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Abstract

Classical Hausdorff dimension, popularly known as fractal dimension, has
recently been effectivized by gales–functions that are essentially betting
strategies that play against infinite binary sequences. Gales are a general-
ization of martingales and are sufficient for establishing fractal dimension
on sets. When gales are restricted to functions computable in a certain
complexity class, such a characterization endows sequences (or sets of se-
quences) with dimension within the complexity class. Countable sets and
singletons, that would otherwise have Hausdorff dimension zero, may be
given quantifiable positive dimension. In this thesis we restrict our exam-
ination to gale functions computable by finite-state machines and explore
individual sequences within the topology of the Cantor space. We develop
new concepts of periodicity, entropy and betting trees in terms of fixed
“blocks” of a sequence. We use these to establish that the entropy rate
with respect to blocks is an upper bound to the dimension of any sequence.
We also extend these results to the usual Information Theoretic concept of
entropy, yielding many implications for well studied automatic sequences

such as characteristic sequences of regular languages.
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Chapter 1

Introduction

Classical Hausdorff dimension was originally developed by considering geometric
coverings by spheres of diminishing radii on sets in topological spaces. In a sense,
this concept can be viewed as an (unrestricted) function that allows one to compare
relative sizes of sets.

Now consider functions computable within classes in the complexity hierarchy; poly-
nomial time, exponential space, etc. and even classes in the arithmetic hierarchy.
If we restrict our consideration to functions in a given complexity class, we endow
sets dimension within the complexity class.

This model has the advantage of being able to quantify dimension of sets that would
otherwise have dimension zero, an inherent limitation in classical Hausdorff dimen-
sion. Specifically, countable sets, finite sets and singleton sets all have Hausdorff
dimension zero but may yield positive dimension with respect to certain complexity
classes.

This effectivization of classical Hausdorff Dimension was developed by Lutz [10]
in terms of gales. Gales are generalizations of martingales–betting strategies for
a sequence of independent random coin tosses. Lutz also proved that this gale
characterization and classical Hausdorff dimension are one in the same.

When the resources required to compute gale functions are bounded within com-
plexity classes, languages within these classes are assigned Resource Bounded Di-
mension. Gales can also be effectivized relative to the arithmetic hierarchy endow-
ing them with Constructive Dimension.

As we travel down the complexity hierarchy, we increasingly restrict the resources
allowed to compute gales. At each step dimension can increase (or remain the
same) relative to the complexity class. At the lowest level of the hierarchy are gales
that can be computed by finite-state machines (automata). It is on this concept of
Finite-State Dimension that we focus our attention.

We will work in the Cantor Space, a topology that includes all (right) infinite binary
sequences. Our main model of computing gales will be Finite-State Gamblers,
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essentially finite-state automatons that bet on successive bits in a sequence. In this
thesis, our emphasis will be on individual sequences rather than sets of sequences.
We may may consider sequences in and of themselves or as characteristic sequences
of languages using the usual enumeration of finite strings.

Chapter 2 is devoted to presenting notation, definitions and results. In particular,
we first establish notation and some tools that we will use throughout the rest of this
thesis. For the most part, we have preferred to make use of notation common in the
area of stringology in [1] and [9]. We then present Lutz’s concepts and definitions
effectivizing Hausdorff dimension. In the next subsection we define Finite-State
Gamblers and cast gales in terms of Finite-State Dimension. We then present
several motivating examples to clarify these concepts. The final section presents
some interesting results established by the originators [5] of Finite-State Dimension.

In Chapter 3 we present our contributions and results. We start by developing
general gamblers for individual sequences called betting trees. In the next section we
offer a new concept of sequence periodicity in terms of fixed blocks of a sequence.
In addition, we present our main result—entropy rates (with respect to blocks)
provide an upper bound on a sequence’s dimension. We then extend this result
to the usual stringology notion of a sequence’s entropy in terms of factor sets.
The fourth section presents implications of our main result on the well studied
class of sequences called Automatic Sequences. Of particular interest, we show that
the finite-state dimension of the characteristic sequence of a regular language is
zero. We conclude the chapter by analyzing the sequence hierarchy with respect to
sequence complexity and dimension.

In the final chapter we pose several questions for further study. We ask if there
are techniques to show non-trivial lower bounds on the dimension of individual
sequences. We also ask if there are sequences of complexity that exist between our
block characterization and the established notion of factor sets. We also discuss
lower bounds on the number of states gamblers must have to succeed on various
classes of sequences. Finally we describe possible extensions of our results to scaled

finite-state dimension.
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Chapter 2

Preliminaries

As is standard practice, N, Z, Q, R denote the sets of non-negative integers, integers,
rational and real numbers respectively. We work over the signature (alphabet)
Σ = {0, 1} and b ∈ {0, 1} will be referred to as a bit (letter) unless otherwise noted.
Consequently all logarithms will be implicitly base-2 unless explicitly denoted. We
denote the set of all finite strings Σ∗, with λ as the empty string. A language is a
set L ⊆ Σ∗. For strings w, u ∈ {0, 1}∗, we denote the concatenation of u and w as
uw. The string w is a factor of u if there exist x, y ∈ {0, 1}∗ such that u = xwy.
The string w is a prefix of u and we write w v u if x = λ; w is a proper prefix of
u and we write w @ u if y 6= λ. The set of all factors of a string w ∈ {0, 1}∗ is
denoted F (w) while the set of all factors of length n is denoted Fn(w).

In addition to finite strings, we define infinite sequences over Σ and denote the set
of all such sequences as Σω. Such a set constitutes a topology and is referred to
as the Cantor Space. For simplicity we will denote it as C. For sequences S ∈ C

we denote a subsequence of S as S[i . . . j] for the i-th through j-th bits with the
convention that S[0] is the first bit in the sequence (thus we only consider right

infinite sequences). Factor sets for infinite sequences are defined as they are for
finite strings, that is F (S) and Fn(S) are sets of finite strings that are factors
(appear in) the sequence S of any length and length n respectively. A finite string
x ∈ {0, 1}∗ is a prefix of a sequence if x = S[0 . . . |x| − 1].

2.1 Definitions

Classical Hausdorff dimension provides a quantification of the complexity of topo-
logical subspaces by geometric coverings. Lutz [10] has recently effectivized classical
Hausdorff dimension via the use of gale functions that define betting strategies on
subsets of the Cantor Space.

In this section we first establish Lutz’s characterization of classical Hausdorff di-
mension in terms of gale functions. We then concentrate on gale functions that are
computable by finite-state machines.
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2.1.1 Gales & Hausdorff Dimension

We begin by reviewing Lutz’s gale characterization. All of the definitions in this
subsection are from [10].

Definition 2.1. Let s ∈ [0,∞), an s-gale is a function d : {0, 1}∗ → [0,∞) that
satisfies the condition,

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗. A martingale is a 1-gale.

