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1 About This Document

What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in
LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is
a website created by Scott Aaronson which contains a (more or less) comprehensive list of
Complexity Classes studied in the area of theoretical computer science known as Computa-
tional Complexity.

I took on the (mostly painless, thank god for regular expressions) task of translating the
Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what
better way to honor such an endeavor than to spruce up the cages a bit and typeset them
all in beautiful LATEX.”

Second, I thought it would be a perfect project to develop complexity, a LATEX pack-
age I’ve created that defines commands to typeset (almost) all of the complexity classes
you’ll find here (along with some handy options that allow you to conveniently change the
fonts with a single option parameters). To get the package, visit my own home page at
http://www.cse.unl.edu/~cbourke/.

In addition, I’ve used the hyperref package to preserve the ability to link to references,
internal anchors, etc. In general, any text in red represents an internal link that will take you
to the reagent page (mainly for complexity classes). Green links will are used for references
and will take you to the bibliography entry it refers to. Finally, magenta links refer to
external URLs (for which you’ll need a web browser/email program).
The content itself is entirely due to Scott. Other than these few paragraphs, all the original
effort was his. I take full responsibility for all errors in translation and would appreciate any
and all corrections.

Thanks to Scott for allowing me to pursue this project and for the original efforts made in
the web-based ComplexityZoo.

–Chris Bourke cbourke@cse.unl.edu
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2 Introductory Essay

I created the Complexity Zoo with three audiences in mind.

First, me. Before my zookeeping foray, I spent a week trying to put AM outside QMA rela-
tive to an oracle, only to learn that this followed trivially from two known results: that of
Vereshchagin [Ver92] that AM is outside PP relative to an oracle, and that of Kitaev and
Watrous (unpublished, but mentioned in [Wat00]) that QMA is in PP. What to do next?
One option would be to work on putting SZK outside QMA relative to an oracle. But instead
I decided that, before hoisting one more brick onto the vast edifice of complexity, I’d do well
to take stock of what was already known. Some theorists seem able to hold in their minds,
in one instant, the results of every FOCS, STOC, and Complexity paper ever published. Not
every proof, of course - but those can be looked up if one knows the results and to whom
they’re due.

I am not one of those theorists. The sprawling web of known relations among complexity
classes—containments, oracle separations, random oracle separations, lowness results, the
occasional inequality - is not fixed in my memory like the English language. And so it’s
largely for my own benefit that I recorded a chunk of what’s known in one unwieldy HTML
file.

The second audience is other theorists and theory students, who might find the Zoo to have
a few advantages as a reference. First, inspired by Eric Weisstein’s famed World of Math-
ematics, it links liberally between entries. Second, it can be updated regularly—much of
its current content is not yet in any book as far as I know. Third, it takes a democratic
approach to complexity classes, with big hitters like NP listed alongside the lesser-known
mAL, PODN, and QACC0. Any class is fair game so long as something nontrivial has been
said about it in the literature.

The third audience comprises programmers, mathematicians, physicists, and anyone else
who bumps into complexity classes occasionally. With this audience in mind I’ve kept the
writing informal; those who need a precise definition of a class should consult the references.
I hope that non-theorists, even if they don’t understand everything, will at least find some
amusement in the many exotic beasts that complexity theory has uncovered.

Comments, corrections, and additions (of classes, results, references...) are most welcome;
send to aaronson@cs.berkeley.edu.

2.1 Recommended Further Reading

• [Pap94a] Computational Complexity (1994) by C. H. Papadimitriou. The standard
text, and an ideal starting place for beginners.

4

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/
mailto:aaronson@cs.berkeley.edu


• [Joh90] “A Catalog of Complexity Classes” (1990) by D. S. Johnson (Chapter 2 in the
Handbook of Theoretical Computer Science, Volume A). Close in spirit to the Zoo.

• [HO02] The Complexity Theory Companion (2002), by L. A. Hemaspaandra and M.
Ogihara. A lively guide to structural complexity. Has a ”Rogues’ Gallery” of classes at
the end, including such obscure zoo denizens as US and SFk (though Prof. Hemaspaan-
dra emphasizes to me that the book is “mostly about NP, PH, etc. - pretty normal,
standard stuff”).

• http://fortnow.com/lance/complog/: Lance Fortnow’s Computational Complexity
Web Log. Includes a “Complexity Class of the Week.”

2.2 Other Theory Compendia

• [GJ79] Computers and Intractability: A Guide to the Theory of NP-Completeness
(1979) by M. R. Garey and D. S. Johnson.

• http://www.nada.kth.se/~viggo/wwwcompendium/ A Compendium of NP Optimiza-
tion Problems, web site by P. Crescenzi and V. Kann et al.

2.3 Errors?

Omissions? Misattributions? Your favorite class not here? Email aaronson at ias dot edu.
Please include a reference, or better yet a link to a paper if available.
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3 Pronunciation Guide

Unfortunately, there are no accepted conventions for pronouncing the names of rarer com-
plexity classes. Usually the safest bet is just to spell out a whole acronym; even when vowels
are present, this is easier than wrapping one’s tongue around (say) PODN or NISZK. The
major exceptions are words and word prefixes, which are pronounced as such: for example,
co, mod, log, lin, few, poly, exp, gap, time, space, amp, av, sel, sat. Also, the “TAS” in
PTAS, FPTAS, and EPTAS is generally pronounced “tahz.”

As for symbols, the “+” of ⊕L (which actually has a circle around it in LaTeX rendering)
is pronounced “parity”; while the “#” of #P is pronounced “sharp” (some textbooks also
list “pound” or “number” as acceptable, but I’ve never heard the latter two used in real
life). The “/” of P/poly is pronounced “slash.” The act of subscripting is left unvocalized, so
that ModkP is “mod-k-p” rather than “mod-sub-k-p.” Superscripting, on the other hand, is
vocalized: PNP is “P to the NP” (but not “P to the NP power” - it’s an oracle, for Godsakes).

Finally, Lance Fortnow has informed me that C=P and its cousin C=L are pronounced “C
equals P” and “C equals L” respectively. This could lead to confusion in sentences such as
“coNQP equals C equals P.”
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Glossary

0-1-NPC
1NAuxPDAp

#AC0

#L
#L/poly
#P
#W[t]
⊕EXP
⊕L
⊕L/poly
⊕P
⊕SAC1

A0PP
AC
AC0

AC0[m]
ACC0

AH
AL
AlgP/poly
AM
AM-EXP
AM ∩ coAM
AM[polylog]
AmpMP
AmpPBQP
AP
AP
APP
APP
APX
AUC-SPACE(f(n))
AuxPDA
AVBPP
AvE
AvP
AW[P]
AWPP
AW[SAT]
AW[∗]
AW[t]

βP
BH
BPE
BPEE
BPHSPACE(f(n))
BPL
BP · NP
BPP
BPPcc

BPPKT

BPP-OBDD
BPPpath

BPQP
BPSPACE(f(n))
BPTIME(f(n))
BQNC
BQNP
BQP
BQP/log
BQP/poly
BQP/qlog
BQP/qpoly
BQP-OBDD
BQP/poly
BQTIME(f(n))
k-BWBP
C=AC0

C=L
C=P
CFL
CLOG
CH
Check
CkP
CNP
coAM
coC=P
cofrIP
Coh
coMA
coModkP

compIP
compNP
coNE
coNEXP
coNL
coNP
coNPcc

coNP/poly
coNQP
coRE
coRNC
coRP
coSL
coUCC
coUP
CP
CSIZE(f(n))
CSL
CZK
D#P
DCFL
∆2P
δ-BPP
δ-RP
DET
DiffAC0

DisNP
DistNP
DP
DQP
DSPACE(f(n))
DTIME(f(n))
DTISP(t(n), s(n))
Dyn-FO
Dyn-ThC0

E
EE
EEE
EESPACE
EEXP
EH

ELEMENTARY
ELkP
EPTAS
k-EQBP
EQP
EQTIME(f(n))
ESPACE
ExistsBPP
ExistsNISZK
EXP
EXP/poly
EXPSPACE
FBQP
Few
FewP
FH
FNL
FNL/poly
FNP
FO(t(n))
FOLL
FP
FPNP[log]

FPR
FPRAS
FPT
FPTnu

FPTsu

FPTAS
FQMA
frIP
F-TAPE(f(n))
F-TIME(f(n))
GA
GAN-SPACE(f(n))
GapAC0

GapL
GapP
GC(s(n), C)
GCSL
GI
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GPCD(r(n), q(n))
G[t]
HeurBPP
HeurBPTIME(f(n))
HkP
HVSZK
IC[log, poly]
IP
IPP
L
LIN
LkP
LOGCFL
LogFew
LogFewNL
LOGNP
LOGSNP
L/poly
LWPP
MA
MA′

MAC0

MA-E
MA-EXP
mAL
MaxNP
MaxPB
MaxSNP
MaxSNP0

comNL
MinPB
MIP
MIP∗[2, 1]
MIPEXP

(Mk)P
mL
mNC1

mNL
mNP
ModkL
ModkP
ModP

ModZkL
mP
MP
MPC
mP/poly
mTC0

NAuxPDAp

NC
NC0

NC1

NC2

NE
NE/poly
NEE
NEEE
NEEXP
NEXP
NEXP/poly
NIQSZK
NISZK
NISZKh

NL
NL/poly
NLIN
NLOG
NP
NPC
NPcc

NPC
NPI
NP ∩ coNP
(NP ∩ coNP)/poly
NP/log
NPMV
NPMV-sel
NPMVt

NPMVtsel
NPO
NPOPB
NP/poly
(NP,P-samplable)
NPR

NPSPACE
NPSV
NPSV-sel
NPSVt

NPSVt-Sel
NQP
NSPACE(f(n))
NT
NTIME(f(n))
OCQ
OptP
P
P/log
P/poly
P#P

P#P [1]

PAC0

PBP
k-PBP
PC
Pcc

PCD(r(n), q(n))
P-close
PCP(r(n), q(n))
PermUP
PEXP
PF
PFCHK(t(n))
PH
PHcc

Φ2P
PhP
Π2P
PINC
PIO
PK

PKC
PL
PL1

PL∞
PL
PLL

PLS
PNP

PNP[k]

PNP[log]

PNP[log2]

P-OBDD
PODN
polyL
PostBQP
PP
PP/poly
PPA
PPAD
PPADS
PPP
PPP

PPSPACE
PQUERY
PR
PR
PrHSPACE(f(n))
PromiseBPP
PromiseBQP
PromiseP
PromiseRP
PrSPACE(f(n))
P-Sel
PSK
PSPACE
PT1

PTAPE
PTAS
PT/WK(f(n), g(n))
PZK
QAC0

QAC0[m]
QACC0

QAM
QCFL
QCMA
QH
QIP
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QIP(2)

QMA
QMA+

QMA(2)

QMAlog

QMAM
QMIP
QMIPle

QMIPne

QNC0

QNC0
f

QNC1

QP
QPLIN
QPSPACE
QSZK
R
RE
REG
RevSPACE(f(n))

RHL

RL
RNC
RP
RPP
RSPACE(f(n))
S2P
S2-EXP · PNP

SAC
SAC0

SAC1

SAPTIME
SBP
SC
SEH
SelfNP
SFk

Σ2P
SKC
SL
SLICEWISEPSPACE
SNP
SO-E

SP
SP
span-P
SPARSE
SPL
SPP
SUBEXP
symP
SZK
SZKh

TALLY
TC0

TFNP
Θ2P
TreeBQP
TREE-REGULAR
UAP
UCC
UE
UL
UL/poly
UP

US

VNCk

VNPk

VPk

VQPk

W[1]

WAPP

W[P]

WPP

W[SAT]

W[∗]
W[t]

W∗[t]

XOR-MIP∗[2, 1] ∗ [2, 1]

XP

XPuniform

YACC

ZPE

ZPP

ZPTIME(f(n))
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4 Complexity Classes

Warning: Please do not feed oracles to the complexity classes! These classes require a
specially balanced diet to ensure proper relativization.
0-1-NPC: Binary Restriction of NP Over The Complex Numbers

• The intersection of NPC with {0, 1}∗ (i.e. the set of binary strings).

• Contains NP.

• Is contained in PSPACE, and in AM assuming the Extended Riemann Hypothesis
[Koi96].

1NAuxPDAp: One-Way NAuxPDAp

• Defined in [Bra77], where it was also shown that 1NAuxPDAp strictly contains CFL and
is strictly contained in LOGCFL.

#AC0: Sharp-AC0

• The class of functions from {0, 1}n to nonnegative integers computed by polynomial-
size constant-depth arithmetic circuits, using addition and multiplication gates and the
constants 0 and 1.

• Contained in GapAC0.

#L: Sharp-L

• Has the same relation to L as #P does to P.

• #L is contained in DET [AJ93].

#L/poly: Nonuniform #L

• Has the same relation to #L as P/poly does to P.

#P: Sharp-P

• The class of function problems of the form “compute f(x),” where f is the number of
accepting paths of an NP machine.

• The canonical #P-complete problem is #SAT: given a Boolean formula, compute how
many satisfying assignments it has.

• Defined in [Val79b], where it was also shown that the problem of counting the number
of perfect matchings in a bipartite graph (or equivalently, computing the permanent
of a 0-1 matrix) is #P-complete.

• What makes that interesting is that the associated decision problem (whether a bipar-
tite graph has a perfect matching) is in P.
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• PH is in P#P [Tod89].

• Any function in #P can be approximated to within a polynomial factor in BPP with
an NP oracle [Sto85].

#W[t]: Sharp-W[t]

• Roughly, the analogue of #P for parameterized complexity. I.e. the class of param-
eterized counting problems that are fixed-parameter parsimonious reducible to the
following problem: #WSAT Given a Boolean formula, count the number of satisfying
assignments of Hamming weight k (where k is the parameter).

• Defined in [FG02], which should be consulted for the full definition. [FG02] also showed
that there exist #W[1]-complete problems whose corresponding decision problems are
fixed-parameter tractable (i.e. in FPT).

⊕EXP: Parity EXP

• The exponential-time analogue of ⊕P.

• There exists an oracle relative to which ⊕EXP = ZPP [BBF98]

⊕L: Parity L

• Has the same relation to L as ⊕P does to P.

• Contains SL [KW93].

• Solving a linear system over Z2 is complete for ⊕L [Dam90].

• ⊕L⊕L = ⊕L [HRV00].

⊕L/poly: Nonuniform ⊕L

• Has the same relation to ⊕L as P/poly does to P.

• Contains NL/poly [GL96].

⊕P: Parity P

• The class of decision problems solvable by an NP machine such that

– If the answer is “yes,” then the number of accepting paths is odd.

– If the answer is “no,” then the number of accepting paths is even.

• Defined in [PZ83].

• Contains graph isomorphism; indeed, graph isomorphism is low for ⊕P [AK02].

• Contains FewP [CH89].

11



• There exists an oracle relative to which P = ⊕P but P is not equal to NP (and indeed
NP = EXP) [BBF98].

⊕SAC1: Parity SAC1

• Has the same relation to SAC1 as ⊕P does to P.

• Contains SAC1 [GW96].

A0PP: One-Sided Analog of AWPP

• Same as SBP, except that f is a GapP rather than #P function.

• Defined in [Vya03], where the following was also shown:

– A0PP contains QMA, AWPP, and coC=P.

– A0PP is contained in PP.

– If A0PP =PP then PH is contained in PP.

AC: Unbounded Fanin Polylogarithmic-Depth Circuits

• ACi is the class of decision problems solvable by a uniform family of Boolean circuits,
with polynomial size, depth O(logi(n)), and unbounded fanin. The gates allowed are
AND, OR, and NOT.

• Then AC is the union of ACi over all nonnegative i.

• ACi is contained in NCi+1; thus, AC =NC.

• Contains NL.

• For a random oracle A, ACA
i is strictly contained in ACA

i+1, and ACA is strictly contained
in PA, with probability 1 [Mil92].

AC0: Unbounded Fanin Constant-Depth Circuits

• An especially important subclass of AC, corresponding to constant-depth, unbounded-
fanin, polynomial-size circuits with AND, OR, and NOT gates.

• Computing the parity or majority of n bits is not in AC0 [FSS84].

• There are functions in AC0 that are pseudorandom for all statistical tests in AC0

[NW94]. But there are no functions in AC0 that are pseudorandom for all statisti-
cal tests in QP (quasipolynomial time) [LMN93].

• [LMN93] showed furthermore that functions with AC0 circuits of depth d are learnable

in QP, given their outputs on O(2logO(d)(n)) randomly chosen inputs. On the other

hand, this learning algorithm is essentially optimal, unless there is a 2no(1)
algorithm

for factoring [Kha93].
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• Although there are no good pseudorandom functions in AC0, [IN96] showed that there
are pseudorandom generators that stretch n bits to n+Θ(log n), assuming the hardness
of a problem based on subset sum.

• AC0 contains NC0, and is contained in QAC0 and MAC0.

• In descriptive complexity, uniform AC0 can be characterized as the class of problems
expressible by first-order predicates with addition and multiplication operators - or
indeed, with ordering and multiplication, or ordering and division (see [Lee02]).

• [BLMS98] showed the following problem is complete for depth-k AC0 circuits (with a
uniformity condition):

– Given a grid graph of polynomial length and width k, decide whether there is a
path between vertices s and t (which can be given as part of the input).

AC0[m]: AC0 With MODm Gates

• Same as AC0, but now “MODm” gates (for a specific m) are allowed in addition to
AND, OR, and NOT gates. (A MOD m gate outputs 0 if the sum of its inputs is
congruent to 0 modulo m, and 1 otherwise.)

• If m is a power of a prime p, then for any prime q 6= p, deciding whether the sum of n
bits is congruent to 0 modulo q is not in AC0[m] [Raz87], [Smo87]. It follows that, for
any such m, AC0[m] is strictly contained in NC1.

• However, if m is a product of distinct primes (i.e. 6), then it is not even known whether
AC0[m] = NP!

• See also: QAC0[m].

ACC0: AC0 With Arbitrary MOD Gates

• Same as AC0[m], but now the constant-depth circuit can contain MODm gates for any
m.

• Contained in TC0.

• Indeed, can be simulated by depth-3 threshold circuits of quasipolynomial size [GK93].

• According to [All96], there is no good evidence for the existence of cryptographically
secure functions in ACC0. On the other hand, no nontrivial lower bounds against ACC0

are known either. Thus, this class represents the current frontier for circuit lower
bounds.

• Contains 4-PBP [BT88].

• See also: QACC0.
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AH: Arithmetic Hierarchy

• The analog of PH in computability theory.

• Let ∆0 = Σ0 = Π0 = R. Then for i > 0, let

– ∆i = R with Σi−1 oracle.

– Σi = RE with Σi−1 oracle.

– Πi = coRE with Σi−1 oracle.

Then AH is the union of these classes for all nonnegative constant i.

• Each level of AH strictly contains the levels below it.

AL: Alternating L

• Same as AP, but for logarithmic-space instead of polynomial-time.

• AL = P [CKS81].

AlgP/poly: Polynomial-Size Algebraic Circuits

• The class of multivariate polynomials over the integers that can be evaluated using a
polynomial (in the input size n) number of additions, subtractions, and multiplications,
together with the constants −1 and 1. The class is nonuniform, in the sense that the
polynomial for each input size n can be completely different.

• Named in [Imp02], though it has been considered since the 1970’s.

• If BPP (or even BPP is contained in NE), then either NEXP is not in P/poly, or else
the permanent polynomial of a matrix is not in AlgP/poly [KI02].

AM: Arthur-Merlin

• The class of decision problems for which a “yes” answer can be verified by an Arthur-
Merlin protocol, as follows.

Arthur, a BPP (i.e. probabilistic polynomial-time) verifier, generates a “challenge
string” based on the input, and sends it to Merlin, who has unbounded computational
resources. Merlin sends back a response, and then Arthur decides whether to accept.
Given an algorithm for Arthur, we require that

1. If the answer is “yes,” then Merlin can act in such a way that Arthur accepts with
probability at least 2/3 (over the choice of Arthur’s random bits).

2. If the answer is “no,” then however Merlin acts, Arthur will reject with probability
at least 2/3.

14



It turns out that, without loss of generality, we can take the protocol to be public-coin
[GS86]: that is, the “challenge string” is just a sequence of uniform random bits. So,
Arthur never needs to hide information from Merlin.

• Furthermore, define AM[k] similarly to AM, except that Arthur and Merlin have k
rounds of interaction. Then for all constant k > 2, AM[k] = AM[2] = AM [BM88].

• AM contains graph nonisomorphism.

• Contains NP, BPP, and SZK, and is contained in Π2P and NP/poly.

• If AM contains coNP then PH collapses to Σ2P ∩ Π2P [BHZ87].

• There exists an oracle relative to which AM is not contained in PP [Ver92].

• AM = NP under the assumption that some language in NE intersect coNE requires
nondeterministic circuits of size 2Ω(n) ([MV99], improving [KvM99]). (A nondetermin-
istic circuit C has two inputs, x and y, and accepts on x if there exists a y such that
C(x, y) = 1.)

AM-EXP: Exponential-Time AM

• Same as AM, except that Arthur is exponential-time and can exchange exponentially
long messages with Merlin.

• Contains MA-EXP, and is contained in EH and indeed S2-EXP · PNP.

• If coNP is contained in AM[polylog] then EH collapses to AM-EXP [PV04].

AM ∩ coAM:

• The class of decision problems for which both “yes” and “no” answers can be verified
by an AM protocol.

• If EXP requires exponential time even for AM protocols, then AM∩coAM = NP∩coNP
[GSTS03].

• There exists an oracle relative to which AM ∩ coAM is not contained in PP [Ver95].

AM[polylog]: AM With Polylog Rounds

• Same as AM, except that we allow polylog(n) rounds of interaction between Arthur
and Merlin instead of a constant number.

• Not much is known about AM[polylog]—for example, whether it sits in PH. However,
[SS04] show that if AM[polylog] contains coNP, then EH collapses to S2-EXP · PNP.
([PV04] improved the collapse to AM-EXP.)

AmpMP: Amplifiable MP
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• The class of decision problems such that for some #P function f(x, 0m),

1. The answer on input x is “yes” if and only if the middle bit of f(x) is 1.

2. The m bits of f(x) to the left and right of the middle bit are all 0.

• Defined in [GKR+95].

• Contained in MP.

AmpP-BQP: BQP Restricted To AmpP States

• Similar to TreeBQP except that the quantum computer’s state at each time step is
restricted to being exponentially close to a state in AmpP (that is, a state for which
the amplitudes are computable by a classical polynomial-size circuit).

• Defined in [Aar04c], where it was also observed that AmpP-BQP is contained in the
third level of PH, just as TreeBQP is.

AP: Alternating P

• An alternating Turing machine is a nondeterministic machine with two kinds of states,
AND states and OR states. It accepts if and only if the tree of all computation paths,
considered as an AND-OR tree, evaluates to 1. (Here “Accept” corresponds to 1 and
“Reject” to 0.)

• Then AP is the class of decision problems solvable in polynomial time by an alternating
Turing machine.

• AP = PSPACE [CKS81].

AP: Approximable in Polynomial Time

• The “other” AP.

• The class of real-valued functions from {0, 1}n to [0, 1] that can be approximated within
any ε > 0 by a deterministic Turing machine in time polynomial in n and 1/ε.

• Defined by [KRC00], who also showed that the set of AP machines is in RE.

APP: Approximable in Probabilistic Polynomial Time

• The class of real-valued functions from {0, 1}n to [0, 1] that can be approximated within
any ε > 0 by a probabilistic Turing machine in time polynomial in n and 1/ε.

