New Algorithms for Optimizing Multi-Class Classifiers
via ROC Surfaces

Kun Deng

Chris Bourke
Stephen Scott

N. V. Vinodchandran

KDENGQ@CSE.UNL.EDU
CBOURKEQCSE.UNL.EDU
SSCOTTQCSE.UNL.EDU
VINOD@CSE.UNL.EDU

Department of Computer Science & Engineering, University of Nebraska—Lincoln, Lincoln, NE 68588-0115 USA

Abstract

We study the problem of optimizing a multi-
class classifier based on its ROC hypersur-
face and a matrix describing the costs of each
type of prediction error. For a binary classi-
fier, it is straightforward to find an optimal
operating point based on its ROC curve and
the relative cost of true positive to false posi-
tive error. However, the corresponding multi-
class problem (finding an optimal operating
point based on a ROC hypersurface and cost
matrix) is more challenging. We present sev-
eral heuristics for this problem, including lin-
ear and nonlinear programming formulations,
genetic algorithms, and a customized algo-
rithm. Empirical results suggest that genetic
algorithms fare the best overall, improving
performance most often.

1. Introduction

We study the problem of re-weighting classifiers to op-
timize them for new cost models. For example, given
a classifier optimized to minimize classification error
on its training set, one may attempt to tune it to im-
prove performance in light of a new cost model (say,
a change in the ratio of true positive to false positive
error). Equivalently, a change in the class distribution
(the probability of seeing examples from each partic-
ular class) can be handled by modeling such a change
as a change in cost model.

For two-class problems, the problem of finding the op-
timal operating point of a classifier given a ratio of true
positive cost to false positive cost is straightforward

Appearing in Proceedings of the ICML 2006 workshop on
ROC Analysis in Machine Learning, Pittsburgh, USA,
2006. Copyright 2006 by the author(s)/owner(s).

via Receiver Operating Characteristic (ROC) analy-
sis. ROC analysis takes a classifier h that outputs
confidences in its predictions (i.e. a ranking classifier),
and precisely describes the tradeoffs between true pos-
itive and false positive errors. By ranking all examples
x € X by their confidences h(z) from largest to small-
est (denoted X = {zi1,...,x,}), one achieves a set
of n + 1 binary classifiers by setting thresholds {6; =
(h(zi) +h(xi41))/2,1 <i < n}U{h(z1)—€ h(z,)+€}
for some constant € > 0. Given a relative cost ¢ of true
positive error to false positive error and a validation
set X of labeled examples, one can easily find the opti-
mal threshold 6 based on X’ and ¢ (Lachiche & Flach,
2003). To do so, simply rank the examples in X, try
every threshold 6; as described above, and select the
0; minimizing the total cost of all errors on X.

Though the binary case lends itself to straightfor-
ward optimization, working with multi-class problems
makes things more difficult. A natural idea is to think
of m-class ROC space having dimension m(m — 1).
A point in this space corresponds to a classifier, with
each coordinate representing the misclassification rate
of one class into some other class'. According to Srini-
vasan (1999), the optimal classifier lies on the convex
hull of these points. Given this ROC polytope, a val-
idation? set X, and an m X m cost matrix M with
entries ¢(Cj, Ck) (the cost associated with misclassi-
fying a class C; example as class C}), Lachiche and
Flach (2003) define the optimization problem as find-

! Assuming that cost is zero if the classification is cor-
rect, we need only m(m — 1) instead of m? dimensions.

2Lachiche and Flach ran their experiments with X as
an independent validation set and with X" as the original
training set. They found little difference in their experi-
mental results.

ing a weight vector @ > 0 to minimize3

Yo D p(C)r(ChCreChCr) L (1)

1<j<m 1<k<m

where p(C}) is the prior probability of class C;, and
r(Cj, Cy) is the proportion of examples from X of ac-
tual class C; that are predicted as class C}. The pre-
dicted class of an example z is

§a = argmax{w; f(z, C3)}
1<i<m

where f(x,C;) is the classifier’s confidence that exam-
ple z is in class C;.

