
A Note on the Karp-Lipton Collapse for the

Exponential Hierarchy

Chris Bourke
Department of Computer Science & Engineering

University of Nebraska
Lincoln, NE 68503, USA

Email: cbourke@cse.unl.edu

January 10, 2007

Abstract

We extend previous collapsing results involving the exponential hierar-
chy by using recent hardness-randomness trade-off results. Specifically, we
show that if the second level of the exponential hierarchy has polynomial-
sized circuits, then it collapses all the way down to MA.

Introduction

Much consideration has been given to the proposition that certain complexity
classes may be Turing reducible to sparse sets. Equivalently, what happens if
certain complexity classes have polynomially-sized (non-uniform) circuits? Such
research has proven fruitful in giving evidence that such reductions and circuits
do not exist for many interesting complexity classes.

The first such result, the Karp-Lipton collapse [6], showed that if NP ⊂ P/poly
then the entire polynomial hierarchy collapses to the second level (ΣP

2 ∩ ΠP
2).

This collapse has since been improved ([7, 2, 3] Köbler & Watanabe improved it
to ZPPNP, Cai, with Sengupta, improved it to SP

2 , and Chakaravarthy & Roy im-
proved it further to OP

2). In the same paper, they showed a stronger hypothesis
results in a stronger collapse; that if EXP ⊂ P/poly then EXP = ΣP

2 ∩ ΠP
2 .

But what if even larger classes have polynomially sized circuits—do sim-
ilar collapses occur? In fact, they do. Buhrman and Homer [1] strength-
ened the Karp-Lipton collapse to one higher level of the exponential hierar-
chy. This hierarchy is a natural exponential analog of the polynomial hierarchy
inductively defined with NP oracles. That is, EXP,EXPNP,EXPNPNP

, etc; and
NEXP,NEXPNP,NEXPNPNP

along with their complements.

Theorem 1 (Buhrman & Homer [1]).

EXPNP ⊂ P/poly ⇒ EXPNP = ΣP
2 ∩ ΠP

2

1

In contrast, however, Kannan [5] was able to provably separate the expo-
nential hierarchy from P/poly. Specifically, he showed that any level of the
exponential hierarchy above EXPNP is not contained in P/poly. Improving this
separation may be exceedingly difficult, as the oracle construction of Wilson [9]
shows that EXPNP has polynomial-sized (in fact linear-sized) circuits (relative
to this oracle).

Research in the area of derandomization has used similar hypotheses to get
conditional hardness-randomness trade-off results. That is, assuming the ex-
istence of a hard Boolean function (e.g. EXP 6⊂ P/poly), one can construct
pseudorandom generators from their truth table and derandomize some proba-
bilistic complexity class like BPP or MA. A more recent result of Impagliazzo,
Kabanets and Wigderson, shows that for the case of MA, such circuit complexity
lower bounds are actually necessary for derandomization.

Theorem 2 (Impagliazzo, Kabanets & Wigderson [4]).

NEXP ⊂ P/poly ⇔ NEXP = MA

We observe that the containments, MA ⊆ ΣP
2 ∩ ΠP

2 ⊆ EXP, mean that the
collapse also implies NEXP = EXP.

Main Result

The collapse in Theorem 2 is, in a sense, incomplete. In particular, it does not
immediately follow that an inclusion in P/poly one higher level in the exponential
hierarchy would cause a similar collapse. We extend this result by showing that
such a collapse does indeed hold.

Definition 1. A language L ⊆ {0, 1}∗ is in EXPNP if it is decidable in deter-
ministic exponential time with an oracle for NP. Additionally, L ∈ EXPNP[z(n)]

if L ∈ EXPNP and L is computable using at most z(n) NP queries on inputs of
length n.

Theorem 3. For any time-constructible function z(n),

EXPNP[z(n)] ⊂ P/poly ⇒ EXPNP[z(n)] = EXP

It follows from Theorem 2 and standard hierarchy inclusions that this implies
an even stronger collapse.

Corollary 4.

EXPNP[z(n)] ⊂ P/poly ⇒ EXPNP[z(n)] = MA

Clearly, EXP ⊆ EXPNP[z(n)] so it suffices to show that the assumption implies
EXPNP[z(n)] ⊆ EXP. We proceed by proving a series of lemmas.

Lemma 5.
EXPNP[z(n)] ⊂ P/poly ⇒ NEXP ⊂ P/poly

2

Proof. This follows from a simple padding argument; any set A ∈ NEXP can be
decided by an EXP machine with a single (though exponentially long) query to
NP, i.e. we pad out the input 〈x, 12|x|〉 in EXP time, then a query to NP (say to
SAT) runs in polynomial time with respect to |〈x, 12|x|〉|. Thus NEXP ⊆ EXPNP[1]

and by the assumption, NEXP ⊂ P/poly.

Lemma 6.
EXPNP[z(n)] ⊂ P/poly ⇒ NEXP = EXP

Proof. It follows from Lemma 5 and Theorem 2.
We are now able to mimic the argument of Krentel [8] who showed that any

OptP function is computable by a P machine with access to an NP oracle (i.e.
OptP = FPNP). For completeness, we give the following definitions which are
also analogous to those presented in [8].

Definition 2. A NEXP metric Turing machine N is a non-deterministic, expo-
nentially time-bounded Turing machine such that every branch writes a binary
number and accepts. For each x ∈ Σ∗ we write OptN (x) for the largest value
on any branch of N(x)

Definition 3. A function f : Σ∗ → N is in OptEXP if there is a NEXP metric
Turing machine such that f(x) = OptN (x) for all x ∈ Σ∗. The function f is in
OptEXP[z(n)] if f ∈ OptEXP and the length of f(x) is bounded by z(|x|) for all
x ∈ Σ∗.