• Defined by [KRC00], who also show the following:

– Approximating the acceptance probability of a Boolean circuit is APP-complete.
The authors argue that this makes APP a more natural class than BPP, since the
latter is not believed to have complete problems.
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– If APP = AP, then BPP = P.

– On the other hand, there exists an oracle relative to which BPP = P but APP
does not equal AP.

• Interestingly, it is unclear whether the set of APP machines is in RE.

APP: Amplified PP

• The “other” APP.

• Roughly, the class of decision problems for which the following holds. For all polyno-
mials p(n), there exist GapP functions f and g such that for all inputs x with n = |x|,

1. If the answer is “yes” then f(x)/g(1n) > 1− 2−p(n).

2. If the answer is “no” then f(x)/g(1n) < 2−p(n).

• Defined in [Li93], where the following was also shown:

– APP is contained in PP, and indeed is low for PP.

– APP is closed under intersection, union, and complement.

• APP contains AWPP [Fen03].

APX: Approximable

• The subclass of NPO problems that admit constant-factor approximation algorithms.
(I.e., there is a polynomial-time algorithm that is guaranteed to find a solution within
a constant factor of the optimum cost.)

• Contains PTAS.

• Equals the closure of MaxSNP and of MaxNP under PTAS reduction [KMSV99], [CT94].

• Defined in [ACG+99].

AUC-SPACE(f(n)): Randomized Alternating f(n)-Space

• The class of problems decidable by an O(f(n))-space Turing machine with three kinds
of quantifiers: existential, universal, and randomized.

• Contains GAN-SPACE(f(n)).

• AUC-SPACE(poly(n)) = SAPTIME = PSPACE [Pap83].

• [Con92] shows that AUC-SPACE(log n) has a natural complete problem, and is con-
tained in NP ∩ coNP.

AuxPDA: Auxiliary Pushdown Automata

17



• Equivalent to NAuxPDAp without the running-time restriction.

• Equals P [Coo71a].

AVBPP: Average-Case BPP

• Defined in [OW93] to be the class of decision problems that have a good average-case
BPP algorithm, whenever the input is chosen from an efficiently samplable distribution.

• Note that this is not the same as the BPP version of AvP.

AvE: Average Exponential-Time With Linear Exponent

• Has the same relation to E as AvP does to P.

AvP: Average Polynomial-Time

• A distributional problem consists of a decision problem A, and a probability distribution
µ over problem instances.

• A function f , from strings to integers, is polynomial on µ-average if there exists a
constant ε > 0 such that the expectation of f ε(x) is finite, when x is drawn from µ.
Then (A, µ) is in AvP if there is an algorithm for A whose running time is polynomial
on µ-average.

• This convoluted definition is due to Levin [Lev86], who realized that simpler definitions
lead to classes that fail to satisfy basic closure properties. Also see [Gol97] for more
information.

• If AvP = DistNP then EXP = NEXP [BDCGL92].

• See also: (NP,P-samplable).

AW[P]: Alternating W[P]

• Same as AW[SAT] but with “circuit” instead of “formula.”

• Has the same relation to AW[SAT] as W[P] has to W[SAT].

• Defined in [DF99].

AWPP: Almost WPP

• The class of decision problems solvable by an NP machine such that for some polynomial-
time computable (i.e. FP) function f ,

1. If the answer is “no,” then the difference between the number of accepting and
rejecting paths is at most 2−poly(n)f(x).

2. If the answer is “yes,” then the difference is between (1− 2−poly(n)f(x) and f(x).
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• Defined in [FFK94].

• Contains BQP [FR98], WAPP [BGM03], LWPP, and WPP.

• Contained in APP [Fen03].

AW[SAT]: Alternating W[SAT]

• Basically has the same relation to W[SAT] as PSPACE does to NP.

• The class of decision problems of the form (x, r, k1, · · · , kr) (with r, k1, · · · , kr parame-
ters), that are fixed-parameter reducible to the following problem, for some constant
h:

– Parameterized QBFSAT: Given a Boolean formula F (with no restriction on
depth), over disjoint variable sets {S1, · · · , Sr}. Does there exist an assignment to
S1 of Hamming weight k1, such that for all assignments to S2 of Hamming weight
k2, etc. (alternating “there exists” and “for all’), F is satisfied?

• See W[1] for the definition of fixed-parameter reducibility.

• Defined in [DF99].

• Contains AW[∗], and is contained in AW[P].

AW[∗]: Alternating W[∗]

• The union of AW[t] over all t.

AW[t]: Alternating W[t]

• Has the same relation to W[t] as PSPACE does to NP.

• Same as AW[SAT], except that the formula F can have depth at most t.

• Defined in [DF99].

• Contained in AW[∗].

βP: Limited-Nondeterminism NP

• βkP is the class of decision problems solvable by a polynomial-time Turing machine that
makes O(logk n) nondeterministic transitions, with the same acceptance mechanism as
NP. Equivalently, the machine receives a purported proof of size O(logk n) that the
answer is “yes.”

• Then βP is the union of βkP over all constant k.

• Defined in [KF84]. See also the survey [GLM96].
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• There exist oracles relative to which basically any consistent inclusion structure among
the βkP’s can be realized [BG98].

• β2P contains LOGNP and LOGSNP.

BH: Boolean Hierarchy Over NP

• The smallest class that contains NP and is closed under union, intersection, and com-
plement.

• The levels are defined as follows:

– BH1 = NP.

– BH2i is the class of languages that are the intersection of a BH2i−1 language with
a coNP language.

– BH2i+1 is the class of languages that are the union of a BH2i language with an NP
language.

Then BH is the union over all i of BHi.

• For more detail see [CGH+88].

• Contained in ∆2P.

• If BH collapses at any level, then PH collapses to Σ3P [Kad88], and indeed to a class
smaller than PNP[log] [HHH98], [RW01].

• See also: QH.

BPE: Bounded-Error Probabilistic E

• Has the same relation to E as BPP does to P.

• EE = BPE if and only if EXP = BPP [IKW01].

BPEE: Bounded-Error Probabilistic EE

• Has the same relation to EE as BPP does to P.

BPHSPACE(f(n)): Bounded-Error Halting Probabilistic f(n)-Space

• The class of decision problems solvable in O(f(n))-space with error probability at most
1/3, by a Turing machine that halts on every input and every random tape setting.

• Contains RHSPACE(f(n)).

• Is contained in DSPACE(f(n)3/2) [SZ95].

BPL: Bounded-Error Probabilistic L
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• Has the same relation to L as BPP does to P. The Turing machine has to halt with
probability 1 on every input.

• Contained in SC [Nis92] and in PL.

BP · NP: Probabilistic NP

• Equals AM.

BPP: Bounded-Error Probabilistic Polynomial-Time

• The class of decision problems solvable by an NP machine such that

1. If the answer is “yes” then at least 2/3 of the computation paths accept.

2. If the answer is “no” then at most 1/3 of the computation paths accept.

(Here all computation paths have the same length.)

• Often identified as the class of feasible problems for a computer with access to a genuine
random-number source.

• Defined in [Gil77].

• Contained in Σ2P ∩ Π2P [Lau83], and indeed in ZPP with an NP oracle.

• If BPP contains NP, then RP = NP [Ko82] and PH is contained in BPP [Zac88].

• If any problem in E requires circuits of size 2Ω(n), then BPP = P [IW97].

• Indeed, any proof that BPP = P requires showing either that NEXP is not in P/poly,
or else that #P requires superpolynomial-size arithmetic circuits [KI02].

• BPP is not known or believed to contain complete problems. [Sip82], [HH86] give
oracles relative to which BPP has no complete problems.

• There exist oracles relative to which P = RP but still P is not equal to BPP [BF99].

• In contrast to the case of P, it is unknown whether BPP collapses to BPTIME(nc) for
some fixed constant c. However, [Bar02] and [FS04] have shown hierarchy theorems
for BPP with a small amount of advice.

• See also: BPPpath.

BPPcc: Communication Complexity BPP

• The analogue of Pcc for bounded-error probabilistic communication complexity.

• Does not equal Pcc, and is not contained in NPcc, because of the EQUALITY problem.
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• Defined in [BFS86].

BPPKT: BPP With Time-Bounded Kolmogorov Complexity Oracle

• BPP with an oracle that, given a string x, returns the minimum over all programs P
that output xi on input i, of the length of P plus the maximum time taken by P on
any input.

• A similar class was defined in [ABK+02], where it was also shown that in BPPKT

one can factor, compute discrete logarithms, and more generally invert any one-way
function on a non-negligible fraction of inputs.

• See also: PK.

BPP-OBDD: Polynomial-Size Bounded-Error Ordered Binary Decision Diagram

• Same as P-OBDD, except that probabilistic transitions are allowed and the OBDD need
only accept with probability at least 2/3.

• Does not contain the integer multiplication problem [AK98].

• Strictly contained in BQP-OBDD [NHK00].

BPPpath: Threshold BPP

• Same as BPP, except that now the computation paths need not all have the same
length.

• Defined in [HHT97], where the following was also shown:

– BPPpath contains MA and PNP[log], and is contained in PP and BPP with an NP
oracle.

– BPPpath is closed under complementation, intersection, and union.

– If BPPpath = BPPpath
BPPpath , then PH collapses to BPPpath.

– If BPPpath contains Σ2P, then PH collapses to BPP to the NP.

• There exists an oracle relative to which BPPpath is not contained in Σ2P [BGM03].

BPQP: Bounded-Error Probabilistic QP

• Equals BPTIME(2O(logk n)); that is, the class of problems solvable in quasipolynomial-
time on a bounded-error machine.

• Defined in [CNS99], where the following was also shown:

– If either (1) #P does not have a subexponential-time bounded-error algorithm,
or (2) EXP does not have subexponential-size circuits, then the BPQP hierarchy
is strict—that is, for all a < b at least 1, BPTIME(2loga n) is strictly contained in

BPTIME(2logb n).
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BPSPACE(f(n)): Bounded-Error Probabilistic f(n)-Space

• The class of decision problems solvable in O(f(n))-space with error probability at most
1/3, by a Turing machine that halts with probability 1 on every input.

• Contains RSPACE(f(n)) and BPHSPACE(f(n)).

BPTIME(f(n)): Bounded-Error Probabilistic f(n)-Time

• Same as BPP, but with f(n)-time (for some constructible function f) rather than
polynomial-time machines.

• Defined in [Gil77].

• BPTIME(nlog n) does not equal BPTIME(2nε
) for any ε > 0 [KV88]. Proving a stronger

time hierarchy theorem for BPTIME is a longstanding open problem; see [BH97] for
details.

• [Bar02] has shown the following:

– If we allow a small number of advice bits (say log n), then there is a strict hierar-
chy: for every d at least 1, BPTIME(nd)/(log n) does not equal BPTIME(nd+1)/(log n).

– In the uniform setting, if BPP has complete problems then BPTIME(nd) does not
equal BPTIME(nd+1).

– BPTIME(n) does not equal NP.

• Subsequently, [FS04] managed to reduce the number of advice bits to only 1: BPTIME(nd)/1 6=
BPTIME(nd+1)/1. They also proved a hierarchy theorem for HeurBPTIME.

• For another bounded-error hierarchy result, see BPQP.

BQNC: Bounded-Error Quantum NC

• The class of decision problems solvable by polylogarithmic-depth quantum circuits with
bounded probability of error. (A uniformity condition may also be imposed.)

• Has the same relation to NC as BQP does to P.

• [CW00] showed that factoring is in ZPP with a BQNC oracle.

• Is incomparable with BPP as far as anyone knows.

• See also: RNC.

BQNP: Alternate Name for QMA
BQP: Bounded-Error Quantum Polynomial-Time

• The class of decision problems solvable in polynomial time by a quantum Turing ma-
chine, with at most 1/3 probability of error.
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• One can equivalently define BQP as the class of decision problems solvable by a uni-
form family of polynomial-size quantum circuits, with at most 1/3 probability of error
[Yao93]. Any universal gate set can be used as a basis; however, a technicality is that
the transition amplitudes must be efficiently computable, since otherwise one could
use them to encode the solutions to hard problems (see [ADH97]).

• BQP is often identified as the class of feasible problems for quantum computers.

• Contains the factoring and discrete logarithm problems [Sho97], the hidden Legendre
symbol problem [vDHI02], the Pell’s equation and principal ideal problems [Hal02],
and some other problems not thought to be in BPP.

• Defined in [BV97], where it is also shown that BQP contains BPP and is contained in
P with a #P oracle.

• BQPBQP = BQP [BV97].

• [ADH97] showed that BQP is contained in PP, and [FR98] showed that BQP is con-
tained in AWPP.

• There exist oracles relative to which:

– BQP does not equal BPP [BV97].

– BQP is not contained in MA [Wat00].

– BQP is not contained in ModpkP for prime p [dGV02].

– NP, and indeed NP ∩ coNP, are not contained in BQP [BBBV97].

– SZK is not contained in BQP [Aar02b].

BQP/ log: BQP With Logarithmic-Size Classical Advice

• Same as BQP/poly except that the advice is O(log n) bits instead of a polynomial
number.

• Strictly contained in BQP/qlog [NY03b].

BQP/poly: BQP With Polynomial-Size Classical Advice

• Can also be defined as the class of problems solvable by a nonuniform family of
polynomial-size quantum circuits, just as P/poly is the class solvable by a nonuniform
family of polynomial-size classical circuits.

• Contains BQP/qlog, and is contained in BQP/qpoly.

• Does not contain ESPACE [NY03b].

BQP/qlog: BQP With Logarithmic-Size Quantum Advice
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• Same as BQP/ log except that the advice is quantum instead of classical.

• Strictly contains BQP/ log [NY03b].

• Contained in BQP/poly.

BQP/qpoly: BQP With Polynomial-Size Quantum Advice

• The class of problems solvable by a BQP machine that receives a quantum state ψn as
advice, which depends only on the input length n.

• As with all other advice classes in the Zoo, the acceptance probability does not need to
be bounded away from 1/2 if the machine is given bad advice (thus, we are discussing
the class that [NY03b] call BQP/ ∗ Qpoly).

• Does not contain EESPACE [NY03b].

• [Aar05] shows the following:

– There exists an oracle relative to which BQP/qpoly does not contain NP.

– BQP/qpoly is contained in PP/poly.

• An oracle separation between BQP/qpoly and BQP/poly is presently unknown. An
unrelativized separation is too much to hope for, since it would imply that PP is not
contained in P/poly.

• Contains BQP/poly.

BQP-OBDD: Polynomial-Size Bounded-Error Quantum Ordered Binary Decision Diagram

• Same as P-OBDD, except that unitary (quantum) transitions are allowed and the
OBDD need only accept with probability at least 2/3.

• Strictly contains BPP-OBDD [NHK00]. BQTIME(f(n)): Bounded-Error Quantum
f(n)-Time

• Same as BQP, but with f(n)-time (for some constructible function f) rather than
polynomial-time machines.

• Defined in [BV97].

BQP/poly: BQP With Polynomial-Size Advice and Truth-Table Queries

• Same as BQP/poly, except that the machine only gets to make nonadaptive queries to
whatever oracle it might have.

• Defined in [NY03a], where it was also shown that P is not contained in BQP/poly
relative to an oracle.
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k-BWBP: Bounded-Width Branching Program

• Alternate name for k-PBP.

C=AC0: Exact-Counting AC0

• The class of problems for which there exists a DiffAC0 function f such that the answer
is “yes” on input x if and only if f(x) = 0.

• Equals TC0 and PAC0 under logspace uniformity [ABL98].

C=L: Exact-Counting L

• Has the same relation to L as C=P does to P.

• C=LC=L = LC=L [ABO99].

C=P: Exact-Counting Polynomial-Time

• The class of decision problems solvable by an NP machine such that the number of
accepting paths exactly equals the number of rejecting paths, if and only if the answer
is “yes.”

• Equals coNQP [FGHP98].

CFL: Context-Free Languages

• Does not equal QCFL [MC00].

• Contained in LOGCFL.

• Strictly contains DCFL [Bra77].

CH: Counting Hierarchy

• The union of the CkP’s over all constant k.

• Contained in PSPACE.

• It is an open problem whether there exists an oracle relative to which CH is infinite, or
even unequal to PSPACE. This is closely related to the problem of whether TC0 = NC1.

Check: Checkable Languages

• The class of problems such that a program P that allegedly solves them can be checked
efficiently. That is, f is in Check if there exists a BPP algorithm C such that for all
programs P and inputs x,

1. If P (y) = f(y) for all inputs y, then CP (x) (C with oracle access to P ) accepts
with probability at least 2/3.
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2. If P (x) is not equal to f(x) then CP (x) accepts with probability at most 1/3.

• Introduced in [BK89], where it was also shown that Check equals frIP ∩ cofrIP.

• Check is contained in NEXP ∩ coNEXP [FRS88].

• [BG94] show that if NEE is not contained in BPEE then NP is not contained in Check.

CkP: kth Level of CH

• Defined as follows:

– C0P = P

– C1P = PP

– C2P = PPPP

– In general, Ck+1P is PP with a CkP oracle

The union of the CkP’s is called the counting hierarchy, CH.

• Defined in [Wag86].

• See [Tor91] or [AW90] for more information.

CLOG: Continuous Logarithmic-Time

• Roughly, the class of continuous problems solvable by an ordinary differential equation
(ODE) with convergence time logarithmic in the size of the input. The vector field of
the ODE is specified by an NC1 formula, with n parameters that represent the input.
The point to which the ODE converges (assuming it does) is the output.

• Defined in [BHSF02], which should be consulted for more details.

• [BHSF02] show that finding the maximum of n integers is in CLOG. Thus, CLOG is
best thought of as the continuous-time analog of NC1, not of DTIME(log n).

• Contained in CP.

CNP: Continuous NP

• A nondeterministic analog of CP.

• Defined in [SF98], which should be consulted for the definition (it has something to do
with strange attractors, I think).

• The authors raise the question of whether CP equals CNP.

coAM: Complement of AM
coC=P: Complement of C=P
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• Equals NQP [FGHP98].

cofrIP: Complement of frIP
Coh: Coherent Languages

• The class of problems L that are efficiently autoreducible, in the sense that given an
input x and access to an oracle for L, a BPP machine can compute L(x) by querying
L only on points that differ from x.

• Defined in [Yao90].

• [BG94] show that, assuming NEE is not contained in BPEE, Coh∩NP is not contained
in any of compNP, Check, or frIP.

coMA: Complement of MA
coModkP: Complement of ModkP
compIP: Competitive IP Proof System

• Same as compNP but for interactive (IP) proofs instead of NP proofs.

• More formally, compIP is the class of decision problems L in IP = PSPACE such that,
if the answer is “yes,” then that can be proven by an interactive protocol between a
BPP verifier and a prover, a BPP machine with access only to an oracle for L.

• Assuming NEE is not contained in BPEE, NP (and indeed NP ∩ Coh) is not contained
in compIP [BG94].

compNP: Competitive NP Proof System

• The class of decision problems L in NP such that, if the answer is “yes,” then a proof
can be constructed in polynomial time given access only to an oracle for L.

• Contains NPC.

• [BG94] show that compNP is contained in frIP, and that assuming NEE is not contained
in BPEE, compNP does not equal NP.

coNE: Complement of NE
coNEXP: Complement of NEXP

• Contained in NEXP/poly (folklore result reported in Fortnow’s weblog: http://fortnow.
com/lance/complog/).

coNL: Complement of NL

• Equals NL [Imm88] [Sze87].

coNP: Complement of NP
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• If NP = coNP, then any inconsistent Boolean formula of size n has a proof of inconsis-
tency of size polynomial in n.

• If NP does not equal coNP, then P does not equal NP. But the other direction is not
known.

• See also: NP ∩ coNP.

• Every problem in coNP has an IP (interactive proof) system, where moreover the prover
can be restricted to BPP#P.

coNPcc: Complement of NPcc

coNP/poly: Complement of NP/poly

• If NP is contained in coNP/poly then PH collapses to S2P
NP [CCHO01].

• NPNPNP(coNP/poly∩NP)

= NPNPNP
[HNOS96]

• Note: At the suggestion of Luis Antuñes, the above specimen of the Complexity Zoo
has been locked in a cage.

coNQP: Complement of NQP

• Equals C=P [FGHP98].

coRE: Complement of RE

• Does not equal RE.

• The problem “given a computable predicate P , is P true of all positive integers?” is
coRE-complete.

coRNC: Complement of RNC

• Contains the problem of whether a bipartite graph has a perfect matching [Kar86].

coRP: Complement of RP

• Defined in [Gil77].

• Contains the problem of testing whether an integer is prime [SS77].

coSL: Complement of SL
coUCC: Complement of UCC

• [Tor00] showed the following problem complete for coUCC under L reductions:

Given a colored graph G with at most two vertices having any given color,
does G have any nontrivial automorphisms?
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coUP: Complement of UP
CP: Continuous P

• Same as CLOG, except that the convergence time can be polynomial rather than log-
arithmic in the input size.

• Defined in [BHSF02] and [SF98].

• Finding a maximum flow, which is P-complete, can be done in CP [BHSF02]. Based on
this the authors argue that “P is contained in CP,” but this seems hard to formalize,
since CP is not a complexity class in the usual sense. They also conjecture that “CP
is contained in P” (i.e. the class of ODE’s they consider can be integrated efficiently
on a standard Turing machine), but this is open.

• Contained in CNP.

CSIZE(f(n)): Circuit Size f(n)

• The class of decision problems solvable by a (nonuniform) family of Boolean circuits
of size O(f(n)).

• So for example, CSIZE(poly(n)) (the union of CSIZE(nk) over all k) equals P/poly.

• Defined in [SM02] among other places.

CSL: Context Sensitive Languages

• The class of languages generated by context-sensitive grammars.

• Equals NSPACE(n) [Kur64].

CZK: Computational Zero-Knowledge

• Same as SZK, except that now the two distributions are merely required to be compu-
tationally indistinguishable by any BPP algorithm; they don’t have to be statistically
close. (The “two distributions” are (1) the distribution over Arthur’s view of his in-
teraction with Merlin, conditioned on Arthur’s random coins, and (2) the distribution
over views that Arthur can simulate without Merlin’s help.)

• Assuming the existence of one-way functions, CZK contains NP [GMW91], and indeed
equals IP = PSPACE [BOGG+90].

• On the other hand, if one-way functions do not exist then CZK = AVBPP [OW93].

• Contains PZK and SZK.

D#P: Alternate Name for P#P

DCFL: Deterministic CFL

30



• The class of languages accepted by deterministic pushdown automata.

• Defined in [GG66], where it was also shown that DCFL is strictly contained in CFL and
strictly contains REG.

∆2P: P With NP Oracle

• A level of PH, the polynomial hierarchy.

• Contains BH.

• There exists an oracle relative to which ∆2P is not contained in PP [Bei94].

• There exists another oracle relative to which ∆2P is contained in P/poly, and indeed
has linear-size circuits [Wil85].

δ-BPP: δ-Semi-Random BPP

• Same as BPP, except that the random bit source is biased as follows. Each bit could
depend on all the previous bits in arbitrarily complicated ways; the only promise is
that the bit is 1 with probability in the range [δ, 1 − δ], conditioned on all previous
bits.

• So clearly 0-BPP = P and 1/2-BPP = BPP.

• It turns out that, for any δ > 0, δ-BPP = BPP [VV85], [Zuc91].

δ-RP: δ-Semi-Random RP

• Same as δ-BPP, but for RP instead of BPP.

• For any δ > 0, δ-RP = RP [VV85].

