Chapter 2

LISP Tutorial

Vasant Honavar

Artificial Intelligence Research Laboratory
Department of Computer Science

226 Atanasoff Hall

Iowa State University

Ames, TA 50011. U.S.A.
http://www.cs.iastate.edu/~honavar/aigroup.html

This chapter presents a quick tutorial of LISP. It is not meant to be a substitute
for courses in programming, data structures and algorithms, programming languages,
or software engineering. It assumes a reasonable familiarity with key programming
concepts and key programming language constructs (conditional evaluation, recursion,
parameter passing, etc.). Our primary objective here is to take the reader through a
quick guided tour of LISP. A reader who is proficient in designing and implementing
programs in modern high-level programming languages, but may or may not have been
exposed to LISP or one of its dialects (e.g., Scheme), can rapidly learn to program in

LISP.

(©Vasant Honavar, 1992-1999. Last revised January 22, 1999.

2.1 Introduction to LISP

LISP, short for List Processor, was developed by John McCarthy and Steve
Russel at MIT in the early 1960s. Modeled after Church’s A- calculus, it is a
high-level general-purpose programming language. Because of its close tie to the
precise mathematical notation of lambda calculus, programs written in LISP are
often easy to analyze in terms of proofs of correctness. In contrast with many
high-level languages such as FORTRAN and C whose design was motivated by the

2 LISP Tutorial

desire to simplify the task of writing compilers, LISP was motivated by the desire
to simplify the task of programming.
The language has many distinctive features including;:

e LISP itself is a LISP program
e LISP programs can be expressed as lists

e Users can easily extend the language

These features make LISP, in the words of John Foderaro, “a programmable
programming language.” This ‘programmability’ makes LISP an excellent
paradigm for bottom-up, or experimental, programming. Instead of mapping a
problem onto the language, programmers extend the language itself (by adding
user-defined functions) so that it becomes the natural medium for expressing op-
erations in the application domain of interest. Thus, if one is interested in writing
a database program, one extends LISP to provide the primitives needed for stor-
ing, retrieving, and modifying information in a database; If one is interested in
writing a scheduler, one extends LISP by defining functions that naturally ex-
press the scheduling operations of interest. As we will see, LISP contains many
features that make it well-suited for writing easy-to-modify, modular, extensible,
code as well as for object-oriented programming.

Many large software systems have been written in LISP. Some examples
include emacs (a popular editor), Autocad (a computer-aided design program),
and CLIPS (a widely used expert systems shell developed by NASA).

2.2 The LISP Language

2.2.1 LISP Interpreter

Interpreter reads and evaluates an S(symbolic)-expression and prints the result.
S-expression is either an atom (number, symbol, string), a list, or a dotted pair.

2.2.2 The Basic Data Type — Lists

The basic data type in LISP is the list. Lists are constructed of elements called
cons cells containing two pointers, one to the first element, or car, and one to
the remaining elements, or cdr.

Many list manipulation functions are built into LISP. Here are a few simple
examples:

> (length (A B C))
3

> (first (A B C))
A

LISP Tutorial 3

|
¢ ¢ Voo

Red White Blue ni |

Figure 2.1: Internal Representation of Lists

> (rest (4 B C))
(B C)

> (nth 1 (A B C))
B

> (reverse (A B C))
(CBA)

Length returns the number of elements in a list, first returns the first
element, rest returns all elements beyond the first, and nth returns the nth
element in a list. Notice, however, that the indexing begins with zero, not one.
First and rest supplant car and cdr from previous versions of LISP. LISP
also contains a number of functions that create or return modified versions of
lists. These include 1ist, append, and, as mentioned above, cons. Figure 2
(above) provides an example of data flow in a composite LISP expression. Here
are some additional examples of (non-destructive) list modifiers. (Please consult
the documentation for destructive counterparts of conc and append):

> (list ’A ’B ’C)
(A B C)

> (append ’(4 B) ’(C D))
(A BCD)

> (cons ’4 (B C))
(A B C)

List builds a list given an arbitrary number of elements, append concatenates
two lists, and cons adds an element to the head of an existing list. In LISP it is
generally true that a function that accepts two arguments will also accept more
than two arguments. However, you are adviced to consult the documentation
to confirm that this is indeed the case for any particular function that you may
choose to use.