As in any game of chance, a good gambler is one that can win a lot (an infinite
amount) of money. A gambler’s ability to win or lose on certain sets or individual
sequences can be quantified, in a sense, by putting it at a disadvantage and seeing
if it can still win. That is exactly what an s-gale does. If s = 1 then a martingale
ensures that the bets are fair. If s > 1 then the gale function guarantees an
additional payoff over the capital gained by the bet itself. However, if s < 1 then
the bets are not fair–some amount of capital is lost on each bet regardless of the
wager’s outcome. As s → 0 our betting strategy will have to be increasingly more
savvy (that is, be able to win a lot more money) in order to offset the penalty that
we incur from s.

Definition 2.2. Let d be an s-gale with s ∈ [0,∞). We say that d succeeds on a
sequence S ∈ C if

lim sup
n→∞

d(S[0 . . . n − 1]) = ∞.

That is, as we progress in an infinite sequence our betting strategy can win an
infinite amount of money infinitely often. We also define the success set of d as

S∞[d] =
{

S ∈ C | d succeeds on S
}

.

For a fixed s-gale d, the success set includes all the sequences for which d can win
an infinite amount of money on.

Definition 2.3. Let X ⊆ C, the gale set is the set

G(X) =
{

s ∈ [0,∞)
∣

∣ there is an s-gale d for which X ⊆ S∞[d]
}

.

Finally, it has been shown that the classical Hausdorff dimension is equivalent to
the greatest lower bound of the gale set.

Definition 2.4. The Hausdorff Dimension of a set X ⊆ C is

dimH(X) = inf G(X).

2.1.2 Finite-State Gamblers & Dimension

The gale characterization of Hausdorff dimension allows us to consider any com-
putable function. When we consider finite-state dimension, we restrict gale func-



5

tions to those computable by finite state devices such as finite-state automata.
Thus, our primary model of quantifying sequence complexity will be finite-state

gamblers (FSGs). A finite-state gambler is much like a finite-state automaton but
rather than accepting or rejecting a finite string, it places bets on subsequent bits
encountered in an infinite sequence and makes state transitions appropriately.

By convention, we restrict possible bets to rational numbers, B = Q∩ [0, 1]. All of
the proceeding definitions are from [5].

Definition 2.5. A finite-state gambler1 is a 5-tuple G = (Q, δ, β, q0, c0) where

• Q is a nonempty, finite set of states

• δ : Q × {0, 1} → Q is the transition function

• β : Q → B is the betting function

• q0 ∈ Q is the initial state

• c0 is the initial capital.

As with finite-state automata, the transition function can be extended to δ∗,

δ∗ : Q × {0, 1}∗ → Q

by the recursive definition

δ∗(q, λ) = q,

δ∗(q, wb) = δ(δ∗(q, w), b)

for all q ∈ Q, w ∈ {0, 1}∗, and b ∈ {0, 1}. We write δ for δ∗ and use the abbreviation
δ(w) = δ(q0, w). We can now define martingale functions that are computed by
finite-state gamblers.

Definition 2.6. Let G be a finite-state gambler. The martingale of G is the
function

dG : {0, 1}∗ → [0,∞)

defined by the recursion

dG(λ) = c0

dG(wb) = 2dG(w)
[

(1 − b)(1 − β(δ(w))) + bβ(δ(w))
]

for w ∈ {0, 1}∗ and b ∈ {0, 1}.

If G is in state q ∈ Q it places a proportion of its current capital c, β(q)c that the
next bit will be b = 1 and (1−β(q))c that the next bit in the sequence will be b = 0.
Thus, a finite-state gambler is always forced to place all of its money at some risk.
After such a bet, G will be in state δ(q, b) with expected capital

1Gamblers were originally defined to have k accounts to work with. However, for finite-state
dimension, it is sufficient to consider single account FSGs [5].
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2c
[

(1 − b)(1 − β(q)) + bβ(q)
]

=

{

2β(q)c if b = 1
2(1 − β(q))c if b = 0.

To illustrate, we present the following example.

Example 2.7. Figure 2.1 represents a 4 state finite-state gambler G = (Q, δ, β, q0, 1)
where Q = {q0, q1, q2, q3}. Labels inside each state correspond to the betting func-
tion β(q). We point out that δ(λ) = q0, δ(1) = q3, and δ(101) = q1. Observe that
the martingale function is dG(λ) = 1, dG(0) = 1

2 , dG(00) = 2
3 and dG(001) = 1

3 .

0

01

0

3/4

1/3

1/4

2/3

q 0

q

q

q 1

2

3

1

0

1 1

Figure 2.1: Example Finite-State Gambler G

A finite-state gambler also defines an s-gale function for any s ∈ [0,∞) in a very
natural way.

Definition 2.8. Let s ∈ [0,∞). The s-gale of a finite-state gambler G is a function

d
(s)
G : {0, 1}∗ → [0,∞)

defined by

d
(s)
G (w) = 2(s−1)|w|dG(w)

for all w ∈ {0, 1}∗.

As with general s-gales, a good gambler must overcome the handicap incurred from
s and be able to win an infinite amount of money in order to succeed.

Definition 2.9. For s ∈ [0,∞), a finite-state s-gale is an s-gale d for which there

exists a finite-state gambler G such that d
(s)
G = d. A finite-state martingale is a

finite-state 1-gale.
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Definition 2.10. Let X ⊆ C, then the finite-state gale set is the set

GFS(X) =
{

s ∈ [0,∞) | there is a finite-state s-gale d for which X ⊆ S∞[d]
}

.

Recall that the Hausdorff dimension of a set X ⊆ C is defined as dimH(X) =
inf G(X), so it is natural to define finite-state dimension similarly.

Definition 2.11. Let X ⊆ C then the finite-state dimension of X is

dimFS(X) = inf GFS(X).

That is, the finite-state dimension is the greatest lower bound of all s ∈ [0,∞) such
that there exists a finite-state gambler that succeeds on all sequences in X for all
s′ ≥ s. We additionally define the finite-state dimension of an individual sequence
S ∈ C as the finite-state dimension of the singleton set,

dimFS(S) = dimFS({S}).

Fact 2.12. [5] Let X, Y ⊆ C.

1. 0 ≤ dimH(X) ≤ dimFS(X) ≤ 1.

2. If X ⊆ Y , then dimFS(X) ≤ dimFS(Y ).

2.2 Examples

We now present several motivating examples that will clarify these concepts. One
of the simplest ways of defining binary sequences is to consider a language’s char-
acteristic sequence.

Definition 2.13. [15] Let {0, 1}∗ = {s0, s1, s2, . . .} such that each si is in lexico-
graphical order. The characteristic sequence of a language L ⊆ {0, 1}∗ is a sequence
χL ∈ C such that

χL[i] =

{

1 if si ∈ L

0 if si 6∈ L.