No efficient algorithm is known to optimally solve (1),
and Lachiche and Flach speculate that the problem
is computationally hard. We present several new al-
gorithms for this problem, including an integer lin-
ear programming relaxation, a sum-of-linear fractional
functions (SOLFF) formulation, a direct optimization
of (1) with a genetic algorithm and finally, a new
custom algorithm based on partitioning C into meta-
classes. In our experiments, our algorithms yielded
several significant improvements both in minimizing
classification error and minimizing cost.

The rest of this paper is as follows. In Section 2 we
discuss related work and in Section 3 we discuss our
approaches to this problem. We then experimentally
evaluate our algorithms in Section 4 and conclude in
Section 5.

2. Related Work

The success of binary ROC analysis gives hope that
it may be possible to adapt similar ideas to multi-
class scenarios. However, research efforts (Srinivasan,
1999; Hand & Till, 2001; Ferri et al., 2003; Lachiche &
Flach, 2003; Fieldsend & Everson, 2005) have shown
that extending current techniques to multi-class prob-
lems is not a trivial task. One key aspect to binary
ROC analysis is that it is highly efficient to represent
trade-offs of misclassifying one class into the other via
binary ROC curves. In addition, the “area under the
curve” (AUC) nicely characterizes the classifier’s abil-
ity to produce correct rankings without committing to
any particular operating point. Decisions can be post-
poned until a desired trade-off is required (e.g. finding
the lowest expected cost).

Now consider the problem of classification in an m-
class scenario. A natural extension from the binary
case is to consider a multi-class ROC space as having

3 Assuming ¢(Cj, C;) = 0 V.

dimension m(m—1). A point in this space corresponds
to a classifier with each coordinate representing the
misclassification rate of one class into some other class.
Following from Srinivasan (1999), the optimal classifier
lies on the convex hull of these points.

Previous investigations have all shared this basic
framework (Mossman, 1999; Srinivasan, 1999; Hand &
Till, 2001; Ferri et al., 2003; Lachiche & Flach, 2003;
Fieldsend & Everson, 2005; O’Brien & Gray, 2005).
They differ, however, in the metrics they manipulate
and in the approach they use to solve multi-class op-
timization problems. Mossman (1999) addressed the
special case of three-class problems, focusing on the
statistical properties of the volume under the ROC
surface. This motivated the later work of Ferri et al.
(2003), Lachiche and Flach (2003), and O’Brien and
Gray (2005). Hand and Till (2001) extended the def-
inition of two-class AUC by averaging pairwise com-
parisons. They used this new metric in simple, artifi-
cial data sets and achieved some success. Ferri et al.
(2003) took a different approach in which they strictly
followed the definition of two-class AUC by using “Vol-
ume Under Surface” (VUS). They were able to com-
pute the bounds of this measure in a three-class prob-
lem by using Monte Carlo methods. However, it is
not known how well this measure performs in more
complex problems.

Fieldsend and Everson (2005), Lachiche and Flach
(2003) and O’Brien and Gray (2005) developed algo-
rithms to minimize the overall multi-class prediction
accuracy and cost given some knowledge of a multi-
class classifier. In particular, Fieldsend and Everson
(2005) approximate the ROC Convex Hull (ROCCH)
using the idea of “Pareto front.” Consider the fol-
lowing formulation: let R;;(#) be the misclassifica-
tion rate of predicting examples from class j as class
k. This is a function of some generalized parameter 6
that depends on the particular classifiers. For exam-
ple, # may be a combination of a weight vector @ and
hypothetical cost matrix M. The goal is to find 6 that
minimizes R; () for all j, k with j # k. Consider two
classifiers § and ¢. We say 0 strictly dominates ¢ if all
misclassification rates for 6 are no worse than ¢ and at
least one rate is strictly better. The set of all feasible
classifiers such that no one is dominated by the other
forms the Pareto front. Fieldsend and Everson (2005)
present an evolutionary search algorithm to locate the
Pareto front. This method is particularly useful when
misclassification costs are not necessarily known.