4 LISP Tutorial

/ First —= A -
(ABC)\ Cons | = (ABCQC)

Rest |—= (B C) -~

Figure 2.2: Data Flow for (cons (first ’(A B C)) (rest (A B C)))

Lists can also model sets, and LISP provides the necessary functionality to
do so. This includes union, intersection, difference, and membership functions
as well as symbol removal and equality. Some examples are:

> (union (A B) ’(B C))
(A BC)

> (intersection ’(A B) ’(C D))
nil

> (remove A (A B A B C))
(BB O)

Note that remove can remove any number of elements from the beginning or
end of a list. Consult a LISP manual for details. To check for the empty list we
use the predicate null. This returns nil for non-empty lists and T otherwise. In
general, nil represents false, and T true — anything not nil is true. For example,

> (and ’JACK ’JILL)
*JILL

> (or ’JACK ’JILL)
'JACK

In the case of the or operator, the first operand evaluated to true and it was
not necessary to evaluate the second operand. The equality of two values can
be determined by one of four operators, depending upon what data type the
operands are. Here is a listing of the operators and the data types that they are
commonly used to compare. Please consult the documentation for details.
operator | domain

equal all data types
eql symbols and numbers
eq symbols

= numbers

LISP Tutorial 5

It is possible to determine what data types you are operating upon by using
the built-in predicates atom, numberp, symbolp and listp. These predicates
enable a programmer to write functions that check the types of the arguments
passed and do different things depending on the argument types.

2.2.3 Conditionals

Conditional expressions allow the program to dynamically change the flow of
control during execution. The result of a Boolean expression determines which
code to evaluate. Two examples of this are if and cond expressions. Their
syntax is as follows:

expression | syntax

if (if <condition> <true expr> <false expr>)

cond (cond (<testl> <conseql> <test2> <conseq2> ...)
(<default>))

Here are some examples of how they might be used:

> (if (« 32) (+37)°4K)
A

> (cond ((eq ’A ’B) (print 3)) ((> 2 7) (print 56)) (22))
22

Other conditional expressions exist, such as case. Consult a LISP reference
manual for more information.

2.2.4 Defining and Calling Functions

Functions are at the heart of good LISP programming. Solving a problem typ-
ically involves creating a number of functions and then composing them. Since
functions are first-class objects in LISP (meaning they can be passed as argu-
ments), general-purpose functions such as mapcar can be written. These can be
applied to an infinite variety of data types, thus promoting code reuse (another
hallmark of OOP). Functions are defined in LISP using the defun operator. The
syntax is

(defun <function name> <formal parameters> <body>)

As an example, let us define a function that checks if a given list is a palin-
drome:

(defun palindrome (1lst) (equal lst (reverse lst)))

Note that the scope of the formal parameters is limited to the function body.
(Common Lisp, unlike some of its predecessors, uses lexical-scoping as default.
It is possible to have dynamic scoping by declaring a variable to be special).

6 LISP Tutorial

Avoid using non-local variables in functions because they might be undefined
or contain incorrect values. Locals variables can be created using the let and
let* expressions. An example of let follows:

> (defun average (x y)
(let ((sum (+ x y)))
(/ sum 2.0)))

In this example sum is initialized to the value of # + y. Any number of local
variables can be created this way. Let* behaves exactly like let except that
the variables are initialized sequentially thereby allowing one to use a variable
initialized earlier in an expression that defines the initial value of a variable that
appears later in the scope of let*. Let on the other hand, initializes all the
local variables within its scope in parallel. As mentioned above, creation of local
variables in this fashion is preferable to using setf, which has side-effects.

Because functions can be passed as arguments to other functions, LISP pro-
vides a number of applicative operators to support applicative programming.
Apply invokes a function and its list of arguments while funcall invokes a func-
tion and an arbitrary number of arguments (not contained in a list).

It is easy to define applicative operators using one of the built-in functions
such as funcall or apply. To illustrate this, here are some definitions of ap-
plicative operators that use one or the other:

> (defun garble (fn text) (funcall fn text))

> (garble #’reverse ’(BILL LIKES FRIES))
(FRIES LIKES BILL)

> (defun garble (fn text) (apply fn (list text)))

Both definitions of garble are equivalent. It is not necessary, however, to
define a function with defun each time you need to pass a function to another
function. You can use the lambda expression to create anonymous functions
directly within the body of an expression.