2.2.1 All Strings

Example 2.14. As a primer, let us consider the regular language ALL = Σ∗ the
set of all (finite) strings. The characteristic sequence is simple enough,

χALL = 1∞.

We will show that
dimFS(χALL) = 0.
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Proof. An obvious finite-state gambler G would have a single state that always bets
everything on 1 (β = 1) then loops back into itself. Obviously the only sequence G

succeeds on is χALL since, if a zero is ever encountered in the sequence, all money
is lost and the game is over. Let w @ χALL, clearly then,

dG(w) = 2|w|.

It follows that the corresponding finite-state s-gale is

d
(s)
G (w) = 2(s−1)|w|dG(w)

= 2(s−1)|w|2|w|

= 2s|w|.

Since for any s ∈ [0,∞), and s′ such that s′ > s ≥ 0,

lim
|w|→∞

2s′|w| = ∞,

d
(s′)
G succeeds on χALL. Therefore χALL ∈ S∞[d

(s′)
G ]. It then follows that

dimFS(χALL) = inf GFS(χALL) = 0.

2.2.2 Parity Language

Our next example is a bit more complicated and has interesting parallels with the
Thue-Morse sequences that we will see later on.

Example 2.15. Let P be the regular language containing all strings with even
parity,

P =
{

x ∈ {0, 1}∗ | h(x) = 2i, i ≥ 0
}

.

Note that the empty string, λ, and strings with no 1s in it are in the language.
Again, we will show that

dimFS(χP ) = 0.

Proof. We first observe that the characteristic sequence of P is

χP = 1 10 1001 10010110 1001011001101001 10010110011010010110100110010110 . . .

A pattern in this characteristic sequence is immediately apparent. Each “block”
(i.e. each subsequent section of length 2k, k ≥ 0 representing strings of equal
length) is a repetition of the previous block concatenated with the complement
(each bit flipped) of the previous block. This means that after χP [0 . . . 2] every
series of four bits is either 1001 or 0110. This suggests the finite-state gambler as
shown in Figure 2.2.

For any w ∈ {0, 1}∗ such that w @ χP , on any block of four bits we will double our
money on three bets and remain at our current capital on the fourth one. Therefore,
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1

1

0

1 0

01

10

10

0

1

1 0

0

1

1/2

0

1

1

Figure 2.2: Finite-State Gambler for P

if c0 = 1, our expected capital after |w| bits is

2|w|−b |w|
4 c.

We observe that χP ∈ S∞[dG]. The corresponding finite-state s-gale is

d
(s)
G (w) = 2(s−1)|w|dG(w)

= 2(s−1)|w|2|w|−b |w|
4 c

≥ 2|w|(s− 1
4 ).

For any s > 1
4 ,

lim
|w|→∞

2|w|(s−1
4 ) = ∞.

But for any 0 ≤ s ≤ 1
4 we are not so lucky; d

(s)
G (w) over time loses. The gambler in

Figure 2.2 is, however, sufficient to prove that

dimFS(χP ) = inf GFS(χP ) ≤ 1

4
.

We can easily generalize the construction of G to accommodate any s ∈ (0,∞) as
follows. We fix α ∈ Z, α ≥ 1 and proceed to construct a finite-state gambler Gα

such that Gα makes definite bets on the first 2α−1 bits of χP directly using a path
of 2α − 1 states. The last state in the path leads into two separate loops each of
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length 2α. The first loop bets directly on the subsequence χP [2α − 1 . . . 2α+1 − 2]
while the second bets directly on the compliment of this subsequence. Note that
the initial construction in Figure 2.2 is G2. The total number of states is thus
3(2α − 1). The corresponding martingale for this general construction is

dGα
(w) = 2|w|−b |w|

2α c,

which gives us a finite-state s-gale in terms of α as

d
(s)
Gα

(w) = 2(s−1)|w|dG(w)

= 2|w|(s−2−α).

Therefore, for any s > 0, we can select a sufficiently large α and build a finite-state
gambler that will succeed for all s′ > s. Specifically we need only select α ∈ Z+

such that α > − log s. To be complete, we note that χP ∈ S∞[dGα
] for any α ≥ 1

and χP ∈ S∞[d
(s)
Gα

] for any α > − log s and s′ > s. In addition, by the general
construction for Gα, it is clear GFS = {(0,∞)} so we conclude that

dimFS(χP ) = inf GFS(χP ) = 0.

2.2.3 Even Length Strings

Our next example examines the regular language that contains all strings of even
length (as well as λ).

Example 2.16. Let E = (Σ2)∗, that is,

E =
{

x ∈ {0, 1}∗ | |x| = 2i, ∀i ≥ 0
}

,

then
dimFS(χE) = 0.

Proof. As with the previous examples, the characteristic sequence is highly struc-
tured.

χE = 1102140811603216401281256 . . .

Another obvious pattern arises for this characteristic sequence; it is made up of
alternating series of 1s and 0s such that each block grows in size by a factor of 2.
Clearly we cannot build a finite-state gambler that adapts to the growing size of
each sequence since Q, the set of states, is finite. We can, however, fix a block size
that we want to bet on, say 2α for some α ≥ 1. For a given α, we build a finite-state
gambler, Gα as follows. Define a path of length 2α − 1 that makes definite bets on
the first 2α − 1 bits of χE , thus for w @ χE , |w| = 2α − 1, we have dGα

(w) = 2|w|.
Next we define two separate loops each of length 2α that initially place an even bet
on the first bit of each subsequence to determine if the current block is all ones or
all zeros. It then proceeds to make 2α − 1 definite bets on the same bit. Figure 2.3
demonstrates such a construction for α = 2.
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1

10

10

0 1

1/2

0

1

0

0 1

1

0

0

0

0

0

1

1

Figure 2.3: Finite-State Gambler G2 for E

Following the exact same reasoning of the previous example, it is easy to see that
for each construction of dGα

we have a finite-state s-gale

d
(s)
Gα

(w) ≥ 2|w|(s−2−α).

For any s > 0 we choose α > log s and build dGα
which succeeds on all s′ > s.

Thus, GFS =
{

(0,∞)
}

and we conclude that

dimFS(χE) = inf G(χE) = 0.

2.2.4 Cantor Set

Though we are primarily interested in individual sequences, our final example con-
siders sets of sequences and illustrates that, at least in some cases, finite-state
gamblers are sufficient to show that the finite-state dimension can meet the equal-
ity in Fact 2.12. In particular, we consider the Cantor Set, a well-known fractal set,
and show that it has finite-state dimension equal to its classical Hausdorff dimen-
sion. In terms of betting on successive “bits”, we must consider a ternary signature,
Σ = {0, 1, 2}.
Definition 2.17. The Cantor Set, denoted T∞, is given by taking the interval
[0, 1] (set T0), removing the middle third (T1), removing the middle third of the two
remaining pieces (T2), and continuing this procedure ad infinitum. It is therefore
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the set of points in the interval [0, 1] whose ternary expansions do not contain 1.
That is,

T∞ =
{

S ∈ {0, 1, 2}∞
∣

∣

∣
S[i] 6= 1∀i ≥ 0

}

Example 2.18. Let T∞ be the Cantor Set, then

dimFS(T∞) = log3 2.