More closely related to our work are the results of
Lachiche and Flach (2003) and O’Brien and Gray
(2005). Lachiche and Flach (2003) considered the case

when the misclassification cost is known, and the goal
is to find the optimal decision criterion that fits the
training set. Recall that this can be solved optimally
for the binary case. In particular, only one threshold
0 is needed to make the decision for two-class prob-
lems. Since there are only n + 1 possible thresholds
for n examples, it is efficient enough to simply test
all possibilities and select the one that gives the mini-
mum average error (or cost). However, the situation is
more complicated for multi-class problems. The main
obstacle in the multi-class case is that the number of
possible classification assignments grows exponentially
in the number of instances: Q(m™).

Lachiche and Flach (2003) formulated the multi-class
problem as follows. Suppose the multi-class learning
algorithm will output a positive, real-valued function
f Az, w3 x{Ch,...,Cn} — RT. Here, f(z;,C})
gives the confidence that example x; belongs to class
(. The decision criterion simply assigns example x;
to the class with maximum score. Reweighting the
classes involves defining a nonnegative weight vector
W = (wy,ws,...,wy), and predicting the class for an
example x as

h(z) = argmax {w; f(z,C;)} .

1<jsm

It should be apparent that @ has only m — 1 degrees
of freedom, so we can fix w; = 1.

Lachiche and Flach (2003) used a hill climbing or se-
quential optimization heuristic to find a good weight
vector . In particular, they took advantage of the
fact that the optimal threshold for the two-class prob-
lem can be found efficiently. For each coordinate in the
weight vector, they mapped the problem to a binary
problem. The algorithm starts by assigning w; = 1
and all other weights 0. It then tries to decide the
weight for one class at a time as follows. Let X’ be the
set of training examples and let p be the current class
for which we want to assign a “good” weight wy,. Then
the set of possible weights for wy, is
reX } .

{ max;e(1,...,p—1} [, Cj)
f (3j) CIJ)

It is not difficult to see that at any stage there are
at most O(|X]|) possible weights that can influence
the prediction. Thus choosing the optimal weight in
this setting can be easily achieved by checking all
possibilities. Overall, their algorithm runs in time
©(mnlogn). Though there is no guarantee that this
approach can find an optimal solution, they gave em-
pirical results that it works well for optimizing 1BC, a
logic-based Bayes classifier (Lachiche & Flach, 1999).

Although only briefly mentioned in Lachiche and Flach
(2003), this ROC thresholding technique is quite ex-
tensible to cost-sensitive scenarios. O’Brien and Gray
(2005) investigated the role of a cost matrix in parti-
tioning the estimated class probability space and as a
replacement for the weights. Assuming that M is a
misclassification cost matrix, an optimal decision cri-
terion would be

Z C(ij Ck)ﬁ(x7 CJ)

1<j<m

h(z) = argmin
1<k<m

If p(x,C;) is a good probability estimate of example
x belonging to class C}, this prediction results in the
lowest expected cost. However, if p(x, C;) is not an ac-
curate probability estimate, then to ensure optimality,
the cost matrix M has to be altered accordingly. Thus
the cost matrix M plays a similar role as Lachiche and
Flach’s weight vector in defining the decision bound-
ary in estimated probability space. O’Brien and Gray
(2005) defined several standard operations to manip-
ulate the cost matrix M and proposed the use of a
greedy algorithm to find the altered cost matrix (called
a boundary matriz).

3. Our Contributions

In this section, we first present new mathematical pro-
gramming formulations. In particular, we reformu-
late the objective function (1) given by Lachiche and
Flach (2003) as a relaxed integer linear program as
well as give a formulation that is a sum of linear frac-
tional functions. We also describe a new heuristic al-
gorithm approach, MetaClass. Finally (in Section 4)
we present experimental results from these formula-
tions. We give evidence that the objective function
landscape for this problem is highly discontinuous and
thus more amenable to global optimization methods
such as genetic algorithms.