> (mapcar #’(lambda (x) (+ x 2)) (1 3 5 7))
(3579)

> (defun make-adder (n) #’(lambda (x) (+ x n)))

> (setf add2 (make-adder 2))

> (add2 7)
9

In the first example a lambda function is passed to mapcar. The use of mapcar
with lambda functions obviates the need for iteration in most cases. The second
example includes a function make-adder that returns a function. This is feasible

LISP Tutorial 7

because in LISP functions are ‘first-class’ objects, just like symbols or numbers.
To illustrate, here are some examples of applicative functions, i.e., functions that
take other functions as arguments:

Here are some more examples of applicative functions.

> (defun sq (x)

(* x x))
> (mapcar #’sq (1 2 3 4))
(149 16)
> (every #’> (10 12 6) (5 9 2))

T

> (reduce #°+ (1 2 3 4))
10

> (find-if #’oddp ’(2 4 3 6))
3

Mapcar applies a function to all elements in a list. Similarly, andevery
applies a predicate to all elements in a list. If the predicate holds true for all
values in the list, every returns T, else nil. Reduce iteratively reduces a list
by continually applying a function to pairs of elements. Notice that #’ must
be used to quote names of functions that are being passed as arguments. This
prevents LISP from attempting to evaluate the function name. Similarly, a ’
signifies that a value (except functions) is a literal, not to be evaluated.

It was mentioned above that most built-in LISP functions that accept 2
arguments typically accept an arbitrary number of arguments whenever it makes
sense to do so. Thus, if it makes sense to add two numbers, it makes sense to
add 10 numbers. By adding &optional or &rest to the formal parameter list
of a function, programmers can include this flexibility into their own functions.
%0ptional allows programmers to define functions that can be invoked with or
without an optional argument. When the optional argument is not provided,
its default value is nil. Alternatively, its default value can be specified in the
function definition.

&Rest allows for an arbitrary number of arguments when a function is called.
The arguments are collected into a list, which is processed by the invoked func-
tion. Defaults are handled in an analogous manner to &optional.

> (defun average (&rest args) (if (= (length args) 0) O
(/ (reduce #’+ args) (length args) 1.0)))

> (average 1 2 3 4)
2.5

> (defun philosophize (thing &optional prop)
(1ist thing ’is prop))

8 LISP Tutorial

\%

(philosophize ’DEATH)
(DEATH is NIL)

\%

(philosophize ’DEATH ’FINAL)
(DEATH is FINAL)

\%

(defun philosophize (thing &optional (prop ’temporary))
(1ist thing ’is prop))

\%

(philosophize ’DEATH)
(DEATH is temporary)

\%

(philosophize ’DEATH ’FINAL)
(DEATH is FINAL)

In the case of average function defined above, note that the use of &rest
causes the arguments to be collected in a list. Consequently, we use reduce in
the body of the function to add up the elements of the list.

Keyword arguments provide a mechanism for supplying a large number of
arguments to a function without needing to remember the order of the argu-
ments in the function call. This is especially useful when a majority of the
argumentstake default vaules and only a small number

For example, the function remove has a keyword :count that specifies how
many elements of a certain kind to remove.

> (remove A (A B A B A B))
(B B B)

> (remove A (A B A B A B) :count 2)
(BB A B)

The first call to remove has no :count keyword and therefore removes all
A’s from the list. The second invocation, however, uses the keyword to limit the
number of A’s removed to two. The keywordp predicate can be used to see if a
certain keyword exists for a given system. Programmers can include keywords
in their function declarations by using the &key modifier. Here is an example:

> (defun make-coffee (name &key
(size ’regular) (flavor ’amaretto)) (list size flavor ’coffee
’for name))

> (make-coffee ’john :size ’large)
(large amaretto coffee for john)

Make-coffee can take up to three arguments: the name, the size of coffee
to be made, and the flavor of the coffee. However all that is strictly required is
the name of the person for whom the coffee is being made. In this call the size
of the coffee was included and since the flavor was not included, the flavor was
set to its default value.

LISP Tutorial 9

2.2.5 Property Lists

Long before Object-Oriented programming (OOP) languages became popular,
LISP contained features that support OOP. LISP uses the notion of property
lists to attach data (analogous to instance variables) and functions (analogous
to methods) to atoms. This following series of expressions serves as an example
of how to create a property list and retrieve its data:

> (setf (get ’JOE ’PARENTS °’(BOB JANE)))

> (get ’JOE ’PARENTS)
(BOB JANE)

\%

(remprop ’JOE ’PARENTS)
T

\%

(get > JOE ’PARENTS)
nil

The first expression makes the parents property of Joe equal to Bob and Jane.
The get returns a given property of an atom. Remprop removes a property from
the property list. Here is an example which incorporates functions into the
property list:

> (defun behave (animal) (funcall (get animal ’behavior)))
> (setf (get ’dog ’behavior) #’(lambda () ...))