Proof. Let S ∈ T∞. It is well established that dimH(T∞) = log3 2, thus by Fact

2.12 it suffices to show that dimFS(T∞) ≤ log3 2, or simply that S ∈ S∞[d
(s)
G ] for

any s > s′ > log3 2. We construct an obvious, one-state finite-state gambler G that
bets half of its capital that the next bit in the sequence is zero and the other half
on 2. For any w ∈ {0, 1, 2}∗ such that w @ S let h(w, b) denote the number of
occurrences of the bit b in w for b ∈ {0, 1, 2}. Then the finite-state martingale is

dG(w) = 3|w|

(

1

2

)h(w,0) (

0

)h(w,1) (

1

2

)h(w,2)

=

(

1

2

)|w|

,

giving us a finite-state s-gale,

d
(s)
G (w) = 3(s−1)|w|dG(w)

= 3s|w|
(

1
2

)|w|

=
(

3s

2

)|w|
.

It follows by our choice of s and s′ that for any s′ > s, as |w| → ∞, S ∈ S∞[d
(s)
G ]

and
dimFS(T∞) = inf GFS(T∞) ≤ log3 2

2.3 Established Results

In this section we survey some established results about sets of sequences and their
finite-state dimension. We will then introduce some tools and concepts that were
inspired by such results and which will be used throughout the remainder of the
thesis.

2.3.1 Normal Sequences

Definition 2.19. A sequence S ∈ C is normal, and we write S ∈ NORM, if for
every w ∈ {0, 1}∗,

lim
n→∞

1

n

∣

∣

∣

{

i < n | S[i . . . i + |w| − 1] = w
}∣

∣

∣
= 2−|w|.
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This definition is a restriction of the usual concept of normal numbers with respect
to their base 2 expansion. It should be noted that not all normal numbers are
normal for every base b ≥ 2, but those that are are referred to as absolutely normal.
Very few sequences have been proven to be normal, but it has been conjectured
that sequences corresponding to irrational numbers like π and

√
2 are absolutely

normal. One sequence that has been shown to be absolutely normal [18] is the
Champernowne constant, the infinite sequence produced from successively concate-
nating binary representations of positive integers;

C2 = 0.(1)(10)(11)(100)(101)(110)(111) . . .

Expectedly, such sequences are the most difficult for a finite-state gambler to win
on, thus every normal sequence has finite-state dimension 1.

Theorem 2.20. [14] Let S ∈ NORM. Then

dimFS(S) = 1.

2.3.2 AC0 Sequences

The next result deals with the well studied complexity class AC0 which includes lan-
guages that can be decided by a uniform family of circuits, polynomial in number,
with unbounded fan-in AND, OR, and NOT gates and constant depth. Circuits in
this class are able to do reasonably simply arithmetic operations including addition,
subtraction and base-2 multiplications and divisions but not much else. Conse-
quently, corresponding characteristic sequences of languages in AC0 are relatively
simple. Despite this seeming simplicity, we know the following result.

Theorem 2.21. [5] For every r ∈ Q ∩ [0, 1] there exists a language L ∈ AC0 such
that dimFS(χL) = r.

2.3.3 Rational Sequences

On the other side of the finite-state dimension spectrum we have rational sequences.

Definition 2.22. Let n ∈ Z+ and S ∈ C.

1. S is eventually periodic with period n, and we write S ∈ Qn, if there exist
x ∈ {0, 1}∗ and y ∈ {0, 1}n such that for all k ∈ N, xyk v S. We also write
S = xyω.

2. S is eventually periodic, and we write S ∈ Q if there exists n ∈ Z+ such that
S ∈ Qn.

Some literature refers to such sequences as ultimately periodic or almost periodic.
We note, however, that Q is precisely the set of all binary expansions of elements
of Q ∩ [0, 1], so we will refer to sequences in Q as rational sequences. Rational
sequences, being periodic, are very easy for a gambler to win on–a gambler simply
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has to hold off on betting until the sequence becomes periodic. From then on
a gambler can go into a loop, betting on each bit in y. Consequently, rational
sequences have finite-state dimension zero.

Theorem 2.23. [5] For all n ∈ Z+,

dimFS(Qn) = 0.

Since any rational sequence is periodic with period n for some n, it follows that
any individual rational sequence also has finite-state dimension zero. On the other
hand, the set of all such sequences, Q has dimension one.

Corollary 2.24. [5]
dimFS(Q) = 1.

2.3.4 Sequence Frequency

Another set of sequences that yield an interesting dimension result include sequences
with similar frequencies. For any w ∈ {0, 1}∗ the height of w, denoted h(w) is the
number of occurrences of 1 in w. Infinite sequences S ∈ C have limiting frequency
(slope)

freqS(n) = lim
n→∞

h(S[0 . . . (n − 1)])

n
.

For each α ∈ [0, 1], define

FREQ(α) =
{

S ∈ C | freqS(n) = α
}

.

Such sets have finite-state dimension corresponding to Shannon’s binary entropy
function,

H : [0, 1] → [0, 1]

H(x) = x log
1

x
+ (1 − x) log

1

1 − x
.

So that the function is continuous, its extreme points are defined as zero, H(0) =
H(1) = 0.

Theorem 2.25. [5] For all α ∈ Q ∩ [0, 1],

dimFS(FREQ(α)) = H(α).

In the next chapter we will develop several tools, inspired by these results, that will
aid us in our continued investigation.
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Chapter 3

Finite State Dimension of

Individual Sequences

Most of the results in Section 2.3 dealt with (infinite) sets of sequences in the Can-
tor space. In fact, classical Hausdorff Dimension can say nothing about individual
sequences. Even a more refined concept, constructive dimension [11] gives dimen-
sion zero to any decidable sequence. By Fact 2.12 (2), we know that any individual
sequence S ∈ FREQ(α) has at most H(α) finite-state dimension, but such an upper
bound is not very useful. Both Example 2.15 and 2.16 and are in FREQ(1

2 ) but
have finite-state dimension 0. The Champernowne constant is in the set as well,
but is a normal sequence with finite-state dimension 1.

From Theorem 2.21 we know that there are individual sequences with non-trivial
dimension (that is, 0 < dimFS(S) < 1). However, the proof of Theorem 2.21 (in
[5]) uses a “dilution” technique–from a normal sequence in S ∈ AC0 a dilution
function pads S throughout with zero bits. This technique is shown to be able to
transform the dimension to an arbitrary rational number in (0, 1) while maintaining
its membership in AC0.

