm for are consistency. We reduced the
complexity of path consistency, but it still remains open whether the algorithm
PC-3 is optimal. It is not obvious that any path consistency algonthm has 0
examine for each triple of nodes all possible labels in the worst case; if the
answer 1 yes, then PC-3 1s optimal

For practical cases, AC-4 15 easy to implement; however, it uses more space
than AC-3, PC-3 15 also casy to implement, however it may use a huge amount ot
space and therefore has to be run carefully. From our point of view, haviag 4
network consistency problem to solve, we prefer to run the avice systeny asing
an algorithm like AC4 at cach level of decision, it will run very fast o8
“commaon world”? network problem providing the complete solution. AUCE B
Tunning in PL under v,
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