DET: Determinant

• The class of decision problems reducible in L to the problem of computing the deter-
minant of an n-by-n matrix of n-bit integers.

• Defined in [Coo85].

• Contained in NC2, and contains NL and PL [BCP83].

• Graph isomorphism is hard for DET under L-reductions [Tor00].

DiffAC0: Difference #AC0

• The class of functions from {0, 1}n to integers expressible as the difference of two #AC0

functions.

• Equals GapAC0 under logspace uniformity [ABL98].
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DisNP: Disjoint NP Pairs

• The class of pairs 〈A,B〉, where A and B are NP problems whose sets of “yes” instances
are nonempty and disjoint.

• If there exists an optimal propositional proof system, then DisNP has a complete pair
[Raz94]. On the other hand, there exists an oracle relative to which DisNP does not
have a complete pair [GSSZ03].

• If P does not equal UP, then DisNP contains pairs not separated by any set in P [GS88].
On the other hand, there exists an oracle relative to which P does not equal NP but
still DisNP does not contain any P-inseparable pairs [HS92].

DistNP: Distributional NP

• (also called (NP,P-computable) or RNP)

• A distributional problem consists of a decision problem A, and a probability distribution
µ over problem instances.

• (A, µ) is in DistNP if A is in NP, and µ is P-computable (meaning that its cumulative
density function can be evaluated in polynomial time).

• DistNP has complete problems [Gur87], although unlike for NP this is not immediate.

• Any DistNP-complete problem is also complete for (NP,P-samplable) [IL90].

DP: Difference Polynomial-Time

• DP = BH2, the second level of the Boolean hierarchy.

• Defined in [PY84].

DQP: Dynamical Quantum Polynomial-Time

• The class of decision problems solvable by a BQP machine with oracle access to a
dynamical simulator. When given a polynomial-size quantum circuit, the simulator
returns a sample from the distribution over “classical histories” induced by the circuit.
The simulator can adversarially choose any history distribution that satisfies the ax-
ioms of “symmetry” and “locality” – so that the DQP algorithm has to work for any
distribution satisfying these axioms.

• See [Aar02a] for a full definition.

• There it is also shown that SZK is contained in DQP.

• Contains BQP, and is contained in PP [Aar02a].

• There exists an oracle relative to which DQP does not contain NP [Aar02a].
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DSPACE(f(n)): Deterministic f(n)-Space

• The class of decision problems solvable by a Turing machine in space O(f(n)).

• The Space Hierarchy Theorem: For constructible f(n) greater than log n, DSPACE(f(n))
is strictly contained in DSPACE(f(n) log (f(n))) [HS65].

• For space constructible f(n), strictly contains DTIME(f(n)) [HPV77].

• DSPACE(n) does not equal NP (though we have no idea if one contains the other)!

• See also: NSPACE(f(n)).

DTIME(f(n)): Deterministic f(n)-Time

• The class of decision problems solvable by a Turing machine in time O(f(n)).

• The Time Hierarchy Theorem: For constructible f(n) greater than n, DTIME(f(n)) is
strictly contained in DTIME(f(n) log (f(n)) log log (f(n))) [HS65].

• For any space constructible f(n), DTIME(f(n)) is strictly contained in DSPACE(f(n))
[HPV77].

• Also, DTIME(n) is strictly contained in NTIME(n) [PPST83] (this result does not work
for arbitrary f(n)).

• For any constructible superpolynomial f(n), DTIME(f(n)) with PP oracle is not in
P/poly (see [All96]).

DTISP(t(n), s(n)): Simultaneous t(n)-Time and s(n)-Space

• The class of decision problems solvable by a Turing machine that uses time O(t(n))
and space O(s(n)) simultaneously.

• Thus SC = DTISP(poly, polylog) for example.

• Defined in [Nis92], where it was also shown that for all space-constructible s(n) =
Ω(log n), BPSPACE(s(n)) is contained in DTISP(2O(s(n)), s2(n)).

Dyn-FO: Dynamic FO

• The class of dynamic problems solvable using first-order predicates.

• Basically what this means is that an algorithm maintains some polynomial-size data
structure (say a graph), and receives a sequence of updates (add this edge, delete that
one, etc.). For each update, it computes a new value for the data structure in FO –
that is, for each bit of the data structure,there is an FO function representing the new
value of that bit, which takes as input both the update and the previous value of the
data structure. At the end the algorithm needs to answer some question (i.e. is the
graph connected?).
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• See [HI02] for more information, and a complete problem for Dyn-FO.

• See also Dyn-ThC0.

Dyn-ThC0: Dynamic Threshold Circuits

• Same as Dyn-FO, except that now updates are computed via constant-depth predicates
that have “COUNT” available, in addition to AND, OR, and NOT—so it’s a uniform
version of TC0 rather than of AC0.

• See [HI02] for more information.

E: Exponential Time With Linear Exponent

• Equals DTIME(2O(n)).

• Does not equal NP [Boo72] or PSPACE [Boo74].

• There exists a problem that is complete for E under polynomial-time Turing reductions
but not polynomial-time truth-table reductions [Wat87].

• Problems hard for BPP under Turing reductions have measure 1 in E [AS94].

• It follows that, if the problems complete for E under Turing reductions do not have
measure 1 in E, then BPP does not equal EXP.

IS89 gives an oracle relative to which E = NE but still there is an exponential-time binary
predicate whose corresponding search problem is not in E.

• Contrast with EXP.

EE: Double-Exponential Time With Linear Exponent

• Equals DTIME(22O(n)
).

• EE = BPE if and only if EXP = BPP [IKW01].

• Contained in EEXP and NEE.

EEE: Triple-Exponential Time With Linear Exponent

• Equals DTIME(222O(n)

).

• In contrast to the case of EE, it is not known whether EEE = BPEE implies EE = BPE
[IKW01].

EESPACE: Double-Exponential Space With Linear Exponent

• Equals DSPACE(22O(n)
).
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• Is not contained in BQP/qpoly [NY03b].

EEXP: Double-Exponential Time

• Equals DTIME(22p(n)
) for p(n) a polynomial.

• Contains EE, and is contained in NEEXP.

EH: Exponential-Time Hierarchy

• Has roughly the same relationship to EXP as PH does to P.

• More formally, EH is defined as the union of E, NE, NENP, NE with Σ2P oracle, and so
on.

• See [Har87a] for more information.

• If coNP is contained in AM[polylog], then EH collapses to S2-EXP · PNP [SS04] and
indeed AMEXP [PV04].

• On the other hand, coNE is contained in NE/poly, so perhaps it wouldn’t be so sur-
prising if NE collapses.

• Contained in SEH.

ELEMENTARY:

• Equals the union of DTIME(2n), DTIME(22n
), DTIME(222n

), and so on.

• Contained in PR.

ELkP: Extended Low Hierarchy

• An extension of LkP.

• The class of problems A such that ΣkP
A is contained in Σk−1P

A,NP.

• Defined in [BBS86].

EPTAS: Efficient Polynomial-Time Approximation Scheme

• The class of optimization problems such that, given an instance of length n, we can
find a solution within a factor 1 + ε of the optimum in time f(ε)p(n), where p(n) is a
polynomial and f is arbitrary.

• Contains FPTAS and is contained in PTAS.

• Defined in [CT97], where the following was also shown:

– If FPT = XPuniform then EPTAS = PTAS.
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– If EPTAS = PTAS then FPT = W[P].

– If FPT is strictly contained in W[1], then there is a natural problem that is in
PTAS but not in EPTAS. (See [CT97] for the statement of the problem, since it’s
not that natural.)

k-EQBP: Width-k Polynomial-Time Exact Quantum Branching Programs

• See k-PBP for the definition of a classical branching program.

• A quantum branching program is the natural quantum generalization: we have a quan-
tum state in a Hilbert space of dimension k. Each step t consists of applying a unitary
matrix U (t)(xi): that is, U (t) depends on a single bit xi of the input. (So these are the
quantum analogues of so-called oblivious branching programs.) In the end we measure
to decide whether to accept; there must be zero probability of error.

• Defined in [AMP02], where it was also shown that NC1 is contained in 2-EQBP.

• k-BQBP can be defined similarly.

EQP: Exact Quantum Polynomial-Time

• Same as BQP, except that the quantum algorithm must return the correct answer with
probability 1.

• Defined in [BV97], where it was also shown that there exists an oracle relative to which
EQP is not in NP.

• There is an oracle relative to which EQP is not in ModpkP where p is prime [dGV02].

• P
NP[2k]
‖ is contained in EQP

NP[k]
‖ , where

NP[k]
‖ denotes k nonadaptive oracle queries to

NP (queries that cannot depend on the results of previous queries) [BvD99].

EQTIME(f(n)): Exact Quantum f(n)-Time

• Same as EQP, but with f(n)-time (for some constructible function f) rather than
polynomial-time machines.

• Defined in [BV97].

ESPACE: Exponential Space With Linear Exponent

• Equals DSPACE(2O(n)).

• If E = ESPACE then P = BPP [HY84].

• Indeed if E has nonzero measure in ESPACE then P = BPP [Lut91].

• ESPACE is not contained in P/poly [Kan82].
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• See also: EXPSPACE.

• Is not contained in BQP/poly [NY03b].

ExistsBPP: BPP With Existential Operator

• The class of problems for which there exists a BPP machine M such that, for all inputs
x,

– If the answer is “yes” then there exists a y such that M(x, y) accepts.

– If the answer is “no” then for all y, M(x, y) rejects.

• Contains NP and BPP, and is contained in MA and SBP.

• ExistsBPP seems obviously equal to MA, yet [FFKL93] constructed an oracle relative to
which they’re unequal! Here is the difference: if the answer is “yes,” MA requires only
that there exist a y such that for at least 2/3 of random strings r, M(x, y, r) accepts
(where M is a P predicate). For all other y’s, the proportion of r’s such that M(x, y, r)
accepts can be arbitrary (say, 1/2). For ExistsBPP, by contrast, the probability that
M(x, y) accepts must always be either at most 1/3 or at least 2/3, for all y’s.

ExistsNISZK: NISZK With Existential Operator

• Contains NP and NISZK, and is contained in the third level of PH.

EXP: Exponential Time

• Equals the union of DTIME(2p(n)) over all polynomials p.

• Also equals P with E oracle.

• If L = P then PSPACE = EXP.

• If EXP is in P/poly then EXP = MA [BFL91].

• Problems complete for EXP under many-one reductions have measure 0 in EXP [May94a],
[JL95].

• There exist oracles relative to which

– EXP = NP = ZPP [Hel84],

– EXP = NEXP but still P does not equal NP [Dek76],

– EXP does not equal PSPACE [Dek76].

• [BT04] show the following rather striking result: let A be many-one complete for EXP,
and let S be any set in P of subexponential density. Then A \S is Turing-complete for
EXP.
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EXP/poly: Exponential Time With Polynomial-Size Advice

• The class of decision problems solvable in EXP with the help of a polynomial-length
advice string that depends only on the input length.

• Contains BQP/qpoly [Aar05].

EXPSPACE: Exponential Space

• Equals the union of DSPACE(2p(n)) over all polynomials p(n).

• See also: ESPACE.

• Given a first-order statement about real numbers, involving only addition and compar-
ison (no multiplication), we can decide in EXPSPACE whether it’s true or not [Ber80].

FBQP: Function BQP

• Has the same relation to BQP as FNP does to NP.

• There exists an oracle relative to which PLS is not contained in FBQP [Aar04b].

Few: FewP With Flexible Acceptance Mechanism

• The class of decision problems solvable by an NP machine such that

1. The number of accepting paths A is bounded by a polynomial in the size of the
input x.

2. For some polynomial-time predicate Q, Q(x,A) is true if and only if the answer
is “yes”.

• Also called FewPaths.

• Defined in [CH89].

• Contains FewP, and is contained in PFewP [Köb89] and in SPP [FFK94].

• See also the survey [Tor90].

FewP: NP With Few Witnesses

• The class of decision problems solvable by an NP machine such that

1. If the answer is “no,” then all computation paths reject.

2. If the answer is “yes,’ then at least one path accepts; furthermore,the number of
accepting paths is upper-bounded by a polynomial in n, the size of the input.

• Defined in [AR88].
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• Is contained in ⊕P [CH89].

• There exists an oracle relative to which P, UP, FewP, and NP are all distinct [Rub88].

• Also, there exists an oracle relative to which FewP does not have a Turing-complete
set [HJV93].

• Contained in Few.

• See also the survey [Tor90].

FH: Fourier Hierarchy

• FHk is the class of problems solvable by a uniform family of polynomial-size quantum
circuits, with k levels of Hadamard gates and all other gates preserving the computa-
tional basis. (Conditional phase flip gates are fine, for example.) Thus

– FH0 = P

– FH1 = BPP

– FH2 contains factoring, because of Kitaev’s phase estimation algorithm

• It is an open problem to show that the Fourier hierarchy is infinite relative to an oracle
(that is, FHk is strictly contained in FHk+1).

• Defined in [Shi03].

FNL: Function NL

• Has the same relation to NL as FNP does to NP.

• Defined by [AJ93], who also showed that if NL = UL, then FNL is contained in #L.

FNL/poly: Nonuniform FNL

• Has the same relation to FNL as P/poly does to P.

• Contained in #L/poly [RA00].

FNP: Function NP

• The class of function problems of the following form:

Given an input x and a polynomial-time predicate F (x, y), if there exists a
y satisfying F (x, y) then output any such y, otherwise output “no.”

• FNP generalizes NP, which is defined in terms of decision problems only.

• Actually the word “function” is misleading, since there could be many valid outputs y.
That’s unavoidable, since given a predicate F there’s no “syntactic” criterion ensuring
that y is unique.
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• FP = FNP if and only if P = NP.

• Contains TFNP.

• A basic question about FNP problems is whether they’re self-reducible; that is, whether
they reduce to the corresponding NP decision problems. Although this is true for all
NPC problems, [BG94] shows that if EE does not equal NEE, then there is a problem
in NP such that no corresponding FNP problem can be reduced to it. [BG94] cites
Impagliazzo and Sudan as giving the same conclusion under the assumption that NE
does not equal coNE.

FO(t(n)): First-Order

• The class of decision problems for which a “yes” answer can be expressed by a first-
order logic predicate, with a block of restricted quantifiers repeated t(n) times. See
[Imm98] for a full definition.

• FO(poly(n)) = P (see [Var82] for example).

• FO(poly(n)) is contained in SO-E.

FOLL: First-Order log log n

• The class of decision problems solvable by a uniform family of polynomial-size, unbounded-
fanin, depth O(log log n) circuits with AND, OR, and NOT gates.

• Defined in [BKLM01], where it was also shown that many problems on finite groups
are in FOLL.

• Contains AC0, and is contained in AC1.

• Is not known to be comparable to L, SL, or NL.

FP: Function Polynomial-Time

• Sometimes defined as the class of functions computable in polynomial time by a Turing
machine. (Generalizes P, which is defined in terms of decision problems only.)

• However, if we want to compare FP to FNP, we should instead define it as the class
of FNP problems (that is, predicates P (x, y)) for which there exists a polynomial-time
algorithm that, given x, outputs any y such that P (x, y). That is, there could be more
than one valid output, even though any given algorithm only returns one of them.

• FP = FNP if and only if P = NP.

• If FPNP = FPNP[log] (that is, allowed only a logarithmic number of queries), then P =
NP [Kre88]. The corresponding result for PNP versus PNP[log] is not known, and indeed
fails relative to some oracles (see [Har87b]).
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FPNP[log]: FP With Logarithmically Many Queries To NP

• Given a graph, the problem of outputting the size of its maximum clique is complete
for FPNP[log].

FPR: Fixed-Parameter Randomized

• Has the same relation to FPT as R does to P.

• Defined in [AR01], where it was shown that, if the Resolution proof system is autom-
atizable (that is, if a refutation can always be found in time polynomial in the length
of the shortest refutation), then W[P] is contained in FPR.

FPRAS: Fully Polynomial Randomized Approximation Scheme

• The subclass of #P counting problems whose answer, y, is approximable in the follow-
ing sense. There exists a randomized algorithm that, with probability at least 1 − δ,
approximates y to within an ε multiplicative factor in time polynomial in n (the input
size), 1/ε, and log (1/δ).

• The permanent of a nonnegative matrix is in FPRAS [JSV01].

FPT: Fixed-Parameter Tractable

• The class of decision problems of the form 〈x, k〉, k a parameter, that are solvable in
time f(k)p(|x|), where f is arbitrary and p(n) is a polynomial.

• The basic class of the theory of fixed-parameter tractability, as described by Downey
and Fellows [DF99].

• Contained in FPTnu, W[1], and FPR.

• Contains FPTAS [CC97], as well as FPTsu.

• Contains PTAS unless FPT = W[1] [Baz95].

FPTnu: Fixed-Parameter Tractable (nonuniform)

• Same as FPT except that the algorithm can vary with the parameter k (though its
running time must always be O(p(|x|)), for a fixed polynomial p(n)).

• An alternate view is that a single algorithm can take a polynomial-length advice string,
depending on k.

• Defined in [DF99] (though they did not use our notation).

FPTsu: Fixed-Parameter Tractable (strongly uniform)

• Same as FPT except that f has to be recursive.

41



• Defined in [DF99] (though they did not use our notation).

FPTAS: Fully Polynomial-Time Approximation Scheme

• The subclass of NPO problems that admit an approximation scheme in the following
sense. For any ε > 0, there is an algorithm that is guaranteed to find a solution whose
cost is within a 1 + ε factor of the optimum cost. Furthermore, the running time of
the algorithm is polynomial in n (the size of the problem) and in 1/ε.

• Contained in PTAS.

• Defined in [ACG+99].

• Contained in FPT [CC97].

FQMA: Function QMA

• The class of problems for which the task is to output a quantum certificate for a QMA
problem, when such a certificate exists. Thus, the desired output is a quantum state.

• Defined in [JWB], where it is also shown that state preparation for 3-local Hamiltonians
is FQMA-complete. The authors also observe that, in contrast to the case of FNP versus
NP, there is no obvious reduction of FQMA problems to QMA problems.

frIP: Function-Restricted IP Proof Systems

• The class of problems L that have a decider in the following sense. There exists a BPP
machine D such that for all inputs x,

1. If the answer is “yes” then DL(x) (D with oracle for L) accepts with probability
at least 2/3.

2. If the answer is “no” then DA(x) accepts with probability at most 1/3 for all
oracles A.

• Contains compIP [BG94] and Check [BK89].

• Contained in MIP = NEXP [FRS88].

• Assuming NEE is not contained in BPEE, NP (and indeed NP ∩ Coh) is not contained
in frIP [BG94].

F-TAPE(f(n)): Provable DSPACE(f(n)) For Formal System F

• The class of decision problems that can be proven to be solvable in O(f(n)) space on
a deterministic Turing machine, from the axioms of formal system F .

• Defined in [Har78].
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• See also F-TIME(f(n)). The results about F-TAPE mirror those about F-TIME, but in
some cases are sharper.

F-TIME(f(n)): Provable DTIME(f(n)) For Formal System F

• The class of decision problems that can be proven to be solvable in O(f(n)) time on a
deterministic Turing machine, from the axioms of formal system F .

• Defined in [Har78], where the following was also shown:

– If F-TIME(f(n)) = DTIME(f(n)), then DTIME(f(n)) is strictly contained in DTIME(f(n)g(n))
for any nondecreasing, unbounded, recursive g(n).

– There exist recursive, monotonically increasing f(n) such that F-TIME(f(n)) is
strictly contained in DTIME(f(n)).

See also F-TAPE(f(n)).

GA: Graph Automorphism

• Can be defined as the class of problems polynomial-time Turing reducible to the prob-
lem of deciding whether a given graph has any nontrivial automorphisms.

• Contains P and is contained in GI.

• See [KSTT93] for much more information about GA.

GAN-SPACE(f(n)): Games Against Nature f(n)-Space

• The class of problems decidable by an O(f(n))-space Turing machine with two kinds
of quantifiers: existential and randomized.

• Contains NSPACE(f(n)) and BPSPACE(f(n)), and is contained in AUC-SPACE(f(n)).

• By linear programming, GAN-SPACE(log n) is contained in P.

GapAC0: Gap #AC0

• The class of functions from {0, 1}n to integers computable by constant-depth, polynomial-
size arithmetic circuits with addition and multiplication gates and the constants 0, 1,
and −1. (The only difference from #AC0 is the ability to subtract, using the constant
−1.)

• Equals DiffAC0 under logspace uniformity [ABL98].

GapL: Gap Logarithmic-Space

• Has the same relation to L as GapP does to P.

GapP: Gap Polynomial-Time
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• The class of functions f(x) such that for some NP machine, f(x) is the number of
accepting paths minus the number of rejecting paths.

• Equivalently, the closure of the #P functions under subtraction.

• Defined in [FFK94] and independently [Gup95].

GC(s(n), C): Guess and Check

• The class of decision problems for which a “yes” answer can be verified by

1. guessing s(n) bits, then

2. verifying the answer in complexity class C.

For example, GC(p(n),P) = NP where p(n) is a polynomial.

• Defined in [CC93].

• Umans [Uma98] has shown that given a DNF expression φ, the Shortest Implicant
problem (is there a conjunction of at most k negated or non-negated literals that
implies φ?) is GC(log2 n, coNP)-complete.

GCSL: Growing CSL

• The class of languages generated by context-sensitive grammars in which the right-hand
side of each transformation is strictly longer than the left-hand side.

• Defined in [DW86].

GI: Graph Isomorphism

• Can be defined as the class of problems polynomial-time Turing reducible to the prob-
lem of deciding whether two graphs are isomorphic.

• Contains GA and is contained in NP and in coAM (indeed in SZK). So in particular, if
graph isomorphism is NP-complete (that is, if GI = NP), then PH collapses.

• See [KSTT93] for much more information about GI.

GPCD(r(n), q(n)): Generalized Probabilistically Checkable Debate

• Same as PCD(r(n), q(n)), except that now the verifier is allowed nonadaptively to
query O(q(n)) rounds of the debate, with no restriction on the number of bits it looks
at within each round.

• Defined in [CFLS93], who also showed that PCD(log n, q(n)) = GPCD(log n, q(n)) for
every q(n).

G[t]: Stratification of Fixed-Parameter Tractable Problems
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• (Basically) the class of decision problems of the form 〈x, k〉 (k a parameter), that are
solvable by a parameterized family of circuits with unbounded fanin and depth t. A
uniformity condition may also be imposed.

• Defined in [DF99], which should be consulted for the full definition.

• Uniform G[P] (i.e. with no restriction on depth) is equal to FPT.

HeurBPP: Heuristic BPP

• The class of problems for which a 1− 1/poly(n) fraction of instances are solvable by a
BPP machine.

• [FS04] showed a strict hierarchy theorem for HeurBPP; thus, HeurBPP does not equal
HeurBPTIME(nc) for any fixed c.

HeurBPTIME(f(n)): Heuristic BPTIME(f(n))

• The class of problems for which a 1− 1/poly(n) fraction of instances are solvable by a
BPTIME(f(n)) machine.

• Thus HeurBPP is the union of HeurBPTIME(nc) over all c.

HkP: High Hierarchy In NP

• The class of problems A ∈ NP such that ΣkP
A = Σk+1P; that is, adding A as an oracle

increases the power of the kth level of the polynomial hierarchy by a maximum amount.

• For all k, Hk is contained in Hk+1.

• Defined in [Sch83].

• See also LkP.

HVSZK: Honest-Verifier SZK

• The class of decision problems that have SZK protocols assuming an honest verifier (i.e.
one who doesn’t try to learn more about the problem by deviating from the protocol).

• Equals SZK [Oka96].