It would be nice to work the other way around. That is, given a sequence defined by
a language, morphism1, or some other standard method, it would be useful to have
a technique to determine a non-trivial lower bound on said sequence. Of course it is
relatively easy to give a non-trivial upper bound, one has only to built a finite-state
gambler for the sequence. This is one of the major stepping stones to continuing
the study of finite-state dimension and one that will most likely be pioneered in the
coming years.

In this chapter we present our contributions and results towards this end. We begin
in the first section by devloping a general type of finite-state gambler that we will
use as our primary tool—betting trees. We then introduce a new conception of
periodicity by considering fixed block sizes in a sequence. We use this concept to
establish an upper bound for any sequence in terms of its block entropy rate. The

1See Section 3.4.
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third section extends this to the usual notion of entropy. Next we use these results
to evaluate some well studied classes of sequences. We conclude this chapter by
giving an overview of the sequence hierarchy in terms of a sequence’s complexity
and dimension.

3.1 Betting Trees

Let S ∈ C be a sequence and fix n ∈ Z+. Now consider a subset ∆n ⊆ {0, 1}n. If
∆n is missing some element(s) in {0, 1}n then clearly we do not have to consider
betting on such elements. This idea motivates what we will call Betting Trees.

Betting Trees are essentially directed binary trees (with orientation “downward”
from the root to leaves) of depth n such that the edge from a vertex to a left sub-
child corresponds to 0, 1 for the right sub-child. For each element x ∈ ∆n there
is a corresponding path from the root to the leaf (with directed edge back to the
root). If ∆n = {0, 1}n, the betting tree will be a full binary tree. We define the
betting function for each state in a manner that favors the left or right-sub tree
proportionally to how many leaves are contained in them. This ensures that the
expected capital after each block of size n is evenly distributed at the end of the
betting tree. For sets ∆n that are not full, the expected capital is greater than
what we started out with. We now make a formal definition.

Definition 3.1. Let S ∈ C be a sequence and fix n ∈ Z+ for a set ∆n ⊆ {0, 1}n.
Let Gn = (Q, δ, β, qλ, c) be a finite-state gambler defined as follows.

• Q = { qu | u @ x for x ∈ ∆n}

• If qu, qub ∈ Q define

δ(qu, b) =

{

qub if |u| < n − 1
qλ if |u| = n − 1

The betting function β(q) for each state q ∈ Q will be defined as a ratio from the
number of possible leaves in the right-sub tree of q (corresponding to 1 as the next
bit) to the total number of possible leaves reachable from q. To this end for all
u ∈ {0, 1}∗ such that qu is a state, define

Yu = { x ∈ ∆n | u @ x}.

• For all qu ∈ Q define

β(qu) =
|Yu1|
|Yu|

Such a gambler will be referred to as a betting tree of order n.

For clarity, we present an example.
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Example 3.2. Fix n = 4 and let Sφ be the Fibonacci sequence defined by the
morphism

φ :
0 → 01
1 → 0

Sφ = 01001010010010100101001001010010010100101001001010 . . .

Define ∆4 to be the factor set F4(Sφ) = {0010, 0100, 0101, 1001, 1010}. The finite-
state betting tree for ∆4 is shown in Figure 3.1. Note that state labels have been
omitted. Rather, the values in each state correspond to β(q).

0

0 1

1

0

1001

0 1
0 1

0

1/2

1

0

0

2/3

2/5

0

1/2

1 0

Figure 3.1: Betting Tree G4

To conclude this section, we note that it is usual in the literature to allow the
concatenation of a finite prefix to any right infinite sequence and only consider the
infinite suffix. We can do the same with respect to finite-state dimension.

Proposition 3.3. Let S, S′ ∈ C be sequences such that S = xS′ for x ∈ {0, 1}∗,
then

dimFS(S) = dimFS(S′).

Proof. Let S, S′ ∈ C be sequences such that S = xS′ for some x ∈ {0, 1}∗. We will
prove each inequality both ways.

Let dimFS(S) = r. This means that there is an FSG G = (Q, δ, β, q0, c0) such that

S ∈ S∞[d
(s)
G ] for any s > r. We transform G into a gambler G′ for S′ by redefining

the initial state; G′ = (Q, δ, β, δ(q0, x), c0). Clearly S′ ∈ S∞[d
(s)
G′ ] for all s > r,

therefore
dimFS(S

′) ≤ r = dimFS(S).
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Now say that dimFS(S′) = r′. This means that there is an FSG G′ = (Q′, δ′, β′, q′0, c
′
0)

such that S′ ∈ S∞[ds
G′ ] for any s > r. We transform G′ into a gambler G =

(Q, δ, β, q, c0) for S as follows. Let Q = Q′ ∪ {q−|x|, q−|x|+1, . . . q−1} with tran-
sitions δ(qi, b) = qi+1 for −|x| ≤ i ≤ −2 and δ(q−1, b) = q′0 for any b ∈ {0, 1}.
Though it makes little difference, we define β(qi) = 1

2 for −|x| ≤ i ≤ −1. All other
transitions and betting functions remain the same as in G′. Finally, we set the
initial state to q = q−|x|. Since we place no bets on the prefix x, we observe that
for any w ∈ {0, 1}∗ such that |w| > |x|,

dG(w) = dG′(w[|x| . . . |w| − 1]).

Since w[|x| . . . |w| − 1] @ S′ we conclude that S ∈ S∞[d
(s)
G ] for all s > r, therefore

dimFS(S) ≤ r′ = dimFS(S
′).

3.2 Block Periodicity

The factor set Fn(S) of a sequence S ∈ C is defined such that a factor x ∈ Fn(S) is
allowed to appear starting at S[i] for any index i ≥ 0. In this section we offer a new
notion of factor sets–block factor sets, wherein we fix a block size on a sequence
and consider only strings appearing within these blocks. In effect, we exclude any
strings that are strictly overlapping factors with respect to the block size.

Definition 3.4. Let S ∈ C. For all n ≥ 0 the block factor set of S is

Bn(S) =
{

x ∈ {0, 1}n
∣

∣

∣
S[in . . . (i + 1)n − 1] = x for some i ≥ 0

}

.

By Proposition 3.3, we can relax this definition and only consider block factor sets
after a certain finite prefix.

We note that for normal sequences, S ∈ NORM, Bn(S) = Fn(S) = {0, 1}n for all
n ≥ 1. For rational sequences, S ∈ Q, after a certain finite prefix, |Bn(S)| = 1
where n is its period. For ever increasing block sizes, we can define the growth of
the cardinality of the set Bn(S).

Definition 3.5. Let S ∈ C. The block complexity function of S is a function
bcfS : N → N defined by

bcfS(n) = |Bn(S)|.

Note that when we say “complexity” we are referring to the growth rate of the
function, not how the sequence may relate to computational complexity or the
complexity hierarchy. We can now consider periodicity in terms of bounding the
growth of the block factor set for ever increasing block sizes.