3.1. Mathematical Programming Formulations
3.1.1. RELAXED INTEGER LINEAR PROGRAM
We start by reformulating (1) as follows:

3 p(cci‘) S 0, Y Ly

1<i<m 1€ 1<k<m 2;€C;
(2)

where C; C X is the set of instances of class j, p(C;) is
the prior probability of class Cj, ¢(Cj,Cy) is the cost
of misclassifying an example from class C; as C}, and

I, = 1 if wkf(x“Ck) 2 wlf(mz-7Cl)7l 75 k
“k =) 0 otherwise.

minimize
w, I

Here we assume ¢(Cj,C;) = 0 for all C;. Formalizing
this as a constrained optimization problem, we want
to minimize (2) subject to

®3)

Zlgjgm Ii’j =1 (4)

Li; € 10,1} (®)

w; >0 (6)

where each constraint holds for all 7 € {1,...,n} and

j€A{1,...,m}. Equation (3) allows only the class that
has the max value of wy, f(z;, Cy) to be indicated by I
to be the predicted class of example z; and (4) forces

exactly one class to be predicted per example x;.

We can change the optimization problem in two ways
to get an equivalent problem. First, we change the
“=" in (3) to “>”. Second, we can relax (5) to
be I; ; € [0,1]. Note that (3) (even when amended
with “>”) will only be satisfied if I; ; = 0 for all
C; that don’t maximize the RHS of (3). Thus, so
long as we never have wyf(z;,Cx) = wp f(x;,Cir)
for some k # k', the relaxation is equivalent to the
original problem. Further, even if there is such a
tie for classes C) and Cj/, it will not be an issue if
the corresponding entries in the cost matrix are dif-
ferent, since an optimal solution will set I;, = 1
and I, iy = 0 if ¢(C;j,Ck) < ¢(Cj,Crs). The poten-
tial problem of both wy f(z;, Cy) = wy f(z;, Cxs) and
c(Cj,Cr) = ¢(C},Cy) is fixed by (after optimizing)
checking for any I; , ¢ {0,1} and arbitrarily choosing
one to be 1 and the rest 0. Note that since there is a
tie in this case, the prediction can go either way and
the weight vector @ returned is still valid.

Everything except (3) is linear. We now reformulate
it. First, for each ¢ € {1,...,n}, we substitute v; for
max <k <m{wk f (i, Ck) }:

Ii jw; f(x4, Cy) = i I 5 (7)
wrf (2, Ck) <y s (8)

foralli e {1,...,n} and j, k € {1,...,m} where each
~; is a new variable. Obviously (8) is a linear con-
straint, but (7) is not even quasiconvex (Boyd & Van-
denberghe, 2004). The complexity of this optimization
problem motivates us to reformulate it a bit further.

Let us assume that f(z;,Cx) € (0,1] (e.g. if f(-,-)
are probability estimates from naive Bayes or logistic
regression). Now we can optimize (2) subject to:

¥i —w;f(2i,Cy) + Ly < 1 (9)
vi > w; f(wi, Cy) (10)
Z1§j§m lij =1 (11)

1; € {0.1} (12)

forallie{1,...,n} and j € {1,...,m}.

So long as w; f(x;, C;) € (0,1] and I; ; € {0,1} for
all i € {1,...,n} and j € {1,...,m}, this is another
equivalent optimization problem, this time a {0,1} in-
teger linear program. Unfortunately, we cannot relax
(12) to I; ; € [0,1] as we did before to get an equiva-
lent problem. But we still use the relaxation as a linear
programming heuristic. To help avoid overfitting, we
also add a linear regularization term to (2):

L p(C;)
mugr?lze Z] c(Cj,Ck) Z Ik
’ 1<j<m 1<k<m z;€C;
+nllw — Tlll} (14)
where || - ||1 is the 1-norm, T is the all-1s vector, and 7

is a parameter. This regularizer penalizes large devia-
tions from the original classifier f(-,-).