IC[log, poly]: Logarithmic Instance Complexity, Polynomial Time

• The class of decision problems such that, for every n-bit string x, there exists a program
A of size O(log n) that, given x as input, “correctly decides” the answer on x in time
polynomial in n. This means:

– There exists a polynomial p such that for any input y, A returns either “yes”,
“no”, or “I don’t know” in time p(|y|).
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– Whenever A returns “yes” or “no”, it is correct.

– A returns either “yes” or “no” on x.

• Defined in [OKSW94]; see also [LV97].

• If NP is contained in IC[log, poly], then P = NP [OKSW94]. Indeed, any self-reducible
problem in IC[log, poly] is also in P.

• Strictly contains P/ log, and is strictly contained in P/poly.

IP: Interactive Proof

• The class of decision problems for which a “yes” answer can be verified by an interactive
proof. Here a BPP (i.e. probabilistic polynomial-time) verifier sends messages back
and forth with an all-powerful prover. They can have polynomially many rounds of
interaction. Given the verifier’s algorithm, at the end:

1. If the answer is “yes,” the prover must be able to behave in such a way that
the verifier accepts with probability at least 2/3 (over the choice of the verifier’s
random bits).

2. If the answer is “no,” then however the prover behaves the verifier must reject
with probability at least 2/3.

• IP contains PH [LFKN90], and indeed (this was discovered only a few days later) equals
PSPACE [Sha90].

• See also: MIP, QIP, MA, AM.

IPP: Unbounded IP

• Same as IP, except that if the answer is “yes,” there need only be a prover strategy
that causes the verifier to accept with probability greater than 1/2, while if the answer
is “no,” then for all prover strategies the verifier accepts with probability less than 1/2.

• Defined in [CCG+94], where it was also shown that IPP = PSPACE relative to all
oracles. Since IP is strictly contained in PSPACE relative to a random oracle, the
authors interpreted this as evidence against the Random Oracle Hypothesis (a slight
change in definition can cause the behavior of a class relative to a random oracle to
change drastically).

• See also: PPSPACE.

L: Logarithmic Space

• The class of decision problems solvable by a Turing machine restricted to use an amount
of memory logarithmic in the size of the input, n. (The input itself is not counted as
part of the memory.)
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• L contains NC1 [Bor77], and is contained in generalizations including NL, L/poly, SL,
RL, ⊕L, and ModkL.

• [Rei04] has shown that L = SL. In other words, undirected graph connectivity is
solvable in deterministic logarithmic space.

LIN: Linear Time

• The class of decision problems solvable by a deterministic Turing machine in linear
time.

• Contained in NLIN.

LkP: Low Hierarchy In NP

• The class of problems A such that ΣkP
A = ΣkP; that is, adding A as an oracle does

not increase the power of the kth level of the polynomial hierarchy.

• L1P = NP ∩ coNP.

• For all k, Lk is contained in Lk+1 and in NP.

• Defined in [Sch83].

• See also HkP.

LOGCFL: Logarithmically Reducible to CFL

• The class of decision problems reducible in L to the problem of deciding membership
in a context-free language.

• Equivalently, LOGCFL is the class of decision problems solvable by a uniform family of
AC1 circuits, in which no AND gate has fan-in exceeding 2 (see e.g. [Joh90], p. 137).

• LOGCFL is closed under complement [BCD+89].

• Contains NL [Sud78].

LogFew: Logspace-Bounded Few

• The class of decision problems solvable by an NL machine such that

1. The number of accepting paths on input x is f(x), and

2. The answer is “yes’ if and only if R(x, f(x)) = 1, where R is some predicate
computable in L.

• Defined in [BDHM92], where it was also shown that LogFew is contained in ModkL for
all k > 1.

47



LogFewNL: Logspace-Bounded FewP

• Same as FewP but for logspace-bounded (i.e. NL) machines.

• Defined in [BDHM92], where it was also shown that LogFewNL is contained in ModZkL
for all k > 1.

LOGNP: Logarithmically-Restricted NP

• LOGNP0 is the class of decision problems expressible in logical form as

The set of I for which there exists a subset S = {s1, · · · , slog n} of {1, · · · , n}
of size log n, such that for all x there exists y such that for all j, a quantifier-
free first-order predicate ϕ(I, sj, x, y, j) holds. (Here x and y are tuples of a
constant number of variables.)

Then LOGNP is the class of decision problems reducible in polynomial-time to a prob-
lem in LOGNP0.

• Defined in [PY96], where it was also shown that the following problem is complete for
LOGNP under many-one reductions:

Vapnik-Chernonenkis (V-C) Dimension. Given a family F of subsets of a
set U , find a subset of S ⊆ U of maximum cardinality, such that every subset
of S can be written as the intersection of S with some set in F .

• Contains LOGSNP, and is contained in βP (indeed β2P).

LOGSNP: Logarithmically-Restricted SNP

• LOGSNP0 is the class of decision problems expressible in logical form as

The set of I for which there exists a subset S = {s1, · · · , slog n} of {1, · · · , n}
of size log n, such that for all x there exists j such that a quantifier-free first-
order predicate ϕ(I, sj, x, j) holds. (Here x is a tuple of a constant number
of variables.)

Then LOGSNP is the class of decision problems reducible in polynomial-time to a
problem in LOGSNP0.

• Defined in [PY96].

• Contained in LOGNP, as well as QP (actually DTIME(nlog n)).

• If P = LOGSNP, then for every constructible f(n) > n, NTIME(f(n)) is contained in

DTIME(g(n)
√

(g(n))), where g(n) = O(f(n) log f(n)) [FK97].

L/poly: Nonuniform Logarithmic Space
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• Has the same relation to L as P/poly does to P.

• Equals PBP [Cob66].

• Contains SL [AKL+79].

LWPP: Length-Dependent Wide PP

• The class of decision problems solvable by an NP machine such that

1. If the answer is “no,” then the number of accepting computation paths exactly
equals the number of rejecting paths.

2. If the answer is “yes,” then these numbers differ by a function f(|x|) computable
in polynomial time (i.e. FP). Here |x| is the length of the input x.

• Defined in [FFK94], where it was also shown that LWPP is low for PP and C=P. (I.e.
adding LWPP as an oracle does not increase the power of these classes.)

• Contained in WPP and AWPP.

• Contains SPP.

• Also, contains the graph isomorphism problem [KSTT92].

• Contains a whole litter of problems for solvable black-box groups: group intersection,
group factorization, coset intersection, and double-coset membership [Vin04a]

MA: Merlin-Arthur

• The class of decision problems solvable by a Merlin-Arthur protocol, which goes as fol-
lows. Merlin, who has unbounded computational resources, sends Arthur a polynomial-
size purported proof that the answer to the problem is “yes.” Arthur must verify the
proof in BPP (i.e. probabilistic polynomial-time), so that

1. If the answer is “yes,” then there exists a proof such that Arthur accepts with
probability at least 2/3.

2. If the answer is “no,” then for all proofs Arthur accepts with probability at most
1/3.

• Contains NP and ExistsBPP, and is contained in AM and in QMA.

• Also contained in Σ2P ∩ Σ2P.

• There exists an oracle relative to which BQP is not in MA [Wat00].

• Equals NP under a derandomization assumption.

• See also: MA-E, MA-EXP.
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MA′: Sparse MA

• The subclass of MA such that for each input size n, there is a sparse set Sn that Merlin’s
proof string always belongs to (no matter what the input is).

• Defined in [KSTT93], where it is also observed that if graph isomorphism is in P/poly,
then the complement of graph isomorphism is in MA′.

MAC0: Majority of AC0

• Same as AC0, except now we’re allowed a single unbounded-fanin majority gate at the
root.

• Defined in [JKS02].

• MAC0 is strictly contained in TC0 [ABFR94].

MA-E: Exponential-Time MA With Linear Exponent

• Same as MA, except now Arthur is E instead of polynomial-time.

• If MA-E = NEE then MA = NEXP ∩ coNEXP [IKW01].

MA-EXP: Exponential-Time MA

• Same as MA, except now Arthur is EXP instead of polynomial-time, and the message
from Merlin can be exponentially long.

• There is a problem in MA-EXP that does not have polynomial-size circuits [BFT98].
On the other hand, there is an oracle relative to which every problem in MA-EXP does
have polynomial-size circuits.

• [MVW99] considered the best circuit lower bound obtainable for a problem in MA-EXP,
using current techniques. They found that this bound is half-exponential : i.e. a
function f such that f(f(n)) = 2n. Such functions exist, but are not expressible using
standard asymptotic notation.

mAL: Monotone AL

• Defined in [GS90]. Equals mP by definition.

MaxNP: Maximization NP

• Has the same relation to NP as MaxSNP does to SNP.

• Contains MaxPB.

• The closure of MaxNP under PTAS reduction is APX [KMSV99], [CT94].

MaxPB: MaxNP Polynomially Bounded
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• The subclass of MaxNP problems for which the cost function is guaranteed always to
be bounded by a polynomial.

• MinPB can be defined similarly.

• Defined in [KT94].

• The closure of MaxPB under PTAS reductions equals NPOPB [CVKT99].

MaxSNP: Maximization SNP

• The class of optimization problems reducible by an “L-reduction” to a problem in
MaxSNP0. (Note: “L” stands for linear – this is not the same as an L reduction! For
more details see [PY88].)

• Defined in [PY88], where the following was also shown:

– Max3SAT is MaxSNP-complete. (Max3SAT is the problem of finding an assign-
ment that maximizes the number of satisfied clauses in a CNF formula with at
most 3 literals per clause.)

– Any problem in MaxSNP can be approximated to within a fixed ratio.

• The closure of MaxSNP under PTAS reduction is APX [KMSV99], [CT94].

MaxSNP0:

• The class of function problems expressible as “find a relation such that the set of
k-tuples for which a given SNP predicate holds has maximum cardinality.”

• For example (see [Pap94a]), the Max-Cut problem can be expressed as follows:

Given a graph G, find a subset S of vertices that maximizes the number of
pairs (u, v) of vertices such that u ∈ S, and v 6∈ S, and G has an edge from
u to v.

• Defined in [PY88].

comNL: Complement of mNL

• Defined in [GS90], where it was also shown that comNL does not equal mNL.

• See also: mL.

MinPB: MinNP Polynomially Bounded

• Same as MaxPB but for minimization instead of maximization problems.

MIP: Multi-Prover Interactive Proof
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• Same as IP, except that now the verifier can exchange messages with many provers,
not just one. The provers cannot communicate with each other during the execution
of the protocol, so the verifier can “cross-check” their assertions (as with suspects in
separate interrogation rooms).

• Defined in [BOGKW88].

• Let MIP[k] be the class of decision problems for which a “yes” answer can be verified
with k provers. Then for all k > 2, MIP[k] = MIP[2] = MIP [BOGKW88].

• MIP equals NEXP [BFL91].

MIP∗[2, 1]: 2-Prover, 1-Round MIP With Quantum Provers

• Same as MIP[2], except that now only one round is allowed, and the two provers can
share arbitrarily many entangled qubits. The verifier is classical, as are all messages
between the provers and verifier.

• Defined in [CHTW04], where evidence was given suggesting that MIP∗ does not “ob-
viously” equal NEXP. By contrast, MIP[2, 1], the corresponding class without entan-
glement, equals NEXP.

• Indeed, the relationship between MIP∗ and MIP = NEXP is completely unknown—
either could contain the other, or they could be incomparable.

• It is also unknown whether increasing the number of provers or rounds changes MIP∗[2, 1].

• Contains XOR-MIP∗[2, 1]∗[2, 1].

MIPEXP: Exponential-Time Multi-Prover Interactive Proof

• The exponential-time analogue of MIP.

• In the unrelativized world, equals NEEXP.

• There exists an oracle relative to which MIPEXP equals the intersection of P/poly, PNP,
and ⊕P [BFT98].

(Mk)P: Acceptance Mechanism by Monoid Mk

• A monoid is a set with an associative operation and an identity element (so it’s like a
group, except that it need not have inverses).

• Then (Mk)P is the class of decision problems solvable by an NP machine with the
following acceptance mechanism. The ith computation path (under some lexicographic
ordering) outputs an element mi of Mk. Then the machine accepts if and only if
m1m2 · · ·ms is the identity (where s is the number of paths).
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• Defined by Hertrampf [Her97], who also showed the following (in the special case M is
a group):

– IfG is any nonsolvable group (for example S5, the symmetric group on 5 elements),
then (G)P = PSPACE.

– (Zk)P = coModkP, where Zk is the cyclic group on k elements.

– If |G| = k, then (G)P contains coModkP.

mL: Monotone L

• The class of decision problems solvable by a family of monotone log-width polynomial-
size leveled circuits. (A leveled circuit is one where gates on each level can depend only
on the level immediately below it.)

• Defined in [GS90], who raise as an open problem to define a uniform version of mL.

• Strictly contains mNC1 [GS91].

• Contained in (nonuniform versions of) mNL and comNL.

mNC1: Monotone NC1

• The class of decision problems solvable by a family of monotone NC1 circuits (i.e. AND
and OR gates only).

• A uniformity condition could also be imposed.

• Defined in [GS90].

• Strictly contained in mNL [KW88], and indeed in mL [GS91].

• Strictly contains mTC0 [Yao89].

mNL: Monotone NL

• See mP for the definition of a monotone nondeterministic Turing machine, due to
[GS90].

• mNL is the class of decision problems solvable by a monotone nondeterministic log-
space Turing machine.

• mNL does not equal comNL [GS90], in contrast to the case for NL and coNL.

• Also, mNL strictly contains mNC1 [KW88].

• See also: mL.

mNP: Monotone NP
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• The class of decision problems for which a “yes” answer can be verified in mP (that is,
monotone polynomial-time). The monotonicity requirement applies only to the input
bits, not to the bits that are guessed nondeterministically. So, in the corresponding
circuit, one can have NOT gates so long as they depend only on the nondeterministic
guess bits.

• Defined in [GS90], where it was also shown that mNP is “trivial”: that is, it contains
exactly the monotone problems in NP.

• Strictly contains mP [Raz85b].

ModkL: Mod-k L

• Has the same relation to L as ModkP does to P.

• For any prime k, ModkL contains SL [KW93].

• For any prime k, ModkL
ModkL = ModkL [HRV00].

• For any k > 1, contains LogFew [BDHM92].

ModkP: Mod-k Polynomial-Time

• For any k > 1: The class of decision problems solvable by an NP machine such that
the number of accepting paths is divisible by k, if and only if the answer is “no.”

• Mod2P is more commonly known as ⊕P “parity-P.”

• For every k, ModkP contains graph isomorphism [AK02].

• Equals coModkP (that is, closed under complement) whenever k is a prime power
[BG92].

• Defined in [CH89], [Her90].

• For prime p, there exists an oracle relative to which ModpkP does not contain EQP
[dGV02].

ModP: ModkP With Arbitrary k

• The class of decision problems solvable by a ModkP machine where k can varydepending
on the input. The only requirement is that 0k be computable in polynomial time.

• Defined in [KT96], where it was also shown that ModP is contained in AmpMP.

ModZkL: Restricted ModkL

• The class of decision problems solvable by a nondeterministic logspace Turing machine,
such that
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1. If the answer is “yes,” then the number of accepting paths is not congruent to
0 mod k.

2. If the answer is “no,” then there are no accepting paths.

Defined in [BDHM92], where it was also shown that ModZkL contains LogFewNL for
all k > 1.

• Contained in ModkL and in NL.

mP: Monotone P

• The definition of this class, due to [GS90], is notobvious. First, a monotone nondeter-
ministic Turing machine is one such that, whenever it can make a transition with a
0 on its inputtape, it can also make that same transition with a 1 on its input tape.
(This restriction does not apply to the work tape.) A monotone alternating Turing
machine is subject to the restriction that it can only reference an input bit x by,“there
exists a z at most x,” or “for all z at least x.”

• Then applying the result of [CKS81] that P = AL, mP is defined to be mAL: the class
of decision problems solvable by a monotone alternating log-space Turing machine.

• Actually there’s a caveat: A monotone Turing machine or circuit can first negate the
entire input, then perform a monotone computation. That way it becomes meaningful
to talk about whether a monotone complexity class is closed under complement.

• Strictly contained in mNP [Raz85b].

• Deciding whether a bipartite graph has a perfect matching, despite being both a mono-
tone problem and in P, requires monotone circuits of superpolynomial size [Raz85a].
Letting MONO be the class of monotone problems,it follows that mP is strictly con-
tained in MONO ∩ P.

• See also: mNC1, mL, mNL,comNL.

MP: Middle-Bit P

• The class of decision problems such that for some #P function f , the answer on input
x is “yes’ if and only if the middle bit of f(x) is 1.

• Defined in [GKR+95].

• Contains AmpMP.

• MP with ModP oracle equals MP with #P oracle [KT96].

MPC: Monotone Planar Circuits
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• The class of decision problems solvable by a family of monotone stratified planar circuits
(a uniformity condition may also be imposed).

• Such a circuit can contain only AND and OR gates of bounded fan-in. It must be
embeddable in the plane with no wires crossing. Furthermore, the input bits can only
be accessed at the bottom level, where they are listed in order (x1, · · · , xn).

• Defined in [DC89].

• [BLMS99] showed that we can assume without loss of generality that the circuit has
width n and depth n3.

mP/poly: Monotone P/poly

• The class of decision problems solvable by a nonuniform family of polynomial-size
Boolean circuits with only AND and OR gates, no NOT gates. (Or rather, following
the definitions of [GS90], the entire input can be negated as long as there are no other
negations.)

• More straightforward to define than mP.

mTC0: Monotone TC0

• The class of decision problems solvable by a family of monotone TC0 circuits (i.e.constant-
depth, polynomial-size, AND, OR, and threshold gates, but no NOT gates).

• A uniformity condition could also be imposed.

• Defined in [GS90].

• Strictly contained in mNC1 [Yao89].

NAuxPDAp: Nondeterministic Auxiliary Pushdown Automata

• The class of problems solvable by nondeterministic logarithmic-space and polynomial-
time Turing machines with auxiliary pushdown.

• Equals LOGCFL [Sud78].

NC: Nick’s Class

• (Named in honor of Nick Pippenger.)

• NCi is the class of decision problems solvable by a uniform family of Boolean circuits,
with polynomial size, depth O(logi (n)), and fan-in 2.

• Then NC is the union of NCi over all nonnegative i.

• Also, NC equals the union of PT/WK(logk n, nk) over all constants k.
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• NCi is contained in ACi; thus, NC = AC.

• Contains NL.

• Generalizations include RNC and BQNC.

• [IN96] construct a candidate pseudorandom generator in NC based on the subset sum
problem.

• For a random oracle A, NCA
i is strictly contained in NCA

i+1, and NCA is strictly contained
in PA, with probability 1 [Mil92].

NC0: Level 0 of NC

• By definition, a decision problem in NC0 can depend on only a constant number of
bits of the input. Thus, NC0 usually refers to functions computable by constant-depth,
bounded fan-in circuits.

• There is a family of permutations computable by a uniform family of NC0 circuits that
isP-hard to invert [H̊as88].

• Recently [AIK04] solved a longstanding open problem by showing that there exist
pseudorandom generators and one-way functions in NC0, based on (for example) the
hardness of factoring. Specifically, in these generators every bit of the output depends
on only 4 input bits. Whether the dependence can be reduced to 3 bits under the
same cryptographic assumptions is open, but [AIK04] have some partial results in this
direction. It is known that the dependence cannot be reduced to 2 bits.

NC1: Level 1 of NC

• See NC for definition.

• [KV94] give a family of functions that is computable in NC1, but not efficiently learnable
unless there exists an efficient algorithm for factoring Blum integers.

• Was shown to equal 5-PBP [Bar89]. On the other hand, width 5 is necessary unless
NC1 = ACC0 [BT88].

• As an application of this result, NC1 can be simulated on a quantum computer with
three qubits, one initialized to a pure state and the remaining two in the maximally
mixed state [ASV00].Surprisingly, [AMP02] showed that only a single qubit is needed
to simulate NC1 - i.e. that NC1 is contained in 2-EQBP. (Complex amplitudes are
needed for this result.)

• Is contained in L [Bor77].

• Contains TC0.
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• NC1 contains the integer division problem [BCH86], even if an L-uniformity condition
is imposed [CDL01].

NC2: Level 2 of NC

• See NC for definition.

• Contains NL.

NE: Nondeterministic E

• Nondeterministic exponential time with linear exponent (i.e. NTIME(2O(n))).

• PNE = NPNE [Hem89].

• Contained in NEXP.

NE/poly: Nonuniform NE

• Contains coNE, just as NEXP/poly contains coNEXP.

NEE: Nondeterministic EE

• Nondeterministic double-exponential time with linear exponent (i.e.NTIME(22O(n)
)).

• If MA-E = NEE then MA = NEXP ∩ coNEXP [IKW01].

• Contained in NEEXP.

NEEE: Nondeterministic EEE

• Nondeterministic triple-exponential time with linear exponent.

NEEXP: Nondeterministic EEXP

• Nondeterministic double-exponential time (i.e. NTIME(22p(n)
) for p(n) a polynomial).

• Equals MIPEXP.

NEXP: Nondeterministic EXP

• Nondeterministic exponential time (i.e. NTIME(2p(n)) for p a polynomial).

• Equals MIP [BFL91].

• NEXP is in P/poly if and only if NEXP = MA [IKW01].

• [KI02] show the following:

– If P = RP, then NEXP is not computable by polynomial-size arithmetic circuits.
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– If P = BPP and if checking whether a Boolean circuit computes a function that
is close to a low-degree polynomial over a finite field is in P, then NEXP is not in
P/poly.

– If NEXP is in P/poly, then matrix permanent is NEXP-complete.

Does not equal NP [SFM78].

• Does not equal EXP if and only if there is a sparse set in NP that is not in P.

• There exists an oracle relative to which EXP = NEXP but still P does not equal NP
[Dek76].

• The theory of reals with addition (see EXPSPACE) is hard for NEXP [FR74].

NEXP/poly: Nonuniform NEXP

• Contains coNEXP (folklore result reported in Fortnow’s weblog: http://fortnow.

com/lance/complog/.

NIQSZK: Non-Interactive QSZK

• Has the same relation to QSZK as NISZK does to SZK.

• Defined in [Kob02],where it was also shown that the following promise problem is
complete for NIQSZK. Given a quantum circuit, we are promised that the state it
prepares (when run on the all-0 state, and tracing out non-output qubits) has trace
distance either at most 1/3 or at least 2/3 from the maximally mixed state. The
problem is to output “no” in the former case and “yes” in the latter.

• NIQPZK can be defined similarly.

NISZK: Non-Interactive SZK

• Defined in [SCPY98].

• Contained in SZK.

• [GSV99] showed the following:

– If SZK does not equal BPP then NISZK does not equal BPP.

– NISZK equals SZK if and only if NISZK is closed under complement.

– NISZK has natural complete promise problems:

∗ Statistical Distance from Uniform (SDU): Given a circuit, consider the dis-
tribution over outputs when the circuit is given a uniformly random n-bit
string. We’re promised that the trace distance between this distribution and
the uniform distribution is either at most 1/3 or at least 2/3. The problem
is to output “yes” in the former case and “no” in the latter.
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∗ Entropy Approximation (EA): Now we’re promised that the entropy of the
circuit’s output distribution is either at least k + 1 or at most k − 1. The
problem is to output “yes” in the former case and “no” in the latter.

• NIPZK can be defined similarly.

NISZKh: NISZK With Limited Help

• The non-interactive analogue of SZKh.