Definition 3.6. Let S ∈ C. We say that S is f-block periodic if there exist infinitely
many n such that

bcfS(n) ≤ f(n).
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By convention we will only consider the minimum such function f(n). We will
also write f in terms of its asymptotic classification. For instance, it is clear that
every sequence is O(2n)-block periodic. Rational sequences are O(1)-block periodic,
and normal sequences are Θ(2n)-block periodic. Analogous to this new concept of
periodicity, we define the entropy of individual sequences in terms of block factor
sets.

Definition 3.7. The block entropy of an individual sequence S ∈ C is defined as

bh(S) = lim inf
n→∞

log bcfS(n)

n
.

We are now ready to present our main result. The block-entropy rate for any
individual sequence provides an upper bound to the finite-state dimension of the
sequence.

Theorem 3.8. Let S ∈ C be a sequence, then

dimFS(S) ≤ bh(S).

The proof of Theorem 3.8 will use a betting tree as a gambler. First, however, we
require the following lemma that establishes a general martingale function for any
betting tree.

Lemma 3.9. Let S ∈ C be a sequence and fix n ∈ Z+. Let G be the betting tree
for ∆n = Bn(S). Then for all w ∈ {0, 1}nj, j ≥ 0 such that w @ S, the martingale
function for G is

dG(w) =

(

2n

bcfS(n)

)

|w|
n

.

Proof. Note that without loss of generality we’ve assumed that |w| = nj. Though
we may lose money at intermediate steps within the betting tree, we will eventually
make it up at the end of each cycle through the tree, thus this restriction poses no
problems to a general martingale function for any w ∈ {0, 1}∗, such that w @ S.

By Definition 3.4 it suffices to show that for any x ∈ Bn(S),

dG(x) =

(

2n

bcfS(n)

)

.

We will proceed by induction on the length of the prefixes of x. Let u ∈ {0, 1}∗
and define

Yu(S) = { x ∈ Bn(S) | u v x}.
We will show that the martingale of any string u v x ∈ Bn(S) is

dG(u) = 2|u|
|Yu(S)|
bcfS(n)

. (3.1)

Equation 3.1 is obvious for |u| = 0, the root of the betting tree corresponds to the
initial capital c0 = 1. Note also that |Yλ(S)| = bcfS(n). We now assume 3.1 holds
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for |u| = i,

dG(u) = 2i |Yu(S)|
bcfS(n)

.

It is clear that if |Yu(S)| = 0 then x 6∈ Bn(S) and so the capital is zero. For
b ∈ {0, 1}, the expected payoff after ub is

dG(ub) = 2dG(u) [(1 − b)(1 − β(qu)) + bβ(qu)]

= 2i+1 |Yu(S)|
bcfS(n)

[

(1 − b)(1 − |Yu1|
|Yu|

) + b
|Yu1|
|Yu|

]

.

It is clear that Yu(S) = Yu for every proper prefix u @ x, so we have

dG(ub) = 2i+1 |Yub(S)|
bcfS(n)

.

At the end of our tree, u = x so Yx(S) = {x} and we have

dG(x) = 2n |Yx(S)|
bcfS(n)

=
2n

bcfS(n)
.

Proof. of Theorem 3.8. Lemma 3.9 gives us a general martingale function for any
betting tree G of order n for any sequence S ∈ C with respect to the block factor set
Bn(S). For any w ∈ {0, 1}ni, i ≥ 0 such that w @ S The corresponding finite-state
s-gale is

d
(s)
G (w) = 2(s−1)|w|dG(w)

= 2(s−1)|w|
(

2n

bcfS(n)

)

|w|
n

= 2(s−1)|w|2|w|(bcfS(n)−
|w|
n )

=
(

2s(bcfS(n)−
1
n )

)|w|

=
(

2s−
log bcfS(n)

n

)|w|

.

For any s > bh(S), we will show that dimFS(S) ≤ s. For any s′ such that s > s′ >

bh(S) = limn→∞
log bcfS(n)

n
we choose n large enough such that s′ >

log bcfS(n)
n

and

construct the s-gale d
(s)
G defined by the betting tree of order n. Clearly, S ∈ S∞[d

(s)
G ]

and we conclude that

dimFS(S) = inf GFS ≤ bh(S).

Corollary 3.10. Let S be an f -block periodic sequence such that f = 2o(n) then

dimFS(S) = 0.
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Proof. Let S be 2o(n)-block periodic. By Definition 3.6 it follows that

bh(S) = lim inf
n→∞

log 2o(n)

n
= 0.

It follows from Theorem 3.8 that

dimFS(S) ≤ bh(S) = 0.

3.3 Entropy

Each concept that applied to fixed blocks of a sequence in the previous section has
corresponding concepts in stringology with respect to factor sets Fn(S).

Definition 3.11. [9] For a sequence S ∈ C, the complexity function is a func-
tion that counts, for each integer n ≥ 0, the number pS(n) of factors of length n

appearing in S, thus
pS(n) = |Fn(S)|.

Obviously, for any S ∈ C, pS(0) = 1 since F0(S) = {λ} and pS(1) = 2 since
F1(S) = {0, 1} (for any sequence that is not unary of course).

It is clear from the definitions that for all n, the complexity function is at least as
big the block-complexity function,

bcfS(n) ≤ pS(n).

Definition 3.12. [1] The entropy of an individual sequence S ∈ C is defined as

h(S) = lim
n→∞

log pS(n)

n
.

It is clear here as well that the entropy rate is always at least the block entropy
rate,

bh(S) ≤ h(S).

Corollary 3.13. For any S ∈ C,

dimFS(S) ≤ h(S).

Proof. Since for any S ∈ C, bh(S) ≤ h(S) the corollary follows from Theorem
3.8. The proof of Theorem 3.8 can be modified for ∆n = Fn(S) providing a proof
independent of our block characterization.

Similarly, factor sets bounded by 2o(n) have entropy zero, and thus finite-state
dimension zero.
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Corollary 3.14. Let S ∈ C be a sequence such that pS(n) = 2o(n), then

dimFS(S) = 0.

Proof. Let S ∈ C have a complexity function that is bounded by 2o(n), then the
entropy rate is

h(S) = lim
n→∞

log 2o(n)

n
= 0.

So by Corollary 3.13 we conclude that dimFS(S) = 0.

Note the subtle difference here. If the usual complexity function is bounded by 2o(n)

then so is the block complexity function. Similar for the entropy rates. However, if
pS(n) = 2cn for c ∈ (0, 1], it may be the case that bcfS(n) is still bounded by 2o(n)

in which case, though the usual entropy rate fails to give a tight upper bound on
the finite-state dimension, the block entropy rate still does.

This poses a question for further study–do such sequences even exist? If so then the
inequality in 3.13 is strict and our block characterization gives a new, very useful
way of conceptualizing sequences. We continue discussion of such questions in the
final chapter.