3.1.2. SuM OF LINEAR FRACTIONAL FUNCTION
FORMULATION

Another formulation comes from changing how pre-
dictions are made from deterministic to probabilis-
tic. In this prediction model, given a new example
x to predict on, first compute wy f(x,Cy) for each
k € {1,...,m}. Then predict class Cj for example
x with probability

Z1§egm wef(x,Ce)

Assuming a uniform distribution over the data set, the
expected cost of this predictor is

C, .
B S o) X etk (19)
1<j<m I 1<k<m z,€C;
where
(i k) = wyf (4, Cy)

B ZISZSWL wef(xi’ CZ)

subject to wy > 0 for all & € {1,...,m}. We now
have eliminated the variables I; ;, and their integer con-
straints. However, we now have a nonlinear objective
function in (15). Each individual term of the sum-
mation of (15) is a linear fractional function, which
is quasiconvex and quasiconcave, and thus it is effi-
ciently solvable optimally. However, the sum of linear

fractional functions (SOLFF) problem is known to be
hard (Matsui, 1996) and existing algorithms for this
problem are inappropriate (they either restrict to few
terms in the summation or to low-dimensional vec-
tors). Instead, we apply a genetic algorithm to directly
optimize (15).

3.2. The MetaClass Heuristic Algorithm

In addition to the linear programming formulations,
we present a new algorithm that we call MetaClass
(Algorithm 1). This algorithm is similar to that of
Lachiche and Flach (2003) in that we reduce the multi-
class problem to a series of two-class problems. How-
ever, we take what can be considered a top-down
approach while the algorithm of Lachiche and Flach
(2003) can be considered bottom-up. Moreover, Meta-
Class has a faster time complexity. The output of the
algorithm is a decision tree with each internal node la-
beled by two metaclasses and a threshold value. Each
leaf node is labeled by one of the classes in the original
problem. At the root, the set of all classes is divided
into two metaclasses. The criterion for this split may
be based on any statistical measure, but for simplic-
ity, experiments were performed by splitting classes so
that each metaclass would have roughly the same num-
ber of examples. For each metaclass, our algorithm de-
fines confidence functions f; and fy for each instance,
which are simply the sum of the confidences of the
classes in C; and Ca, respectively. The ratio F' = f—; is
used to find a threshold §. We find 6 by sorting the
instances according to F' and choose a threshold that
minimizes error. (This threshold will be the average
of F(x;) and F(z;4+1) for some instance z;.) The sit-
uation for cost is slightly more complicated since it is
not clear which class in the metaclass an example is
misclassified as. Instead, we use the average cost of
misclassifying instances into metaclasses in C; and Cs.
In this case, a threshold is chosen that minimizes the
overall cost. We recursively perform this procedure on
the two metaclasses until there is only a single class, at
which point a leaf is formed. The MetaClass algorithm
is presented as Algorithm 1.

To: 6 =08169
C1 = {Cy4,Cs}
Cz2 ={C1,C5,Ca}

fa = f(z,Cy)
j=1,2,5
Ty : 6 =0.2897 Ty: 6=144.31
C1 = {Cs} C1 ={Cs}
Cy = {Ca} Cz = {C1,C2}
2 = f(z,C4) fa= 3 f(=,0p)
= f(z, C:) »
=i i = F(a.Cs) =1
Ts: 0 =09.322
E)redict C;)J &:redict C% Earedict CEJ Ci ={C1}
Co ={Cs}
f1 = f(=,C1) J2 = f(z, C2)

predict Cp| |predict Cg

Figure 1. Example run of MetaClass on Nursery, a 5-class
problem.

. A set of instances, X = {z1,...,z,}; a
set of classes, C = {C1,...,Cn}; a
learned confidence function
f: X xC—R" and a tree node T

Output : A decision tree with associated weights.

1 Split C into two meta-classes C1,Ca

Input

2 foreach Instance v; € X do

fi(@i,Cr) =30 ee, fl2i,C))
fo(i,C2) =320 e, fl2i,C5)
F(xi) = fi(z:)/ f2(s)

end

«w

Sort instances according to F'

Compute a threshold 6 that minimizes error/cost
w.rt. F

9 Label T with 6,C1,C2
10 Create two children of T Tictt, Tright
11 Split X into two classes, X7, X2 according to C1,C2
12 Recursively perform this procedure on X1, C1, Tieft
and XQ,CQ,Tright until ‘C| =1

Algorithm 1: MetaClass

[N - < BN

Figure 1 gives an example of a tree built by the Meta-
Class algorithm on the UCI (Blake & Merz, 2005) data
set Nursery, a 5 class data set. At the root, the classes
are divided into two metaclasses each with about the
same number of examples represented in their respec-
tive classes. In this case, the threshold # = 0.8169 fa-
vors the sum of confidences in metaclass C; = {Cy, Cs}
as an optimal weight.