• Defined in [BOG03], where the following was also shown:

– NISZKh contains NISZK and is contained in SZK.

– Graph Isomorphism is in NISZKh.

– The following problem is complete for NISZKh:

Given two functions from {0, 1}n to {0, 1}n (specified by circuits), decide
whether their ranges are almost equal or almost disjoint, given that one
of these is the case.

– The quantum lower bound for the set comparison problem in [Aar02b] implies an
oracle relative to which NISZKh is not in BQP.

NL: Nondeterministic Logarithmic-Space

• Has the same relation to L as NP does to P.

• In a breakthrough result, was shown to equal coNL [Imm88] [Sze87]. (Though contrast
to mNL.)

• Is contained in LOGCFL [Sud78], as well as NC2.

• Is contained in UL/poly [RA00].

• Deciding whether a bipartite graph has a perfect matching is hard for NL [KUW86].

NL/poly: Nonuniform NL

• Has the same relation to NL as P/poly does to P.

• Is contained in ⊕L/poly [GL96], as well as SAC1.

• Equals UL/poly [RA00].

NLOG: NL With Nondeterministic Oracle Tape

• Same as NL – but if there’s an oracle, then NLOG can make queries nondeterministically
on a polynomial-size, one-way oracle tape. (NL, by contrast, can use nondeterministic
transitions only on the work tape; oracle queries have to be deterministic.)
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• See [LL76] or [HCKM88] for more information.

• Although NLOG is contained in P, there exists an oracle relative to which that is not
the case. This illustrates that care is needed when defining oracle access mechanisms.

NLIN: Nondeterministic LIN

• Has the same relation to LIN as NP does to P.

NP: Nondeterministic Polynomial-Time

• The class of dashed hopes and idle dreams.

• More formally: an “NP machine” is a nondeterministic polynomial-time Turing ma-
chine.

• Then NP is the class of decision problems solvable by an NP machine such that

1. If the answer is “yes,” at least one computation path accepts.

2. If the answer is “no,” all computation paths reject.

• Equivalently, NP is the class of decision problems such that,if the answer is “yes,” then
there is a proof of this fact, of length polynomial in the size of the input, that can be
verified in P (i.e. by a deterministic polynomial-time algorithm). On the other hand,if
the answer is “no,” then the algorithm must declare invalid any purported proof that
the answer is “yes.”

• For example, the SAT problem is to decide whether a given Boolean formula has any
satisfying truth assignments. SAT is in NP, since a “yes” answer can be proved by just
exhibiting a satisfying assignment.

• A decision problem is NP-complete if (1) it is in NP, and (2) any problem in NP can
be reduced to it (under some notion of reduction). The class of NP-complete problems
is sometimes called NPC.

• That NP-complete problems exist is immediate from the definition. The seminal result
of Cook [Coo71b], Karp [Kar72], and Levin [Lev73] is that many natural problems
(that have nothing to do with Turing machines) are NP-complete.

• The first such problem to be shown NP-complete was SAT [Coo71b]. Other classic
NP-complete problems include:

– 3-Colorability: Given a graph, can each vertex be colored red, green, or blue so
that no two neighboring vertices have the same color?

– Hamiltonian Cycle: Given a graph, is there a cycle that visits each vertex exactly
once?

61



– Traveling Salesperson: Given a set of n cities, and the distance between each pair
of cities, is there a route that visits each city exactly once before returning to the
starting city, and has length at most T?

– Maximum Clique: Given a graph,are there k vertices all of which are neighbors
of each other?

– Subset Sum: Given a collection of integers, is there a subset of the integers that
sums to exactly X?

• For many, many more NP-complete problems, see [GJ79].

• NP contains P. I’ve discovered a marvelous proof that NP and P are unequal, but
this web page is too small to contain it. Too bad, since otherwise I’d be eligible for
$1,000,000 [Ins00].

• There exists an oracle relative to which P and NP are unequal [BGS75]. Indeed, P and
NP are unequal relative to a random oracle with probability 1 [BG81] (see [AFvM01]
for a novel take on this result). Though randomoracle results are not always indicative
about the unrelativized case [CCG+94].

• There even exists an oracle relative to which the P versus NP problem is outside the
usual axiomsof set theory [HH76].

• If we restrict to monotone classes, mP is strictly contained in mNP [Raz85b].

• Perhaps the most important insight anyone has had into P versus NP is to be found in
[RR97]. There the authors show that no “natural proof” can separate P from NP (or
more precisely, place NP outside of P/poly), unless secure pseudorandom generators do
not exist. A proof is “natural” if it satisfies two conditions called constructivity and
largeness ; essentially all lower bound techniques known to date satisfy these conditions.
To obtain unnatural proof techniques, some people suspect we need to relate P versus
NP to heavy-duty “traditional” mathematics, for instance algebraic geometry. See
[MS02] (and the survey article [Reg02]) for a development of this point of view.

• For more on P versus NP (circa 1992) see [Sip92]. For an opinion poll, see [Gas02].

• If P equals NP, then NP equals its complement coNP. Whether NP equals coNP is also
open. NP and coNP can be extended to the polynomial hierarchy PH.

• The set of decision problems in NP, but not in P or NPC, is sometimes called NPI. If
P does not equal NP then NPI is nonempty [Lad75].

• Probabilistic generalizations of NP include MA and AM. If NP is in coAM (or BPP)
then PH collapses to Σ2P [BHZ87].

• PH also collapses to Σ2P if NP is in P/poly [KL82].
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• There exist oracles relative to which NP is not in BQP [BBBV97].

• An alternate characterization is NP = PCP(log n,O(1)) [ALM+98].

• Also, [Fag74] gave a logical characterization of NP,which leads to the subclass SNP.

NPC: NP-Complete

• The class of decision problems such that (1) they’re in NP and (2) every problem in
NP is reducible to them (under some notion of reduction). In other words, the hardest
problems in NP.

• Two notions of reduction from problem A to problem B are usually considered:

1. Karp or many-one reductions. Here a polynomial-time algorithm is given as input
an instance of problem A, and must produce as output an instance of problem B.

2. Turing reductions. Here the algorithm for problem B can make arbitrarily many
calls to an oracle for problem A.

Some examples of NP-complete problems are discussed under the entry for NP.

• The classic reference on NPC is [GJ79].

• Unless P = NP, NPC does not containany sparse problems: that is, problems such
that the number of “yes” instances of size n is upper-bounded by a polynomial in n
[Mah82].

• A famous conjecture [BH77]asserts that all NP-complete problems are polynomial-
time isomorphic—i.e. between any two problems, there is a one-to-one and onto Karp
reduction. If that’s true, the NP-complete problems could be interpreted as mere
“relabelings” of one another.

• NP-complete problems are p-superterse unless P = NP [BKS95]. This means that,
given k Boolean formulas F1, · · · , Fk, if you can rule out even one of the 2k possibilities
in polynomial time (e.g., “if F1, · · · , Fk−1 are all unsatisfiable then Fk is satisfiable”),
then P = NP.

NPC: NP Over The Complex Numbers

• An analog of NP for Turing machines over a complex number field.

• Defined in [BCSS98].

• It is unknown whether PC = NPC, nor are implications known among this question,
PR versus NPR, and P versus NP.

• However, [CKK+95] show that if P/poly does not equal NP/poly then PC does not equal
NPC.
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• [BCSS98] show the following striking result. For a positive integer n, let t(n) denote the
minimum number of additions, subtractions, and multiplications needed to construct
n, starting from 1. If for every sequence {nk} of positive integers, t(nkk!) grows faster
than polylogarithmically in k, then PC does not equal NPC.

• See also VNPk.

NPcc: Communication Complexity NP

• The analogue of Pcc for nondeterministic communication complexity. Both communi-
cation bits and nondeterministic guess bits count toward the complexity.

• Does not equal Pcc or coNPcc because of the EQUALITY problem. Also, does not
contain BPPcc because of that problem.

• Defined in [BFS86].

• Contained in PHcc.

NPI: NP-Intermediate

• Sometimes used to denote the set of decision problems in NP that are neither NP-
complete (that is, in NPC) nor in P.

• Is thought to contain (for example) decision versions of factoring and graph isomor-
phism.

• Is nonempty if P does not equal NP [Lad75]. Indeed, under this assumption, it contains
an infinite number of distinct polynomial-time equivalence classes.

NP ∩ coNP:

• The class of problems in both NP and coNP.

• Contains factoring [Pra75].

• Contains graph isomorphism under the assumption that some language in NE ∩ coNE
requires nondeterministic circuits of size 2Ω(n) ([MV99], improving [KvM99]). (A non-
deterministic circuit C has two inputs, x and y, and accepts on x if there exists a y
such that C(x, y) = 1.)

• Is not believed to contain complete problems.

(NP ∩ coNP)/poly: Nonuniform NP ∩ coNP

• Has the same relation to NP ∩ coNP as P/poly does to P.

• If NP is contained in (NP ∩ coNP)/poly, then PH collapses to S2P
NP∩coNP [CCHO01].
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NP/ log: NP With Logarithmic Advice

• Same as NP/poly, except that now the advice string is logarithmic-size.

NPMV: NP Multiple Value

• The class of all (possibly partial, possibly multi valued) functions computed by an NP
machine as follows: ignore the rejecting paths, and consider any output of an accepting
path to be “one of the outputs.”

• Contains NPSV and NPMVt.

• Defined in [BLS84].

• Contrast with FNP.

NPMV-sel: NPMV Selective

• Has the same relation to NPMV as P-Sel does to P.

• Defined in [HHN+95].

NPMVt: NPMV Total

• The class of all (possibly multivalued) NPMV functions that are total (that is, defined
for every input).

NPMVt-Sel: NPMVt Selective

• Has the same relation to NPMVt as P-Sel does to P.

• Defined in [HHN+95].

NPO: NP Optimization

• The class of function problems of the form, ”Find any n-bit string x that maximizes a
cost function C(x), where C is computable in FP (i.e. polynomial-time).”

• Defined in [ACG+99].

• Contains APX and NPOPB.

NPOPB: NPO Polynomially Bounded

• The subclass of NPO problems for which the cost function is guaranteed always to be
bounded by a polynomial in n (the input size).

• See [ACG+99].

• NPOPB equals the closure of MaxPB under PTAS reductions [CVKT99].
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NP/poly: Nonuniform NP

• Has the same relation to NP as P/poly does to P.

• Contains AM. On the other hand, if NP/poly contains coNP then PH collapses to the
third level.

• NP/poly-natural proofs cannot show that circuit families are outside P/poly, under a
pseudorandomness assumption [Rud97].

(NP, P -samplable): Average NP With Samplable Distributions

• See AvP for basic notions of average-case complexity.

• (NP,P-samplable) is the same as DistNP, except that the distribution µ only needs to
besamplable in polynomial time. µ’s cumulative density function does not need to be
computable in polynomial time.

• Any problem complete for DistNP is also complete for (NP,P-samplable) [IL90].

NPR: NP Over The Reals

• An analog of NP for Turing machines over a real number field.

• Defined in [BCSS98].

• It is unknown whether PR = NPR, nor are implications known among this question,
PC versus NPC, and P versusNP.

• Also, in contrast to the case of NPC, it is an open problem to show that P/poly distinct
from NP/poly implies PR distinct from NPR. The difference is that in the real case,
a comparison (or greater-than) operator is available, and it is not known how much
power this yields in comparison to the complex case.

• See also VNPk.

NPSPACE: Nondeterministic PSPACE

• Equals PSPACE [Sav70].

• On the other hand, this result does not relativize if we allow strings of unbounded
length to be written to the oracle tape. In particular, there exists an oracle relative to
which NPSPACE is not contained in EXP [GTWB91].

NPSV: NP Single Value

• The class of NPMV functions that are single-valued (i.e., such that every accepting
path outputs the same value).
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• Defined in [BLS84].

• Contains NPSVt.

• P = NP if and only if FP = NPSV.

NPSV-sel: NPSV Selective

• Has the same relation to NPSV as P-Sel does to P.

• Defined in [HHN+95].

NPSVt: NPSV Total

• The class of all NPSV functions that are total (that is, defined on every input).

• Contained in NPMVt.

NPSVt-Sel: NPSVt Selective

• Has the same relation to NPSVt as P-Sel does to P.

• Also known as NP-sel.

• Defined in [HHN+95].

NQP: Nondeterministic Quantum Polynomial-Time

• The class of decision problems solvable by a BQP machine such that a particular
|Accept> state has nonzero amplitude at the end of the computation, if and only if
the answer is “yes.”

• Defined in [ADH97].

• Turns out to equal coC=P [FGHP98].

• Contrast with QMA.

NSPACE(f(n)): Nondeterministic f(n)-Space

• Same as NPSPACE, but with f(n)-space (for some constructible function f) rather
thanpolynomial-space machines.

• Contained in DSPACE(f(n)2) [Sav70], and indeed RevSPACE(f(n)2) [CP95].

• NPSPACE(nk) is strictly contained in NPSPACE(nk+ε) for ε > 0 [Iba72] (actually the
hierarchy theorem is stronger than this, but pretty technical to state).

NT: Near-Testable
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• The class of decision problems that, on input x, are solvable in polynomial time given
the answer on input x− 1 (that is, the lexicographic predecessor of x).

• Defined by [GJY87] (why they defined it is a separate question).

NTIME(f(n)): Nondeterministic f(n)-Time

• Same as NP, but with f(n)-time (for some constructible function f) rather than
polynomial-time machines.

• The Nondeterministic Time Hierarchy Theorem: If f and g are time-constructible and
f(n + 1) = o(g), then NTIME(f(n)) does not equal NTIME(g(n)) [SFM78] (this is
actually stronger than the hierarchy theorem for DTIME).

• NTIME(n) strictly contains DTIME(n) [PPST83] (this result does not work for arbitrary
f(n)).

• For any constructible superpolynomial f , NTIME(f(n)) with NP oracle is not in P/poly
[Kan82].

OCQ: One Clean Qubit

• The class of problems solvable by a BQP machine in which a single qubit is initialized
to the “0’ state, and the remaining qubits are initialized to the maximally mixed state.
(This definition is not known to be robust, so one also needs to specify a gate set.)

• We also need to stipulate that there are no “strong measurements” – intermediate
measurements on which later operations are conditioned – since otherwise we can do
all of BQP by first initializing the computer to the all-0 state. Parker and Plenio [PP00]
failed to appreciate this point.

• Defined by [ASV00] (though they didn’t use the name OCQ), who also showed that
if OCQ = BQP, something other than gate-by-gate simulation will be needed to show
this.

OptP: Optimum Polynomial-Time

• The class of functions computable by taking the maximum of the output values over
all accepting paths of an NP machine.

• Defined in [Kre88].

• Contrast with FNP.

P: Polynomial-Time

• The class that started it all.
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• The class of decision problems solvable in polynomial time by a Turing machine. (See
also FP, for function problems.)

• Defined in [Edm65], [Cob64], [Rab60], and other seminal early papers.

• Contains some highly nontrivial problems, including linear programming [Kha79] and
finding a maximum matching in a general graph [Edm65].

• Contains the problem of testing whether an integer is prime, assuming the generalized
Riemann hypothesis [Mil76].

• Since the Zoo went up, a proof that primality testing is in P with no assumptions was
announced [AKS02]!

• A decision problem is P-complete if it is in P, and if every problem in P can be reduced
to it in L (logarithmic space). The canonical P-complete problem is circuit evaluation:
given a Boolean circuit and an input, decide what the circuit outputs when given the
input.

• Important subclasses of P include L, NL, NC, andSC.

• P is contained in NP, but whether they’re equal seemed to be an open problem when
I last checked.

• Efforts to generalize P resulted in BPP and BQP.

• The nonuniform version is P/poly, the monotone version is mP, and versions over the
real and complex number fields are PR and PC respectively.

P/ log: P With Logarithmic Advice

• Same as P/poly, except that the advice string for input size n can have length at most
logarithmic in n, rather than polynomial.

• Strictly contained in IC[log, poly].

• If NP is contained in P/ log then P = NP.

P/poly: Nonuniform Polynomial-Time

• The class of decision problems solvable by a family of polynomial-size Boolean circuits.
The family can be nonuniform; that is, there could be a completely different circuit
for each input length.

• Equivalently, P/poly is the class of decision problems solvable by a polynomial-time
Turing machine that receives an “advice string,’ that depends only on the size n of the
input, and that itself has size upper-bounded by a polynomial in n.
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• P/poly contains BPP [KL82].

• [KL82] showed that, if P/poly containsNP, then PH collapses to the second level, Σ2P.

• They also showed:

– If PSPACE is in P/poly then PSPACE equals Σ2P ∩ Σ2P.

– If EXP is in P/poly then EXP = Σ2P.

• It was later shown that, if NP is contained in P/poly, then PH collapses to ZPPNP

[KW98] and indeed S2P [Cai01]. This seems close to optimal, since there exists an
oracle relative to which the collapse cannot be improved to ∆2P [Wil85].

• If NP is not contained in P/poly, then P does not equal NP.Much of the effort to-
ward separating P from NP is based on this observation. However, a “natural proof’
as defined by [RR97] cannot be used to show NP is outside P/poly, if there is any
pseudorandom generator in P/poly that has hardness 2Ω(nε) for some ε > 0.

• If NP is contained in P/poly, then MA = AM [AKSS95]

• The monotone version of P/poly is mP/poly.

• P/poly has measure 0 in E with Σ2P oracle [May94b].

• Strictly contains IC[log, poly] and P/ log.

P#P: P With #P Oracle

• I decided this class is so important that it deserves an entry of its own, apart from #P.

• Contains PH [Tod89], and is contained in PSPACE.

• Equals PPP (exercise for the visitor).

P#P[1]: P With Single Query To #P Oracle

• Contains PH [Tod89].

PAC0: Probabilistic AC0

• The Political Action Committee for computational complexity research.

• The class of problems for which there exists a DiffAC0 function f such that the answer
is “yes” on input x if and only if f(x) > 0.

• Equals TC0 and C=AC0 under logspace uniformity [ABL98].

PBP: Polynomial-Size Branching Program

• Same as k-PBP but with no width restriction.
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• Equals L/poly [Cob66].

• Contains P-OBDD.

k-PBP: Polynomial-Size Width-k Branching Program

• A branching program is a directed acyclic graph with a designatedstart vertex. Each
(non-sink) vertex is labeled by an input bit to query,and has two outgoing edges, one
of which is followed if the input bit is 0, the other if the bit is 1. A sink vertex can be
either an “accept” or a “reject” vertex.

• The size of the branching program is the number of vertices. The branching program
has width k if the vertices can be sorted into levels, each with at most k vertices,such
that each edge goes from a level to the one immediately after it.

• Then k-PBP is the class of decision problems solvable by a family of polynomial-size,
width-k branching programs. (A uniformity condition may also be imposed.)

• k-PBP equals (nonuniform) NC1 for constant k at least 5 [Bar89]. On the other hand,
4-PBP is in ACC0 [BT88].

• Contained in k-EQBP, as well as PBP.

PC: Polynomial-Time Over The Complex Numbers

• An analog of P for Turing machines over a complex number field.

• Defined in [BCSS98].

• See also PR, NPC, NPR, VPk.

Pcc: Communication Complexity P

• In a two-party communication complexity problem, Alice and Bob have n-bit strings
x and y respectively, and they wish to evaluate some Boolean function f(x, y) using as
few bits of communication as possible. Pcc is the class of (infinite families of) f ’s, such
that the amount of communication needed is only O(polylog(n)), even if Alice and Bob
are restricted to a deterministic protocol.

• Is strictly contained in NPcc and in BPPcc because of the EQUALITY problem.

• Equals NPcc ∩ coNPcc.

• Defined in [BFS86].

PCD(r(n), q(n)): Probabilistically Checkable Debate

• The class of decision problems decidable by a probabilistically checkable debate system,
as follows.
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• Two debaters B and C alternate writing strings on a “debate tape,” with B arguing
that the answer is “yes” and C arguing the answer is “no.” Then a polynomial-time
verifier flips O(r(n)) random coins and makes O(q(n)) nonadaptive queries to the
debate tape (meaning that they depend only on the input and the random coins, not
the results of previous queries). The verifier then outputs an answer, which should be
correct with high probability.

• Defined in [CFLS93], who also showed that PCD(log n, 1) = PSPACE. This result was
used to show that certain problems are PSPACE-hard even to approximate.

• Contained in GPCD(r(n), q(n)).

P-close: Problems Close to P

• The class of decision problems solvable by a polynomial-time algorithm that outputs
the wrong answer on only a sparse (that is, polynomially-bounded) set of instances.

PCP(r(n), q(n)): Probabilistically Checkable Proof

• The class of decision problems such that a “yes” answer can be verified by a probabilis-
tically checkable proof, as follows.

• The verifier is a polynomial-time Turing machine with access to O(r(n)) uniformly
random bits. It has random access to a proof (which might be exponentially long),
but can query only O(q(n)) bits of the proof.

• Then we require the following:

1. If the answer is “yes,” there exists a proof such that the verifier accepts with
certainty.

2. If the answer is “no,” then for all proofs the verifier rejects with probability at
least 1/2 (over the choice of the O(r(n)) random bits).

• Defined in [AS98].

• By definition NP = PCP(0, poly(n)).

• MIP = PCP(poly(n), poly(n)).

• PCP(r(n), q(n)) is contained in NTIME(2O(r(n))q(n) + poly(n)).

• NP = PCP (log n, log n) [AS98].

• In fact, NP = PCP (log n, 1) [ALM+98]!

• On the other hand, if NP is contained in PCP(o(log n), o(log n)), then P = NP [FGL+91].
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• Also, even though there exists an oracle relative to which NP = EXP [Hel84], if we
could show there exists an oracle relative to which PCP(log n, 1) = EXP, then we’d
have proved P not equal to NP [For94].

• Another weird oracle fact: since NP does not equal NEXP [SFM78], PCP(0, log n) does
not equal PCP(0, poly(n)). However, there exist oracles relative to which the latter
inequality is false [HCC+92].

PermUP: Self-Permuting UP

• The class of languages L in UP such that the mapping from an input x to the unique
witness for x is a permutation of L.

• Contains P.

• Defined in [HT03], where it was also shown that the closure of PermUP under polynomial-
time one-to-one reductions is UP.

• On the other hand, they show that if PermUP = UP then E = UE.

• See also: SelfNP.

PEXP: Probabilistic Exponential-Time

• Has the same relation to EXP as PP does to P.

• Is not contained in P/poly [BFT98].

PF: Alternate Name for FP
PFCHK(t(n)): Proof-Checker

• The class of decision problems solvable in time O(t(n)) by a nondeterministic Turing
machine, as follows. The machine is given oracle access to a proof string of unbounded
length.

– If the answer is “yes,” then there exists a value of the proof string such that all
computation paths accept.

– If the answer is “no,” then for all values of the proof string, there exists a com-
putation path that rejects.

• Credited in [For94] to S. Arora, R. Impagliazzo, and U. Vazirani.

• An interesting question is whether NP = PFCHK(log n) relative to all possible oracles.
Fortnow [For94] observes that the answer depends on what oracle access mechanism is
used.

PH: Polynomial-Time Hierarchy
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• Let ∆0P = Σ0P = Π0P = P. Then for i > 0, let

– ∆iP = P with Σi−1P oracle.

– ΣiP = NP with Σi−1P oracle.

– ΠiP = coNP with Σi−1P oracle.

Then PH is the union of these classes for all nonnegative constant i.

• Defined in [Sto76].

• Contained in P with a PP oracle [Tod89].

• Contains BPP [Lau83].

• Relative to a random oracle, PH is strictly contained in PSPACE with probability 1
[Cai86].