Lemma 7. Any f ∈ EXPNP[z(n)] can be computed as f(x) = h(x, g(x)) where
g ∈ OptEXP[z(n)] and h is computable in EXP time with respect to |x|. That is,
EXPNP = OptEXP.

Proof. Let f ∈ EXPNP[z(n)] and M be the machine computing f . Note that M
is an EXP machine making z(n) queries to an NP set (without loss of generality,
say SAT). Algorithm 1 presents a NEXP metric Turing machine N .

3

Input : x ∈ {0, 1}n

Compute z(n)1

Non-deterministically branch for each y ∈ {0, 1}z(n)
2

Let y = b1b2 · · · bz(n)3

Simulate M(x), constructing queries ϕ1, ϕ2, · · · , ϕz(n)4

foreach ϕi such that bi = 1 do5

Guess a satisfying assignment for ϕi6

if ϕi ∈ SAT then7

Output b1b2 · · · bz(n)8

end9

end10

Algorithm 1: A NEXP metric Turing machine computing
b1b2 · · · bz(n)

The claim that OptN (x) = b1b2 · · · bz(n) are the true oracle answers for M(x)
is shown by induction. Let ϕ1 be the first query for M . If ϕ1 ∈ SAT then N(x)
on branch 100 · · · 00 will find a satisfying assignment and so OptN (x) ≥ 100 · · · 00
and so it must be the case that b1 = 1. Conversely, if ϕ1 6∈ SAT then no branch
beginning with 1 will find a satisfying assignment and so OptN (x) ≤ 011 · · · 11
and b1 = 0. By induction on i, all of the bi’s must be correct oracle answers for
the computation of M(x).

Therefore, given oracle answers OptN (x) = b1b2 · · · bz(n), f can be computed
in EXP time by simulating M(x) using the bits of OptN (x) for oracle answers.
It follows, then, that f can be computed by h(x, g(x)) with g ∈ OptEXP and h
computable in EXP time.

Proof of Theorem 3. Assume EXPNP[z(n)] ⊂ P/poly and let f ∈ OptEXP com-
puted by an OptEXP machine Mf . By Lemma 7 it suffices to show that
f can be computed in deterministic exponential time. Define the language
LMf

= {〈x, y〉 | x, y ∈ {0, 1}∗,Mf (x) = y}. Note that L ∈ NEXP: one can
simply guess a (exponentially long) computation path of Mf and accept if and
only if y is equal to the computed function value. By Lemma 6, the assumption
implies that EXP = NEXP thus LMf

∈ EXP.
Now consider the procedure in Algorithm 2. Here, we take the view that the

polynomial advice string is a circuit. The assumption thus entails the existence
of a circuit of size p(n) for some fixed polynomial that computes f . We simply
have to cycle through all possible circuits to find the right one. For each such
circuit Ci, we must check that Mf (x) = Ci(x).

4

Input : x ∈ {0, 1}∗

forall Circuits Ci of size ≤ p(n) do1

Compute y = Ci(x)2

if 〈x, y〉 ∈ LMf
then3

Store y4

end5

end6

Among the stored strings y, take the lexicographically7

maximum, ymax

Output OptN (x) = ymax8

Algorithm 2: An EXP machine computing f(x)

The loop in Line 1 cycles through all circuits of size ≤ p(n) which can be
done in exponential time. Furthermore, the subroutine for deciding LMf

is an
EXP procedure by assumption and again, Lemma 6. Thus, f can be computed
in deterministic exponential time and the conclusion follows.

We conclude by asking if current techniques can be combined in a more
clever way to get an even bigger collapse. Can we show that EXPNP ⊂ P/poly
collapses EXPNP to an even smaller class such as OP

2?

Acknowledgements

This work was supported partially by National Science Foundation grant number
CCF-0430991. I thank N. V. Vinodchandran and John Hitchcock for useful
discussions.

References

[1] Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse
oracles and the exponential hierarchy. In Proceedings of the 12th Conference
on Foundations of Software Technology and Theoretical Computer Science,
pages 116–127, London, UK, 1992. Springer-Verlag.

[2] Jin-Yi Cai. SP
2 ⊆ ZPPNP. In Proceedings of the 42nd IEEE symposium on

Foundations of Computer Science, page 620, Washington, DC, USA, 2001.
IEEE Computer Society.

[3] Venkatesan T. Chakaravarthy and Sambuddha Roy. Oblivious symmetric
alternation. In 23rd Annual Symposium on Theoretical Aspects of Computer
Science, pages 230–241. Springer, 2006.

5

[4] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of
an easy witness: exponential time vs. probabilistic polynomial time. Journal
of Computer and System Sciences, 65(4):672–694, 2002.

[5] Ravindran Kannan. Circuit-size lower bounds and non-reducibility to sparse
sets. Information and Control, 55:40–46, 1982.

[6] Richard M. Karp and Richard J. Lipton. Some connections between nonuni-
form and uniform complexity classes. In Proceedings of the 12th annual ACM
symposium on Theory of computing, pages 302–309, New York, NY, USA,
1980. ACM Press.

[7] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP
having small circuits. SIAM Journal on Computing, 28(1):311–324, 1999.

[8] Mark W. Krentel. The complexity of optimization problems. Journal of
Computer and System Sciences, 36(3):490–509, 1988.

[9] Christopher B. Wilson. Relativized circuit complexity. Journal of Computer
and System Sciences, 31:169–181, 1985.

6