Predictions for a new example y are made as follows.
Starting at the root node, we traverse the tree towards

a leaf. At each node T' we compute the sum of confi-
dences of y with respect to each associated metaclass.
We traverse left or right down the tree depending on
whether f1/fa > 0. When a leaf is reached, a final
class prediction is made.

The number of nodes created by MetaClass is ©(m),
where m is the number of classes. At each node, the
most complex step is sorting at most n instances ac-
cording to the confidence ratio. Thus, the overall per-
formance is bounded by ©(nlognlogm). Since for
most applications, n > m, we may consider its actual
running time to simply be O(nlogn). Classification is
also efficient. At each node we compute a sum over an
exponentially shrinking number of classes. The overall
number of operations is thus

log (m)—1
m
2 o
=0

which is linear in the number of classes: ©(m).

4. Experimental Results

The following experiments were performed on 25 stan-
dard UCI data sets (Blake & Merz, 2005), using
Weka’s naive Bayes (Witten et al., 2005) as the base-
line classifier. We ran experiments evaluating improve-
ments both in classification accuracy and total cost.
We used 10-fold cross validation for error rate experi-
ments (Table 1). For the cost experiments of Table 2,
10-fold cross validations were performed on 10 differ-
ent cost matrices for each data set. Costs were integer
values between 1 and 10 assigned uniformly at ran-
dom. Costs on the diagonal were set to zero. The
average cost per test instance was reported for each
experiment. Table 2 gives the average cost over all
100 experiments per data set, per algorithm.

In both tables, for each data set m denotes the num-
ber of classes and NB indicates our baseline classi-
fier’s performance. For comparison, we have included
wins and losses (and significance) for the algorithms re-
ported by Lachiche and Flach (2003) and O’Brien and
Gray (2005). Raw numbers are omitted since these
results are not directly comparable to ours: in addi-
tion to being based on different data partitions, the
results from Lachiche and Flach (2003) were from an
optimization run on the base classifier 1IBC (Lachiche
& Flach, 1999). Moreover, the results in O’Brien
and Gray (2005) (here, we have used one of their
best formulations, “column multiply”) pruned classes
that did not have “sufficient” representation. Further-
more, Lachiche and Flach (2003) did not consider cost-
sensitive experiments. Thus, the results in Table 2 for

Lachiche & Flach are taken from the implementation
and results reported by O’Brien and Gray.

The results of our experiments can be found in the last
four columns of each table. Here, MC is the MetaClass
algorithm (Algorithm 1). LP is a linear programming
algorithm (MOSEK ApS, 2005) on Equation (14) with
n = 1075, The first GA is the Sum of Linear Frac-
tional Functions formulation (Equation (15)) using a
genetic algorithm. The final column is a genetic al-
gorithm performed on Equation (1). Both GA imple-
mentations were from Abramson (2005). Parameters
for both used the default Matlab settings with a pop-
ulation size of 20, a maximum of 200 generations and
a crossover fraction of 0.8. The algorithm terminates
if no change is observed in 100 continuous rounds. In
addition, the mutation function of Abramson (2005) is
guaranteed to only generate feasible solutions (in our
case, all weights must be nonnegative). Upon termi-
nation, a direct pattern search is performed using the
best solution from the GA.

Data for some entries were not available and are de-
noted “n/a” (either the source did not report results
or, in the case of our experiments, data sets were too
large for Matlab). Therefore, for comparison it is im-
portant to note the ratio of significant wins to signifi-
cant losses rather than merely total wins or losses. For
all columns, bold entries indicate a significant differ-
ence to the baseline with at least a 95% confidence
according to a Student’s-t method. The overall best
classifier for each data set is underlined.