• Furthermore, there exist oracles separating any ΣiP from Σi+1P. On the other hand,
it is unknown whether ΣiP is strictly contained in Σi+1P relative to a random oracle
with probability 1 (see [H̊as87]). Book [Boo94] shows that if PH collapses relative to
arandom oracle with probability 1, then it collapses unrelativized.

PHcc: Communication Complexity PH

• The obvious generalization of NPcc and coNPcc to a nondeterministic hierarchy.

• It is unknown whether Σcc
2 equals Πcc

2 .

• Defined in [BFS86], where it was also shown (among other things) that BPPcc is con-
tained in Σcc

2 ∩ Πcc
2 .

Φ2P: Second Level of the Symmetric Hierarchy, Alternative Definition

• The class of problems for which there exists a polynomial-time predicate P (x, y, z)
such that for all x, if the answer on input x is “yes,” then

1. For all y, there exists a z for which P (x, y, z).

2. For all z, there exists a y for which P (x, y, z).

Contained in Σ2P and Π2P.

• Defined in [Can96], where it was also observed that Φ2P = S2P.

PhP: Physical Polynomial-Time
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• Defined by Valiant [Val03] to be “the class of physically constructible polynomial re-
source computers” (characterizing what ”can be computed in the physical world in
practice”). There he says that PhP contains P and BPP, but that it is open whether
PhP contains BQP, since no scalable quantum computing proposal has been demon-
strated beyond reasonable doubt.

• For whatever it’s worth, the present zookeeper has more qualms about admitting
DTIME(n1000) into PhP than BQTIME(n2). According to the “holographic principle,”
the number of bits available to any one computation is at most 10123 (roughly the
inverse of the cosmological constant)—and hence there are “classical polynomial-time
algorithms” that can never be executed for fundamental physical reasons. (The key
issue, of course, is what counts as a “fundamental physical reason,” since every model
of computation idealizes some aspects of the world. For example, in reality there aren’t
infinitely many possible inputs, again because of the holographic bound.)

Σ2P: coNP With NP Oracle

• Complement of Σ2P.

• Along with Σ2P, comprises the second level of PH, the polynomial hierarchy. For any
fixed k, there is a problem in Π2P ∩ Σ2P that cannot be solved by circuits of size nk

[Kan82].

PINC: Polynomial Ignorance of Names of Classes

• (By which I mean, I have no idea what PINC stands for—tell me if you know!)

• The class of function problems, f : {0, 1}n → {0, 1}m, such that the kth output bit is
computable in time polynomial in n and k.

• Defined in [JY88].

• Contained in PIO. This containment is strict, since if m = 2n (say), then computing
the first bit of f(x) might be EXP-complete.

PIO: Polynomial Input Output

• The class of function problems, f : {0, 1}n → {0, 1}m, such that f(x) is computable
in time polynomial in n and m. Allows us to discuss whether a function is “efficiently
computable” or not, even if the output is too long to write down in polynomial time.

• Defined in [Yan81].

• Strictly contains PINC.

PK: P With Kolmogorov-Complexity Oracle
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• P equipped with an oracle that, given a string x, returns the length of the shortest
program that outputs x.

• A similar class was defined in [ABK+02], where it was also shown that PK contains
PSPACE. It is not known whether PK contains all of R, or even any recursive problem
not in PSPACE.

• See also: BPPKT.

PKC: Perfect Knowledge Complexity

• Has the same relation to PZK as SKC does to SZK.

• Defined in [GP91].

PL: Probabilistic L

• Has the same relation to L that PP has to P.

• Contains BPL.

• PLPL = PL (see [HO02]).

PL1: Polynomially-Bounded L1 Spectral Norm

• The class of Boolean functions f : {−1, 1}n → {−1, 1} such that the sum of absolute
values of Fourier coefficients of f is bounded by a polynomial in n.

• Defined in [BS90], where it was also shown that PL1 is contained in PT1 (and this
inclusion is strict).

PL∞: Polynomially-Bounded L−1
∞ Spectral Norm

• The class of Boolean functions f : {−1, 1}n → {−1, 1} such that the maximum of
|α|−1,over all Fourier coefficients α of f , is upper-bounded by a polynomial in n.

• Defined in [BS90], where it was also shown that PL∞ contains PT1 (and this inclusion
is strict).

PL: Polynomial Leaf

• Defined in [Pap90].

• I believe it’s the same as PPA.

PLL: Polynomial Local Lemma

• The class of TFNP function problems that are guaranteed to have a solution because
of theLovsz Local Lemma. Defined in [Pap94b].
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PLS: Polynomial Local Search

• The subclass of TFNP function problems that are guaranteedto have a solution because
of the lemma that ”every finite directed acyclicgraph has a sink.”

• More precisely, for each input, there’s a finite set of solutions (i.e. strings), and a
polynomial-time algorithm that computes a cost for each solution, and a neighboring
solution of lower cost provided that one exists. Then the problem is to return any
solution that has costless than or equal to all of its neighbors. (In other words, a local
optimum.)

• (Note: In the Zookeeper’s humble opinion, PLS should have been defined as follows:
there exist polynomial-time algorithms that compute the cost of a solution, and the
set of all neighbors of a given solution, not just a single solution of lower cost. Of
course we’d require that every solution has only polynomially many neighbors. The
two definitions are not obviously equivalent, and it’s conceivable that knowing all the
neighbors would be helpful—for example, in simulated annealing one sometimes makes
uphill moves.)

• Defined in [JPY88], [PY88].

• There exists an oracle relative to which PLS is not contained in FBQP [Aar04b].

• Also, there exist oracles relative to which PLS is not contained in PPA [BOM04], and
PPA and PPP are not contained in PLS [Mor01].

• Whether PLS is not in PPP relative to some oracle remains open.

PNP: P With Oracle Access To NP

• See ∆2P.

PNP[k]: P With k NP Queries(for constant k)

• Equals P with 2k−1 parallel queries to NP (i.e. queries that do not depend on the
outcomes of previous queries) ([BH91] and [Hem89] independently).

• If PNP[1] = PNP[2], then PNP[1] = PNP[log] and indeed PH collapses to ∆3P (attributed in
[Har87b] to J. Kadin).

PNP[log]: P With Log NP Queries

• The class of decision problems solvable by a P machine, that can make O(log n) queries
to an NP oracle (where n is the length of the input).

• Equals PNP
‖ , the class of decision problems solvable by a P machine that can make

polynomially many nonadaptive queries to an NP oracle (i.e. queries that do not
depend on the outcomes of previous queries) ([BH91] and [Hem89] independently).

77



• PNP[log] is contained in PP [BHW89].

• Determining the winner in an election system proposed in 1876 by Charles Dodgson
(a.k.a. Lewis Carroll) has been shown to be complete for PNP[log] [HHR97].

• Contains PNP[k] for all constants k.

PNP[log2]: P With log2 NP Queries

• Same as PNP[log], except that now log2 queries can be made.

• The model-checking problem for a certain temporal logic is PNP[log2]-complete [Sch03].

• For all k, P with logk adaptive queries to NP coincides with P with logk+1 nonadaptive
queries [CS92].

P-OBDD: Polynomial-Size Ordered Binary Decision Diagram

• An ordered binary decision diagram (OBDD) is a branching program (see k-PBP), with
the additional constraint that if xi is queried before xj on any path, then i < j.

• Then P-OBDD is the class of decision problems solvable by polynomial-size OBDD’s.

• Contained in PBP, as well as BPP-OBDD.

PODN: Polynomial Odd Degree Node

• The subclass of TFNP function problems that are guaranteed to have a solution because
of the lemma that “every finite graph has an even number of odd-degree nodes.”

• Equals PPA [Pap90].

polyL: Polylogarithmic Space

• Equals DSPACE(logc n).

• In contrast to L, which is contained in P, it is not known if polyL is contained in P or vice
versa. On the other hand, we do know that polyL does not equal P, since (for example)
polyL does not have complete problems under many-to-one logspace reductions.

PostBQP: BQP With Postselection

• The class of decision problems solvable by a BQP machine such that

– If the answer is “yes” then the second qubit has at least 2/3 probability of being
measured 1, conditioned on the first qubit having been measured 1.

– If the answer is “no” then the second qubit has at most 1/3 probability of being
measured 1, conditioned on the first qubit having been measured 1.

– On any input, the first qubit has a nonzero probability of being measured 1.
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• Defined in [Aar04a], where it is also shown that PostBQP equals PP.

• [Aar04a] also gives the following alternate characterizations of PostBQP (and therefore
of PP):

– The quantum analogue of BPPpath.

– The class of problems solvable in quantum polynomial time if we allow arbitrary
linear operations (not just unitary ones). Before measuring, we divide all ampli-
tudes by a normalizing factor to make the probabilities sum to 1.

– The class of problems solvable in quantum polynomial time if we take the proba-
bility of measuring a basis state with amplitude α to be not |α|2 but |α|p, where
p is an even integer greater than 2. (Again we need to divide all amplitudes by a
normalizing factor to make the probabilities sum to 1.)

PP: Probabilistic Polynomial-Time

• The class of decision problems solvable by an NP machine such that

1. If the answer is “yes” then at least 1/2 of computation paths accept.

2. If the answer is “no” then less than 1/2 of computation paths accept.

Defined in [Gil77].

• PP is closed under union and intersection [BRS91](this was an open problem for 14
years).

• Contains PNP[log] [BHW89].

• Equals PPBPP [KSTT89b] as well as PostBQP [Aar04a].

• However, there exists an oracle relative to which PP does not contain ∆2P [Bei94].

• PH is in PPP [Tod89].

• BQP is low for PP; i.e. PPBQP = PP [FR98].

• For a random oracle A, PPA is strictly contained in PSPACEA with probability 1
[ABFR94].

• For any fixed k, there exists a language in PP that does not have circuits of size nk

[Vin04b].

• PP can be generalized to the counting hierarchy CH.

PP/poly: Nonuniform PP

• Contains BQP/qpoly [Aar05].
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• If PP/poly = P/poly then PP is contained in P/poly. Indeed this is true with any syn-
tactically defined class in place of PP. An implication is that any unrelativized separa-
tion of BQP/qpoly from BQP/poly would imply that PP does not have polynomial-size
circuits.

PPA: Polynomial Parity Argument

• Defined in [Pap94b]; see also [BCE+95].

• The subclass of TFNP function problems that are guaranteed to have a solution because
of the lemma that “all graphs of maximum degree 2 have an even number of leaves.”

• More precisely, there’s a polynomial-time algorithm that, given any string, computes
its “neighbor” strings (of which there are at most two). Then given a leaf string (i.e.
one with only one neighbor), the problem is to output another leaf string.

• As an example, suppose you’re given a cubic graph (one where every vertex has degree
3), and a Hamiltonian cycle H on that graph. Then by making a sequence of modifica-
tions to H (albeit possibly exponentially many), it is always possible to find a second
Hamilton cycle (see [Pap94a]). So this problem is in PPA.

• Another problem in PPA is finding an Arrow-Debreu equilibrium, giventhe goods and
utility functions of traders in a marketplace.

• Contained in TFNP.

• Contains PPAD.

• There exist oracles relative to which PPA does not contain PLS [BOM04] and PPP
[BCE+95]. There also exists an oracle relative to which PPA is not contained in PPP
[BCE+95].

PPAD: Polynomial Parity Argument (Directed)

• Defined in [Pap94b]; see also [BCE+95].

• Same as PPA, except now the graph is directed, and we’re asked to find either a source
or a sink.

• Contained in PPA and PPADS.

• NASH, the problem of finding a Nash equilibrium in a game of two or more players
with specified utilities, is in PPAD [Pap94b].

• There exists an oracle relative to which PPP is not contained in PPAD [BCE+95].

PPADS: Polynomial Parity Argument (Directed, Sink)
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• Defined in [Pap94b]; see also [BCE+95].

• Same as PPA, except now the graph is directed, and we’re asked to find a sink.

• Contained in PPP.

• Contains PPAD.

PPP: Polynomial Pigeonhole Principle

• Defined in [Pap94b]; see also [BCE+95].

• The subclass of TFNP function problems that are guaranteed to have a solution because
of the Pigeonhole Principle.

• More precisely, we’re given a Boolean circuit, that maps n-bit strings to n-bit strings.
The problem is to return either an input that maps to 0n, or two inputs that map to
the same output.

• Contained in TFNP.

• Contains PPADS.

• [BCE+95] give oracles relative to which PPP is not contained in PPA and PPAD, and
PPA is not contained in PPP.

• [Mor01] gives an oracle relative to which PPP is not contained in PLS.

• Whether PLS is not contained in PPP relative to some oracle remains open.

PPP: P With PP Oracle

• A level of the counting hierarchy CH.

• It is not known whether there exists an oracle relative to which PPP does not equal
PSPACE.

• Contains PPPH [Tod89].

• Equals P#P (exercise for the visitor).

PQUERY: Polynomial Queries

• The class of decision problems solvable in polynomial space using at most a polynomial
number of queries to the oracle.

• Thus, PQUERY = PSPACE, but PQUERYA does not equal PSPACEA for some oracles
A.
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• Defined in [Kur83], where it was actually put forward as a serious argument (!!) against
believing relativization results.

PPSPACE: Probabilistic PSPACE

• Same as IPP, except that IPP uses private coins while PPSPACE uses public coins.

• Can also be defined as a probabilistic version of PSPACE.

• Equals PSPACE.

• Defined in [Pap83].

PR: Primitive Recursive Functions

• Basically, the class of functions definable by recursively building up arithmetic func-
tions: addition, multiplication, exponentiation, tetration, etc. What’s not allowed is
to “diagonalize” a whole series of such functions to produce an even faster-growing
one. Thus, the Ackermann function was proposed in 1928 as an example of a recursive
function that’s not primitive recursive, showing that PR is strictly contained in R.

• An interesting difference is that PR functions can be explicitly enumerated, whereas
functions in R cannot be (since otherwise the halting problem would be decidable).
That is, PR is a “syntactic” class whereas R is “semantic.”

• On the other hand, we can “enumerate” any RE set by a PR function in the following
sense: given an input (M,k), where M is a Turing machine and k is an integer, if M
halts within k steps then output M ; otherwise output nothing. Then the union of the
outputs, over all possible inputs (M,k), is exactly the set of M that halt.

• PR strictly contains ELEMENTARY.

PR: Polynomial-Time Over The Reals

• An analog of P for Turing machines over a real number field.

• Defined in [BCSS98].

• See also PC, NPC, NPR,VPk.

PrHSPACE(f(n)): Unbounded-Error Halting Probabilistic f(n)-Space

• Has the same relation to DSPACE(f(n)) as PP does to P. The Turing machine has to
halt on every input and every setting of the random tape.

• Equals PrSPACE(f(n)) [Jun85].

PromiseBPP: Promise-Problem BPP
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• Same as PromiseRP, but for BPP instead of RP.

• Defined in [BF99].

PromiseBQP: Promise-Problem BQP

• Same as PromiseBQP, but for BQP instead of BPP.

• If PromiseBQP = PromiseP then BQP/poly = P/poly.

PromiseP: Promise-Problem P

• The class of promise problems solvable by a P machine.

PromiseRP: Promise-Problem RP

• The class of promise problems solvable by an RP machine. I.e., the machine must
accept with probability at least 1/2 for “yes” inputs, and with probability 0 for “no”
inputs, but could have acceptance probability between 0 and 1/2 for inputs that do
not satisfy the promise.

• Defined in [BF99], where it was also shown that BPP is in RPPromiseRP[1] (i.e. with a
single oracle query to PromiseRP).

• Contained in PromiseBPP.

PrSPACE(f(n)): Unbounded-Error Probabilistic f(n)-Space

• Has the same relation to DSPACE(f(n)) as PP does to P. The Turing machine has to
halt with probability 1 on every input.

• Contained in DSPACE(f(n)2) [BCP83].

• Equals PrHSPACE(f(n)) [Jun85].

P-Sel: P-Selective Sets

• The class of decision problems for which there’s a polynomial-time algorithm with the
following property. Whenever it’s given two instances, a “yes”and a “no” instance, the
algorithm can always decide which is the “yes” instance.

• Defined in [Sel79], where it was also shown that if NP is contained in P-Sel then P =
NP.

• There exist P-selective sets that are not recursive (i.e. not in R).

PSK: Polynomial Sink

• Yeah, I’m told that’s what the S and K stand for. Go figure.
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• The class of total function problems definable as follows: given a directed graph of
indegree and outdegree at most 1, and given a source, find a sink.

• Defined in [Pap90].

• Equals PPADS.

PSPACE: Polynomial-Space

• The class of decision problems solvable by a Turing machine in polynomial space.

• Equals NPSPACE [Sav70], AP [CKS81], IP [Sha90], and, assuming the existence of
one-way functions,CZK [BOGG+90].

• Contains P with #P oracle.

• A canonical PSPACE-complete problem is Quantified Boolean Formula (QBF): Given
a Boolean formula withuniversal and existential quantifiers, decide whether it’s true or
false.

• Relative to a random oracle, PSPACE strictly contains PH with probability 1 [Cai86].

• PSPACE has a complete problem that is both downward self-reducible and random
self-reducible [TV02]. It is the largest class with such a complete problem.

• Contained in EXP. There exists an oracle relative to which this containment is proper
[Dek76].

PT1: Polynomial Threshold Functions

• The class of Boolean functions f : {−1, 1}n → {−1, 1} such that f(x) = sgn(p(x)),
where p is a polynomial having a number of terms polynomial in n.

• Defined in [BS90], where it was also shown that PT1 contains PL1 (and this inclusion
is strict), and that PT1 is contained in PL∞ (and this inclusion is strict).

PTAPE: Archaic for PSPACE
PTAS: Polynomial-Time Approximation Scheme

• The subclass of NPO problems that admit an approximation schemein the following
sense. For any ε > 0, there is a polynomial-time algorithm that is guaranteed to find
a solution whose cost is within a 1 + ε factor of the optimum cost. (However, the
exponent of the polynomial might depend strongly on ε.)

• Contains FPTAS, and is contained in APX.

• As an example, the Traveling Salesman Problem in the Euclidean plane is in PTAS
[Aro96].
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• Defined in [ACG+99].

PT/WK(f(n), g(n)): Parallel Time f(n) / Work g(n)

• The class of decision problems solvable by a uniform family of Booleancircuits with
depth upper-bounded by f(n) and size (number of gates) upper-bounded by g(n).

• The union of PT/WK(logk n, nk) over all constants k equals NC.

PZK: Perfect Zero Knowledge

• Same as SZK, but now the two distributions must be identical, not merely statistically
close. (The “two distributions” are (1) the distribution over Arthur’s view of his
interaction with Merlin, conditioned on Arthur’s random coins, and (2) the distribution
over views that Arthur can simulate without Merlin’s help.)

• Contained in SZK.

• See also: CZK.

QAC0: Quantum AC0

• The class of decision problems solvable by a family of constant-depth,polynomial-size
quantum circuits. Here each layer of the circuit is a tensor product of one-qubit gates
and Toffoli gates, or is a tensor product of controlled-NOT gates.

• A uniformity condition may also be imposed.

• Defined in [Moo99], where it was also shown that QAC0 = QAC0[2] = QACC0.

QAC0[m]: Quantum AC0[m]

• Same as QAC0, except that now Modm gates are also allowed. A Modm gate computes
whether the sum of a given set of bits is congruent to 0 modulo m, and exclusive-OR’s
the answer into another bit.

• Defined in [Moo99].

QACC0: Quantum ACC0

• Same as QAC0[m], except that Mod-m gates are allowed for any m.

• Defined in [Moo99].

• [GHP00] showed that QACC0 equals QAC0[p] for any prime p.

QAM: Quantum AM
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• The class of decision problems for which a “yes” answer can be verified by a public-
coin quantum AM protocol, as follows. Arthur generates a uniformly random (classical)
string and sends it to Merlin. Merlin responds with a polynomial-size quantum cer-
tificate, on which Arthur can perform any BQP operation. The completeness and
soundness requirements are the same as for AM.

• Defined by Watrous [Wat02b].

• Contained in QIP(2) and in PSPACE.

• Contains QMA = QIP(1).

QCFL: Quantum CFL

• The class of decision problems recognized by quantum context-free languages, which
are defined in [MC00]. The authors also showed that QCFL does not equal CFL.

QCMA: Quantum Classical MA

• The class of decision problems for which a “yes” answer can be verified by a quantum
computer with access to a classical proof.

• Contains MA, and is contained in QMA.

• No oracle separation between QCMA and QMA is currently known.

QH: Query Hierarchy Over NP

• QHi is defined to be PNP[k]; that is, P with k queries to an NP oracle (where k is a
constant). Then QH is the union of QHi over all nonnegative i.

• QH = BH [Wag90]; thus, either both hierarchies are infinite or both collapse to some
finite level.

QIP: Quantum IP

• The class of decision problems such that a “yes” answer can be verified by a quantum
interactive proof. Here the verifier is a BQP (i.e. quantum polynomial-time) algorithm,
while the prover has unbounded computational resources (though cannot violate the
linearity of quantum mechanics). The prover and verifier exchange a polynomial num-
ber of messages, which can be quantum states. Thus, the verifier’s and prover’s states
may become entangled during the course of the protocol. Given the verifier’s algo-
rithm,we require that

1. If the answer is “yes,” then the prover can behave in such a way that the verifier
accepts with probability at least 2/3.

2. If the answer is “no,” then however the prover behaves, the verifier rejects with
probability at least 2/3.
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Let QIP(k) be QIP where the prover and verifier are restricted to exchanging k messages
(with the prover going last).

• Defined in [Wat03], where it was also shown that PSPACE is in QIP(3).

• Subsequently [KW00] showed that for all k > 3, QIP(k) = QIP(3) = QIP.

• QIP is contained in EXP [KW00].

• QIP(1) is more commonly known as QMA.

• See also: QIP(2), QSZK.

QIP(2): 2-Round Quantum IP

• See QIP for definition.

• Contains QSZK [Wat02a].

QMA: Quantum MA

• The class of decision problems such that a “yes” answer can be verified by a 1-round
quantum interactive proof. That is, a BQP (i.e. quantum polynomial-time) verifier is
given a quantum state (the “proof”). We require that

1. If the answer is “yes,” then there exists a state such that verifier accepts with
probability at least 2/3.

2. If the answer is “no,” then for all states the verifier rejects with probability at
least 2/3.

QMA = QIP(1).

• Defined in [Wat00], where it is also shown that group non-membership is in QMA.
That is: let G be a group, whose elements are represented by polynomial-size strings.
We’re given a “black box” that correctly multiplies and inverts elements of G. Then
given elements g and h1, · · · , hk, we can verify in QMA that g is not in the subgroup
generated by h1, · · · , hk.

• Based on this, [Wat00] gives an oracle relative to which MA is strictly contained in
QMA.

• Kitaev and Watrous (unpublished) showed QMA is contained in PP. Combining that
result with [Ver92], one can obtain an oracle relative to which AM is not in QMA.

• Kitaev ([KSV02], see also [AN]) showed that the following problem is complete for
QMA:
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5-Local Hamiltonians. Given an n-qubit Hilbert space, as well as a collection
H1, · · · , Hk of Hamiltonians (i.e. Hermitian positive semidefinite matrices),
each of which acts on at most 5 qubits of the space. Also given reals a, b
such that b − a = Θ(1/poly(n)). Decide whether the smallest eigenvalue of
H = H1 + · · · + Hk is less than a or greater than b, promised that one of
these is the case.

Subsequently Kempe and Regev [KR03] showed that even 3-Local Hamiltonians is
QMA-complete. In recent unpublished work, the same duo has hit rock bottom (as-
suming P does not equal QMA), by showing 2-local Hamiltonians QMA-complete.