3.4 Automatic Sequences

We now turn our attention to some very well studied sequences called Automatic

Sequences. Consider a deterministic finite automaton (DFA) D that on input w is
able to output 1 if it accepts w and 0 if it rejects w. Such an automaton defines
a finite-state function fD : Σ∗ → {0, 1}. Now consider feeding the DFA with the
canonical binary representations of non-negative integers, 0, 1, 2, . . ., then the finite-
state function generates a sequence, (an)n≥0 where an = 1 if D accepts and 0 if D

rejects. This type of sequence is known as an automatic sequence2.

Theorem 3.15. [1] A sequence S ∈ C is automatic if and only if there exists a
deterministic finite automaton such that S = (an)n≥0.

Expectedly, with the weak power of finite-state machines, automatic sequences are
not too complex.

Theorem 3.16. [4] Let S ∈ C be an automatic sequence over Σ = {0, 1}, then S

has a linear complexity function.

pS(n) ∈ O(n).

2Usually k-automatic is the term used, which refers to a general signature where k = |Σ|. Since
we restrict ourselves to Σ = {0, 1}, we simply refer to them as automatic sequences when we really
mean 2-automatic sequences.
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Of course not all sequences are automatic. Take for instance the sequence repre-
senting the prime numbers,

n 0 1 2 3 4 5 6 7 8 . . .

PRIMESn 0 0 1 1 0 1 0 1 0 . . .

It has been shown that PRIMESn is not automatic. Interestingly, however, its
entropy is zero [1], h(PRIMESn) = 0 and thus has finite-state dimension zero as
well. Because of their close relation to finite-state machines, it is not surprising
that automatic sequences have finite-state dimension zero.

Corollary 3.17. Let S ∈ C be an automatic sequence, then

dimFS(S) = 0.

Proof. Let S ∈ C be an automatic sequence. By Theorem 3.16, for automatic
sequences, pS(n) ∈ O(n) thus

h(S) = lim
n→∞

log pS(n)

n
= 0.

By Corollary 3.13 it follows that dimFS(S) = 0.

Regular languages are ones that can be decided by DFAs, thus there is a very
natural correspondence between regular languages and automatic sequences. They
are, in fact, one in the same.

Theorem 3.18. [13] Let L ⊆ Σ∗ be a language. L is regular if and only if χL is
automatic.

We have greatly simplified the wording of Theorem 3.18 in order to avoid intro-
ducing too many more definitions. Rigo [13] showed that one can generalize the
finite-state function to feed a DFA with every string x ∈ Σ∗ in lexicographic order
to generate a language’s characteristic sequence. He showed that this model of a
finite-state function is equivalent to the more restrictive model because one can
use a finite-state transducer that, given n in canonical form, computes3 the n-th
lexicographically ordered string in Σ∗. The usual DFA is then run on this string to
define fD.

Corollary 3.19. Let L ⊆ Σ∗ be a regular language with characteristic sequence
χL, then

dimFS(χL) = 0.

Proof. Let L ⊆ Σ∗ be a regular language. Then there exists a finite-state automaton
M that decides L. We modify M to output 0 in every reject state and 1 in every
accept state. The resulting machine defines a finite-state function and generates
the characteristic sequence χL. It follows then that χL is an automatic sequence
so by Corollary 3.17,

dimFS(χL) = 0.

3You simply take n in binary, add one and drop the leading 1 bit
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It is interesting to note that our entire investigation started out by considering
Corollary 3.19. Several different approaches were taken until the more general result
in Theorem 3.8 was proven, at which point all other results followed. Though a
single characteristic sequence of a regular language may have finite-state dimension
zero, the set of all such sequences has dimension one.

Theorem 3.20. [2] If the characteristic sequence χL of a language L is a rational
sequence (eventually periodic) then L is regular a regular language.

Obviously the converse of Theorem 3.20 is not true, Examples 2.15 and 2.16 testify
to this. However, this does yield an immediate observation.

Observation 3.21. Define the set REG ⊆ C to be the set of all characteristic
strings of regular languages.

REG =
{

χL ∈ C
∣

∣ L is a regular language
}

,

then
dimFS(REG) = 1.

Proof. By [5], we know that dimFS(Q) = 1 so by Fact 2.12 (2) it suffices to show
that Q ⊆ REG. Let S ∈ Q, clearly S must be a rational sequence. By Theorem
3.20, S corresponds to a regular language thus S ∈ REG.

Automatic sequences are closely related to morphic sequences. A function ϕ :
Σ∗ → Σ∗ is called a morphism if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ Σ∗. The iterative
application of a morphism ϕ is defined as ϕ0(b) = b and ϕi(b) = ϕ(ϕi−1(b)) for
b ∈ {0, 1}. A morphism is expanding if |ϕ(b)| ≥ 2 for all b ∈ {0, 1}. We call a
morphism k-uniform if |ϕ(b)| = k for all b ∈ {0, 1}. A 1-uniform morphism is called
a coding. Morphisms can be very naturally applied to sequences S ∈ C,

ϕ(S) = ϕ(S[0])ϕ(S[1])ϕ(S[2]) . . .

If ϕ(S) = S then ϕ is called a fixed point morphism.

The continued application of an expanding morphism may define a sequence S ∈ C.
If for some b ∈ {0, 1} and x ∈ Σ+, ϕ(b) = bx then we say that ϕ is prolongable on
b. The sequence defined by such a morphism converges to

S = ϕω(b) = bxϕ(x)ϕ2(x)ϕ3(x) . . .

which is also a fixed point of ϕ. That is, ϕ(ϕω(b)) = ϕω(b). Such a sequence is called
a pure morphic sequence. If there is a coding τ : Σ → Σ such that S = τ(ϕω(b))
then it is simply a morphic sequence.

Theorem 3.22. [6] The complexity of a sequence S ∈ C that is a fixed point of
any morphism (not necessarily of constant length) satisfies

pS(n) ∈ O(n2)
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Theorem 3.22 tells us that any morphic sequence will have a factor set bounded by
some quadratic function. It follows then that any morphic sequence has finite state
dimension zero.

Corollary 3.23. Let S ∈ C be a morphic sequence, then

dimFS(S) = 0.

Proof. Clear.

This covers sequences that can be produced or recognized by relatively simple
morphisms and finite-state machines. However, “most” sequences in the Cantor
Space do not have such low complexity.

Theorem 3.24. [1] Almost all sequences S ∈ C are complete sequences. That is,
pS(n) = 2n for all n ≥ 0.

3.5 Hierarchy Results

The complexity function for factor sets partitions all sequences into two categories.
If ever pS(n) = pS(n + 1) then S is a rational sequence, otherwise pS(n) is always
monotonically increasing.

Theorem 3.25. [9] Let S ∈ C. Then the following hold.