Regarding classification error, in every case each algo-
rithm showed some significant performance improve-
ments. With the exception of LPR, all algorithms were
competitive with no clear overall winner. However, Ta-
ble 3.2 does, in fact, show a clear winner when costs
are non-uniform. The success when using a GA on
Equation (1) gives evidence that the objective function
surface is likely to be very rough with many local mini-
mums (it is certainly discontinuous given the use of the
argmax function). This also may explain why other
methods did not perform as well. The GA is search-
ing globally; in contrast all other methods (including
Lachiche and Flach (2003)) search locally. Even the
integer linear programming relaxation, which in gen-
eral has a good track record, came up short.

5. Conclusion & Future Work

When the cost model or class distribution of a learn-
ing problem deviates from the conditions under which
a classifier f was trained, one may wish to re-optimize
f. For two-class problems, it is well-known how to do

this via ROC analysis, but the multi-class problem is
more challenging. We presented multiple algorithms
for the multi-class version of this problem and empir-
ically showed their competitiveness. Direct optimiza-
tion by a genetic algorithm was particularly effective.

Future work includes answering the question posed by
Lachiche and Flach (2003): is this optimization prob-
lem computationally intractable? Assuming it is, then
a more tractable and useful special case of this prob-
lem may be when the number of classes is restricted
to a constant. In particular, can we find a provably
optimal algorithm when the number of classes is 37

Acknowledgments

The authors would like to thank Nicolas Lachiche for
helpful correspondence. We also thank anonymous re-
viewers for helpful suggestions and feedback.

References

Abramson, M. A. (2005). Genetic algorithm and direct
search toolbox. See http://www.mathworks.com/.

Bengio, S., Mariéthoz, J., & Keller, M. (2005). The ex-
pected performance curve. International Conference
on Machine Learning, ICML, Workshop on ROC
Analysis in Machine Learning (pp. 9-16).

Blake, C., & Merz, C. (2005). UCI repository of ma-
chine learning databases.

Boyd, S., & Vandenberghe, L. (2004).
mization. Cambridge University Press.

Convex opti-

Ferri, C., Herndndez-Orallo, J., & Salido, M. (2003).
Volume under the ROC surface for multi-class prob-
lems. ECAI 2003 (pp. 108-120).

Fieldsend, J., & Everson, R. (2005). Formulation
and comparison of multi-class ROC surfaces. Inter-
national Conference on Machine Learning, ICML,
Workshop on ROC Analysis in Machine Learning
(pp- 41-48).

Hand, D., & Till, R. (2001). A simple generalisation
of the area under the ROC curve for multiple class
classification problems. Machine Learning, 45, 171—
186.

Lachiche, N., & Flach, P. (1999). 1BC: A first-order
bayesian classifier. Proceedings of the 9th Interna-
tional Workshop on Inductive Logic Programming
(pp- 92-103).

Lachiche, N., & Flach, P. (2003). Improving accuracy
and cost of two-class and multi-class probabilistic

classifiers using ROC curves. Proceedings of the 20th
International Conference on Machine Learning (pp.
416-423).

Matsui, T. (1996). NP-hardness of linear multiplica-
tive programming and related problems. Journal of
Global Optimization, 9, 113-119.

MOSEK ApS (2005). The MOSEK optimization tools
version 3.2. See http://www.mosek.com/.

Mossman, D. (1999). Three-way ROCs. Medical De-
cision Making, 78-89.

O’Brien, D. B., & Gray, R. M. (2005). Improving clas-
sification performance by exploring the role of cost
matrices in partitioning the estimated class proba-
bility space. International Conference on Machine
Learning, ICML, Workshop on ROC Analysis in
Machine Learning (pp. 79-86).

Srinivasan, A. (1999). Note on the location of optimal
classifiers in n-dimensional ROC space (Technical
Report PRG-TR-2-99). Oxford University Comput-
ing Laboratory, Oxford.

Witten, I. H., et al. (2005). Weka machine learning
toolbox. See www.cs.waikato.ac.nz/ml/weka/.