• Compare to NQP.

• If QMA = PP then PP contains PH [Vya03]. This result uses the fact that QMA is
contained in A0PP.

• See also: QSZK, QMA(2), QMA+.

QMA+: QMA With Super-Verifier

• Same as QMA, except now the verifier can directly obtain the probability that a given
observable of the certificate state, if measured, would equal 1. (In the usual model, by
contrast, one can only sample an observable.)

• Defined in [AR03], where it was also shown that QMA+ = QMA.

QMA(2): Quantum MA With Multiple Certificates

• Same as QMA, except that now the verifier is given two polynomial-size quantum
certificates, which are guaranteed to be unentangled.

• Defined in [KMY01]. It is unknown whether QMA(k) = QMA(2) for all k > 2, and
also whether QMA(2) = QMA.

QMAlog: QMA With Logarithmic-Size Proofs

• Same as QMA except that the quantum proof has O(log n) qubits instead of a polyno-
mial number.

• Equals BQP (Watrous, unpublished).

QMAM: Quantum Merlin-Arthur-Merlin Public-Coin Interactive Proofs

• The class of decision problems for which a “yes” answer can be verified by a public-
coin quantum MAM protocol, as follows. Merlin sends a polynomial-size quantum
state to Arthur. Arthur then flips some classical coins (in fact, he only has to flip
one without loss of generality) and sends the outcome to Merlin. At this stage Arthur
is not yet allowed to perform any quantum operations. Merlin then sends Arthur
another quantum state. Finally, Arthur performs a BQP operation on both of the
states simultaneously, and either accepts or rejects. The completeness and soundness
requirements are the same as for AM. Also, Merlin’s messages might be entangled.
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• Defined by Watrous [Wat02b], who also showed that QMAM = QIP(3) = QIP.

• Hence QMAM contains PSPACE.

QMIP: Quantum Multi-Prover Interactive Proofs

• The quantum generalization of MIP, and the multi-prover generalization of QIP.

• A quantum multi-prover interactive proof system is the same as a classical one, ex-
cept that all messages and verifier computations are quantum. As in MIP, there is
no communication among the provers; however, the provers share unlimited prior en-
tanglement. The number of provers and number of rounds can both be polynomial in
n.

• Defined in [KM02].

• Fascinatingly, no relationship between QMIP and NEXP is known. We don’t know
whether allowing the provers unlimited prior entanglement makes the class more pow-
erful, less powerful, or both!

QMIPle: Quantum Multi-Prover Interactive Proofs With Limited Prior Entanglement

• Same as QMIP, except that now the provers share only a polynomial number of EPR
pairs, instead of an unlimited number.

• Defined in [KM02], where it was also shown that QMIPle is contained in NEXP =
QMIPne.

QMIPne: Quantum Multi-Prover Interactive Proofs With No Prior Entanglement

• Same as QMIP, except that now the provers have no prior entanglement.

• Defined in [KM02], where it was also shown that QMIPne = NEXP. Thus, QMIPne

contains QMIPle.

QNC0: Quantum NC0

• Constant-depth quantum circuits without fanout gates.

• Defined in [Špalek03].

• Contained in QNC0
f .

QNC0
f : Quantum NC0 With Unbounded Fanout

• Constant-depth quantum circuits with unbounded-fanout gates.

• Defined in [Špalek03].

• Contains QNC0, and is contained in QACC0.
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QNC1: Quantum NC1

• Same as BQNC1, but for the exact rather than bounded-error case.

• In contrast to NC1, it is not clear how to simulate QNC1 on a quantum computer
in which one qubit is initialized to a pure state,and the remaining qubits are in the
maximally mixed state [ASV00].

• See also [MN02].

QP: Quasipolynomial-Time

• Equals DTIME(2polylog(n)).

QPLIN: Linear Quasipolynomial-Time

• Equals DTIME(nO(log n)).

• Has the same relationship to QP that E does to EXP.

QPSPACE: Quasipolynomial-Space

• Equals DSPACE(2polylog(n)).

• According to [BG94], Beigel and Feigenbaum and (independently) Krawczyk showed
that QPSPACE is not contained in Check.

QSZK: Quantum Statistical Zero-Knowledge

• A quantum analog of SZK (or more precisely HVSZK).

• Arthur is a BQP (i.e. quantum) verifier who can exchange quantum messages with
Merlin. So Arthur and Merlin’s states may become entangled during the course of the
protocol.

• Arthur’s “view” of his interaction with Merlin is taken to be the sequence of mixed
states he has, over all steps of the protocol. The zero-knowledge requirement is that
each of these states must have trace distance at most (say) 1/10 from a state that
Arthur could prepare himself (in BQP), without help from Merlin. Arthur is assumed
to be an honest verifier.

• Defined in [Wat02a], where the following was also shown:

– QSZK is contained in PSPACE.

– QSZK is closed under complement.

– Any protocol can be parallelized to consist of two messages, so that QSZK is in
QIP(2).
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– One can assume without loss of generality that protocols are public-coin, as for
SZK.

– QSZK has a natural complete promise problem, called Quantum State Distin-
guishability (QSD). We are given quantum circuits Q0 and Q1. Let ρ0 and ρ1

be the mixed states they produce respectively, when run on the all-0 state (and
when non-output qubits are traced out). We are promised that the trace distance
between ρ0 and ρ1 is either at most α or at least β, where α and β are constants
in [0, 1] satisfying α < β2. The problem is to decide which of these is the case.

R: Recursive Languages

• The class of decision problems solvable by a Turing machine. Often identified with the
class of “effectively computable” functions (the Church-Turing thesis).

• Defined in [Tur36], [Chu41], and other seminal early papers.

• Equals RE ∩ coRE.

• Strictly contains PR, the primitive recursive functions (see [Kle71]).

RE: Recursively Enumerable Languages

• The class of decision problems for which a “yes” answer can be verified by a Turing
machine in a finite amount of time. (If the answer is “no,” on the other hand, the
machine might never halt.)

• Equivalently, the class of decision problems for which a Turing machine can list all the
“yes” instances, one by one (this is what “enumerable” means).

• A problem C is complete for RE if (1) C is in RE and (2) any problem in RE can be
reduced to C by a Turing machine.

• Actually there are two types of reduction: M -reductions (for many-one), in which a
single instance of the original problem is mapped to an instance of C, and T -reductions
(for Turing), in which an algorithm for the original problem can make arbitrarily many
calls to an oracle for C.

• RE-complete sets are also called creative sets for some reason.

• The canonical RE-complete problem is the halting problem: i.e., given a Turing ma-
chine, does it halt when started on a blank tape?

• The famous unsolvability of the halting problem [Tur36] implies that R does not equal
RE.

• Also, RE does not equal coRE.

• RE and coRE can be generalized to the arithmetic hierarchy AH.
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• There are problems in RE that are neither RE-complete under T -reductions, nor in R
[Fri57] [Muc56]. This is the resolution of Post’s problem [Pos44].

• Indeed, RE contains infinitely many nonequivalent “T -degrees.’ (A T -degree is a class
of problems, all of which can be T -reduced to one another.) The structure of the
T -degrees has been studied in more detail than you can possibly imagine [Sho99].

REG: Regular Languages

• The class of decision problems solvable by deterministic finite automata (DFA’s).

• Equals the class solvable by nondeterministic finite automata (NDFA’s).

• Equals DSPACE(O(1)) [She59],which equals DSPACE(o(log log n)) [HIS65].

• Includes, i.e., “Is the parity of the input odd?,” but not “Are the majority of bits in
the input 1’s?” This is sometimes expressed as “finite automata can’t count.”

• Contained in NC1.

• See e.g. [Koz97], [Gur89] for basic results on regular languages.

RevSPACE(f(n)): Reversible f(n)-Space

• The class of decision problems solvable in space O(f(n)) by a reversible Turing ma-
chine (a deterministic Turing machine for which every configuration has at most one
immediate predecessor).

• Was shown to equal DSPACE(f(n)) [LMT97].

RHL: Randomized Halting Logarithmic-Space

• Has the same relation to L as RP does to P. The randomized machine must halt for
every input and every setting of the random tape.

• Contains undirected reachability (is there a path from vertex u to vertex v in an
undirected graph?) [AKL+79].

• Contained in RL.

RL: Randomized Logarithmic-Space

• Has the same relation to L as RP does to P. The randomized machine must halt with
probability 1 on any input.

• Contains RHL.

• Contained in SC [Nis92].

RNC: Randomized NC
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• Has the same relation to NC as RP does to P.

• Contains the maximum matching problem for bipartite graphs [MVV87].

• Contained in BQNC.

• See also: coRNC.

RP: Randomized Polynomial-Time

• The class of decision problems solvable by an NP machine such that

1. If the answer is “yes,” at least 1/2 of computation paths accept.

2. If the answer is “no,” all computation paths reject.

• Defined in [Gil77].

• Contains the problem of testing whether an integer is prime [AH87].

• For other problems in RP, see the standard text on randomized algorithms, [MR95].

• See also: coRP, ZPP, BPP.

RPP: Restricted Pseudo Polynomial-Time

• The class of decision problems 〈x,m〉 (where x is an input of length |x| = n and m
is an integer parameter), that are solvable by a nondeterministic (i.e. NP) machine in
poly(n+m) time and O(m+ log n) space simultaneously.

• Defined in [Mon80].

• See also FPT.

RSPACE(f(n)): Randomized f(n)-Space

• Same as RL, but for O(f(n))-space instead of logarithmic-space.

• Contained in NSPACE(f(n)) and BPSPACE(f(n)).

S2P: Second Level of the Symmetric Hierarchy

• The class of decision problems for which there is a polynomial-time predicate P such
that, on input x,

1. If the answer is “yes,” then there exists a y such that for all z, P (x, y, z) is true.

2. If the answer is “no,” then there exists a z such that for all y, P (x, y, z) is false.

• Note that this differs from Σ2P in that the quantifiers in the second condition are
reversed.
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• Defined in [RS98], where it was also shown that S2P contains MA and ∆2P.

• Contained in ZPPNP [Cai01].

S2-EXP · PNP: Don’t Ask

• One of the caged classes of the Complexity Zoo.

• Has been implicated in a collapse scandal involving AM[polylog], coNP, and EH.

SAC: Semi-Unbounded-Fanin AC

• SACk is the class of decision problems solvable by a family of depth-O(logk n) circuits
with unbounded-fanin OR and bounded-fanin AND gates. Negations are only allowed
at the input level.

• A uniformity condition may also be imposed.

• Defined by [BCD+89], who also showed that SACk is closed under complement for every
k > 0.

SAC0: Semi-Unbounded-Fanin AC0

• See SAC for definition.

• Not closed under complement [BCD+89].

SAC1: Semi-Unbounded-Fanin AC1

• See SAC for definition.

• Equals LOGCFL [Ven91].

• Contained in ⊕SAC1 [GW96].

SAPTIME: Stochastic Alternating Polynomial-Time

• The class of problems solvable by a polynomial-time Turing machine with three kinds
of quantifiers: existential, universal, and randomized.

• Defined in [Pap83], where it was also observed that SAPTIME = PSPACE.

SBP: Small Bounded-Error Probability

• The class of decision problems for which the following holds. There exists a #P function
f and an FP function g such that, for all inputs x,

1. If the answer is “yes” then f(x) > g(x).

2. If the answer is “no” then f(x) < g(x)/2.
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• Defined in [BGM03], where the following was also shown:

– SBP contains MA, WAPP, and ExistsBPP.

– SBP is contained in AM and BPPpath.

– There exists an oracle relative to which SBP is not contained in Σ2P.

– SBP is closed under union.

SC: Steve’s Class

• (Named in honor of Stephen Cook.)

• The class of decision problems solvable by a Turing machine that simultaneously uses
polynomial time and polylogarithmic space.

• Note that SC might not equal P ∩ DSPACE(polylog(n)), since for the latter, it suffices
to have two separate algorithms: one polynomial-time and the other polylogarithmic-
space.

• Deterministic context-free languages (DCFL’s) can be recognized in SC [Coo79].

• SC contains RL and BPL [Nis92].

• SC equals DTISP(poly, polylog).

SE: Subexponentially-Solvable Search Problems

• The class of FNP search problems solvable in O(2ε) time for every ε > 0.

• Defined in [IPZ01], who also gave reductions showing that if any of k-SAT, k-colorability,
k-set cover, clique, or vertex cover is in SE, then all of them are.

SEH: Strong Exponential Hierarchy

• The union of NE, NPNE, NPNPNE
, and so on.

• Is called “strong” to contrast it with the ordinary Exponential Hierarchy EH, which it
contains.

• Note that we would get the same class if we replaced NE by NEXP.

• SEH collapses to PNE [Hem89].

SelfNP: Self-Witnessing NP

• The class of languages L in NP such that the union, over all x in L, of the set of valid
witnesses for x equals L itself.

• Defined in [HT03], where it was shown that the closure of SelfNP under polynomial-
time many-one reductions is NP.
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• They also show that if SelfNP = NP, then E = NE; and that SAT is contained in
SelfNP.

• See also: PermUP.

SFk: Width-k Bottleneck Turing Machines

• The class of decision problems solvable by a k-bottleneck Turing machine. This is a
machine that, once every p(n) steps (where p(n) is some polynomial), erases everything
on the tape except for a single “safe-storage,” which can take on any integer value from
1 to k. (There’s also a counter recording how many erasings have occurred so far.)

• Defined in [CF91], where it was also shown that SF5 = PSPACE.

• The complexity of SF2, SF3, and SF4 was studied in [Ogi94] and [Her97]. The fol-
lowing result of those authors is among the caged beasts of the Complexity Zoo:

SF4 is contained in ⊕PMod3P⊕PMod3P⊕P

• (Here the BP operator means that one makes the class into a bounded-error proba-
bilistic class, the same way one makes P into BPP and NP into MA.)

Σ2P: NP With NP Oracle

• Complement of Σ2P.

• Along with Σ2P, comprises the second level of PH, thepolynomial hierarchy.

• [Uma98] has shown that the following problems are complete for Σ2P:

– Minimum equivalent DNF. Given a DNF formula F and integer k, is there a DNF
formula equivalent to F with k or fewer occurrences of literals?

– Shortest implicant. Given a DNF formula F and integer k, is there a conjunction
of k or fewer literals that implies F?

• For any fixed k, there is a problem in Σ2P ∩ Σ2P that cannot be solved by circuits of
size nk [Kan82].

SKC: Statistical Knowledge Complexity

• A hierarchy of generalizations of SZK, in which Arthur is allowed to gain some infor-
mation from his interaction with Merlin.

• Defined in [GP91].

• There are several variants (which we only describe roughly), including:

– SKChint(k(n)): Hint sense. The simulator can reproduce Arthur’s view of the
protocol if given a hint string of size k(n).
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– SKChint(k(n)): Strict oracle sense. The simulator can reproduce Arthur’s view if
allowed k(n) queries to an oracle O.

– SKCavg(k(n)): Average oracle sense. For each input, the expected number of
queries the simulator makes to oracle O is at most k(n).

– SKCent(k(n)): Entropy sense. Defined in [ABV95]. For each input, the expec-
tation (over Arthur’s random coins) of − log(P ) is at most k(n), where P is the
probability that the view output by the simulator equals the view resulting from
the actual protocol.

• See also: PKC.

SL: Symmetric Logarithmic-Space

• The class of problems solvable by a nondeterministic Turing machine in logarithmic
space, such that

1. If the answer is “yes,” one or more computation paths accept.

2. If the answer is “no,” all paths reject.

3. If the machine can make a nondeterministic transition from configuration A to
configuration B, then it can also transition from B to A. (This is what “symmet-
ric” means.)

• Defined in [LP82].

• The reachability problem (is there a path from vertex s to vertex t?) for undirected
graphs is complete for SL, under L-reduction.

• SL contains L, and is contained in NL.

• It follows from [AKL+79] that SL is contained in L/poly.

• [KW93] showed that SL is contained in ⊕L, as well as ModkL for every prime k.

• SL is also contained in DSPACE(log3/2 n) [NSW92], and indeed in DSPACE(log4/3 n)
[ATSWZ00].

• [NTS95] showed that SL equals coSL, and furthermore that SLSL = SL (that is, the
symmetric logspace hierarchy collapses).

• News flash! [Rei04] has shown that SL = L.

SLICEWISEPSPACE

• The parameterized version of PSPACE.

• Same as FPT, except that now on input 〈x, k〉 (k a parameter), the space used must
be f(k)p(|x|), where p(n) is a polynomial.
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• If P = PSPACE, then FPT = SLICEWISEPSPACE.

• Defined in [DF99].

SNP: Strict NP

• [Fag74] showed that NP is precisely the class of decision problems reducible to a
graph-theoretic property expressible in second-order existential logic. For example
(see [Pap94a]), the property “graph G has a Hamiltonian path” is expressible as

There exists a relation P (u, v) on vertices of G, such that P (u, u) is false,
and for all distinct u, v either P (u, v) or P (v, u), and P (u, v) and P (v, w)
implies P (u,w), and if P (u,w) and there does not exist a v for which P (u, v)
and P (v, w), then there is an edge from u to w.

• (Here the relation P (u, v) defines a total order on vertices, such that any two consec-
utive vertices must be adjacent.)

• Then SNP is the class of decision problems reducible to a graph-theoretic predicate
with onlyuniversal quantifiers over vertices, no existential quantifiers. As an example,
k-SAT (CNF satisfiability with at most k literals per clause, for k a constant)is in SNP.
But general SAT is not in SNP, basically because we’re not allowed to say, “There exists
a literal in this clause that satisfies the clause.”

• See also: MaxSNP.

SO-E: Second Order Existential

• The class of decision problems for which a “yes” answer is expressible by a proposition
with second-order existential quantifiers followed by a first-order formula. See [Imm98]
for a full definition.

• SO-E = NP [Fag74].

• Contains FO(poly(n)).

SP: Semi-Efficient Parallel

• The class of problems in P for which the best parallel algorithm (using a polynomial
number of processors) is faster than the best serial algorithm by a factor of Ω(nε) for
some ε > 0.

• Defined in [KRS90].

SP: Alternate Name for XPuniform

span-P: Span Polynomial-Time

• The class of functions computable as |S|, where S is the set of output values returned
by the accepting paths of an NP machine.
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• Defined in [KSTT89a], where it is also shown that span-P contains #P and OptP; and
that span-P = #P if and only if UP = NP.

SPARSE: Sparse Languages

• The class of decision problems for which the number of “yes” instances of size n is
upper-bounded by a polynomial in n. If SPARSE intersects NPC then P = NP [Mah82].

• Contains TALLY.

SPL: Stoic PL

• Has the same relation to PL as SPP does to PP.

• Contains the maximum matching and perfect matching problems under a pseudoran-
dom assumption [ARZ99].

• Contains UL.

• Contained in C=L and ModkL.

• Equals the set of problems low for GapL.

SPP: Stoic PP

• The class of decision problems solvable by an NP machine such that

1. If the answer is “no,” then the number of accepting computation paths exactly
equals the number of rejecting paths.

2. If the answer is “yes,” then these numbers differ by 2.

(A technicality: If the total number of paths is even then the numbers can’t differ by
1.)

• Defined in [FFK94], where it was also shown that SPP is low for PP, C=P, ModkP, and
SPP itself. (I.e. adding SPP as an oracle does not increase the power of these classes.)

• Independently defined in [OH93], who called the class XP.

• Contained in LWPP, C=P, and WPP among other classes.

• Contains FewP; indeed, FewP is low for SPP, so that SPPFewP = SPP [FFK94].

• Contains the problem of deciding whether a graph has any nontrivial automorphisms
[KSTT92].

• Indeed, contains graph isomorphism [AK02].
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• Contains a whole gaggle of problems for solvable black-box groups: solvability testing,
membership testing, subgroup testing, normality testing, order verification, nilpote-
tence testing, group isomorphism, and group intersection [Vin04a]

• [AK02] also showed that the Hidden Subgroup Problem for permutation groups, of
interest in quantum computing, is in FPSPP.

SUBEXP: Deterministic Subexponential-Time

• The intersection of DTIME(2nε
) over all ε > 0. (Note that the algorithm used may vary

with ε.)

symP: Alternate Name for S2P
SZK: Statistical Zero Knowledge

• The class of decision problems for which a “yes” answer can be verified by a statistical
zero-knowledge proof protocol. In such a protocol, we have a BPP (i.e. probabilistic
polynomial-time) verifier, Arthur, and a prover, Merlin, who has unbounded compu-
tational resources. By sending messages back and forth with Merlin, Arthur must
become convinced (with high probability) that the answer is “yes,” without learning
anything else about the problem (statistically).

• What does that mean? For each choice of random coins, Arthur has a “view” of his
entire interaction with Merlin, consisting of his random coins as well as all messages sent
back and forth. Then the distribution over views resulting from interaction with Merlin
has to be statistically close to a distribution that Arthur could generate himself (in
polynomial-time), without interacting with Merlin. (Here “statistically close” means
that, say, the trace distance is at most 1/10.)

• The most famous example of such a protocol is for graph nonisomorphism. Given
two graphs G and H, Arthur can pick one of the graphs (each with probability 1/2),
permute its vertices randomly, send the resulting graph to Merlin,and ask, “Which
graph did I start with, G or H?” If G and H are non-isomorphic, Merlin can always
answer correctly (since he can use exponential time), but if they’re isomorphic, he can
answer correctly with probability at most 1/2. Thus, if Merlin always gives the correct
answer, Arthur becomes convinced the graphs are not isomorphic. On the other hand,
Arthur already knew which graph (G or H) he started with, so he could simulate his
entire view of the interaction himself, without Merlin’s help.

• If that sounds like a complicated definition, well, it is. But it turns out that SZK has
extremely nice properties. [Oka96] showed that:

– SZK is closed under complement. I.e. Arthur can verify in zero-knowledge that
two graphs are isomorphic, not only that they aren’t.

– We can assume without loss of generality that the whole interaction consists of a
constant number of messages.
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– Amazingly, we can also assume without loss of generality that the protocol is
public-coin. I.e. Arthur doesn’t need to hide any of his random bits, as he did in
the graph nonisomorphism protocol above, but can just send them all to Merlin!

– Finally, we can assume without loss of generality that the verifier (Arthur) is
honest. A dishonest verifier would be one that tries to learn something about
the problem (violating the zero-knowledge requirement) by deviating from the
protocol.

Subsequently, [SV97] showed that SZK has a natural complete promise problem, called
Statistical Difference (SD). Given two polynomial-size circuits, C0 and C1, let D0 and
D1 be the distributions over their respective outputs when they’re given as input a
uniformly random n-bit string. We’re promised that D0 and D1 have trace distance
either at most 1/3 or at least 2/3; the problem is to decide which is the case.

• Note: The constants 1/3 and 2/3 can be amplified to 2−poly(n) and 1− 2−poly(n) respec-
tively. But it is crucial that (2/3)2 > 1/3.

• Another complete promise problem for SZK is Entropy Difference (ED) [GV99]. Here
we’re promised that either H(D0) > H(D1) + 1 or H(D1) > H(D0) + 1, where the
distributions D0 and D1 are as above, and H denotes Shannon entropy. The problem
is to determine which is the case.

• If any hard-on-average language is in SZK, then one-way functions exist [Ost91].

• Zero-knowledge proofs were first studied in [GMW91], [GMR89].

• Contains PZK and NISZK, and is contained in AM∩ coAM, as well as CZK and QSZK.

• There exists an oracle relative to which SZK is not in BQP [Aar02b].

