Dynamic Variable Ordering In CSPs

Fahiem Bacchus and Paul Van Run

Contents
1. Introduction

1.1 Basic concept of tree search algorithm

1.2 Dynamic Variable Ordering (DVO)

2. A methodology for adding DVO

2.1 Notation

2.2 BackTracking (BT)

2.3 Forward Checking (FC)

2.4 Back Marking (BM)

3. The MRV Heuristic

3.1 BT + MRV

3.2 FC + MRV

4. Experiments

5. Conclusion

1. Introduction

1.1 Tree-Search Algorithms

· Many practical CSP can be solved

· Generates search trees during their operation

· construct a solution by sequentially instantiating the variables of the problem

· The order in which the algorithm instantiates the variables is known to have a potentially profound effect on it efficiency

· Various heuristics have been investigated for choosing good orderings

1.2 DVO (Dynamic Variable Ordering)

· even more effective technique

· the order in which the variables are instantiated during tree-search can vary from branch to branch in the search tree

2. A methodology for adding DVO

2.1 Notation in the paper

· Node: an assignment of a particular value to a particular variable
· Nd[i] : the node at depth i in the current path

· Nd[i].var: the variable assigned at node Nd[i]
· Nd[i].val: the value assigned to node Nd[i]
· Incon(Nd[i], Nd[j]): the assignments associated with the i’th and j’th nodes are inconsistent
· Nd.var and Nd.val: fields that can be assigned to

Depth = 1 V[1]<- ‘a’ V[1]
(level)

Depth = 2 V[3]<- ‘c’ V[2]

Depth = 3 V[2]<- ‘b’ V[3]
2.2 Backtracking (BT)

· Procedures

· Assign a variable at the current node, selecting the variable to be assigned from the current set of uninstantiated variables

· Test the consistency of this assignment against the assignments of the previous nodes

2.3 Forward Checking (FC)

· Procedures

· After FC assigns a value to a variable, it prunes domain of the as yet uninstantiated variables

· Maintain a data structure, Domain[i,k]

contains the flag for the k-th value of the i-th variable

Domain[i,k]=0 : this value has not yet been pruned

Domain[i,k]=j : this value has pruned by the node at the depth j

· When we change the assignment we can scan the Domain array restoring all values that were pruned by that node

2.4 BackMarking(BM)

· Two data structure

· Mcl[i,k] : the deepest variable that V[i]<-k checked

· Mbl[i] : the shallowest past variable that has changed since V[i] was the current variable

Fig.1 BM with DVO

· Difference between this code & standard BM

· a dynamic choice of the next variable

· the indirection of concurrency checks

· the restore function must scan all variables

(∵ the variable order is not sequentially instanstiated)

3. The MRV Heuristic

3.1 MRV (Minimum Remaining Values)

· a strategy that selects the next variable with the minimal number of remaining values

· Procedures

1) tree-search algorithms call the MRV procedure

· it has descended to the next level

· needs to choose a variable to assign at this level

2) MRV procedure can check each value in the domain of each uninstantiated variable to see if that value is consistent with the current set of assignments

3) it can count the number of remaining compatible values each variable has

4) return a variable with the minimum such number
· Drawback in some tree-search algorithms

· additional consistent check for the algorithms to backward checking
 V[1]<- 1 D[I] = {1,2,3}

 C[1,3]={(1,2)}

 V[3]<-1 V[2]<- 2
 x

 V[3]<- 1 (redundant check)

 x

· 3.2. FC+MRV

· a superior implementation strategy

· Procedures

· MRV maintains a set of pruned domain for all uninstantiated valriables

· Whenever FC instantiates a variable, MRV prune the remianing variable domains

· Whenever FC uninstantiates a variable, MRV restores the values pruned by that instantiation

· there is no redundant check

· (∵ pruned a value 1 of V[3] by V[1])
· Theorem 1. MRV makes standard BJ redundant

checks(BT+MRV)=checks(BJ+MRV)

checks(BM+MRV)=checks(BMJ+MRV)

checks(A) : the number of consistent checks performed by an algorithm A
Proof) in standard static ordering,

checks(BT) > Checks(BJ)

checks(BM) > Checks(BMJ)

 BT

 BJ BT+MRV

 2 BT

 x x x

 1 BT

 x x x

 x x x x x x x x x

 max_check[4]=2

 : the node to backtrack

: the node saved by BJ

 : the node pruned by the previous assignment

· Theorem 2. the number of consistency checks performed by each of the algorithms BT+MRVfc, BJ+MRVfc, and BMJ+MRVfc, lies in the range

· [checks(FC+MRV), 2Knchecks(FC+MRV)]

K: maximun of the variable domain sizes

N: the number of varaibles

Meaning

· In computing the MRV heuristic these algorithms are forced to consume at least as many checks as FC

· MRV makes the BT, BM, and BJ search spaces very similar to that of FC+MRV

· Theorem 3. the number of consistency checks performed by each of the algorithms CBJ+MRVfc, BM-CBJ+MRVfc lies in the range

[checks(FC-CBJ+MRV), 2Knchecks(FC-CBJ+MRV)]

4. Experiments

· Description of the table

· Algorithm with “var” suffix : with DVO using MRV

 “ without “ : static variable ordering

· Z-1st : zebra first solution

Z-all : zebra all solution

· Zebra is a test runs on Prosser’s version of the Zebra problem(which has 11 solutions)

· Q-1st and Q-all : n-queen problem for finding the first and all solutions respectively

· R1, R2, R3, and R4 : shows averages over 30 random instances

· Blank : checked over 40 million checks

Table1. number of consistency checks
5. Conclusion

· Ranking :

1: FC-CBJvar

2: FC-Bjvar
3: FCvar
· DVO using MRV is generally a great win

· FC is a very powerful CSP solution technique

a

b

c

a

a