> (behave ’dog)

The function behave invokes a given animal’s behavior. We use the setf
function and a lambda expression to attach a behavior to the atom dog. Call-
ing behave then executes the dog’s behavior. These examples show how LISP
(even without CLOS, the Common Lisp Object System, provides the necessary
machinery for writing object-oriented programs. Paul Graham’s text illustrates
how easy it is to implement object-oriented systems in Common LISP.

2.2.6 Recursion

LISP, because of its close relation with A-calculus and recursive functions, is a
natural language for writing recursive function definitions. Recall that a recur-
sive function is one that calls itself to solve a problem. You have seen recursion
in other languages like C and PASCAL. In LISP, recursion is preferred to iteration.
The following example demonstrates the use of recursion in LISP.

> (defun factorial (mn)
(cond ((zerop n) 1)
(t (* n (factorial (- n 1))))))

10 LISP Tutorial

Factorial takes a single argument which is the number used to compute the
factorial. The factorial function is defined to be n x (n—1)x (R —2)...x2x 1.
Another way to look at the factorial definition is as follows: factorial(n) =
n x factorial(n — 1) where factorial(0) = 1. This is a recursive definition. It
uses factorial(n — 1) to solve for factorial(n). There are two important things
to remember about recursion:

e A base case is needed which has a direct solution to stop the recursion. Be
sure that all possible base cases are well defined. Otherwise, the recursion
will not terminate (or you will get a stack overflow).

e Work towards the base case in the recursive calls.

Problem: Write a recursive function any-oddp that returns T if any number
in a list of numbers is odd and returns NIL otherwise.

> (any-oddp ’(2 4 3 5))
T

> (any-oddp ’(4 6))
NIL

Solution:

> (defun any-oddp (x)
(cond ((null x) nil)
((oddp (first x)) T)
(t (any-oddp (rest x)))))

The base case of any-oddp is the case that the list is empty. If this is true,
then there are not any odd numbers. If the list is not empty, then we test the
first element. If it is odd, we return T. Otherwise, we then need to test the rest
of the list. This is accomplished by passing all but the first element of the list
back to any-oddp.

Problem: Given the following mystery function, determine the value re-
turned by the function when called with 4 as its argument.

> (defun mystery-function (n)
(cond ((zerop n) nil)
(t (cons ’ha (mystery-function (- n 1))))))

> (mystery-function 4)
(ha ha ha ha)

Note that the base case in this recursive function is ill-defined. Thus, if the
function is called with —1 (or for that matter any negative number as argument),
it would not terminate.

LISP Tutorial 11

> (mystery-function —1)
Infinite Recursion

The base case should have tested for less than or equal to zero. This would have
been a better definition of the base case. In many of the illustrative examples
given in this tutorial, we have not taken sufficient care to check for the validity
of arguments passed to a function and handle any resulting errors. This was
done to keep the reader’s attention focused on the essential features of LISP
that were being introduced. Error-checking and robustness that comes with it,
are as important in writing reliable and error-free LISP programs as they are in
writing robust programs in any other language.

As yet another example of recursive function definition, consider the compu-
tation of Fibonacci numbers:
fib(0) =1
fib(l) =1
fib(n) = fib(n — 1) + fib(n — 2)

Given this definition it is simple to write a LISP function to compute the nth
fibonacci number.

> (defun fib (n)
(cond ((equal n 0) 1)
((equal n 1) 1)
(t (+ (£ib (- n 1)) (£ib (- n 2))))))

This concludes our brief tutorial on LISP. In summary, we have introduced
the three most useful styles of LISP programming: functional programming (us-
ing function composition), applicative programming (using functions that accept
other functions as arguments), and recursive programming. The reader is refered
to one of the standard texts on LISP programming and the LISP documentation
for details of the language that were not covered in this tutorial. Readers are
strongly encouraged at this time to start working with a LISP programming en-
vironment and write some simple programs in LISP. After all, the best way to
learn a language is to start using the language.