1. If S ∈ Qn then pn(S) is strictly increasing until pn(S) = n, then it is constant
thereafter.

2. If S is aperiodic, then pn(S) is strictly increasing, pn(S) ≥ n+1 for all n ≥ 1.

Sequences that meet the inequality in condition 2 above are called Sturmian se-

quences. Sturmian sequences have been well studied and many equivalent descrip-
tions have been developed leading to far reaching applications in linear filters,
network routing and computer graphics. Sturmian sequences constitute a “gap” in
the sequence hierarchy with respect to the complexity function.

Observation 3.26. There exists no sequence S ∈ C such that pn(S) ∈ o(n).

Sturmian sequences are the lowest order of complexity for aperiodic sequences.
It is unclear, however, if sequences exist that have a block complexity function
Bn(S) ∈ o(n) or not. There are, however, sequences that have monotonically
increasing complexity functions but that are constantly-block periodic (Θ(1)-block
periodic).

Example 3.27. The Thue-Morse sequence is an automatic sequence Sµ = µω(0)
defined by the morphism

µ :
0 → 01
1 → 10

Sµ = 01101001100101101001011001101001 . . .
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For any n = 2k, k ≥ 0, Bn(S) = 2, but since Sµ is automatic it has a linear
complexity function. Experimentally it seems that pSµ

(n) ≈ 3n.

Furthermore, Examples 2.15 and 2.16 are constantly-block periodic with c = 2.
Rather simple sequences can be built out of regular languages for any c ∈ Z+.
However, it is not likely that any Sturmian sequence is also constantly-block peri-
odic.

Conjecture 3.28. Let S ∈ C be a Sturmian Sequence. For every n ∈ Z+, x ∈
Fn(S), x eventually appears (infinitely often and within bounded occurrences of
each other) starting at every index r mod n.

Though no proof could be formulated, this conjecture is believed to hold [17]. By
definition, a Sturmian sequence is (n + 1)-block periodic. However, if Conjecture
3.28 holds, then no Sturmian Sequence is constantly-block periodic. This consti-
tutes a similar “gap” in the sequence hierarchy with respect to the block complexity
function.

As a conclusion to this chapter, we offer the following view of the hierarchy of se-
quences with respect to the complexity function pS(n).
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Figure 3.2: Sequence Hierarchy w.r.t. pS(n) Complexity Function
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Chapter 4

Further Study & Conclusions

4.1 Further Study

As a prelude to our concluding remarks, we pose several open questions and con-
siderations that we believe are worthy of continued investigation.

4.1.1 Finite-State Lower Bounds

Theorem 3.8 and Corollary 3.13 both provide a nice upper bound in terms of
block and factor set entropy rates respectively. However, these bounds are not
at all tight. Sequences can be constructed that have entropy 1 but finite-state
dimension 0. Showing strict equality in finite-state dimension is relatively simple
when dealing with sets of infinite sequences. In that case, one can use a generalized
Kraft inequality to argue that a sequence exists in the set in question such that no
gambler can win on it. Such techniques were used in [5] and [10] to obtain results
like Theorem 2.25. Unfortunately, when dealing with singleton sets (individual
sequences), such an argument doesn’t apply. Additional techniques will have to be
developed to show non-trivial lower bounds on individual sequences.

4.1.2 Block Characterization

Recall that the Thue-Morse sequence represents a sequence that is linear in terms
of its complexity function, pSµ

(n) ≈ 3n, but which is constantly-block periodic,
bcfSµ

(n) = 2 for n = 2k, k ≥ 0. However, the entropy rates for both charac-
terizations are zero. This then begs the question, are there sequences that have
positive entropy rates but are constantly-block periodic? More generally, we ask
the following.

Open Question 4.1. Do there exist sequences S ∈ C such that pS(n) = 2cn for
c ∈ (0, 1] such that bh(S) < h(S)?
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If such sequences were to exist then the usual notion of entropy would not provide a
strict upper bound on finite-state dimension for most sequences. This seems rather
unlikely given our views in the previous subsection.

4.1.3 State Sizes

Recall that in Examples 2.15 and 2.16 we gave generalized constructions that re-
quired an exponential number of states with respect to α. However, we also had
an exponential decrease in the upper bound on the dimension for increasing α.

Now consider our betting trees. Each tree Gn has a depth of n and a width
corresponding to the cardinality of the set ∆n. A very general bound on the number
of states in any betting tree is thus O(n|∆n|).

Recall that Sturmian sequences are ones with a minimal complexity function,
pS(n) = n + 1 for all n. It follows then that for any Sturmian sequence the betting
tree has Θ(n2) states. For each increasing value of n we get a linear blow up in the
number of states but also receive a linear decrease in the s parameter of the s-gale
defined by Gn.

More generally, say a sequence’s block factor set (or factor set) is bounded by 2f(n).
If f(n) ∈ O(log n) then the number of states in Gn is polynomial. If f(n) ∈ ω(log n)
then we necessarily have a sub-exponential number of states. Finally, if f(n) ∈ O(n)
then we have a strictly exponential number of states.

We naturally ask then, for a given sequence S, is there a gambler for S with a
constantly bound number of states? Linearly bound? Polynomially bound? More
generally,

Open Question 4.2. What is the lower bound on the number of states required
for a gambler to succeed on a given sequence S?

For Sturmian sequences it may be possible to design a linearly sized gambler. An
earlier approach used Rauzy graphs [9] (factor graphs) to show Sturmian sequences
have finite-state dimension zero. This idea was abandoned after the more general
result in Theorem 3.8 subsumed it. It may be worthwhile to reconsider. Experimen-
tally it seems that though the gamblers are linear in n, one must go exponentially
far in n to get a polynomial decrease in the dimensional bound.

4.1.4 Scaled Dimension

Recall that the s parameter in s-gales can be interpreted as a house advantage
against a gambler. For each bet, a gambler loses money if s < 1. As s → 0 it
becomes more and more difficult for a gambler to win. In fact, there is a very
natural hierarchy of scaled dimension. For each integer i the i-th order dimension,
dim(i), can be defined on a set of sequences. By rescaling dimension we gain a
finer characterization of a set’s dimension. Intuitively, scaled dimension requires a
gambler to be able to win by increasing orders of magnitude. The house advantage
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that s represented in s-gales is compounded with each higher order dimension.
Such ideas are present in the classical Hausdorff setting and have been extended to
Lutz’s effectivization model [7]. It is natural to ask then, to what degree can our
results be extended to scaled dimension? It would be much stronger, for example,
to say that every automatic sequence has finite-state dimension zero in higher order
scaled dimensions. We anticipate this line of investigation to be full of potential
and we are currently considering it.

4.2 Conclusion

Lutz’s gale characterization of classical Hausdorff dimension is very intuitive and
extensible to many areas of mathematics and computer science. The results thus
far have been encouraging and we are proud to make our contributions to the area.
Our block characterization and corresponding upper bound that the block entropy
rate represents may prove to be quite useful in continued research. We have also
established the finite-state dimension of a large number of well studied sequences.
This area is still young, yet already many interesting results have been established.
No doubt much more will be discovered in the coming years.
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