• Contained in DQP [Aar02a].

SZKh: SZK With Limited Help

• The class of decision problems for which a “yes” answer can be verified by a statistical
zero-knowledge proof protocol, and the prover and verifier both have access to a string
computed by a trusted probabilistic polynomial-time third party with access to the
input.

• Defined in [BOG03], where it was also shown that SZKh = SZK.

• Contains NISZKh.

TALLY: Tally Languages

• The class of decision problems for which every “yes” instance has the form 0n (i.e.
inputs are encoded in unary). If TALLY intersects NPC then P = NP [Mah82].
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• Contained in SPARSE.

TC0: Constant-Depth Threshold Circuits

• The class of decision problems solvable by polynomial-size, constant-depth circuits
with unbounded fanin, which can use AND, OR, and NOT gates (as in AC0) as well
as threshold gates. A threshold gate returns 1 if at least half of its inputs are 1, and 0
otherwise.

• A uniformity requirement is sometimes also placed.

• TC0 contains ACC0, and is contained in NC1.

• TC0 circuits of depth 3 are strictly more powerful than TC0 circuits of depth 2 [HMP+93].

• TC0 circuits of depth 3 and quasipolynomial size can simulate all of ACC0 [GK93].

• [NR97] give a candidate pseudorandom function family computable in TC0, that is
secure assuming a subexponential lower bound on the hardness of factoring. (See also
[NRR01] for an improvement of this construction, as well as [Kha93].)

• One implication is that, assuming such a bound, there is no natural proof in the sense
of [RR97] separating TC0 from P/poly. (It is important for this that a function family,
and not just a candidate pseudorandom generator, is computable in TC0.) Another
implication is that functions in TC0 are likely to be difficult to learn.

• The permanent of a 0-1 matrix cannot be computed in uniform TC0 [All99].

• In a breakthrough result [Hes01] (building on [BCH86] and [CDL01]), integer division
was shown to be in L-uniform TC0. Indeed division is complete for this class under AC0

reductions.

TFNP: Total Function NP

• The class of function problems of the following form:

Given an input x and a polynomial-time predicate F (x, y), output any y
satisfying F (x, y). (Such a y is promised to exist.)

• Defined in [MP91].

• Contained in FNP.

• Subclasses include PPA, PPP, and PLS.

Θ2P: Alternate name for PNP[log]

TreeBQP: BQP Restricted To Tree States
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• The class of languages accepted by a BQP machine subject to the constraint that at
every time step t, the machine’s state is exponentially close to a tree state—that is, a
state expressible by a polynomial-size tree of additions and tensor products (together
with complex constants and |0 > and |1 > leaf nodes).

• More formally, a uniform classical polynomial-time algorithm generates a sequence of
gates g(1), · · · , g(p(n)). Each g(t) can be either be selected from some finite universal basis
of unitary gates (the choice turns out not to matter), or can be a 1-qubit measurement.
When we perform a measurement, the state evolves to one of two possible pure states,
with the usual probabilities, rather than to a mixed state. We require that the final
gate g(p(n)) is a measurement of the first qubit. If at least one intermediate state was
more than distance 2−Ω(n) away from the nearest state of tree size at most p(n), then
the outcome of the final measurement is chosen adversarially; otherwise it is given by
the usual Born probabilities. The measurement must return 1 with probability at least
2/3 if the input is in the language, and with probability at most 1/3 otherwise.

• Contains BPP, and is contained in BQP.

• Defined in [Aar04c], where it was also shown that TreeBQP is contained in the third
level of PH, which might provide weak evidence that TreeBQP does not equal BQP.

TREE-REGULAR

• Same as REG, except that now the inputs are trees (say, binary trees) instead of strings.
Each vertex is labeled with a symbol from a fixed alphabet. Evaluation begins at the
leaves and proceeds to the root. The state of the finite automaton at each vertex v is
a function of (1) the states at v’s children (if any), and (2) the symbol at v. The tree
is in the language if and only if the automaton is in an “accept” state at the root.

• See [Koz92] for example.

UAP: Unambiguous Alternating Polynomial-Time

• Same as AP, except we are promised that each existential quantifier has at most one
“yes” path, and each universal quantifier has at most one “no” path.

• Contains UP.

• Defined in [NR98], where it was also shown that, even though AP = PSPACE, it is
unlikely that the same is true for UAP, since UAP is contained in SPP.

• [CGRS04] have also shown that UAPUAP = UAP, and that UAP contains the Graph
Isomorphism problem.

UCC: Unique Connected Component

• The class of problems reducible in L to the problem of whether an undirected graph
has a unique connected component.
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• See [AG00] for more information.

• Contained in SL.

• See also coUCC.

UL: Unambiguous L

• Has the same relation to L as UP does to P.

• If UL = NL, then FNL is contained in #L [AJ93].

UL/poly: Nonuniform UL

• Has the same relation to UL as P/poly does to P.

• Equals NL/poly [RA00] (a corollary is that UL/poly is closed under complement).

UE: Unambiguous Exponential-Time With Linear Exponent

• Has the same relation to E as UP does to P.

UP: Unambiguous Polynomial-Time

• The class of decision problems solvable by an NP machine such that

1. If the answer is “yes,” exactly one computation path accepts.

2. If the answer is “no,” all computation paths reject.

• One-way functions exist if and only if P does not equal UP ( [GS88] and independently
[Ko85]).

• One-way permutations exist if and only if P does not equal UP ∩ coUP [HT03].

• There exists an oracle relative to which P is strictly contained in UP is strictly contained
in NP [Rac82]; indeed, these classes are distinct with probability 1 relative to a random
oracle [Bei89].

• NP is contained in RPUP [VV86]. On the other hand, [BBF98] give an oracle relative
to which P = UP but still P does not equal NP.

• UP is not known or believed to contain complete problems. [Sip82], [HH86] give oracles
relative to which UP has no complete problems.

US: Unique Polynomial-Time

• The all-American counting class.

• The class of decision problems solvable by an NP machine such that the answer is “yes”
if and only if exactly one computation path accepts.
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• In contrast to UP, a machine can legally have more than one accepting path - that just
means that the corresponding input is not in the language.

• Defined in [BG82].

• Contains coNP.

VNCk: Valiant NC Over Field k

• Has the same relation to VPk as NC does to P.

• More formally, the class of VPk problems computable by a straight-line program of
depth polylogarithmic in n.

• Surprisingly, VNCk = VPk for any k [VSBR83].

VNPk: Valiant NP Over Field k

• A superclass of VPk in Valiant’s algebraic complexity theory, but not quite the analogue
of NP.

• A problem is in VNPk if there exists a polynomial p with the following properties:

– p is computable in VPk; that is, by a polynomial-size straight-line program.

– The inputs to p are constants c1, · · · , cm, e1, · · · , eh and indeterminates x1, · · · , xn

over the base field k.

– When p is summed over all 2h possible assignments of {0, 1} to each of e1, · · · , eh,
the result is some specified polynomial q.

• Originated in [Val79a].

• If the field k has characteristic greater than 2, then the permanent of an n-by-n matrix
of indeterminates is VNPk-complete under a type of reduction called p-projections (
[Val79a]; see also [Br00]).

• A central conjecture is that for all k, VPk is not equal to VNPk. Bürgisser [Br00] shows
that if this were false then:

– If k is finite, NC2/poly = P/poly = NP/poly = PH/poly.

– If k has characteristic 0, then assuming the Generalized Riemann Hypothesis
(GRH), NC3/poly = P/poly = NP/poly = PH/poly, and #P/poly = FP/poly.

In both cases, PH collapses to Σ2P.

VPk: Valiant P Over Field k

• The class of efficiently-solvable problems in Valiant’s algebraic complexity theory.

105



• More formally, the input consists of constants c1, · · · , cm and indeterminates x1, · · · , xn

over a base field k (for instance, the complex numbers or Z2). The desired output
is a collection of polynomials over the xi’s. The complexity is the minimum number
of pairwise additions, subtractions, and multiplications needed by a straight-line pro-
gram to produce these polynomials. VPk is the class of problems whose complexity is
polynomial in n. (Hence, VPk is a nonuniform class, in contrast to PC andPR.)

• Originated in [Val79a]; see [Br00] for more information.

• Contained in VNPk and VQPk, and contains VNCk.

VQPk: Valiant QP Over Field k

• Has the same relation to VPk as QP does to P.

• Originated in [Val79a].

• The determinant of an n-by-n matrix of indeterminates is VQPk-complete under a
type of reduction called qp-projections (see [Br00] for example). It is an open problem
whether the determinant is VPk-complete.

W[1]: Weighted Analog of NP

• The class of decision problems of the form 〈x, k〉 (k a parameter), that are fixed-
parameter reducible to the following:

Weighted 3SAT: Given a 3SAT formula, does it have a satisfying assignment
of Hamming weight k?

A fixed-parameter reduction is a Turing reduction that takes time at most f(k)p(|x|),
where f is an arbitrary function and p is a polynomial. Also, if the input is 〈x, k〉, then
all Weighted 3SAT instances the algorithm queries about must have the form 〈x, k′〉
where k′ is at most k.

• Contains FPT.

• Defined in [DF99], where the following is also shown:

– If FPT = W[1] then NP is contained in DTIME(2o(n)).

• W[1] can be generalized to W[t].

WAPP: Weak Almost-Wide PP

• The class of decision problems for which there exists a #P function f , and an ε > 0,
such that for all inputs x,

1. If the answer is “yes” then f(x) > (1 + ε)2poly(|x|).
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2. If the answer is “no” then f(x) < (1− ε)2poly(|x|).

• Defined in [BGM03], where it is also shown that WAPP is contained in AWPP and SBP.

W[P]: Weighted Circuit Satisfiability

• The class of decision problems of the form 〈x, k〉 (k a parameter), that are fixed-
parameter reducible to the following problem, for some constant h:

Weighted Circuit-SAT: Given a Boolean circuit C (with no restriction on
depth), does C have a satisfying assignment of Hamming weight k?

• See W[1] for the definition of fixed-parameter reducibility.

• Defined in [DF99].

• Contains W[SAT].

WPP: Wide PP

• The class of decision problems solvable by an NP machine such that

1. If the answer is “no,” then the number of accepting computation paths exactly
equals the number of rejectingpaths.

2. If the answer is “yes,” then these numbers differ by a function f(x) computable
in polynomial time (i.e. FP).

Defined in [FFK94].

• Contained in C=P ∩ coC=P, as well as AWPP.

• Contains SPP and LWPP.

W[SAT]: Weighted Satisfiability

• The class of decision problems of the form 〈x, k〉 (k a parameter), that are fixed-
parameter reducible to the following problem, for some constant h:

Weighted SAT: Given a Boolean formula F (with no restriction on depth),
does F have a satisfying assignment of Hamming weight k?

• See W[1] for the definition of fixed-parameter reducibility.

• Defined in [DF99].

• Contains W[t] for every t, and is contained in W[P].

W[∗]: Union of W[t]’s

• The union of W[t] over all t.
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W[t]: Nondeterministic Fixed-Parameter Hierarchy

• A generalization of W[1].

• The class of decision problems of the form 〈x, k〉 (k a parameter), that are fixed-
parameter reducible to the following problem, for some constant h:

Weighted Weft-t Depth-h Circuit-SAT: Given a Boolean circuit C, with a
mixture of fanin-2 and unbounded-fanin gates. The number unbounded-
fanin gates along any path to the root is at most t, and the total depth (fanin-
2 and unbounded-fanin) is at most h. Does C have a satisfying assignment
of Hamming weight k?

• See W[1] for the definition of fixed-parameter reducibility.

• Defined in [DF99].

• Contained in W[SAT] and in W∗[t].

W∗[t]: W[t] With Parameter-Dependent Depth

• Same as W[t], except that now the circuit depth can depend on the parameter k rather
than being constant. (The number of unbounded-fanin gates along any path to the
root is still at most t.)

• W∗[1] = W[1] [DFT96], and W∗[2] = W[2] [DF97], but the problem is open for larger t.

XOR-MIP∗[2, 1]: MIP∗[2, 1] With XOR Restriction

• Same as MIP∗[2, 1], but with the further restriction that both provers send only a single
bit to the verifier, and the verifier’s output is the exclusive-OR of those bits.

• Defined by [CHTW04], whose motivation was a connection to the Bell and CHSH
inequalities of quantum physics.

• Interestingly, [CHTW04] showed that XOR-MIP∗[2, 1] is contained in EXP, from which
it follows that XOR-MIP∗[2, 1] cannot capture the full power of multi-prover interactive
proofs unless EXP = NEXP.

XP: Fixed-Parameter Tractable for Each Parameter

• The class of decision problems of the form 〈x, k〉 (k a parameter) that are solvable in
time O(|x|f(k)) for some function f . The algorithm used may depend on k.

• Defined in [DF99].

• Contains XPuniform.

• Strictly contains FPT (by diagonalization).
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XPuniform: Uniform XP

• Same as XP except that the algorithm used must be the same for each k (though it
can take k as input).

• Defined in [DF99].

YACC: Yet Another Complexity Class

• A term of derision, used against a complexity class.

ZPE: Zero-Error Probabilistic E

• Same as ZPP, but with 2O(n)-time instead of polynomial-time.

• ZPE = EE if and only if ZPP = EXP [IKW01].

ZPP: Zero-Error Probabilistic Polynomial-Time

• Defined to be the intersection of RP and coRP.

• The class of problems solvable by randomized algorithms that always return the correct
answer, and whose expected running time (on any input) is polynomial.

• Defined in [Gil77].

• Contains the problem of testing whether an integer is prime [SS77] [AH87].

• In contrast to BPP and RP, it is not known whether showing ZPP = P requires proving
superpolynomial circuit lower bounds [KI02].

• There exists an oracle relative to which ZPP = EXP [Hel84].

ZPTIME(f(n)): Zero-Error Probabilistic f(n)-Time

• Same as ZPP, but with O(f(n))-time instead of polynomial-time.

• For any constructible superpolynomial f , ZPTIME(f(n)) with NP oracle is not con-
tained in P/poly [KW98].
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5 Special Zoo Exhibit: Classes of Quantum States and

Probability Distributions

24 classes and counting
A whole new phylum of the Complexity kingdom has recently been identified. This phy-
lum consists of classes, not of problems or languages, but of quantum states and probability
distributions. Well, actually, infinite families of states and distributions, one for each num-
ber of bits n. Admittedly, computer scientists have been talking about the complexity of
sampling from probability distributions for years, but they haven’t tended to organize those
distributions into classes designated by inscrutable sequences of capital letters. This needs
to change. The present Zookeeper has started the analogous project for quantum states;
indeed, he puts the classes below in a special exhibit to avoid the appearance of favoritism
toward his own classes in the main Zoo.

AmpP
Basis
Circuit
Dist
FPAUS
Mixed
MOTree

OTree
ProbP
ψP
Pure
Samplable
Separable
Σ1

Σ2

Σ3

⊗4 ∩ ⊗4

⊗1

⊗2

⊗3

Tree

TreeSize(f(n))
TSH
Vidal

AmpP AmpP: States with Polytime Computable Amplitudes

• The class of Pure quantum state families |ψn >= Σxαx|x > such that for all n, b, there
exists a classical circuit of size p(n + b) that outputs αx to b bits of precision given x
as input, for some polynomial p.

• Defined in [Aar04c], where the following was also shown:

– If BQP = P#P then AmpP is contained in ψP.

– If AmpP is contained in ψP then NP BQP/poly.

– If P = P#P then ψP = AmpP.

– If ψP is contained in AmpP then BQP is contained in P/poly.

• AmpP contains Circuit and Tree, and is contained in Pure.

Basis: Computational Basis States

• The class of quantum state families of the form |x > where x is an n-bit string.

• The zeroth level of TSH.

• Equals Pure intersect Dist.
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Circuit: Circuit States

• A generalization of Tree, where we allow amplitudes to be computed by polynomial-size
multilinear circuits rather than just multilinear formulas.

• Defined in [Aar04c], where it was also observed that Circuit contains Vidal (indeed,
strictly contains it).

• Contained in AmpP.

Dist: Classical Probability Distributions

• The class of classical probability distribution families over n-bit strings.

• Contains Basis, and is contained in Mixed.

FPAUS: Fully Polynomial Almost Uniform Samplable

• The class of probability distribution families Dn over n-bit strings such that (1) Dn is
the uniform distribution over some subset, and (2) there exists a uniform probabilistic
algorithm, running in time polynomial in n and log (1/δ), that outputs a sample from
a distribution at most δ from Dn in variation distance.

• See [JW04] for more information.

Mixed: Mixed Quantum States

• The class of mixed quantum state families of n qubits.

• Contains Pure and Dist.

MOTree: Manifestly Orthogonal Tree States

• The class of quantum state families in Tree representable by polynomial-size trees in
which all additions are of states that are mutually manifestly orthogonal. Two states
of n qubits, Σxαx|x > and Σxβx|x >, are manifestly orthogonal if αxβx = 0 for all x.

• Defined in [Aar04c], where the following was also shown:

– MOTree is strictly contained in Tree. Indeed, MOTree does not contain Σ2.

– MOTree strictly contains ⊗2.

OTree: Orthogonal Tree States

• The class of quantum state families in Tree representable by polynomial-size trees in
which all additions are of mutually orthogonal states.

• Contains MOTree.
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• Defined in [Aar04c], where it was also shown that OTree is contained in ψP.

• Showing a separation between Tree and OTree remains an excellent open problem.

ProbP: Distributions With Polytime-Computable Probabilities
ψP: Pure States Preparable by Polynomial-Size Circuits

• The class of Pure quantum state families |ψn > such that for all n and ε > 0, there
exists a quantum circuit of size p(n+log (1/ε)) that maps the all-0 state to a state some
subsystem of which has trace distance at most 1−ε from |ψn >, for some polynomial p.
Because of the Solovay-Kitaev Theorem (see [NC00]), the definition of ψP is invariant
under the choice of universal gate set.

• The following was shown in [Aar04c]:

– ψP is not contained in Tree.

– OTree is contained (indeed strictly contained) in ψP.

– If BQP = P#P then AmpP is contained in ψP.

– If AmpP is contained in ψP then NP is contained in BQP/poly.

– If P = P#P then ψP = AmpP.

– If ψP is contained in AmpP then BQP is contained in P/poly.

• Whether Tree is contained in ψP remains an intriguing open problem.

Pure: Pure Quantum States

• The class of quantum state families of n qubits that have the form Σxαx|x >; that is,
that cannot be written as a nontrivial probability distribution over two other quantum
states.

• Contains Basis, and is contained in Mixed.

Samplable: Polytime-Samplable Distributions
Separable: Separable Mixed States

• The class of Mixed quantum state families of n qubits that can be written as a proba-
bility distribution over ⊕1 states.

• A well-known open problem asks whether a quantum computer that is in a separable
state at every time step can be simulated in BPP, or alternatively, whether such a
computer can simulate BQP.

Σ1: First Sum Class in TSH

• The class of Pure quantum state families that can be written as superpositions over a
polynomial number of computational basis states.
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• Strictly contains Basis, and is strictly contained in Σ2 and ⊗2.

Σ2: Second Sum Class in TSH

• The class of Pure quantum state families that can be written as superpositions over a
polynomial number of Separable (or equivalently ⊗1) states.

• Strictly contains Σ1 and ⊗1, and is strictly contained in Σ3 and ⊗3.

Σ3: Third Sum Class in TSH

• The class of Pure quantum state families that can be written as superpositions over a
polynomial number of ⊗2 states.

• Strictly contains Σ2 and ⊗2, and is contained in Σ4 ∩⊗4 (strict containment is not yet
known for this and higher levels of TSH).

Σ4 ∩ ⊗4: Intersection of Fourth Levels of TSH

• Does not equal ⊗3 [Aar04c].

⊗1: First Tensor Class in TSH

• Equals Separable intersect Pure.

• Strictly contains Basis, and is strictly contained in Σ2 and ⊗2.

⊗2: Second Tensor Class in TSH

• The class of Pure quantum state families that can be written as a tensor product of
Σ1 states.

• Defined in [Aar04c], where the following was also shown:

– ⊗2 is strictly contained in ⊗3, Σ3, and MOTree.

– ⊗2 is not contained in Vidal.

⊗3: Third Tensor Class in TSH

• The class of Pure quantum state families that can be written as a tensor product of
Σ2 states.

• Strictly contains Σ2 and ⊗2, and is strictly contained in Σ4 ∩ ⊗4 [Aar04c].

Tree: Tree States

• The class of Pure quantum state families |ψn > such that TS(|ψn >) = O(p(n)) for
some polynomial p, where TS, or tree size, is defined as follows.
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• A quantum state tree is a rooted tree where each leaf vertex is labeled with either |0 >
or |1 >, and each non-leaf vertex is labeled with either + or ⊗. Each vertex v is also
labeled with a subset S(v) of {1, ..., n} such that

1. If v is a leaf then |S(v)| = 1.

2. If v is the root then S(v) = {1, ..., n}.
3. If v is a + gate and w is a child of v, then S(w) = S(v).

4. If v is a ⊗ gate and w1, ..., wk are the children of v, then S(w1), ..., S(wk) are
pairwise disjoint and form a partition of S(v).

• Finally, if v is a + gate, then the outgoing edges of v are labeled with complex numbers.
For each v, the subtree rooted at v represents a quantum state in the obvious way (we
require this state to be normalized for each v).

• The tree size TS(|ψ >) is then the minimum size of a tree representing |ψ >, where
size means number of vertices.

• Defined in [Aar04c], where the following was also shown:

– ψP is not contained in Tree.

– Tree strictly contains MOTree.

– Any state family in Tree can be represented by trees of polynomial size and
logarithmic depth.

– Most quantum states cannot even be well-approximated by states of subexponen-
tial tree size.

• Contains OTree and TSH, and is contained in Circuit.

TreeSize(f(n)): Pure Quantum States of Tree Size O(f(n))

• The class of Pure quantum state families that have O(f(n)) tree size in the sense of
[Aar04c]. So for example, Tree equals the union over all k of TreeSize(nk).

• TreeSize(nO(log n)) contains Vidal [Aar04c].

TSH: Tensor-Sum Hierarchy

• The class of quantum state families in Tree represented by trees of polynomial size and
constant depth, where the depth is just the maximum length of a path from the root
to a leaf.

• The levels of TSH are ⊗1, ⊗2, ⊗3, · · · (corresponding to trees whose root vertex is ⊗),
and Σ1, Σ2, Σ3, · · · (corresponding to trees whose root vertex is +). (We have ⊗0 = Σ0

= Basis.)
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• Whether TSH = Tree and whether TSH is contained in ψP remain intriguing open
problems.

Vidal: States of Polynomially-Bounded Schmidt Rank

• The class of Pure quantum state families that are polynomially entangled in the sense
of Vidal [Vid03]. More precisely, given a partition of {1, ..., n} into A and B, let
χA(|ψn >) be the minimum k for which |ψn > can be written as Σk

i=1αi|ϕA
i > ⊗|ϕB

i >,
where |ϕA

i > and |ϕB
i > are states of qubits in A and B respectively. (χA(|ψn > is

known as the Schmidt rank.) Let χ(|ψn >) = maxA χA(ψn >). Then |ψn > is contained
in Vidal if and only if χ(|ψn > is at most p(n) for some polynomial p.

• [Vid03] shows that, if a quantum computer is in Vidal at every time step, then it can
be simulated classically with only polynomial slowdown.

• [Aar04c] observes the following:

– Vidal is strictly contained in Circuit and in TreeSize(nO(log n)).

– Vidal strictly contains Σ2.

– Vidal does not contain ⊗2.
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